空间几何体的三视图、表面积、体积专题练习

合集下载

2013届高三数学(理)寒假作业(14)空间几何体的三视图、表面积、体积

2013届高三数学(理)寒假作业(14)空间几何体的三视图、表面积、体积

高三数学寒假作业 (十四) 空间几何体的三视图、表面积、体积一、选择题1.一个几何体的三视图形状都相同,大小均相等, 那么这个几何体不可以是( ) (A)球 (B)三棱锥 (C)正方体 (D)圆柱2.(2012·济南模拟)一个几何体的三视图如 图所示,则这个几何体的体积等于( ) (A)4 (B)6 (C)8 (D)123.一个三棱锥的三视图如图所示,则其侧(左)视图直角三角形的面积是( )(A)2(B)3(C)4(D)4.(2012·湖北高考)已知某几何体的三视图 如图所示,则该几何体的体积为 (A)83π (B)3π (C)103π (D)6π二、填空题5.(2012·山东高考)如图,正方体ABCD-A 1B 1C 1D 1的棱长为 1,E,F 分别为线段AA 1,B 1C 上的点,则三棱锥D 1-EDF 的体 积为________.6.已知三条侧棱两两垂直的正三棱锥的俯视图如图所示,那么此三棱锥的体积是 ________,侧(左)视图的面积是_________.7.已知某个几何体的三视图如图所示,根据图中标出的尺寸(单位:cm),可得几何体的表面积是________cm 2.三、解答题8.(2012·厦门模拟)已知四面体ABCD(图1),沿AB,AC,AD剪开,展成的平面图形正好是(图2)所示的直角梯形A1A2A3D(梯形的顶点A1A2A3重合于四面体的顶点A).(1)证明:AB⊥CD;(2)当A1D=10,A1A2=8时,求四面体ABCD的体积.9.如图,在三棱锥P-ABC中,PA⊥平面ABC,AC⊥BC,D为侧棱PC上一点,它的正(主)视图和侧(左)视图如图所示.(1)证明:AD⊥平面PBC;(2)求三棱锥D-ABC的体积;(3)在∠ACB的平分线上确定一点Q,使得PQ∥平面ABD,并求此时PQ的长.高三数学寒假作业(十四)答案解析1.D2 A. 3.A. 4.B. 5.166.由已知,该三棱锥如图所示:则V=11323⨯⨯=,该三棱锥的左视图为△PDC ,其中DC=22⨯=,△PDC 的高3=,于是侧(左)视图面积为S=1232⨯=7.由三视图可知几何体为四棱柱及其上方有一半径为2的半球,其中四棱柱的底面是边长为24,故其表面积S=4×4+2242212)2π⨯+π⨯=π (cm 2).8. (1)在四面体ABCD 中,∵AB ACAB AD AC AD A ⊥⎫⎪⊥⎬⎪⋂=⎭⇒AB ⊥面ACD ⇒AB ⊥CD.(2)在题图2中作DE ⊥A 2A 3于E.∵A 1A 2=8,∴DE=8.又∵A 1D=A 3D=10,∴EA 3=6,A 2A 3=10+6=16. 又A 2C=A 3C,∴A 2C=8,即题图1中AC=8,AD=10,由A 1A 2=8,A 1B=A 2B 得题图1中AB=4, ∴S △ACD =3AC D S =12DE·A 3C=12×8×8=32.又∵AB ⊥面ACD ,∴V B-ACD =13×32×4=1283.9. (1)因为PA ⊥平面ABC,所以PA ⊥BC, 又AC ⊥BC,所以BC ⊥平面PAC,所以BC ⊥AD. 由三视图可得,在△PAC 中,PA=AC=4,D 为PC 中点,所以AD ⊥PC,又BC∩PC=C , 所以AD ⊥平面PBC,(2)由三视图可得BC=4,由(1)知∠ADC=90°,BC ⊥平面PAC , 又三棱锥D-ABC 的体积即为三棱锥B-ADC 的体积, 所以,所求三棱锥的体积V=11164323⨯⨯=.(3)取AB的中点O,连接CO并延长至Q,使得CQ=2CO,点Q即为所求.连接OD,因为O为CQ中点,所以PQ∥OD,因为PQ⊄平面ABD,OD⊂平面ABD,所以PQ∥平面ABD,连接AQ,BQ,四边形ACBQ的对角线互相平分,所以ACBQ为平行四边形,所以AQ=4,又PA⊥平面ABC,所以在直角△PAQ中,=.。

三视图习题50道(含答案).

三视图习题50道(含答案).

三视图练习题1、若某空间几何体的三视图如图所示,则该几何体的体积是( (A2 (B1 (C23(D132、一个几何体的三视图如图,该几何体的表面积是((A372 (B360 (C292 (D2803、若某几何体的三视图(单位:cm如图所示,则此几何体的体积是(A3523cm3(B3203cm3 (C2243cm3(D1603cm34、一个长方体去掉一个小长方体,所得几何体的正(主视图与侧(左视图分别如右图所示,则该几何体的俯视图为: (5、若一个底面是正三角形的三棱柱的正视图如图所示,则其侧面积...等于 (A.2 C..66、图2中的三个直角三角形是一个体积为20cm2的几何体的三视图,则h= cm第2题第5题7、一个几何体的三视图如图所示,则这个几何体的体积为。

8、如图,网格纸的小正方形的边长是1,在其上用粗线画出了某多面体的三视图,则这个多面体最长的一条棱的长为______.9、如图1,△ ABC 为正三角形,AA '//BB ' //CC ' , CC ' ⊥平面ABC 且3AA '=32BB '=CC '=AB,则多面体△ABC -A B C '''的正视图(也称主视图是(10、一空间几何体的三视图如图所示,则该几何体的体积为( .A.2π+B. 4π+C. 2π+D. 4π 11、上图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是(A .9πB .10πC .11πD .12π第7题侧(左视图正(主视图俯视图俯视图正(主视图侧(左视图12、一个棱锥的三视图如图,则该棱锥的全面积(单位:c2m为((A(B(C(D13、若某几何体的三视图(单位:cm如图所示,则此几何体的体积是3cm.14、设某几何体的三视图如上图所示。

则该几何体的体积为3m15、已知某个几何体的三视图如下,根据图中标出的尺寸(单位:cm,可得这个几何体的体积是(A.3 4000 cm3B.3 8000 cm3C.3 2000cmD.34000cm16、一个几何体的三视图如上图所示,其中正视图与侧视图都是边长为2的正三角形,则这个几何体的侧面积为(A.33π B.2πC.3π D.4π第14题正视图侧视图俯视图第17题17、如图是一个几何体的三视图,根据图中数据,可得该几何体的表面积为(A .32πB .16πC .12πD .8π18、下图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是A.9πB.10πC.11π D .12π19、右图是一个多面体的三视图,则其全面积为( AB6C6 D4 20、如图所示,一个空间几何体的正视图和侧视图都是底为1,高为2的矩形,俯视图是一个圆,那么这个几何体的表面积为(A .2πB .52πC .4πD .5π21、一个几何体的三视图及其尺寸(单位:cm如图所示,则该几何体的侧面积为_ ______cm 2.22、如果一个几何体的三视图如图所示(单位长度: cm, 则此几何体的表面积是(A. 2(20cm + B.212cmC. 2(24cm + D. 242cm俯视图左视图俯视图图2723. 如右图所示,一个空间几何体的主视图和左视图都是边长为1的正方形,俯视图是一个直径为1的圆,那么这个几何体的表面积为A .π3 B .π2 C .π23D .π424. 如下图,某几何体的正视图与侧视图都是边长为1的正方形,且体积为12。

高三高考数学复习练习82空间几何体的表面积与体积

高三高考数学复习练习82空间几何体的表面积与体积

821.一个球的表面积是16π,那么这个球的体积为( )A.163π B.323π C .16π D .24π【解析】 设球的半径为R ,因为表面积是16π,所以4πR 2=16π,解得R =2,所以体积为43πR 3=32π3. 【答案】 B2.某几何体的三视图如图所示,则其表面积为( )A .πB .2πC .3πD .4π【解析】 由三视图可知,该几何体为半径为r =1的半球体,表面积为底面圆面积加上半球面的面积,所以S =πr 2+12×4πr 2=π×12+12×4π×12=3π.故选C. 【答案】 C3.在梯形ABCD 中,∠ABC =π2,AD ∥BC ,BC =2AD =2AB =2.将梯形ABCD 绕AD 所在的直线旋转一周而形成的曲面所围成的几何体的体积为( )A.2π3B.4π3C.5π3 D .2π【解析】 过点C 作CE 垂直AD 所在直线于点E ,梯形ABCD 绕AD 所在直线旋转一周而形成的旋转体是由以线段AB 的长为底面圆半径,线段BC 为母线的圆柱挖去以线段CE 的长为底面圆半径,ED 为高的圆锥,如图所示,该几何体的体积为V =V圆柱-V 圆锥=π·AB 2·BC -13·π·CE 2·DE =π×12×2-13π×12×1=5π3,故选C. 【答案】 C4.一个四面体的三视图如图所示,则该四面体的表面积是( )A .1+ 3B .2+ 3C .1+2 2D .2 2 【解析】 由空间几何体的三视图可得该空间几何体的直观图,如图所示,∴该四面体的表面积为S 表=2×12×2×1+2×34×(2)2=2+3,故选B. 【答案】 B5.(2018·太原一模)某几何体的三视图如图所示,则该几何体的表面积为( )A .6π+1B.(24+2)π4+1C.(23+2)π4+12D.(23+2)π4+1 【解析】 由几何体的三视图知,该几何体为一个组合体,其中下部是底面直径为2,高为2的圆柱,上部是底面直径为2,高为1的圆锥的四分之一,所以该几何体的表面积为4π+π+3π4+2π4+1=(23+2)π4+1,故选D. 【答案】 D6.甲几何体(上)与乙几何体(下)的组合体的三视图如图所示,甲、乙几何体的体积分别为V 1,V 2,则V 1∶V 2等于( )A .1∶4B .1∶3C .2∶3D .1∶π【解析】 由三视图知,甲几何体是半径为1的球,乙几何体是底面半径为2,高为3的圆锥,所以球的体积V 1=43π,V 2=13π×22×3=4π,所以V 1∶V 2=1∶3.故选B. 【答案】 B7.(2017·全国Ⅲ卷)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为( )A .πB.3π4C.π2D.π4【解析】 设圆柱的底面半径为r ,球的半径为R ,且R =1,由圆柱两个底面的圆周在同一个球的球面上可知,r ,R 及圆柱的高的一半构成直角三角形.∴r = 12-⎝⎛⎭⎫122=32.∴圆柱的体积为V =πr 2h =34π×1=3π4. 故选B.【答案】 B8.(2017·襄阳调研)如图是一个空间几何体的三视图,则该几何体的表面积为________.【解析】 由三视图可知,该几何体是一个正四棱柱挖掉一个半球所得的几何体,其中半球的底面就是正四棱柱上底面的内切圆,正四棱柱的底面边长为4,高为2,半球所在球的半径为2.所以该几何体的表面由正四棱柱的表面与半球的表面积之和减去半球的底面构成,故其表面积为(4×4×2+2×4×4)+12×(4π×22)-π×22=64+4π. 【答案】 64+4π9.(2018·乌鲁木齐二诊)已知四面体ABCD 满足AB =CD =6,AC =AD =BC =BD =2,则四面体ABCD 的外接球的表面积是________.【解析】 (图略)在四面体ABCD 中,取线段CD 的中点为E ,连接AE ,BE .∵AC =AD =BC =BD =2,∴AE ⊥CD ,BE ⊥C D.在Rt △AED 中,CD =6,∴AE =102.同理BE =102.取AB 的中点为F ,连接EF .由AE =BE ,得EF ⊥A B.在Rt △EF A 中,∵AF =12AB =62,AE =102,∴EF =1.取EF 的中点为O ,连接OA ,则OF =12.在Rt △OF A 中,OA =72.∵OA =OB =OC =OD ,∴该四面体的外接球的半径是72,∴外接球的表面积是7π. 【答案】 7π10.(2018·贵州适应性考试)已知球O 的表面积是36π,A ,B 是球面上的两点,∠AOB =60°,C 是球面上的动点,则四面体OABC 体积V 的最大值为________.【解析】 设球的半径为R ,由4πR 2=36π,得R =3.显然在四面体OABC 中,△OAB 的面积为定值,S △OAB =12×R ×32R =34R 2=934.要使三棱锥的体积最大,只需球上的点到平面OAB 的距离最大,显然,到平面OAB 距离的最大值为球的半径,所以四面体OABC 的体积的最大值V =13×934×R =934. 【答案】 93411.(2016·全国丙卷)如图,四棱锥P -ABCD 中,P A ⊥底面ABCD ,AD ∥BC ,AB =AD =AC =3,P A =BC =4,M 为线段AD 上一点,AM =2MD ,N 为PC 的中点.(1)证明:MN ∥平面P AB ;(2)求四面体N -BCM 的体积.【解析】 (1)证明 由已知得AM =23AD =2. 如图,取BP 的中点T ,连接AT ,TN ,由N 为PC 中点知TN ∥BC ,TN =12BC =2. 又AD ∥BC ,故TN 綊AM ,所以四边形AMNT 为平行四边形,于是MN ∥AT .因为AT ⊂平面P AB ,MN ⊄平面P AB ,所以MN ∥平面P AB .(2)因为P A ⊥平面ABCD ,N 为PC 的中点,所以N 到平面ABCD 的距离为12P A. 取BC 的中点E ,连接AE .由AB =AC =3得AE ⊥BC ,AE =AB 2-BE 2= 5.由AM ∥BC 得M 到BC 的距离为5,故S △BCM =12×4×5=2 5. 所以四面体N -BCM 的体积V N -BCM =13×S △BCM ×P A 2=453. 12.如图所示,在空间几何体ADE -BCF 中,四边形ABCD 是梯形,四边形CDEF 是矩形,且平面ABCD ⊥平面CDEF ,AD ⊥DC ,AB =AD =DE =2,EF =4,M 是线段AE 上的动点.(1)试确定点M 的位置,使AC ∥平面MDF ,并说明理由;(2)在(1)的条件下,平面MDF 将几何体ADE -BCF 分成两部分,求空间几何体M -DEF 与空间几何体ADM -BCF 的体积之比.【解析】(1)当M 是线段AE 的中点时,AC ∥平面MDF .理由如下:连接CE 交DF 于点N ,连接MN .因为M ,N 分别是AE ,CE 的中点,所以MN ∥AC .又因为MN ⊂平面MDF ,AC ⊄平面MDF ,所以AC ∥平面MDF .(2)将几何体ADE -BCF 补成三棱柱ADE -B ′CF ,如图所示,三棱柱ADE -B ′CF 的体积为V =S △ADE ·CD =12×2×2×4=8,则几何体ADE -BCF 的体积V ADE ­BCF =V ADE ­B ′CF -V F ­BB ′C=8-13×⎝⎛⎭⎫12×2×2×2=203. 因为三棱锥M -DEF 的体积V M ­DEF =13×⎝⎛⎭⎫12×2×4×1=43, 所以V ADM ­BCF =203-43=163, 所以两几何体的体积之比为43∶163=1∶4.。

专题15 空间几何体的三视图、表面积与体积( 理科)原卷版

专题15 空间几何体的三视图、表面积与体积( 理科)原卷版

绝密★启用前|满分数学命制中心专题15 空间几何体的三视图、表面积与体积一、选择题(每小题5分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2020·北京市平谷区高三一模)某三棱锥的三视图如图所示,那么该三棱锥的表面中直角三角形的个数为()A.1 B.2 C.3 D.02.(2020·江西省名高三第二次大联考(理))某几何体的三视图如图所示,则该几何体的体积为()A.83π163+B.4π1633+C.16343π+D.43π163+3.(2020届河南省驻马店市高三第二次模拟)已知底面是等腰直角三角形的三棱锥P-ABC的三视图如图所示,俯视图中的两个小三角形全等,则()A .PA ,PB ,PC 两两垂直 B .三棱锥P-ABC 的体积为83C .||||||6PA PB PC ===D .三棱锥P-ABC 的侧面积为354. (河南省周口一中2019届期末)一个几何体的三视图如图所示,在该几何体的各个面中,面积最小的面的面积为( )A.8B.4C.4 3D.4 25.(吉林东北师大附中2019届高三模拟)某三棱锥的三视图如图所示,则该三棱锥的最长棱的长度为( )A. 5 B .2 2 C .3D .2 36. (南京师大附中2019届高三调研)某几何体的三视图如图所示,则该几何体的侧视图中的虚线部分是( )A.圆弧B.抛物线的一部分C.椭圆的一部分D.双曲线的一部分7.(2020届湖北省黄冈中学高三高考模拟)木匠师傅对一个圆锥形木件进行加工后得到一个三视图如图所示的新木件,则该木件的体积( )A .2493π+B .4893π+C .48183π+D .144183π+8.(2020·湖南省长沙市明达中学高三二模(理)魏晋时期数学家刘徽在他的著作《九章算术注》中,称一个正方体内两个互相垂直的内切圆柱所围成的几何体为“牟合方盖”,刘徽通过计算得知正方体的内切球的体积与“牟合方盖”的体积之比应为π:4.若正方体的棱长为2,则“牟合方盖”的体积为( ) A .16B .163C .163D .12839.(2020届湖南省长沙市长郡中学高三第三次适应性考试)一个几何体的三视图及尺寸如下图所示,其中正视图是直角三角形,侧视图是半圆,俯视图是等腰三角形,该几何体的表面积是 ( )A .16216π+B .1628π+C .8216πD .828π10.(2020届河南省濮阳市高三模拟)在四面体P ABC -中,ABC 为正三角形,边长为6,6PA =,8PB =,10PC =,则四面体P ABC -的体积为( )A.811B.810C.24 D.16311.(2020届河南省天一大联考“顶尖计划”高三二联)已知三棱锥D ABC-的外接球半径为2,且球心为线段BC的中点,则三棱锥D ABC-的体积的最大值为()A.23B.43C.83D.16312.(2020·北京市西城区高三一模)某四棱锥的三视图如图所示,记S为此棱锥所有棱的长度的集合,则()A.2223S S∉∉,且B.2223S S∉∈,且C.2223S S∈∉,且D.2223S S∈∈,且13.(2020届安徽省“江南十校”高三综合素质检测)如图,在平面四边形ABCD中,满足,AB BC CD AD==,且10,8AB AD BD+==,沿着BD把ABD折起,使点A到达点P的位置,且使2PC=,则三棱锥P BCD-体积的最大值为()A.12 B.2C.23D.16314.(2020届河南省六市高三第一次模拟)已知圆锥的高为33圆周都在同一个球面上,则这个球的体积与圆锥的体积的比值为( )5 3B.329C.43D.259A.二、填空题(每小题5分)16.(2020届黑龙江省齐齐哈尔高三二模)如图是某几何体的三视图,俯视图中圆的两条半径长为2且互相垂直,则该几何体的体积为________.17.(2020届陕西省西安中学高三第一次模拟)我国古代数学名著《九章算术》对立体几何有深入的研究,从其中一些数学用语可见,譬如“憋臑”意指四个面都是直角三角形的三棱锥.某“憋臑”的三视图(图中网格纸上每个小正方形的边长为1)如图所示,已知几何体高为22,则该几何体外接球的表面积为__________.18.(2020届四川省成都市高三第二次诊断)已知各棱长都相等的直三棱柱(侧棱与底面垂直的棱柱称为直棱柱)所有顶点都在球O 的表面上.若球O 的表面积为28,π则该三棱柱的侧面积为___________. 19.(2020届河南省驻马店市高三第二次模拟)在矩形ABCD 中,4BC =,M 为BC 的中点,将ABM 和DCM △分别沿AM ,DM 翻折,使点B 与C 重合于点P .若150APD ∠︒=,则三棱锥M PAD ﹣的外接球的表面积为_____.20.(2020届黑龙江省哈尔滨市第三中学高三第一次调研)四面体A BCD -中,AB ⊥底面BCD ,2AB BD ==1CB CD ==,则四面体A BCD -的外接球的表面积为______21.(2020届湖南省岳阳市高三第二次教学质量检测)农历五月初五是端午节,民间有吃粽子的习惯,粽子又称粽籺,俗称“粽子”,古称“角黍”,是端午节大家都会品尝的食品,传说这是为了纪念战国时期楚国大臣、爱国主义诗人屈原.如图,平行四边形形状的纸片是由六个边长为1的正三角形构成的,将它沿虚线折起来,可以得到如图所示粽子形状的六面体,则该六面体的体积为____;若该六面体内有一球,则该球体积的最大值为____.22.(2020·陕西省西安中学高三三模(理))已知三棱锥S ABC -中,SA ⊥面ABC ,且6SA =,4AB =,23BC =,30ABC ∠=︒,则该三棱锥的外接球的表面积为__________.23. (江西省九江一中2019届质检)如图是一个几何体的三视图,其中正视图和侧视图均是高为2,底边长为22的等腰三角形,俯视图是边长为2的正方形,则该几何体的外接球的体积是________.24.(黑龙江哈尔滨师大附中2019届高三模拟)已知圆锥的顶点为S ,母线SA ,SB 所成角的余弦值为78,SA 与圆锥底面所成角为45°.若△SAB 的面积为515,则该圆锥的侧面积为________.25、(江苏省南通市、泰州市2019-2020学年高三上学期期末)在正三棱柱ABC - A 1B 1C 1 中,AA 1=AB =2 ,则三枝锥A 1 - BB 1C 1 的体积为______.。

湖南省2020年高考数学第二轮复习 专题五 立体几何第1讲 空间几何体的三视图、表面积及体积 文

湖南省2020年高考数学第二轮复习 专题五 立体几何第1讲 空间几何体的三视图、表面积及体积 文

专题五立体几何第1讲空间几何体的三视图、表面积及体积真题试做1.(2020·湖南高考,文4)某几何体的正视图和侧视图均如图1所示,则该几何体的俯视图不可能是( ).图12.(2020·天津高考,文10)一个几何体的三视图如图所示(单位:m),则该几何体的体积为__________ m3.3.(2020·湖北高考,文15)已知某几何体的三视图如图所示,则该几何体的体积为______.4.(2020·湖北高考,文19)某个实心零部件的形状是如图所示的几何体,其下部是底面均是正方形,侧面是全等的等腰梯形的四棱台A1B1C1D1­ABCD,上部是一个底面与四棱台的上底面重合,侧面是全等的矩形的四棱柱ABCD­A2B2C2D2.(1)证明:直线B1D1⊥平面ACC2A2;(2)现需要对该零部件表面进行防腐处理.已知AB=10,A1B1=20,AA2=30,AA1=13(单位:厘米),每平方厘米的加工处理费为0.20元,需加工处理费多少元?考向分析通过对近几年高考试题的分析可看出,空间几何体的命题形式比较稳定,多为选择题或填空题,有时也出现在解答题的某一问中,题目常为中、低档题.考查的重点是直观图、三视图、面积与体积等知识,此类问题多为考查三视图的还原问题,且常与空间几何体的表面积、体积等问题交会,是每年的必考内容.预计在2020年高考中:对空间几何体的三视图的考查有难度加大的趋势,通过此类题考查考生的空间想象能力;对表面积和体积的考查,常见形式为蕴涵在两几何体的“切”或“接”形态中,或以三视图为载体进行交会考查,此块内容还要注意强化几何体的核心——截面以及补形、切割等数学思想方法的训练.热点例析热点一空间几何体的三视图与直观图【例1】(1)将长方体截去一个四棱锥,得到的几何体如下图所示,则该几何体的侧(左)视图为( ).(2)若某几何体的三视图如下图所示,则这个几何体的直观图可以是( ).规律方法 (1)三视图的正(主)视图、侧(左)视图、俯视图分别是从物体的正前方、正左方、正上方看到的物体轮廓线的正投影围成的平面图形,反映了一个几何体各个侧面的特点.正(主)视图反映物体的主要形状特征,是三视图中最重要的视图;俯视图要和正(主)视图对正,画在正(主)视图的正下方;侧(左)视图要画在正(主)视图的正右方,高度要与正(主)视图平齐;(2)要注意到在画三视图时,能看到的轮廓线画成实线,看不到的轮廓线画成虚线; (3)A .32B .16+16 2C .48 D.16+32 2(2)一个水平放置的平面图形的斜二测直观图是一个底角为45°,腰和上底长均为1的等腰梯形,则这个平面图形的面积是( ).A.12+22 B .1+22 C .1+ 2 D .2+ 2 热点二 空间几何体的表面积与体积【例2】(2020·福建高考,文20)如图,在四棱锥P ­ABCD 中,PA ⊥底面ABCD ,AB ⊥AD ,点E 在线段AD 上,且CE ∥AB .(1)求证:CE ⊥平面PAD ;(2)若PA =AB =1,AD =3,CD =2,∠CDA =45°,求四棱锥P ­ABCD 的体积.规律方法 (1)求几何体的体积问题,可以多角度、多方位地考虑.对于规则的几何体的体积,如求三棱锥的体积,采用等体积转化是常用的方法,转化的原则是其高与底面积易求;对于不规则几何体的体积常用割补法求解,即将不规则几何体转化为规则几何体,以易于求解.(2)求解几何体的表面积时要注意S 表=S 侧+S 底.(3)对于给出几何体的三视图,求其体积或表面积的题目关键在于要还原出空间几何体,并能根据三视图的有关数据和形状推断出空间几何体的线面关系及相关数据,至于体积或表面积的求解套用对应公式即可.变式训练2 已知某几何体的三视图如下图所示,其中正(主)视图中半圆的半径为1,则该几何体的体积为( ).A .24-32πB .24-13πC .24-πD .24-12π热点三 多面体与球【例3】已知正四棱锥的底面边长为a ,侧棱长为2a . (1)求它的外接球的体积; (2)求它的内切球的表面积.规律方法 (1)涉及球与棱柱、棱锥的切、接问题时,一般过球心及多面体中的特殊点或线作截面,把空间问题化归为平面问题,再利用平面几何知识寻找几何体中元素间的关系.(2)若球面四点P ,A ,B ,C 构成的线段PA ,PB ,PC 两两垂直,且PA =a ,PB =b ,PC =c ,则4R 2=a 2+b 2+c 2,把有关元素“补形”成为一个球内接正方体(或其他图形),从而显示出球的数量特征,这种方法是一种常用的好方法.变式训练3 如图所示,在四棱锥P ­ABCD 中,底面ABCD 是边长为a 的正方形,PD ⊥底面ABCD ,且PD =a ,PA =PC =2a .若在这个四棱锥内放一球,则此球的最大半径是__________.思想渗透立体几何中的转化与化归思想求空间几何体的体积时,常常需要对图形进行适当的构造和处理,使复杂图形简单化,非标准图形标准化,此时转化与化归思想就起到了至关重要的作用.利用转化与化归思想求空间几何体的体积主要包括割补法和等体积法,具体运用如下:(1)补法是指把不规则的(不熟悉或复杂的)几何体延伸或补成规则(熟悉的或简单的)的几何体,把不完整的图形补成完整的图形;(2)割法是指把复杂的(不规则的)几何体切割成简单的(规则的)几何体;(3)等积法的前提是几何图形(或几何体)的面积(或体积)通过已知条件转化为易求的面积(体积)问题.【典型例题】如图,在直三棱柱ABC ­A 1B 1C 1中,AB =AC =5,BB 1=BC =6,D ,E 分别是AA 1和B 1C 的中点.(1)求证:DE ∥平面ABC ; (2)求三棱锥E ­BCD 的体积.(1)证明:取BC 中点G ,连接AG ,EG .因为E 是B 1C 的中点,所以EG ∥BB 1,且EG =12BB 1.由直棱柱知,AA 1BB 1.而D 是AA 1的中点,所以EG AD ,所以四边形EGAD 是平行四边形,所以ED ∥AG . 又DE 平面ABC ,AG ⊂平面ABC , 所以DE ∥平面ABC .(2)解:因为AD ∥BB 1,所以AD ∥平面BCE , 所以V E ­BCD =V D ­BCE =V A ­BCE =V E ­ABC .由(1)知,DE ∥平面ABC ,所以V E ­ABC =V D ­ABC =13AD ·12BC ·AG =16×3×6×4=12.1.(2020·山东济南三月模拟,4)如图,正三棱柱ABC ­A 1B 1C 1的各棱长均为2,其正(主)视图如图所示,则此三棱柱侧(左)视图的面积为( ).A .2 2B .4 C. 3 D .2 32.(2020·安徽安庆二模,7)一空间几何体的三视图如图所示(正(主)、侧(左)视图是两全等图形,俯视图是圆及圆的内接正方形),则该几何体的表面积是( ).A .7π cm 2B .(5π+43)cm 2C .(5π+23)cm 2D .(6π+27-2)cm 23.(2020·北京丰台区三月月考,4)若某空间几何体的三视图如图所示,则该几何体的体积是( ).A .20-2πB .20-23πC .40-23πD .40-43π4.(2020·湖南株洲下学期质检,14)一个三棱锥的正(主)视图、侧(左)视图、俯视图如下,则这个三棱锥的体积为__________,其外接球的表面积为__________.5.已知正四面体的外接球半径为1,则此正四面体的体积为__________.6.正六棱锥P ­ABCDEF 中,G 为PB 的中点,则三棱锥D ­GAC 与三棱锥P ­GAC 体积之比为__________.7.如图,在等腰梯形ABCD 中,AB =2DC =2,∠DAB =60°,E 为AB 的中点,将△ADE 与△BEC 分别沿ED ,EC 向上折起,使A ,B 重合,求形成三棱锥的外接球的体积.参考答案命题调研·明晰考向真题试做1.C 解析:若为C 选项,则主视图为:故不可能是C 选项.2.30 解析:由几何体的三视图可知:该几何体的上部为平放的直四棱柱,底部为长、宽、高分别为4 m,3 m,2 m 的长方体.∴几何体的体积V =V 直四棱柱+V 长方体=(1+2)×12×4+4×3×2=6+24=30(m 3).3.12π 解析:该几何体是由3个圆柱构成的几何体,故体积V =2×π×22×1+π×12×4=12π.4.解:(1)因为四棱柱ABCD ­A 2B 2C 2D 2的侧面是全等的矩形,所以AA 2⊥AB ,AA 2⊥AD .又因为AB ∩AD =A ,所以AA 2⊥平面ABCD . 连接BD ,因为BD ⊂平面ABCD ,所以AA 2⊥BD . 因为底面ABCD 是正方形,所以AC ⊥BD .又已知平面ABCD ∥平面A 1B 1C 1D 1,且平面BB 1D 1D ∩平面ABCD =BD , 平面BB 1D 1D ∩平面A 1B 1C 1D 1=B 1D 1,所以B 1D 1∥BD .于是由AA 2⊥BD ,AC ⊥BD ,B 1D 1∥BD ,可得AA 2⊥B 1D 1,AC ⊥B 1D 1. 又因为AA 2∩AC =A ,所以B 1D 1⊥平面ACC 2A 2.(2)因为四棱柱ABCD ­A 2B 2C 2D 2的底面是正方形,侧面是全等的矩形,所以S 1=S 四棱柱上底面+S四棱柱侧面=(A 2B 2)2+4AB ·AA 2=102+4×10×30=1 300(cm 2).又因为四棱台A 1B 1C 1D 1­ABCD 的上、下底面均是正方形,侧面是全等的等腰梯形(其高为h ),所以S 2=S 四棱台下底面+S 四棱台侧面=(A 1B 1)2+4×12(AB +A 1B 1)h=202+4×12×(10+20)132-⎣⎢⎡⎦⎥⎤12×(20-10)2=1 120(cm 2).于是该实心零部件的表面积为S =S 1+S 2=1 300+1 120=2 420(cm 2), 故所需加工处理费为0.2S =0.2×2 420=484(元). 精要例析·聚焦热点热点例析【例1】 (1)D (2)B 解析:(1)被截去的四棱锥的三条可见侧棱中有两条为正方体的面对角线,它们在右侧面上的投影与右侧面(正方形)的两条边重合,另一条为正方体的对角线,它在右侧面上的投影与右侧面的对角线重合,对照各图及对角线方向,只有选项D 符合.(2)由正(主)视图可排除A ,C ;由侧(左)视图可判断该几何体的直观图是B.【变式训练1】 (1)B (2)D 解析:(1)由三视图知原几何体是一个底面边长为4,高是2的正四棱锥.如图:∵AO =2,OB =2,∴AB =2 2.又∵S 侧=4×12×4×22=162,S 底=4×4=16,∴S 表=S 侧+S 底=16+16 2.(2)如图,设直观图为O ′A ′B ′C ′,建立如图所示的坐标系,按照斜二测画法的规则,在原来的平面图形中,OC ⊥OA ,且OC =2,BC =1,OA =1+2×22=1+2,故其面积为12×(1+1+2)×2=2+ 2.【例2】 (1)证明:因为PA ⊥平面ABCD ,CE ⊂平面ABCD ,所以PA ⊥CE .因为AB ⊥AD ,CE ∥AB ,所以CE ⊥AD . 又PA ∩AD =A ,所以CE ⊥平面PAD . (2)解:由(1)可知CE ⊥AD .在Rt△ECD 中,DE =CD ·cos 45°=1,CE =CD ·sin 45°=1. 又因为AB =CE =1,AB ∥CE , 所以四边形ABCE 为矩形.所以S 四边形ABCD =S 矩形ABCE +S △ECD =AB ·AE +12CE ·DE =1×2+12×1×1=52.又PA ⊥平面ABCD ,PA =1,所以V 四棱锥P ­ABCD =13S 四边形ABCD ·PA =13×52×1=56.【变式训练2】 A 解析:由三视图可知该几何体为一个长、宽、高分别为4,3,2的长方体,剖去一个半圆柱而得到的几何体,其体积为2×3×4-12π×1×3,即24-32π.【例3】 解:如图所示,△SAC 的外接圆是外接球的一个大圆,∴只要求出这个外接圆的半径即可,而内切球的球心到棱锥的各个面的距离相等,∴可由正四棱锥的体积求出其半径.(1)设外接球的半径为R ,球心为O ,则OA =OC =OS ,∴O 为△SAC 的外心,即△SAC 的外接圆半径就是球的半径. ∵AB =BC =a ,∴AC =2a .∵SA =SC =AC =2a ,∴△SAC 为正三角形.由正弦定理得2R =AC sin∠ASC =2a sin 60°=263a ,因此R =63a ,V 外接球=43πR 3=8627πa 3. (2)如图,设内切球的半径为r ,作SE ⊥底面于E ,作SF ⊥BC 于F ,连接EF , 则有SF =SB 2-BF 2=(2a )2-⎝ ⎛⎭⎪⎫a 22=72a ,S △SBC =12BC ·SF =12a ×72a =74a 2, S 棱锥全=4S △SBC +S 底=(7+1)a 2.又SE =SF 2-EF 2=⎝ ⎛⎭⎪⎫72a 2-⎝ ⎛⎭⎪⎫a 22=62a ,∴V 棱锥=13S 底·SE =13a 2×62a =66a 3,∴r =3V 棱锥S 棱锥全=3×66a 3(7+1)a 2=42-612a ,S 内切球=4πr 2=4-73πa 2. 【变式训练3】 12(2-2)a 解析:当且仅当球与四棱锥的各个面都相切时,球的半径最大.设放入的球的半径为r ,球心为O ,连接OP ,OA ,OB ,OC ,OD ,则把此四棱锥分割成四个三棱锥和一个四棱锥,这些小棱锥的高都是r ,底面分别为原四棱锥的侧面和底面,则V P ­ABCD =13r (S △PAB +S △PBC +S △PCD +S △PAD +S 正方形ABCD )=13r (2+2)a 2.由题意知PD ⊥底面ABCD ,∴V P ­ABCD =13S 正方形ABCD ·PD =13a 3.由体积相等,得13r (2+2)a 2=13a 3,解得r =12(2-2)a .创新模拟·预测演练1.D2.D 解析:据三视图可判断该几何体是由一个圆柱和一个正四棱锥组合而成的,直观图如图所示:易求得表面积为(6π+27-2)cm 2.3.B 解析:由三视图可知该几何体的直观图为一个正四棱柱,从上表面扣除半个内切球.易求出正四棱柱的底面边长为2,内切球的半径为1,故体积为2×2×5-23π=20-2π3.4.4 29π 5.827 3 解析:首先将正四面体补形为一个正方体,设正四面体棱长为a ,则其对应正方体的棱长为22a ,且由球与正方体的组合关系易知3⎝ ⎛⎭⎪⎫22a 2=(1×2)2,解得a 2=83, ∴正四面体的体积为V =⎝ ⎛⎭⎪⎫22a 3-4×13×12×⎝ ⎛⎭⎪⎫22a 3=13⎝ ⎛⎭⎪⎫22a 3=827 3.6.2∶1 解析:由正六棱锥的性质知,点P 在底面内的射影是底面的中心,也是线段AD的中点.又G 为PB 的中点,设P 点在底面内的射影为O ,则G 点在底面内的射影为OB 的中点M ,且GM ∥PO .又M 为AC 的中点,则GM ⊂平面GAC ,所以点P 到平面GAC 的距离等于点O 到平面GAC 的距离.又因为OM ⊥平面GAC ,DC ⊥平面GAC ,且DC =2OM ,则V D ­GAC V P ­GAC =13S △GAC ×DC13S △GAC ×OM =2.7.解:由已知条件知,平面图形中AE =EB =BC =CD =DA =DE =EC =1,∴折叠后得到一个棱长为1的正三棱锥(如图). 方法一:作AF ⊥平面DEC ,垂足为F , F 即为△DEC 的中心,取EC 中点G ,连接DG ,AG , 过球心O 作OH ⊥平面AEC , 则垂足H 为△AEC 的中心,∴外接球半径可利用△OHA ∽△AFG 求得. ∵AG =32,AF =1-⎝⎛⎭⎪⎫332=63,AH =33, ∴OA =AG ·AHAF =32×3363=64,∴外接球体积为43π×OA 3=43·π·6643=68π.方法二:如图,把棱长为1的正三棱锥放在正方体中,显然,棱长为1的正三棱锥的外接球就是正方体的外接球.∵正方体棱长为22, ∴外接球直径2R =3·22, ∴R =64,∴体积为43π·⎝ ⎛⎭⎪⎫643=68π.。

《由三视图计算物体的表面积与体积》课堂练习(含答案).doc

《由三视图计算物体的表面积与体积》课堂练习(含答案).doc

2018-2019学年度湘教版数学九年级下册课堂练习班级 姓名第3章 投影与视图由三视图计算物体的表面积与体积1.一个物体的三视图如图,其中主视图和左视图都是腰长为3、底边为2的等腰三角形,根据三视图求这个物体的表面积,并画出该物体的侧面展开图.答图解:该几何体是一个底面半径为1,母线长为3的圆锥,侧面展开图如答图.侧面积为12×2π×3=3π,底面积为π×12=π,∴表面积为3π+π=4π.2.一个长方体的左视图、俯视图及相关数据如图所示,则其主视图的面积为( B )左视图 俯视图A .6B .8C .12D .24【解析】左视图可得到长方体的宽和高,俯视图可得到长方体的长和宽,主视图可得到长方体的长和高,长方体的高为2,长为4,∴主视图的面积为2×4=8.3.一个如图所示的长方体的三视图如图所示.若其俯视图为正方形,则这个长方体的表面积为(A)A.66 B.48C.482+36 D.57【解析】设长方体的底面边长为x,则2x2=(32)2,∴x=3,∴该长方体的表面积为3×4×4+32×2=66.4.[2018·东营]如图,已知一个圆锥体的三视图如图所示,则这个圆锥体的侧面积为__20π__.【解析】根据三视图得到圆锥的底面圆的直径为8,即底面圆的半径r为4,圆锥的高为3,所以圆锥的母线长l=32+42=5,所以这个圆锥的侧面积是π×4×5=20π.5.[2018·孝感]如图是一个几何体的三视图(图中尺寸单位:cm),根据图中数据计算,这个几何体的表面积为__16π__cm2.【解析】由主视图和左视图为三角形判断出是锥体,由俯视图是圆形可判断出这个几何体应该是圆锥.根据三视图知:该圆锥的母线长为6 cm,底面半径为2 cm,故表面积=πrl+πr2=π×2×6+π×22=16π(cm2).6.[2018·齐齐哈尔]如图,三棱柱的三视图如图所示,已知△EFG中,EF=8 cm,EG=12 cm,∠EFG=45°,则AB的长为__cm.【解析】如答图,过点E作EQ⊥FG于点Q,答图由题意可得出:EQ=A B.∵EF=8 cm,∠EFG=45°,∴EQ=AB=22×8=42(cm).7. 如图所示是一个食品包装盒的三视图(单位:cm),其中主视图是一个等边三角形.(1)请写出这个包装盒的几何体名称;(2)计算这个几何体的表面积.(结果保留根号)解:(1)由包装盒的三视图可得出包装盒是正三棱柱.(2)如答图,∵△ABC是等边三角形,答图∴∠B=60°.∵AD= 3 cm,∴AB=BC=2 cm,∴S底面积=12×2×3=3(cm2),S侧面积=3×6×2=36(cm2),∴S表面积=S侧面积+2S底面积=(36+23)cm2.8.已知一个几何体的三视图的有关尺寸如图所示,请写出这个几何体的名称,并计算这个几何体的表面积.解:名称:直三棱柱.主视图为直角三角形,直角边长分别为4 cm 和3 cm , 根据勾股定理得斜边长为5 cm ,S 侧=3×2+4×2+5×2=24(cm 2),S 表=2S 底+S 侧=2×12×3×4+24=36(cm 2),故这个几何体的表面积为36 cm 2.9. 某工厂要加工一批密封罐,设计者给出了密封罐的三视图(如图,单位:mm),请你按照三视图确定制作每个密封罐所需钢板的面积.(结果保留根号)解:由三视图可知,密封罐的形状是正六棱柱(如答图1).答图1 答图2密封罐的高为50 mm ,底面正六边形的直径为100 mm ,边长为50 mm ,答图2是它的表面展开图.由展开图可知,制作一个密封罐所需钢板的面积为6×50×50+2×6×12×50×50×sin 60°=(15 000+7 5003)mm 2.。

【高考复习】2020年高考数学(文数) 空间几何体的三视图、表面积及体积 小题练(含答案解析)

【高考复习】2020年高考数学(文数) 空间几何体的三视图、表面积及体积 小题练(含答案解析)

【高考复习】2020年高考数学(文数)空间几何体的三视图、表面积及体积小题练一、选择题1.多面体的三视图如图所示,其中正视图和侧视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为( )A.10 B.12 C.14 D.162.用斜二测画法画一个水平放置的平面图形的直观图为如图所示的一个正方形,则原来的图形是( )3.一个几何体的三视图如上图所示,则该几何体的体积为()A. B. C. D.4.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,已知该几何体的各个面中有n个面是矩形,体积为V,则( )A.n=4,V=10 B.n=5,V=12C.n=4,V=12 D.n=5,V=105.某几何体的三视图如图所示,图中三个正方形的边长均为2,则该几何体的表面积为( )A.24+(2-1)π B.24+(22-2)πC.24+(5-1)π D.24+(23-2)π6.若某几何体的三视图(单位:cm)如图所示,则该几何体的体积等于( )A.10 cm3 B.20 cm3 C.30 cm3D.40 cm37.若球的半径扩大为原来的2倍,则它的体积扩大为原来的( )A.2倍 B.4倍 C.8倍D.16倍8.平面α截球O的球面所得圆的半径为1,球心O到平面α的距离为2,则此球的体积为( )A.6π B.43π C.46π D.63π9.已知A,B是球O的球面上两点,∠AOB=90°,C为该球面上的动点,若三棱锥O­ABC体积的最大值为36,则球O的表面积为( )A.36π B.64π C.144π D.256π10.如图,网格纸上小正方形的边长为1,粗线画出的是某四面体的三视图,则该四面体表面积为()A.2(1B.2(1C.4(111.设A,B,C,D是同一个半径为4的球的球面上四点,△ABC为等边三角形且其面积为93,则三棱锥D­ABC体积的最大值为( )A.12 3 B.18 3 C.24 3 D.54 312.已知四面体P­ABC的四个顶点都在球O的球面上,PA=8,BC=4,PB=PC=AB=AC,且平面PBC⊥平面ABC,则球O的表面积为( )A.64π B.65π C.66π D.128π二、填空题13.用一张16×10的长方形纸片,在四个角剪去四个边长为x的正方形(如图),然后沿虚线折起,得到一个无盖的长方体纸盒,则这个纸盒的最大容积是________.14.如图所示,已知一个多面体的平面展开图由一个边长为1的正方形和4个边长为1的正三角形组成,则该多面体的体积是________.15.我国古代数学名著《数书九章》中有“天池盆测雨”题:在下雨时,用一个圆台形的天池盆接雨水,天池盆盆口直径为二尺八寸,盆底直径为一尺二寸,盆深一尺八寸,若盆中积水深九寸,则平地降雨量是________寸.(注:①平地降雨量等于盆中积水体积除以盆口面积;②一尺等于十寸)16.已知圆锥侧面展开图的圆心角为90°,则该圆锥的底面半径与母线长的比为________.17.如图,BD是边长为3的正方形ABCD的对角线,将△BCD绕直线AB旋转一周后形成的几何体的体积等于________.18.如图,已知球O的面上有四点A,B,C,D,DA⊥平面ABC,AB⊥BC,DA=AB=BC=2,则球O的体积等于________.答案解析1.答案为:B ;解析:由多面体的三视图还原直观图如图.该几何体由上方的三棱锥A -BCE 和下方的三棱柱BCE -B 1C 1A 1构成,其中面CC 1A 1A 和面BB 1A 1A 是梯形,则梯形的面积之和为2×(2+4)×22=12.故选B.2.答案为:A ;解析:由直观图可知,在直观图中多边形为正方形,对角线长为2,所以原图形为平行四边形,位于y 轴上的对角线长为2 2.3.答案为:B ;4.答案为:D ;解析:由三视图可知,该几何体为直五棱柱,其直观图如图所示,故n =5,体积V =2×22+12×2×1=10.故选D .5.答案为:B ;解析:如图,由三视图可知,该几何体是棱长为2的正方体挖出两个圆锥体所得. 由图中知圆锥的半径为1,母线为2,该几何体的表面积为S =6×22-2π×12+2×12×2π×1×2=24+(22-2)π,故选B .6.答案为:B解析:由三视图可知,该几何体是一个直三棱柱ABC -A 1B 1C 1截去一个三棱锥B 1-ABC ,则该几何体的体积为V =12×3×4×5-13×12×3×4×5=20(cm 3).故选B .7.答案为:C ;8.答案为:B ;解析:设球的半径为R ,由球的截面性质得R=22+12=3,所以球的体积V=43πR 3=43π.9.答案为:C.解析:如图所示,当点C 位于垂直于面AOB 的直径端点时,三棱锥O­ABC 的体积最大,设球O 的半径为R ,此时V O ­ABC =V C ­AOB =13×12R 2×R=16R 3=36,故R=6,则球O 的表面积为S=4πR 2=144π.10.B.解题思路:该几何体是棱长为2的正方体内的四面体11A BCC .1BCC ∆的面积为2,111A BC A CC ∆∆、的面积均为,11A BC ∆的面积为24表面积为,故选B.11.答案为:B ;解析:由等边△ABC 的面积为93,可得34AB 2=93,所以AB=6, 所以等边△ABC 的外接圆的半径为r=33AB=2 3.设球的半径为R , 球心到等边△ABC 的外接圆圆心的距离为d ,则d=R 2-r 2=16-12=2.所以三棱锥D­ABC 高的最大值为2+4=6,所以三棱锥D­ABC 体积的最大值为13×93×6=18 3.12.答案为:B.解析:如图,D ,E 分别为BC ,PA 的中点,易知球心O 在线段DE 上. ∵PB=PC=AB=AC ,∴PD ⊥BC ,AD ⊥BC ,PD=AD.又平面PBC⊥平面ABC ,平面PBC∩平面ABC=BC ,∴PD ⊥平面ABC.∴PD⊥AD.∴PD =AD=4 2.∵点E 是PA 的中点,∴ED ⊥PA ,且DE=EA=PE=4.设球O 的半径为R ,OE=x ,则OD=4-x.在Rt △OEA 中,有R 2=16+x 2,在Rt △OBD 中,有R 2=4+(4-x)2,解得R 2=654,所以S=4πR 2=65π,故选B.13.答案为:144;解析:沿虚线折出纸盒后,该纸盒的长为16-2x ,宽为10-2x ,高为x ,则0<x <5,其容积为V =x(16-2x)·(10-2x)=4x 3-52x 2+160x ,所以V′=12x 2-104x +160=4(x -2)(3x -20),令V′=0,得x =2或x =203>5(舍去),当x ∈(0,2)时,V′>0,即在(0,2)上,V(x)是增函数; 当x ∈(2,5),V′<0,即在(2,5)上,V(x)是减函数, 所以当x =2时,V(x)有最大值为144.14.答案为:26; 解析:易知该几何体是正四棱锥.连接BD ,设正四棱锥P -ABCD ,由PD =PB =1,BD =2,则PD ⊥PB .设底面中心O ,则四棱锥高PO =22,则其体积是V =13Sh =13×12×22=26.15.答案为:3;解析:由题意知,圆台中截面圆的半径为十寸,圆台内水的体积为V =13πh(r 2中+r 2下+r 中r 下)=π3×9×(102+62+10×6)=588π(立方寸),降雨量为V 142π=588π196π=3(寸).16.答案为:14;解析:设圆锥的母线长是R,则扇形的弧长是90πR180=πR2,设底面半径是r,则πR2=2πr,所以r=R4,所以圆锥的底面半径与母线长的比为1∶4.17.答案为:18π;解析:对角线BD绕着AB旋转,形成圆锥的侧面;边BC绕着AB旋转形成圆面;边CD绕着AB 旋转,形成圆柱的侧面,所以该几何体是由圆柱挖去一个同底面的圆锥,所以V=π·32·3-13·π·32·3=18π.18.答案为:6π;解析:如图,以DA,AB,BC为棱长构造正方体,设正方体的外接球O的半径为R,则正方体的体对角线长即为球O的直径,所以|CD|=(2)2+(2)2+(2)2=2R,所以R=62,故球O的体积V=4πR33=6π.。

从易到难分析立体几何常见题型及练习

从易到难分析立体几何常见题型及练习

立体几何常见类型题题型一、空间几何体三视图与直观图 (1)由实物图画三视图1.如图甲所示,在正方体1111D C B A ABCD -中,E 、F 分别是1AA 、11D C 的中点,G 是正方形11B BCC 的中心,则四边形AGFE 在该正方体的各个面上的投影可能是图乙中的_______________。

(2)三视图还原实物图2..某空间几何体的三视图如图所示,则该几何体的体积为( ). A.223π+ B. 423π+ C. 2323π+D. 2343π+ (3)斜二测画法有关的计算问题(S S 42'=) 3.等腰梯形ABCD ,上底1=CD ,腰2==BC AD ,下底,3=AB 以下底所在直线为x 轴,则由斜二侧画法画出的直观图''''D C B A 的面积是 ________ 题型二、空间几何体的表面积与侧面积 (1)空间几何体的表面积与体积4.已知某几何体的俯视图如图所示的矩形,正视图(或称主视图)是一个底边长为8,高为4的等腰三角形,侧视图(或称左视图)是一个底边长为6,高为4的等腰三角形。

(1)画出几何体的直观图 (2)求该几何体的侧面积S 。

(3)求该几何体的体积V ;(2)空间几何体展开图及面积计算5.已知圆锥的侧面展开图是右图所示的扇形,半径为1,圆心角为ο120, 则圆锥的表面积和体积分别是多少?(3)割补法和等体积法求体积6.如图,正方体''''D C B A ABCD -的棱长为2,E 是AB 的中点, 求:(1)三棱锥EC A B '-的体积V . (2)求B 点到平面EC A '的距离。

类型三.证明线面平行1.在正方体1111ABCD A B C D -中,E 是1AA 的中点, 求证: 1//A C 平面BDE 。

2.正方体1111ABCD A B C D -,O 是底ABCD 对角线的交点. 求证: C1O ∥面11AB D ; 考点:法1:利用平行四边形 法2:利用面面平行的性质类型四.证明面面平行1. 正方体ABCD —A 1B 1C 1D 1中.(1)求证:平面A 1BD ∥平面B 1D 1C ; (2)若E 、F 分别是AA 1,CC 1的中点,求证:平面EB 1D 1∥平面FBD .2.在正方体1111ABCD A B C D -中,E 、F 、G分别是AB 、AD 、11C D 的中点.求证:平面1D EF ∥平面BDG .A ED 1CB 1DCBAD 1ODBAC 1B 1A 1C A 1AB 1C 1 CD 1D G EF类型五.证明线面垂直1. 正方体''''ABCD A B C D -中,求证:(1)''AC B D DB ⊥平面;(2)''BD ACB ⊥平面. (考点:线面垂直的判定定理)2. ,在正方体1111ABCD A B C D -中,M 为1CC 的中点,AC 交BD 于点O ,求证:1AO ⊥平面MBD . 考点:线面垂直的判定,运用勾股定理寻求线线垂直3. 已知ABC ∆中90ACB ∠=o ,SA ⊥面ABC ,AD SC ⊥, 求证:AD ⊥面SBC .4. 四面体ABCD 中,,,AC BD E F =分别为,AD BC 的中点,且22EF AC =,90BDC ∠=o ,求证:BD ⊥平面ACD5. 如图,在四棱锥P ABCD -中,底面ABCD 是060DAB ∠= 且边长为a 的菱形,侧面PAD 是等边三角形,且平面PAD 垂 直于底面ABCD . G 为AD 的中点,求证:BG ⊥平面PAD ; (考点:利用面面垂直性质定理)类型六.证明面面垂直1. 如图,在正方体1111ABCD A B C D -中,E 是1AA 的中点. 求证:平面1A AC ⊥平面BDE . (考点:面面垂直的判定)ABD CA ’D ’B ’C ’SDCBA2.如图,过S 引三条长度相等但不共面的线段SA 、SB 、SC ,且∠ASB=∠ASC=60°,∠BSC=90°,求证:平面ABC ⊥平面BSC . 考点:面面垂直的判定(证二面角是直二面角)类型七.证明线线垂直1. 在正方体ABCD-A ’B ’C ’D ’中,M 为DD ’的中点,O 为AC 的中点,AB=2 证明:B ’O ⊥AC 考点:法1:线面垂直→线线垂直 法2:勾股定理法3:等腰三角形三线合一。

高考专题练习: 空间几何体的表面积与体积

高考专题练习: 空间几何体的表面积与体积

1.圆柱、圆锥、圆台的侧面展开图及侧面积公式圆柱圆锥圆台侧面展开图侧面积公式S圆柱侧=2πrl S圆锥侧=πrl S圆台侧=π(r+r′)l2.空间几何体的表面积与体积公式名称几何体表面积体积柱体(棱柱和圆柱)S表面积=S侧+2S底V=S底h锥体(棱锥和圆锥)S表面积=S侧+S底V=13S底h台体(棱台和圆台)S表面积=S侧+S上+S下V=13(S上+S下+S上S下)h球S=4πR2V=43πR3常用结论1.正方体的外接球、内切球及与各条棱相切的球的半径(1)外接球:球心是正方体的中心;半径r=32a(a为正方体的棱长).(2)内切球:球心是正方体的中心;半径r=a2(a为正方体的棱长).(3)与各条棱都相切的球:球心是正方体的中心;半径r=22a(a为正方体的棱长).2.正四面体的外接球、内切球的球心和半径(1)外接球:球心是正四面体的中心;半径r=64a(a为正四面体的棱长).(2)内切球:球心是正四面体的中心;半径r=612a(a为正四面体的棱长).一、思考辨析判断正误(正确的打“√”,错误的打“×”) (1)多面体的表面积等于各个面的面积之和.( ) (2)锥体的体积等于底面积与高之积.( ) (3)球的体积之比等于半径比的平方.( )(4)简单组合体的体积等于组成它的简单几何体体积的和或差.( ) (5)长方体既有外接球又有内切球.( ) 答案:(1)√ (2)× (3)× (4)√ (5)× 二、易错纠偏常见误区| (1)考虑不周,忽视分类讨论; (2)锥体的底面及其对应高不清楚; (3)组合体的表面积没注意衔接部分.1.将一个相邻边长分别为4π,8π的矩形卷成一个圆柱,则这个圆柱的表面积是________.解析:当底面周长为4π时,底面圆的半径为2,两个底面的面积之和是8π;当底面周长为8π时,底面圆的半径为4,两个底面的面积之和为32π.无论哪种方式,侧面积都是矩形的面积32π2,故所求的表面积是32π2+8π或32π2+32π.答案:32π2+8π或32π2+32π2.已知三棱锥S -ABC 中,∠SAB =∠ABC =π2,SB =4,SC =213,AB =2,BC =6,则三棱锥S -ABC 的体积是________.解析:由∠ABC =π2,AB =2,BC =6,得AC =210.由∠SAB =π2,AB =2,SB =4,得SA =2 3.由SA 2+AC 2=SC 2,得SA ⊥AC ,又SA ⊥AB ,所以SA ⊥平面ABC .所以三棱锥S -ABC 的体积为13S △ABC ·SA =13×12×2×6×23=4 3.答案:4 33.已知一几何体的三视图如图所示,它的侧视图与正视图相同,则该几何体的表面积为________.解析:由三视图知,该几何体是一个正四棱柱与半球的组合体,且正四棱柱的高为2,底面对角线长为4,球的半径为2,所以该正四棱柱的底面正方形的边长为22,该几何体的表面积S=12×4π×22+π×22+22×2×4=12π+16.答案:12π+16空间几何体的表面积(师生共研)(1)在梯形ABCD中,∠ABC=π2,AD∥BC,BC=2AD=2AB=2.将梯形ABCD绕AD所在的直线旋转一周而形成的曲面所围成的几何体的表面积为()A.(5+2)πB.(4+2)πC.(5+22)πD.(3+2)π(2)(2021·吉林梅河口五中模拟)阳马和鳖臑(biē nào)是《九章算术·商功》里对两种锥体的称谓.如图所示,取一个长方体,按下图斜割一分为二,得两个一模一样的三棱柱,称为堑堵.再沿其中一个堑堵的一个顶点与相对的棱剖开,得四棱锥和三棱锥各一个,有一棱与底面垂直的四棱锥称为阳马(四棱锥S-ABCD),余下三棱锥称为鳖臑(三棱锥S-ECD),若将某长方体沿上述切割方法得到一个阳马和一个鳖臑,且该阳马的正视图和鳖臑的侧视图如图所示,则该阳马和鳖臑的表面积之和为()A.12+13+3 5 B.11+13+3 5 C.12+313+ 5 D.11+313+ 5【解析】(1)因为在梯形ABCD中,∠ABC=π2,AD∥BC,BC=2AD=2AB=2,所以将梯形ABCD绕AD所在的直线旋转一周而形成的曲面所围成的几何体是一个底面半径为AB=1,高为BC=2的圆柱挖去一个底面半径为AB=1,高为BC-AD=1的圆锥,所以该几何体的表面积S=π×12+2π×1×2+π×1×12+12=(5+2)π.故选A.(2)由三视图可知,在阳马中,AS=2,AD=3,CD=1,SD=13,SB=5,所以S阳马=S△SAD+S△SCD+S△SBC+S△SAB+S矩形ABCD=3×22+1×132+3×52+1×2 2+3=7+13+352.S鳖臑=S△SCD+S△CDE+S△SDE+S△SCE=132+1×22+2×32+3×52=4+13+352,所以所求表面积之和=11+13+35,故选B.【答案】(1)A(2)B空间几何体表面积的求法(1)以三视图为载体的几何体的表面积问题,关键是分析三视图确定几何体中各元素之间的位置关系及数量.(2)多面体的表面积是各个面的面积之和;组合体的表面积注意衔接部分的处理.(3)旋转体的表面积问题注意其侧面展开图的应用.某几何体的三视图如图所示,其中正视图和侧视图均为直角梯形,俯视图为两个正方形,则该几何体的表面积为()A.992B.61C.62 D.73解析:选C.由三视图画出几何体的直观图如图所示,上、下底面分别为边长是1,4的正方形;图中朝里的两个侧面是上底为1,下底为4,高为4的梯形;图中朝外的两个侧面是上底为1,下底为4,高为5的梯形,其表面积为S=1×1+4×4+12×(1+4)×4×2+12×(1+4)×5×2=62.空间几何体的体积(多维探究)角度一求简单几何体的体积(1)(2020·石家庄质量检测)某几何体的三视图如图所示(图中小正方形网格的边长为1),则该几何体的体积是()A .8B .6C .4D .2(2)如图,在直四棱柱ABCD -A 1B 1C 1D 1中,底面ABCD 是平行四边形,点E 是棱BB 1的中点,点F 是棱CC 1上靠近C 1的三等分点,且三棱锥A 1­AEF 的体积为2,则四棱柱ABCD -A 1B 1C 1D 1的体积为( )A .12B .8C .20D .18【解析】 (1)由三视图可得该几何体为底面是直角梯形的直四棱柱(如图所示),其中底面直角梯形的上、下底分别为1,2,高为2,直四棱柱的高为2,所以该几何体的体积为(1+2)×22×2=6,故选B .(2)设点F 到平面ABB 1A 1的距离为h ,由题意得V A 1­AEF=VF ­A 1AE.又VF ­A 1AE=13S△A 1AE ·h =13×⎝ ⎛⎭⎪⎫12AA 1·AB ·h =16(AA 1·AB )·h =16S 四边形ABB 1A 1·h =16V ABCD ­A 1B 1C 1D1,所以VABCD ­A 1B 1C 1D 1=6VA 1­AEF=6×2=12.所以四棱柱ABCD -A 1B 1C 1D 1的体积为12.故选A .【答案】 (1)B (2)A 角度二 求组合体的体积(1)(2020·高考浙江卷)某几何体的三视图(单位:cm)如图所示,则该几何体的体积(单位:cm3)是()A.73B.143C.3 D.6(2)(2021·贵阳市第一学期监测考试)某几何体的三视图如图所示,则该几何体的体积为(俯视图中弧线是14圆弧)()A.4-πB.π-2C.1-π2D.1-π4【解析】(1)由三视图可知,该几何体是三棱柱和三棱锥的组合体,结合图中数据可得该几何体的体积V=12×2×1×2+13×12×2×1×1=73(cm3),故选A.(2)由题设知,该几何体是棱长为1的正方体被截去底面半径为1的14圆柱后剩下的部分,直观图如图所示,该几何体的体积V=1×1×1-14×π×12×1=1-π4,故选D.【答案】(1)A (2)D(1)处理体积问题的思路(2)求体积的常用方法直接法对于规则的几何体,利用相关公式直接计算割补法把不规则的几何体分割成规则的几何体,然后进行体积计算;或者把不规则的几何体补成规则的几何体,不熟悉的几何体补成熟悉的几何体,便于计算等体积法选择合适的底面来求几何体体积,常用于求三棱锥的体积,即利用三棱锥的任一个面作为三棱锥的底面进行等体积变换1.《九章算术》卷五商功中有如下问题:今有刍甍,下广三丈,袤四丈,上袤二丈,无广,高一丈,问积几何?刍甍:底面为矩形的屋脊状的几何体(网格纸中粗线部分为其三视图,设网格纸上每个小正方形的边长为1),那么该刍甍的体积为()A.4 B.5C.6 D.12解析:选B.如图所示,由三视图可还原得到几何体ABCDEF,过E,F分别作垂直于底面的截面EGH和FMN,可将原几何体切割成三棱柱EHG-FNM,四棱锥E­ADHG和四棱锥F-MBCN,易知三棱柱的体积为12×3×1×2=3,两个四棱锥的体积相同,都为13×1×3×1=1,则原几何体的体积为3+1+1=5.故选B.2.学生到工厂劳动实践,利用3D打印技术制作模型.如图,该模型为长方体ABCD-A1B1C1D1挖去四棱锥O-EFGH后所得的几何体,其中O为长方体的中心,E,F,G,H分别为所在棱的中点,AB=BC=6 cm,AA1=4 cm.3D打印所用原料密度为0.9 g/cm3.不考虑打印损耗,制作该模型所需原料的质量为________g.解析:由题易得长方体ABCD-A1B1C1D1的体积为6×6×4=144(cm3),四边形EFGH为平行四边形,如图所示,连接GE,HF,易知四边形EFGH的面积为矩形BCC1B1面积的一半,即12),所以V四棱锥O-EFGH=13×3×122×6×4=12(cm=12(cm3),所以该模型的体积为144-12=132(cm3),所以制作该模型所需原料的质量为132×0.9=118.8(g).答案:118.8球与空间几何体的接、切问题(多维探究) 角度一 外接球(1)已知三棱柱ABC -A 1B 1C 1的底面是边长为6的正三角形,侧棱垂直于底面,且该三棱柱的外接球的表面积为12π,则该三棱柱的体积为________.(2)已知三棱锥S -ABC 的所有顶点都在球O 的球面上,SC 是球O 的直径.若平面SCA ⊥平面SCB ,SA =AC ,SB =BC ,三棱锥S -ABC 的体积为9,则球O 的表面积为________.【解析】 (1)设球的半径为R ,上,下底面中心设为M ,N ,由题意,外接球球心为MN 的中点,设为O ,则OA =R ,由4πR 2=12π,得R =OA = 3.又易得AN =2,由勾股定理可知ON =1,所以MN =2,即棱柱的高h =2,所以该三棱柱的体积为34×(6)2×2=3 3.(2)设球O 的半径为R ,因为SC 为球O 的直径,所以点O 为SC 的中点,连接AO ,OB ,因为SA =AC ,SB =BC ,所以AO ⊥SC ,BO ⊥SC ,因为平面SCA ⊥平面SCB ,平面SCA ∩平面SCB =SC ,所以AO ⊥平面SCB ,所以V S ­ABC =V A ­SBC =13×S △SBC ×AO =13×⎝ ⎛⎭⎪⎫12×SC ×OB ×AO ,即9=13×⎝ ⎛⎭⎪⎫12×2R ×R ×R ,解得R =3,所以球O 的表面积为S =4πR 2=4π×32=36π.【答案】 (1)33 (2)36π(1)求解多面体的外接球时,经常用到截面圆.如图所示,设球O的半径为R,截面圆O′的半径为r,M为截面圆上任意一点,球心O到截面圆O′的距离为d,则在Rt△OO′M中,OM2=OO′2+O′M2,即R2=d2+r2.(2)求解球的内接正方体、长方体等问题的关键是把握球的直径即是几何体的体对角线.(3)若球面上四点P,A,B,C的连线中P A,PB,PC两两垂直或三棱锥的三条侧棱两两垂直,则可构造长方体或正方体解决问题.角度二内切球(1)(2021·重庆七校联考)已知正三棱锥的高为6,内切球(与四个面都相切)的表面积为16π,则其底面边长为()A.18 B.12C.6 3 D.4 3(2)(2020·高考全国卷Ⅲ)已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为________.【解析】(1)如图,由题意知,球心在三棱锥的高PE上,设内切球的半径为R,则S球=4πR2=16π,所以R=2.所以OE=OF=2,OP=4.在Rt△OPF中,PF=OP2-OF2=2 3.因为△OPF∽△DPE,所以OFDE=PFPE,得DE=23,AD=3DE=63,AB=23AD=12.故选B.(2)易知半径最大的球即为该圆锥的内切球.圆锥PE及其内切球O如图所示,设内切球的半径为R,则sin∠BPE=ROP =BEPB=13,所以OP=3R,所以PE=4R=PB2-BE2=32-12=22,所以R=22,所以内切球的体积V=43πR3=23π,即该圆锥内半径最大的球的体积为2 3π.【答案】(1)B(2)2 3π(1)在求四面体内切球的半径时,应重视分割的思想方法,即将该四面体分割为以球心为顶点,各面为底面的四个三棱锥,通过其体积关系求得半径.(2)与球有关的组合体问题,一种是内切,一种是外接.球与旋转体的组合通常作出它们的轴截面解题;球与多面体的组合,一般通过多面体的一条侧棱和球心,并结合“切点”或“接点”作出截面图,把空间问题化归为平面问题求解.1.已知正四棱锥P-ABCD内接于一个半径为R的球,则正四棱锥P-ABCD 体积的最大值是()A.16R381B.32R381C.64R381D.R3解析:选C.如图,记O为正四棱锥P­ABCD外接球的球心,O1为底面ABCD 的中心,则P,O,O1三点共线,连接PO1,OA,O1A.设OO 1=x ,则O 1A =R 2-x 2,AB =2·R 2-x 2,PO 1=R +x ,所以正四棱锥P -ABCD 的体积V =13AB 2·PO 1=13×2(R 2-x 2)(R +x )=23(-x 3-Rx 2+R 2x +R 3),求导得V ′=23(-3x 2-2Rx +R 2)=-23(x +R )·(3x -R ),当x =R3时,体积V 有最大值64R 381,故选C .2.设球O 内切于正三棱柱ABC -A 1B 1C 1,则球O 的体积与正三棱柱ABC -A 1B 1C 1的体积的比值为________.解析:设球O 的半径为R ,正三棱柱ABC -A 1B 1C 1的底面边长为a ,则R =33×a 2=36a ,即a =23R .又正三棱柱ABC -A 1B 1C 1的高为2R ,所以球O 的体积与正三棱柱ABC -A 1B 1C 1的体积的比值为43πR 334a 2×2R =43πR 334×12R 2×2R =23π27.答案:23π27核心素养系列14 直观想象——确定球心位置的三种方法决定球的几何要素是球心的位置和球的半径,在球与其他几何体的结合问题中,通过位置关系的分析,找出球心所在的位置是解题的关键,不妨称这个方法为球心位置分析法.方法一 由球的定义确定球心若一个多面体的各顶点都在一个球的球面上,则称这个多面体是这个球的内接多面体,这个球是这个多面体的外接球.也就是说如果一个定点到一个简单多面体的所有顶点的距离都相等,那么这个定点就是该简单多面体外接球的球心.(1)长方体或正方体的外接球的球心是其体对角线的中点; (2)正三棱柱的外接球的球心是上、下底面中心连线的中点;(3)直三棱柱的外接球的球心是上、下底面三角形外心连线的中点;(4)正棱锥的外接球球心在其高上,具体位置可通过建立直角三角形运用勾股定理计算得到;(5)若棱锥的顶点可构成共斜边的直角三角形,则公共斜边的中点就是其外接球的球心.已知各顶点都在同一个球面上的正四棱柱的高为4,体积为16,则这个球的表面积是()A.16πB.20πC.24πD.32π【解析】已知各顶点都在同一个球面上的正四棱柱的高为4,体积为16,可求得底面边长为2,故球的直径为22+22+42=26,则半径为6,故球的表面积为24π,故选C.【答案】 C方法二构造长方体或正方体确定球心(1)正四面体、三条侧棱两两垂直的正三棱锥、四个面都是直角三角形的三棱锥,可将三棱锥补形成长方体或正方体;(2)同一个顶点上的三条棱两两垂直的四面体、相对的棱相等的三棱锥,可将三棱锥补形成长方体或正方体;(3)若已知棱锥含有线面垂直关系,则可将棱锥补形成长方体或正方体;(4)若三棱锥的三个侧面两两垂直,则可将三棱锥补形成长方体或正方体.如图,边长为2的正方形ABCD中,点E,F分别是边AB,BC的中点,将△AED,△EBF,△FCD分别沿DE,EF,FD折起,使A,B,C三点重合于点A′,若四面体A′EFD的四个顶点在同一个球面上,则该球的半径为()A. 2 B.6 2C.112D.52【解析】 易知四面体A ′EFD 的三条侧棱A ′E ,A ′F ,A ′D 两两垂直,且A ′E =1,A ′F =1,A ′D =2,把四面体A ′EFD 补成从顶点A ′出发的三条棱长分别为1,1,2的一个长方体,则长方体的外接球即为四面体A ′EFD 的外接球,球的半径为r =1212+12+22=62.故选B .【答案】 B方法三 由性质确定球心利用球心O 与截面圆圆心O ′的连线垂直于截面圆及球心O 与弦中点的连线垂直于弦的性质,确定球心.正三棱锥A -BCD 内接于球O ,且底面边长为3,侧棱长为2,则球O 的表面积为________.【解析】 如图,M 为底面△BCD 的中心,易知AM ⊥MD ,DM =1,AM = 3.在Rt △DOM 中,OD 2=OM 2+MD 2,即OD 2=(3-OD )2+1,解得OD =233,故球O 的表面积为4π×⎝ ⎛⎭⎪⎫2332=163π.【答案】 163π[A 级 基础练]1.(2020·高考全国卷Ⅲ)如图为某几何体的三视图,则该几何体的表面积是( )A .6+42B .4+4 2C .6+2 3D .4+2 3解析:选C .由三视图知该几何体为如图所示的三棱锥P -ABC ,其中P A ⊥平面ABC ,AB ⊥AC ,AB =AC =AP =2,故其表面积S =⎝ ⎛⎭⎪⎫12×2×2×3+12×(22)2×sin 60°=6+2 3.2.(2021·贵阳市适应性考试)某几何体的三视图如图所示,已知正视图和侧视图是全等的直角三角形,俯视图是圆心角为90°的扇形,则该几何体的体积是( )A .2πB .π2C .3π2D .3π解析:选D .依题意,题中的几何体是一个圆锥的14(其中该圆锥的底面半径为23,高为3),如图所示,因此该几何体的体积为14×⎣⎢⎡⎦⎥⎤13×π×(23)2×3=3π,选D .3.(2020·高考全国卷Ⅰ)已知A,B,C为球O的球面上的三个点,⊙O1为△ABC的外接圆.若⊙O1的面积为4π,AB=BC=AC=OO1,则球O的表面积为()A.64πB.48πC.36πD.32π解析:选A.如图所示,设球O的半径为R,⊙O1的半径为r,因为⊙O1的面积为4π,所以4π=πr2,解得r=2,又AB=BC=AC=OO1,所以ABsin 60°=2r,解得AB=23,故OO1=23,所以R2=OO21+r2=(23)2+22=16,所以球O的表面积S=4πR2=64π.故选A.4.(2021·东北三校第一次联考)如图,四边形ABCD是边长为2的正方形,ED⊥平面ABCD,FC⊥平面ABCD,ED=2FC=2,则三棱锥A-BEF的体积为()A.13B.23C.1 D.4 3解析:选B.如图,分别取BC,ED,AD的中点G,P,Q,连接FG,FP,PQ,QG,因为ED⊥平面ABCD,FC⊥平面ABCD,ED=2FC=2,所以PD∥=FC,所以四边形FCDP为平行四边形,所以PF∥DC.又Q,G分别为DA,CB的中点,所以QG ∥DC ,且QG =DC ,所以QG ∥PF ,且QG =PF ,所以四边形QGFP 为平行四边形,所以PQ ∥FG .又P 为DE 的中点,所以PQ ∥EA ,所以FG ∥EA ,因为EA ⊂平面EAB ,FG ⊄平面EAB ,所以FG ∥平面EAB .连接EG ,AG ,则V 三棱锥A -BEF =V 三棱锥F -ABE =V 三棱锥G -ABE =V 三棱锥E -ABG =13·ED ·S △ABG=23,故选B .5.(2021·福建省质量检测)某学生到工厂实践,欲将一个底面半径为2,高为3的实心圆锥体工件切割成一个圆柱体,并使圆柱体的一个底面落在圆锥体的底面内.若不考虑损耗,则得到的圆柱体的最大体积是( )A .16π9 B .8π9 C .16π27D .8π27解析:选A .方法一:如图,OC =2,OA =3,由△AED ∽△AOC 可得EDOC =AEAO .设圆柱体的底面半径r =ED =2x (0<x <1),可得AE =3x ,则圆柱体的高h =OE =3-3x ,圆柱体的体积V =π(2x )2(3-3x )=12π(x 2-x 3),令V (x )=12π(x 2-x 3),则V ′(x )=12π(2x -3x 2),令V ′(x )=0,解得x =23或x =0(舍去),可得V (x )在⎝ ⎛⎭⎪⎫0,23上单调递增,在⎝ ⎛⎭⎪⎫23,1上单调递减,故当x =23时,V (x )取得最大值,V (x )max =16π9,即圆柱体的最大体积是16π9.方法二:同方法一,则圆柱体的体积V =12πx 2(1-x )=6π·x ·x (2-2x )≤6π·⎣⎢⎡⎦⎥⎤x +x +(2-2x )33=16π9,当且仅当x =2-2x ,即x =23时等号成立,故圆柱体的最大体积是16π9.6.已知圆柱的底面积为S ,侧面展开图是一个正方形,那么圆柱的侧面积是________.解析:由πr 2=S 得圆柱的底面半径是Sπ,故侧面展开图的边长为2π·S π=2πS ,所以圆柱的侧面积是4πS .答案:4πS7.(2020·高考浙江卷)已知圆锥的侧面积(单位:cm 2)为2π,且它的侧面展开图是一个半圆,则这个圆锥的底面半径(单位:cm)是________.解析:方法一:设该圆锥的母线长为l ,因为圆锥的侧面展开图是一个半圆,其面积为2π,所以12πl 2 =2π,解得l =2,所以该半圆的弧长为2π.设该圆锥的底面半径为R ,则2πR =2π,解得R =1.方法二:设该圆锥的底面半径为R ,则该圆锥侧面展开图中的圆弧的弧长为2πR .因为侧面展开图是一个半圆,设该半圆的半径为r ,则πr = 2πR ,即r =2R ,所以侧面展开图的面积为12·2R ·2πR =2πR 2=2π,解得R =1.答案:18.(2021·长沙市统一模拟考试)在四面体P ABC 中,△ABC 为等边三角形,且边长为6,P A =6,PB =8,PC =10,则四面体P ABC 的体积为________.解析:如图,延长CA 到D ,使得AD =6,连接DB ,PD .因为AD =AB =6,所以△ADB 为等腰三角形,又∠DAB =180°-∠CAB =120°,所以∠ABD =12(180°-120°)=30°,所以∠ABD +∠CBA =90°,即∠DBC =90°,故CB ⊥DB .因为PB =8,PC =10,BC =6,所以PC 2=PB 2+BC 2,所以CB ⊥PB .因为DB ∩PB =B ,DB ⊂平面PBD ,PB ⊂平面PBD ,所以CB ⊥平面PBD ,所以V三棱锥C -PBD=13×CB ×S △PBD .因为DA =AC =AP =6,所以△PDC 为直角三角形,所以PD =CD 2-PC 2=144-100=211.又DB =3AD =63,PB =8,所以DB 2=PD 2+PB 2,故BP ⊥DP ,即△PBD 为直角三角形,所以S △PBD =12×8×211=811.因为A 为DC 的中点,所以V 四面体P ABC =12V 三棱锥P -CBD =12V 三棱锥C -PBD =12×13×6×811=811.答案:8119.已知一个几何体的三视图如图所示.(1)求此几何体的表面积;(2)如果点P ,Q 在正视图中所示位置,P 为所在线段的中点,Q 为顶点,求在几何体表面上,从P 点到Q 点的最短路径的长.解:(1)由三视图知该几何体是由一个圆锥与一个圆柱组成的组合体,其表面积是圆锥的侧面积、圆柱的侧面积和圆柱的一个底面积之和.S 圆锥侧=12(2πa )·(2a )=2πa 2, S 圆柱侧=(2πa )·(2a )=4πa 2, S 圆柱底=πa 2,所以S 表=2πa 2+4πa 2+πa 2=(2+5)πa 2.(2)沿P点与Q点所在母线剪开圆柱侧面,如图.则PQ=AP2+AQ2=a2+(πa)2=a1+π2,所以从P点到Q点在侧面上的最短路径的长为a1+π2.10.如图,四边形ABCD为菱形,G为AC与BD的交点,BE⊥平面ABCD.(1)证明:平面AEC⊥平面BED;(2)若∠ABC=120°,AE⊥EC,三棱锥E-ACD的体积为63,求该三棱锥的侧面积.解:(1)证明:因为四边形ABCD为菱形,所以AC⊥BD.因为BE⊥平面ABCD,所以AC⊥BE.因为BD∩BE=B,BD⊂平面BED,BE⊂平面BED,所以AC⊥平面BED.又AC⊂平面AEC,所以平面AEC⊥平面BED.(2)设AB=x,在菱形ABCD中,由∠ABC=120°,可得AG=GC=32x,GB=GD=x 2.因为AE⊥EC,所以在Rt△AEC中,可得EG=32x.由BE⊥平面ABCD,知△EBG为直角三角形,可得BE=22x.由已知得,三棱锥E-ACD的体积V三棱锥E-ACD=13×12·AC·GD·BE=624x3=63,故x=2.从而可得AE=EC=ED= 6.所以△EAC的面积为3,△EAD的面积与△ECD的面积均为 5.故三棱锥E-ACD的侧面积为3+2 5.[B级综合练]11.(2021·安徽省部分重点学校联考)已知三棱锥D-ABC的体积为2,△ABC 是边长为2的等边三角形,且三棱锥D-ABC的外接球的球心O恰好是CD的中点,则球O的表面积为()A.52π3B.24πC.56π3D.20π3解析:选A.设球O的半径为R,球心O到平面ABC的距离为d,因为O是CD的中点,所以点D到平面ABC的距离为2d,则V D­ABC=13S△ABC2d=13×34×22×2d=2,解得d= 3.过点O向平面ABC作垂线,垂足为O′,则O′为等边三角形ABC的外心,连接O′A,则O′A=2×32×23=233,R2=d2+O′A2=3+43=133,所以球O的表面积S=4πR2=52π3.12.(2021·南充市第一次适应性考试)如图,在正三棱锥A-BCD中,AB=BC,E为棱AD的中点.若△BCE的面积为2,则三棱锥A-BCD的体积为()A.23B.33C.233D.223解析:选D.因为AB=BC,所以正三棱锥A-BCD为正四面体,因为E为AD 的中点,所以AD ⊥BE ,AD ⊥CE ,又CE ∩BE =E ,所以AD ⊥平面BCE .设AD =a ,则BE =CE =32a ,所以等腰三角形BCE 的面积S △BCE =12×BC × BE 2-⎝ ⎛⎭⎪⎫BC 22=12×a ×⎝ ⎛⎭⎪⎫32a 2-⎝ ⎛⎭⎪⎫a 22=12×22a 2=2,所以a =2,所以V 三棱锥A -BCD =V 三棱锥A -BCE +V 三棱锥D -BCE =2V 三棱锥A -BCE =2×13S △BCE ×AE =2×13×2×a 2=223.13.如图所示是一个几何体的三视图,根据图中所给的数据,这个几何体的表面积为________,体积为________.解析:如图所示是还原后的几何体的直观图,分别取BC ,AD 的中点E ,F ,连接SE ,EF ,SF ,由图中数据有AB =BC =CD =DA =SE =EF =2,BE =EC =1,因为△SBC 是等腰三角形,所以SB =SC = 5. 因为△SBA 为直角三角形,所以SA =3. 又因为△SAD 是等腰三角形,所以SF ⊥AD . 所以SF =2 2.所以S 正方形ABCD =4,S △SBC =2,S △SAB =S △SCD =5,S △SAD =2 2. 所以S S ­ABCD =6+2(2+5). 所以V S ­ABCD =13·S 正方形ABCD ·SE =83. 答案:6+2(2+5) 8314.(2020·河北九校第二次联考)如图,正方体ABCD -A 1B 1C 1D 1的棱长为a ,E ,F ,G 分别是DD 1,AB ,BC 的中点,过点E ,F ,G 的截面将正方体分割成两部分,则较大几何体的体积为________.解析:如图所示,延长GF ,DA 交于点M ,延长FG ,DC 交于点N ,连接EM ,EN 分别与A 1A ,C 1C 交于点P ,Q ,连接PF ,QG ,则五边形EPFGQ 即为过点E ,F ,G 的平面与正方体的截面图形.易得P A =QC =a6,连接EA ,EC ,截面下面部分可分割成三部分,分别是三棱锥E -P AF 、三棱锥E -CGQ 、五棱锥E -AFGCD ,则截面下面部分的体积V 1=V E ­P AF +V E ­CGQ +V E ­AFGCD =13×12×a 6×a2×a +13×12×a 6×a 2×a +13(a 2-12×a 2×a 2)×a 2=25144a 3,则较大几何体的体积V =a 3-25144a 3=119144a 3.答案:119144a 3[C级提升练]15.设A,B,C,D是同一个半径为4的球的球面上的四点,△ABC为等边三角形且其面积为93,则三棱锥D-ABC体积的最大值为() A.12 3 B.18 3C.24 3 D.54 3解析:选B.如图,E是AC的中点,M是△ABC的重心,O为球心,连接BE,OM,OD,BO.因为S△ABC=34AB2=93,所以AB=6,BM=23BE=23AB2-AE2=2 3.易知OM⊥平面ABC,所以在Rt△OBM中,OM=OB2-BM2=2,所以当D,O,M三点共线且DM=OD+OM时,三棱锥D-ABC的体积取得最大值,且最大值V max=13S△ABC×(4+OM)=13×93×6=18 3.故选B.16.如图,正方体ABCD-A1B1C1D1的棱长为3,线段B1D1上有两个动点E,F且EF=1,则当E,F移动时,下列结论正确的有________.(填序号)①AE∥平面C1BD;②四面体ACEF的体积为定值;③三棱锥A-BEF的体积为定值;④四面体ACDF 的体积为定值.解析:对于①,如图1,AB 1∥DC 1,易证AB 1∥平面C 1BD ,同理AD 1∥平面C 1BD ,且AB 1∩AD 1=A ,所以平面AB 1D 1∥平面C 1BD ,又AE ⊂平面AB 1D 1,所以AE ∥平面C 1BD ,①正确;对于②,如图2,S △AEF =12EF ·h 1=12×1×(32)2-⎝⎛⎭⎪⎫3222=364,点C 到平面AEF 的距离为点C 到平面AB 1D 1的距离d 为定值,所以V A ­CEF =V C ­AEF =13×364×d =64d 为定值,所以②正确;对于③,如图3,S △BEF =12×1×3=32,点A 到平面BEF 的距离为A 到平面BB 1D 1D 的距离d 为定值,所以V A ­BEF =13×32×d =12d 为定值,③正确;对于④,如图4,四面体ACDF 的体积为V A ­CDF =V F ­ACD =13×12×3×3×3=92为定值,④正确.答案:①②③④。

三视图与体积、表面积(例、练及答案)

三视图与体积、表面积(例、练及答案)

专题十三:三视图与体积、表面积(例、练及答案)1.由三视图求面积例1:一个几何体的三视图如图所示,则该几何体的表面积为_________.2.由三视图求体积例2:某个长方体被一个平面所截,得到的几何体的三视图如图所示,则这个几何体的体积为()A .4B .C .D .8练习一、单选题1.某几何体的三视图如图所示,若该几何体的表面积为 ,则俯视图中圆的半径为()A .1B .2C .3D .42.正方体中,为棱的中点(如图)用过点的平面截去该正方体的上半部分,则剩余几何体的左视图为()A .B .C .D .3.如图,网格纸上小正方形的边长为1,粗线画的是某几何体的三视图,则该几何体的体积为()A .B .C .D .44.一个几何体的三视图如图所示,其中正视图是半径为1的半圆,则该几何体的表面积为()1111ABCD A B C D E 1AA 1B E D 、、2367276A .B .C .D .5.若某三棱柱截去一个三棱锥后所剩几何体的三视图如图所示,则所截去的三棱锥......的外接球的表面积等于()A .B .C .D .6.如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的外接球的表面积为()A .B .C .D .7.一个四棱锥的三视图如图所示,则该几何体的表面积为())21+π21⎫+π⎪⎪⎝⎭122⎫+π⎪⎪⎝⎭12⎫π⎪⎪⎝⎭34π32π17π172π32π16π36π72πA .B .C .D .8.已知一个三棱锥的三视图如图所示,其中三视图的长、宽、高分别为2,,,且,则此三棱锥外接球表面积的最小值为()A .B .C .D .9.在四棱锥中,底面,底面为正方形,,该四棱锥被一平面截去一部分后,剩余部分的三视图如图,则截去部分体积与剩余部分体积的比值为()A .B .C .D.10.如图,画出的是某四棱锥的三视图,网格纸上小正方形的边长为1,则该几何体的体积为()6+8+6+8+a b ()520,02a b a b +=>>174π214π4π5πP ABCD -PA ⊥ABCD ABCD PA AB =12131415A .15B .16C .D .11.某几何体的三视图如图(虚线刻画的小正方形边长为1)所示,则这个几何体的体积为()A .B .C .12D .12.如图为一个多面体的三视图,则该多面体的体积为()A .B .7C .D .二、填空题13.网格纸上小正方形的边长为1,粗虚、实线画出的是某个长方体挖去一个几何体得到的几何图形的三视图,则该被挖去的几何体的体积为__________.5035339438320322323314.已知某几何体的三视图如图所示,则该几何体的表面积和体积分别为_______与_______.15.某四棱锥的三视图如图所示,则该四棱锥的体积为_________.16.已知某几何体的三视图如图所示,三视图的轮廓均为正方形,则该几何体的体积为__________.参考答案1.【答案】【解析】由三视图可得该几何体由一个半球和一个圆锥组成,其表面积为半球面积和圆锥侧面积的和.球的半径为3, ∴半球的面积,圆锥的底面半径为3,母线长为5,∴圆锥的侧面积为,∴表面积为.2.【答案】D【解析】由于长方体被平面所截,∴很难直接求出几何体的体积,可以考虑沿着截面再接上一个一模一样的几何体, 从而拼成了一个长方体,∵长方体由两个完全一样的几何体拼成, ∴所求体积为长方体体积的一半。

高三数学(理)二轮复习专题通关攻略:课时巩固过关练 十二 1.5.1空间几何体的三视图、表面积及体积

高三数学(理)二轮复习专题通关攻略:课时巩固过关练 十二 1.5.1空间几何体的三视图、表面积及体积

课时巩固过关练十二空间几何体的三视图、表面积及体积(25分钟50分)一、选择题(每小题5分,共20分)1.(2016·天津高考)将一个长方体沿相邻三个面的对角线截去一个棱锥,得到的几何体的正视图与俯视图如图所示,则该几何体的侧视图为( )【解析】选B.由题意得截去的是长方体前右上方顶点.【方法技巧】三视图往往与几何体的体积、表面积以及空间线面关系、角与距离等问题相结合,解决此类问题的关键是由三视图准确确定空间几何体的形状及其结构特征.2.(2016·北京高考)某三棱锥的三视图如图所示,则该三棱锥的体积为( )A. B. C. D.1【解析】选A.通过三视图可还原几何体为如图所示的三棱锥,则通过侧视图得高h=1,底面积S=×1×1=,所以体积V=Sh=.3.(2016·广州一模)一个六棱柱的底面是正六边形,侧棱垂直于底面,所有棱的长都为1,顶点都在同一个球面上,则该球的体积为( )A.20πB.C.5πD.【解析】选D.由题意知六棱柱的底面正六边形的外接圆半径r=1,其高h=1,所以球半径为R===,所以该球的体积V=πR3=×·π=.【加固训练】已知直三棱柱ABC-A1B1C1的6个顶点都在球O的球面上.若AB=3, AC=4,AB⊥AC,AA1=12,则球O的半径为( )A. B.2 C. D.3【解析】选C.因为直三棱柱中AB=3,AC=4,AA1=12,AB⊥AC,所以BC=5,且BC为过底面ABC的截面圆的直径.取BC中点D,则OD⊥底面ABC,则O在侧面BCC1B1内,矩形BCC1B1的对角线长即为球直径,所以2R==13,即R=.二、填空题(每小题5分,共10分)4.(2016·天津高考)已知一个四棱锥的底面是平行四边形,该四棱锥的三视图如图所示(单位:m),则该四棱锥的体积为________m3.【解析】底面为平行四边形,面积为2×1=2,高为3,所以V=×2×1×3=2. 答案:25.(2016·大连一模)如图,在小正方形边长为1的网格中画出了某多面体的三视图,则该多面体的外接球表面积为________.【解题导引】由三视图知,该几何体是一个侧面与底面垂直的三棱锥,画出直观图,再建立空间直角坐标系,求出三棱锥外接球的球心与半径,从而求出外接球的表面积.【解析】由三视图知,该几何体是三棱锥S-ABC,且三棱锥的一个侧面SAC与底面ABC垂直,其直观图如图所示:由三视图的数据可得OA=OC=2,OB=OS=4.建立空间直角坐标系O-xyz,如图所示:则A(0,-2,0),B(4,0,0),C(0,2,0),S(0,0,4),则三棱锥外接球的球心I在平面xOz上,设I(x,0,z);由得,解得x=z=;所以外接球的半径R=|BI|==.所以该三棱锥外接球的表面积S=4πR2=4π×=34π.答案:34π三、解答题(6题12分,7题13分,共25分)6.(2016·南阳一模)如图,AA1,BB1为圆柱OO1的母线,BC是底面圆O的直径,D,E分别是AA1,CB1的中点,DE⊥平面CBB1.(1)证明:DE∥平面ABC.(2)求四棱锥C-ABB1A1与圆柱OO1的体积比.【解析】(1)连接EO,OA,因为E,O分别为B1C,BC的中点,所以EO∥BB1.又DA∥BB1,且DA=BB1=EO,所以四边形AOED是平行四边形,即DE∥OA.又DE⊄平面ABC,AO⊂平面ABC,所以DE∥平面ABC.(2)由题意知DE⊥平面CBB1,且由(1)知DE∥AO,因为AO⊥平面CBB1,所以AO⊥BC,所以AC=AB. 因为BC是底面圆O的直径,所以CA⊥AB,且AA1⊥CA,又AB∩AA1=A,所以CA⊥平面AA1B1B,即CA为四棱锥C-ABB1A1的高.设圆柱的高为h,底面圆半径为r,则=πr2h,=h(r)·(r)=hr2.所以∶=.7.(2016·南宁一模)如图,三棱柱ABC-A1B1C1中,侧面AA1C1C⊥底面ABC,AA1=A1C=AC=2,AB=BC且AB⊥BC.(1)求证:AC⊥A1B.(2)求三棱锥C1-ABA1的体积.【解题导引】(1)转化为证明直线AC垂直于直线A1B所在的平面即可.(2)由=,转化为求,关键求点B到平面AA1C1的距离.【解析】(1)取AC的中点O,连接A1O,BO.因为AA1=A1C,所以A1O⊥AC,又AB=BC,所以BO⊥AC,因为A1O∩BO=O,所以AC⊥平面A1OB,又因为A1B⊂平面A1OB,所以AC⊥A1B.(2)三棱柱ABC-A1B1C1中,所以侧面AA1C1C⊥底面ABC,侧面AA1C1C∩底面ABC=AC,OB⊥AC,所以OB⊥平面AA1C1C,易求得OB=1,=,所以==··OB=.(20分钟50分)一、选择题(每小题5分,共20分)1.如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体最短和最长的棱长分别等于( )A.4,B.4,C.3,5D.3,2【解析】选C.由三视图可判断该几何体为三棱锥,形状如图,其中SC⊥平面ABC,AC⊥AB,所以最短的棱长为AC=3,最长的棱长为SB=5.2.如图是某几何体的三视图,正(主)视图是等腰梯形,俯视图中的曲线是两个同心的半圆组成的半圆环,侧(左)视图是直角梯形,则该几何体的体积等于( )A.12πB.16πC.20πD.24π【解析】选A.由三视图知:r=1,R=4,S1=π×12=π,S2=π×42=16π,所以V=×-π×12×4=×21π-2π=12π.【加固训练】某几何体的三视图如图所示,若该几何体的体积为3,则侧(左)视图中线段的长度x的值是( )A. B.2 C.4 D.5【解析】选C.分析题意可知,该几何体为如图所示的四棱锥P-ABCD,故其体积V=××4×CP=3,所以CP=,所以x==4.3.如图1,已知正方体ABCD-A1B1C1D1的棱长为a,动点M,N,Q分别在线段AD1,B1C,C1D1上.当三棱锥Q -BMN的俯视图如图2所示时,三棱锥Q-BMN的正(主)视图面积等于( )A.a2B.a2C.a2D.a2【解析】选B.由俯视图知,点M为AD1的中点、N与C重合、Q与D1重合,所以三棱锥Q -BMN的正(主)视图为△CD1P,其中点P为DD1的中点,所以三棱锥Q -BMN 的正(主)视图面积为×a×=a2.【加固训练】如图,三棱锥V-ABC,VA⊥VC,AB⊥BC,∠VAC=∠ACB=30°,若侧面VAC⊥底面ABC,则其正(主)视图与侧(左)视图面积之比为( )A.4∶B.4∶C.∶D.∶【解题导引】正(主)视图为Rt△VAC,侧(左)视图为以△VAC中AC边的高为一条直角边,△ABC中AC边的高为另一条直角边的直角三角形.【解析】选A.过V作VD⊥AC于点D,过B作BE⊥AC于点E,则正(主)视图为Rt△VAC,侧(左)视图为以△VAC中AC边的高VD为一条直角边,△ABC中AC边的高BE为另一条直角边的直角三角形.设AC=x,则VA=x,VC=x,VD=x,BE=x,则S正(主)视图:S侧(左)视图=∶(·x·x)=4∶.【误区警示】解答本题易出现如下两种错误:一是对正(主)视图、侧(左)视图的形状判断不准确,造成结论错误;二是运算错误,造成结论错误.二、填空题(每小题5分,共10分)4.如图,半径为4的球O中有一内接圆柱,则圆柱的侧面积最大值是________.【解题导引】设出圆柱的上底面半径为r,球的半径与上底面夹角为α,求出圆柱的侧面积表达式,求出最大值.【解析】设圆柱的上底面半径为r,球的半径与上底面夹角为α,则r=4cosα,圆柱的高为8sinα.所以圆柱的侧面积为:32πsin2α.当且仅当α=时,sin2α=1,圆柱的侧面积最大,所以圆柱的侧面积的最大值为:32π.答案:32π5.在四棱锥P-ABCD中,底面ABCD是边长为2的菱形,∠BAD=60°,侧棱PA⊥底面ABCD,PA=2,E为AB的中点,则点E到平面PBC的距离为________.【解题导引】利用V P-BCE=V E-PBC求.【解析】由于四边形ABCD是菱形,所以以EB为底边的△CBE的高h=AD·sin 60°=2×=,从而四面体P-BCE的体积V P-BCE=V E-PBC=××1××2=,AC==2.在Rt△PAB中PB==2,在Rt△PAC中PC===4,cos∠PBC==-,所以sin∠PBC==.S△PBC=PB·BC·sin∠PBC=×2×2×=.设点E到平面PBC的距离为d,则有S△PBC·d=,所以d===.答案:三、解答题(6题12分,7题13分,共25分)6.如果一个几何体的正(主)视图与侧(左)视图都是全等的长方形,边长分别是4cm与2cm如图所示,俯视图是一个边长为4cm的正方形.(1)求该几何体的全面积.(2)求该几何体的外接球的体积.【解析】(1)由题意可知,该几何体是长方体,底面是正方形,边长是4,高是2,因此该几何体的全面积是:2×4×4+4×4×2=64(cm2).(2)由长方体与球的性质可得,长方体的体对角线是球的直径,记长方体的体对角线为d,球的半径为r,d===6(cm),所以球的半径r=3cm,因此球的体积V=πr3=×27π=36π(cm3).所以外接球的体积是36πcm3.7.如图,边长为的正方形ADEF与梯形ABCD所在的平面互相垂直,其中AB∥CD,AB⊥BC,DC=BC=AB=1,点M在线段EC上.(1)证明:平面BDM⊥平面ADEF.(2)判断点M的位置,使得三棱锥B-CDM的体积为.【解题导引】证明BD⊥平面ADEF,即可证明平面BDM⊥平面ADEF.(2)在平面DMC内,过M作MN⊥DC,垂足为N,则MN∥ED,利用三棱锥的体积计算公式求出MN,可得结论.【解析】(1)因为DC=BC=1,DC⊥BC,所以BD=.因为AD=,AB=2,所以AD2+BD2=AB2,所以∠ADB=90°,所以AD⊥BD,因为平面ADEF⊥平面ABCD,平面ADEF∩平面ABCD=AD.BD⊂平面ABCD,所以BD⊥平面ADEF,因为BD⊂平面BDM,所以平面BDM⊥平面ADEF.(2)如图,在平面DMC内,过M作MN⊥DC,垂足为N,又因为ED⊥AD,平面ADEF⊥平面ABCD,平面ADEF∩平面ABCD=AD,所以ED⊥平面ABCD,所以ED⊥CD,所以MN∥ED,因为ED⊥平面ABCD,所以MN⊥平面ABCD.因为V B-CDM=V M-CDB=MN·S△BDC=,所以××1×1×MN=,所以MN=.所以===,所以CM=CE,所以点M在线段CE的三等分点且靠近C处.。

根据几何体三视图求表面积、体积专题

根据几何体三视图求表面积、体积专题

根据展开图求体积面积专练
例1.如图是一个由若干个小正方体搭成的几何体从上面看到的形状图,其中小正方形内的数字是该位置小正方体的个数,请你画出它从正面和从左面看到的形状图.小正方形的棱长为2cm,求表面积
例2.2.如图所示是一个由若干个相同的小立方块所搭成的几何体从上面看到的图形,小正方形中的数字表示在该位置上小立方块的个数,请画出它从正面和从左面看到的平面图形.小正方形的棱长为1cm,求表面积
例3.例2.由10个大小相同的正方体搭成的几何体如图所示,请在网格中画出从正面看,从左面看,从上面看得到的平面图形.小正方形的棱长为3cm,求表面积
2.小康利用7个大小相同的小正方体搭成了一个如图所示的几何体.(1)请在图中画出这个几何体从正面、左面、上面看到的形状图;(2)若每个小正方体的棱长均为3cm,求这个几何体的表面积.
例3.一个无盖的长方体包装盒展开后如图所示(单位:cm),a,b,c分别是长方体的长宽高.(1)求长方体的高c;(2)求长方体的容积.
4.诗语同学周末帮妈妈拆完快递后,将包装盒展开,进行了测量,结果如图所示.已知长方体盒子的长比宽多3cm,高是2cm.(1)求长方体盒子的长和宽.(2)求这个包装盒的体积.
5.某种产品的形状是长方体,长为8cm,它的展开图如图.(1)求长方体的体积;
(2)请为厂家设计一种包装纸箱,使每箱能装8件这种产品,要求设计时不计空隙且该纸箱所用材料最少(纸箱的表面积最小),并请求出你设计的纸箱的表面积.
6.如图,是一个几何体分别从正面、左面、上面看的形状图.(1)该几何体名称是;(2)根据图中给的信息,求该几何体的表面积和体积.
7.从正面、左面、上面看到的圆柱的形状图如图所示.(计算结果用π表示)(1)求这个圆柱的表面积;(2)求这个圆柱的体积.。

高二数学空间几何体的三视图与直观图试题

高二数学空间几何体的三视图与直观图试题

高二数学空间几何体的三视图与直观图试题1.如图是一个几何体的三视图(尺寸的长度单位为),则它的体积是().A.B.C.D.【答案】A【解析】根据几何体的三视图,还原几何体,是正三棱柱,根据图中数据可得故选 A.【考点】三棱柱的体积.2.将长方体截去一个四棱锥,得到的几何体如图所示,则该几何体的侧视图为()【答案】D【解析】由于对角线被挡住,看不到,画成虚线,注意位置.【考点】几何体的三视图.3.一个几何体的三视图形状都相同,大小均相等,那么这个几何体不可以是()A.球B.三棱锥C.正方体D.圆柱【答案】D【解析】球与与正方体在通常的放法前提下不难得到三视图形状都相同,大小均相等,一个是圆,一个是正方形,特殊的三棱锥例如正方体过顶点截得的一角,它的三视图形状都相同,大小均相等,都是等腰直角三角形,但圆柱的不会满足三视图形状都相同,大小均相等,故选择D.【考点】三视图的画法及其特点.4.如图,一个空间几何体的正视图,左视图,俯视图为全等的等腰直角三角形,如果等腰直角三角形的直角边长为1,那么这个几何体的体积为.【答案】【解析】由三视图可知,此几何体为一个三棱锥,且有三条两两互相垂直的棱,且长度为1,所以体积为:【考点】立体图与其三视图.5.如图,一个空间几何体的正视图和侧视图都是边长为1的正方形,俯视图是一个圆,那么这个几何体的侧面积为()A.B.C.D.【答案】C【解析】由几何体的三视图可知几何体为底面半径为,高为1的圆柱,而圆柱侧面展开图为一个矩形,该矩形的长为底面圆的周长,高为1,所以该圆柱侧面积为【考点】空间几何体的三视图和直观图、空间几何体的表面积6.一个几何体的三视图如右图所示,则该几何体的体积为()A.B.C.D.【答案】C【解析】由三视图可知,几何体是一个底面是一个上底为1,下底为2,高为1的直角梯形,且有一条长为1的侧棱垂直底面的四棱锥.【考点】三视图.7.已知某个几何体的三视图如下,根据图中标出的尺寸(单位:),则该几何体的体积是( )A.B.C.D.【答案】C【解析】三棱锥,由俯视图知:底面为底边2,高2的等腰三角形;由正视图知:三棱锥高为2,所以体积为.【考点】三视图,棱锥体积.8.某四面体的三视图如右图所示,该四面体四个面的面积中最大的是( )A.B.8C.10D.12【答案】C【解析】此四面体为三棱锥,底面为直角三角形一直角边长为4,另一边长为3。

2020高考数学题型整理分类《(6)空间几何体的三视图、表面积与体积》解析版(含历年真题)

2020高考数学题型整理分类《(6)空间几何体的三视图、表面积与体积》解析版(含历年真题)

(六)小题考法——空间几何体的三视图、表面积与体积 A 组——10+7提速练一、选择题1.如图为一个几何体的侧视图和俯视图,则它的正视图为( )解析:选B 根据题中侧视图和俯视图的形状,判断出该几何体是在一个正方体的上表面上放置一个四棱锥(其中四棱锥的底面是边长与正方体棱长相等的正方形、顶点在底面上的射影是底面一边的中点),结合选项知,它的正视图为B.2.(2017·全国卷Ⅰ)某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为( )A .10B .12C .14D .16解析:选B 由三视图可知该多面体是一个组合体,下面是一个底面是等腰直角三角形的直三棱柱,上面是一个底面是等腰直角三角形的三棱锥,等腰直角三角形的腰长为2,直三棱柱的高为2,三棱锥的高为2,易知该多面体有2个面是梯形,这些梯形的面积之和为(2+4)×22×2=12,故选B. 3.(2017·浙江高考)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm 3)是( )A.π2+1B.π2+3 C.3π2+1 D.3π2+3 解析:选A 由几何体的三视图可得,该几何体是一个底面半径为1,高为3的圆锥的一半与一个底面为直角边长为2的等腰直角三角形,高为3的三棱锥的组合体,故该几何体的体积V =13×12π×12×3+13×12×2×2×3=π2+1.4.(2017·郑州质检)某几何体的三视图如图所示,则该几何体的体积为()A.80 B.160C.240 D.480解析:选B如图所示,题中的几何体是从直三棱柱ABC-A′B′C′中截去一个三棱锥A-A′B′C′后所剩余的部分,其中底面△ABC是直角三角形,AC⊥AB,AC=6,AB=8,BB′=10.因此题中的几何体的体积为12×6×8×10-13×12×6×8×10=23×12×6×8×10=160,故选B.5.(2018·湖州模拟)某三棱锥的三视图如图所示,则该三棱锥最长棱的长为()A. 5 B.2 2C.3 D.2 3解析:选C在棱长为2的正方体ABCD-A1B1C1D1中,M,N分别为AD,BC的中点,该几何体的直观图如图中三棱锥D1-MNB1,故通过计算可得,D1B1=22,D1M=B1N=5,MN=2,MB1=ND1=3,故该三棱锥中最长棱的长为3.6.一个几何体的三视图如图所示(其中正视图的弧线为四分之一圆周),则该几何体的表面积为()A .72+6πB .72+4πC .48+6πD .48+4π解析:选A 由三视图知,该几何体由一个正方体的34部分与一个圆柱的14部分组合而成(如图所示),其表面积为16×2+(16-4+π)×2+4×2×2+14×2π×2×4=72+6π,故选A. 7.某几何体的三视图如图所示,则其体积为( )A .207B .216-9π2C .216-36πD .216-18π解析:选B 由三视图知,该几何体是一个棱长为6的正方体挖去14个底面半径为3,高为6的圆锥而得到的,所以该几何体的体积V =63-14×13×π×32×6=216-9π2,故选B. 8.(2018·贵阳检测)三棱锥P -ABC 的四个顶点都在体积为500π3的球的表面上,底面ABC 所在的小圆面积为16π,则该三棱锥的高的最大值为( )A .4B .6C .8D .10 解析:选C 依题意,设题中球的球心为O ,半径为R ,△ABC 的外接圆半径为r ,则4πR 33=500π3,解得R =5,由πr 2=16π,解得r =4,又球心O 到平面ABC 的距离为R 2-r 2=3,因此三棱锥P -ABC 的高的最大值为5+3=8,故选C.9.(2019届高三·浙江第二次联考)已知一个几何体的三视图如图所示,则该几何体的表面积为( )A .3πB .15π4C .33π4D .6π解析:选B 由三视图还原直观图知,该几何体为底面半径为1,高为3的圆锥挖去一个球心为圆锥底面圆的圆心且与圆锥相切的半球,易知圆锥的母线长为2,则圆锥的轴截面为边长为2的等边三角形,球的半径为32,故该几何体的表面积为π×1×2+12×4π×⎝⎛⎭⎫322+π×12-π×⎝⎛⎭⎫322=15π4,故选B. 10.(2018·嘉兴高三期末)某几何体的三视图如图所示(单位:cm),则该几何体的表面积(单位:cm 2)是( )A .36+24 2B .36+12 5C .40+24 2D .40+12 5解析:选B 由三视图可知该几何体为一正方体和一正四棱台的简单组合体.正方体的棱长为2 cm ,正四棱台上底面的边长为2 cm ,下底面的边长为4 cm ,棱台的高为2 cm ,可求得正四棱台的斜高为22+12=5(cm),故该几何体的表面积S =22×5+12×(2+4)×5×4+42=36+125(cm 2).故选B.二、填空题11.高为4的直三棱柱被削去一部分后得到一个几何体,它的直观图和三视图中的侧视图、俯视图如图所示,则该几何体的体积是原直三棱柱的体积的________.解析:由侧视图、俯视图知该几何体是高为2、底面积为 12×2×(2+4)=6的四棱锥,其体积为13×6×2=4.而直三棱柱的体积为12×2×2×4=8,则该几何体的体积是原直三棱柱的体积的12. 答案:1212.(2019届高三·浙江名校联考)某几何体的三视图如图所示,且该几何体的体积是3,则正视图中的x 的值是________,该几何体的表面积是________.解析:由三视图可知,该几何体为四棱锥,由3=13×12×3×(1+2)x ,解得x =2.作出该几何体的直观图并标注相应棱的长度如图所示,则S表=12×3×(1+2)+12×2×3+12×22+12×2×7+12×1×7=53+37+42. 答案:253+37+42 13.已知某几何体的三视图如图所示,则该几何体的表面积为________,体积为________.解析:由三视图作出该空间几何体的直观图(如图所示),可知其表面积为12×1×2+12×5×2+12×1×2+12×2×5=2+25,体积为13×12×1×2×2=23. 答案:2+25 2314.已知正方体ABCD -A 1B 1C 1D 1的棱长为2,球O 与正方体的各条棱都相切,M 为球O 上的一点,点N 是△ACB 1外接圆上的一点,则线段MN 长度的取值范围是________.解析:易求得棱切球的半径为2,易知△ACB 1为正三角形,则球心O 到△ACB 1的外接圆上任意一点的距离均为12+(2)2=3,于是OM =2,ON = 3.因为|OM -ON |≤|MN |≤|OM +ON |,所以线段MN 长度的取值范围是[3-2,3+2].答案:[3-2,3+2]15.(2018·浙江高考数学原创猜题卷)已知一个空间几何体的三视图如图所示(单位:cm),则这个几何体的体积为________cm 3,表面积为________cm 2.解析:由三视图可知,空间几何体是一个四棱锥,该四棱锥的底面为直角梯形,一条侧棱与底面垂直.如图所示,四边形ABCD 是直角梯形,因为AB ⊥AD ,AB =AD =2 cm ,BC =4 cm ,所以CD =2 2cm.因为PA =2 cm ,AD =AB =2 cm ,所以PD =PB =2 2 cm ,连接AC ,易得AC =2 5 cm ,因为PA ⊥平面ABCD ,所以PC =PA 2+AC 2=2 6 cm ,所以该几何体的体积为13×(2+4)×22×2=4 cm 3. 易得S 梯形ABCD =(2+4)×22=6 cm 2, S △PAB =12×2×2=2 cm 2, S △PAD =12×2×2=2 cm 2, S △PBC =12×22×4=4 2 cm 2, △DPC 中,PC 边上的高为(22)2-(6)2= 2 cm ,所以S △PDC =12×26×2=2 3 cm 2, 所以该几何体的表面积为6+2+2+23+42=(10+23+42)cm 2.答案:4 (10+23+42)16.某几何体的三视图如图所示,俯视图由一个直径为2的半圆和一个正三角形组成,则此几何体的体积是________,表面积是________.解析:由题意可知,该几何体是由一个正三棱柱和半个圆柱组合而成的,正三棱柱的底面边长为2,高为4,半圆柱的底面半径为1,高为4,所以V =12×2×3×4+12π×12×4=43+2π,表面积S =2×4×2+12×3×2×2+π×12+π×1×4=16+23+5π. 答案:43+2π 16+23+5π17.已知在三棱锥P -ABC 中,V P -ABC =433,∠APC =π4,∠BPC =π3,PA ⊥AC ,PB ⊥BC ,且平面PAC ⊥平面PBC ,那么三棱锥P -ABC 外接球的体积为________.解析:如图,取PC 的中点O ,连接AO ,BO ,设PC =2R ,则OA=OB =OC =OP =R ,∴O 是三棱锥P -ABC 外接球的球心,易知,PB =R ,BC =3R ,∵∠APC =π4,PA ⊥AC ,O 为PC 的中点,∴AO ⊥PC ,又平面PAC ⊥平面PBC ,且平面PAC ∩平面PBC =PC ,∴AO ⊥平面PBC ,∴V P -ABC =V A -PBC =13×12×PB ×BC ×AO =13×12×R ×3R ×R =433,解得R =2,∴三棱锥P -ABC 外接球的体积V =43πR 3=32π3. 答案:32π3B 组——能力小题保分练1.某几何体的三视图如图所示,则该几何体的体积是( )A .16B .20C .52D .60解析:选B 由三视图知,该几何体由一个底面为直角三角形(直角边分别为3,4),高为6的三棱柱截去两个等体积的四棱锥所得,且四棱锥的底面是矩形(边长分别为2,4),高为3,如图所示,所以该几何体的体积V =12×3×4×6-2×13×2×4×3=20,故选B. 2.如图,网格纸上小正方形的边长为1,粗实线画出的是某四棱锥的三视图,则该四棱锥外接球的表面积为( )A .136πB .34πC .25πD .18π解析:选B 由三视图知,该四棱锥的底面是边长为3的正方形,高为4,且有一条侧棱垂直于底面,所以可将该四棱锥补形为长、宽、高分别为3,3,4的长方体,该长方体外接球的半径R 即为该四棱锥外接球的半径,所以2R =32+32+42,解得R =342,所以该四棱锥外接球的表面积为4πR 2=34π,故选B. 3.如图,小方格是边长为1的正方形,一个几何体的三视图如图所示,则该几何体的表面积为( )A .45π+96B .(25+6)π+96C .(45+4)π+64D .(45+4)π+96解析:选D 由三视图可知,该几何体为一个圆锥和一个正方体的组合体,正方体的棱长为4,圆锥的高为4,底面半径为2,所以该几何体的表面积为S =6×42+π×22+π×2×42+22=(45+4)π+96.4.设球O 是正方体ABCD -A 1B 1C 1D 1的内切球,若平面ACD 1截球O 所得的截面面积为6π,则球O 的半径为( )A .32B .3C .32D . 3解析:选B 如图,易知B 1D 过球心O ,且B 1D ⊥平面ACD 1,不妨设垂足为M ,正方体棱长为a ,则球半径R =a 2,易知DM =13DB 1,∴OM=16DB1=36a,∴截面圆半径r=⎝⎛⎭⎫a22-OM2=66a,由截面圆面积S=πr2=6π,得r=66a=6,a=6,∴球O的半径为R=a2=3.5.如图所示,等腰△ABC的底边AB=66,高CD=3,点E是线段BD上异于点B,D的动点,点F在BC边上,且EF⊥AB,现沿EF将△BEF折起到△PEF的位置,使PE⊥AE,记BE=x,V(x)表示四棱锥P-ACFE的体积,则V(x)的最大值为________.解析:因为PE⊥EF,PE⊥AE,EF∩AE=E,所以PE⊥平面ABC.因为CD⊥AB,FE⊥AB,所以EF∥CD,所以EFCD=BE BD,即EF3=x36,所以EF=x6,所以S△ABC=12×66×3=96,S△BEF=12×x×x6=612x2,所以V(x)=13×⎝⎛⎭⎫96-612x2x=63x⎝⎛⎭⎫9-112x2(0<x<36).因为V′(x)=63⎝⎛⎭⎫9-14x2,所以当x∈(0,6)时,V′(x)>0,V(x)单调递增;当6<x<36时,V′(x)<0,V(x)单调递减,因此当x=6时,V(x)取得最大值12 6.答案:12 66.已知A,B,C是球O的球面上三点,且AB=AC=3,BC=33,D为该球面上的动点,球心O到平面ABC的距离为球半径的一半,则三棱锥D -ABC体积的最大值为______.解析:如图,在△ABC中,∵AB=AC=3,BC=33,∴由余弦定理可得cos A=32+32-(33)22×3×3=-12,∴sin A=3 2.设△ABC外接圆O′的半径为r,则3332=2r ,得r =3. 设球的半径为R ,连接OO ′,BO ′,OB , 则R 2=⎝⎛⎭⎫R 22+32,解得R =2 3.由图可知,当点D 到平面ABC 的距离为32R 时,三棱锥D -ABC 的体积最大, ∵S △ABC =12×3×3×32=934, ∴三棱锥D -ABC 体积的最大值为13×934×33=274. 答案:274。

高中数学立体几何点线面位置关系精选题目(附答案)

高中数学立体几何点线面位置关系精选题目(附答案)
(2)求不规则几何体的表面积时,通常将所给几何体分割成基本的柱、锥、台体,先求这些柱、锥、台体的表面积,再通过求和或作差求得几何体的表面积.
2.下列说法正确的是()
A.用一平面去截圆台,截面一定是圆面
B.在圆台的上、下底面圆周上各取一点,则两点的连线就是圆台的母线
C.圆台的任意两条母线延长后相交于同一点
A.36πB.64π
C.100πD.144π
解析:选A三棱锥ABCD的三条侧棱两两互相垂直,所以把它扩展为长方体,它和三棱锥ABCD的外接球是同一个,且体对角线的长为球的直径,若设球的半径为R,则2R= =6,故R=3,∴外接球的表面积S=4πR2=36π,故选A.
三、空间点、线、面位置关系的判断与证明
(3)(2017·山东高考)由一个长方体和两个 圆柱体构成的几何体的三视图如图,则该几何体的体积为________.
[解析]
(1)如图所示,该几何体的表面积S=1×1+ ×1×1×2+2× ×(1+2)×1+ × × =5+ ,故选A.
(2)①正确,正四面体是每个面都是等边三角形的四面体,如正方体ABCDA1B1C1D1中的四面体ACB1D1;②错误,因为球的直径必过球心;③错误,必须是相邻的两个侧面.
4.一个几何体的三视图如图所示,则该几何体的表面积S为________.
解析:根据三视图,可知题中的几何体是由一个长方体挖去一个圆柱得到的,所以S=2×(4×1+3×1+4×3)+2π-2π=38.
答案:38
二、与球有关的问题
球的表面积与体积
(1)球的表面积公式S球=4πR2.
(2)球的体积公式V球= πR3.
(2)旋转体的表面积:
①S圆柱=2πrl+2πr2;
②S圆锥=πrl+πr2;

2023版高考数学一轮总复习专题检测8-1空间几何体的三视图表面积和体积

2023版高考数学一轮总复习专题检测8-1空间几何体的三视图表面积和体积

8.1 空间几何体的三视图、表面积和体积一、选择题1.(2022届山东烟台一中开学考,2)已知圆锥的表面积等于12πcm 2,其侧面展开图是一个半圆,则圆锥的底面半径为( ) A.1cm B.2cm C.3cm D.32cm答案 B 设圆锥的底面圆的半径为rcm,母线长为lcm,∵侧面展开图是一个半圆,∴πl=2πr ⇒l=2r,∵圆锥的表面积为12πcm 2,∴πr 2+πrl=3πr 2=12π,∴r=2,故圆锥的底面半径为2cm.故选B.2.(2022届黑龙江六校11月联考,4)已知圆锥的轴截面为等边三角形,且圆锥的表面积为3π,则圆锥的底面半径为( )A.12 B.1 C.√2 D.√3答案 B 设圆锥的母线长为l,底面半径为r,根据题意,得l=2r,所以圆锥的表面积S=πr 2+πrl=3πr 2=3π,解得r=1,故选B.3. (2022届河北邢台入学考,4)六氟化硫,化学式为SF 6,在常压下是一种无色、无臭、无毒、不燃的稳定气体,有良好的绝缘性,在电器工业方面具有广泛用途.六氟化硫分子结构为正八面体(每个面都是正三角形的八面体),如图所示,硫原子位于正八面体的中心,6个氟原子分别位于正八面体的6个顶点.若相邻两个氟原子间的距离为2a,则六氟化硫分子中6个氟原子构成的正八面体的体积是(不计氟原子的大小)( )A.4√23a 3B.8√23a 3C.4√2a 3D.8√2a 3答案 B 如图,连接AC,BD,设AC∩BD=O,则O 为正方形ABCD 的中心,连接OE.因为AE=CE,BE=DE,所以OE⊥AC,OE⊥BD,又AC∩BD=O,所以OE⊥平面ABCD.因为AB=BC=AE=2a,所以AC=√AA 2+B A 2=2√2a.因为四边形ABCD 是正方形,所以AO=12AC=√2a,则OE=√AA 2-A A 2=√2a,故该正八面体的体积为13×(2a)2×√2a×2=8√23a 3.4.(2022届河南焦作一模,6)底面是边长为1的正方形,侧面均是等边三角形的四棱锥的体积为( )A.√26 B.√24 C.√23 D.√22答案 A 由题意可知该四棱锥为正四棱锥,底面正方形对角线长为√2,则正四棱锥的高h=√12-(√22)2=√22,所以正四棱锥的体积V=13×12×√22=√26,故选A.5.(2022届河南洛阳期中,7)某四面体的三视图如图所示,已知其正视图、侧视图、俯视图是全等的等腰直角三角形,则该四面体的四个面中直角三角形的个数为( )A.1B.2C.3D.4答案 D 由三视图及已知可知该四面体可补形成正方体,如图所示.易知△DAB,△ABC 均为直角三角形.由正方体的性质可知CB⊥平面DAB,所以CB⊥BD,即△DBC 是直角三角形;又知DA⊥平面ABC,所以DA⊥AC,即△DAC 是直角三角形,所以该四面体的四个面中直角三角形的个数为4,故选D.6.(2022届江西吉安9月月考,8)如图,网格图中小正方形的边长为1,粗线是一个几何体的三视图,则该几何体的体积为( )A.2π+4B.2π+2C.π+4D.6π+12答案 A 由三视图可知,该几何体由半圆锥和三棱锥拼接而成,半圆锥的底面半径为2,高为3,三棱锥的底面是斜边长为4的等腰直角三角形,三棱锥的高为3,故该几何体的体积V=13×(12π×22+4×2×12)×3=2π+4,故选A.7.(2022届江苏海安高级中学期中,8)如图所示,在直三棱柱ABC-A 1B 1C 1中,AA 1=1,AB=BC=√3,cos∠ABC=13,P 是A 1B 上的一动点,则AP+PC 1的最小值为( )A.√5B.√7C.1+√3D.3答案 B 连接BC 1,得△A 1BC 1,以A 1B 所在直线为轴,将△A 1BC 1所在平面旋转到平面ABB 1A 1,设点C 1的新位置为C',连接AC', 则AC'的长即为AP+PC 1的最小值.∵AB=BC=√3,cos∠ABC=13,∴由余弦定理可得,AC=2,∴A 1C 1=2,即A 1C'=2,∵AA 1=1,AB=√3,∴A 1B=2,且∠AA 1B=60°.易求得C 1B=2,∵A 1B=BC 1=A 1C 1=2,∴△A 1BC 1为等边三角形,∴∠BA 1C 1=60°.∴在三角形AA 1C'中,∠AA 1C'=120°,又AA 1=1,A 1C'=2,∴AC'=√1+4−2×1×2×(-12)=√7.故选B.8.(2022届吉林顶级名校11月月考,10)已知球O,过球面上A,B,C 三点作截面,若点O 到该截面的距离是球半径的一半,且AB=BC=2,∠B=120°,则球O 的表面积为( ) A.643π B.83π C.323π D.169π答案 A 如图,设球的半径为r,O 1是△ABC 的外心,外接圆半径为R,连接OO 1,OB,O 1B,则OO 1⊥平面ABC,在△ABC 中,AB=BC=2,∠ABC=120°,则∠A=30°,由正弦定理得2sin A =2R,∴R=2,即O 1B=2.在Rt△OBO 1中,由已知得r 2-14r 2=4,得r 2=163,所以球O 的表面积S=4πr 2=4π×163=643π.故选A.9.(2022届合肥联考(一),9)一个四面体的三视图如图所示,则该四面体的表面积为( )A.2√3+√2+1B.√3+2√2+1C.√3+√2+2D.√3+√2+1答案 B 如图,在棱长等于√2的正方体ABCD-A 1B 1C 1D 1上取四面体ABB 1D 1,即为所求四面体,易得该四面体的表面积为12×√2×√2+12×√2×2×2+√34×22=√3+2√2+1.故选B.10.(2022届贵阳摸底,9)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,则该几何体的外接球的体积为( )A.13√136π B.13π C.9π D.92π答案 A 由三视图可知,此空间几何体是一放倒的圆柱,圆柱的底面半径为1,高为3,如图所示,该圆柱的上、下底面圆周在其外接球的表面上,外接球的半径为OA,因为OO 1=32,O 1A=1,所以OA=√(32)2+12=√132,所以圆柱外接球的体积为43π(√132)3=13√136π,故选A.11.张衡(78年—139年)是中国东汉时期伟大的天文学家、文学家、数学家,他的数学著作有《算罔论》,他曾经得出结论:圆周率的平方除以十六等于八分之五.已知正方体的外接球与内切球上各有一个动点A,B,若线段AB 的最小值为√3-1,利用张衡的结论可得该正方体的外接球的表面积为( )A.30B.10√10C.12√10D.36答案 C 设正方体的棱长为a,则正方体的内切球半径为r=A2,正方体的外接球半径R 满足:R 2=(A 2)2+(√22a )2,解得R=√32a,由题意知:R-r=√32a-A2=√3-1,则a=2,R=√3,则该正方体的外接球的表面积为12π,又因为圆周率的平方除以十六等于八分之五,即π216=58,所以π=√10,所以外接球的表面积为12√10.故选C.二、填空题12.(2022届甘肃九校联考,16)某零件的结构是在一个圆锥中挖去了一个正方体,且正方体的一个面在圆锥底面上,该面所对的面的四个顶点在圆锥侧面内.在图①②③④⑤⑥⑦⑧中选两个分别作为该零件的主视图和俯视图,则所选主视图和俯视图的编号依次可能为(写出符合要求的一组即可).答案⑤⑦(或①⑧)解析根据题意可知,圆锥和正方体的位置关系如图所示,当主视图为①时,俯视图为⑧;当主视图为⑤时,俯视图为⑦,故符合题意的编号为⑤⑦(或①⑧).13.(2022届浙江浙南名校联盟联考一,15)一圆锥母线长为定值a(a>0),母线与底面所成角),当圆锥体积V最大时,sinθ=.大小为θ(0<A<π2答案√33解析如图,设圆锥的高为h,底面半径为r,则h=asinθ,r=acosθ,∴V=13πr 2h=13πa 2cos 2θ·asinθ=π3a 3(1-sin 2θ)·sinθ=π3a 3(sinθ-s in 3θ),则V'=π3a 3(cosθ-3sin 2θ·cosθ)=π3a 3·cosθ(1-3sin 2θ),令V'=0, ∵0<θ<π2,∴1-3sin 2θ=0,即sin 2θ=13,∴sinθ=√33.∴当sinθ∈(0,√33)时,V'>0,V=π3a 3(sinθ-sin 3θ)单调递增;当sinθ∈(√33,1)时,V'<0,V=π3a 3(sinθ-sin 3θ)单调递减.∴sinθ=√33时,V 最大.14.(2022届河南洛阳期中,15)在三棱锥P-ABC 中,AB=2√6,BC=1,AC=5,侧面PAB 是以P 为直角顶点的直角三角形,若平面PAB⊥平面ABC,则该三棱锥体积的最大值为 . 答案 2解析 因为AB=2√6,BC=1,AC=5,所以AB 2+BC 2=AC 2,所以AB⊥BC,在Rt△PAB 中,过P 作PE⊥AB 交AB 于点E,又平面PAB⊥平面ABC,平面PAB∩平面ABC=AB,PE ⊂平面PAB,所以PE⊥平面ABC,所以PE 是三棱锥P-ABC 的高,设AE=x,则BE=2√6-x,在Rt△PAB 中,PE 2=AE·BE,所以PE=√A (2√6-x).所以V 三棱锥P-ABC =13S △ABC ·PE=13×12×2√6×1×√A (2√6-x)=√63√A (2√6-x),当x=√6时,三棱锥的体积取得最大值2.15.(2020甘肃金昌永昌一高期末,16)已知△ABC 中,P 在边BC 上且AP⊥BC,现以AP 为折痕将△ABC 折起,使得∠BPC=π2.若PA=2PB=2PC=4,则该三棱锥P-ABC 的外接球的体积是 ;内切球的表面积是 . 答案 8√6π;π解析 因为AP⊥BP 且AP⊥PC,且∠BPC=90°,所以PA,PB,PC 两两垂直,所以将三棱锥P-ABC 补成如图所示的长方体,设三棱锥P-ABC 的外接球的半径为R,则(2R)2=PA 2+PB 2+PC 2=16+4+4=24,解得R=√6,所以三棱锥P-ABC 的外接球的体积为43πR 3=43π(√6)3=8√6π.设三棱锥P-ABC 内切球的半径为r,三棱锥P-ABC 的表面积为S,由已知得BC=√22+22=2√2,AB=AC=√42+22=2√5,则S=12×4×2×2+12×2×2+12×2√2×√(2√5)2-(√2)2=16,所以V P-ABC =V B-APC =13×12×4×2×2=13×16r,解得r=12,所以三棱锥P-ABC 内切球的表面积为4πr 2=4π×(12)2=π.16.(2022届北京顺义一中期中,15)如图所示,在棱长为a的正方体ABCD-A1B1C1D1中,点E是棱CC1上的一个动点,若平面BED1交棱AA1于点F,给出下列命题:①截面四边形BED1F可以是正方形;②三棱锥B1-BED1的体积恒为定值;③截面四边形BED1F周长的最小值为2√5a.其中是真命题的是(填写所有正确答案的序号).答案②③解析对于①,易得BD1=√3a,设C1E=b(0≤b≤a),则D1E=√A2+A2,BE=√A2+(A-A)2,假设截面四边形BED1F是正方形,则△BED1是以BD1为斜边的等腰直角三角形,从而有{√2·√A2+A2=√3a,√2·√A2+(A-A)2=√3a,由b=a-b得a=2b,则√2·√4A2+A2=2√3b,显然√2·√4A2+A2=2√3b不成立,所以截面四边形BED1F不可能是正方形,①错误;对于②,因为点E到平面BB1D1的距离为定值,又A A1-BE A1=A A-AA1A1,所以三棱锥B1-BED1的体积恒为定值,②正确;对于③,当点E与点C或C1重合时,截面四边形BED1F周长取得最大值2(a+√2a)=2(1+√2)a,当点E是CC1中点时,截面四边形BED1F周长取得最小值2×2·√A2+(A2)2=2√5a,③正确.综上②③正确.。

北师大版高中数学空间几何体的三视图、表面积与体积名师精编单元测试

北师大版高中数学空间几何体的三视图、表面积与体积名师精编单元测试

(十)空间几何体的三视图、表面积与体积1. 如图,格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体各面中直角三角形的个数是( )A. 2B. 3C. 4D. 5【答案】C2. 如图,格纸上小正方形的边长为1,粗线画出的是某多面体的三视图,则该多面体的表面积是( )A. 36+6B. 36+3C. 54D. 27【答案】A【解析】由三视图知,该几何体的直观图如图所示,故表面积为S=2××(2+4)×3+2×3+4×3+3×2×=36+6.故答案为:A.3. 如图,格纸上小正方形的边长为1,粗线画出的是某几何体的正视图(等腰直角三角形)和侧视图,且该几何体的体积为,则该几何体的俯视图可以是( )A. B. C. D.【答案】D【解析】由正视图与侧视图可知,该几何体可以为如图所示的正方体截去一部分后的四棱锥,如图所示,由图知该几何体的俯视图为,故选D.4. 某四棱锥的三视图如图所示,该四棱锥最长棱的棱长为( )A. 1B.C. D. 2【答案】C【解析】四棱锥的直观图如图所示:由三视图可知,平面,是四棱锥最长的棱,,故选C.考点:三视图.视频5. 如图,格纸上的小正方形的边长为1,粗实线画出的是一个几何体的三视图,则该几何体的体积是( )A. 4+6πB. 8+6πC. 4+12πD. 8+12π【答案】B【解析】该几何体为四棱锥与半个圆柱的上下组合体,其中半个圆柱的底面圆直径为4,母线长为3,四棱锥的底面是长为4,宽为3的矩形,高为2,所以组合体的体积为V=×π×22×3+×4×3×2=8+6π.故答案为:B.6. 某几何体的三视图如图所示,则该几何体的体积为( )A. 12B. 18C. 24D. 30【答案】C【解析】试题分析:由三视图可知,几何体是三棱柱消去一个同底的三棱锥,如图所示,三棱柱的高为,消去的三棱锥的高为,三棱锥与三棱柱的底面为直角边长分别为和的直角三角形,所以几何体的体积为,故选C.考点:几何体的三视图及体积的计算.【方法点晴】本题主要考查了几何体的三视图的应用及体积的计算,着重考查了推理和运算能力及空间想象能力,属于中档试题,解答此类问题的关键是根据三视图的规则“长对正、宽相等、高平齐”的原则,还原出原几何体的形状,本题的解答的难点在于根据几何体的三视图还原出原几何体和几何体的度量关系,属于中档试题.视频7. 已知A,B,C三点都在以O为球心的球面上,OA,OB,OC两两垂直,三棱锥O­ABC的体积为,则球O的表面积为( )A. B. 16πC. D. 32π【答案】B【解析】设球O的半径为R,以球心O为顶点的三棱锥三条侧棱两两垂直且都等于球的半径R,另外一个侧面是边长为R的等边三角形.因此根据三棱锥的体积公式得×R2·R=,∴R=2,∴球的表面积S=4π×22=16π.故答案为:B.8. 如图为某几何体的三视图,则该几何体的外接球的表面积为( )A. πB. 27πC. 27πD. π【答案】B【解析】由三视图可知,该几何体是由一个正方体切割成的一个四棱锥,则该几何体的外接球的半径为从而得其表面积为4π×=27π.故答案为:B.9. 某几何体的三视图如图所示,则该几何体的表面积为( )A. B.C. D.【答案】C【解析】由三视图可知该几何体是一个圆柱和半个圆锥的组合体,故其表面积为π+1+2π×2+π=+1.故答案为; C.10. 某几何体的三视图如图所示,若这个几何体的顶点都在球O的表面上,则球O的表面积是( )A. 2πB. 4πC. 5πD. 20π【答案】C【解析】由三视图知,该几何体为三棱锥,且其中边长为1的侧棱与底面垂直,底面为底边长为2的等腰直角三角形,所以可以将该三棱锥补形为长、宽、高分别为,,1的长方体,所以该几何体的外接球O的半径R=,所以球O的表面积S=4πR2=5π.故答案为:C.点睛:这个题目考查的是三视图和球的问题相结合的题目,涉及到三视图的还原,外接球的体积或者表面积公式。

空间几何体的表面积与体积练习题.及答案(优.选)

空间几何体的表面积与体积练习题.及答案(优.选)

空间几何体的表面积与体积专题一、选择题1.棱长为2的正四面体的表面积是( C ).A. 3 B .4 C .4 3 D .16解析 每个面的面积为:12×2×2×32= 3.∴正四面体的表面积为:4 3.2.把球的表面积扩大到原来的2倍,那么体积扩大到原来的 ( B ). A .2倍 B .22倍 C.2倍 D.32倍解析 由题意知球的半径扩大到原来的2倍,则体积V =43πR 3,知体积扩大到原来的22倍.3.如图是一个长方体截去一个角后所得多面体的三视图,则该多面体的体积为( B ). A.1423 B.2843 C.2803D.1403解析 根据三视图的知识及特点,可画出多面体 的形状,如图所示.这个多面体是由长方体截去 一个正三棱锥而得到的,所以所求多面体的体积V =V 长方体-V 正三棱锥=4×4×6-13×⎝ ⎛⎭⎪⎫12×2×2×2=2843. 4.某几何体的三视图如下,则它的体积是( A) A .8-2π3 B .8-π3C .8-2π D.2π3解析 由三视图可知该几何体是一个边长为2的正方体内部挖去一个底面半径为1,高为2的圆锥,所以V =23-13×π×2=8-2π3.5.已知某几何体的三视图如图,其中正视图中半圆的半径为1,则该几何体的体积为( A)A .24-32π B .24-π3 C .24-π D .24-π2据三视图可得几何体为一长方体内挖去一个半圆柱,其中长方体的棱长分别为:2,3,4,半圆柱的底面半径为1,母线长为3,故其体积V =2×3×4-12×π×12×3=24-3π2.6.某品牌香水瓶的三视图如图 (单位:cm),则该几何体的表面积为( C )A.⎝ ⎛⎭⎪⎫95-π2 cm 2B.⎝ ⎛⎭⎪⎫94-π2 cm 2C.⎝ ⎛⎭⎪⎫94+π2 cm 2D.⎝⎛⎭⎪⎫95+π2 cm 2解析 这个空间几何体上面是一个四棱柱、中间部分是一个圆柱、下面是一个四棱柱.上面四棱柱的表面积为2×3×3+12×1-π4=30-π4;中间部分的表面积为2π×12×1=π,下面部分的表面积为2×4×4+16×2-π4=64-π4.故其表面积是94+π2.7.已知球的直径SC =4,A ,B 是该球球面上的两点,AB =3,∠ASC =∠BSC =30°,则棱锥S-ABC 的体积为( C).A .3 3B .2 3 C. 3 D .1解析 由题可知AB 一定在与直径SC 垂直的小圆面上,作过AB 的小圆交直径SC 于D ,设SD =x ,则DC =4-x ,此时所求棱锥即分割成两个棱锥S-ABD 和C-ABD ,在△SAD 和△SBD 中,由已知条件可得AD =BD =33x ,又因为SC 为直径,所以∠SBC =∠SAC =90°,所以∠DCB =∠DCA =60°,在△BDC 中 ,BD =3(4-x ),所以33x =3(4-x ),所以x =3,AD =BD =3,所以三角形ABD 为正三角形,所以V =13S △ABD ×4= 3.二、填空题8.三棱锥PABC 中,PA ⊥底面ABC ,PA =3,底面ABC 是边长为2的正三角形,则三棱锥PABC 的体积等于__3______.解析 依题意有,三棱锥PABC 的体积V =13S △ABC ·|PA |=13×34×22×3= 3.9.一个圆柱的轴截面是正方形,其侧面积与一个球的表面积相等,那么这个圆柱的体积与这个球的体积之比为_ 3∶2_______.解析 设圆柱的底面半径是r ,则该圆柱的母线长是2r ,圆柱的侧面积是2πr ·2r =4πr 2,设球的半径是R ,则球的表面积是4πR 2,根据已知4πR 2=4πr 2,所以R =r .所以圆柱的体积是πr 2·2r=2πr 3,球的体积是43πr 3,所以圆柱的体积和球的体积的比是2πr343πr 3=3∶2.10.如图所示,已知一个多面体的平面展开图由一个边长为1的正方形和4个边长为1的正三角形组成,则该多面体的体积是___26_____.解析由题知该多面体为正四棱锥,底面边长为1,侧棱长为1,斜高为32,连接顶点和底面中心即为高,可求得高为22,所以体积V=13×1×1×22=26.11.如图,半径为R的球O中有一内接圆柱.当圆柱的侧面积最大时,球的表面积与该圆柱的侧面积之差是____2πR2____.解析由球的半径为R,可知球的表面积为4πR2.设内接圆柱底面半径为r,高为2h,则h2+r2=R2.而圆柱的侧面积为2πr·2h=4πrh≤4πr2+h22=2πR2(当且仅当r=h时等号成立),即内接圆柱的侧面积最大值为2πR2,此时球的表面积与内接圆柱的侧面积之差为2πR2.12.如图,已知正三棱柱ABCA1B1C1的底面边长为2 cm,高为5 cm,则一质点自点A出发,沿着三棱柱的侧面绕行两周到达点A1的最短路线的长为___13_____cm. 解析根据题意,利用分割法将原三棱柱分割为两个相同的三棱柱,然后将其展开为如图所示的实线部分,则可知所求最短路线的长为52+122=13 (cm).三、解答题13.某高速公路收费站入口处的安全标识墩如图1所示,墩的上半部分是正四棱锥PEFGH,下半部分是长方体ABCDEFGH.图2、图3分别是该标识墩的正视图和俯视图.(1)请画出该安全标识墩的侧视图;(2)求该安全标识墩的体积.解析(1)侧视图同正视图,如图所示:(2)该安全标识墩的体积为V=VPEFGH +V ABCDEFGH=13×402×60+402×20=64 000(cm3).14 .一个几何体的三视图如图所示.已知正视图是底边长为1的平行四边形,侧视图是一个长为3,宽为1的矩形,俯视图为两个边长为1的正方形拼成的矩形.(1)求该几何体的体积V;(2)求该几何体的表面积S.解析 (1)由三视图可知,该几何体是一个平行六面体(如图),其底面是边长为1的正方形,高为3,所以V =1×1×3= 3.(2)由三视图可知,该平行六面体中,A1D ⊥平面ABCD ,CD ⊥平面BCC1B1, 所以AA1=2,侧面ABB1A1,CDD1C1均为矩形, S =2×(1×1+1×3+1×2)=6+2 3.15.已知某几何体的俯视图是如右图所示的矩形,正视图(或称主视图)是一个底边长为8、高为4的等腰三角形,侧视图(或称左视图)是一个底边长为6、高为4的等腰三角形.(1)求该几何体的体积V ;(2)求该几何体的侧面积S .解析 由题设可知,几何体是一个高为4的四棱锥,其底面是长、宽分别为8和6的矩形,正侧面及其相对侧面均为底边长为8,高为h 1的等腰三角形,左、 右侧面均为底边长为6,高为h 2的等腰三角形,如右图所示. (1)几何体的体积为:V =13·S 矩形·h =13×6×8×4=64.(2)正侧面及相对侧面底边上的高为:h 1=42+32=5.左、右侧面的底边上的高为:h 2=42+42=4 2.故几何体的侧面面积为:S =2×⎝ ⎛⎭⎪⎫12×8×5+12×6×42=40+24 2.1.一个圆柱的侧面展开图是一个正方形,这个圆柱的全面积与侧面积的比是( ). .解:设展开图的正方形边长为a ,圆柱的底面半径为r ,则2πr =a ,2ar π=,底面圆的面积是24a π,于是全面积与侧面积的比是2221222a a a πππ++=, 2.在棱长为 1 的正方体上,分别用过共顶点的三条棱中点的平面截该正方体,则截去与8个顶点相关的8个三棱锥后 ,剩下的几何体的体积是( ).2.解:正方体的体积为1,过共顶点的三条棱中点的平面截该正方体截得的三棱锥的体积是111111()3222248⨯⨯⨯⨯=,于是8个三棱锥的体积是61,剩余部分的体积是65, 3.一个直棱柱(侧棱垂直于底面的棱柱)的底面是菱形,对角线长分别是6cm 和8cm ,高是5cm ,则这个直棱柱的全面积是 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

空间几何体的三视图、表面积、体积专题练习(宋)
1、若一个几何体的正视图与侧视图均为边长是1的正方形,且体积为1
2
,则该几何体的俯视图是(
)
2.
3.已知某几何体的俯视图是如图所示的边长为2的正方形,
主视图与左视图是边长为2的正三角形,则其全面积是
A.8 B.12 C
.4(1D

4.
A.1
4+
πB.1
3
4
+
π
C.8
3
4
+
π
D.8
4+
π
5. 如右图,已知一个锥体的正(主)视图,侧(左)视图和
俯视图均为直角三角形,且面积分别为3,4,6,则该锥
体的体积为
A.24B.8C.12D.4
6.如右图,一个简单空间几何体的三视图其主视图与左视图是边长为2的正三角形、俯视
图轮廓为正方形,则其体积是()
A.
42
3 B.
43
3
C.
3
6 D.
8
3
俯视图
7.用大小相同的且体积为1的小立方块搭一个几何体,使它的主视图 和俯视图如右图所示,则它的体积的最小值与最大值分别为( ) A .9与13 B .7与10 C .10与16 D .10与15
8.下列几何体各自的三视图中,有且仅有两个视图相同的是( ) A .①② B .①③ C .①④ D .②④
9.一个几何体的三视图如图所示,其中正视图中
ABC 是边长为2的正三角形,俯视图为正六边
形,那么该几何体的侧视图的面积为 A.12 B.32
C.2
3 D.6
10. 如右图所示是某一容器的三视图,现向容器中匀速注水,容器中水面的高度h 随时间t 变化的图象可能是( )
11.(2008年海南宁夏卷)某几何体的一条棱长为7,在该几何体的正视图中,这条棱的投影是长为6的线段,在该几何体的侧视图与俯视图中,这条棱的投影分别是长为a 和b 的线段,则a +b 的最大值为( ) A. 22 B. 23 C. 4 D. 2 5
12.如图,一个封闭的立方体,它的六个表面各标有A,B,C,D,E,F 这六个字母之一,现放置成如图的三种不同的位
置,则字母A,B,C 对面的字母分别为 ( )
(A) D ,E ,F ( B) F ,D ,E ( C) E, F ,D ( D) E, D,F
13.一个正三棱柱的三视图如下所示,则这个正三棱柱的高和底面边长分别为( ).
A. 2,
B.
2 C. 4,2 D. 2,4 14如右图为一个几何体的三视图,尺寸如图所示,则该几何体的表面积为( ). (不考虑接触点)
主视图
正视图侧视图
俯视图
A
俯视图
左视图
正视图
俯视图
侧视图
C
A
A.
π

π D. 32+π
15.下列图形不能够成正方体的展开图的是(
)
16.正方体ABCD-A’B’C’D中,E、F分别为AA’,C’D’的中点,G为正方形BCC’B’中心,则四边形AEFG在该正方体各个面的投影可能是( ) (本题为多选题)
17.已知正三棱柱(侧棱与底面垂直,底面是正三角形)的高与底面边长均为2,
其直观图和正(主)视图如下,则它的左
(侧)视图的面积是.
18.设某几何体的三视图如下左边所示(尺寸的长度单位为m)。

则该几何体的体积

3
m
19.一个几何体的三视图及其尺寸(单位:cm)如上右图,则该几何体的
侧面积为________cm2.
20.如图是一个几何体的三视图,若它的体积是33,则a=________.
21.如图E、F分别是正方体的面ADD1A1、面BCC1B1的中
心,则四边形BFD1E在该正方体的面上的射影可能是下图中的_________(要求把可能的序号都填上).
E
C'
C
直观图正视图
22下的三个图中,上面的是一个长方体截去一个角所得多面体的直观图,它的正视图和侧视图在下面画出(单位:cm )。

(1)在正视图下面,按照画三视图的要求画出该多面体的俯视图;(2)按照给出的尺寸,求该多面体的体积;
23.已知一个圆锥的底面半径为R ,高为H 。

在其中有一个高为x 的内接圆柱。

(1)求圆柱的侧面积。

(2)x 为何值时,圆柱的侧面积最大?
24、如图所示,一个倒圆锥形的容器,它的截面是一个正三角形,在容器内放一个半径为r 的铁球,并向容器内注水,使水面与铁球相切,将球取出后,容器内的水深是多少?
正视图。

相关文档
最新文档