激光原理考试基本概念

合集下载

激光原理复习知识点

激光原理复习知识点

激光原理复习知识点激光原理是激光技术的核心知识之一,它是指光子在受激辐射作用下的放大过程。

下面将详细介绍激光原理的相关知识点。

1.基本概念激光是一种特殊的光,其特点是具有高度的单色性、方向性和相干性。

与常规的自然光不同,激光是一种具有相同频率和相位的光波。

2.受激辐射受激辐射是激光形成的基本原理,它是指当原子或分子受到外界能量激发后,处于激发态的原子或分子会通过辐射的方式从高能级跃迁到低能级,此时会放出光子能量,并与入射光子保持相位一致。

3.激光产生的条件为了产生激光,需要满足以下条件:-有大量的原子或分子处于激发态。

-具有一个能够增加原子或分子跃迁概率的辐射源。

-有一种方法可以让过多的激发态原子或分子跃迁到基态。

4.激光器的结构激光器通常由三个基本部分组成:激活介质、泵浦系统和光学腔。

-激活介质是产生激励能量的介质,如气体、液体或固体。

-泵浦系统是用来提供能量,并将大量原子或分子激发到激发态的装置。

-光学腔是由两个或多个高反射镜组成的光学结构,用来反射和放大光。

5.激光的放大激光的放大是通过在光学腔中来回传播,不断受到受激辐射的作用而增强光波的幅度。

通常,在光学腔中的一个镜子上镀膜,具有高反射率,而另一个镜子具有部分透射和部分反射的特性,用来逐渐放大光。

6.激光的增益介质增益介质是指能够提供光放大的介质,如气体(如CO2、氦氖)、固体(如Nd:YAG)或半导体(如激光二极管)等。

这些介质中的原子或分子通过与激励能量的相互作用,从而达到受激辐射的能量放大。

7.激光的产生方式激光可以通过多种方式产生,其中包括:-激光器:使用激光介质和泵浦系统来产生激光。

-激光二极管:使用半导体材料制成的二极管来产生激光。

-激光腔:使用自激振荡的原理来产生激光。

8.激光的应用激光具有广泛的应用领域,包括但不限于:-激光切割和焊接:激光切割和焊接用于金属加工、制造业等领域。

-激光打印:激光打印用于打印机和复印机等办公设备中。

激光原理复习自整理详解

激光原理复习自整理详解

第一章 激光的特性:1.方向性好,最小发散角约等于衍射极限角2.单色性好3.亮度高4.相干性好 波尔兹曼定律:根据统计规律,大量粒子组成的系统,在热平衡条件下,原子数按能级分布服从波尔兹曼定律:kT E i i i eg -∞n 推论:假设gi=gj1.当E2-E1很小,且12-E E E =∆<< kT 时,112n =n , 2.当E2>E1时,n2<n1. 说明高能粒子数密度总是较小3.当E1为基态,E2距离很远时,即E2>E1,012n =n ,说明绝大多数粒子为基态 普朗克公式:11h 8hv 33v -=kT e c v πρ 爱因斯坦关系:自发辐射,受激辐射,受激吸收之间的关系332121hv 8cB A π= 212121g B g B = 光子简并度g :处于同一光子态的光子数。

含义:同态光子数、同一模式内的光子数、处于相干体积内的光子数、处于同一相格内的光子数自发辐射:处于高能级E2的一个原子自发的向E1跃迁,并产生一个能量为hv的光子 特点:1各粒子自发,独立的发射光子;2非相干光源光功率密度:212)()t (q A t hvn =自受及辐射:处于高能级E2的一个原子在频率为v的辐射场作用下,向E1跃迁,并产生一个能量为hv的光子特点:1只有外来光频率满足12hv E E -=;2 受激辐射所发射的光子与外来光特征完全相同,相干光源【频率,相位,偏振方向,传播方向】,光场中相同光子数量增加,光强增加,入射光被放大,即光放大过程光功率密度:v B t hvn t ρ212)()(q =激光功率密度比:v v hv ρπλρπh88c q q 333==自激 增益系数:光通过单位长度激活物质后光强增长的百分数增益饱和:在抽运速率一定的条件下,当入射光的光强很弱时,增益系数是一个常数;当入射光的光强增大到一定程度后,增益系数随光强的增大而减小。

谱线宽度:线型函数在ν0时有最大值,下降至最大值的一半,对应得宽度。

激光原理考点总结

激光原理考点总结

激光原理考点总结激光(Laser)是指一种由集中的电磁辐射所产生的具有高度单色性、相干性和方向性的光。

激光原理是激光器工作的基础,其中涉及到激光的产生和放大过程。

下面将从以下几个方面总结激光原理的考点。

1.电磁辐射:激光器利用电磁辐射的原理产生激光。

电磁辐射是由电场和磁场相互作用产生的波动现象,包括广义上的光波,其中可见光是电磁辐射的一种。

了解光波的特性和传播方式对理解激光原理很重要。

2.反射和吸收:激光器中的反射是激光产生和放大的关键过程。

反射镜的设置可以实现光的反复来回传播,使得光能够在增益介质中多次通过,增强光的能量。

另一方面,激光器中的吸收是影响激光输出功率和效率的因素之一、吸收是指光被介质吸收和转化为热能的过程。

3.激射和跃迁:激射是指从低能级向高能级跃迁的过程。

在激光器中,通过能量输入或外部激发,使得电子从基态跃迁到激发态。

而跃迁是指电子从一个能级到另一个能级的过程。

了解能级和电子跃迁的类型对激光器的设计和调谐至关重要。

4.反转粒子数和增益:激光器中的反转粒子数是指在激光器工作过程中,高能级粒子数目大于低能级粒子数目的情况。

这种不平衡的粒子数分布是产生和放大激光的关键。

通过提供能量,例如光或电能,可以增加反转粒子数,增强激光的输出功率。

5.波长选择和模式锁定:激光器的波长选择是指产生特定波长的激光。

波长选择可以通过选择合适的增益介质和谐振腔的设计来实现。

激光器中的模式锁定是指使光场处于稳定、精确的频率和相位关系的状态。

这对于精密测量、光谱分析和通信应用非常重要。

6.激光器结构和组成:激光器的结构和组成也是激光原理的考点。

激光器通常包括三个主要部分:激活介质(液体、固体或气体)、谐振腔(用于反射和放大光)和泵浦源(提供能量,如光波或电流)。

不同类型的激光器具有不同的结构,如气体激光器、固体激光器和半导体激光器。

综上所述,激光原理的考点包括电磁辐射、反射和吸收、激射和跃迁、反转粒子数和增益、波长选择和模式锁定以及激光器的结构和组成。

激光原理 期末考试

激光原理 期末考试

激光原理期末考试
激光原理是指产生和放大激光的物理过程。

激光是一种具有高度相干性和能量聚集性的光束,具有单色性、方向性和高亮度等特点,被广泛应用于科学研究、医疗、工业加工、通信等各个领域。

激光的产生是基于激光器的作用原理。

激光器主要由激发源、工作物质、光学腔和输出耦合器等组成。

首先,激发源向工作物质供给能量,使得工作物质的电子处于激发态。

然后,激发态的电子通过受激辐射的过程,向光学腔中发射出一束具有特定波长的光子。

最后,这束光子在光学腔内不断反射,产生光的放大效应。

通过输出耦合器,一部分光子可以逃逸出激光器,形成激光束。

在激光放大过程中,能量的不断输入和反射引起了相干性的增强。

相干性是指光波的波动性质,在激光中,相位关系保持非常稳定,各个光子之间的振幅和相位高度一致,因此激光具有高度的相干性。

此外,激光具有方向性,即激光束的传播方向是高度集中的。

这是由于激光器的光学腔内的反射面和输出耦合器的特定设计,使得光线只沿着特定方向传播,减少了光束的发散。

激光还具有高亮度,即光束的能量密度很高。

这是由于激光器内部的激光放大过程,导致光子数目的快速增加,从而增加了光束的亮度。

总之,激光的原理是基于激光器的工作原理,通过激发源的激发、受激辐射和光的放大,形成具有高度相干性、方向性和高亮度的激光束。

这一原理为激光在各个领域的应用提供了基础。

激光原理及应用的试题库

激光原理及应用的试题库

激光原理及应用的试题库
一、激光原理
•激光的定义及基本特性
•激光的产生原理
•激光的工作性能指标
•激光的发展历程
二、激光的应用
2.1 激光在医学领域的应用
•激光在眼科手术中的应用
•激光在皮肤美容中的应用
•激光在牙科治疗中的应用
2.2 激光在通信领域的应用
•激光在光纤通信中的应用
•激光在无线通信中的应用
•激光在卫星通信中的应用
2.3 激光在制造业的应用
•激光在激光切割中的应用
•激光在激光焊接中的应用
•激光在激光打标中的应用
2.4 激光在科研领域的应用
•激光在物理实验中的应用
•激光在化学实验中的应用
•激光在生物实验中的应用
三、激光原理及应用的试题
3.1 激光原理试题
1.什么是激光? 写出激光的定义及基本特性。

2.请简要描述激光的产生原理。

3.列举并解释激光的工作性能指标。

4.描述激光的发展历程。

3.2 激光应用试题
1.激光在眼科手术中的应用有哪些? 请简要描述其原理。

2.激光在光纤通信中的作用是什么? 请简要解释。

3.你了解哪些激光在制造业中的应用? 请简单列举并描述一项。

4.举例说明激光在科学研究中的应用。

四、总结
•概述激光原理及基本特性
•简述激光在不同领域的应用
•介绍激光原理及应用的试题
•强调激光技术的重要性及发展前景。

激光原理期末知识点总复习材料

激光原理期末知识点总复习材料

激光原理期末知识点总复习材料激光原理是物理学和光学学科中的重要内容,它是现代科技发展的基础之一、下面是激光原理期末知识点的总复习材料。

1.激光的定义和概念:激光是指具有相干特性、能量集中、波长单一且紧凑的光束。

其与常规光的最大区别在于具有相干性和能量集中性。

2.激光的产生过程:激光的产生过程主要包括受激辐射和自发辐射。

受激辐射是指在外界光或电磁辐射的刺激下,原子或分子由基态跃迁到激发态并通过受激辐射返回基态时所发射的光。

自发辐射是指原子或分子自发地从激发态返回基态所发射的光。

3.光激发和电子激发的激光:根据产生激发所用的不同方法,激光可以分为光激发和电子激发的激光。

光激发的激光是通过外界光的能量传递使原子或分子激发并产生激光。

电子激发的激光是通过外界电子束或放电使原子或分子激发并产生激光。

4.激光功率和激光能量:激光功率是指单位时间内激光辐射出的能量,单位为瓦特(W);激光能量是指激光脉冲的总能量,单位为焦耳(J)。

5.激光的特性:激光具有相干性、方向性、单色性和高亮度等特性。

相干性是指激光的波长相近的光波的相位关系保持稳定,能够构成干涉图样。

方向性是指激光具有狭窄的发射角度,能够通过透镜等光学元件进行聚焦。

单色性是指激光具有非常狭窄的波长,具有很高的色纯度。

高亮度是指激光能够将能量集中在很小的空间范围内,能够产生很高的光功率密度。

6.激光器的结构和工作原理:激光器主要由激光介质、泵浦能源、光腔和输出镜组成。

激光介质是产生激光的核心部件,泵浦能源是提供激发条件的能源,光腔是激发介质形成激光放大的空间环境,输出镜是选择性反射激光光束的光学元件。

7.常见的激光器种类和应用:常见的激光器种类包括氦氖激光器、二氧化碳激光器、半导体激光器和固体激光器等。

激光器的应用非常广泛,包括科学研究、医学治疗、通信、激光加工和激光雷达等。

8.激光安全:激光具有较强的穿透力和燃烧能力,因此在使用激光器时需要注意安全。

激光安全主要包括对激光光束的防止散焦、眼睛和皮肤的防护、激光辐射的监测和控制等。

激光原理知识点汇总201905

激光原理知识点汇总201905

激光原理知识点汇总第一章电磁场和物质的共振相互作用1.相干光的光子描述,光的受激辐射基本概念1)1960年7月Maiman报道第一台红宝石固体激光器,波长694.3nm。

2)光的基本性质:能量ε=hνh: Planck常数,ν :光波频率运动质量m=ε/c2=hv/c2静止质量0动量knhnchnmcp=•===22λππν3)光子的相干性:在不同的空间点、不同时刻的光波场某些特性的相关性相干体积相干面积,相干长度,相干时间光源单色性越好,相干时间越长:相格空间体积以及一个光波摸或光子态占有的空间体积度等于相干体积属于同一状态的光子或同一模式的光波是相干的4)黑体辐射的planck公式在温度T的热平衡下,黑体辐射分配到腔内每个模式上的平均能量1-=kThehEνν腔内单位体积、单位频率间隔内的光波摸式数338chnνπν=Planck公式:11833-==kThechνννπρ单色能量密度,k:Boltzmann常数Bohr定则:νhEE=-125)光的受激放大a.普通光源在红外和可见光波段是非相干光,黑体是相干光黑体辐射的简并度KTnmnmKTnmKTncmKTkThhEn50000,1,110,6.0,3001,60,30010,30,3001)exp(1353=≈=≈==≈==≈==→-==-μλμλμλλννb.让特定、少数模式震荡,获得高的光子简并度21212121338AWABchn===ννρνπρ6)光的自激振荡a.自激振荡概念分数单位距离光强衰减的百自损耗系数)(1)(zIdzzdI-=αdzzIIgzdI)(])([)(..α-=考虑增益和损耗])ex p[()(0zgIzIα-=αααsmsmIgIIIgIg)(1)(0-=→=+=光腔作用: (1)模式选择; (2)提供轴向光波摸的反馈;b.震荡条件等于号是阈值振荡ααα≥→≥-=000)(gIgI sm是工作物质长度llgL...........0δδα≥→=lg0单程小信号增益因子7)激光的特性:单色性、相干性、方向性、高亮性。

激光原理复习总结要点

激光原理复习总结要点

激光原理复习要点 第一章 激光的基本原理一、激光的基本性质:1.光子的能量与光波频率对应νεh =;2.光子具有运动质量22ch cm νε==;3.光子的动量与单色波的波失对应k n mc p ==0;4.光子具有两种可能的偏振态,对应光波场的两个独立偏振方向;5.光子具有自旋,且自旋量子数为整数。

二、光子的相干性:1.相干性:在不同的空间点上,在不同的时刻的光波场的某些特性(例如光波场的相位)的相关性。

2.相干体积:在空间体积为c V 内的各点光波场都具有明显的相干性。

3.相干长度:光波波列的长度。

4.光源的单色性越好,则相干时间越长。

5.关于相干性的两个结论:(1)相格空间体积以及一个光波模式或光子偏振态占有的空间都等于相干体积。

(2)属于同一状态的光子或同一个模式的光波是相干的,不同状态的光子、不同模式的光波是不相干的。

三、光子简并度:同一状态的光子数、同一模式的光子数、处于相干体积的光子数、处于同一相格的光子数。

四、自发辐射:处于高能级的一个原子自发地向低能级跃迁,并发射出一个能量为νh 的光子,这种过程叫自发跃迁,由原子自发跃迁发出的光成为自发辐射。

五、受激辐射:处于上能级的原子在频率为ν辐射场作用下,跃迁至低能级,并辐射出一个能量为νh 的光子,受激辐射跃迁发出的光成为受激辐射。

六、受激吸收:处于低能级的一个原子,在频率为ν的辐射场作用下,吸收一个能量为νh 的光子并向高能级跃迁。

七、辐射跃迁:自发辐射跃迁、受激辐射跃迁,非辐射跃迁:受激吸收八、增益系数:用来表示光通过单位长度激活物质后光强增长的百分比。

()()z I dz z dI g 1=。

九、饱和增益:增益系数g 随着z 的增加而减小,这一现象称为饱和增益。

十、引起饱和增益的原因:1.光强I 的增加是以高低能级粒子数差的减小为代价的。

2.光强越大,高低能级的粒子数差减小的就越多,所以g 也随z 的增大而减小。

十一、光谐振腔的作用:1.模式选择,保证激光器单模振荡,从而提高相干性。

激光原理

激光原理

09光信激光原理期中复习资料一、基本概念:1.什么是光波模式和光子态?什么是相格?答:光波模式:在一个有边界条件限制的空间V 内,只能存在一系列独立的具有特定波矢k 的平面单色驻波。

这种能够存在于腔内的驻波(以某一波矢k 为标志)称为光波模式。

光子态:光子在由坐标与动量所支撑的相空间中所处的状态,在相空间中,光子的状态对应于一个相格。

相格:在三维运动情况下,测不准关系为3x y z x y z P P P h ∆∆∆∆∆∆≈,故在六位相空间中,一个光子态对应(或占有)的相空间体积元为3x y z x y z P P P h∆∆∆∆∆∆≈,上述相空间体积元称为相格。

2.如何理解光的相干性?何谓相干时间、相干长度、相干面积和相干体积?答:光的相干性:在不同的空间点上、在不同的时刻的光波场的某些特性的相关性。

相干时间:光沿传播方向通过相干长度c L 所需的时间,称为相干时间。

相干长度:相干光能产生干涉效应的最大光程差,等于光源发出的光波的波列长度。

相干体积:如果在空间体积c V 内各点的光波场都具有明显的相干性,则c V 称为相干体积。

3.何谓光子简并度,有几种相同的含义?激光源的光子简并度与它的相干性什么联系?答:光子简并度:处于同一光子态的光子数称为光子简并度。

光子简并度有以下几种相同含义:同态光子数、同一模式内的光子数、处于相干体积内的光子数、处于同一相格内的光子数。

联系:激光源的光子简并度决定着激光的相干性,光子简并度越高,激光源的相干性越好。

4.什么是黑体辐射?写出Planck 公式,并说明它的物理意义。

答:黑体辐射:当黑体处于某一温度T 的热平衡情况下,它所吸收的辐射能量应等于发出的辐射能量,即黑体与辐射场之间应处于能量(热)平衡状态,这种平衡必然导致空腔内存在完全确定的辐射场,这种辐射场称为黑体辐射或平衡辐射。

Planck 公式:33811b h k T h c e ννπνρ=-物理意义:在单位体积内,频率处于ν附近的单位频率间隔中黑体的电磁辐射能量。

激光原理复习大纲

激光原理复习大纲

《激光原理》考试大纲一、基本要求掌握激光器基本结构,掌握激光原理中的基本概念、原理、计算,了解相关激光技术和几种典型激光器特点。

二、考试范围1〉激光的基本原理1.光波模式的概念。

2.理解自发辐射、受激辐射、受激吸收三个过程;三个爱因斯坦系数、跃迁几率的含义。

3.理解集居数反转。

4.激光器三个必要条件。

5.激光的特性。

2〉开放式光腔与高斯光束1.横模与纵模的概念。

2.识别横模图样及表示方法。

3.纵模频率间隔的计算。

4.无源谐振腔的Q值的定义。

5.腔镜反射不完全引起的损耗如何计算。

6.腔的菲涅耳数的概念,它与腔的衍射损耗的关系。

7.共轴球面腔的稳定性条件。

8.一般稳定球面腔与对称共焦腔的等价关系。

9.稳定球面腔基模高斯光束主要参量的含义及计算:束腰光斑的大小,束腰光斑的位置,镜面上光斑的大小,任意位置激光光斑的大小,等相位面曲率半径,光束的远场发散角,共焦参量。

10.了解基模高斯光束振幅的分布规律,等相面在空间的分布规律。

11.模体积的基本概念。

12.高斯光束q参数的含义及表达式,q参数与光斑半径和等相面曲率半径的关系。

13.高斯光束q参数的变换所遵循的规律,利用ABCD法则分析高斯光束的传输和变换问题。

(仅要求在自由空间的变换和经过透镜的变换)14.会计算高斯光束经过透镜变换前后的束腰大小及位置及任意位置光斑的大小。

15.理解高斯光束的聚焦和准直的含义,理解单透镜焦距以及束腰到透镜距离对高斯光束的聚焦与准直效果的影响。

16.了解构成非稳定腔的条件及其特点。

(注:计算题仅限于双反射镜开腔,对环形腔不做要求)3〉谱线加宽和线型函数1.什么是谱线加宽?有哪些加宽的类型,它们各有什么特点?2.线宽和线型函数的概念。

3.了解均匀加宽和非均匀加宽的概念。

掌握洛仑兹线型公式。

4.理解自然加宽、碰撞加宽和多普勒加宽的形成机理。

掌握它们各自的线宽的计算。

5.会计算多普勒加宽的表观中心频率和表观中心波长。

6.了解吸收截面、发射截面的概念。

精简版---激光原理知识点+复习90题

精简版---激光原理知识点+复习90题
因此,一次往返转换矩阵为
T
A C
1 2L
B D
2 R1
R2
2 R2
1
2L R1
2 L1
L R2
2L R1
1
2L R1
1
2L R2
把条件 R1 R2 R L 带入到转换矩阵 T,得到:
T
A C
B D
1 0
0 1
共轴球面腔的稳定判别式子 1 1 A D 1
2
如果 1 A D 1 或者 1 A D 1 ,则谐振腔是临界腔,是否是稳定腔要根据情况来定。本题中 ,
(1)判断腔的稳定性; (2)求输出端光斑大小; (3)若输出端刚好位于焦距 f=0.1m 的薄透镜焦平面上,求经透镜聚焦后的光腰大小和位置。
解: (1)如图所示,等效腔长
L
'
a
b
0.44
m
0.1 m 1.7
0.5m
由等效腔长可得

g1 g 2
1
L' R1
1
L' R2
1
0.5 1
1
0.5
2
1
1.52 1
1.52
要达到稳定腔的条件,必须是 1 1 A D 1,按照这个条件,得到腔的几何长度为:
2
1.17 L1 2.17 ,单位是米。(作图)
11
4.4(夏珉习题 2.19 数据有改变)如图 2.8 所示,波长 1.06m的钕玻璃激光器,全反射镜的曲率半径
R=1m,距离全反射镜 0.44m 处放置长为 b=0.1m 的钕玻璃棒,其折射率为 n=1.7。棒的右端直接 镀上半反射膜作为腔的输出端。
第三章
光学谐振腔

激光原理概论基本概念

激光原理概论基本概念

n2 (t ) n20e A21 t
q(t ) h
dn2 h A21n2 (t ) h A21n20 e A21 t q0 e A21 t dt
q0= h v A21n20 粒子数和功率都是随时间指数衰减
A21 自发辐射系数, 激发态平均寿命τ的倒数, 只和粒子本身有关。 受激吸收 定义原子处于低能级的 E1 的粒子, 受到恰为 hv=E2-E1 的光子的照 射而吸收该光子的能量,跃迁到 E2。 dn2=B12ρ vn1dt 其中 B12 称为受激吸收系数 由不同原子跃迁。
2. 要 使 受 激 辐 射 光 强 超 过 受 激 吸 收 , 必 须 实 现 粒 子 数 反 转
n2 n1 g2 0 (粒子数反转) g1
方法:利用外界激励能源,把大量粒子激励到高能级上 3. 要使受激发射光强超过自发发射, 必须提高光子的简并度 (自 激震荡) 方法:利用光腔造成强辐射场,提高腔内光场的相干性 激光器的三个主要组成 1. 工作介质:粒子有适当的能级结构,可实现粒子反转 2. 激励能源:抽运 把大量粒子激励到高能级上 3. 光学谐振腔:选模 提高相干性 实现光学正反馈
发光而缩短寿命 3. 由于碰撞使波列发生无规则的相位突变所引起的波列缩短, 等效于寿命缩短 多普勒增宽 尽管发光粒子体系中各粒子的固有中心频率是一样是,但是 由于原子运动速度个不相同,不同速度的原子所发出的光波 接受时的频率也各不相同,即表观中心频率不同,所以各粒 子光谱线叠加而成的整个光源光谱线便加宽了。线性函数就 是气体原子按表观中心频率的分布函数具有高斯函数形式 小信号粒子数反转是物理条件 1. 激光上能级 E2 的寿命要长,使该能级上的粒子不能轻易的 通过非受激辐射而离开 2. 激光下能级 E1 的寿命要短,使该能级上的粒子很快的衰减 3. 选择合适激励能源,使它对介质的 E2 能抽运速度 R2 越大越 好,而 E1 的抽运速度越小越好。 Τ2 > ������1 介质的增益系数 G 代表介质对光波的放大能力 代表光波在介质中经 R2>R1

激光原理复习资料整理总结

激光原理复习资料整理总结

第一章1.1900年,普朗克(M.Planck)提出辐射能量量子化假说,精确的解释了黑体辐射规律。

获得1918年诺贝尔物理学奖。

能量子概念:物质吸收和发射电磁能量是一份一份的进行的。

2.1905年,爱因斯坦(A. Einstein)为解释光电效应定律提出光量子假说。

获得1921年诺贝尔物理学奖。

光量子:简称光子或者photon,即光场本身的能量就是一份一份的。

3.光量子的概念(爱因斯坦):光量子简称光子或者photon,即光场本身的能量就是一份一份的。

爱因斯坦假设:光、原子、电子一样具有粒子性,光是一种以光速c运动的光子流,光量子假说成功地解释了光电效应。

光子(电磁场量子)和其他基本粒子一样,具有能量、动量和质量等。

粒子属性:能量、动量、质量;波动属性:频率、波矢、偏振4.光子既是粒子又是波,具有波粒二象性!5.属性:①光子的能量:ε=hv,普朗克常数: h=6.626x10−36J.s②光子的运动质量m:m=εc2=ℎvc2③光子的动量P⃑:P⃑=mcn0⃑⃑⃑⃑ =ℎvc n0⃑⃑⃑⃑ =ℎ2π2πλn0⃑⃑⃑⃑④光子的偏振态:光子具有两种可能的独立偏振状态,对应于光波场的两个独立偏振方向。

⑤光子的自旋:光子具有自旋,并且自旋量子数为整数,处于同一状态的光子数目是没有限制的。

6.光子相干性的重要结论:①相格空间体积以及一个光波模式或光子状态占有的空间体积都等于相干体积②属于同一状态的光子或同一模式的光波是相干的,不同状态的光子或不同模式的光波是不相干的。

7.光子简并度:处于同一光子态的光子数称为光子简并度。

具有以下几种相同的含义:同态光子数、同一模式内的光子数、处于相干体积内的光子数、处于同一相格内的光子数。

好的相干光源:高的相干光强,足够大的相干面积,足够长的相干时间(或相干长度)。

8.1913年,玻尔(Niels Bohr)建立氢原子结构模型,成功解释并预测了氢原子的光谱。

获得1922年诺贝尔物理学奖9.1946年,布洛赫(Felix Bloch)提出粒子数反转概念。

激光原理考试基本概念

激光原理考试基本概念

第一章1 、激光与普通光源相比有三个主要特点:方向性好,相干性好,亮度高。

2 、激光主要是光的受激辐射,普通光源主要光的自发辐射。

3、光的一个根本性质就是具有波粒二象性。

光波是一种电磁波,是一种横波。

4、常用电磁波在可见光或者接近可见光的围,波长为0.3~30μm,其相应频率为 10^15~10^13。

5、具有单一频率的平面波叫作单色平面波,如果频率宽度Δν<<v 时,这种波叫作准单色波。

6、原子处于最低的能级状态称为基态,能量高于基态的其他能级状态叫作激发态。

7 、两个或者两个以上的不同运动状态的电子可以具有一样的能级,这样的能级叫作简并能级。

8、同一能级所对应的不同电子运动状态的数目,叫作简并度,用字母 g 表示。

9、辐射跃迁选择定则〔本质:状态一定要改变〕,原子辐射或者吸收光子,不是在任意两能级之间跃迁,能级之间必须满足下述选择定则:a、跃迁必须改变奇偶态;b、ΔJ=0,± 1〔J=0→J=0 除外〕;对于采用 LS 耦合的原子还必须满足以下选择定则:c、ΔL=0,± 1〔L=0→L=0 除外〕;d、ΔS=0,即跃迁时 S 不能发生改变。

10、大量原子所组成的系统在热平衡状态下,原子数按能级分布服从玻耳兹曼定律。

11 、处于高能态的粒子数总是小于处在低能态的粒子数,这是热平衡情况的普通规律。

12、因发射或者吸收光子从而使原子造成能级间跃迁的现象叫作辐射跃迁,必须满足辐射跃迁选择定则。

13 、光与物质的相互作用有三种不同的根本过程:自发辐射,受激辐射,和受激吸收。

14、普通光源中自发辐射起主要作用,激光工作过程中受激辐射起主要作用。

15 、与外界无关的、自发发展的辐射称为自发辐射。

自发辐射的光是非相干光。

16 、能级平均寿命等于自发跃迁几率的倒数。

17、受激辐射的特点是:a、惟独外来光子的能量 hv=E2-E1 时,才干引起受激辐射。

b、受激辐射所发出的的光子与外来光子的特性彻底一样〔频率一样,相位一样,偏振方向一样,传播方向一样〕。

激光原理考试重点

激光原理考试重点

激光原理考试重点第一章激光的基本原理1.光子的波动属性包括什么?动量与波矢的关系?光子的粒子属性包括什么?质量与频率的关系?答:光子的波动性包括频率,波矢,偏振等。

粒子性包括能量,动量,质量等。

动量与波矢:质量与频率:2.概念:相格、光子简并度。

答:在六维相空间中,一个光子态对应的相空间体积元为,上述相空间体积元称为相格。

处于同一光子态的光子数称为光子简并度,它具有以下几种相同含义:同态光子数、同一模式内的光子数、处于相干体积内的光子数、处于同一相格内的光子数3.光的自发辐射、受激辐射爱因斯坦系数的关系答:自发跃迁爱因斯坦系数:•受激吸收跃迁爱因斯坦系数:)。

受激辐射跃迁爱因斯坦系数:。

关系:;;为能级的统计权重(简并度)当时有4.形成稳定激光输出的两个充分条件是起振和稳定振荡。

形成激光的两个必要条件是粒子数反转分布和减少振荡模式数5.激光器由哪几部分组成?简要说明各部分的功能。

答:激光工作物质:用来实现粒子数反转和产生光的受激发射作用的物质体系。

接收来自泵浦源的能量,对外发射光波并能够强烈发光的活跃状态,也称为激活物质。

泵浦源:提供能量,实现工作物质的粒子数反转。

光学谐振腔:a)提供轴向光波模的正反馈;b)模式选择,保证激光器单模振荡,从而提高激光器的相干性。

6.自激振荡的条件?答:条件:其中为小信号增益系数:为包括放大器损耗和谐振腔损耗在内的平均损耗系数C7.简述激光的特点?答:单色性,相干性,方向性和高亮度。

8.激光器分类:固体液体气体半导体染料第二章开放式光腔与高斯光束1.开放式谐振腔按照光束几何偏折损耗的高低,可以分为稳定腔、非稳腔、临界腔。

2.驻波条件,纵模频率间隔答:驻波条件:应满足等式:式中,为均匀平面波在腔内往返一周时的相位滞后;为光在真空中的波长;为腔的光学长度;为正整数。

相长干涉时与的关系为:一或用频率来表示:一.纵模频率间隔:不同的q值相应于不同的纵模。

腔的相邻两个纵模的频率之差3.光线在自由空间中行进距离L时所引起的坐标变换矩阵式什么?球面镜的对旁轴光线的变换矩阵?答:光线在自由空间中行进距离L时所引起的坐标变换矩阵式球面镜的对旁轴光线的变换矩阵:而-为焦距。

激光原理复习知识点1

激光原理复习知识点1

激光原理复习知识点1一名词解释1. 损耗系数及振荡条件:0)(m ≥-=ααS o I g I ,即α≥o g 。

α为包括放大器损耗和谐振腔损耗在内的平均损耗系数。

2. 线型函数:引入谱线的线型函数p v p v v )(),(g 0~=,线型函数的单位是S ,括号中的0v 表示线型函数的中心频率,且有+∞∞-=1),(g 0~v v ,并在0v 加减2v ?时下降至最大值的一半。

按上式定义的v称为谱线宽度。

3. 多普勒加宽:多普勒加宽是由于做热运动的发光原子所发出的辐射的多普勒频移所引起的加宽。

4. 纵模竞争效应:在均匀加宽激光器中,几个满足阈值条件的纵模在震荡过程中互相竞争,结果总是靠近中心频率0v 的一个纵模得胜,形成稳定振荡,其他纵模都被抑制而熄灭的现象。

5. 谐振腔的Q 值:无论是LC 振荡回路,还是光频谐振腔,都采用品质因数Q 值来标识腔的特性。

定义p v P w Q ξπξ2==。

ξ为储存在腔内的总能量,p 为单位时间内损耗的总能量。

v 为腔内电磁场的振荡频率。

6. 兰姆凹陷:单模输出功率P 与单模频率q v 的关系曲线,在单模频率等于0的时候有一凹陷,称作兰姆凹陷。

7. 锁模:一般非均匀加宽激光器如果不采取特殊的选模措施,总是得到多纵模输出,并且由于空间烧孔效应,均匀加宽激光器的输出也往往具有多个纵模,但如果使各个振荡的纵模模式的频率间隔保持一定,并具有确定的相位关系,则激光器输出的是一列时间间隔一定的超短脉冲。

这种使激光器获得更窄得脉冲技术称为锁模。

8. 光波模:在自由空间具有任意波矢K 的单色平面波都可以存在,但在一个有边界条件限制的空间V内,只能存在一系列独立的具有特定波矢k 的平面单色驻波;这种能够存在腔内的驻波成为光波模。

9. 注入锁定:用一束弱的性能优良的激光注入一自由运转的激光器中,控制一个强激光器输出光束的光谱特性及空间特性的锁定现象。

(分为连续激光器的注入锁定和脉冲激光器的注入锁定)。

激光原理考试复习资料

激光原理考试复习资料

1.激光原理(概念,产生):激光的意思是“光的受激辐射放大”或“受激发射光放大”,它包含了激光产生的由来。

刺激、激发,散发、发射,辐射2.激光特性:(1)方向性好(2)亮度高(3)单色性好(4)相干性好:3.激光雷达:激光雷达,是激光探测及测距系统的简称。

工作在红外和可见光波段的雷达称为激光雷达。

4.激光的回波机制:激光雷达的探测对象分为两大类,即软目标与硬目标。

软目标是指大气和水体(包括其中所包含的气溶胶等物质)等探测对象,而硬目标则是指陆地、地物以及空间飞行物等宏观实体探测对象。

软目标的回波机制:(1)Mie散射是一种散射粒子的直径与入射激光波长相当或比之更大的一种散射机制。

Mie散射的散射光波长与入射光波长相当,散射时光与物质之间没有能量交换发生。

因此是一种弹性散射。

(2)Rayleigh散射(瑞利散射):指散射光波长等于入射光波长,而且散射粒子远远小于入射光波长,没有频率位移(无能量变化,波长相同)的弹性光散射。

(3)Raman散射(拉曼散射):拉曼散射是激光与大气和水体中各种分子之间的一种非弹性相互作用过程,其最大特点是散射光的波长和入射光不同,产生了向长波或短波方向的移动。

而且散射光波长移动的数值与散射分子的种类密切相关。

(4)共振荧光:原子、分子在吸收入射光后再发射的光称为荧光.当入射激光的波长与原子或分子内能级之间的能量差相等时,激光与原子或分子的相互作用过程变为共振荧光。

(5)吸收:吸收是指当入射激光的波长被调整到与原子分子的基态与某个激发态之间的能量差相等时,该原子、分子对入射激光产生明显吸收的现象。

硬目标的回波机制:激光与由宏观实体构成的硬目标作用机制反射、吸收和透射。

当一束激光射向硬目标物体时,一部分激光能量从物体表面反射、一部分激光能量被物体吸收、而剩下的激光能量则将穿透该物体。

硬目标对激光能量的反射机制最为重要。

硬目标回波机制包括:镜面反射、漫反射,方向反射1.机载激光雷达系统组成:机载LiDAR系统由测量激光发射点到被测点间距离的激光扫描仪、测量扫描装置主光轴的空间姿态参数的高精度惯性导航系统(IMU)、用于确定扫描投影中心的空间位置的动态差分全球导航定位系统(DGPS)、确保所有部分之间的时间同步的同步控制装置、搭载平台等部分组成。

激光原理考试复习资料.doc

激光原理考试复习资料.doc

1•激光原理(概念,产生):激光的意想、是“光的受激辐射放大”或“受激发射光放人”,它包含了激光产生的由来。

刺激、激发,散发、发射,辐射2•激光特性:(1)方向性好(2)亮度高(3)单色性好(4)相干性好:3•激光雷达:激光雷达,是激光探测及测距系统的简称。

丄作在红外和町见光波段的雷达称为激光雷达。

4.激光的回波机制:激光雷达的探测对象分为两大类,即软目标与硕目标。

软目标是指大气和水体(包括其中所包含的气溶胶等物质)等探测对象,而硕FI标则是指陆地、地物以及空间飞行物等宏观实体探测对象。

软目标的回波机制:(1)Mie散射是一种散射粒了的氏径与入射激光波长相当或比之更人的一种散射机制。

M ie 散射的散射光波长与入射光波氏相当,散射时光与物质Z间没冇能量交换发生。

因此是一种弹性散射。

(2)Rayleigh散射(瑞利散射):指散射光波长等于入射光波长,而散射粒了远远小于入射光波长,没有频率位移(无能量变化,波长相同)的弹性光散射。

(3)Raman散射(拉曼散射):拉曼散射是激光与大气和水体中各种分子之间的一种非弹性相互作用过程,英最大特点是散射光的波长和入射光不同,产生了向长波或煎波方向的移动。

而且散射光波长移动的数值与散射分子的种类密切相关。

(4)共振荧光:原子、分子在吸收入射光后再发射的光称为荧光.当入射激光的波长与原子或分子内能级Z间的能量差相等时,激光与原子或分子的相互作用过程变为共振荧光。

(5)吸收:吸收是指当入射激光的波长被调整到与原了分了的基态与某个激发态之间的能量差相等时,该原子、分子对入射激光产生明显吸收的现象。

硬冃标的冋波机制:激光与由宏观实体构成的硕冃标作用机制反射、吸收和透射。

当一束激光射向硬目标物体时,一部分激光能量从物体表面反射、一•部分激光能量被物体吸收、而剩下的激光能量则将穿透该物体。

硕冃标对激光能量的反射机制最为重耍。

硬目标冋波机制包括:镜面反射、漫反射,方向反射1•机载激光雷达系统组成:机载LiDAR系统由测量激光发射点到被测点间距离的激光扫描仪、测量扫描装置主光轴的空I'可姿态参数的高精度惯性导航系统(IMU)、用丁•确定扫描投影中心的空间位置的动态差分全球导航定位系统(DGPS)、确保所冇部分Z间的时间同步的同步控制装置、搭载平台等部分纽成。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

激光原理考试基本概念 work Information Technology Company.2020YEAR第一章1、激光与普通光源相比有三个主要特点:方向性好,相干性好,亮度高。

2、激光主要是光的受激辐射,普通光源主要光的自发辐射。

3、光的一个基本性质就是具有波粒二象性。

光波是一种电磁波,是一种横波。

4、常用电磁波在可见光或接近可见光的范围,波长为0.3~30μm,其相应频率为10^15~10^13。

5、具有单一频率的平面波叫作单色平面波,如果频率宽度Δν<<v 时,这种波叫作准单色波。

6、原子处于最低的能级状态称为基态,能量高于基态的其他能级状态叫作激发态。

7、两个或两个以上的不同运动状态的电子可以具有相同的能级,这样的能级叫作简并能级。

8、同一能级所对应的不同电子运动状态的数目,叫作简并度,用字母g表示。

9、辐射跃迁选择定则(本质:状态一定要改变),原子辐射或吸收光子,不是在任意两能级之间跃迁,能级之间必须满足下述选择定则:a、跃迁必须改变奇偶态;b、ΔJ=0,±1(J=0→J=0除外);对于采用LS耦合的原子还必须满足下列选择定则:c、ΔL=0,±1(L=0→L=0除外);d、ΔS=0,即跃迁时S不能发生改变。

10、大量原子所组成的系统在热平衡状态下,原子数按能级分布服从玻耳兹曼定律。

11、处于高能态的粒子数总是小于处在低能态的粒子数,这是热平衡情况的一般规律。

12、因发射或吸收光子从而使原子造成能级间跃迁的现象叫作辐射跃迁,必须满足辐射跃迁选择定则。

13、光与物质的相互作用有三种不同的基本过程:自发辐射,受激辐射,和受激吸收。

14、普通光源中自发辐射起主要作用,激光工作过程中受激辐射起主要作用。

15、与外界无关的、自发进行的辐射称为自发辐射。

自发辐射的光是非相干光。

16、能级平均寿命等于自发跃迁几率的倒数。

17、受激辐射的特点是:a、只有外来光子的能量hv=E2-E1时,才能引起受激辐射。

b、受激辐射所发出的的光子与外来光子的特性完全相同(频率相同,相位相同,偏振方向相同,传播方向相同)。

18、受激辐射光子与入射(激励)光子属于同一光子态;受激辐射与入辐射场具有相同的频率、相位、波矢(传播方向)和偏振,是相干的。

19、自发辐射跃迁几率就是自发辐射系数本身,而受激辐射的跃迁几率决定于受激辐射系数与外来单色能量密度乘积。

20、Δν=v2-v1,即相对光强为最大的1/2处的频率间隔,叫作光谱线的半值宽度(光谱线宽度)21、处于低能级上的粒子大量地抽运到高能级上,造成一个n2/g2>n1/g1的粒子数密度反转状态的介质叫作增益介质或激活介质。

简答题一:产生激光的三个条件:1.有提供放大作用的增益介质作为激光工作物质,其激活粒子(原子、分子或离子);(有合适的激光工作物质)2.有外界激励源,将下能级的粒子抽运到上能级,使激光上下能级之间产生粒子数反转。

3.有光学谐振腔;增长激活介质的工作长度,控制光束的传播方向,选择被放大的受激辐射光频率以提高单色性。

第二章简答题二:腔中任一傍轴光线经过任意多次往返传播而不逸出腔外的谐振腔能够使激光器稳定地发出激光,这种谐振腔叫作稳定腔。

共轴球面腔的稳定性条件是:0<(1-L/R1)(1-L/R2)<11、共轴球面腔的稳定性条件:0<g1g2<1;为稳定腔,当g1g2=0,或g1g2=1 时为临界腔。

2、稳定腔对光的几何损耗(因反射而引起的损耗)极小,中、小的气体激光器(增益系数G小)常用稳定腔,容易产生激光。

3、通过泵浦实现能级间的粒子数反转所采用的能级结构为三能级系统和四能级系统。

4、四能级系统所需要的激励能量要比三能级系统小得多,产生激光比三能级系统容易得多。

5、在抽运速率一定的条件下,当入射光的光强很弱,增益系数是一个常数;当入射光的光强增大到一定程度后,增益系数随光强度的增大而减小,这种现象称为增益饱和。

6、激光器产生激光的前提条件是介质必须实现能级间的粒子数密度反正分布,即Δn>0,或者说增益系数G>0。

7、增益系数要大于一个下限值,为激光器的阈值,它的数值由各种损耗的大小决定。

8、激光器的损耗指的是在激光谐振腔内的光损耗,分为内部损耗(谐振腔内增益介质内部的损耗,它与增益介质的长度有关)和镜面损耗(可以折合到谐振腔镜面上的损耗)。

9、形成激光所要求的增益系数的条件是:G≥a总,即总损耗系数。

解释为:增益不小于总损耗。

10、三能级系统:阈值高,效率低;四能级系统:阈值条件低,效率高。

第三章1、激光谐振腔的自在现模;当两个镜面完全相同时(对称开腔),稳态场(横向场)分布应在腔内经单程渡越(传播)后即实现“再现”。

2、本征函数解Umn表示的是在激光谐振腔中存在的稳定地横向场分布,就是自再现模,通常叫做“横模”。

3、谐振腔形成的每一列驻波称为一个纵模。

4、激光谐振腔的谐振频率主要决定于纵模序数Vmnq=qc/2μL5、腔内两个相邻纵模频率之差Δνq称为纵模的频率间隔。

6、基横模(TEM00)行波场,激光应用常常只用它的基横模输出。

7、基横模行波输出在与光束前进的垂直平面上的强度呈高斯型分布,通常称为高斯光束。

注:计算题有关高斯光束的相关计算。

第四章1、激光的基本技术有:直接对激光器谐振腔的输出特性产生作用:选模技术、稳频技术、调Q技术和锁模技术等,独立应用:光束变换技术、调制技术和偏转技术。

2、基横模(TEM00)与高阶模相比,具有亮度高、发散角小、径向光强分布均匀、振荡频率单一等特点。

3、激光器输出的选模(选频)技术分为两个部分:对激光纵模的选取和对激光横模的选取。

4、一般来说,均匀增宽的的稳定激光器的输出常常是单纵模的,而且它们的频率总是在谱线中心附近。

5、非均匀增宽激光器的输出一般都具有多个纵模。

6、设计单纵模激光器就必须采取选频的方法。

7、激光振荡的条件是增益系数G必须大于损耗系数a总。

8、基横模选择的实质是使TEM00模达到振荡条件,而使高阶横模的振荡受到抑制。

一般只要能抑制比基横模高一阶的TEM10模和TEM01模振荡,也就能抑制其他高阶模的振荡。

9、菲涅尔数越大,单程衍射损耗越小,菲涅尔系数是表征谐振腔衍射损耗的特征参量。

10、激光器中,气体激光器的单色性最好。

11、频率的稳定包括(频率稳定度和频率复现度),稳频的方法:主动式稳频和被动式稳频。

12、主动式稳频的例子:兰姆凹陷法稳频、饱和吸收法稳频。

13、高斯光束变换特性:高斯光束的聚焦、扩束和准直。

14、高斯光束的准直就是要改善光束的方向性,压缩光束的发散角。

P89(公式4-47和4-48)15、扩束就是扩大光束的光斑尺寸。

简答题三:激光调制可分为内调制和外调制。

内调制是指在激光生成的震荡过程中加载调制信号,通过改变激光的输出特性而实现的调制。

外调制是在激光形成以后,再用调制信号对激光进行调制,他不改变激光器的参数,而是改变已经输出的激光束的参数。

16、激光调制器有:电光强度调制、电光相位调制,声光调制,磁光调制,和空间光调制。

17、实现激光偏振的途径主要有机械偏转、电光偏转和声光偏转。

18、调Q技术有:电光调Q、声光调Q和染料调Q。

19、用调节谐振腔的Q值以获得激光巨脉冲的技术称为激光调Q技术。

调Q技术可以压缩激光脉冲宽度,得到脉宽为毫微秒量级、峰值功率为千兆瓦量级的激光巨脉冲。

20、激光锁模技术锁模技术是进一步对激光进行特殊的调制,强迫激光器中振荡的各个纵模的相位固定,使各模式相干叠加以得到超短脉冲的技术。

腔长越长,荧光线宽越宽,则腔内的纵模数目越多,锁模脉冲的峰值功率就越大。

激光锁模技术有:主动锁模和被动锁模两种。

第五章1、固体激光器主要理解①激光工作的物质②激活粒子是什么(是谁发光)③能级系统(几能级)④供能方式(泵浦方式)⑤输出方式(脉冲连续)2、3、固体激光器是以掺杂离子的绝缘晶体或玻璃为工作物质的激光器。

最常用的固体工作物质仍是红宝石、钕玻璃、掺钕钇铝石榴石(Nd3+:YAG)。

4、固体激光器基本上是由工作物质、泵浦系统、谐振腔和冷却、滤光系统构成。

固体激光工作物质是固体激光器的核心。

5、红宝石激光器(激活粒子:铬离子Cr3+)属于三能级系统,YAG (掺钕钇铝石榴石(激活粒子钕离子Nd3+))激光器属于四能级系统。

6、气体激光器(氦氖激光器属于四能级系统,激活粒子为Ne 原子),(CO2激光器既能连续工作,又能脉冲,输出功率大,效率高,为四能级系统,工作物质为CO2气体分子)计算题第一章:1,121.试计算连续功率均为1W 的两光源,分别发射λ=0.5000μm ,ν=3000MHz 的光,每秒从上能级跃迁到下能级的粒子数各为多少?2.答:粒子数分别为:188346341105138.21031063.6105.01063.61⨯=⨯⨯⨯⨯=⨯⨯==---λνc h q n 239342100277.51031063.61⨯=⨯⨯⨯==-νh q n 12.设氖原子静止时发出0.6328μm 红光的中心频率为4.74×1014Hz ,室温下氖原子的平均速率设为560m/s 。

求此时接收器接收频率与中心频率相差若干? 答:Hzc 81460680010848.81074.4108667.1)108667.11()1035601()1(⨯=⨯⨯⨯=∆⇒⨯+=⨯+=+=--νννυνν第二章:3,43.(a)要制作一个腔长L =60cm 的对称稳定腔,反射镜的曲率半径取值范围如何( b)稳定腔的一块反射镜的曲率半径R 1=4L ,求另一面镜的曲率半径取值范围。

答:(a )R R R ==21;cm R R L R L 301)1)(1(0≥⇒≤--≤ (b )L R L R R L R L R L 31)1(4301)1)(1(022221-≤≥⇒≤-⋅≤⇒≤--≤或 4. 稳定谐振腔的两块反射镜,其曲率半径分别为R 1=40cm ,R 2=100cm ,求腔长L 的取值范围。

答:cm L cm L L L R L R L 1401004001)1001)(401(01)1)(1(021≤≤≤≤⇒≤--≤⇒≤--≤或第三章:1,2,5,6,71.腔长为0.5m 的氩离子激光器,发射中心频率0ν=5.85⨯l014Hz ,荧光线宽ν∆=6⨯l08 Hz ,问它可能存在几个纵模?相应的q 值为多少(设μ=1) 答:Hz L cq 881035.0121032⨯=⨯⨯⨯==∆μν, 210310688=⨯⨯=∆∆=q n νν,则可能存在的纵模数有三个,它们对应的q 值分别为: 68141095.11031085.522⨯=⨯⨯=⨯=⇒=νμμνc L q L qc ,q +1=1950001,q -1=19499992.He —Ne 激光器的中心频率0ν=4.74×1014Hz ,荧光线宽ν∆=1.5⨯l09Hz 。

相关文档
最新文档