三相异步电动机的启动方式的设计(DOC)

合集下载

三相异步电动机启动方式

三相异步电动机启动方式

三相异步电动机启动方式
三相异步电动机的启动方式:
1.直接启动:直接将电动机连接在三相电源上,电动机会瞬间启动。

这种方式简单,但启动电流大,容易损坏电动机和电源设备。

2.自耦降压启动:利用自耦变压器降低电动机启动电流,降低电动机和电源设备的损坏风险。

3.周期变换启动:利用星三角变换等方法,将电动机的起动电流降低到较小的电流。

4.变频调速启动:通过变频器调节电源频率和电压,将电动机的起动电流降低到最小,并实现电机的调速控制。

以上是三相异步电动机的主要启动方式,应根据具体情况选择合适的方式。

三相异步电动机简述及起动方式调速方法.doc

三相异步电动机简述及起动方式调速方法.doc

三相异步电动机简述及起动方式调速方法1 三相异步电动机简述及起动方式调速方法概述:自从1887年发明了三相异步电机后,三相异步电动机在全世界得到广泛的应用。

三相异步电机结构简单,无需电刷和换向器,可长期高速运行,只需对轴承进行维护。

相对其他类型电动机而言故障率较低。

我厂500多台电动机基本均为三相异步电动机。

工作原理简述:在三相交流电动机定子上布置有结构完全相同在空间位置各相差120电角度的三相绕组,分别通入三相交流电,则在定子与转子的空气隙间所产生的合成磁场是沿定子内圆旋转的,故称旋转磁场。

转速的大小由电动机极数和电源频率而定。

转子在磁场中相对定子有相对运动,切割磁杨,形成感应电动势。

转子铜条(铝条)是短路的,有感应电流产生而产磁场。

在磁场中受到力的作用。

转子就会旋转起来。

电机转动要有三个条件:第一要有旋转磁场,第二转子转动方向与旋转磁场方向相同,第三转子转速必须小于同步转速,否则导体不会切割磁场,无感应电流产生,电机就速度减慢产生转速差,所以只要有旋转磁场存在,转子总是落后同步转速在转动。

起动方式:三相异步电机起动方式有:1、直接起动,电机直接接额定电压起动。

2、降压起动: (1)定子串电抗降压起动; (2)星形三角形启动器起动; (3)软起动器起动; (4)用自耦变压器起动。

(5)转子绕线式电机采用转子绕组接电阻分段起动(或碱液水电阻起动),转子绕组接频敏变阻器起动两种方式。

3、变频起动及分段变频起动。

直接起动:直接起动是最好的起动方式之一,它是将电动机的定子绕组直接接入额定电压起动,因此也称为全压起动。

全压起动具有起动转矩大、起动时间短、起动设备简单、操作方便、易于维护、投资省、设备故障率低等优点。

为了能够利用这些优点,目前设计制造的笼型感应电动机都按全压起动时的冲击力矩与发热条件来考虑其机械强度与热稳定性。

所以,只要被拖动的设备能够承受全压起动的冲击力矩,起动引起的压降不超过允许值,就应该选择全压起动的方式。

三相异步电机软启动设计

三相异步电机软启动设计

电压全压启动时 , 启 动电流很大 , 约为额定 电流 的 5 ~7 倍, 会对 电网造成 冲击 , 影 响其 它设备 运行 。启 动转 矩约为 额 定转矩 的两倍 _ 】 ] 。加剧机 械结 构磨损 , 甚 至损 坏设备 。特 别是大功率 的三相异步 电机影 响尤其 明显 。为 了解决 电机 启动时产生 的大 电流 , 需要 对 电机进行 软启 动来 降低启 动
1 引言
三相异步 电动机 以其低成 本 、 高可 靠性 和易维 护等 特
点, 被 广 泛应 用 于 各 工 业 领 域 , 但 是 三 相 异 步 电 动 机 在 额 定
电压 电路 的触 发 脉 冲 角 , 因此 改 变 触 发 角 的变 化 规 律 , 可 以
改 变电动机 的启 动方式 , 使 电动机具有 不 同启动 特性 以适 应不 同的工 况要 求。
电机 。
2 软ห้องสมุดไป่ตู้动原理
软启动器实际上是个调压器 , 启动电机时 , 改变输出的电 压 。目前, 市场上常见 的软启动器主要是 电子式、 磁控式 和 自 动液体电阻式等类型, 其中电子式以晶闸管调压式居多l _ 2 ] 。
晶 闸管 式 软 启 动 器 主 回 路 由 三 对 反 并 联 晶 闸 管 组 成 ,
2 )限流启 动 : 电机在启动过程 中限制其启 动 电流不 超
过设定值的软启动 方式 。在 方式 1 ) 的基 础上 增加 电流 限
制环节 , 当电流要超过 限定值时 , 软启动器限制 电压使其 不 再爬 升 , 直至 电机转速上升 , 启 动电流下降时再继续提 升电 压 。这 种启 动方 式的优点是启 动电流小 , 且可 按需要调整 , 对 电网影响小 。缺点是在启动时难 以知道启动压 降。损 失 启 动力 矩 , 对 电机不利_ 4 ] 。 3 )转矩控制启动 : 用 在重 载启 动 , 它是将 电动机 的启 动转矩由小到大线性上 升 , 它 的优 点是 启动平 滑 , 柔性好 。 对拖动系统有更 好的保护 , 它 的 目的是保护拖 动系统 , 延 长 拖动系统的使 用 寿命 。同时 降低 电机 启动 时对 电网 的冲

三相异步电动机的Y—△启动控制实验报告DOC

三相异步电动机的Y—△启动控制实验报告DOC

可编程控制器课程设计报告书三相异步电动机的Y—△启动控制学院名称:自动化学院学生:专业名称:班级:时间:2021年5月20日至5月31日一、设计目的:1.了解交流继电器、热继电器在电器控制系统中应用。

2.了解对自锁、互锁功能。

3.了解异步电动机Y—△降压启动控制的原理、运行情况及操作方法。

二、设计要求:1、设计电动机Y—△的启动控制系统电路;2、装配电动机Y—△启动控制系统;3、编写s7_300的控制程序;4、软、硬件进展仿真,得出结果。

三、设计设备:1.三相交流电源〔输出电压线〕;2.继电接触控制、交流接触器、按钮、热继电器、熔断器、PLCS300;3.三相鼠笼式电动机。

四、设计原理:对于正常运行的定子绕组为三角形接法的鼠笼式异步电动机来说,如果在启动时将定子绕组接成星形,待起动完毕后再接成三角形,就可以降低启动电流,减轻它对电网的冲击,这样的起动方式称为星三角减压启动,或简称为星三角启动〔Y-Δ启动〕。

星三角起动法适用于正常运行时绕组为三角形联接的的电动机,电动机的三相绕组的六个出线端都要引出,并接到转换开关上。

起动时,将正常运行时三角形接法的定子绕组改接为星形联接,起动完毕后再换为三角形连接。

这种方法只适用于中小型鼠笼式异步电动机.定子绕组星形连接时,定子电压降为三角形连接的1/√3,由电源提供的起动电流仅为定子绕组三角形连接时的1/3。

就是可以较大的降低启动电流,这是它的优点.但是,由于起动转矩与每相绕组电压的平方成正比,星形接法时的绕组电压降低了1/ √3倍,所以起动转矩将降到三角形接法的1/3,这是其缺点。

Y-△降压启动器仅适用于△运行380V的三相鼠笼式电动机作空载或轻载启动。

三相鼠笼式异步电动机Y—△降压启动控制线路图,如图1所示。

图1原理图的分析:按下空开后,按下SB1按钮,KM,KMY线圈得点,同时计时器也开场计时,KM得点,SB1按钮断开,KM触点闭合实现自锁,此时KM、KMY 触点闭合,电动机以Y型启动;当计时器计时时间到,如上电路图KMΔ线圈得到,KMΔ常闭触点断开KMY线圈失电,KMY触点断开,KMΔ触点闭合进展工作,同时KMΔ动合触点闭合实现了互锁电路,此时电动机以Δ型运行。

三相异步电动机Y-△启动控制设计

    三相异步电动机Y-△启动控制设计

《电气控制与PLC技术》课程设计题目:三相异步电动机Y-△启动控制设计专业:自动化班级:姓名:学号:指导教师:设计日期:2012.11.13 --- 2012.11.30目录摘要1 控制要求 (1)2 主要元件介绍 (6)2.1 继电器 (6)2.2 熔断器 (2)2.3 交流接触器 (2)2.4 台达可编程控制器 (8)2.5 三相异步电动机 (8)3 硬件设计 (8)3.1 设计原理 (6)3.2 控制过程 (7)4 软件设计 (7)4.1 I/O接线图 (8)4.2 梯形图和指令表 (9)5 总结 (5)参考文献 (10)摘要星三角启动控制系统,属降压启动他是以牺牲功率为代价来换取降低启动电流来实现的。

所以不能一概而以电机功率的大小来确定是否需采用星三角启动,还得看是什么样的负载,一般在需要启动时负载轻,运行时负载重尚可采用星三角启动控制系统,一般情况下鼠笼型电机的启动电流是运行电流的5—7倍,而对电网的电压要求一般是正负10%,为了不形成对电网电压过大的冲击所以要采用星三角启动控制。

只有鼠笼型电机才采用星三角启动。

星三角降压启动的控制系统电动机三相绕组共有六个外接端子:A-X、B-Y、C-星形启动:X-Y-Z相连,A、B、C三端接三相交流电压380V,此时每相绕组电压为220,较直接加380V 启动电流大为降低,避免了过大的启动电流对电网形成的冲击。

此时的转矩相对较小,但电动机可达到一定的转速。

三角形运行:经星形启动电动机持续一段时间(约十秒钟)达到一定的转速后,利用PLC定时约0.5秒,电器开关把六个接线端子转换成三角形连接并再次接到380V电源时每相绕组电压为380V,转矩和转速大大提高,电动机进入额定条件下的运行过程。

关键词:星三角启动 PLC 鼠笼型电机转矩转速1 控制要求接触器KM1—KM3的作用分别是控制电源、Y形起动、△运行。

①按下起动按钮SB1后,电动机M先作Y起动,10s钟后自动转换为△运行。

三相异步电动机启动,自锁,停止原理图

三相异步电动机启动,自锁,停止原理图

三相异步电动机启动,自锁,停止原理图
三相电动机的启动,自锁,停止的原理图:
1、启动:合上三相隔离开关QS,按起动按钮SB2,按触器KM的吸引线圈得电,3对常开主触点闭合,将电动机M接入电源,电动机开始起动。

同时,与SB2并联的KM的常开辅助触点闭合,即使松手断开SB2,吸引线圈KM通过其辅助触点可以继续保持通电,维持吸合状态。

2、自锁:由于KM的自锁作用,当松开SB2后,电动机M仍能继续起动,最后达到稳定运转。

3、停止:按停止按钮SB1,接触器KM的线圈失电,其主触点和
辅助触点均断开,电动机脱离电源,停止运转。

三相异步电动机的启动

三相异步电动机的启动
绕线型异步电动机转子串电阻启动
三相异步电动机的运行
(2)绕线式三相异步电动机转子串 电阻启动时的机械特性曲线
在整个启动过程中,保持电动机的 转矩在Tst1和Tm之间变化,直到转子中 所串接的电阻器被全部切除,电动机便 稳定运行在额定转速,启动过程结束。
绕线型异步电动机转子串电 阻有级启动机械特性曲线
启动过程中铁损耗和等效电阻不断减小,相当于逐渐 切除转子电路串入的电阻。
绕线型异步电 动机转子串频 敏变阻器启动
三相异步电动机的运行
(2)绕线式三相异步电动机转子串频敏变阻器启动原理
启动时,频率最大,相应频敏变阻器的铁心中涡流损耗
最大,所以频敏变阻器的等效电阻也是最大,既限制了启动
电流,又提高了功率因数,增大了启动转矩。
三相异步电动机的运行
(3)绕线型异步电动机转子串电阻启动优缺点 既能减小启动电流,又能增大启动转矩,因此适合于重载 启动的场合,例如起重机械、卷扬机、龙门吊等。 价格昂贵,启动设备笨重,启动过程电能浪费多;电阻段 数较少时,启动过程转矩波动大;而电阻段数较多时,控制线 路复杂,所以一般只设计为2~4段。
3) 降压启动适用范围。
只适用于正常运行时定子绕组接成△形的笼式异步 电动机。
三相异步电动机 降压启动电路
三相异步电动机的运行
(2)定子绕组串电阻降压启动 1)定子绕组串电阻降压启动方法。
启动时,在定子绕组与电源之间串入启动电阻进 行分压,启动完毕时将电阻短接,电动机全压运行。
2)定子绕组串电阻降压启动原理。
定子绕组串电阻 降压启动原理图
三相异步电动机的运行
(3)自耦变压器降压启动
1)自耦变压器降压启动方法。
启动时,在定子绕组与电源之间串入自耦变压器来降 低加在电动机定子绕组上的电压,待电动机转速上升到接 近额定转速时,再将电动机与自耦变压器断开,接入额定 电压,电动机在全压下加速到额定转速运行。

三相异步电动机不同启动方式

三相异步电动机不同启动方式

三相异步电动机不同启动方式
情况下的波形图
1、直接启动
(1)转子电流、定子电流、转速、转矩波形
(2)异步电机直接启动时转速—转矩特性曲线
2、降压启动
1)转子电流、定子电流、转速、转矩波形(1)升压时间为1s时的波形:
(2)升压时间为2s时的波形:
(3)升压时间为3s时的波形:
(4)升压时间为4s时的波形:
(5)升压时间为5s时的波形:
(6)升压时间为6s时的波形:
2)异步电机降压启动时转速—转矩特性曲线(1)升压时间为1s时的转速—转矩特性:
(2)升压时间为2s时的转速—转矩特性:
(3)升压时间为3s时的转速—转矩特性:
(4)升压时间为4s时的转速—转矩特性:
(5)升压时间为5s时的转速—转矩特性:
(6)升压时间为6s时的转速—转矩特性:
说明:
异步电动机通过自耦变压器降压起动,可以减小变压器二次侧加在定子两端的机端电压,从而达到减小起动电流的目的。

从定子电流波形可知,当转速接近正常运行转速时,接入全电压,比直接起动的定子电流小。

但是在起动的过程中,由于自耦变压器的退出,电流波形出现了高电流峰值,存在2次大的冲击电流。

3、V/f比控制
1)加速(减速)斜率设置为200(-200)时
(1)转子电流、定子电流、转速、转矩波形
(2)异步电机V/f比控制起动时转速—转矩特性曲线
2)加速(减速)斜率设置为100(-100)时(1)转子电流、定子电流、转速、转矩波形
(2)异步电机V/f比控制起动时转速—转矩特性曲线
3)加速(减速)斜率设置为2(-2)时(1)转子电流、定子电流、转速、转矩波形
(2)异步电机V/f比控制起动时转速—转矩特性曲线。

三相异步电动机的启动方式(直接起动和降压起动)

三相异步电动机的启动方式(直接起动和降压起动)

三相异步电动机的启动方式(直接起动和降压起动)
※ 直接起动
直接起动就是用开关或接触器把电机的定子绕组直接接到额定电压的电网上,直接起动是三相异步电动机应用最多的一种,也是起动方式中最简单、直接的一种,一般7.5kw以下电机允许直接起动,对小电机来说直接启动占有绝对优势。

其特点是:电机端子少(一般为三端子电极),可带载起动,设备简易。

※ 降压起动
降压启动时,起动转矩与电压平方成正比例关系下降,故只适用于空载或轻载起动,其方式有以下两种:
(1)Y—
换接起动
定子绕组为连接的电动机,起动时接成Y,速度接近额定转速时转为运行,采用这种方式起动时,每相定子绕组降低到电源电压的58%,起动电流为直接起动时的33%,启动转矩为直接起动时的33%。

起动电流小,起动转矩小。

Y—降压起动的优点是不需要添置启动设备,有起动开关或交流接触器等控制设备就可以实现,缺点是只能用于△连接的电动机,大型异步电机不能重载启动。

起动电流小,但二次冲击电流大,其动转矩较小,允许起动次数较高,设备价格较低,适用于钉子绕组为三角形接线的6个引出端子的中小型电机,如Y2和Y系列电动机。

(2)自耦降压起动
自耦降压起动适合于容量较大的或正常运行时连成Y形不能采用Y—
换接起动的笼型异步电动机。

(完整版)三相异步电动机Y-△降压起动的控制设计

(完整版)三相异步电动机Y-△降压起动的控制设计

《电气控制与PLC应用》课程设计说明书设计题目:三相异步电动机Y—△换接起动控制设计专业及班级:XXX指导教师:XXX学生姓名:XXX学号:XXXX设计时间:XXXXXXXX目录一、设计题目 (1)二、控制要求 (1)三、设计内容 (1)1、设计原理 (1)2、I/O配置接线图 (2)3、工作过程 (3)4、程序设计梯形图 (3)5、程序设计指令图 (4)6、元件介绍 (4)总结 (8)参考文献 (9)一、设计题目利用三菱可编程控制器实现三相异步电动机Y—△降压起动的控制设计。

二、控制要求接触器1KM~3KM的作用分别是控制电源、Y形起动、△运行.①按下起动按钮SB2后,电动机M先作Y起动,10s钟后自动转换为△运行。

②若任何情况下外部按下停止按钮SB1或热继电器FR动作时,都会导致电动机停止.三、设计内容1、设计原理容量较大的电动机.通常采用降压启动方式。

降压启动的方式很多,有星三角启动,自耦降压启动,串联电抗器降压启动,延边三角形启动等。

本文介绍电动机的星三角(Y一△)启动方式。

所谓Y一△启动,是指启动时电动机绕组接成星形,启动结束进入运行状态后,电动机绕组接成三角形。

在启动时。

电机定子绕组因是星形接法,所以每相绕组所受的电压降低到运行电压的57.7%,启动电流为直接启动时的1/3,启动转矩也同时减小到直接启动的1/3.所以这种启动方式只能工作在空载或轻载启动的场合。

电动机Y-△启动的电路图,U1-U2、V2-V2、Wl-W2是电动机M的三相绕组.如果将U2、V2和W2在接线盒内短接则电动机被接成星形;如果将U1和W2、V1和U2、W1和V2分别短接,则电动机被接成三角形.实现电动机的Y-△启动控制电路见图1.图1 2、I/O配置接线图图2 I/O配置接线图表1 I/O配置表2 硬件配置表3、工作过程按下启动按钮SB1,接触器KM3线圈得电,KM3的主触点闭合,KM3辅助触点(常开)闭合,接触器KM1和时间继电器的线圈得电,KM1主触点闭合,将电动机的三相绕组接成星形,电动机进入星形启动状态;KM1的辅助触点KM1-1闭合,使电路维持在启动状态。

三相异步电动机的Y—△启动控制实验报告DOC

三相异步电动机的Y—△启动控制实验报告DOC

三相异步电动机的Y—△启动控制实验报告DOC实验名称:三相异步电动机Y—△启动控制实验报告一、实验目的:1.了解三相异步电动机的原理及工作特性;2.学习三相异步电动机的Y—△启动方式;3.掌握对三相异步电动机进行Y—△启动的控制方法;4.观察不同条件下的电动机的启动过程及运行情况。

二、实验原理:1.三相异步电动机的原理:2.Y—△启动方式:Y—△启动方式是一种较为常见的电动机启动方式,即先将电动机的绕组通过Y连接,使得电动机的起动电流较小;当电动机转速达到一定值后,再切换至△连接,使电动机能够正常运转。

三、实验器材及设备:1.三相异步电动机2.实验台架3.电源4.电流表5.电压表6.开关四、实验步骤及结果:1.将三相异步电动机连接至实验台架上,确保连接正确且牢固。

2.将电源接入实验台架,并调整电源参数(例如,电流、电压等)。

3.打开电源,使电源供电给电动机。

4.观察电动机的启动情况,记录电动机在不同条件下的启动时间和电流、电压等参数。

5.将电动机的连接方式从Y切换至△,观察电动机的运行情况并记录相关参数。

6.实验结束后,关闭电源,拆卸电动机。

五、实验讨论:1.分析Y—△启动方式的优点和缺点。

2.分析在实验过程中观察到的电动机启动时间和电流、电压等参数的变化规律及影响因素。

3.总结对三相异步电动机进行Y—△启动的控制方法。

4.提出改进实验方案的建议,并说明改进的原因。

六、实验结论:根据实验结果分析得知,Y—△启动方式能够有效地减小电动机起动时的电流冲击,降低电动机起动所需的能量,同时保证电动机能够正常运转。

在不同条件下,电动机的启动时间、电流、电压等参数存在差异,通过对电动机启动控制方法的改进,能够更好地控制电动机的启动过程,提高电动机的启动效率和运行质量。

在今后的实际应用中,可以根据电动机的不同要求选择合适的启动方式,以提高电动机的性能和可靠性。

三相异步电动机的两种启动方式 三相异步电动机如何操作

三相异步电动机的两种启动方式 三相异步电动机如何操作

三相异步电动机的两种启动方式三相异步电动机如何操作作电动机运行的三相异步电机。

三相异步电动机转子的转速低于旋转磁场的转速,转子绕组因与磁场间存在着相对运动而产生电动势和电流,并与磁场相互作用产生电磁转矩作电动机运行的三相异步电机。

三相异步电动机转子的转速低于旋转磁场的转速,转子绕组因与磁场间存在着相对运动而产生电动势和电流,并与磁场相互作用产生电磁转矩,实现能量变换。

三相异步电动机有直接起动和降压起动两种。

1)直接起动即在额定电压下起动。

这种方法的起动电流很大,可达到额定电流的4~7倍。

依据规定单台电动机的起动功率,不宜超过配电变压器容量的30%。

2)降压起动利用起动设备将电压降低后,再加到电动机上,当电动机转速升到确定值时,再转接到额定电压下运行。

这种方法虽可减小起动电流,但电动机的转矩与电压的平方成正比,电动机的起动转矩也因此而减小,所以只适用于笼型电动机空载或轻载起动的场合。

一般常用的降压起动方法有以下几种:(1)星三角降压起动:起动时将定子三相绕组作星形连接,以限制起动电流,待转速接近额定转速时再换接成三角形,使电动机全压运行。

接受这种起动方法,起动电流较小,起动转矩也较小,所以一般适用于正常运行为三角形接法的、容量较小的电动机作空载或轻载起动。

也可频繁起动。

(2)自耦变压器降压起动:将自耦变压器高压侧接电网,低压侧接电动机。

起动时,利用自耦变压器分接头来降低电动机的电压,待转速升到确定值时,自耦变压器自动切除,电动机与电源相接,在全压下正常运行。

这种起动方法,可选择自耦变压器的分接头位置来调整电动机的端电压,而起动转矩比星三角降压起动大。

但自耦变压器投资大,且不允许频繁起动。

它仅适用于星形或三角形连接的、容量较大的电动机。

(3)延边三角形降压起动:起动时,定子绕组接成延边三角形,以减小起动电流,待电动机起动后,再换接成三角形,使电动机在全压下运行。

这种起动方法,可通过调整定子绕组的抽头比,来取得不同数值的起动转矩,从而克服了星三角降压起动电压偏低、起动转矩较小的缺点。

电机拖动课程设计三相异步电动机启动讲解

电机拖动课程设计三相异步电动机启动讲解

摘要电机的起动电流近似的与定子的电压成正比,因此要采用降低定子电压的办法来限制起动电流,即为降压起动。

对于因直接起动冲击电流过大而无法承受的场合,通常采用降压起动,此时,起动转矩下降,起动电流也下降,所以只适合必须减小起动电流,又对起动转矩要求不高的场合。

常见降压起动方法:定子串电阻降压起动、Y/Δ起动控制线路、延边三角起动、软启动及自耦变压器降压起动。

关键词:三相异步电动机降压启动启动方法目录摘要---------------------------------------------------------------------- I 目录--------------------------------------------------------------------- II 第1章绪论-------------------------------------------------------------- 2第2章三相异步电动机的基本结构及工作原理-------------------------------- 21 定子部分----------------------------------------------------------- 32 转子部分----------------------------------------------------------- 33. 气隙δ------------------------------------------------------------- 54、三相异步电动机的铭牌数据--------------------------------------------55、三相异步电动机的工作原理--------------------------------------------5 第3章异步电动机的优缺点------------------------------------------------ 73.1 三相异步电动机的优点--------------------------------------------- 73.2 异步电动机存在的缺点--------------------------------------------- 7第4章三相异步电动机起动方式-------------------------------------------- 81、直接启动----------------------------------------------------------- 92、三相异步电动机的Y—Δ起动控制-------------------------------------103自耦变压器降压启动--------------------------------------------------11 4、绕线式异步电动机转子串接电阻起动-----------------------------------12 第5章三相异步电动机常见故障问题及处理-----------------------------------16第6章心得体会-----------------------------------------------------------17 结论--------------------------------------------------------------------- 17参考文献----------------------------------------------------------------- 19第1章绪论三相异步电动机转子的转速低于旋转磁场的转速,转子绕组因与磁场间存在着相对运动而产生感生电动势和电流,并与磁场相互作用产生电磁转矩,实现能量变换。

第14章三相异步电机的启动及速度调节

第14章三相异步电机的启动及速度调节
T U N2 = = Ts UN N1
' s ' 2 2
& UN
I&s''
N1
N2
& U'
第14章三相异步电机的启动及速度调节
3.定子绕组串电阻或者电抗器启动 3.定子绕组串电阻或者电抗器启动 在定子绕组的电路中串 入一个三相电阻器或者电 抗器来产生一定的电压降, 抗器来产生一定的电压降, 使得达到降低启动电流的 目的。 目的。 串电阻器启动时, 串电阻器启动时,要消 耗较大的功率; 耗较大的功率;串电抗器 启动时, 启动时,当K2短接启动电 抗器时还会产生较大的短 路电流, 路电流,所以串电抗器适 合于启动转矩要求不大且 启动不频繁的场合。 启动不频繁的场合。
1
电源容量( 电源容量(kVA )
降压起动多用于空载或轻载起动 降压起动多用于空载或轻载起动
I stY 1 = I st ∆ 3 TstY 1 = Tst ∆ 3
第14章三相异步电机的启动及速度调节
对于正常运行时定子 绕组采用“ 联结的异步电 绕组采用“D”联结的异步电 动机,起动时定子“ 联结 联结, 动机,起动时定子“Y”联结, 起动完毕后换成“ 联结 联结。 起动完毕后换成“D”联结。 这样起动时,每相起动电压 这样起动时, 大小和直接起动时每相电压 大小之间的关系: 大小之间的关系:
自耦变压器一般有三个分接头可供选用。 自耦变压器一般有三个分接头可供选用。
第14章三相异步电机的启动及速度调节
电动机降压起动时电流为 Is ,与直接起动时的 '' 起动电流 Is之间关系为
I N2 U = = Is UN N1
自耦变压器高压侧的起动 ' '' 电流 Is ,与 Is 之间的关系为

浅析三相异步电动机的启动方式

浅析三相异步电动机的启动方式

步 电动机 的启动 方 式、 校验 计 算 , 并 以实 际案例 为基础 , 使 读 者 更 熟 练 的运 用设计 手 册 中的计 算 公
式 。能 够选择 更 经 济、 更合 理 的起动 方 式 。
关键 词 : 起动 转矩 ; 静 阻转 矩 ; 电动机 端 子 电压 ; 短 路容 量
中图分 类号 : T M3 4 3
电动 机 自然机 械 特性 曲线 , 绕线 型异 步 电动 机 转 子 串接 不 同 电阻机 械特 性 曲线 , 三相 交 流 异 步 电动 机
不 同电压特性 曲线和不 同频率特性 曲线 图可 以看
出, 鼠笼 型异 步 电动 机 与 绕线 型异 步 电动 机 的机 械
又是静止元件 , 很少需要维修 , 因此一般情况下使用 最 多 的是后 者 。
文 献标 识码 : B
文章 编号 : 1 6 7 1 — 7 4 9 X( 2 0 1 3 ) 0 2- 0 1 1 5— 0 2
0 引 言
工 矿企 业 三 相 异 步 电动 机 容量 越 来 越 大 , 选 择

可 以通 过集 电环和 电刷 的 基 础 , 把外 边 的三 相 附 加 电阻 串接 到转 子 的三 相 绕 组 中 , 而笼 型 电动 机 就 没 有 这个 功 能 , 因此本 文 基 本 将 两 种 电动 机 启 动异 步 电 动 机 的启 动 方 式
1 1 5
浅 析 三 相 异 步 电动 机 的启 动 方 式
万孟 合
( 神 东煤 炭集团神东工程设计公 司 , 内蒙古 伊金霍 洛旗 0 1 7 2 0 9 )

要: 本 文针对 勘察 设计 过程 中遇 到 的 电动机起 动 问题 , 以设计 手 册 为依 据 , 阐述 常用 的三 相 异

三相异步电动机启动方法

三相异步电动机启动方法

三相异步电机的启动方法三相异步电动机的起动方法主要有直接起动、传统减压启动和软启动三种启动方法。

下面就分别做详细介绍。

2.2.1直接起动直接起动,也叫全压起动。

起动时通过一些直接起动设备,将全部电源电压(即全压)直接加到异步电动机的定子绕组,使电动机在额定电压下进行起动。

一般情况下,直接起动时起动电流为额定电流的3〜8倍,起动转矩为额定转矩的1〜2倍。

根据对国产电动机实际测量,某些笼型异步电动机起动电流甚至可以达到8〜12倍。

直接起动的起动线路是最简单的,如图2-2所示。

然而这种起动方法有诸多不足。

对于需要频繁起动的电动机,过大的起动电流会造成电动机的发热,缩短电动机的使用寿命;同时电动机绕组在电动力的作用下,会发生变形,可能引起短路进而烧毁电动机;另外过大的起动电流,会使线路电压降增大,造成电网电压的显著下降,从而影响同一电网的其他设备的正常工作,有时甚至使它们停下来或无法带负载起动。

这是因为Ts及Tm均与电网电压的平方成正比,电网电压的显著下降,可使Ts及Tm均下降到低于Tz0一般情况下,异步电动机的功率小于7.5kW时允许直接起动。

如果功率大于7.5kW,而电源总容量较大,能符合下式要求的话,电动机也可允许直接起动。

I1st1:电源总容量(kv八)1K3I1N4起动电动总功率(kw)如果不能满足上式的要求,则必须采用减压启动的方法,通过减压,把启动电流Ist限制到允许的数值。

图2-2直接启动原理图2.2.2传统减压起动减压起动是在起动时先降低定子绕组上的电压,待起动后,再把电压恢复到额定值。

减压起动虽然可以减小起动电流,但是同时起动转矩也会减小。

因此,减压起动方法一般只适用于轻载或空载情况。

传统减压起动的具体方法很多,这里介绍以下三种减压起动的方法:(1)定子用接电阻或电抗起动定子绕组用电阻或电抗相当于降低定子绕组的外加电压。

由三相异步电动机的等效电路可知:起动电流正比于定子绕组的电压,因而定子绕组用电阻或电抗可以达到减小起动电流的目的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

包头钢铁职业技术学院毕业实践任务书题目:三相异步电动机的启动方式的设计班级: 06五年制机电D姓名:刘伟指导老师:徐桂岩完成日期: 2011.3.20包头钢铁职业技术学院制2011年3月包头钢铁职业技术学院毕业实践任务书成绩及评语表摘要三相异步电动机的起动电流高达额定电流的5~8倍,对电网造成较大干扰,尤其在工业领域中的重载起动,有时可能对设备安全构成严重威胁。

传统的降压起动方式,如星三角起动、自耦变压器起动等,要么起动电流和机械冲击过大,要么体积庞大笨重、损耗大,要么起动力矩小、维修率高等等,都不尽人意。

软启动技术不仅实现在整个起动过程中无冲击而平滑地起动电动机,而且可根据电动机负载的特性来调节起动过程中的参数如限流值、起停时间等,以达到最佳的起停状态。

关键词异步电动机;软启动;设计目录`1前言 (1)1.1 软启动的定义 (1)1.2 软启动器的简单介绍 (1)1.2.1 软启动器的保护功能 (1)1.2.2 它与变频器有的区别 (1)1.2.3 软启动的作用 (2)1.3 电动机起动方式的选择 (2)1.4 与传统启动的比较 (2)1.4.1 软启动器的应用范围 (2)1.4.2 软启动与传统减压起动方式的不同之处 (2)2 软启动的基本原理 (4)2.1 软启动器的优点 (4)2.2 软启动器的控制接线 (5)3 软启动电路 (6)3.1 软启动器的控制原理图 (6)3.2 硬件设计 (6)3.3 电压同步信号检测电路 (7)3.4 触发脉冲形成电路 (8)4 总结 (10)致谢 (11)参考文献 (12)1前言三相异步电机由于结构简单、控制维护方便、性能稳定、效率高等优点而被广泛地应用于生产和各种动力设备的拖动中。

因其直接起动时产生的冲击电流对电网及其负载造成冲击,同时由于起动应力较大,使负载设备的使用寿命降低,因此常采用降压起动方式来减少影响。

但是,传统的降压起动方式,如星三角起动、自耦变压器起动等,要么起动电流和机械冲击过大,要么体积庞大笨重、损耗大,要么起动力矩小、维修率高等等,都不尽人意。

随着电子技术的发展,使用软启动器可以无冲击而平滑地起动电动机,而且可根据电动机负载的特性来调节起动过程中的参数达到最佳的起停状态,从而延长机械设备的使用寿命,减少设备的维修量,提高经济效益。

1.1 软启动的定义软启动顾名思义,就是不直接启动,而是慢慢的、一点一点的启动。

比如在电机的输入端一点一点地把电压从0升高到额定电压,频率由0渐渐的变化到额定频率,这样电机在启动过程中的启动电流,就由过去不可控的过载冲击电流变成为可控的、可根据需要调解大小的启动电流。

电机启动的全过程都不存在冲击转矩,而是平滑的启动运行。

这就是所谓的电动机的软启动。

1.2 软启动器的简单介绍起动器是一种用来控制鼠笼型异步电动机的新设备,集电机软启动、软停车、轻载节能和多种保护功能于一体的新颖电机控制装置,国外称为SoftStarter。

它的要构成是串接于电源与被控电机之间的三相反并联闸管及其电子控制电路。

运用不同的方法,控制三相反并联晶闸管的导通角,使被控电机的输入电压按不同的要求而变化,就可实现不同的功能。

1.2.1 软启动器的保护功能(1)过载保护功能:软启动器引进了电流控制环,因而随时跟踪检测电机电流的变化状况。

通过增加过载电流的设定和反时限控制模式,实现了过载保护功能,使电机过载时,关断晶闸管并发出报警信号。

(2)缺相保护功能:工作时,软启动器随时检测三相线电流的变化,一旦发生断流,即可作出缺相保护反应。

(3)过热保护功能:通过软启动器内部热继电器检测晶闸管散热器的温度,一旦散热器温度超过允许值后自动关断晶闸管,并发出报警信号。

(4)其它功能:通过电子电路的组合,还可在系统中实现其它种种联锁保护。

1.2.2 它与变频器有的区别软启动器和变频器是两种完全不同用途的产品。

变频器是用于需要调速的地方,其输出不但改变电压而且同时改变频率;软启动器实际上是个调压器,用于电机起动时,输出只改变电压并没有改变频率。

变频器具备所有软启动器功能,但它的价格比软启动器贵得多,结构也复杂得多。

大多数软启动器在晶闸管两侧有旁路接触器触头,其优点是:(1)在电机运行时可以避免软启动器产生的谐波(2)软启动的晶闸管仅在起动停车时工作,可以避免长期运行使晶闸管发热,延长了使用寿命。

(3)一旦软启动器发生故障,可由旁路接触器作为应急备用1.2.3 软启动的作用软启动器采用三相反并联晶闸管作为调压器,将其接入电源和电动机定子之间。

使用软启动器启动电动机时,晶闸管的输出电压逐渐增加,电动机逐渐加速,直到晶闸管全导通,电动机工作在额定电压的机械特性上,实现平滑启动,降低启动电流,避免启动过流跳闸。

待电机达到额定转数时,启动过程结束,软启动器自动用旁路接触器取代已完成任务的晶闸管,为电动机正常运转提供额定电压,以降低晶闸管的热损耗,延长软启动器的使用寿命,提高其工作效率,又使电网避免了谐波污染。

软启动器同时还提供软停车功能,软停车与软启动过程相反,电压逐渐降低,转数逐渐下降到零,避免自由停车引起的转矩冲击。

1.3 电动机起动方式的选择作为应用最广泛的鼠笼型异步电动机,它采用降压起动的条件:一是电动机起动时,机械不能承受全压起动的冲击转矩;二是电动机起动时,其端电压不能满足规范要求;三是电动机起动时,影响其他负荷的正常运行。

对于降压起动目前有两种方式,一种是降压起动,一种是软启动。

他经过了三个发展阶段,一是“Y-Δ”起动器和自藕降压起动器,二是磁控式软启动器,三是目前最先进最流行的电子软启动器。

电子软启动器一般都是采用16位单片机进行智能化控制,他既能保证电动机在负载要求的起动特性下平滑起动,又能降低对电网的冲击,同时,还能实现直接计算机通讯控制,为自动化智能控制打下良好的基础。

它们的造价比较是:“Y-Δ”起动器须六根出线而且故障率太高,维修费也高已不常采用,自藕方式每个千瓦80元左右,磁控的每千瓦150元左右,自藕和磁控的体积较大且故障率较高,维修费较高,电子软启动器每个千瓦在100元到200元之间,一般情况下,一台开关柜能放多台电子软启动器,节省工程造价,且故障率较低,维修费也低。

所以,电子软启动器应是我们首选的目标。

1.4 与传统启动的比较1.4.1 软启动器的应用范围原则上,鼠笼型异步电动机凡不需要调速的各种应用场合都可适用。

目前的应用范围是交流330(也可660V),电机功率从几千瓦到800kW。

软启动器特别适用于各种泵类负载或风机类负载,需要软启动与软停车的场合。

1.4.2 软启动与传统减压起动方式的不同之处笼型电机传统的减压起动方式有Y-△起动、自耦减压起动、电抗器起动等。

这些起动方式都属于有级减压起动,存在明显缺点,即起动过程中出现二次冲击电流。

由于传统的减压起动方式技术落后,国家已明令淘汰。

软启动与传统减压起动方式的不同之处是:(1)无冲击电流。

软启动器在起动电机时,通过逐渐增大晶闸管导通角,使电机起动电流从零线性上升至设定值。

对电机无冲击,提高了供电可靠性,平稳起动,减少对负载机械的冲击转矩,延长机器使用寿命。

(2)有软停车功能,即平滑减速,逐渐停机,它可以克服瞬间断电停机的弊病,减轻对重载机械的冲击。

(3)起动参数可调,根据负载情况及电网继电保护特性选择,可自由地无级调整至最佳的起动电流。

2 软启动的基本原理软启动是指运用串接于电源与被控电机之间的软启动器,控制其内部晶闸管的导通角,使电机输入电压从零以预设函数关系逐渐上升,直至起动结束,赋予电机全电压的起动方法。

软启动器是一种集电机软启动、软停车、轻载节能和多种保护功能于一体的新颖电机控制装置,它的主要构成是串接于电源与被控电机之间的三相反并联晶闸管及其电子控制电路,通过运用不同的方法,控制三相反向并联晶闸管的导通角,使被控电动机的输入电压按不同的要求而变化,就可实现不同的功能。

如图2-1所示。

图2-1 基本原理图目前使用的软启动器,基本上是以单片机作为中央控制器控制核心来完成测量及各种控制算法,用程序软件自动控制整个起动过程。

它通过单片机及相应的数字电路控制晶闸管触发脉冲的迟早来改变触发角的大小,从而改变晶闸管的导通时间,最终改变加到电动机三相绕组的电压大小。

由于电动机转矩近似与定子电压的平方成正比,电流又和定子电压成正比。

这样,电动机的起动转矩和起动电流的限制可以通过定子电压的控制来实现,而定子电压又是通过可控硅的导通相角来控制的,所以不同的初始相角可实现不同的端电压,电动机的起动转矩和起动电流的最大值可根据负载而设定,以满足不同的负载起动要求。

电动机起动过程中,晶闸管的导通角逐渐增大,晶闸管的输出电压也逐渐增加,电动机从零开始加速,直到晶闸管全导通,从而实现电动机的无级平滑起动,并使电动机工作在额定电压的机械特性上。

2.1 软启动器的优点对于大功率异步电动机而言,软启动比硬起动(即直接起动)和传统降压起动具有以下主要优点:1)减少起动过程引起的电网电压降使之不影响同一供电网其它电气设备的正常运行;2)对电动机提供平滑的起动过程,降低电机起动过程中线路的冲击电流,减少电动机(传动机械)的冲击电流及对电网和配电系统的冲击,延长电动机(传动机械)使用寿命;3)减少电磁干扰:硬起动产生的冲击电流会以电磁波的形式干扰电气仪表的正常运行;4)有多台电动机控制功能,用一台起动器控制多台电动机的起动,起动电流、起动时间可分别设置;多种起动模式:电压斜坡起动、限流起动、脉冲突跳起动,具有软停车功能;5)具有完善的保护功能:过载保护、断相保护、过压和欠压保护等。

2.2 软启动器的控制接线(以英杰电气有限公司的KRQS系列为例)KRQS110/P型软启动器基本接线示意图:图2-6基本接线示意图全数字电子软启动器不仅能有效控制鼠笼式三相异步电动机起动电流,减缓电流对电动机和电网的冲击,还能在起动和运行过程检测电流、电压参数,对异常情况进行处理、显示及报警,实现对电动机的综合保护。

三相鼠笼式异步电动机以其结构简单、性价比高和工作特性好等诸多优点,在当今工业应用的各个领域都有广泛的应用,但它有一明显缺点,就是起动电流过大(一般起动电流为额定电流的5~7倍甚至更大),这样不论是对电动机本身,还是对电网以及其他电气设备,都会产生不利的影响。

电子软启动器的诞生,已经从很大程度上提供了解决这个技术难题的有效手段,而且近年来随着电力电子技术以及智能控制技术的不断发展,电子软启动器已经逐步取代了传统的起动方法,例如“Y-△”降压起动、自耦变压器降压起动以及磁性调压起动等。

所谓电子软启动器,就是使用晶闸管调压技术,采用单片机控制的起动器,在用户规定的起动时间内自动地将起动电压连续平滑地上升,直到达到额定电压,从而达到有效控制起动电流的目的。

相关文档
最新文档