2020届安徽省合肥市包河区中考数学一模试卷((有答案))
2020年安徽省中考数学一模试卷(含答案解析)
2020年安徽省中考数学一模试卷一、选择题(本大题共9小题,共36.0分)1.下列四个选项中,既是轴对称又是中心对称的图形是()A. 矩形B. 等边三角形C. 正五边形D. 正七边形2.在有理数2,0,−1,−1中,最小的是()2A. 2B. 0C. −1D. −123.改革开放40年,中国教育呈现历史性变化.其中,全国高校年毕业生人数从16.5万增长到820万,40年间增加了近50倍.把数据“820万”用科学记数法可表示为()A. 82×104B. 82×105C. 8.2×105D. 8.2×1064.已知x=1是关于x的一元一次方程2x−a=0的解,则a的值为()A. −1B. −2C. 1D. 25.如图,直线a//b,等边三角形ABC的顶点B在直线b上,∠CBF=20°,则∠ADG的度数为()A. 20°B. 30°C. 40°D. 50°6.二次函数y=ax2+bx+c(a≠0)图象如图所示,下列结论:①abc>0;②2a+b=0;③9a+3b+c<0;④b2−4ac<0⑤当m≠1时,a+b>am2+bm;其中正确的有()A. 2个B. 3个C. 4个D. 5个7.9.某县以“重点整治环境卫生”为抓手,加强对各乡镇环保建设的投入,计划从2017年起到2019年累计投入4250万元,已知2017年投入1500万元,设投入经费的年平均增长率为x,根据题意,下列所列方程正确的是()A. 1500(1+x)2=4250B. 1500(1+2x)=4250C. 1500+1500x+1500x2=4250D. 1500(1+x)+1500(1+x)2=4250−15008.如图,在△ABC中,AB=AC=a,BC=b(a>b).在△ABC内依次作∠CBD=∠A,∠DCE=∠CBD,∠EDF=∠DCE,则EF等于()A. b3a2B. a3b2C. b4a3D. a4b39.如图,在矩形ABCD中,AB=2,点E在边AD上,∠ABE=45°,BE=DE,连接BD,点P在线段DE上,过点P作PQ//BD交BE于点Q,连接QD.设PD=x,△PQD的面积为y,则能表示y与x函数关系的图象大致是()A. B.C. D.二、填空题(本大题共5小题,共24.0分)10.如图,在Rt△ABC中,∠C=90°,∠ABC=30°,AC=4,点P是线段AB上一动点.将△ABC绕点C按顺时针方向旋转,得到△A1B1C.点E是A1C上一点,且A1E=2,则PE长度的最小值为______,最大值为______.11.分解因式:xy−x=______.12.不等式组{3x+4≥0,12x−24≤1的所有整数解的积为________.13.一抛物线和抛物线y=−2x2的形状相同、开口方向相反,顶点坐标是(1,3),则该抛物线的解析式为_______.14.如图,在Rt△ABC中,∠C=90°,AC=6,BC=8,点F在边AC上,并且CF=2,点E为边BC上的动点,将△CEF沿直线EF翻折,点C落在点P处,则点P到边AB的距离的最小值是___________三、计算题(本大题共1小题,共8.0分)15.计算:|√3−2|+(π−2019)0−(−13)−1+3tan30°四、解答题(本大题共8小题,共82.0分)16.《九章算术》是我国古代第一部数学专著,成于公元一世纪左右.此专著中有这样一道题:今有共买羊,人出五,不足四十五;人出七,不足三,问人数、羊价几何?这道题的意思是:今有若干人共买一头羊.若每人出5文钱,则还差45文钱;若每人出7文钱,则仍然差3文钱.求买羊的人数和这头羊的价格.17.如图,在平面直角坐标系中,△OAB的三个顶点的坐标分别为A(6,3),B(0,5).(1)画出△OAB绕原点O逆时针方向旋转90°后得到的△OA1B1;(2)画出△OAB关于原点O的中心对称图形△OA2B2;(3)直接写出∠OAB的度数.18.如图,是由边长相等的小正方形组成的几何图形,S n(n≥1)表示第n个图形中小正方形的个数.(1)观察下列图形与等式得关系,并填空:(2)根据(1)中的两个结论填空:S12=______,S n=______(用含有n的代数式表示)19.图①、②分别是某种型号跑步机的实物图与示意图,已知踏板CD长为1.6m,CD与地面DE的夹角∠CDE为12°,支架AC长为0.8m,∠ACD为80°,求跑步机手柄的一端A的高度ℎ(精确到0.1m).(参考数据:sin12°=cos78°≈0.21,sin68°=cos22°≈0.93,tan68°≈2.48)20.如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为点E,连接DE,点F为线段DE上一点,且∠AFE=∠B.(1)判断△ADF_________△DEC(填“相似”、“不相似”或“无法判断”);(2)若AB=4,AD=3√3,AE=3.求AF的长.21.如图,在△ABC中,AD⊥BC,AE平分∠BAC交BC于点E.(1)∠B=30°,∠C=70°,求∠EAD的大小;(2)若∠B<∠C,则2∠EAD与∠C−∠B是否相等?若相等,请说明理由.22.某饮料厂生产一种饮料,经测算,用1吨水生产的饮料所获利润y(元)是1吨水的价格x(元)的一次函数.(1)根据表中提供的数据,求y与x的函数关系式;当水价为每吨10元时,1吨水生产出的饮料所获的利润是多少?(2)为节约用水,这个市规定:该厂日用水量不超过20吨时,水价为每吨4元;日用水量超过20吨时,超过部分按每吨40元收费.设该厂日用水量为t吨,当日所获利润为W元,求W与t 的函数关系式;已知该厂原来日用水量不少于20吨,后来该厂加强管理,积极节水,使日用水量不超过30吨,但仍不少于20吨,求该厂的日利润的取值范围.23.22.如图,已知四边形ABCD是菱形,点E是对角线AC上一点,连接BE并延长交AD于点F,交CD的延长线于点G,连接DE.(1)ΔABE≌ΔADE;(2)EB2=EF⋅EG;(3)若菱形ABCD的边长为4,∠ABC=60∘,AE:EC=1:3,求BG的长.【答案与解析】1.答案:A解析:解:A、矩形是轴对称图形,也是中心对称图形,故此选项正确;B、等边三角形是轴对称图形,不是中心对称图形,故此选项错误;C、正五边形是轴对称图形,不是中心对称图形,故此选项错误;D、正七边形是轴对称图形,不是中心对称图形,故此选项错误.故选:A.根据轴对称图形与中心对称图形的概念求解.本题考查的是中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.2.答案:C解析:此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.解:根据有理数比较大小的方法,可得−1<−1<0<2,2故最小的有理数是−1.故选:C.3.答案:D解析:解:820万=8200000=8.2×106故选:D.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.答案:D解析:本题考查了一元一次方程的解,解一元一次方程,解题的关键是:熟记解一元一次方程的一般步骤.将x=1代入方程2x+a=3,然后解关于a的一元一次方程即可.解:∵x=1是关于x的方程2x−a=0的解,∴2×1−a=0,解得a=2.故选D.5.答案:C解析:解:∵△ABC是等边三角形,∴∠ACB=60°,过C作CM//直线a,∵直线a//直线b,∴直线a//直线b//CM,∵∠ACB=60°,∠1=20°,∴∠1=∠MCB=20°,∴∠2=∠ACM=∠ACB−∠MCB=60°−20°=40°,∴∠ADG=∠2=40°.故选C.过C作CM//直线a,根据等边三角形性质求出∠ACB=60°,根据平行线的性质求出∠1=∠MCB,∠2=∠ACM,即可求出答案.本题考查了平行线的性质,等边三角形的性质的应用,解此题的关键是能正确作出辅助线,注意:两直线平行,内错角相等.6.答案:B解析:【试题解析】此题主要考查了二次函数的图象与系数的关系,要熟练掌握,解答此题的关键是要明确:①二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;②一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y 轴左;当a与b异号时(即ab<0),对称轴在y轴右.(简称:左同右异)③常数项c决定抛物线与y 轴交点.抛物线与y轴交于(0,c).=1及函数的最大值逐一判断可根据抛物线的开口方向、x=0、x=3时的函数值、对称轴x=−b2a得.解:∵抛物线开口向下,∴a<0,>0,∵−b2a∴b>0,∵抛物线与y轴的交点在x轴的上方,∴c>0,∴abc<0,∴结论①错误;=1,∵x=−b2a∴b=−2a,即2a+b=0∴结论②正确;∵当x=−1和x=3时,函数值小于0,∴y=9a+3b+c<0,∴结论③正确;∵二次函数与x轴有两个不同交点,则Δ>0,即b2−4ac>0∴④错误;由图象知当x=1时函数取得最大值,∴当m≠1时,am2+bm+c<a+b+c,即a+b>m(am+b),故⑤正确;故选:B.7.答案:D解析:本题考查由实际问题抽象出一元二次方程中求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.解:设2017−2019年投入经费的年平均增长率为x,则2018年投入1500(1+x)万元,2019年投入1500(1+x)2万元,根据题意得1500(1+x)+1500(1+x)2=4250−1500.故选D.8.答案:C解析:本题考查了相似三角形的判定与性质,本题中相似三角形比较容易找到,难点在于根据对应边成比例求解线段的长度,注意仔细对应,不要出错.依次判定△ABC∽△BDC∽△CDE∽△DFE,根据相似三角形的对应边成比例的知识,可得出EF的长度.解:∵AB=AC,∴∠ABC=∠ACB,又∵∠CBD=∠A,∴△ABC∽△BDC,又∵∠DCE=∠CBD,∴△BCD∽△CDE,又∵∠EDF=∠DCE,∴△CDE∽△DFE,∴ACBC =BCDC,CDBD=DECD,EFDE=DECE,且易知BC=BD=b,EC=DC,∴CD=b2a ,DE=b3a2,EF=b4a3,故选C.9.答案:C解析:本题考查了动点问题的函数图象,等腰直角三角形的判定与性质,三角形的面积,二次函数图象,求出点Q到AD的距离,从而列出y与x的关系式是解题的关键.判断出△ABE是等腰直角三角形,根据等腰直角三角形的性质求出AE,BE,然后表示出PE,QE,再求出点Q到AD的距离,然后根据三角形的面积公式表示出y与x的关系式,再根据二次函数图象解答.解:∵∠ABE=45°,∠A=90°,∴△ABE是等腰直角三角形,∴AE=AB=2,BE=√2AB=2√2,∵BE=DE,PD=x,∴PE=DE−PD=2√2−x,∵PQ//BD,BE=DE,∴QE=PE=2√2−x,又∵△ABE是等腰直角三角形,∴点Q到AD的距离=√22(2√2−x)=2−√22x,∴△PQD的面积y=12x(2−√22x)=−√24(x−√2)2+√22,纵观各选项,只有C选项符合.故选C.10.答案:2√3−24√3+2解析:解:∵∠C=90°,∠ABC=30°,AC=4,∴BC=4√3∵将△ABC绕点C按顺时针方向旋转,得到△A1B1C∴AC=A1C=4,且A1E=2∴CE=2∴点E在以C为圆心,CE为半径的圆上,如图,当点C,点E,点P共线,且PC⊥AB时,PE长度最小,∵PC⊥AB,∠ABC=30°∴PC=12BC=2√3∴PE最小值为2√3−2当点P与点B重合,且点E在PC的延长线上时,PE长度最大,∴PE最大值为:4√3+2故答案为:2√3−2,4√3+2由直角三角形的性质可得BC=4√3,由旋转的性质可得AC=A1C=4,可得CE=2,即点E在以C 为圆心,CE为半径的圆上,则当点C,点E,点P共线,且PC⊥AB时,PE长度最小,当点P与点B重合,且点E在PC的延长线上时,PE长度最大.本题考查了旋转的性质,直角三角形的性质,确定点E的轨迹是本题的关键.11.答案:x(y−1)解析:解:xy−x=x(y−1).故答案为:x(y−1).直接提取公因式x,进而分解因式得出答案.此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.12.答案:0解析:本题考查解一元一次不等式组及求一元一次不等式组的整数解,求不等式的公共解,要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.先分别求出各不等式的解集,再求出其公共解集,在其公共解集内找出符合条件的x的所有整数解相乘即可求解.解:{3x+4≥0①12x−24≤1②,解不等式①得:x≥−43,解不等式②得:x≤50,∴不等式组的整数解为−1,0,1, (50)所以所有整数解的积为0,故答案为0.13.答案:y=2(x−1)2+3解析:本题考查了待定系数法求二次函数的解析式:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x轴有两个交点时,可选择设其解析式为交点式来求解.直接利用顶点式写出抛物线解析式.解:抛物线解析式为y=2(x−1)2+3.故答案为y=2(x−1)2+3.14.答案:1.2解析:本题考查翻折变换、最短问题、相似三角形的判定和性质、勾股定理.垂线段最短等知识,解题的关键是正确找到点P位置,属于中考常考题型.延长FP交AB于M,当FP⊥AB时,点P到AB的距离最小,利用△AFM∽△ABC,得到AFAB =FMBC求出FM即可解决问题.解:如图,延长FP交AB于M,当FP⊥AB时,点P到AB的距离最小.(点P在以F为圆心CF为半径的圆上,当FP⊥AB时,点P到AB的距离最小)∵∠A=∠A,∠AMF=∠C=90°,∴△AFM∽△ABC,∴AFAB =FMBC,∵CF=2,AC=6,BC=8,∴AF=4,AB=√AC2+BC2=10,∴410=FM8,∴FM=3.2,∵PF=CF=2,∴PM=1.2∴点P到边AB距离的最小值是1.2.故答案为1.2.15.答案:解:原式=2−√3+1−(−3)+3×√3=2−√3+1+3+√3=6.3解析:直接利用绝对值的性质、零指数幂、负整数指数幂的性质以及特殊角的三角函数值分别化简得出答案.此题主要考查了实数运算,正确化简各数是解题关键.16.答案:解:设买羊的人数为x人,则这头羊的价格是(5x+45)文,也可表示为(7x+3)文,所以根据题意得:5x+45=7x+3,解得:x=21,所以7x+3=150,经检验,符合题意,答:买羊的人数为21人,这头羊的价格是150文.解析:本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.设买羊的人数为x人,则这头羊的价格是(5x+45)文,也可表示为(7x+3)文,根据羊的价格不变,即可得出关于x的一元一次方程,解之即可得出结论.17.答案:解:(1)△OA1B1如图所示;(2)△OA2B2如图所示;(3)如图,∠OAB为等腰直角三角形的一个锐角,所以,∠OAB=45°.解析:(1)根据网格结构找出点A、B绕原点O逆时针方向旋转90°后的对应点A1、B1的位置,然后与点O顺次连接即可;(2)根据网格结构找出点A、B关于原点O的中心对称点A2、B2的位置,然后与点O顺次连接即可;(3)根据网格结构可以作出以∠OAB为锐角的等腰直角三角形,然后根据等腰直角三角形的性质解答.本题考查了利用旋转变换作图,等腰直角三角形的性质,熟练掌握网格结构准确找出对应点的位置是解题的关键.18.答案:(1)n,n2;(2)78;n2+n.2解析:解:(1)S n−S n−1=n,S n+S n−1=n2,故答案为n,n2;(2)由S n−S n−1=n,S n+S n−1=n2,S12−S11=12,S12+S11=122,2S12=12+122=156,∴S12=78;∵S n−S n−1=n,S n+S n−1=n2,∴2S n=n2+n,S n=n2+n,2.故答案为78;n2+n2(1)观察规律发现S n−S n−1=n,S n+S n+1=n2;(2)由(1)可得S12−S11=12,S12+S11=122,将两式相加,可得S12=78,同理将S n−S n−1=n,S n+S n+1=n2两式相加求出S n.此题考查了平面图形的有规律变化,要求学生通过观察图形,分析、归纳并发现其中的规律,并应用规律解决问题是解题的关键.19.答案:解:过C点作FG⊥AB于F,交DE于G.∵CD与地面DE的夹角∠CDE为12°,∠ACD为80°,∴∠ACF=∠FCD−∠ACD=∠CGD+∠CDE−∠ACD=90°+12°−80°=22°,∴∠CAF=68°,在Rt△ACF中,CF=AC⋅sin∠CAF=0.8×0.93≈0.744m,在Rt△CDG中,CG=CD⋅sin∠CDE=1.6×0.21≈0.336m,∴FG=FC+CG=0.744+0.336≈1.1m.答:故跑步机手柄的一端A的高度约为1.1m.解析:此题考查了解直角三角形的应用,主要是三角函数的基本概念及运算,关键是用数学知识解决实际问题.过C点作FG⊥AB于F,交DE于G.在Rt△ACF中,根据三角函数可求CF,在Rt△CDG 中,根据三角函数可求CG,再根据FG=FC+CG即可求解.20.答案:解:(1)相似;(2)∵四边形ABCD是平行四边形,∴AD//BC CD=AB=4又∵AE⊥BC,∴AE⊥AD;在Rt△ADE中,DE=√AD2+AE2=√(3√3)2+32=6,∵△ADF∽△DEC,∴ADDE =AFCD;∴3√36=AF4,∴AF=2√3.解析:本题主要考查的是平行四边形的性质及相似三角形的判定和性质.(1)△ADF和△DEC中,易知∠ADF=∠CED(平行线的内错角),而∠AFD=∠C,由此可判定两个三角形相似;(2)在Rt△ADE中,即可求出DE的值;从而根据相似三角形得出的成比例线段求出AF的长.解:(1)∵四边形ABCD是平行四边形,∴AD//BC,AB//CD,∴∠ADF=∠CED,∵∠AFD+∠AFE=180°,∠ABC+∠BCD=180°,∠AFE=∠B,∴∠AFD=∠BCD,∴△ADF∽△DEC.故答案为相似;(2)见答案.21.答案:解:(1)∵∠B=30°,∠C=70°,∴∠BAC=180°−∠B−∠C=80°,∵AE平分∠BAC,∴∠EAC=12∠BAC=40°,∵AD是高,∠C=70°,∴∠DAC=90°−∠C=20°,∴∠EAD=∠EAC−∠DAC=40°−20°=20°;(2)由(1)知,∠EAD=∠EAC−∠DAC=12∠BAC−(90°−∠C)①把∠BAC=180°−∠B−∠C代入①,整理得,∠EAD=12∠C−12∠B,∴2∠EAD =∠C −∠B .解析:本题利用了三角形内角和定理、角的平分线的定义、直角三角形的性质求解.(1)由三角形内角和定理可求得∠BAC 的度数,在Rt △ADC 中,可求得∠DAC 的度数,AE 是角平分线,有∠EAC =12∠BAC ,故∠EAD =∠EAC −∠DAC ;(2)由(1)知,用∠C 和∠B 表示出∠EAD ,即可知2∠EAD 与∠C −∠B 的关系.22.答案:解:(1)设用1吨水生产的饮料所获利润y(元)与1吨水的价格x(元)的一次函数式为y =kx +b ,(k ≠0)根据题意得:一次函数y =kx +b 过(4,200)和(6,198),∴{198=6k +b 200=4k +b , 解得{k =−1b =204, ∴所求一次函数式是y =−x +204,当x =10时,y =−10+204=194(元);答:y 与x 的函数关系式为y =−x +204,当水价为每吨10元时,1吨水生产出的饮料所获的利润是194元.(2)当1吨水的价格为40元时,所获利润是:y =−40+204=164(元).∴日利润W 与t 的函数关系式是W =200×20+(t −20)×164,即W =164t +720,∵20≤t ≤30, 当t =20时,W =164t +720=4000;当t =30时,W =164t +720=5640;∴4000≤w ≤5640.解析:本题考查的是用一次函数解决实际问题,注意利用一次函数求最值时,关键是应用一次函数的性质;即由函数y 随x 的变化,结合自变量的取值范围确定最值.(1)用1吨水生产的饮料所获利润y(元)是1吨水的价格x(元)的一次函数.可以设出一次函数关系式,然后根据表中所给的条件(4,200),(6,198)可求出解析式,即可求出结果;(2)根据函数式可求出一吨水价是40元的利润,然后根据题意可得W =200×20+164(t −20),把t =20与t =30代入计算即可求出日利润的取值范围.23.答案:(1)证明见解析;(2)证明见解析;(3)BG =4√13.解析:(1)用SAS证明即可;(2)先证明△EDF∽△EGD,得到ED2=EF⋅EG,代换ED=EB即可;(3)根据已知先求出BE和EF值,再根据EB2=EF⋅EG求出EG值,最后用BG=BE+EG计算即可.【详解】解:(1)∵ABCD是菱形,∴AB=AD,∠BAC=∠DAC,∵AE=AE,∴ΔABE≌ΔADE;(2)∵AB//CG,∴∠ABG=∠EGD,由(1)得ΔABE≌ΔADE,∴∠ABG=∠ADE,∴EGD=∠ADE,∵∠FED=∠DEG,∴ΔEDF∽ΔEGD,∴EDEG =EFED,∴ED2=EF⋅EG,由ΔABE≌ΔADE得ED=EB,∴EB2=EF⋅EG;(3)∵菱形ABCD,∴AB=BC,∵∠ABC=60∘,∴ΔABC为等边三角形,∴AC=AB=4.连接BD交AC于点O,则AC⊥BD,OA=OC=2,OB=2√3,∵AE:EC=1:3,∴AE=OE=1,∴BE=√(2√3)2+12=√13,∵AD//BC,∴AEEC =EFBE=13,∴EF=13BE=√133,由(2)得EB2=EF⋅EG,∴EG=EB2EF =√13)2√133=3√13,∴BG=BE+EG=4√13.本题主要考查相似三角形的判定和性质,全等三角形的判定和性质、等边三角形的性质.线段间的转化是解题的关键.。
2020年安徽省合肥市包河区中考数学一模试卷
2020年安徽省合肥市包河区中考数学一模试卷一、选择题(本题共10小题,每小题4分,满分40分) 1.(4分)2-的相反数是( ) A .2-B .2C .12-D .122.(4分)化简34()a a -的结果是( )A .12aB .7aC .12a -D .7a - 3.(4分)刚刚过去的一年,我省经济发展良好,GDP 总量超过37000亿元,位居全国内地各省排名第10,数据37000亿用科学记数法表示为( )A .123.710⨯B .103.710⨯C .83.710⨯D .43.710⨯4.(4分)如图是一个空心圆柱体,它的主视图是( )A .B .C .D .5.(4分)一元二次方程220x x +=的解是( ) A .2x =B .2x =-C .12x =,20x =D .12x =-,20x =6.(4分)如图直线//AB CD ,直线EF 交AB 于点E ,交CD 于点F ,EP 平分AEF ∠,FP 平分EFC ∠,若BEP α∠=,DFP β∠=,则(αβ+= )A .180︒B .225︒C .270︒D .315︒ 7.(4分)某班50人一周内在线学习数学的时间如图所示,则以下叙述正确的是( )A .全班同学在线学习数学的平均时间为2.5hB .全班同学在线学习数学时间的中位数为2hC .全班同学在线学习数学时间的众数为20hD .全班超过半数学生每周在线学习数学的时间超过3h 8.(4分)如图,ABC ∆中,90ACB ∠=︒,12AB =,点D 、E 分别是边AB 、BC 的中点,CD 与AE 交于点O ,则OD 的长是( )A .1.5B .1.8C .2D .2.49.(4分)已知正比例函数2y x =与反比例函数(0)ky k x=≠的图象交于A 、B 两点,25AB =,则k 的值是( )A .2B .1C .4D .5 10.(4分)在四边形ABCD 中,//AB DC ,60A ∠=︒,4AD DC BC ===,点E 沿A D C B →→→运动,同时点F 沿A B C →→运动,运动速度均为每秒1个单位,当两点相遇时,运动停止,则AEF ∆的面积y 与运动时间x 秒之间的图象大致为( )A .B .C .D .二、填空题(本题共4小题,每小题5分,满分20分) 11.(5分)函数y x =的自变量的取值范围是 .12.(5分)如果23y x =-,23y x =-+,那么44x y -= .13.(5分)如图,等边ABC ∆中,CD 为AB 边上的高,O 与边AC 、BC 相切,当43AB =,1OD =时,O 的半径是 .14.(5分)已知实数a 、b 、c 满足2()a b ab c -==,有下列结论:①当0c ≠时,3a bb a+=; ②当5c =时,5a b +=; ③当a ,b ,c 中有两个相等时,0c =;④二次函数2y x bx c =+-与一次函数1y ax =+的图象有2个交点.其中正确的有 . 三、(本题共2小题,每小题8分,满分16分) 15.(8013127(28)()2---.16.(8分)防控新冠肺炎疫情期间,某药店在市场抗病毒药品紧缺的情况下,将某药品提价后,使价格翻一番(即为原价的2倍),物价部门查处后,其价格降到比原价高10%,已知该商品原价为m ,求该药品降的百分比是多少?四、(本题共2小题,每小题8分,满分16分) 17.(8分)观察以下等式:第1个等式:222122-=;第2个等式:325236-=; 第3个等式:42103412-=;第4个等式:52174520-=;⋯⋯按照以上规律,解决下列问题: (1)写出第5个等式: ;(2)写出你猜想的第n 个等式: (用含n 的等式表示),并证明. 18.(8分)如图,在边长为1的小正方形组成的网格中,给出了格点ABC ∆(顶点为网格线的交点). (1)将ABC ∆先向下平移3个单位长度,再向右平移4个单位长度得到△111A B C ,画出平移后的图形. (2)将ABC ∆绕点1A 顺时针旋转90︒后得到△222A B C ,画出旋转后的图形;(3)借助网格,利用无刻度直尺画出△111A B C 的中线11A D (画图中要体现找关键点的方法).五、(本题共2小题,每小题10分,满分20分) 19.(10分)如图,无人机在600米高空的P 点,测得地面A 点和建筑物BC 的顶端B 的俯角分别为60︒和70︒,已知A 点和建筑物BC 的底端C 的距离为2863米,求建筑物BC 的高.(结果保留整数,参考数据:3 1.73≈,sin700.94︒≈,cos700.34︒≈,tan70 2.75)︒≈20.(10分)如图,四边形ABCD 中,//AB CD ,点O 在BD 上,以O 为圆心恰好经过A 、B 、C 三点,O 交BD 于E ,交AD 于F ,且AE CE =,连接OA 、OF . (1)求证:四边形ABCD 是菱形;(2)若3AOF FOE ∠=∠,求ABC ∠的度数.六、(本题满分12分) 21.(12分)研究机构对本地区18~20岁的大学生就某个问题做随机调查,要求被调查者从A 、B 、C 、D 四个选项中选择自己赞同的一项,并将结果绘制成两幅不完整的统计图(如图): 选项 人数A aB bC4 D20合计m (1)m = ,b = ;(2)若该地区18~20岁的大学生有1.2万人,请估计这些大学生中选择赞同A 选项的人数;(3)该研究机构决定从选择“C ”的人中随机抽取2名进行访谈,而选择“C ”的这4人中只有一名是男性,求这名男性刚好被抽取到的概率.七、(本题满分12分) 22.(12分)经销商购进某种商品,当购进量在20千克~50千克之间(含20千克和50千克)时,每千克进价是5元;当购进量超过50千克时,每千克进价是4元,此种商品的日销售量y (千克)与销售价x (元/千克) x (元/千克) 5 5.5 6 6.5 7y (千克) 90 75 60 45 30(1)求y 关于x 的一次函数表达式;(2)若每天购进的商品能够全部销售完,且当日销售价不变,日销售利润w 元,那么销售价定为多少时,该经销商销售此种商品的当日利润最大?最大利润是多少?此时购进量应该为多少千克?【注:当日利润=(销售价-进货价)⨯日销售量】 八、(本题满分14分) 23.(14分)已知:如图1,ABC ∆中,AB AC =,6BC =,BE 为中线,点D 为BC 边上一点,2BD CD =,DF BE ⊥于点F ,EH BC ⊥于点H . (1)CH 的长为 ; (2)求BF BE 的值;(3)如图2,连接FC ,求证:EFC ABC ∠=∠.2020年安徽省合肥市包河区中考数学一模试卷参考答案一、选择题(本题共10小题,每小题4分,满分40分) 1.(4分)2-的相反数是( ) A .2-B .2C .12-D .12【解答】解:2-的相反数是:(2)2--=, 故选:B .2.(4分)化简34()a a -的结果是( ) A .12aB .7aC .12a -D .7a -【解答】解:347()a a a -=-.故选:D . 3.(4分)刚刚过去的一年,我省经济发展良好,GDP 总量超过37000亿元,位居全国内地各省排名第10,数据37000亿用科学记数法表示为( ) A .123.710⨯B .103.710⨯C .83.710⨯D .43.710⨯【解答】解:37000亿123700000000000 3.710==⨯. 故选:A . 4.(4分)如图是一个空心圆柱体,它的主视图是( )A .B .C .D .【解答】解:从前面观察物体可以发现:它的主视图应为矩形,又因为该几何体为空心圆柱体,故中间的两条棱在主视图中应为虚线, 故选:B . 5.(4分)一元二次方程220x x +=的解是( ) A .2x =B .2x =-C .12x =,20x =D .12x =-,20x =【解答】解:(2)0x x +=,0x =或20x +=, 所以10x =,22x =-. 故选:D . 6.(4分)如图直线//AB CD ,直线EF 交AB 于点E ,交CD 于点F ,EP 平分AEF ∠,FP 平分EFC ∠,若BEP α∠=,DFP β∠=,则(αβ+= )A .180︒B .225︒C .270︒D .315︒【解答】解://AB CD ,180AEF EFC ∴∠+∠=︒,EP 平分AEF ∠,FP 平分EFC ∠, 90AEP CFP ∴∠+∠=︒,180********αβ∴+=︒+︒-︒=︒,故选:C . 7.(4分)某班50人一周内在线学习数学的时间如图所示,则以下叙述正确的是( )A .全班同学在线学习数学的平均时间为2.5hB .全班同学在线学习数学时间的中位数为2hC .全班同学在线学习数学时间的众数为20hD .全班超过半数学生每周在线学习数学的时间超过3h 【解答】解:A 、全班同学在线学习数学的平均时间为:1(1212021035435) 2.3450h ⨯+⨯+⨯+⨯+⨯=,故本选项错误;B 、把这些数从小到大排列,则中位数是2222h +=,故本选项正确; C 、全班同学在线学习数学时间的众数为2h ,故本选项错误;D 、本班同学有8名学生每周在线学习数学的时间超过3h ,故本选项错误; 故选:B . 8.(4分)如图,ABC ∆中,90ACB ∠=︒,12AB =,点D 、E 分别是边AB 、BC 的中点,CD 与AE 交于点O ,则OD 的长是( )A .1.5B .1.8C .2D .2.4【解答】解:OD 为斜边AB 上的中线,1112622CD AB ∴==⨯=, O 点为中线CD 和AE 的交点, O ∴点为ABC ∆的重心,116233OD CD ∴==⨯=.故选:C . 9.(4分)已知正比例函数2y x =与反比例函数(0)ky k x=≠的图象交于A 、B 两点,25AB =,则k 的值是( )A .2B .1C .4D .5【解答】解:如图,过点B 作BM x ⊥轴于点M ,根据函数的对称性,则152OB AB ==2y x =,则tan 2BMBOM OM∠==, 设OM m =,则2BM m =,在Rt BOM ∆中,由勾股定理得:222BO OM BM =+, 即2245m m +=,解得:1m =, 故点(1,2)B ,将点B 的坐标代入反比例函数表达式得:21k=,解得:2k =, 故选:A . 10.(4分)在四边形ABCD 中,//AB DC ,60A ∠=︒,4AD DC BC ===,点E 沿A D C B →→→运动,同时点F 沿A B C →→运动,运动速度均为每秒1个单位,当两点相遇时,运动停止,则AEF ∆的面积y 与运动时间x 秒之间的图象大致为( )A .B .C .D .【解答】解:点E 沿A D C B →→→运动,同时点F 沿A B C →→运动,运动速度均为每秒1个单位,60A ∠=︒,AEF ∴∆为等边三角形, 4AD DC BC ===,∴当04x 时,AE AF x ==,AEF ∆的面积213sin 6024y x x x =︒=; 当48x <时,如图1,AF x =,作DG AB ⊥于G ,则4sin 6023DG =︒=,AEF ∴∆的面积1134322y AF DG x x ==⨯⨯=; 当810x <时,如图2,8CE x =-,8BF x =-,则4(8)(8)202EF x x x =----=-,过D 作DG AB ⊥,CH AB ⊥,连接AC , //AB DC ,4AD DC BC ===, ∴四边形ABCD 为等腰梯形,4cos602AG BH ∴==⨯︒=,4GH DC ==,246AH ∴=+=,23CH DG ==,2428AB =++=,由勾股定理得:22226(23)43AC AH CH =+=+=222481664AC BC AB +=+==, 90ACB ∴∠=︒,AEF ∴∆的面积123(202)2y AC EF x ==-, ∴此时y 为x 的一次函数,A 正确. 故选:A .二、填空题(本题共4小题,每小题5分,满分20分) 11.(5分)函数1y x=的自变量的取值范围是 0x > .【解答】解:由题意,得 0x >,故答案为:0x >.12.(5分)如果23y x =-,23y x =-+,那么44x y -= 9 . 【解答】解:23y x =-,23y x =-+,2233x x ∴-=-+, 解得23x =, 0y ∴=,44909x y ∴-=-=.故答案为:9.13.(5分)如图,等边ABC ∆中,CD 为AB 边上的高,O 与边AC 、BC 相切,当43AB =,1OD =时,O 的半径是52.【解答】解:如图,设图中圆O 与BC 的切点为M , 连接OM , 则OM MC ⊥, 90OMC ∴∠=︒,依题意知,30DCB ∠=︒,CD AB ⊥,43AB =, 90CDB ∴∠=︒,23BD =, 36CD BD ∴==, 1OD =, 5OC ∴=,1522OM OC ∴==,故答案为:52.14.(5分)已知实数a 、b 、c 满足2()a b ab c -==,有下列结论:①当0c ≠时,3a bb a+=; ②当5c =时,5a b +=; ③当a ,b ,c 中有两个相等时,0c =;④二次函数2y x bx c =+-与一次函数1y ax =+的图象有2个交点.其中正确的有 ①④ . 【解答】解:当0c ≠时,0ab ≠, 由2()a b ab -=,可得223a b ab +=,两边除以ab 得到:3a bb a +=,故①正确, 当5c =时,2()525a b ab +==, 5a b ∴+=±,故②错误, 当a b =时,可得0c =,当a c =时,2()c b bc c -==,若0c =则0a b c ===,若0c ≠,则2(1)c c -=,解得c =,故③错误, 由21x bx c ax +-=+,可得2()(1)0x b a x c +--+=, ∴△222()4(1)()445()40b a c b a c b a =-++=-++=-+>,∴二次函数2y x bx c =+-与一次函数1y ax =+的图象有2个交点,故④正确.故答案为①④ 三、(本题共2小题,每小题8分,满分16分)15.(8011(2()2--.【解答】011(2()2--312=-⨯- 32=-- 5=-.16.(8分)防控新冠肺炎疫情期间,某药店在市场抗病毒药品紧缺的情况下,将某药品提价后,使价格翻一番(即为原价的2倍),物价部门查处后,其价格降到比原价高10%,已知该商品原价为m ,求该药品降的百分比是多少?【解答】解:设该药品降的百分比是x ,依题意有 2(1)(110%)m x m -=⨯+,解得45%x =.答:该药品降的百分比是45%. 四、(本题共2小题,每小题8分,满分16分) 17.(8分)观察以下等式:第1个等式:222122-=;第2个等式:325236-=; 第3个等式:42103412-=;第4个等式:52174520-=;⋯⋯按照以上规律,解决下列问题: (1)写出第5个等式:62265630-=; (2)写出你猜想的第n 个等式: (用含n 的等式表示),并证明.【解答】解:(1)写出第5个等式:62265630-=; (2)猜想的第n 个等式:21211(1)n n n n n n ++-=++. 证明:左边222212(1)2(1)221211(1)(1)(1)(1)(1)n n n n n n n n n n n n n n n n n n n n n +++-++-+=-=-===++++++, 则左边=右边,即原等式成立.故答案为:62265630-=;21211(1)n n n n n n ++-=++.18.(8分)如图,在边长为1的小正方形组成的网格中,给出了格点ABC ∆(顶点为网格线的交点).(1)将ABC ∆先向下平移3个单位长度,再向右平移4个单位长度得到△111A B C ,画出平移后的图形.(2)将ABC ∆绕点1A 顺时针旋转90︒后得到△222A B C ,画出旋转后的图形;(3)借助网格,利用无刻度直尺画出△111A B C 的中线11A D (画图中要体现找关键点的方法).【解答】解:(1)如图,△111A B C 即为所求.(2)如图,△222A B C 即为所求.(3)如图,线段11A D 即为所求.五、(本题共2小题,每小题10分,满分20分)19.(10分)如图,无人机在600米高空的P 点,测得地面A 点和建筑物BC 的顶端B 的俯角分别为60︒和70︒,已知A 点和建筑物BC 的底端C 的距离为2863米,求建筑物BC 的高.(结果保留整数,参考数据:3 1.73≈,sin700.94︒≈,cos700.34︒≈,tan70 2.75)︒≈【解答】解:如图,过B 作BE PD ⊥于E ,在Rt APD ∆中,由600tan 60AD︒=,得600tan 602003AD =÷︒=(米), 28632003863CD BE ==-=(米),在Rt PBE ∆中,由tan 70PE BE︒=得,86 1.73 2.75409.1PE =⨯⨯≈(米), 600409.1191BC ∴=-≈(米),答:建筑物BC 的高为191米.20.(10分)如图,四边形ABCD 中,//AB CD ,点O 在BD 上,以O 为圆心恰好经过A 、B 、C 三点,O 交BD 于E ,交AD 于F ,且AE CE =,连接OA 、OF .(1)求证:四边形ABCD 是菱形;(2)若3AOF FOE ∠=∠,求ABC ∠的度数. 【解答】(1)证明:AE CE =,CBD ABD ∴∠=∠,//CD AB ,ABD CDB ∴∠=∠,CBD CDB ∴∠=∠, CB CD ∴=,BE 是O 的直径,∴AB BC =, AB BC CD ∴==,//CD AB ,∴四边形ABCD 是菱形;.(2)3AOF FOE ∠=∠,设FOE x ∠=,则3AOF x ∠=,4AOD FOE AOF x ∠=∠+∠=,OA OF =,1(1803)2OAF OFA x ∴∠=∠=︒-, OA OB =,2OAB OBA x ∴∠=∠=,4ABC x ∴∠=,//BC AD ,180ABC BAD ∴∠+∠=︒,142(1803)1802x x x ∴++︒-=︒, 解得:20x =︒,480ABC x ∴∠==︒.六、(本题满分12分)21.(12分)研究机构对本地区18~20岁的大学生就某个问题做随机调查,要求被调查者从A 、B 、C 、D 四个选项中选择自己赞同的一项,并将结果绘制成两幅不完整的统计图(如图):选项 人数 Aa Bb C 4D20 合计m(1)m = 40 ,b = ;(2)若该地区18~20岁的大学生有1.2万人,请估计这些大学生中选择赞同A 选项的人数;(3)该研究机构决定从选择“C ”的人中随机抽取2名进行访谈,而选择“C ”的这4人中只有一名是男性,求这名男性刚好被抽取到的概率.【解答】解:(1)2050%40m =÷=(人),选择“B ”的人4030%12b =⨯=(人);故答案为:40,12;(2)选择“A ”的人数40122044=---=(人), 412000120040⨯=(人), 答:这些大学生中选择赞同A 选项的人数1200人;(3)选择“C ”的四人分别用1、2、3、4表示,画树状图为:共有12种等可能的结果数,其中这名男性刚好被抽取到的结果数为6,所以这名男性刚好被抽取到的概率61122==. 七、(本题满分12分)22.(12分)经销商购进某种商品,当购进量在20千克~50千克之间(含20千克和50千克)时,每千克进价是5元;当购进量超过50千克时,每千克进价是4元,此种商品的日销售量y (千克)与销售价x (元/千克)x (元/千克) 5 5.5 6 6.5 7y (千克) 90 75 60 45 30(1)求y 关于x 的一次函数表达式;(2)若每天购进的商品能够全部销售完,且当日销售价不变,日销售利润w 元,那么销售价定为多少时,该经销商销售此种商品的当日利润最大?最大利润是多少?此时购进量应该为多少千克?【注:当日利润=(销售价-进货价)⨯日销售量】【解答】解:(1)设函数表达式为:y kx b =+,在表格取两组数值(5,90),(6,60)代入上式得590660k b k b +=⎧⎨+=⎩,解得30240k b =-⎧⎨=⎩, 故函数表达式为:30240y x =-+;(2)①当2050y 时,2(5)(5)(30240)30( 6.5)67.5w x y x x x =-=--+=--+,故销售价 6.5x =元时,利润的最大值为67.5元,日销售量45y =千克;②当50y >时,2(4)(4)(30240)30(6)120w x y x x x =-=--+=--+,即销售价6x =元时,利润的最大值w 为120元,日销售量60y =千克;综上,当销售价为6元时,利润最大,故当销售价为6元时,获利最大,最大利润为120元,此时购买量为60千克.八、(本题满分14分)23.(14分)已知:如图1,ABC ∆中,AB AC =,6BC =,BE 为中线,点D 为BC 边上一点,2BD CD =,DF BE ⊥于点F ,EH BC ⊥于点H .(1)CH 的长为 1.5 ;(2)求BF BE 的值;(3)如图2,连接FC ,求证:EFC ABC ∠=∠.【解答】解:(1)如图1,作AG BC ⊥于点G ,AB AC =,6BC =,3CG ∴=,AE EC =,EH BC ⊥,//EH AG ∴,1322CH CG ∴==; 故答案为:32. (2)2BD CD =,116233CD BC ∴==⨯=, 4BD ∴=,2 1.50.5DH CD CH ∴=-=-=,40.5 4.5BH ∴=+=,DF BE ⊥,EH BC ⊥,DFB EHB ∴∠=∠,DBF EBH ∠=∠,DFB EHB ∴∆∆∽,∴BF BD BH BE=, 94182BF BE BH BD ∴==⨯=. (3)如图2,过点A 作//AM BC 交BE 延长线于点M ,M EBC ∴∠=∠,AEM CEB ∠=∠,又AE EC =,()AEM CEB AAS ∴∆≅∆,6AM BC ∴==,2BM BE =,221836BF BM BF BE ∴==⨯=,6636AM BC =⨯=,BF BM AM BC ∴=, ∴BF BCAM BM =,FBC M ∠=∠,FBC AMB ∴∆∆∽,ABM BCF ∴∠=∠,EFC FBC BCF ∠=∠+∠,EFC FBC ABM ∴∠=∠+∠,EFC ABC ∴∠=∠.。
2020-2021学年安徽省合肥市中考数学一模试卷及答案解析
安徽省合肥市中考数学一模试卷一、选择题(本大题共10小题,每小题4分,满分40分)1.6÷(﹣2)的结果为()A.3 B.﹣3 C.2 D.﹣22.(﹣xy3)2=()A.x2y5B.﹣x2y5C.xy6D.x2y63.下列因式分解正确的是()A.x2+y2=(x+y)2 B.y2﹣x2=(x+y)(y﹣x)C.x2+2xy﹣y2=(x﹣y)2D.x2﹣2xy+y2=(x+y)(x﹣y)4.一次函数y=ax﹣1和y=bx+5的图象如图所示,则a、b的值是()A.a=3,b=2 B.a=2,b=3 C.a=1,b=﹣1 D.a=﹣1,b=15.某市中考体育加试考查5个科目,具体规定是:A项目必考,再从B、C、D、E四项中随机抽考两项,则抽考两项中恰好是C、E两项的概率是()A.B.C.D.6.如图,AB是⊙O的直径,CD是⊙O的一条弦,且CD⊥AB于E,分别连接AD、BC,已知∠D=65°,则∠OCD=()A.30°B.35°C.40°D.45°7.如图1,把正方体沿上下底面的正方形对角线竖直方向切掉一半后得到图2,把切面作为正面观察,设它的主视图、左视图的面积分别为S1、S2,则S1:S2=()A.1:2 B.2:1 C.:1 D.2:18.因春节放假,某工厂2月份产量比1月份下降了5%,3月份将恢复正常,预计3月份产量将比2月份增长15%.设2、3月份的平均增长率为x,则x满足的方程是()A.15%﹣5%=x B.15%﹣5%=2xC.(1﹣5%)(1+15%)=2(1+x) D.(1﹣5%)(1+15%)=(1+x)29.如图1,点D、B、C、E在同一条直线上,在△ABC中,∠BAC=40°,AB=AC=2,点D、E在直线BC上由左向右运动,且始终保持∠DAE=110°,当点D向点B运动时(D不与B重合),如图(2),设DB=x,CE=y,则y与x的函数关系的图象大致可以表示为()A.B.C.D.10.如图,Rt△ABC中,∠C=90°,AC=3,BC=4,点D在AB边上,点E是BC边上一点(不与点B、C重合),且DA=DE,则AD的取值范围是()A.0<AD<3 B.1≤AD< C.≤AD<D.≤AD<二、填空题(本大题共4小题,每小题5分,满分20分)11.据规划,截止年底,环巢湖将新建湿地3946000平方米,届时环巢湖将更加风景如画,其中数“3946000”用科学记数法表示为.12.计算:﹣(12﹣π)0+|﹣2|= .13.如图,AB是⊙O的直径,C是AB弧上一点,AP平分∠BAC,AB=3,AC=1,则PB= .14.已知:如图,BD为△ABC的内角平分线,CE为△ABC的外角平分线,AD⊥BD于D,AE⊥CE 于E,延长AD交BC的延长线于F,连接DE,设BC=a,AC=b,AB=c,(a<b<c)给出以下结论正确的有.①CF=c﹣a;②AE=(a+b);③DE=(a+b﹣c);④DF=(b+c﹣a)三、(本大题共2小题,每小题8分,满分16分)15.解不等式组:.16.观察下列等式:①﹣1=﹣②﹣4=﹣③﹣9=﹣…根据上述规律解决下列问题:(1)完成第四个等式:()﹣()=()(2)写出你猜想的第n个等式(用含n的式子表示),并证明其正确性.四、(本大题共2小题,每小题8分,满分16分)17.已知:如图,平行四边形ABCD中,AB=4,AD=6,∠A的平分线交BC于E,交DC延长线于点F,BG⊥AE,垂足为G,射线BG交AD于H,交CD延长线于M(1)求CE的长;(2)求MF的长.18.如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC(顶点是网格线的交点)和格点O.(1)以O为位似中心,将△ABC作位似变换,且放大到原来的两倍,得到△A1B1C1,画出△A1B1C1;(2)若△A1B1C1三边中点分别为P1、P2、P3,将△A1B1C1绕P1、P2、P3中的某一点顺时针旋转90°,使得格点A1落在旋转后得到的△A2B2C2内,画出△A2B2C2,并标出旋转中心.五、(本大题共2小题,每小题10分,满分20分)19.如图,三条平行的高速公路l1、l2、l3分别经过A、B、C三个城市,AB、AC分别为两条连接城市的普通公路,AB、AC分别与l1成30°、45°角,已知AB=200千米,AC=400千米,求两条高速公路l2、l3之间的距离(结果保留根号).20.某工程需要开挖4200米长的隧道,了解甲、乙两工程队后得到如下信息:两个工程队单独完成这项工程所需费用相同,甲工程队比乙工程队每天可多完成20米,但每天需要的费用比乙工程队多40%.(1)求甲、乙两工程队每天各能完成多少米?(2)为加快工程进度,必须要求两个工程队同时从两个方向施工,已知乙工程队每天的费用为a万元,求两工程队合作完成后的总费用(用含a的代数式表示).六、(本题满分12分)21.某中学组织学生参加“社会主义核心价值观知识竞赛”,赛后随机抽查了部分参赛同学的成绩,整理并制成图表如下:分数段频数频率60≤x<70 30 0.170≤x<80 9080≤x<90 0.490≤x<100 60 0.2根据以上图表信息,解答下列问题:(1)补全频数分布表和频数直方图;(2)参赛的小明同学认为他的比赛成绩是所有参赛同学成绩的中位数,据此推断他的成绩落在分数段内;(3)如果该校共有2000名学生参赛,比赛成绩80分以上(含80分)为“优秀”,请估计该校获得“优秀”等级的人数.七、(本题满分12分)22.已知:Rt△ABC中,∠C=90°,BC=a,AC=b,AB=c,在三角形内裁剪正方形,使正方形四个顶点恰好在三角形的边上,共有两种裁法:(1)裁法1,如图(1),若a=6,b=8,且正方形两条边在直角边上,试求正方形的边长x;(2)裁法2,如图(2),若a=6,b=8,且正方形一条边在斜边上,试求正方形的边长y;(3)对于任意Rt△ABC,若c为斜边,以裁法1得到的正方形面积S1和以裁法2得到的正方形面积S2,试猜想S1与S2的大小,并证明你的结论.八、(本题满分14分)23.如图是排球比赛场景的示意图,AB是球网,长度为10米,高AC为2.4米,二传手在距边界C处0.5米的E点传球,球(看成一个点)从点M处沿如图所示的抛物线在网前飞行,点M 的高度为1.8米,球在水平方向飞行5米后达到最高3.8米.(1)以点C为坐标原点,建立直角坐标系,并求出抛物线的解析式;(2)甲球员在距二传手2米的F处起跳扣快球,其最大扣球高度为3.10米(只考虑在起跳点正上方扣球,不考虑起跳时间等因素),试问甲队员能否扣到球?(3)若乙队员的最大扣球高度是3.4米,而对方防守队员最大防守高度为3.2米,试问乙队员应在距点C多远的地方起跳,既能扣到球又避免对方拦网?(参考数据:=2.24,=5.48)安徽省合肥市中考数学一模试卷参考答案与试题解析一、选择题(本大题共10小题,每小题4分,满分40分)1.6÷(﹣2)的结果为()A.3 B.﹣3 C.2 D.﹣2【考点】有理数的除法.【分析】根据有理数的除法计算即可.【解答】解:6÷(﹣2)=﹣3,故选B【点评】此题考查有理数的除法,注意同号得正,异号得负.2.(﹣xy3)2=()A.x2y5B.﹣x2y5C.xy6D.x2y6【考点】幂的乘方与积的乘方.【分析】根据积的乘方计算即可.【解答】解:(﹣xy3)2=x2y6,故选D【点评】此题考查积的乘方,关键是根据法则进行计算.3.下列因式分解正确的是()A.x2+y2=(x+y)2 B.y2﹣x2=(x+y)(y﹣x)C.x2+2xy﹣y2=(x﹣y)2D.x2﹣2xy+y2=(x+y)(x﹣y)【考点】因式分解-运用公式法.【分析】分别利用公式法分解因式进而判断得出即可.【解答】解:A、x2+2xy+y2=(x+y)2,故此选项错误;B、y2﹣x2=(x+y)(y﹣x),正确;C、x2+2xy+y2=(x+y)2,故此选项错误;D、x2﹣2xy+y2=(x﹣y)2,故此选项错误;故选:B.【点评】此题主要考查了公式法分解因式,熟练应用乘法公式是解题关键.4.一次函数y=ax﹣1和y=bx+5的图象如图所示,则a、b的值是()A.a=3,b=2 B.a=2,b=3 C.a=1,b=﹣1 D.a=﹣1,b=1【考点】两条直线相交或平行问题.【专题】计算题.【分析】根据良好直线相交的问题,把两直线的交点坐标(3,2)分别代入两直线解析式即可求得a和b的值.【解答】解:把(3,2)代入y=ax﹣1得3a﹣1=2,解得a=1;把(3,2)代入y=bx+5得3b+5=2,解得b=﹣1.故选C.【点评】本题考查了两直线相交或平行问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解;若两条直线是平行的关系,那么他们的自变量系数相同,即k值相同.5.某市中考体育加试考查5个科目,具体规定是:A项目必考,再从B、C、D、E四项中随机抽考两项,则抽考两项中恰好是C、E两项的概率是()A.B.C.D.【考点】列表法与树状图法.【分析】首先根据题意列出表格,然后由表格求得所有等可能的结果与恰好选中C、E两位同学的情况,再利用概率公式即可求得答案.【解答】解:列表得:(A,E)(B,E)(C,E)(D,E)﹣(A,D)(B,D)(C,D)﹣(E,D)(A,C)(B,C)﹣(D,C)(E,C)(A,B)﹣(C,B)(D,B)(E,B)﹣(B,A)(C,A)(D,A)(E,A)∵A项目必考,再从B、C、D、E四项中随机抽考两项,∴共有12种等可能的结果,恰好选中C、E两位同学的有2种情况,∴P(恰好选中C、E)==,故选A.【点评】此题考查的是用列表法或树状图法求概率.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.6.如图,AB是⊙O的直径,CD是⊙O的一条弦,且CD⊥AB于E,分别连接AD、BC,已知∠D=65°,则∠OCD=()A.30°B.35°C.40°D.45°【考点】圆周角定理;垂径定理.【分析】根据圆周角定理求得∠B=65°,进而根据直角三角形两锐角互余求得∠BCE=25°,根据等边对等角求得∠OCB=∠B=65°,从而求得∠OCD=65°﹣25°=40°.【解答】解:∵∠B=∠D=65°,CD⊥AB,∴∠BCE=90°﹣65°=25°,∵OB=OC,∴∠OCB=∠B=65°,∴∠OCD=65°﹣25°=40°.故选C.【点评】本题考查了圆周角定理,等腰三角形的性质,直角三角形的性质,熟练掌握性质定理是解题的关键.7.如图1,把正方体沿上下底面的正方形对角线竖直方向切掉一半后得到图2,把切面作为正面观察,设它的主视图、左视图的面积分别为S1、S2,则S1:S2=()A.1:2 B.2:1 C.:1 D.2:1【考点】简单组合体的三视图.【分析】根据正方体的性质,三视图的知识可知图2的主视图与左视图都是矩形,它们的高相等,主视图是左视图底边的2倍,根据矩形的面积公式即可求解.【解答】解:∵把正方体沿上下底面的正方形对角线竖直方向切掉一半后得到图2,∴图2的主视图与左视图都是矩形,它们的高相等,主视图是左视图底边的2倍,、S2,∵主视图、左视图的面积分别为S1:S2=2:1.∴S1故选:B.【点评】考查了简单组合体的三视图,关键是得到图2的主视图与左视图都是矩形,以及它们相互间的关系.8.因春节放假,某工厂2月份产量比1月份下降了5%,3月份将恢复正常,预计3月份产量将比2月份增长15%.设2、3月份的平均增长率为x,则x满足的方程是()A.15%﹣5%=x B.15%﹣5%=2xC.(1﹣5%)(1+15%)=2(1+x) D.(1﹣5%)(1+15%)=(1+x)2【考点】由实际问题抽象出一元二次方程.【专题】增长率问题.【分析】增长率问题,一般用增长后的量=增长前的量×(1+增长率),本题可参照增长率问题进行计算,如果设平均每次降价的百分率为x,可以用x表示两次降价后的售价,然后根据已知条件列出方程.【解答】解:设一月份的产量为a,则二月份的产量为a(1﹣5%),三月份的产量为a(1﹣5%)(1+15%),根据题意得:a(1﹣5%)(1+15%)=a(1+x)2,即:(1﹣5%)(1+15%)=(1+x)2,故选:D.【点评】本题考查一元二次方程的应用,解决此类两次变化问题,可利用公式a(1+x)2=c,其中a是变化前的原始量,c是两次变化后的量,x表示平均每次的增长率.9.如图1,点D、B、C、E在同一条直线上,在△ABC中,∠BAC=40°,AB=AC=2,点D、E在直线BC上由左向右运动,且始终保持∠DAE=110°,当点D向点B运动时(D不与B重合),如图(2),设DB=x,CE=y,则y与x的函数关系的图象大致可以表示为()A.B.C.D.【考点】动点问题的函数图象.【分析】利用AB=AC可得∠ABC=∠ACB,进而可得∠ABD=∠ACE,然后证明∠ADB=∠CAE,可得△ADB∽△EAC,根据相似三角形的对应边成比例可得y与x之间的函数关系式,从而作出判断.【解答】解:∵AB=AC,∠BAC=40°,∴∠ABC=∠ACB=70°,∴∠ABD=∠ACE,∠ADB+∠BAD=70°,∵∠DAE=110°,∴∠BAD+∠CAE=70°,∴∠ADB=∠CAE,∴△ADB∽△EAC,∴,∴xy=4,解得y=.故选:A.【点评】本题主要考查了相似三角形的判定与性质和函数的图象,利用两角对应相等得到两三角形相似是解决本题的关键.10.如图,Rt△ABC中,∠C=90°,AC=3,BC=4,点D在AB边上,点E是BC边上一点(不与点B、C重合),且DA=DE,则AD的取值范围是()A.0<AD<3 B.1≤AD< C.≤AD<D.≤AD<【考点】直线与圆的位置关系.【分析】首先由Rt△ABC中,∠C=90°,AC=3,BC=4,可求得AB的长,然后根据题意画出图形,分别从当⊙D与BC相切时与当⊙D与BC相交时,去分析求解即可求得答案.【解答】解:∵Rt△ABC中,∠C=90°,AC=3,BC=4,∴AB==5,以D为圆心,AD的长为半径画⊙D,①如图1,当⊙D与BC相切时,DE⊥BC时,设AD=x,则DE=AD=x,BD=AB﹣AD=5﹣x,∵∠BED=∠C=90°,∠B是公共角,∴△BDE∽△BAC,∴,即,解得:x=;②如图2,当⊙D与BC相交时,若交点为B或C,则AD=AB=,∴AD的取值范围是≤AD<.故选D.【点评】此题考查了点与圆的位置关系、勾股定理以及相似三角形的判定与性质.注意根据题意画出图形,结合图形求解是关键.二、填空题(本大题共4小题,每小题5分,满分20分)11.据规划,截止年底,环巢湖将新建湿地3946000平方米,届时环巢湖将更加风景如画,其中数“3946000”用科学记数法表示为 3.946×106.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将3946000用科学记数法表示为3.946×106.故答案为:3.946×106.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.计算:﹣(12﹣π)0+|﹣2|= +1 .【考点】实数的运算;零指数幂.【专题】计算题.【分析】原式第一项化为最简二次根式,第二项利用零指数幂法则计算,最后一项利用绝对值的代数意义化简,计算即可得到结果.【解答】解:原式=2﹣1+2﹣=+1,故答案为:+1【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.13.如图,AB是⊙O的直径,C是AB弧上一点,AP平分∠BAC,AB=3,AC=1,则PB= .【考点】全等三角形的判定与性质;圆周角定理.【分析】延长AC,BP交于D,由AB是⊙O的直径,得到∠APB=∠ACB=90°,求得∠APD=∠DCB=90°,根据角平分线的定义得到∠DAP=∠BAP,推出△ADP≌△ABP,根据全等三角形的性质得到PD=PB,AD=AB=3,根据勾股定理得到BC==2,BD==2,即可得到结论.【解答】解:延长AC,BP交于D,∵AB是⊙O的直径,∴∠APB=∠ACB=90°,∴∠APD=∠DCB=90°,∵AP平分∠BAC,∴∠DAP=∠BAP,在△ADP与△ABP中,,∴△ADP≌△ABP,∴PD=PB,AD=AB=3,∴CD=AD﹣AC=2,∵∠ACB=90°,∴BC==2,∴BD==2,∴PB=BD=.【点评】本题考查了全等三角形的判定和性质,角平分线的定义,圆周角定理,正确的作出辅助线是解题的关键.14.已知:如图,BD为△ABC的内角平分线,CE为△ABC的外角平分线,AD⊥BD于D,AE⊥CE 于E,延长AD交BC的延长线于F,连接DE,设BC=a,AC=b,AB=c,(a<b<c)给出以下结论正确的有①③.①CF=c﹣a;②AE=(a+b);③DE=(a+b﹣c);④DF=(b+c﹣a)【考点】三角形中位线定理;等腰三角形的判定与性质.【分析】延长AE交BC的延长线与点M,则△ACM是等腰三角形,即可证明E是AM的中点,则DE是三角形的中位线,利用三角形的中位线定理求解.【解答】解:延长AE交BC的延长线与点M.∵CE⊥AE,CE平分∠ACB,∴△ACM是等腰三角形,∴AE=EM,AC═CM=b,同理,AB=BF=c,AD=DF,AE=EM.∴DE=FM,∵CF=c﹣a,∴FM=b﹣(c﹣a)=a+b﹣c.∴DE=(a+b﹣c).故①③正确.故答案是:①③.【点评】此题考查的是三角形中位线的性质,即三角形的中位线平行于第三边且等于第三边的一半,正确作出辅助线是关键.三、(本大题共2小题,每小题8分,满分16分)15.解不等式组:.【考点】解一元一次不等式组.【分析】首先计算出两个不等式的解集,再根据大小小大中间找确定不等式组的解集.【解答】解:,由①得:x>4,由②得:x≤6,不等式组的解集为4<x≤6.【点评】此题主要考查了一元一次不等式组的解法,关键是掌握解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.16.观察下列等式:①﹣1=﹣②﹣4=﹣③﹣9=﹣…根据上述规律解决下列问题:(1)完成第四个等式:()﹣(16 )=(﹣)(2)写出你猜想的第n个等式(用含n的式子表示),并证明其正确性.【考点】规律型:数字的变化类.【分析】(1)由①②③不难看出各式分母不变,分子是连续奇数的平方,根据规律写出第四个等式即可;(2)根据(1)由特殊到一般的思想可写出一般式,化简后左边等于右边即可证明.【解答】解:(1)由①②③不难看出各式分母不变,分子是连续奇数的平方,所以第四个等式是:﹣16=﹣;(2)第n个等式(用含n的式子表示)是:﹣n2=﹣;证明:左边==﹣=右边.所以此式正确.【点评】本题主要考查了数字变化规律问题,解决此类问题的关键是运用由特殊到一般的思想,找到一般规律,要善于前后联系,挖掘规律.四、(本大题共2小题,每小题8分,满分16分)17.已知:如图,平行四边形ABCD中,AB=4,AD=6,∠A的平分线交BC于E,交DC延长线于点F,BG⊥AE,垂足为G,射线BG交AD于H,交CD延长线于M(1)求CE的长;(2)求MF的长.【考点】平行四边形的性质;等腰三角形的判定与性质.【分析】(1)由角平分线得出∠BAE=∠DAE,由平行四边形的性质得出AD∥BC,BC=AD=6,证出∠DAE=∠AEB,∠BAE=∠AEB,得出BE=AB=4,即可得出结果;(2)由ASA证明△ABG≌△AHG,得出AH=AB=4,∠ABG=∠AHG,得出HD=2,由平行线的性质和角的关系得出∠M=∠MHD,得出DM=DH=2,同理得出CF=CE=2,即可得出结果.【解答】解:(1)∵AE平分∠BAD,∴∠BAE=∠DAE,∵四边形ABCD是平行四边形,∴AD∥BC,BC=AD=6,AB=CD=4,∴∠DAE=∠AEB,∴∠BAE=∠AEB,∴BE=AB=4,∴CE=BC﹣BE=6﹣4=2;(2)∵BG⊥AE,∴∠AGB=∠AGH,在△ABG和△AHG中,,∴△ABG≌△AHG(ASA),∴AH=AB=4,∠ABG=∠AHG,∴HD=AD﹣AH=6﹣4=2,∵AB∥MF,∴∠ABG=∠M,∵∠AHG=∠MHD,∴∠M=∠MHD,∴DM=DH=2,同理可得:CF=CE=2,∴MF=DM+CD+CF=2+4+2=8.【点评】本题考查了平行四边形的性质、等腰三角形的判定与性质、角的平分线、全等三角形的判定与性质;熟练掌握平行四边形的性质,并能进行推理论证是解决问题的关键.18.如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC(顶点是网格线的交点)和格点O.(1)以O为位似中心,将△ABC作位似变换,且放大到原来的两倍,得到△A1B1C1,画出△A1B1C1;(2)若△A1B1C1三边中点分别为P1、P2、P3,将△A1B1C1绕P1、P2、P3中的某一点顺时针旋转90°,使得格点A1落在旋转后得到的△A2B2C2内,画出△A2B2C2,并标出旋转中心.【考点】作图-位似变换;作图-旋转变换.【专题】作图题.【分析】(1)延长AO到A1,使OA1=OA,同样作出点B1、C1,则△A1B1C1为所求;(2)以A1C1的中点P1为旋转中心,顺时针旋转90°,利用网格特点画出△A2B2C2.【解答】解:(1)如图,△A1B1C1为所求;(2)如图,△A2B2C2为所求,旋转中心为A1C1的中点P1.【点评】本题考查了作图﹣位似变换:画位似图形的一般步骤为:先确定位似中心;再分别连接并延长位似中心和能代表原图的关键点;接着根据位似比,确定能代表所作的位似图形的关键点;然后顺次连接上述各点,得到放大或缩小的图形.也考查了旋转变换.五、(本大题共2小题,每小题10分,满分20分)19.如图,三条平行的高速公路l1、l2、l3分别经过A、B、C三个城市,AB、AC分别为两条连接城市的普通公路,AB、AC分别与l1成30°、45°角,已知AB=200千米,AC=400千米,求两条高速公路l2、l3之间的距离(结果保留根号).【考点】解直角三角形的应用.【分析】过A作AD⊥l2于D,延长AD交l3于E,构成两个直角三角形,解两个直角三角形分别求得AD=100,AE=200,即可求得两条高速公路l2、l3之间的距离.【解答】解:过A作AD⊥l2于D,延长AD交l3于E,在RT△ABD中,∠ABD=30°,AB=200,∴AD=100,在RT△ACE中,∠ACE=45°,AC=400,∵sin∠ACE=,∴AE=AC•sin45°=200,∴DE=AE﹣DE=200﹣100,答:两条高速公路l2、l3之间的距离为(200﹣100)千米.【点评】此题考查了解直角三角形的应用,主要是三角函数的基本概念及运算,关键把实际问题转化为数学问题加以计算.20.某工程需要开挖4200米长的隧道,了解甲、乙两工程队后得到如下信息:两个工程队单独完成这项工程所需费用相同,甲工程队比乙工程队每天可多完成20米,但每天需要的费用比乙工程队多40%.(1)求甲、乙两工程队每天各能完成多少米?(2)为加快工程进度,必须要求两个工程队同时从两个方向施工,已知乙工程队每天的费用为a万元,求两工程队合作完成后的总费用(用含a的代数式表示).【考点】分式方程的应用;一元一次方程的应用.【分析】(1)设甲工程队每天能完成x米,则乙工程队每天完成(x﹣20)米,设乙工程队每天需要费用为a,则甲工程队每天需要费用为a(1+40%),根据两个工程队单独完成这项工程所需费用相同,列方程求解;(2)设两个工程队合作m天完成工程,根据(1)求得数据代入求出m的值,然后求出总费用.【解答】解:(1)设甲工程队每天能完成x米,则乙工程队每天完成(x﹣20)米,设乙工程队每天需要费用为a,则甲工程队每天需要费用为a(1+40%),由题意得,a(1+40%)•=a•,解得:x=70,经检验,x=70是分式方程的解,且符合题意,则x﹣20=50.答:甲工程队每天能完成70米,则乙工程队每天完成50米;(2)设两个工程队合作m天完成工程,由题意得,70m+50m=4200,解得:m=35,则总费用为:35[a+a(1+40%)]=84a(万元).答:两工程队合作完成后的总费用为84a万元.【点评】本题考查了分式方程和一元一次方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程求解,注意检验.六、(本题满分12分)21.某中学组织学生参加“社会主义核心价值观知识竞赛”,赛后随机抽查了部分参赛同学的成绩,整理并制成图表如下:分数段频数频率60≤x<70 30 0.170≤x<80 9080≤x<90 0.490≤x<100 60 0.2根据以上图表信息,解答下列问题:(1)补全频数分布表和频数直方图;(2)参赛的小明同学认为他的比赛成绩是所有参赛同学成绩的中位数,据此推断他的成绩落在80≤x<90 分数段内;(3)如果该校共有2000名学生参赛,比赛成绩80分以上(含80分)为“优秀”,请估计该校获得“优秀”等级的人数.【考点】频数(率)分布直方图;用样本估计总体;频数(率)分布表.【分析】(1)根据各组的频率的和是1,用1减去其它组的频数,即可求得70≤x<80一组的频率,根据频率=即可求得总数,然后利用公式求得第三组的频数;(2)根据中位数的定义即可判断;(3)利用总人数乘以对应的频率即可.【解答】解:(1)70≤x<80段的频数是1﹣0.2﹣0.4﹣0.1=0.3.总人数是30÷0.1=300(人),80≤x<90段的频数是300×0.4=120(人),分数段频数频率60≤x<70 30 0.170≤x<80 90 0.380≤x<90 120 0.490≤x<100 60 0.2(2)共有300个数据,中位数为第150个数据和第151个数据的平均数,这两个数都在80≤x <90这一组.故答案是80≤x<90;(3)根据题意得2000×(0.4+0.2)=1200(名).答:该校获得“优秀”等级的人数是1200名.【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.七、(本题满分12分)22.已知:Rt△ABC中,∠C=90°,BC=a,AC=b,AB=c,在三角形内裁剪正方形,使正方形四个顶点恰好在三角形的边上,共有两种裁法:(1)裁法1,如图(1),若a=6,b=8,且正方形两条边在直角边上,试求正方形的边长x;(2)裁法2,如图(2),若a=6,b=8,且正方形一条边在斜边上,试求正方形的边长y;(3)对于任意Rt△ABC,若c为斜边,以裁法1得到的正方形面积S1和以裁法2得到的正方形面积S2,试猜想S1与S2的大小,并证明你的结论.【考点】相似三角形的判定与性质;正方形的性质.【分析】(1)裁法1的正方形的边长为x,由EF∥BC,于是得到△AEF∽△ABC,所以=即可得到x=;(2)根据勾股定理得到c=10,设斜边上的高为h,根据三角形的面积公式的ab=ch,求出h=4.8得到比例式,即可得到y=;(3)由(1)知,,得到x=,由(2)知,得到y=,于是得到﹣=,由于c>a,c>b,于是得到(c﹣a)(c﹣b)>0,求出>0,得到x>y,即可得到结论.【解答】解:(1)裁法1的正方形的边长为x,∵EF∥BC,∴△AEF∽△ABC,∴=,∴,∴x=;(2)∵a=6,b=8,∴c=10,设斜边上的高为h,根据三角形的面积公式的ab=ch,∴h=4.8,∵裁法2的正方形的边长y,则,解得:y=,(3)S1>S2,理由:由(1)知,,得bx=ab﹣ax,∴x=,由(2)知,得y=,即y=,∴﹣===,∵c>a,c>b,∴(c﹣a)(c﹣b)>0,∴>0,∴,∴x>y,即裁法1得到的正方形边长>裁法2得到的正方形边长,>S2.∴S1【点评】本题考查了相似三角形的判定和性质,正方形的性质,三角形的面积公式,勾股定理,熟练掌握各性质定理是解题的关键.八、(本题满分14分)23.如图是排球比赛场景的示意图,AB是球网,长度为10米,高AC为2.4米,二传手在距边界C处0.5米的E点传球,球(看成一个点)从点M处沿如图所示的抛物线在网前飞行,点M 的高度为1.8米,球在水平方向飞行5米后达到最高3.8米.(1)以点C为坐标原点,建立直角坐标系,并求出抛物线的解析式;(2)甲球员在距二传手2米的F处起跳扣快球,其最大扣球高度为3.10米(只考虑在起跳点正上方扣球,不考虑起跳时间等因素),试问甲队员能否扣到球?(3)若乙队员的最大扣球高度是3.4米,而对方防守队员最大防守高度为3.2米,试问乙队员应在距点C多远的地方起跳,既能扣到球又避免对方拦网?(参考数据:=2.24,=5.48)【考点】二次函数的应用.【分析】(1)建立平面直角坐标系,根据题意设y=a(x﹣h)2+k,用待定系数法求出函数关系式;(2)把x=2.5代入(1)的函数关系式,求出y的值与最大扣球高度3.10米进行比较即可;(3)把y=3.4和y=3.2代入函数关系式解方程,然后根据二次函数的图象和性质得到答案.【解答】解:以0为坐标原点,CD为x轴正方向建立平面直角坐标系,(1)令y=a(x﹣h)2+k,把(5.5,3.8)代入,得y=a(x﹣5.5)2+3.8∵点M(0.5,1.8)在图象上,∴1.8=a(0.5﹣5.5)2+3.8,解得:a=﹣,∴y=﹣(x﹣5.5)2+3.8;(2)当x=2.5时,y=﹣(2.5﹣5.5)2+3.8=3.08,∵3.08<3.10,∴甲队员能扣到球;(3)当y=3.4时,3.4=﹣(x﹣5.5)2+3.8,解得:x1=7.74,x2=3.26,当y=3.2时,3.2=﹣(x﹣5.5)2+3.8,解得:x1=8.24,x2=2.76,∵a=﹣<0,∴抛物线开口向下,∴当3.2<y≤3.4时,2.76<x≤3.26或7.74≤x<8.24,∴乙队员在离边界C点2.76<x≤3.26或7.74≤x<8.24范围时起跳扣球,可扣到球又避免对方拦网.【点评】本题主要考查了二次函数的实际应用,选择恰当的坐标原点,建立平面直角坐标系,用待定系数法求出二次函数解析式,然后运用二次函数图象和性质解决实际问题.。
安徽省合肥市2020年第一次中考模拟考试数学试卷
安徽省合肥市2020年第一次中考模拟考试数学试卷一、选择题1.如图,AB 是⊙O 的直径,AC 是⊙O 的切线,OC 交⊙O 于点D ,若∠ABD =24°,则∠C 的度数是( )A.48°B.42°C.34°D.24°2.下列说法正确的是A .一组数据1,2,5,5,5,3,3,这组数据的中位数和众数都是5B .了解全国快递包裹产生的包装垃圾数量适合采用全面调查(普查)方式C .掷一枚质地均匀的骰子,骰子停止转动后,6 点朝上是必然事件D .一组数据的方差越大,则这组数据的波动也越大 3.近似数1.23×103精确到( ) A .百分位B .十分位C .个位D .十位4.若一个多边形的外角和是其内角和的12,则这个多边形的边数为( ) A.2 B.4 C.6 D.85.若方程4x 2+(a 2﹣3a ﹣10)x+4a =0的两根互为相反数,则a 的值是( )A .5或﹣2B .5C .﹣2D .非以上答案6.由7个大小相同的正方体搭成的几何体如图所示,则关于它的视图说法正确的是( )A .正视图的面积最大B .俯视图的面积最大C .左视图的面积最大D .三个视图的面积一样大 7.2019年春节联欢晚会在某网站取得了同时在线人数超34200000的惊人成绩,创下了全球单平台网络直播记录,将数34200000用科学记数法表示为( ) A .80.34210⨯ B .73.4210⨯C .83.4210⨯D .634.210⨯8.如图,直线a ∥b ,在Rt △ABC 中,点C 在直线a 上,若∠1=54°,∠2=24°,则∠A 的度数为( )A .56°B .36°C .30°D .26°9.被历代数学家尊为“算经之首”的《九章算术》是中国古代算法的扛鼎之作.《九章算术》中记载:“今有五雀、六燕,集称之衡,雀俱重,燕俱轻.一雀一燕交而处,衡适平.并燕、雀重一斤.问燕、雀一枚各重几何?”译文:“今有5只雀、6只燕,分别聚集而且用衡器称之,聚在一起的雀重,燕轻.将一只雀、一只燕交换位置而放,重量相等.5只雀、6只燕重量为1斤.问雀、燕毎只各重多少斤?”设每只雀重x斤,每只燕重y斤,可列方程组为()A.45561x y y xx y-=+⎧⎨+=⎩B.54561x y y xx y+=+⎧⎨+=⎩C.45561x y y xx y+=+⎧⎨+=⎩D.45561x y y xx y+=+⎧⎨-=⎩10.如图一,在等腰△ABC中,AB=AC,点P、Q从点B同时出发,点P的速度沿BC方向运动到点C停止,点Q以1cm/s的速度沿BA﹣AC方向运动到点C停止,若△BPQ的面积为y(cm2),运动时间为x(s),则y与x之间的函数关系图象如图二所示,则BC长为( )A.4cm B.8cm C.D.11.关于x的一元二次方程x2+kx﹣3=0有一个根为﹣3,则另一根为()A.1 B.﹣2 C.2 D.312.如图,在正方形ABCD中,△BPC是等边三角形,BP、CP的延长线分别交AD于点E、F,连接BD、DP,BD与CF相交于点H.给出下列结论:①BE=2AE;②△DFP~△BPH;③35PFPH=;④DP2=PH•PC;其中正确的是()A.①②③④B.①③④C.②③D.①②④二、填空题13.正方形ABCD中,F是AB上一点,H是BC延长线上一点,连接FH,将△FBH沿FH翻折,使点B的对应点E落在AD上,EH与CD交于点G,连接BG交FH于点M,当GB平分∠CGE时,AE=8,则ED=_____.14.如果样本x1,x2,x3,…,x n的平均数为5,那么样本x1+2,x2+2,x3+2,…x n+2的平均数是_____ 15.若2x2+3与2x2﹣4互为相反数,则x为__________.16.在一个袋子中装有大小相同的4个小球,其中1个蓝色,3个红色,从袋中随机摸出个,则摸到的是蓝色小球的概率为______17.如图,在△ABC中,∠B=45°,tanC=12,ABAC=_____.18.已知不等式组1xx a>⎧⎨<⎩无解,则a的取值范围是_____.三、解答题19.某学校体育场看台的侧面如图阴影部分所示,看台有四级高度相等的小台阶.已知看台高为1.6米,现要做一个不锈钢的扶手AB及两根与FG垂直且长为l米的不锈钢架杆AD和BC(杆子的底端分别为D,C),且∠DAB=66.5°.(1)求点D与点C的高度差DH;(2)求所用不锈钢材料的总长度l.(即AD+AB+BC,结果精确到0.1米)(参考数据:sin66.5°≈0.92,cos66.5°≈0.40,tan66.5°≈2.30)20.如图是某种品牌的篮球架实物图与示意图,已知底座BC=0.6米,底座BC与支架AC所成的角∠ACB =75°,支架AF的长为2.5米,篮板顶端F点到篮框D的距离FD=1.4米,篮板底部支架HE与支架AF 所成的角∠FHE=60°,求篮框D到地面的距离.(精确到0.1米.参考数据:cos75°≈0.3,≈1.4)21.(1)计算:113tan30(12-︒⎛⎫--+-+⎪⎝⎭(2)先化简,再求值221122121x x x xx x x x---⎛⎫-÷⎪+++⎝⎭,其中,x满足x2﹣x=1.22.如图,在△ABC中,点D在BC边上,BC=3CD,分别过点B,D作AD,AB的平行线,并交于点E,且ED交AC于点F,AD=3DF.(1)求证:△CFD∽△CAB;(2)求证:四边形ABED为菱形;(3)若DF =53,BC =9,求四边形ABED 的面积.23.111(9)(9)339x x x x ⎡⎤---=-⎢⎥⎣⎦ 24.在平面直角坐标系xOy 中,抛物线2y x bx c =++交x 轴于()1,0A -,()3,0B 两点,交y 轴于点C .(1)如图,求抛物线的解析式;(2)如图,点P 是第一象限抛物线上的一个动点,连接CP 交x 轴于点E ,过点P 作//PK x 轴交抛物线于点K ,交y 轴于点N ,连接AN 、EN 、AC ,设点P 的横坐标为t ,四边形ACEN 的面积为S ,求S 与t 之间的函数关系式(不要求写出自变量t 的取值范围);(3)如图,在(2) 的条件下,点F 是PC 中点,过点K 作PC 的垂线与过点F 平行于x 轴的直线交于点H , KH CP =,点Q 为第一象限内直线KP 下方抛物线上一点,连接KQ 交y 轴于点G ,点M 是KP 上一点,连接MF 、KF ,若MFK PKQ ∠=∠,512MP AE GN =+,求点Q 坐标25.阳春三月,龙泉驿区的桃花又开了,小明乘坐地铁到龙泉看桃花,计划在龙平路地铁口下车,如图是龙平路地铁口的平面图,其有A、B、C、D四个出入口,小明任选一个出口下车出站,赏花结束后,任选一个入口入站乘车.(1)小明从出站到入站共有多少种可能的结果?请用树形图或列表说明;(2)求出小明从龙平路同一侧出入站的概率.【参考答案】一、选择题二、填空题13.414.715.±1 216.1 41718.a≤1三、解答题19.(1)DH=1.2米;(2)点D与点C的高度差DH为1.2米;所用不锈钢材料的总长度约为5.0米.【解析】【分析】(1)通过图观察可知DH高度包含3层台阶,因而DH=每级小台阶高度×小台阶层数.(2)首先过点B作BM⊥AH,垂足为M.求得AM的长,在Rt△AMB中,根据余弦函数cosAMAAB即可求得AB的长,那么根据不锈钢材料的总长度l=AD+AB+BC,求得所用不锈钢材料的长.【详解】(1)DH=1.6×34=1.2(米);(2)过B作BM⊥AH于M,则四边形BCHM是矩形.∴MH =BC =1∴AM =AH ﹣MH =1+1.2﹣1=1.2. 在Rt △AMB 中,∠A =66.5°. ∴AB =1.23.0cos66.50.40AM ︒≈=(米). ∴l =AD+AB+BC≈1+3.0+1=5.0(米).答:点D 与点C 的高度差DH 为1.2米;所用不锈钢材料的总长度约为5.0米.【点睛】此题考查了三角函数的基本概念,主要是在解题过程中作辅助线BM ,利用余弦概念及运算,从而把实际问题转化为数学问题加以解决. 20.篮框D 到地面的距离是2.9米. 【解析】 【分析】延长FE 交CB 的延长线于M ,过A 作AG ⊥FM 于G ,解直角三角形即可得到结论. 【详解】解:延长FE 交CB 的延长线于M ,过A 作AG ⊥FM 于G , 在Rt △ABC 中,tan ∠ACB =,ABBC∴AB =BC•tan75°=0.60×3.732=2.22, ∴GM =AB =2.22,在Rt △AGF 中,∵∠FAG =∠FHE =60°,sin ∠FAG =,FGAF∴sin60°=2.5FG = ∴FG =2.125,∴DM =FG+GM ﹣DF≈2.9米. 答:篮框D 到地面的距离是2.9米.【点睛】考查解直角三角形的应用,构造直角三角形,选择合适的锐角三角函数是解题的关键. 21.(1)1-+2)12. 【解析】 【分析】(1)按顺序先分别进行负整数指数幂的运算、代入特殊角的三角函数值、零指数幂的运算、二次根式的化简,然后再按运算顺序进行计算即可;(2)括号内先通分进行分式的加减法运算,然后再进行分式的乘除法运算,最后由x 2﹣x =1,得x 2=x+1,代入化简后的式子即可解答本题. 【详解】(1)1013tan30(12-︒⎛⎫--+-+ ⎪⎝⎭=(﹣2)﹣3×3=(﹣2=﹣(2)221122121x x x xxx x x ---⎛⎫-÷ ⎪+++⎝⎭ =()()()()()()21111121x x x x x x x x x -+--++-=()()()211121x x x x x x +-+-=212x x +, ∵x 2﹣x =1, ∴x 2=x+1, ∴原式=12. 【点睛】本题考查分式的化简求值、负整数指数幂、特殊角的三角函数值、零指数幂,解答本题的关键是明确它们各自的计算方法.22.(1)见解析;(2)见解析;(3)四边形ABED 的面积为24. 【解析】 【分析】(1)由平行线的性质和公共角即可得出结论;(2)先证明四边形ABED 是平行四边形,再证出AD =AB ,即可得出四边形ABED 为菱形;(3)连接AE 交BD 于O ,由菱形的性质得出BD ⊥AE ,OB =OD ,由相似三角形的性质得出AB =3DF =5,求出OB =3,由勾股定理求出OA =4,AE =8,由菱形面积公式即可得出结果. 【详解】(1)证明:∵EF ∥AB , ∴∠CFD =∠CAB , 又∵∠C =∠C ,∴△CFD ∽△CAB ;(2)证明:∵EF ∥AB ,BE ∥AD , ∴四边形ABED 是平行四边形, ∵BC =3CD , ∴BC :CD =3:1, ∵△CFD ∽△CAB ,∴AB :DF =BC :CD =3:1, ∴AB =3DF , ∵AD =3DF , ∴AD =AB ,∴四边形ABED 为菱形;(3)解:连接AE 交BD 于O ,如图所示: ∵四边形ABED 为菱形, ∴BD ⊥AE ,OB =OD , ∴∠AOB =90°, ∵△CFD ∽△CAB ,∴AB :DF =BC :CD =3:1, ∴AB =3DF =5, ∵BC =3CD =9, ∴CD =3,BD =6, ∴OB =3,由勾股定理得:OA 4,∴AE =8,∴四边形ABED 的面积=12AE×BD=12×8×6=24.【点睛】本题考查了相似三角形的判定与性质、菱形的判定和性质、平行四边形的判定、勾股定理、菱形的面积公式,熟练掌握相似三角形的判定与性质,证明四边形是菱形是解题的关键. 23.x=0 【解析】 【分析】根据解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1即可解答. 【详解】111(9)(9)339x x x x ⎡⎤---=-⎢⎥⎣⎦193(3)93x x x x --+=- 9299x x x --=-60x = 0x =【点睛】本题考查的是解一元一次方程,掌握一元一次方程的解题步骤是关键.注意:单个的数字或字母去分母时不要漏乘.24.(1)223y x x =--;(2)21122S t t =+;(3)1744,525Q ⎛⎫ ⎪⎝⎭【解析】 【分析】(1)把A,B 点代入解析式即可(2)过点P 作PH y ⊥轴,交y 轴于点H ,点()2,23P t t t --,可得32OE t =-,即可解答 (3)过点K 作KR FH ⊥于点R ,KH CP =,HK PC ⊥,求出点()4,5P ,再根据对称轴1x =,由对称性得()2,5K -,然后设点()2,23Q m m m --过点Q 作QW KP ⊥交KP 于W ,得到NG,MP,KM 的值,过点F 作FL KP ⊥于点L ,()2,1F 得到tan tan 4MFK QKP m ∠=∠=-,过点M 作MT FK ⊥于点T,51266KT MT m ⎛⎫==+ ⎪⎝⎭,求出m 即可解答 【详解】 (1)解抛物线2y x bx c =++过点()1,0A -,()3,0B()2210330b c b c ⎧-++=⎪⎨++=⎪⎩解得32c b =-⎧⎨=-⎩ ∴抛物线解析式为223y x x =--(2)过点P 作PH y ⊥轴,交y 轴于点H ,点()2,23P t t t --,222332CN t t t t =--+=-,21tan 252PH t PCH CH t t ∴∠===-- 123OE OE t OC ==- 32OE t ∴=- 2111222NCE NAC S S S AE CN t t ∆∆=+=⋅=+ (3)过点K 作KR FH ⊥于点R ,KH CP =,HK PC ⊥NCP H ∴∠=∠90R PNC ∠=∠=︒ CNP KRH ∴∆≅∆ PN KR NS ∴== 点F 是CP 中点//SF NP 12PN KR NS CN ∴=== 212t t t ∴=-,10t =(舍),24t =.∴点()4,5P ,()222314y x x x =--=--, ∴对称轴1x =,由对称性得()2,5K -.32OE =,52AE =,设点()2,23Q m m m --过点Q 作QW KP ⊥交KP 于W . ()2252328WQ m m m m =---=-++2WK t =+228tan 42WQ m m QKP mWK m -++∠===-+,tan 42NG NG QPK m NK ∠===-,82NG m =- ()555535821221266MP AE GN m m =+=+-=-+ 5355166666m KM KP MP m ⎛⎫=-=-+=+ ⎪⎝⎭过点F 作FL KP ⊥于点L ,()2,1F4FL KL ∴==45LKF ∴∠=︒ MFK QKP ∠=∠ tan tan 4MFK QKP m ∠=∠=-过点M 作MT FK ⊥于点T,5166KT MT m ⎫==+⎪⎝⎭51266m TF ⎛⎫=+⎪⎝⎭51tan 4m MFT m ⎫+⎪∠==-解得111m =(舍),2175m =1744,525Q ⎛⎫= ⎪⎝⎭【点睛】此题考查二次函数的综合题,运用三角函数和做辅助线是解题关键 25.(1)见解析,有16种可能的结果;(2). 【解析】 【分析】(1)画树状图列出所有等可能结果;(2)从中找到小明从龙平路同一侧出入站的结果数,再根据概率公式求解可得. 【详解】解:(1)画树状图如下:小明从出站到入站共有16种可能的结果.(2)∵小明从龙平路同一侧出入站的有8种等可能结果,∴小明从龙平路同一侧出入站的概率为.【点睛】本题考查的是用列表法或树状图法求概率,列表法可以不重复不遗漏的列出所有可能的结果,解决本题的关键是要熟练掌握画树状图的方法.。
安徽省合肥市2020年中考数学一模试卷(含解析)
安徽省合肥市2020年中考数学一模试卷一、选择题1.下列实数中最小的数是()A.2 B.﹣3 C.0 D.π2.如图是由四个相同的小正方形组成的立体图形,它的俯视图为()A.B.C.D.3.安徽省的陆地面积为139400km2,139400用科学记数法可表示为()A.1394×102B.1.394×104C.1.394×105D.13.94×1044.下列运算正确的是()A.a+2a=3a2B.a3•a2=a5C.(a4)2=a6D.﹣6a6÷2a2=3a35.若分式=0,则x的值是()A.±2 B.2 C.﹣2 D.06.如图是某市2016年四月份每日的最低气温的统计图,则四月份每日的最低气温(单位:℃)众数分别是()A.14 B.30 C.12 D.187.一种药品原价每盒25元,经过两次降价后每盒16元.设两次降价的百分率都为x,则x 满足()A.16(1+2x)=25 B.25(1﹣2x)=16C.16(1+x)2=25 D.25(1﹣x)2=168.如图,在△ABC中,点D为BC边上的一点,且AD=AB=2,AD⊥AB.过点D作DE⊥AD,DE交AC于点E.若DE=1,则△ABC的面积为()A.4B.4 C.2D.89.如图,是二次函数y=ax2+bx+c图象的一部分,下列结论中:①abc>0;②a﹣b+c<0;③ax2+bx+c+1=0有两个相等的实数根;④9a+3b+c>0.其中正确的结论的序号为()A.①②B..①③C..②③D..①④10.如图,在△ABC中,AB=10,AC=8,BC=6,以边AB的中点O为圆心,作半圆与AC相切,点P,Q分别是边BC和半圆上的动点,连接PQ,则PQ长的最大值与最小值的和是()A.6 B.2+1 C.9 D.二、填空题(共4小题,每小题5分,满分20分)11.计算:﹣=.12.命题:“若ab=0,则a、b中至少有一个为0”的逆命题是13.如图,已知A为反比例函数(x<0)的图象上一点,过点A作AB⊥y轴,垂足为B,若△OAB的面积为2,则k的值为14.如图,在平面直角坐标系中,已知⊙D经过原点O,与x轴、y轴分别交于A、B两点,B点坐标为(0,2),OC与⊙D交于点C,∠OCA=30°,则图中阴影部分面积为.(结果保留根号和π)三、(本大题共2小题,每小题8分,满分16分)15.解方程:x2=4x.16.如图,已知△ABC三个顶点的坐标分别为A(﹣2,﹣4),B(0,﹣4),C(1,﹣1)(1)请在网格中,画出线段BC关于原点对称的线段B1C1;(2)请在网格中,过点C画一条直线CD,将△ABC分成面积相等的两部分,与线段AB 相交于点D,写出点D的坐标;(3)若另有一点P(﹣3,﹣3),连接PC,则tan∠BCP=.四、(本大题共2小题,每小题8分,满分16分)17.光伏发电惠民生,据衢州晚报载,某家庭投资4万元资金建造屋顶光伏发电站,遇到晴天平均每天可发电30度,其它天气平均每天可发电5度,已知某月(按30天计)共发电550度.(1)求这个月晴天的天数.(2)已知该家庭每月平均用电量为150度,若按每月发电550度计,至少需要几年才能收回成本(不计其它费用,结果取整数).18.观察一组数据:2,4,7,11,16,22,29,…,它们有一定的规律,若记第一个数为a1,第二个数记为a2,…,第n个数记为a n.(1)请写出29后面的第一个数;(2)通过计算a2﹣a1,a3﹣a2,a4﹣a3,…由此推算a100﹣a99的值;(3)根据你发现的规律求a100的值.五、(本大题共2小题,每小题10分,满分20分)19.图1是一辆在平地上滑行的滑板车,图2是其示意图.已知车杆AB长92cm,车杆与脚踏板所成的角∠ABC=70°,前后轮子的半径均为6cm,求把手A离地面的高度(结果保留小数点后一位;参考数据:sin70°≈0.94,cos70°≈0.34,tan70°≈2.75).20.如图,已知在△ABC中,D,E,F分别是AB,BC,AC的中点,连结DF,EF,BF.(1)求证:四边形BEFD是平行四边形;(2)若∠AFB=90°,AB=6,求四边形BEFD的周长.六、(本大题12分)21.为深化义务教育课程改革,满足学生的个性化学习需求,某校就“学生对知识拓展,体育特长、艺术特长和实践活动四类选课意向”进行了抽样调查(每人选报一类),绘制了如图所示的两幅统计图(不完整),请根据图中信息,解答下列问题:(1)求扇形统计图中m的值,并补全条形统计图;(2)在被调查的学生中,随机抽一人,抽到选“体育特长类”或“艺术特长类”的学生的概率是多少?(3)已知该校有800名学生,计划开设“实践活动类”课程每班安排20人,问学校开设多少个“实践活动类”课程的班级比较合理?七、(本大题12分)22.如图,在平面直角坐标系xOy中,已知抛物线y=ax2﹣2x+c与直线y=kx+b都经过A (0,﹣3)、B(3,0)两点,该抛物线的顶点为C.(1)求此抛物线和直线AB的解析式;(2)设直线AB与该抛物线的对称轴交于点E,在射线EB上是否存在一点M,过M作x 轴的垂线交抛物线于点N,使点M、N、C、E是平行四边形的四个顶点?若存在,求点M 的坐标;若不存在,请说明理由;(3)设点P是直线AB下方抛物线上的一动点,当△PAB面积最大时,求点P的坐标,并求△PAB面积的最大值.八、(本大题14分)23.数学活动课上,某学习小组对有一内角为120°的平行四边形ABCD(∠BAD=120°)进行探究:将一块含60°的直角三角板如图放置在平行四边形ABCD所在平面内旋转,且60°角的顶点始终与点C重合,较短的直角边和斜边所在的两直线分别交线段AB,AD于点E,F(不包括线段的端点).(1)初步尝试如图1,若AD=AB,求证:①△BCE≌△ACF,②AE+AF=AC;(2)类比发现如图2,若AD=2AB,过点C作CH⊥AD于点H,求证:AE=2FH;(3)深入探究如图3,若AD=3AB,探究得:的值为常数t,则t=.参考答案一、选择题(共10小题,每小题4分,满分40分)1.下列实数中最小的数是()A.2 B.﹣3 C.0 D.π【分析】先根据实数的大小比较法则比较数的大小,再得出选项即可.解:∵﹣3<0<2<π,∴最小的数是﹣3,故选:B.2.如图是由四个相同的小正方形组成的立体图形,它的俯视图为()A.B.C.D.【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.解:从上面看易得第一层有1个正方形,第二层有2个正方形,如图所示:故选:B.3.安徽省的陆地面积为139400km2,139400用科学记数法可表示为()A.1394×102B.1.394×104C.1.394×105D.13.94×104【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.解:将139400用科学记数法表示为:1.394×105.故选:C.4.下列运算正确的是()A.a+2a=3a2B.a3•a2=a5C.(a4)2=a6D.﹣6a6÷2a2=3a3【分析】根据合并同类项、同底数幂的乘法和幂的乘方以及整式的除法解答即可.解:A、a+2a=3a,错误;B、a3•a2=a5,正确;C、(a4)2=a8,错误;D、﹣6a6÷2a2=﹣3a4,错误;故选:B.5.若分式=0,则x的值是()A.±2 B.2 C.﹣2 D.0【分析】分式的值为0时,分子等于0且分母不等于0.解:依题意得:x2﹣4=0且x﹣2≠0,解得x=﹣2.故选:C.6.如图是某市2016年四月份每日的最低气温的统计图,则四月份每日的最低气温(单位:℃)众数分别是()A.14 B.30 C.12 D.18【分析】根据众数的定义直接求解即可.解:由条形统计图中出现频数最大条形最高的数据是在第三组,14℃,故众数是14℃;故选:A.7.一种药品原价每盒25元,经过两次降价后每盒16元.设两次降价的百分率都为x,则x 满足()A.16(1+2x)=25 B.25(1﹣2x)=16C.16(1+x)2=25 D.25(1﹣x)2=16【分析】等量关系为:原价×(1﹣降价的百分率)2=现价,把相关数值代入即可.解:第一次降价后的价格为:25×(1﹣x);第二次降价后的价格为:25×(1﹣x)2;∵两次降价后的价格为16元,∴25(1﹣x)2=16.故选:D.8.如图,在△ABC中,点D为BC边上的一点,且AD=AB=2,AD⊥AB.过点D作DE⊥AD,DE交AC于点E.若DE=1,则△ABC的面积为()A.4B.4 C.2D.8【分析】由题意得到三角形DEC与三角形ABC相似,由相似三角形面积之比等于相似比的平方两三角形面积之比,进而求出四边形ABDE与三角形ABC面积之比,求出四边形ABDE 面积,即可确定出三角形ABC面积.解:∵AB⊥AD,AD⊥DE,∴∠BAD=∠ADE=90°,∴DE∥AB,∴∠CED=∠CAB,∵∠C=∠C,∴△CED∽△CAB,∵DE=1,AB=2,即DE:AB=1:2,∴S△DEC:S△ACB=1:4,∴S四边形ABDE:S△ACB=3:4,∵S四边形ABDE=S△ABD+S△ADE=×2×2+×2×1=2+1=3,∴S△ACB=4,故选:B.9.如图,是二次函数y=ax2+bx+c图象的一部分,下列结论中:①abc>0;②a﹣b+c<0;③ax2+bx+c+1=0有两个相等的实数根;④9a+3b+c>0.其中正确的结论的序号为()A.①②B..①③C..②③D..①④【分析】由抛物线的开口方向判断a的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对各个结论进行判断.解:①由抛物线的开口方向向上可推出a>0,与y轴的交点为在y轴的负半轴上可推出c=﹣1<0,对称轴为x=﹣>1>0,a>0,得b<0,故abc>0,故①正确;②由对称轴为直线x=﹣>1,抛物线与x轴的一个交点交于(2,0),(3,0)之间,则另一个交点在(0,0),(﹣1,0)之间,所以当x=﹣1时,y>0,所以a﹣b+c>0,故②错误;③抛物线与y轴的交点为(0,﹣1),由图象知二次函数y=ax2+bx+c图象与直线y=﹣1有两个交点,故ax2+bx+c+1=0有两个不相等的实数根,故③错误;④x=3时,y=ax2+bx+c=9a+3b+c>0,故④正确;故选:D.10.如图,在△ABC中,AB=10,AC=8,BC=6,以边AB的中点O为圆心,作半圆与AC相切,点P,Q分别是边BC和半圆上的动点,连接PQ,则PQ长的最大值与最小值的和是()A.6 B.2+1 C.9 D.【分析】如图,设⊙O与AC相切于点E,连接OE,作OP1⊥BC垂足为P1交⊙O于Q1,此时垂线段OP1最短,P1Q1最小值为OP1﹣OQ1,求出OP1,如图当Q2在AB边上时,P2与B重合时,P2Q2最大值=5+3=8,由此不难解决问题.解:如图,设⊙O与AC相切于点E,连接OE,作OP1⊥BC垂足为P1交⊙O于Q1,此时垂线段OP1最短,P1Q1最小值为OP1﹣OQ1,∵AB=10,AC=8,BC=6,∴AB2=AC2+BC2,∴∠C=90°,∵∠OP1B=90°,∴OP1∥AC∵AO=OB,∴P1C=P1B,∴OP1=AC=4,∴P1Q1最小值为OP1﹣OQ1=1,如图,当Q2在AB边上时,P2与B重合时,P2Q2经过圆心,经过圆心的弦最长,P2Q2最大值=5+3=8,∴PQ长的最大值与最小值的和是9.故选:C.二、填空题(共4小题,每小题5分,满分20分)11.计算:﹣=.【分析】先化简=2,再合并同类二次根式即可.解:=2﹣=.故答案为:.12.命题:“若ab=0,则a、b中至少有一个为0”的逆命题是若a,b至少有一个为0,则ab=0【分析】根据逆命题的概念得出原命题的逆命题即可.解:命题:“若ab=0,则a、b中至少有一个为0”的逆命题是若a,b至少有一个为0,则ab=0,故答案为:若a,b至少有一个为0,则ab=0.13.如图,已知A为反比例函数(x<0)的图象上一点,过点A作AB⊥y轴,垂足为B,若△OAB的面积为2,则k的值为﹣4【分析】利用反比例函数比例系数k的几何意义得到|k|=2,然后根据反比例函数的性质确定k的值.解:∵AB⊥y轴,∴S△OAB=|k|=2,而k<0,∴k=﹣4.故答案为﹣4.14.如图,在平面直角坐标系中,已知⊙D经过原点O,与x轴、y轴分别交于A、B两点,B点坐标为(0,2),OC与⊙D交于点C,∠OCA=30°,则图中阴影部分面积为2π﹣2.(结果保留根号和π)【分析】连接AB,根据∠AOB=90°可知AB是直径,再由圆周角定理求出∠OBA=∠C=30°,由锐角三角函数的定义得出OA及AB的长,根据S阴影=S半圆﹣S△ABO即可得出结论.解:连接AB,∵∠AOB=90°,∴AB是直径,根据同弧对的圆周角相等得∠OBA=∠C=30°,∵OB=2,∴OA=OB tan∠ABO=OB tan30°=2×=2,AB=AO÷sin30°=4,即圆的半径为2,∴S阴影=S半圆﹣S△ABO=﹣×2×2=2π﹣2.故答案为:2π﹣2.三、(本大题共2小题,每小题8分,满分16分)15.解方程:x2=4x.【分析】先移项得到x2﹣4x=0,然后利用因式分解法求解.解:x2﹣4x=0,x(x﹣4)=0,x=0或x﹣4=0,所以x1=0,x2=4.16.如图,已知△ABC三个顶点的坐标分别为A(﹣2,﹣4),B(0,﹣4),C(1,﹣1)(1)请在网格中,画出线段BC关于原点对称的线段B1C1;(2)请在网格中,过点C画一条直线CD,将△ABC分成面积相等的两部分,与线段AB 相交于点D,写出点D的坐标;(3)若另有一点P(﹣3,﹣3),连接PC,则tan∠BCP= 1 .【分析】(1)根据坐标画得到对应点B1、C1,连接即可;(2)取AB的中点D画出直线CD,(3)得出△PBC为等腰直角三角形,∠PCB=45°,可求出tan∠BCP=1解:如图:(1)作出线段B1、C1连接即可;(2)画出直线CD,点D坐标为(﹣1,﹣4),(3)连接PB,∵PB2=BC2=12+32=10,PC2=22+42=20,∴PB2+BC2=PC2,∴△PBC为等腰直角三角形,∴∠PCB=45°,∴tan∠BCP=1,故答案为1.四、(本大题共2小题,每小题8分,满分16分)17.光伏发电惠民生,据衢州晚报载,某家庭投资4万元资金建造屋顶光伏发电站,遇到晴天平均每天可发电30度,其它天气平均每天可发电5度,已知某月(按30天计)共发电550度.(1)求这个月晴天的天数.(2)已知该家庭每月平均用电量为150度,若按每月发电550度计,至少需要几年才能收回成本(不计其它费用,结果取整数).【分析】(1)设这个月有x天晴天,根据总电量550度列出方程即可解决问题.(2)需要y年才可以收回成本,根据电费≥40000,列出不等式即可解决问题.解:(1)设这个月有x天晴天,由题意得30x+5(30﹣x)=550,解得x=16,故这个月有16个晴天.(2)需要y年才可以收回成本,由题意得(550﹣150)•(0.52+0.45)•12y≥40000,解得y≥8.6,∵y是整数,∴至少需要9年才能收回成本.18.观察一组数据:2,4,7,11,16,22,29,…,它们有一定的规律,若记第一个数为a1,第二个数记为a2,…,第n个数记为a n.(1)请写出29后面的第一个数;(2)通过计算a2﹣a1,a3﹣a2,a4﹣a3,…由此推算a100﹣a99的值;(3)根据你发现的规律求a100的值.【分析】(1)根据差值的规律计算即可;(2)a2﹣a1,=2,a3﹣a2=3,a4﹣a3=4…由此推算a100﹣a99=100;(3)根据a100=2+2+3+4+…+100=1+×100计算即可;解:(1)29后面的第一位数是37;(2)由题意:a2﹣a1,=2,a3﹣a2=3,a4﹣a3=4…由此推算a100﹣a99=100;(3)a100=2+2+3+4+…+100=1+×100=5051五、(本大题共2小题,每小题10分,满分20分)19.图1是一辆在平地上滑行的滑板车,图2是其示意图.已知车杆AB长92cm,车杆与脚踏板所成的角∠ABC=70°,前后轮子的半径均为6cm,求把手A离地面的高度(结果保留小数点后一位;参考数据:sin70°≈0.94,cos70°≈0.34,tan70°≈2.75).【分析】过点A作AD⊥BC于点D,延长AD交地面于点E,根据锐角三角函数的定义即可求出答案.解:过点A作AD⊥BC于点D,延长AD交地面于点E,∵sin∠ABD=,∴AD=92×0.94≈86.48,∵DE=6,∴AE=AD+DE=92.5,∴把手A离地面的高度为92.5cm.20.如图,已知在△ABC中,D,E,F分别是AB,BC,AC的中点,连结DF,EF,BF.(1)求证:四边形BEFD是平行四边形;(2)若∠AFB=90°,AB=6,求四边形BEFD的周长.【分析】(1)根据三角形的中位线的性质得到DF∥BC,EF∥AB,根据平行四边形的判定定理即可得到结论;(2)根据直角三角形的性质得到DF=DB=DA=AB=3,推出四边形BEFD是菱形,于是得到结论.【解答】(1)证明:∵D,E,F分别是AB,BC,AC的中点,∴DF∥BC,EF∥AB,∴DF∥BE,EF∥BD,∴四边形BEFD是平行四边形;(2)解:∵∠AFB=90°,D是AB的中点,AB=6,∴DF=DB=DA=AB=3,∵四边形BEFD是平行四边形,∴四边形BEFD是菱形,∵DB=3,∴四边形BEFD的周长为12.六、(本大题12分)21.为深化义务教育课程改革,满足学生的个性化学习需求,某校就“学生对知识拓展,体育特长、艺术特长和实践活动四类选课意向”进行了抽样调查(每人选报一类),绘制了如图所示的两幅统计图(不完整),请根据图中信息,解答下列问题:(1)求扇形统计图中m的值,并补全条形统计图;(2)在被调查的学生中,随机抽一人,抽到选“体育特长类”或“艺术特长类”的学生的概率是多少?(3)已知该校有800名学生,计划开设“实践活动类”课程每班安排20人,问学校开设多少个“实践活动类”课程的班级比较合理?【分析】(1)根据C类人数有15人,占总人数的25%可得出总人数,求出A类人数,进而可得出结论;(2)直接根据概率公式可得出结论;(3)求出“实践活动类”的总人数,进而可得出结论.解:(1)总人数=15÷25%=60(人).A类人数=60﹣24﹣15﹣9=12(人).∵12÷60=0.2=20%,∴m=20.条形统计图如图;(2)抽到选“体育特长类”或“艺术特长类”的学生的概率==;(3)∵800×25%=200,200÷20=10,∴开设10个“实验活动类”课程的班级数比较合理.七、(本大题12分)22.如图,在平面直角坐标系xOy中,已知抛物线y=ax2﹣2x+c与直线y=kx+b都经过A (0,﹣3)、B(3,0)两点,该抛物线的顶点为C.(1)求此抛物线和直线AB的解析式;(2)设直线AB与该抛物线的对称轴交于点E,在射线EB上是否存在一点M,过M作x 轴的垂线交抛物线于点N,使点M、N、C、E是平行四边形的四个顶点?若存在,求点M 的坐标;若不存在,请说明理由;(3)设点P是直线AB下方抛物线上的一动点,当△PAB面积最大时,求点P的坐标,并求△PAB面积的最大值.【分析】(1)将A(0,﹣3)、B(3,0)两点坐标分别代入二次函数的解析式和一次函数解析式即可求解;(2)先求出C点坐标和E点坐标,则CE=2,分两种情况讨论:①若点M在x轴下方,四边形CEMN为平行四边形,则CE=MN,②若点M在x轴上方,四边形CENM为平行四边形,则CE=MN,设M(a,a﹣3),则N(a,a2﹣2a﹣3),可分别得到方程求出点M的坐标;(3)如图,作PG∥y轴交直线AB于点G,设P(m,m2﹣2m﹣3),则G(m,m﹣3),可由,得到m的表达式,利用二次函数求最值问题配方即可.解:(1)∵抛物线y=ax2﹣2x+c经过A(0,﹣3)、B(3,0)两点,∴,∴,∴抛物线的解析式为y=x2﹣2x﹣3,∵直线y=kx+b经过A(0,﹣3)、B(3,0)两点,∴,解得:,∴直线AB的解析式为y=x﹣3,(2)∵y=x2﹣2x﹣3=(x﹣1)2﹣4,∴抛物线的顶点C的坐标为(1,﹣4),∵CE∥y轴,∴E(1,﹣2),∴CE=2,①如图,若点M在x轴下方,四边形CEMN为平行四边形,则CE=MN,设M(a,a﹣3),则N(a,a2﹣2a﹣3),∴MN=a﹣3﹣(a2﹣2a﹣3)=﹣a2+3a,∴﹣a2+3a=2,解得:a=2,a=1(舍去),∴M(2,﹣1),②如图,若点M在x轴上方,四边形CENM为平行四边形,则CE=MN,设M(a,a﹣3),则N(a,a2﹣2a﹣3),∴MN=a2﹣2a﹣3﹣(a﹣3)=a2﹣3a,∴a2﹣3a=2,解得:a=,a=(舍去),∴M(,),综合可得M点的坐标为(2,﹣1)或().(3)如图,作PG∥y轴交直线AB于点G,设P(m,m2﹣2m﹣3),则G(m,m﹣3),∴PG=m﹣3﹣(m2﹣2m﹣3)=﹣m2+3m,∴S△PAB=S△PGA+S△PGB===﹣,∴当m=时,△PAB面积的最大值是,此时P点坐标为().八、(本大题14分)23.数学活动课上,某学习小组对有一内角为120°的平行四边形ABCD(∠BAD=120°)进行探究:将一块含60°的直角三角板如图放置在平行四边形ABCD所在平面内旋转,且60°角的顶点始终与点C重合,较短的直角边和斜边所在的两直线分别交线段AB,AD于点E,F(不包括线段的端点).(1)初步尝试如图1,若AD=AB,求证:①△BCE≌△ACF,②AE+AF=AC;(2)类比发现如图2,若AD=2AB,过点C作CH⊥AD于点H,求证:AE=2FH;(3)深入探究如图3,若AD=3AB,探究得:的值为常数t,则t=.【分析】(1)①先证明△ABC,△ACD都是等边三角形,再证明∠BCE=∠ACF即可解决问题.②根据①的结论得到BE=AF,由此即可证明.(2)设DH=x,由题意,CD=2x,CH=x,由△ACE∽△HCF,得=由此即可证明.(3)如图3中,作CN⊥AD于N,CM⊥BA于M,CM与AD交于点H.先证明△CFN∽△CEM,得=,由AB•CM=AD•CN,AD=3AB,推出CM=3CN,所以==,设CN=a,FN=b,则CM=3a,EM=3b,想办法求出AC,AE+3AF即可解决问题.【解答】解;(1)①∵四边形ABCD是平行四边形,∠BAD=120°,∴∠D=∠B=60°,∵AD=AB,∴△ABC,△ACD都是等边三角形,∴∠B=∠CAD=60°,∠ACB=60°,BC=AC,∵∠ECF=60°,∴∠BCE+∠ACE=∠ACF+∠ACE=60°,∴∠BCE=∠ACF,在△BCE和△ACF中,∴△BCE≌△ACF.②∵△BCE≌△ACF,∴BE=AF,∴AE+AF=AE+BE=AB=AC.(2)设DH=x,由题意,CD=2x,CH=x,∴AD=2AB=4x,∴AH=AD﹣DH=3x,∵CH⊥AD,∴AC==2x,∴AC2+CD2=AD2,∴∠ACD=90°,∴∠BAC=∠ACD=90°,∴∠CAD=30°,∴∠ACH=60°,∵∠ECF=60°,∴∠HCF=∠ACE,∴△ACE∽△HCF,∴==2,∴AE=2FH.(3)如图3中,作CN⊥AD于N,CM⊥BA于M,CM与AD交于点H.∵∠ECF+∠EAF=180°,∴∠AEC+∠AFC=180°,∵∠AFC+∠CFN=180°,∴∠CFN=∠AEC,∵∠M=∠CNF=90°,∴△CFN∽△CEM,∴=,∵AB•CM=AD•CN,AD=3AB,∴CM=3CN,∴==,设CN=a,则CM=3a,∵∠MAH=60°,∠M=90°,∴∠AHM=∠CHN=30°,∴HC=2a,HM=a,HN=a,∴AM=a,AH=a,∴AC==a,AE+3AF=(EM﹣AM)+3(AH+HN﹣FN)=EM﹣AM+3AH+3HN﹣3FN=3AH+3HN﹣AM=a,∴==.故答案为.。
2020年安徽省中考数学一模试卷 (含解析)
2020年安徽省中考数学一模试卷一、选择题(本大题共10小题,共40.0分)1.比−4小的数是()A. −2B. −1C. −6D. 62.计算a6÷(−a)2的结果是()A. a3B. a4C. −a3D. −a43.由一个圆柱体与一个长方体组成的几何体如图所示,这个几何体的左视图是()A.B.C.D.4.2018年安徽省上半年实现GDP约为14264亿元,将14264亿用科学记数法表示为()A. 0.14264×1013B. 1.4264×1013C. 1.4264×1012D. 1.4264×1045.方程x2−kx+1=0有两个相等的实数根,则k的值是()A. 2B. −2C. ±2D. 06.一组数据:201、200、199、202、200,分别减去200,得到另一组数据:1、0、−1、2、0,其中判断错误的是()A. 前一组数据的中位数是200B. 前一组数据的众数是200C. 后一组数据的平均数等于前一组数据的平均数减去200D. 后一组数据的方差等于前一组数据的方差减去2007.一次函数y=kx−1的图象经过点P,且y的值随x值的增大而增大,则点P的坐标可以为()A. (−5,3)B. (1,−3)C. (2,2)D. (5,−1)8.已知Rt△ABC中,∠C=90°,CD是AB边上的高,且AB=5,cosA=45,则CD的长为()A. 35B. 45C. 125D. 1659.下列命题为假命题的是()A. 对顶角相等B. 垂线段最短C. 同位角相等D. 同角的补角相等10.如图,边长分别为2和4的两个等边三角形,开始它们在左边重叠,大△ABC固定不动,然后把小△A′B′C′自左向右平移,直至移到点B′到C重合时停止.设小三角形移动的距离为x,两个三角形的重合部分的面积为y,则y关于x的函数图象是()A. B.C. D.二、填空题(本大题共4小题,共20.0分)11.化简:√25=.12.分解因式:16m2−4=.13.如图,直线l⊥x轴于点P,且与反比例函数y1=k1x(x>0)及y2=k2x(x>0)的图象分别交于点A,B,连接OA,OB,已知△OAB的面积为3,则k1−k2=______.14.如图,把平行四边形ABCD折叠,使点C与点A重合,这时点D落在D1,折痕为EF,若∠BAE=55°,则∠D1AD=____________°.三、解答题(本大题共9小题,共90.0分)15.解不等式:x−22<7−x3.16.如图,已知A(1,−1),B(3,−3),C(4,−1)是直角坐标平面上三点.(1)请画出△ABC关于x轴对称的△A1B1C1;(2)请画出△A1B1C1绕点O逆时针旋转90°后的△A2B2C2;(3)判断以B,B1,B2,为顶点的三角形的形状(无需说明理由).17.观察下列各式:2×6+4=42…………①4×8+4=62…………②6×10+4=82…………③……探索以上式子的规律:(1)试写出第5个等式;(2)试写出第n个等式(用含n的式子表示),并用你所学的知识说明第n个等式成立.18.塔是一种亚洲常见的有着特定的形式和风格的传统建筑.在成都某公园内有一座古塔,如图小亮的目高CD为1.7米,他站在D处测得塔顶的仰角∠ACG为45°,小琴的目高EF为1.5米,她站在距离塔底中心B点a米远的F处,测得塔顶仰角∠AEH为62.3°.(点D、B、F在同一水平线上,参考数据:sin62.3°≈0.89,cos62.3°≈0.46,tan62.3°≈1.9)(1)求小亮与塔底中心的距离BD;(用含a的式子表示)(2)若小亮与小琴相距52米,求慈氏塔的高度AB.19.据了解某市区居民生活用水开始实行阶梯式计量水价,实行的阶梯式计量水价分为三级(污水处理费、垃圾处理费等另计),如下表所示:例:若某用户2016年9月份的用水量为35吨,按三级计算则应交水费为:20×1.6+10×2.4+ (35−20−10)×4.8=80(元)(1)如果小白家2016年6月份的用水量为10吨,则需缴交水费______ 元;(2)如果小明家2016年7月份缴交水费44元,那么小明家2016年7月份的用水量为多少吨?(3)如果小明家2016年8月份的用水量为a吨,那么则小明家该月应缴交水费多少元?(用含a的代数式表示)20.如图,在△ABC中,AB=BC,以AB为直径的⊙O交BC于点D,交AC于点F,过点C作CE//AB,与过点A的切线相交于点E,连接AD.(1)求证:AD=AE;(2)若AB=10,AC=4√5,求AE的长.21.合肥46中体育组为了解全校学生“最喜欢的一项球类项目”,随机抽取了部分学生进行调查,下面是根据调查结果绘制的不完整的统计图.请你根据统计图回答下列问题:(1)“喜欢乒乓球”的学生所占的百分比是__________并请补全条形统计图(图2);(2)请你估计全校1200名学生中“喜欢足球”项目的有__________名;(3)在扇形统计图中,“喜欢篮球”部分所对应的圆心角是__________度;(4)从“喜欢排球”的6人(4男2女)和“喜欢其他”的2人(1男1女)中各选1人参加座谈,被选中的两人恰好是1男1女的概率是多少?22.如图,已知点A(0,2),B(2,2),C(−1,−2),抛物线F:y=x2−2mx+m2−2与直线x=−2交于点P.(1)当抛物线F经过点C时,求它的表达式;(2)设点P的纵坐标为y p,求y p的最小值,此时抛物线F上有两点(x1,y1),(x2,y2),且x1<x2≤−2,比较y1与y2的大小.23.已知矩形ABCD的对角线AC、BD相交于点O,∠AOB=60°,点E为边BC上的一点,连接EO并延长,交CD的延长线于点F.(1)如图1,若EF⊥AC.①求证:BC=OF②求证:AB2=BE⋅OF(2)如图2,若AB=BE⋅BC,求OFOD 的值.【答案与解析】1.答案:C解析:本题考查了有理数比较大小,两负数比较大小,绝对值大的数反而小是解题关键.根据两负数比较大小,绝对值大的数反而小,可得答案.解:−6<−4,故选C.2.答案:B解析:解:原式=a6÷a2=a4.故选B.首先计算(−a)2,然后利用同底数的幂的除法法则即可求解.本题考查同底数幂的除法法则,理解法则是关键.3.答案:D解析:解:从左面可看到一个长方形和上面的中间有一个小长方形.故选D.找到从左面看所得到的图形即可.本题主要考查了三视图的知识,左视图是从物体的左面看得到的视图.4.答案:C解析:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.解:14264亿=1.4264×1012,故选C.5.答案:C解析:本题考查了根的判别式的应用,注意:一元二次方程ax2+bx+c=0(a、b、c为常数,a≠0),当b2−4ac>0时,方程有两个不相等的实数根;当b2−4ac=0时,方程有两个相等的实数根;当b2−4ac<0时,方程无实数根.根据已知得出△=0,代入求出即可.解:∵方程x2−kx+1=0有两个相等的实数根,∴△=(−k)2−4×1×1=0,解得:k=±2,故选C.6.答案:D解析:本题主要考查方差,中位数,众数,算术平均数,一组数据中出现次数最多的那个数据叫做这组数据的众数;一组数据按从大到小(或从小到大)的顺序排列,处于最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数;平均数是指在一组数据中所有数据之和再除以数据的个数;方差为这组数据与平均数差的平方的平均数,据此可逐项求解.解:A.前组数据的众数是200,故该选项说法正确;B.前组数据的中位数是200,故该选项说法正确;C.后一组数据的平均数等于前一组数据的平均数减去200,故该选项说法正确;D.后一组数据的方差等于前一组数据的方差,故该选项说法错误.故选D.7.答案:C解析:本题考查了一次函数图象上点的坐标特征,一次函数的性质,根据题意求得k >0是解题的关键. 将选项的各点代入解析式,求出k 的值,再与0比较大小即可.解:一次函数y =kx −1的图象的y 值随x 值的增大而增大,∴k >0,A .把点(−5,3)代入y =kx −1得到:k =−45<0,不符合题意;B .把点(1,−3)代入y =kx −1得到:k =−2<0,不符合题意;C .把点(2,2)代入y =kx −1得到:k =32>0,符合题意;D .把点(5,−1)代入y =kx −1得到:k =0,不符合题意;故选C . 8.答案:C解析:解:∵Rt △ABC 中,∠C =90°,AB =5,cosA =45,cosA =AC AB ,∴AC =4,∴BC =√52−42=3,∵AC⋅BC 2=AB⋅CD 2, ∴4×32=5×CD 2,解得,CD =125,故选:C . 根据Rt △ABC 中,∠C =90°,AB =5,cosA =45,可以求得AC 的长,然后根据勾股定理即可求得BC 的长,然后根据等积法即可求得CD 的长.本题考查解直角三角形、勾股定理,解答本题的关键是明确题意,利用锐角三角函数和勾股定理解答. 9.答案:C解析:此题主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.根据真命题与假命题的定义分别进行判断即可求出答案;正确的命题叫真命题,错误的命题叫做假命题.解:A.对顶角相等;真命题;B.垂线段最短;真命题;C.同位角相等;假命题;同位角不一定相等;D.同角的补角相等;真命题;故选C.10.答案:C解析:本题考查动点问题的函数图象,根据题意可知在点C′移动到点C的过程中,重合部分的面积不变,可以算出相应的面积,C′继续向右移动可以求出相应的重合部分的面积,从而可得到相应的函数解析式,从而可以明确哪个选项是正确的.解:由题意可知,当C′从左向右移动到C的位置时,△ABC与△A′B′C′重合的面积是△A′B′C′的面积,∵△A′B′C′是等边三角形,边长等于2,∴S△A′B′C′=2×√3×12=√3;①当x≤2时,两个三角形重叠面积为:y=12×2×√3=√3;②当2<x≤4时,两个三角形重叠面积为:y=12(4−x)×√32(4−x)=√34x2−2√3x4√3=√34(4−x)2此时函数图象为抛物线,开口向上,顶点坐标是(4,0).故选C.11.答案:5解析:本题主要考查二次根式的性质与化简,属于简单题.直接利用二次根式的性质化简求出即可.解:√25=5.故答案为5.12.答案:4(2m+1)(2m−1)解析:此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.原式提取4,再利用平方差公式分解即可.解:原式=4(4m2−1)=4[(2m)2−1]=4(2m+1)(2m−1),故答案为4(2m+1)(2m−1).13.答案:6解析:由反比例函数的图象过第一象限可得出k1>0,k2>0,再由反比例函数系数k的几何意义即可得出S△OAP=12k1,S△OBP=12k2,根据△OAB的面积结合三角形之间的关系即可得出结论.本题考查了反比例函数与一次函数的交点问题以及反比例函数系数k的几何意义,属于基础题,用系数k来表示出三角形的面积是关键.解:∵反比例函数y1=k1x (x>0)及y2=k2x(x>0)的图象均在第一象限内,∴k1>0,k2>0.∵AP⊥x轴,∴S△OAP=12k1,S△OBP=12k2.∴S△OAB=S△OAP−S△OBP=12(k1−k2)=3,解得:k1−k2=6.故答案为:6.14.答案:55°解析:本题考查了平行四边形的性质、折叠的性质;由平行四边形和折叠的性质得出∠D1AE=∠BAD是解决问题的关键.由平行四边形的性质和折叠的性质得出∠D1AE=∠BAD,得出∠D1AD=∠BAE即可.解:∵四边形ABCD是平行四边形,∴∠BAD=∠C,由折叠的性质得:∠D1AE=∠C,∴∠D1AE=∠BAD,∴∠D1AD+∠EAD=∠BAE+∠EAD,∴∠D1AD=∠BAE=55°,故答案为55°.15.答案:解:去分母得:3(x−2)<2(7−x),去括号得:3x−6<14−2x,移项合并得:5x<20,系数化1,得:x<4.解析:根据解不等式的步骤:去分母、去括号、移项、合并同类项、系数化为1求解即可求得答案.此题考查了一元一次不等式的解法.注意解不等式依据不等式的基本性质,特别是在系数化为1这一个过程中要注意不等号的方向的变化.去分母的过程中注意不能漏乘没有分母的项.16.答案:解:(1)△A1B1C1如图所示.(2)△A2B2C2如图所示.(3)△BB1B2是等腰直角三角形.解析:本题考查作图−旋转变换,轴对称变换,等腰三角形的判定等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.(1)分别作出A,B,C的对应点A1,B1,C1即可.(2)分别作出点A1,B1,C1的对应点A2,B2,C2即可.(3)△BB1B2是等腰直角三角形.17.答案:解:(1)第5个等式:10×14+4=122;(2)第n个等式:2n(2n+4)+4=(2n+2)2;证明:∵2n(2n+4)+4=4n2+8n+4,(2n+2)2=4n2+8n+4,∴2n(2n+4)+4=(2n+2)2,故原等式成立.解析:(1)根据观察发现,发现第5个等式:10×14+4=122;(2)根据观察发现,发现第n个等式:2n(2n+4)+4=(2n+2)2;将等式两边展开,即可证明等式相等.本题考查了数字的规律变化,要求学生通过观察数字,分析、归纳并发现其中的规律,并应用规律解决问题是解题的关键.18.答案:解:(1)由题意得,四边形CDBG、HBFE为矩形,∴GB=CD=1.7,HB=EF=1.5,∴GH=0.2,在Rt△AHE中,tan∠AEH=AH,HE则AH=HE⋅tan∠AEH≈1.9a,∴AG=AH−GH=1.9a−0.2,在Rt△ACG中,∠ACG=45°,∴CG=AG=1.9a−0.2,∴BD=1.9a−0.2,答:小亮与塔底中心的距离BD为(1.9a−0.2)米;(2)由题意得,1.9a−0.2+a=52,解得,a=18,则AG=1.9a−0.2=34,∴AB=AG+GB=35.7,答:慈氏塔的高度AB为35.7米.解析:本题考查的是解直角三角形的应用−仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.(1)根据正切的定义用a先表示出AH,根据等腰直角三角形的性质计算;(2)根据题意列方程求出a,结合图形计算,得到答案.19.答案:(1)16(2)∵20×1.6=32(元)、20×1.6+10×2.4=56(元)∵32<44<56∴小明家2016年7月份缴交水费属于第二级设小明家2016年7月份的用水量为x吨,根据题意,得:20×1.6+2.4(x−20)=44解得:x=25答:小明家2016年7月份的用水量为25吨;(3).当0≤a≤20时,该月应缴交水费为1.6a元;当20≤a≤30时,该月应缴交水费为1.6×20+2.4(a−20)=2.4a−16元;当a≥30时,该月应缴交水费为1.6×20+2.4×10+4.8(a−30)=4.8a−88元.解析:本题考查了整式的加减、列代数式、列一元一次方程解应用题;明确题意得出关系进行计算是解决问题的关键.(1)判断得到10吨为20吨以下,由表格中的水价计算即可得到结果;(2)判断得7月份用水量在20吨−30吨之间,设为x吨,根据水费列出方程,求出方程的解即可得到结果;(3)根据a的范围,按照第3级收费方式,计算即可得到结果.解:(1)1.6×10=16;故答案为16;(2)见答案;(3)见答案.20.答案:(1)证明:∵AE与⊙O相切,AB是⊙O的直径,∴∠BAE=90°,∠ADB=90°=∠ADC,∵CE//AB,∴∠E=90°,∴∠E=∠ADB,∵在△ABC中,AB=BC,∴∠BAC=∠BCA,∵AB//CE,∴∠BAC=∠ACE,∴∠BCA=∠ACE,又∵AC=AC,∴△ADC≌△AEC(AAS),∴AD═AE;(2)解:设BD=x,CD=10−x,AD2=AB2−BD2=AC2−CD2,即102−x2=(4√5)2−(10−x)2,解得:x=6,∴AD=AE=8.解析:本题主要考查的是切线的性质,圆周角定理及其推论,全等三角形的判定及性质,平行线的性质,等腰三角形的性质,勾股定理等有关知识.(1)利用平行线的性质,圆的性质和等腰三角形的性质,证明△AEC和△ADC全等即可证明AD=AE,(2)设BD=x,CD=10−x,利用勾股定理即可求出AE的长.21.答案:解:(1)28%;(2)192;(3)144;(4)如图:总情况有12种,被选中的两人恰好是1男1女的有6种,被选中的两人恰好是1男1女的概率是612=12.解析:本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.也考查了统计图.(1)先利用喜欢足球的人数和它所占的百分比计算出调查的总人数,再计算出喜欢乒乓球的人数,然后补全条形统计图;(2)用1200乘以样本中喜欢排球的百分比可根据估计全校1200名学生中最喜欢“足球”项目的写生数;(3)用360°乘以喜欢篮球人数所占的百分比即可;(4)画树状图展示所有12种等可能的结果数,再找出抽取的两人恰好是甲和乙的结果数,然后根据概率公式求解.解:(1)调查的总人数为8÷16%=50(人),喜欢乒乓球的人数为50−8−20−6−2=14(人),×100%=28%,所以喜欢乒乓球的学生所占的百分比=1450补全条形统计图如下:故答案为28%;(2)1200×16%=192(人),故答案为192;(3)篮球”部分所对应的圆心角=360 ∘×40%=144°;(4)见答案.22.答案:解:(1)∵抛物线F经过点C(−1,−2),∴−2=1+2m+m2−2,∴m=−1,∴抛物线F的表达式是y=x2+2x−1.(2)当x=−2时,y P=4+4m+m2−2=(m+2)2−2,∴当m=−2时,y P的最小值为−2.此时抛物线F的表达式是y=(x+2)2−2,∴当x≤−2时,y随x的增大而减小.∵x1<x2≤−2,∴y1>y2.解析:本题考查了待定系数法求二次函数的解析式,二次函数的性质,二次函数图象上点的坐标特征,熟练掌握二次函数的性质是解题的关键.(1)根据待定系数法即可求得;(2)把x=−2代入解析式得到P点的纵坐标y P=4+4m+m2−2=(m+2)2−2,即可得到当m=−2时,y P的最小值为−2,然后根据二次函数的性质即可判断y1与y2的大小.23.答案:证明:(1)①∵四边形ABCD是矩形,∴AB//CD,∠ABC=90°,OB=OA=OC,∵∠AOB=60°,∴△AOB是等边三角形,∴AB=OB=OC,∵EF⊥AC,∴∠COF=90°,∴∠ABC=∠COF,∵AB//CD,∴∠OCF=∠BAC,在△ABC和△COF中{∠BAC=∠OCF AB=OC∠ABC=∠COF,∴△ABC≌△COF(ASA),∴BC=OF;②∵四边形ABCD是矩形,∴OB=OC,∴∠OBC=∠OCB,∵∠AOB=60°,∠AOB=∠OBC+∠OCB,∴∠OBC=∠OCB=30°,∵∠COF=90°=∠AOE,∴∠CEO=60°,∠EOB=30°,∴∠EOB=∠OCB,∵∠EBO=∠OBC,∴△EOB∽△OCB,∴BEBO =BOBC,即BO2=BE⋅BC,由①可知BC=OF,AB=BO,∴AB2=BE⋅OF;(2)∵四边形ABCD是矩形,∴OB=OC=OD,∠BCD=90°,∵∠AOB=60°,∴△AOB是等边三角形,∴AB=OB=OC=OD,∵∠AOB=∠OBC+∠OCB,∴∠OBC=∠OCB=30°,∵AB2=BE⋅BC,∴OB2=BE⋅BC,∴OBBE =BCOB,∵∠EBO=∠OBC,∴△EOB∽△OCB,∴∠EOB=∠OCB=30°,∴∠OCF=60°,∵∠DOF=∠EOB,∠COD=∠AOB,∴∠COF=90°,∴OFOD =OFOC=tan∠OCF=√3.解析:(1)①根据矩形的性质和等边三角形的性质以及全等三角形的判定和性质得出△ABC与△COF 全等,进而证明即可;②利用矩形的性质和相似三角形的判定和性质得出比例式即可;(2)根据矩形的性质和等边三角形的性质,利用比例式解答即可.此题属于四边形的综合题.考查了矩形的性质、全等三角形的判定和性质、相似三角形的判定和性质等知识.根据矩形的性质和等边三角形的性质以及全等三角形的判定和性质得出△ABC与△COF 全等是解此题的关键.。
2020-2021学年安徽省合肥市中考数学一模试卷及答案解析
安徽省中考数学一模试卷一、选择题(每小题4分,共40分)1.(4分)在0、﹣3、1、4这四个数中,最小的数是()A.0 B.﹣3 C.1 D.42.(4分)在2017﹣2019年三年建设计划,合肥市大建设涉及八大类工程,安排项目总计2399个,项目总投资4626亿元,用科学记数法表示“4626亿”是()A.4626×108B.4626×109C.4.626×1010D.4.626×10113.(4分)下列计算正确的是()A.a3﹣a2B.(ab3)2=a2b5C.3a2•a﹣1=3a D.a6÷a2=a34.(4分)如图,已知a∥b,直角三角板的直角顶点在直线b上,若∠1=60°,则∠2等于()A.30°B.40°C.50°D.60°5.(4分)如图所示的几何体的俯视图是()A .B .C .D .6.(4分)不等式组的解集在数轴上表示正确的是()A .B .C .D .7.(4分)2013年安庆市体育考试跳绳项目为学生选考项目,下表是某班模拟考试时10名同学的测试成绩(单位:个/分钟),则关于这10名同学每分钟跳绳的测试成绩,下列说法错误的是()140160169170177180成绩(个/分钟)人数111232 A.众数是177 B.平均数是170C.中位数是173.5 D.方差是1358.(4分)如图,AB、AC是⊙O的两条弦,∠BAC=25°,过点C的切线与OB的延长线交于点D,则∠D的度数为()A.25°B.30°C.35°D.40°9.(4分)在一张为10cm,宽为8cm的矩形纸片上,要剪下一个腰长为5cm的等腰三角形(要求:等腰三角形的一个顶点与矩形的顶点A重合,其余的两个顶点都在矩形边上),这个等腰三角形有几种剪法()A.1 B.2 C.3 D.410.(4分)如图(如图1所示)在△ABC中,∠ACB=90°,∠A=30°,BC=4,沿斜边AB的中线CD把这个三角形剪成△AC1D1和△BC2D2两个三角形(如图2所示).将△AC1D1沿直线D2B方向平移(点A,D1,D2,B始终在同一直线上),当点D1于点B重合时,平移停止.设平移距离D1D2为x,△AC1D1和△BC2D2的重叠部分面积为y,在y与x的函数图象大致是()A.B.C.D.二、填空题(每小题3分,共15分)11.(3分)分解因式:2a2﹣8a+8= .12.(3分)将直线y=4x+1向下平移3个单位长度,得到直线解析式为.13.(3分)如图,⊙O中,弦BC垂直平分半径OA,若BC=2,则弧AC的长度为.14.(3分)如图,在△ABC中,DE垂直平分BC,垂足为点D,交AB于点E,且AD=AC,EC交AD于点F,下列说法:①△ABC∽△FDC;②点F是线段AD的中点;③S△AEF:S△AFC=1:4;④若CE平分∠ACD,则∠B=30°,其中正确的结论有(填写所有正确结论的序号).三、解答题(共55分)15.计算:(﹣1)2017++|﹣|﹣2sin45°.16.先化简,再求值:(),x在1、2、﹣3中选取合适的数代入求值.四、(每小题8分,共16分)17.(8分)如图,△ABC的顶点坐标分别为A(1,3),B(4,2),C(2,1).(1)作出与△ABC关于x轴对称的△A1B1C1.(2)以原点O为位似中心,在原点的另一个侧画出△A2B2C2.使=,并写出A2、B2、C2的坐标.18.(8分)将一张正方形纸片剪成四个大小、形状一样的小正方形(如图所示),记为第一次操作,然后将其中的一片又按同样的方法剪成四小片,记为第二次操作,如此循环进行下去.请将下表中空缺的数据填写完整,并解答所提出的问题:操作次数1234…正方形个数47…(1)如果剪100次,共能得到个正方形;(2)如果剪n次共能得到b n个正方形,试用含有n、b n的等式表示它们之间的数量关系;(3)若原正方形的边长为1,设a n表示第n次所剪的正方形的边长,试用含n的式子表示a n;(4)试猜想a1+a2+a3+a4+…+a n﹣1+a n与原正方形边长的数量关系,并用等式写出这个关系.五、(每小题10分,共20分)19.(10分)随着近几年我市私家车日越增多,超速行驶成为引发交通事故的主要原因之一.某中学数学活动小组为开展“文明驾驶、关爱家人、关爱他人”的活动,设计了如下检测公路上行驶的汽车速度的实验:先在公路旁边选取一点P,在笔直的车道m上确定点O,使PO和m垂直,测得PO的长等于21米,在m上的同侧取点A、B,使∠PAO=30°,∠PBO=60°.(1)求A、B之间的路程(保留根号);(2)已知本路段对校车限速为12米/秒若测得某校车从A到B用了2秒,这辆校车是否超速?请说明理由.20.(10分)为弘扬中华传统文化,黔南州近期举办了中小学生“国学经典大赛”,比赛项目为:A.唐诗;B.宋词;C.论语;D.三字经.比赛形式为两人对抗赛,即把四种比赛项目写在4张完全相同的卡片上,比赛时,比赛的两人从中随机抽取1张卡片作为自己的比赛项目(不放回,且每人只能抽取一次)比赛时,小红和小明分到一组.(1)小明先抽取,那么小明抽到唐诗的概率是多少?(2)小红擅长唐诗,小红想:“小明先抽取,我后抽取”抽到唐诗的概率是不同的,且小明抽到唐诗的概率更大,若小红后抽取,小红抽中唐诗的概率是多少?小红的想法对吗?21.如图,在直角坐标系平面内,函数y=(x>0,m是常数)的图象经过A(1,4)、B(a,b),其中a>1,过点A作x轴的垂线,垂足为C,过点B作y轴的垂线,垂足为D,连接AD,AB,DC,CB.(1)求反比例函数解析式;(2)当△ABD的面积为S,试用a的代数式表示求S.(3)当△ABD的面积为2时,判断四边形ABCD的形状,并说明理由.22.如图△ABC和△DEC都是等腰三角形,点C为它们的公共直角顶点,连AD、BE,F为线段AD的中点,连CF.(1)如图1,当D点在BC上时,BE与CF的数量关系是.(2)如图2,把△DEC绕C点顺时针旋转90°,其他条件不变,问(1)中的关系是否仍然成立?请说明理由.(3)如图3,把△DEC绕C点顺时针旋转一个钝角,其他条件不变,问(1)中的关系是否仍然成立?如成立请证明,如果不成立,请写出相应的正确的结论并加以证明.23.中国高铁迅猛发展,给我们的出行带来极大的便捷,如图1,是某种新设计动车车头的纵截面一部分,曲线OBA是一开口向左,对称轴正好是水平线OC的抛物线的一部分,点A、B是车头玻璃罩的最高点和最低点,AC、BD是两点到车厢底部的距离,OD=1.5米,BD=1.5米,AC=3米,请你利用所学的函数知识解决以下问题.(1)为了方便研究问题,需要把曲线OBA绕点O旋转转化为我们熟悉的函数,请你在所给的方框内,画出你旋转后函数图象的草图,在图中标出点O、A、B、C、D对应的位置,并求你所画的函数的解析式.(2)如图2,驾驶员座椅安装在水平线OC上一点P处,实验表明:当PA+PB最小时,驾驶员驾驶时视野最佳,为了达到最佳视野,求OP的长.(3)驾驶员头顶到玻璃罩的高度至少为0.3米才感到压抑,一个驾驶员坐下时头顶到椅面的距离为1米,在(2)的情况下,座椅最多条件到多少时他才感到舒适?参考答案与试题解析一、选择题(每小题4分,共40分)1.(4分)在0、﹣3、1、4这四个数中,最小的数是()A.0 B.﹣3 C.1 D.4【解答】解:在0、﹣3、1、4这四个数中,最小的数是﹣3,故选:B.2.(4分)在2017﹣2019年三年建设计划,合肥市大建设涉及八大类工程,安排项目总计2399个,项目总投资4626亿元,用科学记数法表示“4626亿”是()A.4626×108B.4626×109C.4.626×1010D.4.626×1011【解答】解:用科学记数法表示“4626亿”是4.626×1011,故选:D.3.(4分)下列计算正确的是()A.a3﹣a2B.(ab3)2=a2b5C.3a2•a﹣1=3a D.a6÷a2=a3【解答】解:A、a3﹣a2,无法计算,故此选项错误;B、(ab3)2=a2b6,故此选项错误;C、3a2•a﹣1=3a,正确;D、a6÷a2=a4,故此选项错误;故选:C.4.(4分)如图,已知a∥b,直角三角板的直角顶点在直线b上,若∠1=60°,则∠2等于()A.30°B.40°C.50°D.60°【解答】解:∵a∥b,∠1=60°,∴∠3=∠1=60°,∴∠2=90°﹣∠3=90°﹣60°=30°.故选:A.5.(4分)如图所示的几何体的俯视图是()A.B.C.D.【解答】解:从上往下看,该几何体的俯视图与选项D所示视图一致.故选:D.6.(4分)不等式组的解集在数轴上表示正确的是()A.B.C.D.【解答】解:,解①得x≤1,解②得x>﹣3.故选:D.7.(4分)2013年安庆市体育考试跳绳项目为学生选考项目,下表是某班模拟考试时10名同学的测试成绩(单位:个/分钟),则关于这10名同学每分钟跳绳的测试成绩,下列说法错误的是()成绩(个/分140160169170177180钟)人数111232 A.众数是177 B.平均数是170C.中位数是173.5 D.方差是135【解答】解:A、这组数据中177出现次数最多,即众数为177,此选项正确;B、这组数据的平均数是:(140+160+169+170×2+177×3+180×2)÷10=170,此选项正确;C、∵共有10个数,∴中位数是第5个和6个数的平均数,∴中位数是(170+177)÷2=173.5;此选项正确;D、方差=[(140﹣170)2+(160﹣170)2+(169﹣170)2+2×(170﹣170)2+3×(177﹣170)2+2×(180﹣170)2]=134.8;此选项错误;故选:D.8.(4分)如图,AB、AC是⊙O的两条弦,∠BAC=25°,过点C的切线与OB的延长线交于点D,则∠D的度数为()A.25°B.30°C.35°D.40°【解答】解:连接OC,∵CD是⊙O的切线,点C是切点,∴∠OCD=90°.∵∠BAC=25°,∴∠COD=50°,∴∠D=180°﹣90°﹣50°=40°.故选:D.9.(4分)在一张为10cm,宽为8cm的矩形纸片上,要剪下一个腰长为5cm的等腰三角形(要求:等腰三角形的一个顶点与矩形的顶点A重合,其余的两个顶点都在矩形边上),这个等腰三角形有几种剪法()A.1 B.2 C.3 D.4【解答】解:有两种情况:①当∠A为顶角时,如图1,此时AE=AF=5cm.②当∠A为底角时,如图2,此时AE=EF=5cm.故选:B.10.(4分)如图(如图1所示)在△ABC中,∠ACB=90°,∠A=30°,BC=4,沿斜边AB的中线CD把这个三角形剪成△AC1D1和△BC2D2两个三角形(如图2所示).将△AC1D1沿直线D2B方向平移(点A,D1,D2,B始终在同一直线上),当点D1于点B重合时,平移停止.设平移距离D1D2为x,△AC1D1和△BC2D2的重叠部分面积为y,在y与x的函数图象大致是()A.B.C.D.【解答】解:如图3,当0≤x≤4时,∵D2D1=x∴D1E=BD1=D2F=AD2=4﹣x,∴C2F=C1E=x.∵在△ABC中,∠ACB=90°,∠A=30°,BC=4,∴∠B=60°,过C作CH⊥AB于H,∴CH=2,∵在△ABC中,sin∠CDB=,∴sin∠ED1B==.设△BED1的BD1边上的高为h,∴h=,∴S△BD1E=×BD1×h=(4﹣x)2.∵∠C1+∠C2=90°,∴∠FPC2=90°.∵∠C2=∠B,∴sin∠B=,cos∠B=,∴PC2=x,PF=x,∴S△FC2P=PC2•PF=x2∴y=S△D2C2B﹣S△BD1E﹣S△FC2P=(4﹣x)﹣(4﹣x)2﹣x2=﹣x2+x ∴y=﹣x2+x.∴y与x的函数图象大致是C选项,故选:C.二、填空题(每小题3分,共15分)11.(3分)分解因式:2a2﹣8a+8= 2(a﹣2)2.【解答】解:2a2﹣8a+8=2(a2﹣4a+4)=2(a﹣2)2.故答案为:2(a﹣2)2.12.(3分)将直线y=4x+1向下平移3个单位长度,得到直线解析式为y=4x﹣2 .【解答】解:将直线y=4x+1向下平移3个单位长度后得到的直线解析式为y=4x+1﹣3,即y=4x﹣2.故答案为y=4x﹣2.13.(3分)如图,⊙O中,弦BC垂直平分半径OA,若BC=2,则弧AC的长度为π.【解答】解:如图,设BC⊥OA于D.∵BC垂直平分半径AO,∴OD=OA=OC,CD=BC=,∴∠OCD=30°,∠AOC=60°,∴OC==2,∴弧AC的长度为=π.故答案为π.14.(3分)如图,在△ABC中,DE垂直平分BC,垂足为点D,交AB于点E,且AD=AC,EC交AD于点F,下列说法:①△ABC∽△FDC;②点F是线段AD的中点;③S△AEF:S△AFC=1:4;④若CE平分∠ACD,则∠B=30°,其中正确的结论有①②④(填写所有正确结论的序号).【解答】解:∵AD=AC,∴∠FDC=∠ACB,∵DE垂直平分BC,∴EB=EC,∴∠B=∠ECB,∴△ABC∽△FCD,故①正确;∵△ABC∽△FCD,∴,∴DF=AC=AD,故②正确;如图,过F作FG∥BC交AB于G,则∵F是AD的中点,∴,∴GF=BD=BC,∵GF∥BC,∴,∴EF=EC,即EF=CF,∴EF:FC=1:3,∴S△AEF:S△AFC=1:3,故③错误;∵CF平分∠ACD,∴∠ACE=∠BCE=∠B,设∠ACE=∠BCE=∠B=α,则∠ACD=2α=∠ADC,∴∠BAD=∠ADC﹣∠B=α,∴∠B=∠BAD,∴BD=AD=CD,∴∠DAC=∠DCA=2α,∵△ABC中,∠B+∠BAC+∠BCA=180°,∴α+(a+2α)+2α=180°,∴α=30°,即∠B=30°,故④正确;故答案为:①②④.三、解答题(共55分)15.计算:(﹣1)2017++|﹣|﹣2sin45°.【解答】解:原式=﹣1+9+﹣2×=8+﹣=8.16.先化简,再求值:(),x在1、2、﹣3中选取合适的数代入求值.【解答】解:原式=•=当x=2时,原式==﹣13四、(每小题8分,共16分)17.(8分)如图,△ABC的顶点坐标分别为A(1,3),B(4,2),C(2,1).(1)作出与△ABC关于x轴对称的△A1B1C1.(2)以原点O为位似中心,在原点的另一个侧画出△A2B2C2.使=,并写出A2、B2、C2的坐标.【解答】解:(1)如图所示:△A1B1C1,即为所求;(2)如图所示:△A2B2C2,即为所求;∵=,A(1,3),B(4,2),C(2,1),∴A2(﹣2,﹣6),B2(﹣8,﹣4),C2(﹣4,﹣2).18.(8分)将一张正方形纸片剪成四个大小、形状一样的小正方形(如图所示),记为第一次操作,然后将其中的一片又按同样的方法剪成四小片,记为第二次操作,如此循环进行下去.请将下表中空缺的数据填写完整,并解答所提出的问题:操作次数1234…正方形个数4710 13 …(1)如果剪100次,共能得到301 个正方形;(2)如果剪n次共能得到b n个正方形,试用含有n、b n的等式表示它们之间的数量关系b n=3n+1 ;(3)若原正方形的边长为1,设a n表示第n次所剪的正方形的边长,试用含n的式子表示a n=;(4)试猜想a1+a2+a3+a4+…+a n﹣1+a n与原正方形边长的数量关系,并用等式写出这个关系1﹣.【解答】解:观察图形知道:剪一次,有4个小正方形,剪两次有7个小正方形,剪三次有10个小正方形,剪四次有13个小正方形,规律:每多剪一刀就会增加3个小正方形,故第n个共有4+3(n﹣1)=3n+1个,(1)令n=100得3n+1=3×100=301;(2)剪n次共能得到b n个正方形,则用含有n、b n的等式表示它们之间的数量关系为b n=3n+1;(3)第一次所剪的正方形的边长为,第二次所剪的正方形的边长为;第三次所剪的正方形的边长为,…第n次所剪的正方形的边长a n=;(4)a1+a2+a3+a4+…+a n﹣1+a n=+++…+=1﹣故答案为:(1)301;(2)b n=3n+1;(3);(4)1﹣.五、(每小题10分,共20分)19.(10分)随着近几年我市私家车日越增多,超速行驶成为引发交通事故的主要原因之一.某中学数学活动小组为开展“文明驾驶、关爱家人、关爱他人”的活动,设计了如下检测公路上行驶的汽车速度的实验:先在公路旁边选取一点P,在笔直的车道m上确定点O,使PO和m垂直,测得PO的长等于21米,在m上的同侧取点A、B,使∠PAO=30°,∠PBO=60°.(1)求A、B之间的路程(保留根号);(2)已知本路段对校车限速为12米/秒若测得某校车从A到B用了2秒,这辆校车是否超速?请说明理由.【解答】解:(1)在Rt△AOP中,∵PO=21米,∠PAO=30°,∴AO===21(米);在Rt△BOP中,∵PO=21米,∠PBO=60°,∴BO===7(米),∴AB=AO﹣BO=14米;(2)这辆校车超速;理由如下:∵校车从A到B用时2秒,∴速度为14÷2=7(米/秒)>12米/秒,∴这辆校车在AB路段超速.20.(10分)为弘扬中华传统文化,黔南州近期举办了中小学生“国学经典大赛”,比赛项目为:A.唐诗;B.宋词;C.论语;D.三字经.比赛形式为两人对抗赛,即把四种比赛项目写在4张完全相同的卡片上,比赛时,比赛的两人从中随机抽取1张卡片作为自己的比赛项目(不放回,且每人只能抽取一次)比赛时,小红和小明分到一组.(1)小明先抽取,那么小明抽到唐诗的概率是多少?(2)小红擅长唐诗,小红想:“小明先抽取,我后抽取”抽到唐诗的概率是不同的,且小明抽到唐诗的概率更大,若小红后抽取,小红抽中唐诗的概率是多少?小红的想法对吗?【解答】解:(1)小明先抽取,那么小明抽到唐诗的概率为;(2)小红的想法不对.理由如下:画树状图为:共有12种等可能的结果数,其中红明抽到唐诗的结果数为3,所以小红抽中唐诗的概率==,所以小明抽到唐诗的概率和小红抽到唐诗的概率一样大.21.如图,在直角坐标系平面内,函数y=(x>0,m是常数)的图象经过A(1,4)、B(a,b),其中a>1,过点A作x轴的垂线,垂足为C,过点B作y轴的垂线,垂足为D,连接AD,AB,DC,CB.(1)求反比例函数解析式;(2)当△ABD的面积为S,试用a的代数式表示求S.(3)当△ABD的面积为2时,判断四边形ABCD的形状,并说明理由.【解答】解:(1)把A(1,4)代入y=得m=1×4=4,所以反比例函数解析式为y=;(2)把B(a,b)代入y=得b=,所以S=•a•(4﹣)=2a﹣2;(3)四边形ABCD为菱形.理由如下:当S=2时,2a﹣2=2,解得a=2,所以AC与BD互相垂直平分,所以四边形ABCD为菱形.22.如图△ABC和△DEC都是等腰三角形,点C为它们的公共直角顶点,连AD、BE,F为线段AD的中点,连CF.(1)如图1,当D点在BC上时,BE与CF的数量关系是BE=2CF .(2)如图2,把△DEC绕C点顺时针旋转90°,其他条件不变,问(1)中的关系是否仍然成立?请说明理由.(3)如图3,把△DEC绕C点顺时针旋转一个钝角,其他条件不变,问(1)中的关系是否仍然成立?如成立请证明,如果不成立,请写出相应的正确的结论并加以证明.【解答】解:(1)∵△ABC是等腰直角三角形,∴AC=BC,∵△CDE是等腰直角三角形,∴CD=CE,在△ACD和△BCE中,,∴△ACD≌△BCE,∴AD=BE,在Rt△ACD中,点F是AD中点,∴AD=2CF,∴BE=2CF,故答案为BE=2CF;(2)(1)中的关系是仍然成立,理由:∵点F是AD中点,∴AD=2DF,∴AC=AD+CD=2DF+CD,∵△ABC和△CDE是等腰直角三角形,∴AC=BC,CD=CE,∴BC=2DF+CE,∴BE=BC+CE=2DF+CE+CE=2(DF+CE),∵CF=DF+CD=DF+CD,∴BE=2CF;(3)(1)中的关系是仍然成立,理由:如图3,延长CF至G使FG=CF,即:CG=2CF,∵点F是AD中点,∴AF=DF,在△CDF和△GAF中,,∴△CDF≌△GAF,∴AG=CD=CE,∠CDF=∠GAF,∴∠CAG=∠CAD+∠GAF=∠CAD+∠ADC=180°﹣∠ACD,∵∠ACB=∠DCE=90°,∴∠BCE=360°﹣∠ACB﹣∠DCE﹣∠ACD=180°﹣∠ACD,∴∠CAG=∠BCE,连接BE,在△BCE和△ACG中,,∴△BCE≌△ACG,∴BE=AG=2CF,即:BE=2CF.23.中国高铁迅猛发展,给我们的出行带来极大的便捷,如图1,是某种新设计动车车头的纵截面一部分,曲线OBA是一开口向左,对称轴正好是水平线OC的抛物线的一部分,点A、B是车头玻璃罩的最高点和最低点,AC、BD是两点到车厢底部的距离,OD=1.5米,BD=1.5米,AC=3米,请你利用所学的函数知识解决以下问题.(1)为了方便研究问题,需要把曲线OBA绕点O旋转转化为我们熟悉的函数,请你在所给的方框内,画出你旋转后函数图象的草图,在图中标出点O、A、B、C、D对应的位置,并求你所画的函数的解析式.(2)如图2,驾驶员座椅安装在水平线OC上一点P处,实验表明:当PA+PB最小时,驾驶员驾驶时视野最佳,为了达到最佳视野,求O P的长.(3)驾驶员头顶到玻璃罩的高度至少为0.3米才感到压抑,一个驾驶员坐下时头顶到椅面的距离为1米,在(2)的情况下,座椅最多条件到多少时他才感到舒适?【解答】解:(1)将曲线OBA绕点O逆时针旋转90°如图所示:则B(﹣1.5,1.5).设所画函数的解析式为y=ax2,将点B的坐标代入得:a=,解得:a=.∴函数的解析式为y=x2.(x≤0)(2)如下图所示:作点A关于OC的对称点A′,连结BA′交OC与点P.由(1)可知OC=×32=6,则DC=OC﹣OD=4.5.∵BD∥CA,∴△CA′P∽△DBP.∴=.设DP=x,则PC=4.5﹣x.∴=,解得:x=1.5.∴DP=1.5.∴OP=OD+DP=3.(3)将y=3代入y=x2(x≤0),得:x2=3,解得:x=﹣或x=(舍去).∴点P到玻璃罩的高度=≈2.1.∵2.1﹣0.3﹣1=0.8.∴座椅最多调节得到0.8米时,他才感到舒适.。
包河中考一模数学试卷答案
一、选择题(本大题共12小题,每小题3分,共36分)1. 若实数a、b满足a+b=0,则ab的值为()A. 1B. -1C. 0D. 无法确定答案:C解析:由a+b=0,得a=-b,代入ab得ab=(-b)b=b^2,因为b是实数,所以b^2=0,故选C。
2. 在直角坐标系中,点A(2,3)关于y轴的对称点坐标为()A.(-2,3)B.(2,-3)C.(-2,-3)D.(2,3)答案:A解析:关于y轴对称,横坐标取相反数,纵坐标不变,故选A。
3. 下列函数中,是反比例函数的是()A. y=x^2B. y=2x+1C. y=1/xD. y=3x^2-1答案:C解析:反比例函数的定义是y=k/x(k≠0),故选C。
4. 若x^2-4x+4=0,则x的值为()A. 2B. -2C. 1D. -1答案:A解析:将方程变形为(x-2)^2=0,得x-2=0,解得x=2,故选A。
5. 在△ABC中,∠A=30°,∠B=45°,则∠C的度数为()A. 105°B. 120°C. 135°D. 150°答案:C解析:三角形内角和为180°,∠A+∠B+∠C=180°,代入已知角度得30°+45°+∠C=180°,解得∠C=105°,故选C。
6. 已知函数y=2x-1,若x=3,则y的值为()A. 5B. 4C. 3D. 2答案:A解析:将x=3代入函数y=2x-1得y=23-1=6-1=5,故选A。
7. 若a、b、c是等差数列的连续三项,且a+b+c=12,则b的值为()A. 3B. 4C. 5D. 6答案:C解析:等差数列的性质是相邻两项之差相等,设公差为d,则a=b-d,c=b+d,代入a+b+c=12得b+b=12,解得b=6,故选C。
8. 下列各数中,有最小正整数解的是()A. x^2-5x+6B. x^2-6x+8C. x^2-7x+12D. x^2-8x+12答案:B解析:将每个选项因式分解,得A=(x-2)(x-3),B=(x-4)(x-2),C=(x-4)(x-3),D=(x-6)(x-2),因为要求最小正整数解,故选B。
安徽2020中考数学综合模拟测试卷1(含答案及解析)
2020安徽省初中毕业学业模拟考试数学(满分:150分时间:120分钟)第Ⅰ卷(选择题,共40分)一、选择题(本大题共10小题,每小题4分,满分40分)1.下面的数中,与-3的和为0的是()A.3B.-3C.D.-2.下面的几何体中,主(正)视图为三角形的是()3.计算(-2x2)3的结果是()A.-2x5B.-8x6C.-2x6D.-8x54.下面的多项式中,能因式分解的是()A.m2+nB.m2-m+1C.m2-nD.m2-2m+15.某企业今年3月份产值为a万元,4月份比3月份减少了10%,5月份比4月份增加了15%.则5月份的产值是()A.(a-10%)(a+15%)万元B.a(1-10%)(1+15%)万元C.(a-10%+15%)万元D.a(1-10%+15%)万元6.化简-+-的结果是()A.x+1B.x-1C.-xD.x7.为增加绿化面积,某小区将原来正方形地砖更换为如图所示的正八边形植草砖,更换后,图中阴影部分为植草区域.设正八边形与其内部小正方形的边长都为a,则阴影部分的面积为()A.2a2B.3a2C.4a2D.5a28.给甲、乙、丙三人打电话,若打电话的顺序是任意的,则第一个打给甲的概率为()A. B. C. D.9.如图,A点在半径为2的☉O上,过线段OA上的一点P作直线l,与☉O过A点的切线交于点B,且∠APB=60°.设OP=x,则△PAB的面积y关于x的函数图象大致是()10.在一张直角三角形纸片的两直角边上各取一点,分别沿斜边中点与这两点的连线剪去两个三角形,剩下的部分是如图所示的直角梯形,其中三边长分别为2、4、3,则原直角三角形纸片的斜边长是()A.10B.4C.10或4D.10或2第Ⅱ卷(非选择题,共110分)二、填空题(本大题共4小题,每小题5分,满分20分)11.2011年安徽省棉花产量约378000吨,将378000用科学记数法表示应是.12.甲、乙、丙三组各有7名成员,测得三组成员体重数据的平均数都是58,方差分别为甲=36,乙=25.4,丙=16.则数据波动最小的一组是.13.如图,点A、B、C、D在☉O上,O点在∠D的内部,四边形OABC为平行四边形,则∠OAD+∠OCD=°.14.如图,P是矩形ABCD内的任意一点,连结PA、PB、PC、PD,得到△PAB、△PBC、△PCD、△PDA,设它们的面积分别是S1、S2、S3、S4.给出如下结论:①S1+S4=S2+S3②S2+S4=S1+S3③若S3=2S1,则S4=2S2④若S1=S2,则P点在矩形的对角线上其中正确结论的序号是(把所有正确结论的序号都填在横线上).三、解答题(本大题共9小题,满分90分)15.(本题满分8分)计算:(a+3)(a-1)+a(a-2).16.(本题满分8分)解方程:x2-2x=2x+1.17.(本题满分8分)在由m×n(m×n>1)个小正方形组成的矩形网格中,研究它的一条对角线所穿过的小正方形个数f.(1)当m、n互质(m、n除1外无其他公因数)时,观察下列图形并完成下表:m n m+n f猜想:当m、n互质时,在m×n的矩形网格中,一条对角线所穿过的小正方形的个数f与m、n 的关系式是(不需证明);(2)当m、n不互质时,请画图验证你猜想的关系式是否仍然成立.7B18.(本题满分8分)如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC(顶点是网格线的交点)和点A1.(1)画出一个格点△A1B1C1,使它与△ABC全等且A与A1是对应点;(2)画出点B关于直线AC的对称点D,并指出AD可以看作由AB绕A点经过怎样的旋转而得到的.19.(本题满分10分)如图,在△ABC中,∠A=30°,∠B=45°,AC=2.求AB的长.20.(本题满分10分)九(1)班同学为了解2011年某小区家庭月均用水情况,随机调查了该小区部分家庭,并将调查数据进行如下整理.25<x≤3020.04请解答以下问题:(1)把上面的频数分布表和频数分布直方图补充完整;(2)求月均用水量不超过15t的家庭数占被调查家庭总数的百分比;(3)若该小区有1000户家庭,根据调查数据估计,该小区月均用水量超过20t的家庭大约有多少户?21.(本题满分12分)甲、乙两家商场进行促销活动.甲商场采用“满200减100”的促销方式,即购买商品的总金额满200元但不足400元,少付100元;满400元但不足600元,少付200元;…….乙商场按顾客购买商品的总金额打6折促销.(1)若顾客在甲商场购买了510元的商品,付款时应付多少钱?(2)若顾客在甲商场购买商品的总金额为x(400≤x<600)元,优惠后得到商家的优惠率为,写出p与x之间的函数关系式,并说明p随x的变化情况;p优惠金额购买商品的总金额(3)品牌、质量、规格等都相同的某种商品,在甲、乙两商场的标价都是x(200≤x<400)元,你认为选择哪家商场购买该商品花钱较少?请说明理由.22.(本题满分12分)如图1,在△ABC中,D、E、F分别为三边的中点,G点在边AB上,△BDG与四边形ACDG的周长相等.设BC=a,AC=b,AB=c.(1)求线段BG的长;(2)求证:DG平分∠EDF;(3)连结CG,如图2,若△BDG与△DFG相似,求证:BG⊥CG.23.(本题满分14分)如图,排球运动员站在点O处练习发球,将球从O点正上方2m的A处发出,把球看成点,其运行的高度y(m)与运行的水平距离x(m)满足关系式y=a(x-6)2+h.已知球网与O点的水平距离为9m,高度为2.43m,球场的边界距O点的水平距离为18m.(1)当h=2.6时,求y与x的关系式(不要求写出自变量x的取值范围);(2)当h=2.6时,球能否越过球网?球会不会出界?请说明理由;(3)若球一定能越过球网,又不出边界,求h的取值范围.一、选择题1.A互为相反数的两数之和为0,-3的相反数是3,故选A.2.C圆柱的主视图是长方形;正方体的主视图是正方形;圆锥的主视图是三角形;三棱柱的主视图是含有实线的长方形.综上所述应选C.3.B(-2x2)3=(-2)3(x2)3=-8x6,故选B.4.D A、B、C三个选项中的多项式既不含有公因式,又不能利用平方差、完全平方公式进行分解,而m2-2m+1=(m-1)2,故选D.5.B4月份的产值可以表示为a×(1-10%)万元,5月份的产值可以表示为a×(1-10%)(1+15%)万元,故选B.6.D-+-=---=--=--=x,故选D.7.A n边形的内角和公式为(n-2)·180°,所以正八边形的每个内角均为-=135°,由此易得外围阴影的三角形均为斜边长为a的等腰直角三角形,每个这样的三角形的面积均为(a×sin 45°)2=a2,所以四个三角形的面积和为4×a2=a2;中间正方形的面积为a2,所以阴影部分的面积为2a2,故选A.评析本题综合考查正多边形的性质,多边形的内角和,三角函数及三角形、正方形的面积等知识,利用三角函数知识求得等腰直角三角形的直角边长是关键,属中等难度题.8.B第一个电话可以打给甲或乙或丙,事件有三个等可能的结果,所以第一个打给甲的概率为.9.D因为AB是☉O的切线,所以OA⊥AB,在Rt△APB中,∠APB=60°,AP=2-x,所以AB=(2-x),S△PAB=AP·AB=··(2-x)2=(2-x)2=x2-2x+2(0≤x<2),根据解析式可判断选项D正确.评析本题是圆的切线、三角函数及函数图象的综合应用题,以圆的知识为背景,应用三角函数的知识求得函数解析式,并利用函数解析式及自变量的取值范围找到对应的函数图象,设计巧妙,知识点覆盖面广,属难度较大题.10.C根据题意复原直角三角形可能有以下两种情况:根据题目条件知,点M、N分别是三角形斜边的中点,由相似三角形的性质可以得到如图所示的各线段的长度,从而由勾股定理得到三角形的斜边长是10或4.评析本题考查相似三角形的判定及性质,同时考查学生的动手操作,对图形的空间想象等能力,题目难点多,对学生的要求较高,难度大.二、填空题11.答案 3.78×105解析科学记数法即将数字写成a×10n(1≤|a|<10,n为整数)的形式,378000=3.78×105.12.答案丙组解析方差的大小反映一组数据的波动大小,方差越大,波动越大,方差越小,波动越小,因为丙组数据的方差最小,所以丙组数据的波动最小.13.答案60解析四边形OABC是平行四边形,所以∠AOC=∠B;∠AOC和∠D是同弧所对圆心角和圆周角,所以∠D=∠AOC;由题意得∠D+∠B=180°,所以∠D=60°;连结OD,△AOD和△COD 均为等腰三角形,所以∠CDO=∠DCO,∠ADO=∠DAO.综上所述,∠OAD+∠OCD=∠D=60°.14.答案②④解析因为△APB和△CPD的高线和恰好等于AD的长,△APD和△CBP的高线和恰好等于AB的长,易得S1+S3=S ABCD,S2+S4=S ABCD,S1+S3=S2+S4,故②正确,①③错误;若S1=S2,则S1+S3=S2+S3=S ABCD,所以P点在矩形的对角线上,故④正确.评析本题利用三角形、矩形之间的面积关系考查学生整体代入求值的思想,利用整体求值是解决本题的关键,属中等难度题.三、解答题15.解析原式=a2+2a-3+a2-2a(4分)=2a2-3.(8分)16.解析方程可化为x2-4x-1=0.(2分)∵Δ=(-4)2-4×1×(-1)=20,∴x==2±,∴x1=2-,x2=2+.(8分)17.解析(1)表中填6;6.(2分)关系式为f=m+n-1.(4分)注:若猜想出的是其他关系式,只要这个关系式对表中5种情况都成立就可酌情给分.(2)当m、n不互质时,关系式f=m+n-1不成立.例如:当m=2,n=2时,图形如图.(6分)对角线所穿过的小正方形的个数f=2,而m+n=4,等式f=m+n-1不成立.(8分)评析本题属于探究规律问题,通过简单图形总结发现其中的规律是解决问题的关键,考查学生的观察、归纳、分析问题的能力,难度较大.18.解析(1)本题是开放题,答案不唯一.图中给出了两个满足条件的三角形,其他解答只要正确就相应给分.(4分)(2)D点如图所示.(6分)AD是由AB绕A点逆时针旋转90°而得到的,或AD是由AB绕A点顺时针旋转270°而得到的.(8分)19.解析作CD⊥AB于D点(如图).在Rt△ACD中,∠A=30°,AC=2,所以AD=ACcos30°=2×=3,CD=ACsin30°=.(6分)在Rt△BCD中,∠B=45°,所以BD=CD=,∴AB=AD+CD=3+.(10分)20.解析(1)表中填12;0.08.补全的图形如图.(4分)(2)0.12+0.24+0.32=0.68.即月均用水量不超过15t的家庭数占被调查的家庭总数的68%.(7分)(3)(0.08+0.04)×1000=120.所以根据调查数据估计,该小区月均用水量超过20t的家庭大约有120户.(10分)21.解析(1)510-200=310(元),付款时应付310元.(3分)(2)p与x之间的函数关系式为p=.当400≤x<600时,p随x的增大而减小.(6分)(3)设在甲、乙两家商场购买该商品实付款分别为y1、y2元,则y1=x-100,y2=0.6x,y1-y2=0.4x-100=0.4(x-250).(9分)当200≤x<250时,y1<y2,选择甲商场花钱较少;当x=250时,y1=y2,选择两家商场花钱相同;当250<x<400时,y1>y2,选择乙商场花钱较少.(12分)评析本题考查学生构建函数模型,通过函数与方程、不等式的关系对实际问题进行优化设计的能力.22.解析(1)∵△BDG与四边形ACDG的周长相等,且BD=DC,∴BG=AG+AC=(AB+AC)=(b+c).(3分)(2)证明:∵点D、F分别是BC、AB的中点,∴DF=AC=b.又∵FG=BG-BF=(b+c)-c=b,∴DF=FG,∴∠FDG=∠FGD.(6分)∵点D、E分别是BC、AC的中点,∴DE∥AB,∴∠EDG=∠FGD,∴∠FDG=∠EDG,即DG平分∠EDF.(8分)(3)证明:∵△BDG与△DFG相似,∠DFG>∠B,∠BGD=∠DGF(公共角),∴∠B=∠FDG.由(2)知∠FGD=∠FDG,∴∠FGD=∠B,∴DG=BD.(10分)∵BD=DC,∴DG=BD=DC,∴B、G、C三点在以BC为直径的圆周上,∴∠BGC=90°,即BG⊥CG.(12分)评析本题考查三角形的中位线、平行线的性质及判定以及三角形相似的性质等知识,对学生的逻辑推理能力有较高的要求,属较难题.23.解析(1)h=2.6时,y=a(x-6)2+2.6.由其图象过点(0,2),得36a+2.6=2,解得a=-.所以y=-(x-6)2+2.6.(3分)(2)当h=2.6时,由(1)知y=-(x-6)2+2.6.当x=9时,y=-(9-6)2+2.6=2.45>2.43,所以球能越过球网;(6分)由-(x-6)2+2.6=0,x>0,得x=6+>18.或当x=18时,y=-(18-6)2+2.6=0.2>0,所以球落地时会出界.(8分)(3)根据题设知y=a(x-6)2+h.由图象经过点(0,2),得36a+h=2,①由球能越过球网,得9a+h>2.43,②由球不出边界,得144a+h≤0.③(11分)由①②③解得h≥,所以h的取值范围是h≥.(14分)评析本题以实际问题为背景,考查二次函数与方程、不等式的综合应用,并应用二次函数的知识解决实际问题,对学生的能力要求较高,题目难度较大.解决本题的关键在于正确理解球是否出界与二次函数的对应关系.。
2020-2021学年安徽省合肥市中考数学一模试题及答案解析
2020-2021学年安徽省合肥市中考数学⼀模试题及答案解析安徽省合肥市中考数学⼀模试卷⼀、选择题(本⼤题共10⼩题,每⼩题4分,满分40分)1.下列运算正确的是()A.6a﹣5a=1 B.(a2)3=a5 C.3a2+2a3=5a5D.2a2?3a3=6a52.不等式组的解集在数轴上表⽰正确的是()A.B.C.D.3.南海是我们固有领⼟,南海资源丰富,其⾯积约为350万平⽅千⽶,相当于我国的渤海、黄海和东海总⾯积的3倍,其中350万⽤科学记数法表⽰为()A.3.5×106B.3.5×107C.0.35×108D.3.5×1094.七(1)班学雷锋⼩组整理校实验室,已知6个⼈共要做4⼩时完成,则每⼈每⼩时的⼯作效率是()A.B.C.D.5.与最接近的整数是()A.1 B.2 C.3 D.46.定义:⼀个⾃然数,右边的数字总⽐左边的数字⼩,我们称它为“下滑数”(如:32,641,8531等).现从两位数中任取⼀个,恰好是“下滑数”的概率为()A.B.C.D.7.图(1)表⽰⼀个正五棱柱形状的⾼⼤建筑物,图(2)是它的俯视图.⼩健站在地⾯观察该建筑物,当他在图(2)中的阴影部分所表⽰的区域活动时,能同时看到建筑物的三个侧⾯,图中∠MPN的度数为()A.30°B.36°C.45°D.72°8.如图,在平⾯直⾓坐标系中,正⽅形ABCO的顶点A、C分别在y轴、x轴上,以AB为弦的⊙M与x轴相切.若点A的坐标为(0,8),则圆⼼M的坐标为()A.(﹣4,5)B.(﹣5,4)C.(5,﹣4)D.(4,﹣5)9.某公司为增加员⼯收⼊,提⾼效益.今年提出如下⽬标,和去年相⽐,在产品的出⼚价增加10%的前提下,将产品成本降低20%,使产品的利润率(利润率=×100%)较去年翻⼀番,则今年该公司产品的利润率为()A.40% B.80% C.120% D.160%10.已知:如图,点P是正⽅形ABCD的对⾓线AC上的⼀个动点(A、C除外),作PE⊥AB于点E,作PF⊥BC于点F,设正⽅形ABCD的边长为x,矩形PEBF的周长为y,在下列图象中,⼤致表⽰y与x之间的函数关系的是()A.B.C.D.⼆、填空题(本⼤题共4⼩题,每⼩题5分,满分20分)11.把代数式2x4﹣2y2分解因式.12.如图,锐⾓△ABC内接于圆O,连接OA,设∠OBA=α,∠C=β,则α+β的度数为.13.⼀次函数y=ax+5a(a≠0)与⼆次函数y=x2+2x﹣b(b≠0)交于x轴上⼀点,则当﹣2≤x≤3时⼆次函数y=x2+2x﹣b(b≠0)的最⼩值为.14.如图,在△ABC中,∠BAC=90°,AB=AC=10.现将⼀个⾜够⼤的透明的三⾓板的直⾓顶点放在BC的中点D处,将三⾓板绕点D旋转,三⾓板的两边与△ABC的边AB、AC分别交于点E、F,下列结论:①旋转过程中,DE可能与EF相等;②旋转过程中,△DEF是等腰三⾓形;③旋转过程中,四边形AEDF的⾯积是⼀定值,且⾯积为25;④E、F分别在AB、CA延长线上时,且BE=2,四边形AFED的⾯积为40.其中,正确的有:(直接填序号)三、(本⼤题共2⼩题,每⼩题8分,满分16分)15.﹣12015+(3﹣π)0﹣|2sin45°﹣1|+(﹣)﹣1.16.如图,⼀次函数y1的图象与反⽐例函数y2的图象交于A(﹣5,2)、B(m,﹣5)两点.(1)求的函数y1、y2表达式;(2)观察图象,当时﹣4<x<2,⽐较y1、y2的⼤⼩?四、(本⼤题共2⼩题,每⼩题10分,满分20分)17.观察下⾯图形我们可以发现:第1个图中有1个正⽅形,第2个图中有5个正⽅形,按照这种规律变化下去…(1)第3个图中有个正⽅形;(2)第4个图形⽐第3个图形多个正⽅形;(3)第n个图形⽐前⼀个图形多个正⽅形(⽤含有n的式⼦表⽰);(4)按照规律,是否存在某个图形,它⽐前⼀个图形增加2015个正⽅形?为什么?18.如图是规格为10×10的正⽅形⽹格,请在所给⽹格中按下列要求操作:(1)请在⽹格中建⽴平⾯直⾓坐标系,使点A、B的坐标分别为(1,﹣2)、(2,﹣1);(2)以坐标原点O为位似中⼼,在第⼆象限内将线段AB放⼤到原来的2倍得到线段A1B1;(3)在第⼆象限内的格点(横、纵坐标均为整数的点叫做格点)上画⼀点C1,使点C1与线段A1B1组成⼀个以A1B1为底边的等腰三⾓形,且腰长是⽆理数.此时,点C1的坐标是,△A1B1C1的周长是(写出⼀种符合要求的情况即可,结果保留根号).五、(本⼤题共2⼩题,每⼩题10分,满分20分)19.在△ABC中,BC=3,中线CD⊥BC,若BD﹣CD=1,求AB的长及sinB的值.20.⼩芳每次骑车从家到学校都要经过⼀段坡度相同的上坡路和下坡路,假设她骑车坡度相等的上坡路与下坡路平均速度基本相同,且上坡路骑⾏50⽶与下坡路骑⾏80⽶所⽤的时间相等.当她从家到学校时,下坡路的长为400⽶,下坡路⽐上坡路多花⼀分钟,设她骑⾏下坡路的速度为x⽶/分钟.(1)⽤含x的代数式表⽰她从家到学校时上坡路段的路程.(2)当她从学校回家时,在这两个坡道所花的时间为10分30秒,请求出她回家时在下坡路段所花的时间.六、(本题满分12分)21.A市为制定居民⽤⽔价格调整⽅案,就每⽉的⽤⽔量、可承受的⽔价调整幅度等进⾏民意调查,调查采⽤随机抽样的⽅式.图1、图2为某⼀⼩区的调查数据统计图.已知被调查居民每户每⽉的⽤⽔量在5m3~35m3之间,被调查的居民中对居民⽤⽔价格调价幅度抱“⽆所谓”态度的有8户,试回答下列问题:(1)请补全图1的统计图;(2)被调查居民⽤⽔量的中位数落在什么范围内:(直接填写范围即可,如5m3~35m3等);(3)若采⽤阶梯式累进制调价⽅案(如下表所⽰),试估计该⼩区有百分之⼏的居民⽤⽔费⽤的增长幅度不超过50%?阶梯式累进制⾃来⽔调价⽅案级数⽤⽔量范围现⾏价格(元/m3)调整后价格(元/m3)第⼀级0~15m3(含15m3) 1.80 2.50第⼆级15m3以上 1.80 3.30七、(本题满分12分)22.如图,⽤篱笆围成⼀个两⾯靠墙(两墙垂直,墙AB的最⼤利⽤长度为26⽶,墙BC⾜够长)中间隔有⼀道篱笆的矩形菜园,已知篱笆的长度为60m,设菜园的宽度为xm,总占地⾯积为ym2.(1)求y关于x的函数表达式;(2)求⾃变量x的取值范围;(3)菜园的宽x为多少时围成的菜园⾯积最⼤,最⼤⾯积是多少?⼋、(本题满分14分)23.对于两个相似三⾓形,如果沿周界按对应点顺序环绕的⽅向相同,那么称这两个三⾓形互为顺相似;如果沿周界按对应点顺序环绕的⽅向相反,那么称这两个三⾓形互为逆相似.例如,如图①,△ABC∽△A′B′C′且沿周界ABCA与A′、B′、C′、A′环绕的⽅向相同,因此△ABC 与△A′B′C′互为顺相似;如图②,△ABC∽△A′B′C′,且沿周界ABCA与A′、B′、C′、A′环绕的⽅向相反,因此△ABC 与△A′B′C′互为逆相似.(1)根据图I、图Ⅱ和图Ⅲ满⾜的条件,可得下列三对相似三⾓形:①△ADE与△ABC;②△GHO 与△KFO;③△NQP与△NMQ.其中,互为顺相似的是;互为逆相似的是.(填写所有符合要求的序号)(2)如图③,在锐⾓△ABC中,∠A<∠B<∠C,点P在△ABC的边上(不与点A、B、C重合).过点P画直线截△ABC,使截得的⼀个三⾓形与△ABC互为逆相似.请根据点P的不同位置,探索过点P的截线的情形,画出图形并说明截线满⾜的条件,不必说明理由.安徽省合肥市中考数学⼀模试卷参考答案与试题解析⼀、选择题(本⼤题共10⼩题,每⼩题4分,满分40分)1.下列运算正确的是()A.6a﹣5a=1 B.(a2)3=a5 C.3a2+2a3=5a5D.2a2?3a3=6a5【考点】幂的乘⽅与积的乘⽅;合并同类项;同底数幂的乘法;单项式乘单项式.【分析】根据合并同类项法则、幂的乘⽅、单项式乘法的运算⽅法,利⽤排除法求解.【解答】解:A、应为6a﹣5a=a,故本选项错误;B、应为(a2)3=a2×3=a6,故本选项错误;C、3a2与2a3不是同类项,不能合并,故本选项错误;D、2a2?3a3=2×3a2?a3=6a5,正确.故选D.【点评】本题主要考查了合并同类项的法则,幂的乘⽅的性质,单项式的乘法法则,熟练掌握运算法则是解题的关键.2.不等式组的解集在数轴上表⽰正确的是()A.B.C.D.【考点】在数轴上表⽰不等式的解集;解⼀元⼀次不等式组.【专题】计算题.【分析】先解不等组得到﹣1≤x<1,根据数轴表⽰数的⽅法解集在﹣1的右边(含﹣1)并且在1的左边.【解答】解:,解不等式①得x<1,解不等式②得x≥﹣1,∴﹣1≤x<1.故选D.【点评】本题考查了在数轴上表⽰不等式的解集:先求出不等式组的解集,然后根据数轴表⽰数的⽅法把对应的未知数的取值范围通过画区间的⽅法表⽰出来,等号时⽤实⼼,不等时⽤空⼼.3.南海是我们固有领⼟,南海资源丰富,其⾯积约为350万平⽅千⽶,相当于我国的渤海、黄海和东海总⾯积的3倍,其中350万⽤科学记数法表⽰为()A.3.5×106B.3.5×107C.0.35×108D.3.5×109【考点】科学记数法—表⽰较⼤的数.【分析】科学记数法的表⽰形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,⼩数点移动了多少位,n的绝对值与⼩数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将350万⽤科学记数法表⽰为3.5×106.故选A.【点评】此题考查科学记数法的表⽰⽅法.科学记数法的表⽰形式为a×10n的形式,其中1≤|a|<10,n为整数,表⽰时关键要正确确定a的值以及n的值.4.七(1)班学雷锋⼩组整理校实验室,已知6个⼈共要做4⼩时完成,则每⼈每⼩时的⼯作效率是()A.B.C.D.【考点】有理数的混合运算.【分析】根据除法的意义先求出1个⼈4⼩时的⼯作效率,再求出每⼈每⼩时的⼯作效率.【解答】解:1÷6÷4=.故每⼈每⼩时的⼯作效率是.故选:D.【点评】考查了有理数的混合运算,本题也可以先求出6个⼈1⼩时的⼯作效率,再求出每⼈每⼩时的⼯作效率.5.与最接近的整数是()A.1 B.2 C.3 D.4【考点】估算⽆理数的⼤⼩.【分析】按要求找到2到2.5之间的⽆理数,须使被开⽅数⼤于4⼩于6.25即可求解.【解答】解:∵4<6<6,25,∴2<<2.5,∴最接近的整数是2,故选B.【点评】本题主要考查了⽆理数的估算,解题关键是确定⽆理数的整数部分即可解决问题.6.定义:⼀个⾃然数,右边的数字总⽐左边的数字⼩,我们称它为“下滑数”(如:32,641,8531等).现从两位数中任取⼀个,恰好是“下滑数”的概率为()A.B.C.D.【考点】概率公式.【专题】压轴题;新定义.【分析】根据概率的求法,找准两点:①全部情况的总数:根据题意得知这样的两位数共有90个;②符合条件的情况数⽬:从总数中找出符合条件的数共有45个;⼆者的⽐值就是其发⽣的概率.【解答】解:两位数共有90个,下滑数有10、21、20、32、31、30、43、42、41、40、54、53、52、51、50、65、64、63、62、61、60、76、75、74、73、72、71、70、87、86、85、84、83、82、81、80、98、97、96、95、94、93、92、91、90共有45个,概率为=.故选A.【点评】此题考查概率的求法:如果⼀个事件有n种可能,⽽且这些事件的可能性相同,其中事件A出现m种结果,那么事件A 的概率P(A)=.7.图(1)表⽰⼀个正五棱柱形状的⾼⼤建筑物,图(2)是它的俯视图.⼩健站在地⾯观察该建筑物,当他在图(2)中的阴影部分所表⽰的区域活动时,能同时看到建筑物的三个侧⾯,图中∠MPN的度数为()A.30°B.36°C.45°D.72°【考点】视点、视⾓和盲区.【专题】压轴题.【分析】根据正五边形的内⾓为108°,观察图形,利⽤三⾓形内⾓和为180°,和对顶⾓相等,可求出∠MPN的度数.【解答】解:由题意我们可以得出,正五棱柱的俯视图中,正五边形的内⾓为=108°,那么∠MPN=180°﹣(180°﹣108°)×2=36°.故选B.【点评】利⽤数学知识解决实际问题是中学数学的重要内容.本题的关键是弄清所求⾓与正五棱柱的俯视图的关系.8.如图,在平⾯直⾓坐标系中,正⽅形ABCO的顶点A、C分别在y轴、x轴上,以AB为弦的⊙M与x轴相切.若点A的坐标为(0,8),则圆⼼M的坐标为()A.(﹣4,5)B.(﹣5,4)C.(5,﹣4)D.(4,﹣5)【考点】垂径定理;坐标与图形性质;勾股定理;正⽅形的性质.【专题】证明题.【分析】过点M作MD⊥AB于D,连接AM.设⊙M的半径为R,因为四边形OABC为正⽅形,顶点A,C在坐标轴上,以边AB为弦的⊙M与x轴相切,若点A的坐标为(0,8),所以DA= AB=4,DM=8﹣R,AM=R,⼜因△ADM是直⾓三⾓形,利⽤勾股定理即可得到关于R的⽅程,解之即可.【解答】解:过点M作MD⊥AB于D,交OC于点E.连接AM,设⊙M的半径为R.∵以边AB为弦的⊙M与x轴相切,AB∥OC,∴DE⊥CO,∴DE是⊙M直径的⼀部分;∵四边形OABC为正⽅形,顶点A,C在坐标轴上,点A的坐标为(0,8),∴OA=AB=CB=OC=8,DM=8﹣R;∴AD=BD=4(垂径定理);在Rt△ADM中,根据勾股定理可得AM2=DM2+AD2,∴R2=(8﹣R)2+42,∴R=5.∴M(﹣4,5).故选A.【点评】本题考查了垂径定理、坐标与图形性质、勾股定理及正⽅形的性质.解题时,需仔细分析题意及图形,利⽤勾股定理来解决问题.9.某公司为增加员⼯收⼊,提⾼效益.今年提出如下⽬标,和去年相⽐,在产品的出⼚价增加10%的前提下,将产品成本降低20%,使产品的利润率(利润率=×100%)较去年翻⼀番,则今年该公司产品的利润率为()A.40% B.80% C.120% D.160%【考点】分式⽅程的应⽤.【分析】设去年产品出⼚价为a,去年产品成本为b,根据利润率=×100%列出⽅程,求出a和b的数量关系,进⽽求出产品的利润率.【解答】解:设去年产品出⼚价为a,去年产品成本为b,根据题意,100%=×2×100%,即整理得:=2a﹣2b,解得:a=b,所以把a=b,代⼊×2中得×2=×2=120%.故选:C.【点评】本题主要考查了分式⽅程的应⽤,解答本题的关键是正确设出产品的出⼚价和成本价,求出出⼚价和成本价之间的数量关系,此题难度不⼤.10.已知:如图,点P是正⽅形ABCD的对⾓线AC上的⼀个动点(A、C除外),作PE⊥AB于点E,作PF⊥BC于点F,设正⽅形ABCD的边长为x,矩形PEBF的周长为y,在下列图象中,⼤致表⽰y与x之间的函数关系的是()A.B.C.D.【考点】动点问题的函数图象.【专题】压轴题;动点型.【分析】根据函数解析式求函数图象.【解答】解:由题意可得:△APE和△PCF都是等腰直⾓三⾓形.∴AE=PE,PF=CF,那么矩形PEBF的周长等于2个正⽅形的边长.则y=2x,为正⽐例函数.故选:A.【点评】要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.⼆、填空题(本⼤题共4⼩题,每⼩题5分,满分20分)11.把代数式2x4﹣2y2分解因式2(x2+y)(x2﹣y).【考点】提公因式法与公式法的综合运⽤.【专题】计算题.【分析】原式提取2,再利⽤平⽅差公式分解即可.【解答】解:原式=2(x4﹣y2)=2(x2+y)(x2﹣y).故答案为:2(x2+y)(x2﹣y)【点评】此题考查了提公因式法与公式法的综合运⽤,熟练掌握因式分解的⽅法是解本题的关键.12.如图,锐⾓△ABC内接于圆O,连接OA,设∠OBA=α,∠C=β,则α+β的度数为90°.【考点】圆周⾓定理.【分析】延长AO交圆O于D,连接BD,根据直径所对的圆周⾓是直⾓得到∠ABD=90°,根据同弧所对的圆周⾓相等得到∠D=β,等量代换得到答案.【解答】解:延长AO交圆O于D,连接BD,∵AD为直径,∴∠ABD=90°,∴α+∠D=90°,∵∠ACB=∠D,∴α+β=90°,故答案为:90°.【点评】本题考查度数圆周⾓定理,掌握同弧所对的圆周⾓相等和直径所对的圆周⾓是直⾓是解题的关键.13.⼀次函数y=ax+5a(a≠0)与⼆次函数y=x2+2x﹣b(b≠0)交于x轴上⼀点,则当﹣2≤x≤3时⼆次函数y=x2+2x﹣b(b≠0)的最⼩值为﹣16 .【考点】⼆次函数的最值.【分析】根据⼀次函数求得交点坐标,代⼊⼆次函数y=x2+2x﹣b求得b的值,求得⼆次函数的对称轴,根据对称轴在﹣2≤x≤3内,即可求得⼆次函数的最⼩值.【解答】解:∵⼀次函数y=ax+5a(a≠0)与⼆次函数y=x2+2x﹣b(b≠0)交于x轴上⼀点,∴把y=0,代⼊得,0=ax+5a,解得x=﹣5,∴交点为(﹣5,0),代⼊y=x2+2x﹣b得,0=25﹣10﹣b,解得b=15,∴⼆次函数为y=x2+2x﹣15,∵⼆次函数y=x2+2x﹣15对称轴为y=﹣=﹣1,∴当﹣2≤x≤3时,x=﹣1,⼆次函数有最⼩值为1﹣2﹣15=﹣16.故答案为﹣16.【点评】本题考查了待定系数法求⼆函数的解析式以及⼆次函数对称轴的求解,考查了⼆次函数的最值问题,本题中求得⼆次函数的对称轴是解题的关键.14.如图,在△ABC中,∠BAC=90°,AB=AC=10.现将⼀个⾜够⼤的透明的三⾓板的直⾓顶点放在BC的中点D处,将三⾓板绕点D旋转,三⾓板的两边与△ABC的边AB、AC分别交于点E、F,下列结论:①旋转过程中,DE可能与EF相等;②旋转过程中,△DEF是等腰三⾓形;③旋转过程中,四边形AEDF的⾯积是⼀定值,且⾯积为25;④E、F分别在AB、CA延长线上时,且BE=2,四边形AFED的⾯积为40.其中,正确的有:②③(直接填序号)【考点】旋转的性质;全等三⾓形的判定与性质;等腰直⾓三⾓形.【分析】如图1,根据等腰直⾓三⾓形的性质得∠ABC=∠C=45°,AD=BD=CD,AD⊥BC,∠1=45°,再利⽤等⾓的余⾓相等得∠2=∠4,则可证明△ADE≌△CFD,得到DE=DF,于是可判断△DEF为等腰直⾓三⾓形,则对②进⾏判断,根据等腰直⾓三⾓形EF=DE,则可对①进⾏判断;由于△ADE≌△CFD,则S△ADE=S△CFD,所以四边形AEDF的⾯积=S△ADC=S△ABC=25,则可对③进⾏判断;如图2,作DH⊥AC于H,根据等腰直⾓三⾓形的性质得DH=AH=CH=5,同理可证得△ADE≌△CFD,则AE=CF,所以AF=BE=2,DE=DF,同样得到△DEF为等腰直⾓三⾓形,在Rt△DHF中利⽤勾股定理计算出DF2=74,则S△DEF=DF2=37,⽽S△ADF=5,所以四边形AFED的⾯积=42,则可对④进⾏判断.【解答】解:如图1,∵∠BAC=90°,AB=AC=10,∴∠ABC=∠C=45°,∵点D为BC的中点,∴AD=BD=CD,AD⊥BC,∠1=45°,∵∠EDF=90°,即∠2+∠3=90°,⽽∠4+∠3=90°,。
2023年安徽省合肥市包河区中考一模数学试卷(含答案解析)
2023年安徽省合肥市包河区中考一模数学试卷学校:___________姓名:___________班级:___________考号:___________A ..C ..5.已知,AD BE ,15CBE ∠=︒,则∠A .65︒45︒6.随着国产芯片自主研发的突破,某种型号芯片的价格经过两次降价,由原来每片元下降到每片b 元,已知第一次下降了第二次下降了关系是()A.6013B8.如图,一个圆盘被平均分成在四个区域的机会均等,飞镖落在圆盘外的不计,连续两次投掷,落在同一区域的概率是()A.16B9.已知实数a,b满足:A.250c+≥B 10.如图,已知线段AB为直角边,CPE∠为直角,在则AM的最小值为()A.1B.23二、填空题11.化简364的结果是______.13.如图,点A ,B ,C 是⊙O 的上点,则 AC 的长是______.14.已知抛物线222y x ax a =-++(1)若1a =,抛物线的顶点坐标为(2)直线x m =与直线3m <时,PQ 的长度随三、解答题15.计算:0132⎛⎫-+ ⎪⎝⎭16.如图,在边长为1顶点的ABC 和过点A(1)画出ABC 关于直线l 对称的ADE V (2)以D 为旋转中心,将ADE V 顺时针旋转点,画出GFD ,写出由ABC 通过一种变换得到17.安徽省加快“县城通高速”步伐,实现了高速公路展.仅去年一年就通过新建或扩建开通的高速公路共度是扩建的2倍少45公里,求去年新建和扩建高速公路各多少公里?18.观察以下等式:第1个等式:1211122+⨯-=,第2个等式:14411233+⨯-=,第3个等式:19611344+⨯-=,第4个等式:116811455+⨯-=,第5个等式:1251011566+⨯-=,……按照以上规律.解决下列问题:(1)写出第6个等式:;(2)写出你猜想的第n 个等式(用含19.数学测绘社团欲测算平台DB 上旗杆的拉绳子,绳子末端正好与斜坡CD 的底部53ACN ∠=︒,已知斜坡CD 的高DN 米,求拉绳AC 的长.(结果保留1tan 53 1.33︒≈)的直径,20.如图,AB是O∠的度数;(1)若54∠=︒,求BACODB(2)AC,DB的延长线相交于点F,=.证:AC CD21.某校为了解本校学生“上周内做家务劳动所用的时间本校随机调查了部分学生的“劳动时间组别“劳动时间”t/分钟频数频率t<40.1A60t≤<a bB6090t≤<c0.4C90120t≥14dD120根据上述信息,解答下列问题:(1)c=______,d=______,并补全条形统计图;(1)求证:ABE CAD △△≌;(2)求证:AC FB ∥;(3)若点D ,E ,F 在同一条直线上,如图2,求ABBC式表示角)参考答案:.故选:C .【点睛】本题考查了简单组合体的三视图的知识,俯视图是从物体的上面看得到的视图.5.D【分析】过点C 作CF AD ∥,则AD BE CF ∥∥,由平行线的性质可知,40DAC ACF ∠=∠=︒,15CBE BCF ∠=∠=︒,进而可得55ACB ∠=︒,根据等边对等角可得55ACB BAC ∠=∠=︒.【详解】解:过点C 作CF AD ∥,则AD BE CF ∥∥,∵40DAC ∠=︒,15CBE ∠=︒,AD BE CF ∥∥,∴40DAC ACF ∠=∠=︒,15CBE BCF ∠=∠=︒,则55ACB ACF BCF ∠=∠+∠=︒,又∵AB BC =,∴55ACB BAC ∠=∠=︒,故选:D .【点睛】本题考查平行线的性质,等腰三角形的性质,过点C 作CF AD ∥是解决问题的关键.6.B【分析】根据题意用含a 的代数式表示出第一次降价后的价格和第二次降价后的价格,令第二次降价后的价格为b ,进而可得答案.【详解】解:由题意知,第一次降价后的价格为()110a -%,第二次降价后的价格为()()110120a --%%,∴()()110120b a =--%%,故答案为:B .【点睛】本题考查了列代数式.解题的关键在于表示降价后的价格.7.D∵四边形ABCD 是矩形,∴10AB CD ==,BC =∵点E 是CD 中点,∴152DE CD ==,在Rt ADE △中,AE =∵111022ABE ABCD S S ==⨯△矩形∴12013BF =.故选:D .【点睛】本题考查矩形的性质、勾股定理、三角形的面积公式等知识,解题的关键是灵活运用所学知识解决问题,学会用面积法解决有关线段问题,属于中考常考题型.8.C【分析】根据题意列表格,然后进行求解即可.【详解】解:由题意列表格如下:∵点M 为EC 的中点,点N 为CP 的中点,∴MN EP ∥,∵90CPE ∠=︒,∴90MNC CPE ∠=∠=︒,又∵PBC 为等边三角形,点N 为CP 的中点,∴60ABC ∠=︒,BN CP ⊥,BN 平分ABC ∠则90MNC BNC ∠=∠=︒,1302PBN ABC ∠=∠=∴M ,N ,B 在同一直线上,即:点M 在直线BN ,过点A 作AF BN ⊥,交于点F ,连接FM 则sin sin 303AF AB ABN AB =⋅∠=⋅︒=,∵点A 是双曲线()60y x x =>∴632OAC S == ,ODAC S =四边形∵四边形OABC 为平行四边形,∴3ACB S = ,∵BE x ⊥轴,BE x ⊥轴,AB ∴26ACB ACEB S S == 四边形,k即为所求,(2)如图所示,GFD向右平移2个单位长度,再向上平移将ABC【点睛】本题考查了基本作图:轴对称,旋转以及平移变换.熟练掌握轴对称、旋转和平移的性质是解题的关键.17.去年新建高速公路331公里,扩建高速公路∵4DN =,坡比为1:2.5∴4 2.510CN =⨯=,∵6DB =,∴CF CN NF CN =+=∵53ACN ∠=︒,∴16cos 530.60CF AC ==︒答:拉绳的长度为:803【点睛】本题考查解直角三角形应用及坡比问题,解题的关键是根据坡比求出20.(1)36BAC ∠=︒(2)见解析【分析】(1)连接OC BC BD =,可得BOC ∠(2)由的切线性质可知,OCD ODC ∠=∠,OAC ∠OCD ODC OAC ∠=∠=∠∵54ODB ∠=︒,OB OD =,∴54ODB OBD ∠=∠=︒,则BOD ∠∵AB CD ⊥,∴ BCBD =,∴72BOC BOD ∠=∠=︒,由圆周角定理可得:12BAC ∠=∠(2)证明:∵CE 是O 的切线,∴OC CE ⊥,又∵CE DF ⊥,∴OC DF ∥,∴OCD CDB ∠=∠,∵OC OD OA ==,∴OCD ODC ∠=∠,OAC OCA ∠=∠由圆周角定理可得:CAB CDB ∠=∠∴OCD ODC OAC OCA ∠=∠=∠=∠在AOC 与DOC △中,OAC OCA OA OD ∠=⎧⎪∠=⎨⎪=⎩∴()AAS AOC DOC △≌△,∴AC CD =.【点睛】本题考查垂径定理,圆周角定理,切线的性质,全等三角形的判定及性质,熟练掌握相关性质定理是解决问题的关键.(2)解:由题意知,中位数为第20∵461020461626+=<<++=,∴中位数落在C组,∴学生的平均“劳动时间”为:450⨯∴中位数落在C组,学生的平均“劳动时间(3)解:估算“劳动时间”不少于90∴估算“劳动时间”不少于90分钟的人数为【点睛】本题考查了样本容量,条形统计图,中位数,平均数,用样本估计总体等知识.解题的关键在于从图表中获取正确的信息.。
2020年中考数学全真模拟试卷(安徽)(一)(解析版)
2020年中考数学全真模拟试卷(安徽)(一)(考试时间:120分钟;总分:150分)班级:___________姓名:___________座号:___________分数:___________一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A、B、C、D四个选项,其中只有一个是正确的.1.[2020安徽中考原创]|﹣2020|=()A.0B.﹣2020C.2020D.±2020【答案】C【解析】根据绝对值的定义进行填空即可.【解答】解:|﹣2020|=2020,故选:C.【点睛】本题考查了绝对值,掌握绝对值的定义是解题的关键.2.[2019安庆市一模]下列运算正确的是()A.a2•a3=a6B.(﹣a2)3=a6C.a8÷a2=a6D.(a+b)2=a2+b2【答案】C【解析】根据同底数幂的乘法,积的乘方和幂的乘方,同底数幂的除法,完全平方公式分别求每个式子的值,再判断即可.【解答】解:A、a2•a3=a5,故本选项不符合题意;B、(﹣a2)3=﹣a6,故本选项不符合题意;C、a8÷a2=a6,故本选项符合题意;D、(a+b)2=a2+2ab+b2,故本选项不符合题意;故选:C.【点睛】本题考查了同底数幂的乘法,积的乘方和幂的乘方,同底数幂的除法,完全平方公式等知识点,能正确求出每个式子的值是解此题的关键.3.[2020安徽中考原创]数据显示,冠状肺炎疫情之前,我国口罩总体产能是每天2000多万只,产能为全球最高,占全球近半产能规模。
而目前,我国口罩日产量已经达到1.16亿只,而这一产值的提高仅仅用了9天的时间!让全世界见证了中国速度和中国制造的价值所在!将数据1.16亿用科学计数法表示为()A. 1.16×108 B. 11.6×107 C. 0.116×109 D. 1.16×107【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10<n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:116000000=1.17×108<故选A<【点睛】本题考查了科学计数法,表示时关键要正确确定a的值以及n的值.4.[2019合肥包河区一模]从图1的正方体上截去一个三棱锥,得到一个几何体,如图2.从正面看图2的几何体,得到的平面图形是()A.B.C.D.【答案】D【解析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看是,故选:D.【点睛】本题考查了简单组合体的三视图,从正面看得到的图形是主视图.5.[2019合肥一六八中学一模]小明把一副含45°,30°的直角三角板如图摆放,其中∠C=∠F=90°,∠A=45°,∠D=30°,则∠α+∠β等于()A.180°B.210°C.360°D.270°【解析】根据三角形的外角的性质分别表示出∠α和∠β,计算即可.【解答】解:∠α=∠1+∠D,∠β=∠4+∠F,∴∠α+∠β=∠1+∠D+∠4+∠F=∠2+∠D+∠3+∠F=∠2+∠3+30°+90°=210°,故选:B.【点睛】本题考查的是三角形外角的性质,掌握三角形的一个外角等于和它不相邻的两个内角的和是解题的关键.6.[2019安徽省芜湖二十九中一模]“同吋掷两枚质地均匀的骰子,至少有一枚骰子的点数是3”的概率为()A.B.C.D.【答案】B【解析】首先利用列表法,列举出所有的可能,再看至少有一个骰子点数为3的情况占总情况的多少即可.【解答】解:列表如下123456 1(1,1)(1,2)(1,3)(1,4)(1,5)(1,6)2(2,1)(2,2)(2,3)(2,4)(2,5)(2,6)3(3,1)(3,2)(3,3)(3,4)(3,5)(3,6)4(4,1)(4,2)(4,3)(4,4)(4,5)(4,6)5(5,1)(5,2)(5,3)(5,4)(5,5)(5,6)6(6,1)(6,2)(6,3)(6,4)(6,5)(6,6)由表可知一共36种等可能结果,其中至少有一枚骰子的点数是3的有11种结果, 所以至少有一枚骰子的点数是3的概率为,故选:B .【点睛】此题主要考查了列表法求概率,如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=,注意本题是放回实验,找到两个骰子点数相同的情况数和至少有一个骰子点数为3的情况数是关键.7.[2019年福建省龙岩市武平县中考数学模拟试卷]如图,平行四边形ABCD 中,对角线AC ,BD 相交于点O ,点E 是CD 的中点,则△ODE 与△AOB 的面积比为( )A .1:2B .1:3C .1:4D .1:5【答案】A【解析】由题意可得:S △AOB =S △COD ,由点E 是CD 中点,可得S △ODE =S △COD =S △AOB .即可求△ODE 与△AOB 的面积比.【解答】∵四边形ABCD 是平行四边形∴AO =CO ,BO =DO∴S △AOB =S △BOC ,S △BOC =S △COD .∴S △AOB =S △COD .∵点E 是CD 的中点 ∴S △ODE =S △COD =S △AOB .∴△ODE 与△AOB 的面积比为1:2故选:A .【点睛】本题主要考查了三角形的中线性质以及平行四边形的性质,能够熟练掌握是解题关键.8.[2019年海南省中考数学模拟试卷(一)]某文化衫经过两次涨价,每件零售价由81元提高到100元.已知两次涨价的百分率都为x ,根据题意,可得方程( ) A .81(1+x )2=100 B .8l (1﹣x )2=100C .81(1+x %)2=100D .81(1+2x )=100【答案】A【解析】由两次涨价的百分率都为x ,结合文化衫原价及两次涨价后的价格,即可列出关于x 的一元二次方程,此题得解.【解答】∵两次涨价的百分率都为x ,∴81(1+x )2=100.故选:A .【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.9.[2019年湖北省武汉市武昌区中考数学模拟试卷]如图,在平面直角坐标系中,点P(1,4)、Q(m,n)在函数y=(k>0)的图象上,当m>1时,过点P分别作x轴、y轴的垂线,垂足为点A、B;过点Q 分别作x轴、y轴的垂线,垂足为点C、D,QD交PA于点E,随着m的增大,四边形ACQE的面积()A.增大B.减小C.先减小后增大D.先增大后减小【答案】A【解析】首先利用m和n表示出AC和CQ的长,则四边形ACQE的面积即可利用m、n表示,然后根据函数的性质判断.=AC•CQ=(m﹣1)n=mn﹣n.【解答】由题意得AC=m﹣1,CQ=n,则S四边形ACQE∵P(1,4)、Q(m,n)在函数y=(x>0)的图象上,∴mn=k=4(常数).=AC•CQ=4﹣n,∴S四边形ACQE=4﹣n随m的增大而增大.故选:A.∵当m>1时,n随m的增大而减小,∴S四边形ACQE【点睛】本题考查了反比例函数面积问题,正确的识图和运用k的几何意义是解题的关键.10.[安徽省二十所初中名校教育联盟中考数学一模]在Rt△ABC中,∠ACB=90°,AC=8,BC=3,点D 是BC边上一动点,连接AD交以CD为直径的圆于点E.则线段BE长度的最小值为()A.B.1C.D.【答案】B【解析】作AC为直径的圆,即可得当O、E、B三点共线时,BE是最短,也即求OB的长度即可求.【解答】解:如图,作以AC为直径的圆,圆心为O∵E点在以CD为直径的圆上∴∠CED=90°∴∠AEC=180°﹣∠CED=90°∴点E也在以AC为直径的圆上,若BE最短,则OB最短∵AC=8,∴OC=4∵BC=3,∠ACB=90°∴OB===5∵OE=OC=4∴BE=OB﹣OE=5﹣4=1故选:B.【点睛】此题主要考查勾股定理,圆的性质.利用构造法是解题的关键.二、填空题(本大题共4小题,每小题5分,满分20分)11.[安徽省合肥市瑶海区一模]分解因式:x3﹣4x2+4x=.【答案】x(x﹣2)2【解析】首先提取公因式x,然后利用完全平方式进行因式分解即可.【解答】解:x3﹣4x2+4x=x(x2﹣4x+4)=x(x﹣2)2,故答案为x(x﹣2)2.【点睛】本题考查了提公因式法,公式法分解因式,提取公因式后利用完全平方公式进行二次分解,注意分解要彻底.12.[安徽省芜湖市一模]抛物线y=x2向左平移1个单位,所得的新抛物线的解析式为______.【答案】y=(x+1)2【解析】先确定抛物线y=x2的顶点坐标为(0,0),再利用点平移的规律得到点(0,0)平移后对应点的坐标为(−1,0),然后根据顶点式写出平移后的抛物线解析式.【解答】解:抛物线y=x2的顶点坐标为(0,0),把点(0,0)向左平移1个单位所得对应点的坐标为(−1,0),所以新抛物线的解析式为y=(x+1)2.故答案为y=(x+1)2.【点睛】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.13.[2019年甘肃省张掖市高台县中考数学模拟试卷]如图,在Rt△ABC中,∠ACB=90°,∠A=56°,以BC为直径的⊙O交AB于点D,E是⊙O上一点,且=,连接OE.过点E作EF⊥OE,交AC的延长线于点F,则∠F的度数为.【答案】112°【解析】直接利用互余的性质再结合圆周角定理得出∠COE的度数,再利用四边形内角和定理得出答案.【解答】∵∠ACB=90°,∠A=56°,∴∠ABC=34°,∵=,∴2∠ABC=∠COE=68°,又∵∠OCF=∠OEF=90°,∴∠F=360°﹣90°﹣90°﹣68°=112°.故答案为:112°.【点睛】本题主要考察了圆周角定理以及四边形内角和定理等基本性质,熟练掌握相关定理内容是解题关键.14.[2019合肥一六八中学一模]如图,在矩形ABCD中,AB=6,BC=4,点E是边BC上一动点,把△DCE 沿DE折叠得△DFE,射线DF交直线CB于点P,当△AFD为等腰三角形时,DP的长为.【答案】或.【解析】先根据AD=BC=4,DF=CD=AB=6,得出AD<DF,再分两种情况进行讨论:①当FA=FD 时,过F作GH⊥AD与G,交BC于H,根据△DGF∽△PHF,得出=,即=,进而解得PF=﹣6,进而得出DP的长;②当AF=AD=4时,过F作FH⊥BC于H,交DA的延长线于G,根据勾股定理求得FG=,FH=6﹣,再根据△DFG∽△PFH,得出=,即=,进而解得PF=﹣6,即可得出PD的长.【解答】解:∵AD=BC=4,DF=CD=AB=6,∴AD<DF,故分两种情况:①如图所示,当FA=FD时,过F作GH⊥AD与G,交BC于H,则HG⊥BC,DG=AD=2,∴Rt△DFG中,GF==4,∴FH=6﹣4,∵DG∥PH,∴△DGF∽△PHF,∴=,即=,解得PF=﹣6,∴DP=DF+PF=6+﹣6=;②如图所示,当AF=AD=4时,过F作FH⊥BC于H,交DA的延长线于G,则Rt△AFG中,AG2+FG2=AF2,即AG2+FG2=16;Rt△DFG中,DG2+FG2=DF2,即(AG+4)2+FG2=36;联立两式,解得FG=,∴FH=6﹣,∵∠G=∠FHP=90°,∠DFG=∠PFH,∴△DFG∽△PFH,∴=,即=,解得PF=﹣6,∴DP=DF+PF=6+﹣6=,故答案为:或.【点睛】本题是折叠问题,主要考查了相似三角形的判定与性质,勾股定理,等腰三角形的性质以及矩形的性质的综合应用,解决问题的关键是作辅助线构造相似三角形以及直角三角形,运用相似三角形的对应边成比例列出方程,求得线段的长.解题时注意分类思想的运用.三、(本大题共2小题,每小题8分,满分16分)15.[2020安徽省原创]计算:sin30°+(2020)0﹣+()﹣1【答案】【解析】根据零指数幂和负指数幂的运算法则,算术平方根的定义及特殊角的三角函数值求解即可.【解答】解:原式=+1﹣2+2=.【点睛】此题主要考查了实数的运算,正确化简各数是解题的关键.16.[2019年湖南省邵阳市洞口县中考数学模拟试卷(二)改编]《九章算术》是中国古代数学专著,《九章算术》方程篇中有这样一道题:“今有善行者行一百步,不善行者行六十步,今不善行者先行一百步,善行者追之,问几何步及之?”这是一道行程问题,意思是说:走路快的人走100步的时候,走路慢的才走了60步;走路慢的人先走100步,然后走路快的人去追赶,问走路快的人要走多少步才能追上走路慢的人?【答案】250步【解析】设走路快的人要走x步才能追上走路慢的人,根据走路快的人走100步的时候,走路慢的才走了60步可得走路快的人与走路慢的人速度比为100:60,利用走路快的人追上走路慢的人时,两人所走的步数相等列出方程,然后根据等式的性质变形即可求解.【解答】设走路快的人要走x步才能追上走路慢的人,而此时走路慢的人走了步,根据题意,得x=+100,整理,得=.解得x=250.【点睛】本题考察《九章算术》一元一次方程的应用题。
2020年安徽省中考数学一模试卷(有答案解析)
2020年安徽省中考数学一模试卷一、选择题(本大题共9小题,共36.0分)1.下列图形中,既是轴对称图形又是中心对称图形的是A. B. C. D.2.a,b是有理数,它们在数轴上的对应点的位置如图所示,把a,,b,按照从小到大的顺序排列A. B.C. D.3.2020年新冠状病毒全球感染人数约33万,科学记数法如何表示A. B. C. D.4.若是关于x的一元一次方程的解,则的值是A. B. C. 8 D. 45.如图,,A在DE上,C在GF上为等边三角形,其中,则度数为A. B. C. D.6.二次函数的图象如图所示,现有以下结论:;;;;其中正确的结论有A. 1个B. 2个C. 3个D. 4个7.某地区2007年投入教育经费2500万元,预计2009年投入3600万元.则这两年投入教育经费的年平均增长率为A. B. C. D.8.如图,中,BD是的平分线,交BC于E,,,则AB长为A. 6B. 8C.D.9.如图,在等腰中,,,点P从点B出发,以的速度沿BC方向运动到点C停止,同时点Q从点B出发,以的速度沿方向运动到点C停止,若的面积为,运动时间为,则下列最能反映y与x之间函数关系的图象是A. B.C. D.二、填空题(本大题共5小题,共24.0分)10.如图,在锐角中,,,,将绕点B按逆时针方向旋转,得到点E为线段AB中点,点P是线段AC上的动点,在绕点B按逆时针方向旋转过程中,点P的对应点是点,线段长度的最小值是______.11.把多项式分解因式的结果是______.12.不等式组的所有整数解的积为______.13.设抛物线l:的顶点为D,与y轴的交点是C,我们称以C为顶点,且过点D的抛物线为抛物线l的“伴随抛物线”,请写出抛物线的伴随抛物线的解析式______.14.如图,在等腰中,,,点D在底边BC 上,且,将沿着AD所在直线翻折,使得点C落到点E处,联结BE,那么BE的长为______.三、解答题(本大题共9小题,共90.0分)15.计算:16.九章算术是我国古代第一部数学专著,此专著中有这样一道题:今有共买鹅,人出九,盈十一;人出六,不足十六,问人数、鹅价几何?这道题的意思是:今有若干人共买一只鹅,若每人出9文钱,则多出11文钱;若每人出6文钱,则相差16文钱,求买鹅的人数和这只鹅的价格.17.如图,已知平面直角坐标内有三点,分别为,,.请画出关于原点O对称的;直接写出把绕点O顺时针旋转后,点C旋转后对应点的坐标.18.用同样大小的两种不同颜色的正方形纸片,按下图方式拼正方形.第个图形中有1个正方形;第个图形有个小正方形;第个图形有个小正方形;第个图形有小正方形;根据上面的发现我们可以猜想:______用含n的代数式表示;请根据你的发现计算:;.19.如图,在同一平面内,两条平行高速公路和间有一条“Z”型道路连通,其中AB段与高速公路成角,长为20km;BC段与AB、CD段都垂直,长为10km,CD段长为30km,求两高速公路间的距离结果保留根号.20.如图,AC是的直径,AB与相切于点A,四边形ABCD是平行四边形,BC交于点E.证明直线CD与相切;若的半径为5cm,弦CE的长为8cm,求AB的长.21.如图,在中,BD是AC边上的高,点E在边AB上,联结CE交BD于点O,且,AF是的平分线,交BC于点F,交DE于点G.求证:;.22.受西南地区旱情影响,某山区学校学生缺少饮用水.我市中小学生决定捐出自己的零花钱,购买300吨矿泉水送往灾区学校.运输公司听说此事后,决定免费将这批矿泉水送往灾区学校.公司现有大、中、小三种型号货车.各种型号货车载重量和运费如表所示.大中小载重吨台201512运费元辆150012001000司机及领队往返途中的生活费单位:元与货车台数单位:台的关系如图所示.为此,公司支付领队和司机的生活费共8200元.求出y与x之间的函数关系式及公司派出货车的台数;设大型货车m台,中型货车n台,小型货车p台,且三种货车总载重量恰好为300吨.设总运费为元,求W与小型货车台数P之间的函数关系式.不写自变量取值范围;若本次派出的货车每种型号不少于3台且各车均满载.求出大、中、小型货车各多少台时总运费最少及最少运费?由于油价上涨,大、中、小三种型号货车的运费分别增加500元辆、300元辆、a元辆,公司又将如何安排,才能使总运费最少?23.如图1,在四边形ABCD中,点E、F分别是AB、CD的中点,过点E作AB的垂线,过点F作CD 的垂线,两垂线交于点G,连接AG、BG、CG、DG,且.求证:;求证:∽;如图2,若AD、BC所在直线互相垂直,求的值。
2020年中考数学全真模拟试卷10套附答案(适用于安徽省合肥市)
第 7 页,共 15 页
由圆周角定理可知:∠ADB=90°,求出∠OAD 即可解决问题. 本题考查平行线的性质,圆周角定理等知识,解题的关键是熟练掌握基本知识,属于中 考常考题型.
6.【答案】D
【解析】解:∵不等式组
的解集是 x>-1,
①2m+1>m+2,即 m>1, ∴2m+1=-1 ∴m=-1,与 m>1 矛盾; ②当 2m+1<m+2 时,即 m<1, ∴m+2=-1 ∴m=-3, ∴m 值是-3. 故选:D.
中考数学一模试卷
题号 得分
一
二
三
四
总分
一、选择题(本大题共 10 小题,共 40.0 分) 1. - 的绝对值是( )
A.
B. -2
C. -
D. 2
2. 计算正确的是( )
A. (-5)0=0
B. x2+x3=x5
C. (ab2)3=a2b5 D. 2a2•a-1=2a
3. 2019 年两会政府工作报告指出:我们要切实把宝贵的资金用好,努力办好人民满 意的交于,托起明天的希望,今年财力虽然很紧张,国家财政性教育经费占国内生
17. 列方程或方程组解应用题: 《九章算术》中有这样一个问题:“五只雀、六只燕,共重 1 斤(等于 16 两), 雀重燕轻,互换其中一只,恰好一样重,问;每只燕、雀的重量各为多少?” 译文如下:有 5 只麻雀和 6 只燕子,一共重 16 两;5 只麻雀的重量超过 6 只燕子 的重量,如果互换其中的一只,重量恰好相等.则每只麻雀、燕子的平均重量分别 为多少两?
二、填空题(本大题共 4 小题,共 20.0 分) 11. 分解因式:(y+2x)2-x2=______. 12. 如图,点 C 是以 AB 为直径的半圆 O 的三等分点,AC=2,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
安徽省合肥市包河区中考数学一模试卷一.选择题(共10小题,满分40分,每小题4分)1.|﹣2|=()A.0B.﹣2C.2D.12.计算(﹣p)8•(﹣p2)3•[(﹣p)3]2的结果是()A.﹣p20B.p20C.﹣p18D.p183.十九大报告指出,我国目前经济保持了中高速增长,在世界主要国家中名列前茅,国内生产总值从54万亿元增长80万亿元,稳居世界第二,其中80万亿用科学记数法表示为()A.8×1012B.8×1013C.8×1014D.0.8×10134.从图1的正方体上截去一个三棱锥,得到一个几何体,如图2.从正面看图2的几何体,得到的平面图形是()A.B.C.D.5.下列因式分解正确的是()A.x2﹣xy+x=x(x﹣y)B.a3+2a2b+ab2=a(a+b)2C.x2﹣2x+4=(x﹣1)2+3D.ax2﹣9=a(x+3)(x﹣3)6.一元二次方程2x2﹣2x﹣1=0的较大实数根在下列哪两个相邻的整数之间()A.4,3B.3,2C.2,1D.1,07.如图是某班学生外出乘车、步行、骑车的人数条形统计图和扇形统计图,则该班共有学生人数是()A.8B.10C.12D.408.如图,△ABC中,BC=4,⊙P与△ABC的边或边的延长线相切.若⊙P半径为2,△ABC的面积为5,则△ABC的周长为()A.8B.10C.13D.149.等腰三角形一腰上的高与另一腰所在直线的夹角为30°,则这个等腰三角形的顶角为()A.60°或120°B.30°或150°C.30°或120°D.60°10.如图,一次函数y1=ax+b图象和反比例函数y2=图象交于A(1,2),B(﹣2,﹣1)两点,若y1<y2,则x的取值范围是()A.x<﹣2B.x<﹣2或0<x<1C.x<1D.﹣2<x<0或x>1二.填空题(共4小题,满分20分,每小题5分)11.已知a为实数,那么等于.12.化简:=.13.如图,AB与⊙O相切于点B,AO的延长线交⊙O于点C,连接BC,若∠ABC=120°,OC=3,则弧BC的长为(结果保留π).14.如图,在△ABC中,若AB=AC,BC=2BD=6,DE⊥AC,则AC•EC的值是.三.解答题(共2小题,满分16分,每小题8分)15.计算:(x﹣2)2﹣(x+3)(x﹣3)16.桑植县为践行“绿水青山就是金山银山”的理念,保护生态环境,某村计划在荒山上植树1200棵,实际每天植树的数量是原计划的1.5倍,结果比原计划提前了5天完成任务,求原计划每天植树多少棵?四.解答题(共2小题,满分16分,每小题8分)17.在4×4的方格中,△ABC的三个顶点都在格点上.(1)在图1中画出与△ABC成轴对称且与△ABC有公共边的格点三角形(画出一个即可);(2)在图2、图3中各作一格点D,使得△ACD∽△DCB,并请连结AD、CD、BD.18.如图,吊车在水平地面上吊起货物时,吊绳BC与地面保持垂直,吊臂AB与水平线的夹角为64°,吊臂底部A距地面1.5m.(计算结果精确到0.1m,参考数据sin64°≈0.90,cos64°≈0.44,tan64°≈2.05)(1)当吊臂底部A与货物的水平距离AC为5m时,吊臂AB的长为m.(2)如果该吊车吊臂的最大长度AD为20m,那么从地面上吊起货物的最大高度是多少?(吊钩的长度与货物的高度忽略不计)五.解答题(共2小题,满分20分,每小题10分)19.如图,在四边形ABCD中,AD∥BC,∠B=90°,AB=8cm,AD=24cm,BC=26cm,动点P从点A 出发,以1cm/s的速度向点D运动;动点Q从点C同时出发,以3cm/s的速度向点B运动.规定当其中一个动点到达端点时,另一个动点也随之停止运动.设运动时间为t,求:(1)当t为何值时,PQ∥CD?(2)当t为何值时,PQ=CD?20.矩形OABC在平面直角坐标系中的位置如图所示,点B的坐标为(6,8),D是OA的中点,点E在AB上,当△CDE的周长最小时,求点E的坐标.六.解答题(共1小题,满分12分,每小题12分)21.钦州市某中学为了解本校学生阅读教育、科技、体育、艺术四类课外书的喜爱情况,随机抽取了部分学生进行问卷调查,在此次调查中,甲、乙两班分别有2人特别喜爱阅读科技书报,若从这4人中随机抽取2人去参加科普比赛活动,请用列表法或画树状图的方法,求所抽取的2人来自不同班级的概率.七.解答题(共1小题,满分12分,每小题12分)22.某公司生产的某种产品每件成本为40元,经市场调查整理出如下信息:①该产品90天内日销售量(m件)与时间(第x天)满足一次函数关系,部分数据如下表:时间(第x天)13610…198194188180…日销售量(m件)②该产品90天内每天的销售价格与时间(第x天)的关系如下表:时间(第x天)1≤x<5050≤x≤90销售价格(元/件)x+60100(1)求m关于x的一次函数表达式;(2)设销售该产品每天利润为y元,请写出y关于x的函数表达式,并求出在90天内该产品哪天的销售利润最大?最大利润是多少?(3)在该产品销售的过程中,共有多少天销售利润不低于5400元,请直接写出结果.八.解答题(共1小题,满分14分,每小题14分)23.如图1,在Rt△ABC中,∠A=90°,AB=AC,点D,E分别在边AB,AC上,AD=AE,连接DC,点M,P,N分别为DE,DC,BC的中点.(1)观察猜想:图1中,线段PM与PN的数量关系是,位置关系是;(2)探究证明:把△ADE绕点A逆时针方向旋转到图2的位置,连接MN,BD,CE,判断△PMN的形状,并说明理由;(3)拓展延伸:把△ADE绕点A在平面内自由旋转,若AD=4,AB=10,请直接写出△PMN面积的最大值.安徽省合肥市包河区中考数学一模试卷参考答案与试题解析一.选择题(共10小题,满分40分,每小题4分)1.【分析】根据绝对值的定义进行填空即可.【解答】解:|﹣2|=2,故选:C.【点评】本题考查了绝对值,掌握绝对值的定义是解题的关键.2.【分析】直接利用积的乘方运算法则以及幂的乘方运算法则计算得出答案.【解答】解:(﹣p)8•(﹣p2)3•[(﹣p)3]2=p8•(﹣p6)•p6=﹣p20.故选:A.【点评】此题主要考查了积的乘方运算以及幂的乘方运算,正确掌握相关运算法则是解题关键.3.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:80万亿用科学记数法表示为8×1013.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.4.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看是,故选:D.【点评】本题考查了简单组合体的三视图,从正面看得到的图形是主视图.5.【分析】直接利用提取公因式法以及公式法分解因式,进而分析即可.【解答】解:A、x2﹣xy+x=x(x﹣y+1),故此选项错误;B、a3+2a2b+ab2=a(a+b)2,正确;C、x2﹣2x+4=(x﹣1)2+3,不是因式分解,故此选项错误;D、ax2﹣9,无法分解因式,故此选项错误;故选:B.【点评】此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键.6.【分析】先求出方程的解,再求出的范围,最后即可得出答案.【解答】解:解方程2x 2﹣2x ﹣1=0得:x =,设a 是方程2x 2﹣2x ﹣1=0较大的根, ∴a =, ∵1<<2,∴2<1+<3,即1<a <.故选:C .【点评】本题考查了解一元二次方程,估算无理数的大小的应用,题目是一道比较典型的题目,难度适中.7.【分析】此题首先根据乘车人数和所占总数的比例,求出总人数. 【解答】解:该班的学生总人数为20÷50%=40(人), 故选:D .【点评】本题考查扇形统计图及相关计算.在扇形统计图中,每部分占总部分的百分比等于该部分所对应的扇形圆心角的度数与360°的比.8.【分析】根据三角形的面积公式以及切线长定理即可求出答案. 【解答】解:连接PE 、PF 、PG ,AP , 由题意可知:∠PEC =∠PFA =PGA =90°, ∴S △PBC =BC •PE =×4×2=4,∴由切线长定理可知:S △PFC +S △PBG =S △PBC =4, ∴S 四边形AFPG =S △ABC +S △PFC +S △PBG +S △PBC =5+4+4=13, ∴由切线长定理可知:S △APG =S 四边形AFPG =,∴=×AG •PG ,∴AG =,由切线长定理可知:CE =CF ,BE =BG , ∴△ABC 的周长为AC +AB +CE +BE =AC +AB +CF +BG =AF +AG =2AG =13, 故选:C .【点评】本题考查切线长定理,解题的关键是画出辅助线,熟练运用切线长定理,本题属于中等题型.9.【分析】等腰三角形的高相对于三角形有三种位置关系,三角形内部,三角形的外部,三角形的边上.根据条件可知第三种高在三角形的边上这种情况不成了,因而应分两种情况进行讨论.【解答】解:当高在三角形内部时(如图1),顶角是60°;当高在三角形外部时(如图2),顶角是120°.故选:A.【点评】此题主要考查等腰三角形的性质,熟记三角形的高相对于三角形的三种位置关系是解题的关键,本题易出现的错误是只是求出60°一种情况,把三角形简单的认为是锐角三角形.因此此题属于易错题.10.【分析】当y1<y2时,存在不等式ax+b<,不等式的解集即为一次函数图象在反比例函数图象下方时,所对应的自变量x的取值范围.【解答】解:∵A(1,2),B(﹣2,﹣1),∴由图可得,当y1<y2时,x的取值范围是x<﹣2或0<x<1,故选:B.【点评】本题主要考查了反比例函数与一次函数交点问题,从函数的角度看,就是寻求使一次函数值大于(或小于)反比例函数值的自变量x的取值范围;从函数图象的角度看,就是确定直线在双曲线上方(或下方)部分所有的点的横坐标所构成的集合.二.填空题(共4小题,满分20分,每小题5分)11.【分析】根据非负数的性质,只有a=0时,有意义,可求根式的值.【解答】解:根据非负数的性质a2≥0,根据二次根式的意义,﹣a2≥0,故只有a=0时,有意义,所以,=0.故填:0.【点评】本题考查了算术平方根.注意:平方数和算术平方根都是非负数,这是解答此题的关键.12.【分析】先计算括号内的加法、将除法转化为乘法,继而约分即可得.【解答】解:原式=(﹣)•=•=•=x﹣1,故答案为:x﹣1.【点评】本题主要考查分式的混合运算,解题的关键是熟练掌握分式的混合运算顺序和运算法则.13.【分析】根据切线的性质得到∠OBA=90°,求出∠OBC,根据三角形内角和定理求出∠BOC=120°,根据弧长公式计算即可.【解答】解:连接OB,∵AB与⊙O相切于点B,∴∠OBA=90°,∴∠OBC=∠ABC﹣∠ABO=30°,∵OB=OC,∴∠C=∠B=30°,∴∠BOC=120°,∴弧BC的长==2π,故答案为:2π.【点评】本题考查的是切线的性质、弧长的计算,掌握圆的切线垂直于经过切点的半径、弧长的计算公式是解题的关键.14.【分析】由等腰三角形的性质得到AD⊥BC,然后根据“两角法”证得△CDE∽△CAD,所以由该相似三角形的对应边成比例求得答案.【解答】解:如图,∵在△ABC中,若AB=AC,BC=2BD=6,∴AD⊥BC,CD=BD=3.又DE⊥AC,∴∠CED=∠CDA=90°.∵∠C=∠C,∴△CDE∽△CAD.∴=,即AC•EC=CD2=9.故答案是:9.【点评】考查了相似三角形的判定与性质,等腰三角形性质.本题关键是要懂得找相似三角形,利用相似三角形的性质求解.三.解答题(共2小题,满分16分,每小题8分)15.【分析】原式利用完全平方公式,以及平方差公式计算即可求出值.【解答】解:(x﹣2)2﹣(x+3)(x﹣3)=x2﹣4x+4﹣(x2﹣9)=x2﹣4x+4﹣x2+9=﹣4x+13.【点评】此题考查了平方差公式,以及完全平方公式,熟练掌握公式是解本题的关键.16.【分析】设原计划每天植树x棵,则实际每天植树1.5x棵,根据工作时间=工作总量÷工作效率结合实际比原计划提前了5天完成任务,即可得出关于x的分式方程,解之经检验后即可得出结论.【解答】解:设原计划每天植树x棵,则实际每天植树1.5x棵,根据题意得:﹣=5,解得:x=80,经检验,x=80是所列分式方程的解,且符合题意.答:原计划每天植树80棵.【点评】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.四.解答题(共2小题,满分16分,每小题8分)17.【分析】(1)利用相似三角形的性质得出答案;(2)利用相似三角形的性质得出D点位置.【解答】解:(1)如图所示:(2)如图所示:△ACD∽△DCB.【点评】此题主要考查了相似变换,正确得出对应点位置是解题关键.18.【分析】(1)根据直角三角形的性质和三角函数解答即可;(2)过点D作DH⊥地面于H,利用直角三角形的性质和三角函数解答即可.【解答】解:(1)在Rt△ABC中,∵∠BAC=64°,AC=5m,∴AB=(m);故答案为:11.4;(2)过点D作DH⊥地面于H,交水平线于点E,在Rt△ADE中,∵AD=20m,∠DAE=64°,EH=1.5m,∴DE=sin64°×AD≈20×0.9≈18(m),即DH=DE+EH=18+1.5=19.5(m),答:如果该吊车吊臂的最大长度AD为20m,那么从地面上吊起货物的最大高度是19.5m.【点评】本题考查解直角三角形、锐角三角函数等知识,解题的关键是添加辅助线,构造直角三角形,记住锐角三角函数的定义,属于中考常考题型.五.解答题(共2小题,满分20分,每小题10分)19.【分析】(1)由当PQ∥CD时,四边形PQCD为平行四边形,可得方程24﹣t=3t,解此方程即可求得答案;(2)根据PQ=CD,一种情况是:四边形PQCD为平行四边形,可得方程24﹣t=3t,一种情况是:四边形PQCD为等腰梯形,可求得当QC﹣PD=QC﹣EF=QF+EC=2CE,即3t=(24﹣t)+4时,四边形PQCD为等腰梯形,解此方程即可求得答案.【解答】解:根据题意得:PA=t,CQ=3t,则PD=AD﹣PA=24﹣t,(1)∵AD∥BC,即PD∥CQ,∴当PD=CQ时,四边形PQCD为平行四边形,∴PQ∥CD,即24﹣t=3t,解得:t=6,即当t=6时,PQ∥CD;(2)若要PQ=CD,分为两种情况:①当四边形PQCD为平行四边形时,即PD=CQ24﹣t=3t,解得:t=6,②当四边形PQCD为等腰梯形时,即CQ=PD+2(BC﹣AD)3t=24﹣t+4解得:t=7,即当t=6或t=7时,PQ=CD.【点评】此题考查了直角梯形的性质、平行四边形的判定、等腰梯形的判定以及全等三角形的判定与性质.此题难度适中,注意掌握数形结合思想与方程思想的应用.20.【分析】如图,作点D关于直线AB的对称点H,连接CH与AB的交点为E,此时△CDE的周长最小,先求出直线CH解析式,再求出直线CH与AB的交点即可解决问题.【解答】解:如图,作点D关于直线AB的对称点H,连接CH与AB的交点为E,此时△CDE的周长最小.∵D(3,0),A(6,0),∴H(9,0),∴直线CH解析式为y=﹣x+8,∴x=6时,y=,∴点E坐标(6,).【点评】本题考查矩形的性质、坐标与图形的性质、轴对称﹣最短问题、一次函数等知识,解题的关键是利用轴对称找到点E位置,学会利用一次函数解决交点问题,属于中考常考题型.六.解答题(共1小题,满分12分,每小题12分)21.【分析】根据题意先画出树状图,得出所有情况数,再根据概率公式即可得出答案.【解答】解:将两班报名的学生分别记为甲1、甲2、乙1、乙2,树状图如图所示:由树状图知共有12种等可能结果,其中抽取的2人来自不同班级的有8种结果,所以抽取的2人来自不同班级的概率为=.【点评】本题考查了列表法与树状图法:利用列表法和树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率.七.解答题(共1小题,满分12分,每小题12分)22.【分析】(1)根据待定系数法解出一次函数解析式即可;(2)设利润为y元,则当1≤x<50时,y=﹣2x2+160x+4000;当50≤x≤90时,y=﹣120x+12000,分别求出各段上的最大值,比较即可得到结论;(3)根据1≤x<50和50≤x≤90时,由y≥5400求得x的范围,据此可得销售利润不低于5400元的天数.【解答】解:(1)∵m与x成一次函数,∴设m=kx+b,将x=1,m=198,x=3,m=194代入,得:,解得:.所以m关于x的一次函数表达式为m=﹣2x+200;(2)设销售该产品每天利润为y元,y关于x的函数表达式为:y=,当1≤x<50时,y=﹣2x2+160x+4000=﹣2(x﹣40)2+7200,∵﹣2<0,∴当x=40时,y有最大值,最大值是7200;当50≤x≤90时,y=﹣120x+12000,∵﹣120<0,∴y随x增大而减小,即当x=50时,y的值最大,最大值是6000;综上所述,当x=40时,y的值最大,最大值是7200,即在90天内该产品第40天的销售利润最大,最大利润是7200元;(3)当1≤x<50时,由y≥5400可得﹣2x2+160x+4000≥5400,解得:10≤x≤70,∵1≤x<50,∴10≤x<50;当50≤x≤90时,由y≥5400可得﹣120x+12000≥5400,解得:x≤55,∵50≤x≤90,∴50≤x≤55,综上,10≤x≤55,故在该产品销售的过程中,共有46天销售利润不低于5400元.【点评】本题主要考查二次函数的应用,解题的关键是理解题意根据销售问题中总利润的相等关系,结合x的取值范围列出分段函数解析式及二次函数和一次函数的性质.八.解答题(共1小题,满分14分,每小题14分)23.【分析】(1)利用三角形的中位线得出PM=CE,PN=BD,进而判断出BD=CE,即可得出结论,再利用三角形的中位线得出PM∥CE得出∠DPM=∠DCA,最后用互余即可得出结论;(2)先判断出△ABD≌△ACE,得出BD=CE,同(1)的方法得出PM=BD,PN=BD,即可得出PM=PN,同(1)的方法即可得出结论;(3)方法1:先判断出MN最大时,△PMN的面积最大,进而求出AN,AM,即可得出MN最大=AM+AN,最后用面积公式即可得出结论.方法2:先判断出BD最大时,△PMN的面积最大,而BD最大是AB+AD =14,即可得出结论.【解答】解:(1)∵点P,N是BC,CD的中点,∴PN∥BD,PN=BD,∵点P,M是CD,DE的中点,∴PM∥CE,PM=CE,∵AB=AC,AD=AE,∴BD=CE,∴PM=PN,∵PN∥BD,∴∠DPN=∠ADC,∵PM∥CE,∴∠DPM=∠DCA,∵∠BAC=90°,∴∠ADC+∠ACD=90°,∴∠MPN=∠DPM+∠DPN=∠DCA+∠ADC=90°,∴PM⊥PN,故答案为:PM=PN,PM⊥PN;(2)△PMN是等腰直角三角形.由旋转知,∠BAD=∠CAE,∵AB=AC,AD=AE,∴△ABD≌△ACE(SAS),∴∠ABD=∠ACE,BD=CE,利用三角形的中位线得,PN=BD,PM=CE,∴PM=PN,∴△PMN是等腰三角形,同(1)的方法得,PM∥CE,∴∠DPM=∠DCE,同(1)的方法得,PN∥BD,∴∠PNC=∠DBC,∵∠DPN=∠DCB+∠PNC=∠DCB+∠DBC,∴∠MPN=∠DPM+∠DPN=∠DCE+∠DCB+∠DBC=∠BCE+∠DBC=∠ACB+∠ACE+∠DBC=∠ACB+∠ABD+∠DBC=∠ACB+∠ABC,∵∠BAC=90°,∴∠ACB+∠ABC=90°,∴∠MPN=90°,∴△PMN是等腰直角三角形;(3)方法1:如图2,同(2)的方法得,△PMN是等腰直角三角形,∴MN最大时,△PMN的面积最大,∴DE∥BC且DE在顶点A上面,∴MN最大=AM+AN,连接AM,AN,在△ADE中,AD=AE=4,∠DAE=90°,∴AM=2,在Rt△ABC中,AB=AC=10,AN=5,=2+5=7,∴MN最大=PM2=×MN2=×(7)2=.∴S△PMN最大方法2:由(2)知,△PMN是等腰直角三角形,PM=PN=BD,∴PM最大时,△PMN面积最大,∴点D在BA的延长线上,∴BD=AB+AD=14,∴PM=7,=PM2=×72=.∴S△PMN最大【点评】此题属于几何变换综合题,主要考查了三角形的中位线定理,等腰直角三角形的判定和性质,全等三角形的判断和性质,直角三角形的性质的综合运用;解(1)的关键是判断出PM=CE,PN=BD,解(2)的关键是判断出△ABD≌△ACE,解(3)的关键是判断出MN最大时,△PMN的面积最大.。