试卷答案及解析

合集下载

2024-2025学年辽宁省三校高三数学上学期10月联考试卷及答案解析

2024-2025学年辽宁省三校高三数学上学期10月联考试卷及答案解析

2024—2025学年度上学期高三10月联合教学质量检测高三数学试卷本试卷共5页 满分150分,考试用时120分钟注意事项:1. 答题前,先将自己的姓名、准考证号填写在试卷和答题卡上,并将准考证号条形码贴在答题卡上的指定位置.2. 选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.写在试卷、草稿纸和答题卡上的非答题区域均无效.3. 非选择题的作答:用黑色签字笔直接答在答题卡上对应的答题区域内.写在试卷、草稿纸和答题卡上的非答题区域均无效.4. 考试结束后,请将本试卷和答题卡一并上交.一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题所给的四个选项中,只有一项是符合题目要求的)1. 已知集合{}21A x x =-<,{}3B x a x a =<<+,若{}15A B x x ⋃=<<,则a =()A. 0B. 1C. 2D. 3【答案】C 【解析】【分析】先求出集合A ,再根据并集得出参数的值.【详解】因为()1,3A =,()1,5A B ⋃=,又因为(),3B a a =+,所以35,a +=即a =2.故选:C.2. 如图,在ABC V 中,点D 是BC 边的中点,3AD GD = ,则用向量AB ,AC表示BG 为( )A. 2133BG AB AC=-+u u u u r uu r u u u r B. 1233BG AB AC=-+u u u r u uu r u u u r C. 2133BG AB AC=-u u u r u u u r u u u r D. 2133BG AB AC=+u u u r u u u r u u u r【答案】A 【解析】【分析】利用向量的线性运算求解即可.【详解】3AD GD =,故23AG AD = ,则()2212133233B C G BA BA BA AG AD AB A AB AC =+=+=+⨯+=-+.故选:A3. 在等比数列{}n a 中,记其前n 项和为n S ,已知3212a a a =-+,则84S S 的值为( )A. 2 B. 17 C. 2或8D. 2或17【答案】D 【解析】【分析】根据等比数列通项公式求得1q =或2q =-,再利用等比数的求和公式求解即可.【详解】解:由等比数列的通项公式可得21112a q a q a =-+,整理得220q q +-=,解得1q =或2q =-.当q =1时,1841824S a S a ==;当2q =-时,()()814844184111117111a q S q q q S q a q q ---====-+--.所以84S S 的值为2或17.故选:D .4. 每年10月1日国庆节,根据气象统计资料,这一天吹南风的概率为25%,下雨的概率为20%,吹南风或下雨的概率为35%,则既吹南风又下雨的概率为( )A. 5% B. 10%C. 15%D. 45%【答案】B 【解析】【分析】根据概率公式直接得出结论.【详解】由题知,既吹南风又下雨的概率为25%20%35%10%+-=.故选:B5. 若直线:3l y kx k =+-与曲线:C y =恰有两个交点,则实数k 的取值范围是( )A. 4,+3∞⎛⎫⎪⎝⎭B. 43,32⎛⎤⎥⎝⎦C. 40,3⎛⎫ ⎪⎝⎭D. 43,32⎡⎫⎪⎢⎣⎭【答案】B 【解析】【分析】先得到直线过定点()1,3P ,作出直线l 与曲线C ,由图求出直线l 过点()1,0A -时的斜率和直线l 与曲线C 相切时的斜率即可树形结合得解.【详解】由()313y kx k k x =+-=-+可知直线l 过定点()1,3P ,曲线:C y =两边平方得()2210x y y +=≥,所以曲线C 是以()0,0为圆心,半径为1且位于直线x 轴上方的半圆,当直线l 过点()1,0A -时,直线l 与曲线C 有两个不同的交点,此时3032k k k =-+-⇒=,当直线l 与曲线C 相切时,直线和圆有一个交点,圆心()0,0到直线l的距离1d ,两边平方解得43k =,所以结合图形可知直线l 与曲线C 恰有两个交点,则4332k <≤.故选:B.6. 已知()ππsin 0,32f x x ωϕωϕ⎛⎫⎛⎫=++>< ⎪⎪⎝⎭⎝⎭为偶函数,()()sin g x x ωϕ=+,则下列结论不正确的A. π6ϕ=B. 若()g x 的最小正周期为3π,则23ω=C. 若()g x 在区间()0,π上有且仅有3个最值点,则ω的取值范围为710,33⎛⎫⎪⎝⎭D. 若π4g ⎛⎫= ⎪⎝⎭,则ω的最小值为2【答案】D 【解析】【分析】先根据()f x 是偶函数求ϕ判断A 选项;根据最小正周期公式计算可以判断B 选项;据有且仅有3个最值点求范围判断C 选项;据函数值求参数范围结合给定范围求最值可以判断D 选项.【详解】()ππsin 0,32f x x ωϕωϕ⎛⎫⎛⎫=++>< ⎪⎪⎝⎭⎝⎭为偶函数,则πππππ,Z,,,3226k k ϕϕϕ+=+∈<∴=∣∣A 选项正确;若()g x 的最小正周期为3π,由()sin()g x x ωϕ=+则2π23π,3T ωω==∴=,B 选项正确;πππ(0,π),(,π)666x x ωω∈+∈+ 若()g x 在区间()0,π上有且仅有3个最值点,则5ππ7π710π,26233ωω<+≤<≤,C 选项正确;若π()sin(6g x x ω=+ πππsin +446g ω⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭,则πππ+2π463k ω=+或ππ2π+2π463k ω=+,Z k ∈,则 283k ω=+或28,Z k k ω=+∈,又因为0ω>,则ω的最小值为23,D 选项错误.故选:D.7. 已知()612a x x x ⎛⎫-- ⎪⎝⎭的展开式中,常数项为1280-,则a =( )A. ―2B. 2C. D. 1【解析】【分析】根据已知条件,结合二项式定理并分类讨论,即可求解.【详解】由题意,62a x x ⎛⎫- ⎪⎝⎭的通项公式为()()6662166C 2C 2rr r r r rr r a T x a x x ---+-⎛⎫=⋅=- ⎪⎝⎭,令620r -=,则3r =,令621r -=-,则72r =不符合题意,所以()612a x x x ⎛⎫-- ⎪⎝⎭的常数项为()3336C 21280a --=-,解得2a =-.故选:A .8. 已知函数22()log f x x mx x =-+,若不等式()0f x >的解集中恰有两个不同的正整数解,则实数m的取值范围是( )A. 23log 33,89+⎡⎫⎪⎢⎣⎭B. 23log 33,94+⎛⎫⎪⎝⎭C. 23log 33,94+⎡⎫⎪⎢⎣⎭ D. 23log 33,89+⎛⎫⎪⎝⎭【答案】C 【解析】【分析】不等式()0f x >可化为2log 1xmx x-<,利用导数分析函数()2log x g x x =的单调性,作函数()1h x mx =-,()2log xg x x=的图象,由条件结合图象列不等式求m 的取值范围.【详解】函数22()log f x x mx x =-+的定义域为(0,+∞),不等式()0f x >化为:2log 1xmx x-<.令()1h x mx =-,()2log x g x x=,()2222221log e log log e log x xx x g x x x --='=,故函数()g x 在()0,e 上单调递增,在()e,∞+上单调递减.当1x >时,()0g x >,当1x =时,()0g x =,当01x <<时,()0g x <,当x →+∞时,()0g x →,当0x >,且0x →时,()g x ∞→-,画出()g x 及()h x 的大致图象如下,因为不等式()0f x >的解集中恰有两个不同的正整数解,故正整数解为1,2.故()()()()2233h g h g ⎧<⎪⎨≥⎪⎩,即22log 2212log 3313m m ⎧-<⎪⎪⎨⎪-≥⎪⎩,解得23log 3943m +≤<.故选:C.二、多项选择题(本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求,全部选对得6分,部分选对的得部分分,有选错的得0分)9. 已知复数232023i i i i 1iz ++++=+ ,则下列结论正确的是( )A. 1i 2z -=-B. 1i 2z -=C. 1i 2z +=-D. z =【答案】ACD 【解析】【分析】利用234i+i +i +i 0=对分子化简,然后利用复数的除法化简,可求共轭复数、复数的模依次判断即可得出结果.【详解】因为i,411,42i ,i,431,4nn k n k k n k n k=+⎧⎪-=+⎪=∈⎨-=+⎪⎪=⎩Z ,所以234i+i +i +i 0=,所以()()()()2342323202323505i+i +i +i i i i 1i i i i i i i i 111i 1i 1i 1i 1i 1i 1i 22z +++--++++++-======-++++++- ,所以A 正确,B 错误,111i i=222z +=---,C 准确,所以z ==D 正确.故选:ACD10. “费马点”是由十七世纪法国数学家费马提出并征解的一个问题. 该问题是:“在一个三角形内求作一点,使其与此三角形的三个顶点的距离之和最小”.意大利数学家托里拆利给出了解答,当 ABC V 的三个内角均小于120°时,使得120AOB BOC COA ︒∠=∠=∠=的点O 即为费马点;当 ABC V 有一个内角大于或等于120°时,最大内角的顶点为费马点.下列说法正确的是( )A. 正三角形的的费马点是正三角形的中心B. 若P 为ABC V 的费马点, 且 0PA PB PC ++=u u r u u r u u u r r,则ABC V 一定为正三角形C. 若ABC V 三边长分别为2D. ABC V 的内角A ,B ,C 所对的边分别为a ,b , c , π22A ,bc ∠==,若点P 为ABC V 的费马点,则PA PB PB PC PC PA ⋅+⋅+⋅=.【答案】ABC 【解析】【分析】对A ,根据正三角形中心的性质结合费马点定义易判断;对B ,取AB 的中点D ,由0PA PB PC ++=可得点P 是ABC V 的重心,再结合条件可得点P 是ABC V 的中心,得证;对C ,利用三角形旋转,结合费马点定义,构造正三角形转化线段长求解;对D ,由向量数量积定义,结合费马点定义和三角形等面积法列式求解.【详解】对于A ,如图O 是正三角形ABC 的中心,根据正三角形的性质易得o 120AOB AOC BOC ∠=∠=∠=,所以点O 是正三角形ABC 的费马点,故A 正确;对于B ,如图,取AB 的中点D ,则2PA PB PD += ,因为0PA PB PC ++=,所以2PC PD =-u u u r u u u r,所以,,C P D 三点共线,且点P 是ABC V 的重心,又点P 是ABC V 费马点,则o 120APB APC BPC ∠=∠=∠=,则o 60APD BPD ∠=∠=,又AD BD =,易得PA PB =,同理可得PC PB =,所以PA PB PC ==所以点P 是ABC V 的外心,所以点P 是ABC V 的中心,即ABC V 是正三角形.故B 正确;对于C ,如图,在Rt ABC △中,1AB =,BC =,2AC =,o 30ACB ∠=,点O 是Rt ABC △的费马点,将COA 绕点C 顺时针旋转o 60,得到CED △,易证COE ,ACD 是正三角形,则OC OE =,OA DE =,CD AC =,且点,,,B O E D 共线,所以o90BCD ∠=,所以BD ===又OA OB OC DE OE OB DB ++=++==,的.故C 正确;对于D ,由费马点定义可得o 120APB APC BPC ∠=∠=∠=,设PA x =,PB y =,PC z =,,,0x y z >,由ABC PAB PAB PAB S S S S =++V V V V,可得111122222xy xz yz ++=⨯,整理得xy yz xz ++=,所以111222PA PB PB PC PC PA xy yz xz ⎛⎫⎛⎫⎛⎫⋅+⋅+⋅=⋅-+⋅-+⋅- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ ()1122xy yz xz =-++=-=,故D 错误.故选:ABC.【点睛】关键点点睛:解答本题首先要理解费马点的含义,解答D 选项的关键在于利用三角形等面积法求出xy yz xz ++=.11. 在四面体ABCD 中,棱AB 的长为4,AB BD ⊥,CD BD ⊥,2BD CD ==,若该四面体的体积为)A. 异面直线AB 与CD 所成角的大小为π3B. AC的长可以为C. 点D 到平面ABCD. 当二面角A BC D --是钝角时,其正切值为【答案】ACD【解析】【分析】根据等体积法可结合三角形的面积公式可得sin CDE ∠=A ,根据余弦定理即可求解B ,根据等体积法即可求解C ,根据二面角的几何法,结合同角关系即可求解D.【详解】在平面ABD 内过D 作DE AB ∥,且ED AB =,由于AB BD ⊥,故四边形ABDE 为矩形,CD BD ⊥,DE BD ⊥,BD DE C = ,CD ⊂平面CDE ,DE ⊂平面CDE ,故BD ⊥平面CDE ,故11233C ABD C EDA B CDE CDE CDE V V V S BD S ---===⋅=⨯=,11sin 24sin 4sin 22CDE S CD DE CDE CDE CDE=⋅⋅∠=⨯⨯∠=∠故1124sin 233C ABD CDE V S CDE -=⨯=⨯∠⨯=,因此sin CDE ∠=由于()0,CDE π∠∈,所以3CDE π∠=或23π,由于CDE ∠为异面直线AB 与CD 所成角或其补角,故异面直线AB 与CD 所成角的大小为3π,A 正确,当23CDE π∠=时,CE ===,由于BD ⊥平面CDE ,AE BD ,∴AE ⊥平面CDE ,CE ⊂平面CDE ,故AE CE ⊥,此时AC ==当3CDE π∠=时,CE ===,由于BD ⊥平面CDE ,AE BD ,∴AE ⊥平面CDE ,CE ⊂平面CDE ,故AE CE ⊥,此时4AC ==,故B 错误,由于BC ==,4AB =,当AC =cos BAC ∠==sin BAC ∠=,11sin 422ABC S AB AC BAC =⋅⋅∠=⨯⨯= ,当4AC =时,161683cos 2444BAC +-∠==⨯⨯,故sin BAC ∠=,1sin 2ABC S AB AC BAC =⋅∠= ,故点D 到平面ABC的距离为d ===,C 正确,当4AC =时,4AB AC ==,2CD BD ==,取BC 中点为O ,连接OA ,OD ,则AOD ∠即为二面角A BC D --的平面角,12OD BC ===,AO ==所以22cos 0AOD ∠===<,故AOD ∠为钝角,符合题意,此时sin tan cos AODAOD AOD∠∠==∠,当4AC =,由于2DBCS =,点A 到平面BDC距离为d ===,设A 在平面BDC 的投影为H ,则AH =,故HD==HC ==,因此点O 为以D ,C为圆心,以半径为,显然交点位于BC ,同D 的一侧,故此时二面角A BC D --为锐角,不符合要求,故D 正确,故选:ACD三、填空题(本大题共3小题,每小题5分,共15分)12. 已知,a b +∈R ,41a b +=,则aba b+的最大值是________.【答案】19【解析】的【分析】先求出11a b+的最小值,再将aba b +化为111a b+,即可求得答案.【详解】因为,a b +∈R ,41a b +=,故()111144559b a a b a b a b a b ⎛⎫+=++=++≥+= ⎪⎝⎭,当且仅当4b a a b=,结合41a b +=,即11,63==a b 时等号成立,所以11119ab a b a b =≤++,即ab a b +的最大值是19,故答案为:1913. 刻画空间的弯曲性是几何研究的重要内容,在数学上用曲率刻画空间弯曲性.规定:多面体的顶点的曲率等于2π与多面体在该点的面角之和的差(多面体的面的内角叫做多面体的面角,角度用弧度制),多面体面上非顶点的曲率均为零,多面体的总曲率等于该多面体各顶点的曲率之和.例如:正四面体(四个面都是等边三角形围成的几何体)在每个顶点有3个面角,每个面角是π3,所以正四面体在每个顶点的曲率为π2π3π3-⨯=,故其总曲率为4π.我们把平面四边形ABCD 外的点P 连接顶点A 、B 、C 、D 构成的几何体称为四棱锥,根据曲率的定义,四棱锥的总曲率为______.【答案】4π【解析】【分析】根据曲率的定义求解即可.【详解】由定义可得多面体的总曲率2π=⨯顶点数各面内角和,因为四棱锥有5个顶点,5个面,分别为4个三角形和1个四边形,所以任意四棱锥的总曲率为()2π5π42π14π⨯-⨯+⨯=.故答案为:4π.14. 过双曲线22221(0,0)y x a b a b-=>>的上焦点1F ,作其中一条渐近线的垂线,垂足为H ,直线1F H 与双曲线的上、下两支分别交于,M N ,若3NH HM =,则双曲线的离心率e =__________.【解析】【分析】设双曲线右焦点为2F ,HM t =,3NH t =,由题意结合双曲线定义可依次求出1F H 、1OF 、1F M 、1F N 、2F N 和2F M ,接着分别在1Rt F OH 、12F MF △和12F NF △中结合余弦定理求出1cos OF M ∠,进而建立等量关系式求出t ,从而求得2b a =,进而由离心率公式即可得解.【详解】设双曲线右焦点为2F ,由题()10,F c ,双曲线的一条渐近线方程为ay x b=-即0ax by +=,过该渐近线作垂线,则由题1F H b =,1OF c =,设HM t =,则由题3NH t =,1F M b t =-,13F N b t =+,所以232F N b t a =+-,22F M b t a =-+,所以在1Rt F OH 中,111cos F H bOF M OF c∠==①,在12F MF △中,()()()()()22222211221112||||22cos 222F M F F F M b t c b t a OF M b t c F M F F +--+--+∠==-⋅②,在12F NF △中,()()()()()22222211221112||||3232cos 2322F N F F F N b t c b t a OF M b t c F N F F +-++-+-∠==+⋅③,由①②得()()()()()2222222b t c b t a bb tc c-+--+=-,化简解得ab t a b =+,由①③得()()()()()2223232232b t c b t a b b t c c++-+-=+,化简解得()3ab t b a =-,所以()23ab abb a a b b a =⇒=+-,故双曲线的离心率c e a====.【点睛】思路点睛:依据题意设双曲线右焦点为2F ,HM t =,则结合双曲线定义可得1Rt F OH 、12F MF △和12F NF △的边长均是已知的,接着结合余弦定理均可求出三个三角形的公共角1OF M ∠的余弦值1cos OF M ∠,从而可建立等量关系式依次求出t 和2b a =,进而由离心率公式得解.四、解答题(本大题共5小题,共77分.解答应写出必要的文字说明、证明过程或演算步骤)15. 设n S 为数列{}n a 的前n 项和,满足()*1N n n S a n =-∈.(1)求数列{}n a 的通项公式;(2)记22212n n T S S S =+++ ,求n T .【答案】(1)1()2n n a = (2)1235111((3232n nn n T --=+-⋅【解析】【分析】(1)应用1n n n S S a --=,再结合等比数列定义及通项公式计算即可;(2)先化简得出21111()()24n n n S --+=,再应用分组求和及等比数列前n 项和公式计算.小问1详解】因为数列{a n }的前n 项和,满足1n n S a =-,当2n ≥时,可得111n n S a --=-,两式相减得1n n n a a a -=-,即12n n a a -=,所以112n n a a -=,令1n =,可得1111S a a =-=,解得112a =,所以数列{a n }构成首项为12,公比为12的等比数列,所以{a n }的通项公式为1111()(222n nn a -=⋅=.【小问2详解】由(1)知1(2nn a =,可得11(2nn S =-,所以222111111()]12()()1((22224[1n n n n n n S -=-⋅=+=-+-,【则222121111()[1()]244(111)111124n n n n T S S S -⋅-=+++=+++-+-- 1235111()()3232n n n --=+-⋅.16. 如图,正四棱台ABCD EFGH -中,24,EG AC MN ==上为上下底面中心的连线,且MN 与侧面.(1)求点A 到平面MHG 的距离;(2)求二面角E HM G --的余弦值.【答案】(1(2)23-【解析】【分析】(1)由题意建立空间直角坐标系,求得平面法向量,利用点面距向量公式,可得答案;(2)求得两个平面的法向量,利用面面角的向量公式,可得答案.【小问1详解】由题意,易知,,MN MA MB 两两垂直,分别以,,MA MB MN 为,,x y z 轴建立直角坐标系,如下图:则()()()()1,0,0,0,0,0,0,2,1,2,0,1A M H G --,取()()0,2,1,2,0,1MH MG =-=-,设平面MHG 的法向量(),,n x y z = ,则2020n MH y z n MG x z ⎧⋅=-+=⎪⎨⋅=-+=⎪⎩,令2z =,则1,1x y ==,所以平面MHG 的一个法向量()1,1,2n =,取()1,0,0MA = ,点A 到平面MHG的距离MA n d n ⋅===.【小问2详解】由(1)可知()()()()2,0,1,0,2,1,0,0,0,2,0,1E H M G --,取()()()()2,2,0,2,0,1,2,2,0,2,0,1HE ME HG MG ===-=-,设平面EHM 的法向量()1111,,m x y z = ,则11111122020m HE x y m ME x z ⎧⋅=+=⎪⎨⋅=+=⎪⎩ ,令11x =-,则221,2y z ==,所以平面EHM 的一个法向量()11,1,2m =-,设平面HMG 的法向量()2222,,m x y z = ,则22222222020m HG x y m MG x z ⎧⋅=-+=⎪⎨⋅=-+=⎪⎩ ,令21x =,则111,2y z ==,所以平面EHG 的一个法向量()21,1,2m =,设二面角E HM G --的大小为θ,则12121142cos 1143m m m m θ⋅-++=-=-=-++⋅ .17. 某汽车公司最新研发了一款新能源汽车,并在出厂前对100辆汽车进行了单次最大续航里程(理论上是指新能源汽车所装载的燃料或电池所能够提供给车行驶的最远里程)的测试.现对测试数据进行整理,得到如下的频率分布直方图:(1)估计这100辆汽车的单次最大续航里程的平均值x (同一组中的数据用该组区间的中点值代表);(2)由频率分布直方图计算得样本标准差s 的近似值为49.75.根据大量的汽车测试数据,可以认为这款汽车的单次最大续航里程X 近似地服从正态分布()2,N μσ,其中μ近似为样本平均数x ,σ近似为样本标准差S.(ⅰ)利用该正态分布,求()250.25399.5P X <<;(ⅱ)假设某企业从该汽车公司购买了20辆该款新能源汽车,记Z 表示这20辆新能源汽车中单次最大续航里程位于区间(250.25,399.5)的车辆数,求E (Z );参考数据:若随机变量ξ服从正态分布()2,N μσ,则()0.6827P μσξμσ-<<+=,()()220.9545,330.99731P P μσξμσμσξμσ-<<+=-<<+=.(3)某汽车销售公司为推广此款新能源汽车,现面向意向客户推出“玩游戏,送大奖”活动,客户可根据抛掷硬币的结果,操控微型遥控车在x 轴上从原点O 出发向右运动,已知硬币出现正、反面的概率都12,客户每掷一次硬币,遥控车向右移动一次,若掷出正面,则遥控车向移动一个单位,若掷出反面,则遥控车向右移动两个单位,直到遥控车移到点(59,0)(胜利大本营)或点(60,0)(失败大本营)时,游戏结束,若遥控车最终停在“胜利大本营”,则可获得购车优惠券.设遥控车移到点(),0n 的概率为()160n P n ≤≤,试证明数列{}1n n P P --是等比数列()259n ≤≤,求出数列{}()160n P n ≤≤的通项公式,并比较59P 和60P 的大小.【答案】(1)300 (2)(ⅰ)0.8186;(ⅱ)16.372(3)证明见解析,158211,159362111,60362n n n P n -⎧⎛⎫-⋅-≤≤⎪ ⎪⎪⎝⎭=⎨⎛⎫⎪+⋅= ⎪⎪⎝⎭⎩,5960P P >【解析】【分析】(1)根据平均数的求法求得正确答案.(2)(ⅰ)根据正态分布的对称性求得正确答案.(ⅱ)根据二项分布的知识求得正确答案.(3)根据已知条件构造等比数列,然后利用累加法求得n P ,利用差比较法比较59P 和60P 的大小.【小问1详解】2050.12550.23050.453550.24050.05300x ≈⨯+⨯+⨯+⨯+⨯=.【小问2详解】(ⅰ)0.95450.6827(250.25399.5)0.68270.81862P X -<<=+=.(ⅱ))∵Z 服从二项分布()20,0.8186B ,∴()200.818616.372E Z =⨯=.【小问3详解】当359n ≤≤时,()12112111,222n n n n n n n P P P P P P P -----=+-=--,1221111131,,222244P P P P ==⨯+=-=.∴{}1(259)n n P P n --≤≤是以14为首项,12-为公比的等比数列,2111(259)42n n n P P n --⎛⎫-=⋅-≤≤ ⎪⎝⎭.22132111111,,,(259)44242n n n P P P P P P n --⎛⎫⎛⎫-=-=⋅-⋯-=⋅-≤≤ ⎪⎪⎝⎭⎝⎭.累加得:115816058111422111111,(259),1362236212n n n n P P P n P P --⎛⎫⎛⎫-- ⎪ ⎪ ⎪⎝⎭⎛⎫⎛⎫⎝⎭-==-⋅-≤≤==+⋅ ⎪ ⎪⎝⎭⎝⎭+.∴158211,159362111,60362n n n P n -⎧⎛⎫-⋅-≤≤⎪ ⎪⎪⎝⎭=⎨⎛⎫⎪+⋅= ⎪⎪⎝⎭⎩∵58585960111111033232P P ⎛⎫⎛⎫⎛⎫-=-⨯=-> ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,∴5960P P >.注:比较59P 和60P 的另一个过程:58596059592112111,13623622P P P P ⎛⎫=-⋅>-==-<< ⎪⎝⎭.18. 已知函数()1e xx f x +=.(1)求函数()f x 的极值;(2)若不等式()e ln 1xf x a x +≥恒成立,求实数a 的取值范围;(3)已知直线l 是曲线()y f x =在点()(),t f t 处的切线,求证:当1t >时,直线l 与曲线()y f x =相交于点()(),s f s ,其中s t <.【答案】(1)极大值为1,没有极小值 (2)[]e,0- (3)证明见解析【解析】【分析】(1)求导,利用导数判断()f x 的单调性和极值;(2)根据题意可得ln 0x a x +≥恒成立,构建()ln ,0g x x a x x =+>,分类讨论a 的符号,利用导数求最值,结合恒成立问题分析求解;(3)根据导数的几何意义可得当1t >时,方程2110e e ex t tx tx t t ++++-=有小于t 的解,构建()211e e ex t tx tx t t h x +++=+-,其中x t <,1t >,利用导数研究函数零点分析证明.小问1详解】由题意可知:()f x 的定义域为R ,且()ex xf x '-=,令()0f x '=时,0x =,则x ,f ′(x ),()f x 的关系为x(),0∞-0(0,+∞)f ′(x )+0-()f x 单调递增极大值单调递减所以,当0x =时,()f x 取到极大值为1,没有极小值.【小问2详解】若()e ln 1xf x a x +≥,即ln 0x a x +≥恒成立,设()ln ,0g x x a x x =+>,则()1a x a g x x x'+=+=,①当0a =时,则()0g x x =>恒成立,符合题意;②当0a >时,则()0g x '≥,可知()g x 在(0,+∞)上单调递增,因为11e e 10a a g --⎛⎫=-< ⎪⎝⎭,所以ln 0x a x +≥不恒成立;③当0a <时,x ,()g x ',()g x 的关系为x()0,a -a-(),a ∞-+()g x '-+【()g x 单调递减极小值单调递增可知()g x 的最小值为()()min ln g x a a a =-+-,则()ln 0a a a -+-≥,因为0a <,则()1ln 0a --≥,解得e 0a ≤-<;综上所述:实数a 的取值范围是[]e,0-.【小问3详解】因为()1e x x f x +=,()e x x f x '-=,则()1e t tf t +=,e t t k -=即切点坐标为1,e t t t +⎛⎫⎪⎝⎭,切线l 斜率为e tt k -=,可得l 的方程为()1e e t t t t y x t +--=-,即21e et tt t t y x -++=+,联立方程21e e 1e t txt t t y x x y ⎧-++=+⎪⎪⎨+⎪=⎪⎩,可得2110e e e x t tx tx t t ++++-=,由题可知:当1t >时,方程2110e e ex t tx tx t t ++++-=有小于t 的解,设()211e e ex t tx tx t t h x +++=+-,其中x t <,1t >且()0h t =,则()e e x t x t h x '-=+,设()()F x h x =',则()1e xx F x '-=,因为1t >,x ,()F x ',F (x )的关系为x(),1∞-1()1,t ()F x '-+F (x )单调递减1e et t -+,单调递增可知F (x )的最小值()()()min 10F x F F t =<=,且()1e 0e ttF -=+>,可知()01,1x ∃∈-,使()00F x =,当()0,x x ∞∈-时,()0F x >,即h ′(x )>0;当()0,x x t ∈时,()0F x <,即h ′(x )<0;可知h (x )在()0,x ∞-内单调递增;在()0,x t 内单调递减,可知h (x )的最大值()()()0max 0h x h x h t '=>=,且()()2110e t t h -+-=<,可知h (x )存在小于t 的零点,所以当1t >时,直线l 与曲线y =f (x )相交于点()(),s f s ,其中s t <,得证.【点睛】方法点睛:两招破解不等式的恒成立问题(1)分离参数法第一步:将原不等式分离参数,转化为不含参数的函数的最值问题;第二步:利用导数求该函数的最值;第三步:根据要求得所求范围.(2)函数思想法第一步:将不等式转化为含待求参数的函数的最值问题;第二步:利用导数求该函数的极值;第三步:构建不等式求解.19. 蝴蝶定理因其美妙的构图,像是一只翩翩起舞的蝴蝶,一代代数学名家蜂拥而证,正所谓花若芬芳蜂蝶自来.如图,已知圆M 的方程为222()x y b r +-=,直线x my =与圆M 交于()11,C x y ,()22,D x y ,直线x ny =与圆M 交于()33,E x y ,()44,F x y .原点O 在圆M 内.设CF 交x 轴于点P ,ED 交x 轴于点Q .(1)当0b =,r =,12m =-,2n =时,分别求线段OP 和OQ 的长度;(2)①求证:34121234y y y y y y y y ++=.②猜想|OP |和|OQ |的大小关系,并证明.【答案】(1)53OP OQ == (2)①证明见解析;②猜测OP OQ =,证明见解析.【解析】【分析】(1)联立直线与圆的方程,可求,,,C D E F 各点的坐标,利用直线的两点式方程,可得直线CF 和ED 的方程,并求它们与x 轴的交点坐标,可得问题答案.(2)①联立直线与圆的方程,求出两根之和与两根之积,找到相等代换量,从而证明成立.②分别求出点P 和点Q 的横坐标表达式,结合①中的结论,从而证明成立.【小问1详解】当0b =,r =,12m =-,2n =时,圆M :225x y +=,直线CD :12x y =-,由22512x y x y ⎧+=⎪⎨=-⎪⎩⇒12x y =⎧⎨=-⎩或12x y =-⎧⎨=⎩,故()1,2C -,()1,2D -;直线EF :2x y =,由2252x y x y⎧+=⎨=⎩⇒21x y =⎧⎨=⎩或21x y =-⎧⎨=-⎩,故()2,1E ,()2,1F --.所以直线CF :122112y x ++=+-+,令0y =得53x =-,即5,03P ⎛⎫- ⎪⎝⎭;直线ED :122112y x --=---,令0y =得53x =,即5,03Q ⎛⎫ ⎪⎝⎭.所以:53OP OQ ==.【小问2详解】①由题意:22b r <.由()222x y b r x my ⎧+-=⎪⎨=⎪⎩⇒()()222my y b r +-=⇒()2222120m y by b r +-+-=,则1y ,2y 是该方程的两个解,由韦达定理得:12222122211b y y m b r y y m ⎧+=⎪⎪+⎨-⎪⋅=⎪+⎩,所以1222122y y b y y b r +=⋅-.同理可得:3422342y y b y y b r +=⋅-,所以34121234y y y y y y y y ++=⋅⋅.②猜测OP OQ =,证明如下:设点(),0P p ,(),0Q q .因为,,C P F 三点共线,所以:414100y y x p x p --=--⇒411414x y x y p y y -=-,又因为点C 在直线x my =上,所以11x my =;点F 在直线x ny =上,所以44x ny =.所以()1441141414y y n m ny y my y p y y y y --==--;同理因为,,E Q D 三点共线,可得:()2323y y n m q y y -=-.由①可知:34121234y y y y y y y y ++=⋅⋅⇒12341111y y y y +=+⇒14321111y y y y -=-⇒23411423y y y y y y y y --=⋅⋅⇒231414230y y y y y y y y ⋅⋅+=--, 所以()()14231423y y n m y y n m p q y y y y --+=+--()23141423y y y y n m y y y y ⎛⎫=-+ ⎪--⎝⎭0=.即p q =-,所以OP OQ =成立.【点睛】关键点点睛:本题的关键是联立直线与圆的方程,结合一元二次方程根与系数的关系,进行化简处理,设计多个字母的运算,整个运算过程一定要小心、仔细.。

八年级上册期中数学试卷及答案解析

八年级上册期中数学试卷及答案解析

八年级上册期中数学试卷及答案解析1.已知三角形两边长分别为7、10,那么第三边的长可以是()A.2B.3C.17D.52.n边形的每个外角都为15o,则边数n为()A.20B.22C.24D.263.如图,要测量湖两岸相对两点A,B的距离,可以在AB的垂线BF上取两点C,D,使CD=BC,再在BF的垂线DG上取点E,使点A,C,E在一条直线上,可得ΔABC≌ΔEDC.判定全等的依据是()A.ASAB.SASC.SSSD.HL4.已知,如图,AD=AC,BD=BC,O为AB上一点,则图中共有全等三角形的对数是()A.1对B.2对C.3对D.4对5.如图,ΔABC中,AB=AC,D是BC中点,下列结论中不正确的是()A.LB=LCB.AD平分LBACC.AD L BCD.AB=2BD6.和点p(—3,2)关于x轴对称的点是()A.(3,2)B.(—3,2)C.(—3,—2)D.(3,—2)7.如图所示,人字梯中间一般会设计一“拉杆”,这样做的依据是.8.八边形的对角线共有条.9.如图,在ΔABC中,LC=40。

,将ΔABC沿着直线l折叠,点C落在点D的位置,则L1—L2的度数是.10.如图,小虎用10块高度都是4cm的相同长方体小木块,垒了两堵与地面垂直的木墙,木墙之间刚好可以放进一个等腰直角三角板(AC=BC,LACB=90。

),点C在DE上,点A和B分别与木墙的顶端重合,则两堵木墙之间的距离DE为cm.11.RtΔABC中,CD是斜边AB上的高,LB=30。

,AD=2cm,则AB的长度是cm.12.已知等腰三角形的一个内角等于40。

,则它的顶角是。

.13.如图点P是LBAC的平分线AD上一点,PE L AC于点E.已知PE=3,则点P到AB的距离是.14.如图,等腰ΔABC中,AB=AC,AB的垂直平分线MN交AC于点D,LDBC=15。

,则LA 的度数是度.15.如图,在ΔABC中,AD L BC于D,AE平分LDAC,LBAC=80。

2022年山东省新高考地理试卷和答案解析

2022年山东省新高考地理试卷和答案解析

2022年山东省新高考地理试卷和答案解析一、选择题:本题共6小题,每题3分,共45分。

每小题只有一个选项符合题目要求。

双核结构是指在某区域内由区域中心城市和港口门户城市及其连线构成轴线。

由此引领和推动所在区域发展的一种空间结构现象。

如图为沈阳——大连双核结构示意图,据此完成1~2小题。

1.沈阳﹣大连双核结构的形成,主要是因为两城市()A.在区位和功能上存在互补B.在地域文化方面存在互补C.交通便捷且空间距离较近D.社会经济发展的水平相近2.沈阳——大连双核结构有利于()①促进大连市建成东北地区中心城市②促进沈阳——大连区域经济协同发展③增强沈阳市对辽中南地区的辐射功能④提高沈阳和大连两城市传统工业比重A.①②B.①④C.②③D.③④尼日利亚东南部的热带雨林是非洲仅存的原始热带雨林之一。

1991年,尼日利亚政府在热带雨林存量较大的地区建立了克罗斯河国家公园。

某机构利用遥感等地理信息技术对1986年和2010年国家公园所在区域的景观进行了对比研究(如图)。

据此完成3~4小题。

3.与1986年相比,2010年克罗斯河国家公园范围内()A.分散林地和农场的面积缩小B.生物生存环境的连通性下降C.热带雨林景观的完整性提高D.雨林生态系统的稳定性增强4.图中国家公园内退化斑块的景观类型可能是()①灌丛草地②草甸沼泽③落叶阔叶林④常绿硬叶林A.①②B.①④C.②③D.③④嘉峪关地处河西走廊中部,1955年该地区发现铁矿,1958年依托国家“一五”计划重点项目建立钢铁厂,1965年设嘉峪关市。

随着钢铁工业的发展,嘉峪关市逐步形成了以冶金为主的工业体系。

2019年,该市三次产业结构为1.7:62.8:35.5。

据此完成5~7小题。

5.2005~2010年该市65岁及以上老年人口数量迅速增加,主要原因是()A.人口惯性的影响B.环境条件的改善C.青壮年人口迁出D.康养产业的发展6.该市第一产业比重较低的主要影响因素是()A.交通运输B.自然资源C.市场需求D.劳动力7.该市在推进工业结构优化过程中宜重点发展()A.造纸工业B.纺织工业C.食品加工工业D.装备制造工业图a示意黑龙江省一小型山间盆地景观。

水泵工安全教育试卷及答案解析

水泵工安全教育试卷及答案解析

水泵工安全教育试卷及答案解析一、选择题1.水泵启动前,应首先检查什么?()A. 电源是否正常B. 出口阀门是否打开C. 润滑系统是否良好D. 冷却系统是否工作答案:C解析:启动水泵前,需要检查水泵的润滑系统是否良好,以确保水泵运转时摩擦部位得到充分的润滑,减少磨损和故障发生的可能性。

2.正常运行时,水泵轴承的温升应不超过多少度?()A. 30℃B. 40℃C. 50℃D. 60℃答案:B解析:水泵轴承的正常运行温升一般不应超过40℃,超过此温度可能导致轴承过热,影响使用寿命。

3.当发现水泵运行异常或有异响时,应如何处理?()A. 继续运行观察B. 立即停机检查C. 减小流量运行D. 增加电压运行答案:B解析:当发现水泵运行异常或有异响时,应立即停机检查,以查明原因并排除故障,避免故障扩大或造成更严重的后果。

4.水泵运行过程中,哪些情况应立即停机?()A. 流量增大B. 出口压力升高C. 轴承温度过高D. 振动正常答案:C解析:轴承温度过高是水泵运行过程中应立即停机的情况之一,因为高温可能导致轴承损坏或引发其他故障。

5.水泵停车时,应首先关闭什么?()A. 电源B. 出口阀门C. 进口阀门D. 冷却水答案:B解析:水泵停车时,应首先关闭出口阀门,以减小水泵内部的压力,避免水泵反转或水锤现象的发生。

6.水泵的安全阀主要起什么作用?()A. 调节流量B. 控制压力C. 排放气体D. 防止水倒流答案:B解析:水泵的安全阀主要起控制压力的作用,当水泵内部压力超过设定值时,安全阀会自动打开,释放部分压力,以保证水泵的安全运行。

7.水泵房应配置哪些安全防护设施?()A. 消防器材B. 通风设备C. 防爆电器D. 以上都是答案:D解析:水泵房应配置消防器材、通风设备、防爆电器等安全防护设施,以确保水泵房的安全运行和人员的安全。

8.水泵启动时,以下哪个操作是不正确的?()A. 检查电源是否正常B. 关闭出口阀门C. 开启冷却水系统D. 立即加大流量答案:D解析:水泵启动时,不应立即加大流量,而应逐渐调整流量至正常工作范围,以避免对水泵造成冲击和损坏。

2023年高考英语试卷及答案解析(全国乙卷)

2023年高考英语试卷及答案解析(全国乙卷)

2023年普通高等学校招生全国统一考试(全国乙卷)英语学科第一部分听力(共两节,满分30分)做题时,先将答案标在试卷上。

录音内容结束后,你将有两分钟的时间将试卷上的答案转涂到答题卡上。

第一节(共5小题;每小题1.5分,满分1.5分)听下面5段对话。

每段对话后有一个小题,从题中所给的A、B、C三个选项中选出最佳选项。

听完每段对话后,你都有10秒钟的时间来回答有关小题和阅读下一小题。

每段对话仅读一遍。

例:How much is the shirt?A.£19.15.B. £9.18.C.£9.15.答案是C。

1.Where does the conversation probably take place?A.In the book store.B. In the register office.C. In the dorm building.2.What is the weather like now?A.Sunny.B.Cloudy.C. Rainy.3.What does the man want to do on the weekend?A.Do some gardening.B. Have a barbecue.C. Go fishing.4.What are the speakers talking about?A.A new office.B. A change of their jobs.C. A former colleague.5.What do we know about Andrew?A.He’s optimistic.B. He’s active.C. He’s shy.第二节(共15小题;每小题1.5分,满分22.5分)听下面5段对话或独白。

每段对话或独白后有几个小题,从题中所给的A、B、C三个选项中选出最佳选项。

听每段对话或独白前,你将有时间阅读各个小题,每小题5秒钟;听完后,各小题将给出5秒钟的作答时间,每段对话或独白读两遍。

上海市2023年中考数学试卷及答案详解(图片版)

上海市2023年中考数学试卷及答案详解(图片版)

第4题图上海市2023年中考数学试卷答案详解(考试时间100分钟,满分150分)一、选择题:(本大题共6题,每题4分,满分24分)1.下列运算正确的是().A 523a a a ;.B 336a a a ;.C 235a a ;.D a .【参考答案】A .【解析过程】52523a a aa ,A 选项正确;3332a a a ,B 选项错误; 23326a a a ,C 选a ,D 选项错误;故选A .2.在分式方程2221521x x x x).A 2550y y ;.B 25y y .2510y y .【参考答案】D .【解析过程】221x y x ,2221510x y y x ;故选D .3.下列函数中,函数值y 随x 的增大而减小的是().A 6y x ;.B 6y x ;.C 6y x;.D 6y x.【参考答案】B .【解析过程】对于正比例函数6y x ,60k , 函数值y 随x 的增大而增大,A 选项错误;对于正比例函数6y x ,60k , 函数值y 随x 的增大而减小,B 选项正确;对于反比例函数6y x,60k , 在每一象限内,函数值y 随x 的增大而减小,C 选项错误;对于反比例函数6y x ,60k , 在每一象限内,函数值y 随x 的增大而增大,D 选项错误;故选B .4.某学校的数学兴趣小组统计了不同时间段的车流量如图所示,则下列说法正确的是().A 小车的车流量与公车的车流量稳定;.B 小车的车流量的平均数较大;.C 小车与公车车流量在同一时间段达到最小值;.D 小车与公车车流量的变化趋势相同.【参考答案】B .【解析过程】观察图像可知:小车的车流量起伏较大不稳定,A 选项错误;小车的车流量每个时间段都比公车大,因此平均数较大,B 选项正确;小车与公车车流量在不同时间段达到最小值,C 选项错误;小车车流量先增大再减小再增大,公车车流量先增大再减小,因此变化趋势不同,D 选项错误;故选B .5.在四边形ABCD 中,//AD BC ,AB CD ,下列说法能使四边形ABCD 为矩形的是().A //AB CD ;.B AD BC ;.C A B ;.D A D .【参考答案】C .【解析过程】//AD BC ,AB CD , 四边形ABCD 是平行四边形或等腰梯形.若//AB CD ,只能判定四边形ABCD 是平行四边形,A 选项错误;若AD BC ,只能判定四边形ABCD 是平行四边形,B 选项错误;若A B ,//AD BC ,90A B ,又AB CD ,由平行线间的距离处处相等,可知CD AD ,因此6.//DC ,AD .同学们得出以下两个结论,其中判断正确的是()①AC .A .C DO ,AD C 7.分解因式:29n.【参考答案】 33n n .【解析过程】 2229333n n n n .8.化简:2211xx x的结果为.【参考答案】2.【解析过程】 21222221111x x x x x x x.9.已知关于x 2 ,则x.【参考答案】18.214418x x (经检验,18x 是原方程的解).10.函数 123f x x的定义域为.【参考答案】23x .【解析过程】由分式的分母不为零,可得23023x x .11.已知关于x 的一元二次方程2610ax x 没有实数根,那么a 的取值范围是.【参考答案】9a .【解析过程】由题意,可得093640a a a.12.在不透明的盒子中装有1个黑球、2个白球、3个红球、4个绿球,这10个球除颜色外完全相同,那么从中随机摸出一个球是绿球的概率是.13.,那么这个正多边形的边数为.3601820.14.满足0a ,0b ,0c 即可)0,0c ,又其对称轴左侧的部分是上升21y x .15.如图,在ABC 中,D 、E 分别在边AB 、AC 上,2BD AD ,且//DE BC .设AB a ,AC b,那么DE.(用a 、b表示)【参考答案】1133a b.【解析过程】由题意,可知13DE AD BC AB ,故13DE BC1111133333BA AC AB AC a b a b .第15题图第16题图16.“垃圾分类”是指按照垃圾的不同成分、属性、利用价值以及对环境的影响,并根据不同处置方式的要求,分成属性不同的若干种类.某市试点区域的垃圾收集情况如扇形统计图所示,已知可回收垃圾共收集60吨,且全市人口约为试点区域人口的10倍,那么估计全市可收集的干垃圾总量为吨.【参考答案】1500.【解析过程】由扇形统计图,可得可回收垃圾占比为150%29%1%20% ,故全市可收集的干垃圾总量为6050%10150020%吨.17.如图,在ABC 中,35C ,将ABC 绕点A 旋转 (0180 )度角,使点B 落在边BC 上的点D 处,若AD 平分BAC ,则 度.【参考答案】110.,,由三角形内角和得 ,18.在,⊙.又三、解答题:(本大题共7题,满分78分)19.(本题满分10分)2133.【参考答案】6.【解析过程】原式22936.20.(本题满分10分)解关于x的不等式组:36152x xxx.【参考答案】34x.【解析过程】3626333422103124152x xx x xxxx x x xx.即原不等式组的解为34x.21.(本题满分10分,第(1)小题5分,第(2)小题5分)如图,在⊙O中,弦AB的长为8,点C在BO的延长线上,且4cos5ABC,2OB OC.(1)求⊙O的半径;(2)求BAC的正切值.【参考答案】(1)5;(2)94.【解析过程】(1)如图所示,作OD AB于点D,由垂径定理可得142AD DB AB.在Rt ODB中,44cos cos5DBABC OBDOB OB,解得5OB ,即⊙O的半径为5.(2)如图所示,作CE AB于点E,可得//OD CE,因此OD DB OBCE BE CB.又3OD ,2OB OC,故342233OCCE BE OC,解得92CE ,6BE .在Rt ACE中,992tan864CECAEAE,即BAC的正切值为94.第21题图第23题图某加油站现有面值为1000元的会员卡,购买该卡可以打九折.若用此卡内的金额来加油,则每升油在原价的基础上还可以减价0.3元.某人购买了此会员卡,并将卡内金额一次性全部用完.(1)他实际花了多少钱购买会员卡?(2)假设优惠后该人加油的实际单价为y 元/升,每升油的原价为x 元/升,请写出y 关于x 的函数关系式(不必写出定义域);(3)若每升油原价为7.3元/升,那么优惠后的实际单价与原价的差值为多少?【参考答案】(1)900(元);(2)0.90.27y x ;(3)1(元).【解析过程】(1)由题意,可得100090%900 (元),即他实际花了900(元)购买会员卡.(2)该人实际花费900(元),实际单价为y 元/升,购买油量为900y升;会员卡面值为1000(元),会员卡加油每升为 0.3x 元/升,购买油量为10000.3x 升;由油量相等可列方程90010000.3y x ,化简得0.90.27y x ,即y 关于x 的函数关系式为0.90.27y x .(3)当7.3x 时,可得0.97.30.27 6.3y ,7.3 6.31x y ,即优惠后的实际单价与原价的差值为1(元).23.(本题满分12分,第(1)小题5分,第(2)小题7分)如图,在梯形ABCD 中,//AD BC ,点F 、E 分别在线段BC 、AC 上,且FAC ADE ,AC AD .(1)求证:FC AE ;(2)若ABC CDE ,求证:2AF BF CE .【参考答案】(1)证明如下;(2)证明如下.【解析过程】(1)如图所示,//AD BC ,ACF DAE ,又AC AD ,FAC ADE ,ACF DAE ≌(..A S A ),FC AE .(2)如图所示,由外角可得AFB ACF FAC ,CED DAE ADE ,又ACF DAE ,FAC ADE ,AFB CED .又ABC CDE ,AFB CED ∽,AF BFCE DE.又ACF DAE ≌,AF DE .可得AF BF CE AF,即2AF BF CE .如图,在平面直角坐标系xOy 中,直线364y x与x 轴交于点A ,与y 轴交于点B ,点C 在线段AB 上(不与点B 重合),以C 为顶点的抛物线2:M y ax bx c (0a )经过点B .(1)求点A 、B 的坐标;(2)求b 、c 的值;(3)平移抛物线M ,使得点C 平移至点P ,点B 平移至点D ,联结CD ,且//CD x 轴,如果点P 在x轴上,且新抛物线经过点B ,求新抛物线N 的表达式.【参考答案】(1) 8,0A , 0,6B ;(2)32b ,6c ;(3) 2316y x .时,解得8x ;当x (2)6 .在线段将a 242432.(3因为点 ,0P p 是由点3,64C t t平移得到的,因此抛物线M 向左或向右平移后再向下平移364t 个单位得到新抛物线N .又点D 是由点 0,6B 平移得到的,所以点D 的纵坐标为34t.又//CD x 轴,所以C D y y ,即364t 34t 4t .又3342416C b x t a a a,所以抛物线233:6162M y x x .设抛物线N 的顶点式为 2316y x p ,因为新抛物线经过点B ,将 0,6B 带入 2316y x p ,第25题图1第25题图2可得 236016p p ,故抛物线N 的表达式为 2316y x .25.(本题满分14分,第(1)小题4分,第(2)②小题5分,第(3)小题5分)已知在ABC 中,AB AC ,点O 在边AB 上,点F 为边OB 中点,以O 为圆心、OB 为半径的圆分别交BC 、AC 于点D 、E ,联结EF 交OD 于点G .(1)如图1,如果OG GD ,求证:四边形CEGD 为平行四边形;(2)如图2,联结OE ,如果90BAC 时,OFE DOE ,4AO ,求边OB 的长;(3)联结BG ,如果BGO 是以OB 为腰的等腰三角形,且AO OF ,求OGOD的值.【参考答案】(1)证明如下;(2)133【解析过程】(1)AB AC ,ABCOB OD ,OBD ODB .//ODB AC OD .又OG //BD .(2又 又90EAF OAE ,AFE AEO ∽,2AF AE AE AO AF AE AO.设OE OB x ,则1122OF OB x,1442AO AF x.又222216AE OE AO x ,因此221164423202x x x x.解得1x ,负舍,故1x .即边OB 的长为1(3)首先排除OB OG ,因为假如OB OG ,由OB OD ,可推得点G 、D 重合,从而推得G 、D 、C 、E 重合,此时点A 和点O 必重合,又点F 为边OB 中点,这与AO OF 矛盾,故舍.因此只能OB BG ,如图所示,倍长GF 至点'G ,由'GF FG ,'GFB G FO ,FB FO ,可得''GFB G FO GF G F ≌,'OG BG OB OE ,'OEG OG F .又//AC OD ,AO OF ,1'EG AOEG GF G F GF OF.由以上可得'OEG OG F OG OF ≌.又OF FB ,OD OB ,所以OG GD ,故12OG OD .。

2020年河南省普通高中招生考试英语试卷 答案及解析

2020年河南省普通高中招生考试英语试卷 答案及解析

2020年河南省普通高中招生考试试卷英语注意事项:1.本试卷共10页,六个大题,满分120分,考试时间100分钟。

2.本试卷上不要答题,调按答题卡上注意事项的要求直接把答案填写在答题卡上。

答在试卷上的答案无效。

一、听力理解第一节听下面5段对话。

每段对话后有一个小题,从题中所给的A、B、C三个选项中选出最佳答案。

每段对话读两遍。

1.Where are the two speakers?A.In a library.B.In a bookstore.C.In a classroom.2.Which floor docs the woman live on?A.The second.B.The seventh.C.The twentieth.3.What does the man want to do?A.Go shopping.B.Go for a coffee.C.Go to the park.4.What happened to the woman?A.She had a fever.B.She had a cold.C.She had a stomachache.5.What was the weather like last Sunday?A. B. C.第二节听下面几段对话或独白。

每段对话或独白后有几个小题,从题中所给的A、B、C三个选项中选出最佳答案。

每段对话或独白读两遍。

听下面一段对话,回答下列小题。

6.Who is going to order the com salad?A.Maria.B.George.C.Michael.7.What will they share for the main course?A.Tomato soup.B.A chicken sandwich.C.Chinese chicken and rice.听下面一段对话,回答下列小题。

8.Where is the woman going?A.To London.B.To Birmingham.C.To Liverpool.9.How much should the woman pay?A.£32.B.£64.C.£128.听下面一段独白,回答下列小题。

2023年四川省凉山州中考语文试卷及答案解析

2023年四川省凉山州中考语文试卷及答案解析

2023年四川省凉山州中考语文试卷一、单选题(本大题共5小题,共15.0分)1. 下列词语中加点字注音正确的一项是()A. 嫩.芽(nèng)栖.息(xī)不逊.(xùn)藏污纳垢.(gòu)B. 恍.惚(huǎng)胸襟.(jīn)呜咽.(yè)重峦.叠嶂(luán)C. 迂.腐(yū)粗糙.(zào)伶.俐(líng)惟妙惟肖.(xiāo)D. 坍塌.(tā)沙砾.(lè)称.职(chèng)筋.疲力尽(jīn)2. 下列加点词语使用有误的一项是()迎着春日的气息,西昌市航天北路的蓝花楹尽情绽放....。

深深浅浅的紫,..,吸引游客纷至沓来把整条街装扮成花的海洋,这巧夺天工....的花海,让人叹为观止....。

A. 绽放B. 纷至沓来C. 巧夺天工D. 叹为观止3. 下列句子中没有语病的一项是()A. 西昌从“邛海时代”迈入“安宁河时代”,静静的安宁河谷承载了西昌和凉山高质量。

B. “自媒体”因为互动强、更新快、传播广等特点的原因,吸引了大量用户。

C. 西昌建川电影博物馆建成后,将展出大约50万件左右来自全球各地的电影相关藏品。

D. 我国在西昌卫星发射中心成功发射了第五十六颗北斗导航卫星。

4. 把下面的句子,组成一段语意连贯的话,排列顺序最为恰当的一项是()①有很多演讲者为演讲素材发愁,不知选用什么材料好。

②有人可能觉得“自己”不值得讲,听众不爱听,就不敢用这样的素材。

③其实,“自己”就是最好的演讲素材。

④其实不然,自己的经历、自己的事例、自己的见闻认知,都是自己感同深受的,最真实最具说服力,也最能打动听众。

A. ①③②④B. ①④③②C. ③④①②D. ③①②④5. 下列说法有误的一项是()A. 《孙权劝学》选自《资治通鉴》,《资治通鉴》是北宋司马光主持编纂的一部编年体通史。

B. 《孔乙己》选自鲁迅先生的小说集《朝花夕拾》。

成考试卷真题及答案解析

成考试卷真题及答案解析

成考试卷真题及答案解析【正文】一、选择题1. 下列诗句中,表达了诗人情感的是:A. "富贵不能淫,贫贱不能移"B. "我有所念人皆远"C. "悠悠苍天,此何人哉"D. "人生自古谁无死,留取丹心照汗青"答案:B 解析:诗人通过"我有所念人皆远"表达了自己内心的不满和孤独。

2. 下列句子中,运用了比喻修辞手法的是:A. "月出惊山鸟,时鸣春涧中"B. "湖光秋月两相和"C. "我心如秋月,洁白明净"D. "山行的人们像飞鸟一样"答案:C 解析:比喻是一种修辞手法,"我心如秋月,洁白明净"就是通过将心与秋月进行比喻,以强调心的洁白和明净。

二、填空题1. 一封信是人与人之间的一种______。

答案:纽带解析:纽带是联系的意思,一封信可以起到联系人与人之间的作用。

2. 人类社会发展的基础是______。

答案:劳动解析:劳动是人类社会发展的基础,只有通过劳动,社会才能不断进步。

三、简答题1. 什么是知识?答案:知识是人类对客观事物的了解、掌握和运用,是对客观世界规律的认识和反映。

知识是人类社会发展的重要基础,它推动着科技进步、文化繁荣和人类福祉的提升。

通过获得知识,人们能够更好地理解世界,提高自己的能力和素质,为个人的发展和社会的进步做出贡献。

2. 成语是什么?答案:成语是汉语词汇中的一种特殊形式,是一种固定搭配的词组。

它具有一定的意义,并且具有惯用的语境和习惯的用法,可以用来表达具体的思想内容、抒发感情或形容事物。

成语是中华民族独有的语言珍宝,它既能够反映出中华民族的文化底蕴,又能够丰富汉语表达的内涵和韵味。

成语在日常生活和文学创作中得到广泛的应用,成为汉语独特的表达方式和文化符号。

四、解答题1. 运用你所学的知识,写一篇关于环保的短文。

2022年河北省中考数学试卷和答案解析

2022年河北省中考数学试卷和答案解析

2022年河北省中考数学试卷和答案解析一、选择题(本大题共16个小题。

1~10小题每题3分,11~16小题每题2分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)计算a3÷a得a,则“?”是()A.0B.1C.2D.32.(3分)如图,将△ABC折叠,使AC边落在AB边上,展开后得到折痕l,则l是△ABC的()A.中线B.中位线C.高线D.角平分线3.(3分)与﹣3相等的是()A.﹣3﹣B.3﹣C.﹣3+D.3+4.(3分)下列正确的是()A.=2+3B.=2×3C.=32D.=0.7 5.(3分)如图,将三角形纸片剪掉一角得四边形,设△ABC与四边形BCDE的外角和的度数分别为α,β,则正确的是()A.α﹣β=0B.α﹣β<0C.α﹣β>0D.无法比较α与β的大小6.(3分)某正方形广场的边长为4×102m,其面积用科学记数法表示为()A.4×104m2B.16×104m2C.1.6×105m2D.1.6×104m2 7.(3分)①~④是由相同的小正方体粘在一起的几何体,若组合其中的两个,恰是由6个小正方体构成的长方体,则应选择()A.①③B.②③C.③④D.①④8.(3分)依据所标数据,下列一定为平行四边形的是()A.B.C.D.9.(3分)若x和y互为倒数,则(x+)(2y﹣)的值是()A.1B.2C.3D.410.(3分)某款“不倒翁”(图1)的主视图是图2,PA,PB分别与所在圆相切于点A,B.若该圆半径是9cm,∠P=40°,则的长是()A.11πcm B.πcm C.7πcm D.πcm 11.(2分)要得知作业纸上两相交直线AB,CD所夹锐角的大小,发现其交点不在作业纸内,无法直接测量.两同学提供了如下间接测量方案(如图1和图2):对于方案Ⅰ、Ⅱ,说法正确的是()A.Ⅰ可行、Ⅱ不可行B.Ⅰ不可行、Ⅱ可行C.Ⅰ、Ⅱ都可行D.Ⅰ、Ⅱ都不可行12.(2分)某项工作,已知每人每天完成的工作量相同,且一个人完成需12天.若m个人共同完成需n天,选取6组数对(m,n),在坐标系中进行描点,则正确的是()A.B.C.D.13.(2分)平面内,将长分别为1,5,1,1,d的线段,顺次首尾相接组成凸五边形(如图),则d可能是()A.1B.2C.7D.814.(2分)五名同学捐款数分别是5,3,6,5,10(单位:元),捐10元的同学后来又追加了10元.追加后的5个数据与之前的5个数据相比,集中趋势相同的是()A.只有平均数B.只有中位数C.只有众数D.中位数和众数15.(2分)“曹冲称象”是流传很广的故事,如图.按照他的方法:先将象牵到大船上,并在船侧面标记水位,再将象牵出.然后往船上抬入20块等重的条形石,并在船上留3个搬运工,这时水位恰好到达标记位置如果再抬入1块同样的条形石,船上只留1个搬运工,水位也恰好到达标记位置.已知搬运工体重均为120斤,设每块条形石的重量是x斤,则正确的是()A.依题意3×120=x﹣120B.依题意20x+3×120=(20+1)x+120C.该象的重量是5040斤D.每块条形石的重量是260斤16.(2分)题目:“如图,∠B=45°,BC=2,在射线BM上取一点A,设AC=d,若对于d的一个数值,只能作出唯一一个△ABC,求d的取值范围.”对于其答案,甲答:d≥2,乙答:d=1.6,丙答:d=,则正确的是()A.只有甲答的对B.甲、丙答案合在一起才完整C.甲、乙答案合在一起才完整D.三人答案合在一起才完整二、填空题(本大题共3个小题,每小题3分,共9分.其中18小题第一空2分,第二空1分,19小题每空1分)17.(3分)如图,某校运会百米预赛用抽签方式确定赛道.若琪琪第一个抽签,她从1~8号中随机抽取一签,则抽到6号赛道的概率是.18.(3分)如图是钉板示意图,每相邻4个钉点是边长为1个单位长的小正方形顶点,钉点A,B的连线与钉点C,D的连线交于点E,则(1)AB与CD是否垂直?(填“是”或“否”);(2)AE=.19.(3分)如图,棋盘旁有甲、乙两个围棋盒.(1)甲盒中都是黑子,共10个.乙盒中都是白子,共8个.嘉嘉从甲盒拿出a个黑子放入乙盒,使乙盒棋子总数是甲盒所剩棋子数的2倍,则a=;(2)设甲盒中都是黑子,共m(m>2)个,乙盒中都是白子,共2m个.嘉嘉从甲盒拿出a(1<a<m)个黑子放入乙盒中,此时乙盒棋子总数比甲盒所剩棋子数多个;接下来,嘉嘉又从乙盒拿回a个棋子放到甲盒,其中含有x(0<x<a)个白子,此时乙盒中有y个黑子,则的值为.三、参考答案题(本大题共7个小题,共69分.参考答案应写出文字说明、证明过程或演算步骤)20.(9分)整式3(﹣m)的值为P.(1)当m=2时,求P的值;(2)若P的取值范围如图所示,求m的负整数值.21.(9分)某公司要在甲、乙两人中招聘一名职员,对两人的学历,能力、经验这三项进行了测试.各项满分均为10分,成绩高者被录用.图1是甲、乙测试成绩的条形统计图,(1)分别求出甲、乙三项成绩之和,并指出会录用谁;(2)若将甲、乙的三项测试成绩,按照扇形统计图(图2)各项所占之比,分别计算两人各自的综合成绩,并判断是否会改变(1)的录用结果.22.(9分)发现两个已知正整数之和与这两个正整数之差的平方和一定是偶数,且该偶数的一半也可以表示为两个正整数的平方和.验证如,(2+1)2+(2﹣1)2=10为偶数.请把10的一半表示为两个正整数的平方和;探究设“发现”中的两个已知正整数为m,n,请论证“发现”中的结论正确.23.(10分)如图,点P(a,3)在抛物线C:y=4﹣(6﹣x)2上,且在C的对称轴右侧.(1)写出C的对称轴和y的最大值,并求a的值;(2)坐标平面上放置一透明胶片,并在胶片上描画出点P及C的一段,分别记为P′,C′.平移该胶片,使C′所在抛物线对应的函数恰为y=﹣x2+6x﹣9.求点P′移动的最短路程.24.(10分)如图,某水渠的横断面是以AB为直径的半圆O,其中水面截线MN∥AB.嘉琪在A处测得垂直站立于B处的爸爸头顶C的仰角为14°,点M的俯角为7°.已知爸爸的身高为1.7m.(1)求∠C的大小及AB的长;(2)请在图中画出线段DH,用其长度表示最大水深(不说理由),并求最大水深约为多少米(结果保留小数点后一位).(参考数据:tan76°取4,取4.1)25.(10分)如图,平面直角坐标系中,线段AB的端点为A(﹣8,19),B(6,5).(1)求AB所在直线的解析式;(2)某同学设计了一个动画:在函数y=mx+n(m≠0,y≥0)中,分别输入m和n的值,使得到射线CD,其中C(c,0).当c=2时,会从C处弹出一个光点P,并沿CD飞行;当c≠2时,只发出射线而无光点弹出.①若有光点P弹出,试推算m,n应满足的数量关系;②当有光点P弹出,并击中线段AB上的整点(横、纵坐标都是整数)时,线段AB就会发光.求此时整数m的个数.26.(12分)如图1,四边形ABCD中,AD∥BC,∠ABC=90°,∠C=30°,AD=3,AB=2,DH⊥BC于点H.将△PQM与该四边形按如图方式放在同一平面内,使点P与A重合,点B在PM上,其中∠Q=90°,∠QPM=30°,PM=4.(1)求证:△PQM≌△CHD;(2)△PQM从图1的位置出发,先沿着BC方向向右平移(图2),当点P到达点D后立刻绕点D逆时针旋转(图3),当边PM旋转50°时停止.①边PQ从平移开始,到绕点D旋转结束,求边PQ扫过的面积;②如图2,点K在BH上,且BK=9﹣4.若△PQM右移的速度为每秒1个单位长,绕点D旋转的速度为每秒5°,求点K在△PQM区域(含边界)内的时长;③如图3,在△PQM旋转过程中,设PQ,PM分别交BC于点E,F,若BE=d,直接写出CF的长(用含d的式子表示).参考答案与解析一、选择题(本大题共16个小题。

2024年四川省凉山州中考数学真题试卷及答案解析

2024年四川省凉山州中考数学真题试卷及答案解析

凉山州2024年初中学业水平暨高中阶段学校招生考试试题数学A 卷(共100分)第Ⅰ卷选择题(共48分)一、选择题(共12小题,每小题4分,共48分)在每小题给出的四个选项中只有一项的,请把正确选项的字母序号填涂在答题卡上对应的位置.1. 下列各数中:,负数有()A. 1个B. 2个C. 3个D. 4个2. 如图,由3个相同的小正方体搭成的几何体的俯视图是()A. B. C. D.3. 下列运算正确的是( )A. B.C.D.4. 一副直角三角板按如图所示的方式摆放,点在的延长线上,当时,的度数为()A. B.C.D.5. 点关于原点对称的点是,则的值是( )A.B. C. D.6. 如图,在中,垂直平分交于点,若的周长为,则()A. B. C. D.7. 匀速地向如图所示的容器内注水,直到把容器注满.在注水过程中,容器内水面高度随时间变化的大致图象是()A B. C. D.8. 在一次芭蕾舞比赛中,甲,乙两个芭蕾舞团都表演了舞剧《天鹅湖》,每个团参加表演的位女演员身高的折线统计图如下.则甲,乙两团女演员身高的方差大小关系正确的是()A. B. C. D. 无法确定9. 若关于的一元二次方程的一个根是,则的值为()A. 2B.C. 2或D.10. 数学活动课上,同学们要测一个如图所示的残缺圆形工件的半径,小明的解决方案是:在工件圆弧上任取两点,连接,作的垂直平分线交于点,交于点,测出,则圆形工件的半径为()A. B. C. D.11. 如图,一块面积为的三角形硬纸板(记为)平行于投影面时,在点光的照射下形成的投影是,若,则的面积是()A. B. C. D.12. 抛物线经过三点,则的大小关系正确的是()A. B. C. D.第Ⅱ卷非选择题(共52分)二、填空题(共5小题,每小题4分,共20分)13. 已知,且,则______.14. 方程的解是_______15. 如图,中,是边上的高,是的平分线,则的度数是______.16. 如图,四边形各边中点分别是,若对角线,则四边形的周长是______.17. 如图,一次函数的图象经过两点,交轴于点,则的面积为______.三、解答题(共5小题,共32分)解答应写出文字说明,证明过程或演算步骤.18. 计算:.19. 求不等式的整数解.20. 为保证每位同学在学校组织的课外体育活动中,都能参与自己最喜欢的球类项目,学校体育社团随机抽取部分同学进行“最喜欢的球类项目”的调查(每人只能选择一项),根据调查结果绘制成以下两幅不完整的统计图:请根据统计图回答下列问题:(1)本次调查的总人数是______人,估计全校名学生中最喜欢乒乓球项目的约有______人;(2)补全条形统计图;(3)学校体育社团为了制订训练计划,将从最喜欢篮球项目的甲、乙、丙、丁四名同学中任选两名进行个别访谈,请用列表法或画树状图法求抽取的两人恰好是甲和乙的概率.21. 为建设全域旅游西昌,加快旅游产业发展.年月日位于西昌主城区东部的历史风貌核心区唐园正式开园,坐落于唐园内的怀远塔乃唐园至高点,为七层密檐式八角砖混结构阁楼式塔楼,建筑面积为平方米,塔顶金碧辉煌,为“火珠垂莲”窣()堵坡造型.某校为了让学生进一步了解怀远塔,组织九年级()班学生利用综合实践课测量怀远塔的高度.小江同学站在如图所示的怀远塔前的平地上点处,测得塔顶的仰角为,眼睛距离地面,向塔前行,到达点处,测得塔顶的仰角为,求塔高.(参考数据:,结果精确到)22. 如图,正比例函数与反比例函数的图象交于点.(1)求反比例函数的解析式;(2)把直线向上平移3个单位长度与的图象交于点,连接,求的面积.B卷(共50分)四、填空题(共2小题,每小题5分,共10分)23. 已知,则的值为______.24. 如图,的圆心为,半径为,是直线上的一个动点,过点作的切线,切点为,则的最小值为______五、解答题(共4小题,共40分)25. 阅读下面材料,并解决相关问题:下图是一个三角点阵,从上向下数有无数多行,其中第一行有1个点,第二行有2个点……第行有个点……容易发现,三角点阵中前4行的点数之和为10.(1)探索:三角点阵中前8行的点数之和为_____,前15行的点数之和为______,那么,前行的点数之和为______(2)体验:三角点阵中前行的点数之和______(填“能”或“不能”)为500.(3)运用:某广场要摆放若干种造型的盆景,其中一种造型要用420盆同样规格的花,按照第一排2盆,第二排4盆,第三排6盆……第排盆的规律摆放而成,则一共能摆放多少排?26. 如图,在菱形中,,是边上一个动点,连接,的垂直平分线交于点,交于点.连接.(1)求证:;(2)求的最小值.27. 如图,是的直径,点在上,平分交于点,过点的直线,交的延长线于点,交的延长线于点.(1)求证:是的切线;(2)连接并延长,分别交于两点,交于点,若的半径为,求的值.28. 如图,抛物线与直线相交于两点,与轴相交于另一点.(1)求抛物线的解析式;(2)点是直线上方抛物线上的一个动点(不与重合),过点作直线轴于点,交直线于点,当时,求点坐标;(3)抛物线上是否存在点使的面积等于面积的一半?若存在,请直接写出点的坐标;若不存在,请说明理由.参考答案A卷(共100分)第Ⅰ卷选择题(共48分)一、选择题(共12小题,每小题4分,共48分)在每小题给出的四个选项中只有一项的,请把正确选项的字母序号填涂在答题卡上对应的位置.1.【答案】C【解析】【分析】本题考查了对正数和负数定义的理解,难度不大,注意0既不是正数也不是负数.根据正数和负数的定义判断即可,注意:0既不是负数也不是正数.解:,是正数;,是负数;,是负数;0既不是正数,也不是负数;,是负数;,是正数;负数有,,,共3个.故选:C.2.【答案】B【解析】【分析】本题考查了简单组合体的三视图,俯视图是从物体的上面看得到的视图.找到从上面看所得到的图形即可.解:从上面可看,是一行两个相邻的正方形.故选:B.3.【答案】A【解析】【分析】本题考查了整式的运算,根据合并同类项法则、积的乘方、同底数幂的除法和乘法分别计算即可判断求解,掌握整式的运算法则是解题的关键.解:.,该选项正确,符合题意;.,该选项错误,不合题意;.,该选项错误,不合题意;.,该选项错误,不合题意;故选:.4.【答案】B【解析】【分析】本题考查平行线的性质,三角形的外角的性质,掌握平行线的性质,是解题的关键.证明,再利用,进行求解即可.解:由题意,得:,∵,∴,∴;故选B.5.【答案】A【解析】【分析】本题考查了关于原点对称的点的坐标特征,代数式求值,根据关于原点对称的点,横纵坐标互为相反数可得,,再代入代数式计算即可求解,掌握关于原点对称的点的坐标特征是解题的关键.解:∵点关于原点对称点是,∴,,∴,故选:.6.【答案】C【解析】【分析】本题考查了线段垂直平分线的的性质,由线段垂直平分线的的性质可得,进而可得的周长,即可求解,掌握线段垂直平分线的的性质是解题的关键.】解:∵垂直平分,∴,∴的周长,故选:.7.【答案】C【解析】【分析】本题考查了函数图象,根据容器最下面圆柱底面积最小,中间圆柱底面积最大,最上面圆柱底面积最较大即可判断求解,正确识图是解题的关键.解:由容器可知,最下面圆柱底面积最小,中间圆柱底面积最大,最上面圆柱底面积最较大,所以一开始水面高度上升的很快,然后很慢,最后又上升的更快点,故选:.8.【答案】B【解析】【分析】本题考查了方差,根据折线统计图结合数据波动小者即可判断求解,理解方差的意义是解题的关键.解:由折线统计图可知,甲的数据波动更小,乙的数据波动更大,甲比乙更稳定,∴,故选:.9.【答案】A【解析】【分析】本题考查一元二次方程的定义和一元二次方程的解,二次项系数不为.由一元二次方程的定义,可知;一根是,代入可得,即可求答案.解:是关于的一元二次方程,,即由一个根,代入,可得,解之得;由得;故选A10.【答案】C【解析】【分析】本题考查垂径定理,勾股定理等知识.由垂径定理,可得出的长;设圆心为O,连接,在中,可用半径表示出的长,进而可根据勾股定理求出得出轮子的半径,即可得出轮子的直径长.解:∵是线段的垂直平分线,∴直线经过圆心,设圆心,连接.中,,根据勾股定理得:,即:,解得:;故轮子的半径为,故选:C.11.【答案】D【解析】解:∵一块面积为的三角形硬纸板(记为)平行于投影面时,在点光的照射下形成的投影是,,∴,∴位似图形由三角形硬纸板与其灯光照射下的中心投影组成,相似比为,∵三角形硬纸板的面积为,∴,∴的面积为.故选:D.12.【答案】D【解析】【分析】本题主要考查二次函数的图象与性质,熟练掌握二次函数的图象与性质是解题的关键.根据二次函数的图象与性质可进行求解.解:由抛物线可知:开口向上,对称轴为直线,该二次函数上所有的点满足离对称轴的距离越近,其对应的函数值也就越小,∵,,,而,,,∴点离对称轴最近,点离对称轴最远,∴;故选:D.第Ⅱ卷非选择题(共52分)二、填空题(共5小题,每小题4分,共20分)13.【答案】【解析】【分析】本题考查了因式分解的应用,先把的左边分解因式,再把代入即可求出的值.解:∵,∴,∵,∴.故答案为:.14.【答案】x=9【解析】【分析】观察可得最简公分母是x(x-3),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.解:方程的两边同乘x(x-3),得3x-9=2x,解得x=9.检验:把x=9代入x(x-3)=54≠0.∴原方程的解为:x=9.故答案为:x=9.15.【答案】##100度【解析】【分析】本题考查了三角形内角和以及外角性质、角平分线的定义.先求出,结合高的定义,得,因为角平分线的定义得,运用三角形的外角性质,即可作答.解:∵,∴,∵是边上的高,∴,∴,∵是的平分线,∴,∴.故答案为:.16.【答案】42【解析】【分析】本题考查的是中点四边形,熟记三角形中位线定理是解题的关键.根据三角形中位线定理分别求出、、、,根据四边形的周长公式计算,得到答案.解:四边形各边中点分别是、、、,、、、分别为、、、的中位线,,,,,四边形的周长为:,故答案为:42.17.【答案】9【解析】【分析】本题考查了一次函数图象上点的坐标特征、待定系数法求一次函数解析式以及三角形的面积.根据点A,B的坐标,利用待定系数法可求出直线的解析式,得出点C的坐标及的长,再利用三角形的面积公式即可求出的面积.解:将代入,得:,解得:,∴直线的解析式为.当时,,解得:,∴点C的坐标为,,∴.故答案为:9.三、解答题(共5小题,共32分)解答应写出文字说明,证明过程或演算步骤.18.【答案】2【解析】【分析】本题考查了实数的混合运算.分别进行零指数幂、负整数指数幂、二次根式及绝对值的运算,然后代入特殊角的三角函数值代入运算即可.解:.19.【答案】【解析】【分析】本题考查了解一元一次不等式组,熟练掌握知识点是解题的关键.先将变形为,再解每一个不等式,取解集的公共部分作为不等式组的解集,再找出其中的整数解即可.解:由题意得,解①得:,解②得:,∴该不等式组的解集为:,∴整数解为:20.【答案】(1),;(2)补图见解析;(3).【解析】【分析】()用最喜欢足球的学生人数除以其百分比可求出调查的总人数,用乘以最喜欢乒乓球项目的百分比可求出最喜欢乒乓球项目的学生人数;()求出最喜欢篮球项目的学生人数和最喜欢羽毛球项目的学生人数,即可补全条形统计图;()画出树状图,根据树状图即可求解;本题考查了条形统计图和扇形统计图,样本估计总体,用树状图或列表法求概率,看懂统计图及正确画出树状图是解题的关键.小问1解:本次调查的总人数是人,估计全校名学生中最喜欢乒乓球项目的约有人,故答案为:,;小问2解:最喜欢篮球项目的学生有人,∴最喜欢羽毛球项目的学生有人,∴补全条形统计图如下:小问3解:画树状图如下:由树状图可知,共有种等结果,其中抽取的两人恰好是甲和乙的结果有种,∴抽取的两人恰好是甲和乙的概率为.21.【答案】.【解析】【分析】本题考查了解直角三角形的应用仰角俯角问题,设,解直角三角形得到,,再根据可得,解方程求出即可求解,正确解直角三角形是解题的关键.解:由题意可得,,,,,设,在中,,在中,,∵,∴,解得,∴,答:塔高为.22.【答案】(1)(2)6【解析】【分析】(1)待定系数法求出反比例函数解析式即可;(2)先得到平移后直线解析式,联立方程组求出点坐标,根据平行线可得代入数据计算即可.小问1解:点在正比例函数图象上,,解得,,在反比例函数图象上,,反比例函数解析式为.小问2解:把直线向上平移3个单位得到解析式为,令,则,∴记直线与轴交点坐标为,连接,联立方程组,解得,(舍去),,由题意得:,∴同底等高,.【点拨】本题考查了一次函数与反比例函数的交点问题,待定系数法求函数解析式,一次函数的平移,三角形的面积,熟练掌握函数的平移法则是关键.B卷(共50分)四、填空题(共2小题,每小题5分,共10分)23.【答案】【解析】【分析】本题考查了解一元二次方程,熟练掌握解一元二次方程的方法是解题的关键.将代入,转化为解一元二次方程,,要进行舍解.解:∵,∴,将代入得,,即:,,∴或,∵,∴舍,∴,故答案为:3.24.【答案】【解析】解:记直线与x,y轴分别交于点A,K,连接,当,,当,即,解得:,而∴,∴均是等腰直角三角形,∴,∴,∵与相切,∴,∴,∵,∴当最小时即最小,∴当时,取得最小值,即点P与点K重合,此时最小值为,在中,由勾股定理得:,∴,∴最小值为.【点拨】本题考查了圆的切线的性质,勾股定理,一次函数与坐标轴的交点问题,垂线段最短,正确添加辅助线是解题的关键.五、解答题(共4小题,共40分)25.【答案】(1)36;120;(2)不能(3)一共能摆放20排.【解析】【分析】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.(1)根据图形,总结规律,列式计算即可求解;(2)根据前n行的点数和是500,即可得出关于n的一元二次方程,解之即可判断;(2)先得到前n行的点数和是,再根据题意得出关于n的一元二次方程,解之即可得出n的值.小问1解:三角点阵中前8行的点数之和为,前15行的点数之和为,那么,前行的点数之和为;故答案为:36;120;;小问2解:不能,理由如下:由题意得,得,,∴此方程无正整数解,所以三角点阵中前n行的点数和不能是500;故答案为:不能;小问3解:同理,前行的点数之和为,由题意得,得,即,解得或(舍去),∴一共能摆放20排.26.【答案】(1)见详解(2)【解析】【分析】(1)根据菱形的性质证明,再结合是的垂直平分线,即可证明;(2)过点N作于点F,连接,,则,故,此时,在中,进行解直角三角形即可.小问1证明:连接,∵四边形是菱形,∴,,∵,∴,∴,∵是垂直平分线,∴,∴;小问2解:过点N作于点F,连接,∵,∴,∵,∴,当点A.N、F三点共线时,取得最小值,如图:即,∴在中,,∴的最小值为.【点拨】本题考查了菱形的性质,垂直平分线的性质,全等三角形的判定与性质,垂线段最短,解直角三角形,正确添加辅助线是解决本题的关键.27.【答案】(1)见详解(2)【解析】【分析】(1)连接,根据等腰三角形的性质及角平分线得到,根据平行线的性质得,即可证明;(2)连接,先解,求得,,则,,可证明,由,得,故,证明,即可得到.小问1解:连接,∵,∴,∵平分,∴,∴,∴,∴∵,∴,∴,即,∵是的半径∴是的切线;小问2解:连接,∵,∴在中,,由勾股定理得:∴,∵在中,,∴,∵,∴,而,∴,∴,∴,∵,∴,∴,∴,∵,∴,∵,∴,∴,∴.【点拨】本题考查了圆的切线的判定,相似三角形的判定与性质,勾股定理,的直角三角形的性质,等腰三角形的性质,正确添加辅助线是解题的关键.28.【答案】(1)抛物线的解析式为(2)的坐标为(3)的坐标为或或或【解析】【分析】(1)把代入求出,再用待定系数法可得抛物线的解析式为;(2)设,则,,由,可得,解出的值可得的坐标为;(3)过作轴交直线于,求出,知,故,设,则,可得,,根据的面积等于面积的一半,有,可得,即或,解出的值可得答案.小问1解:把代入得:,,把,代入得:,解得,抛物线的解析式为;小问2解:设,则,,,,解得或(此时不在直线上方,舍去);的坐标为;小问3解:抛物线上存在点,使的面积等于面积的一半,理由如下:过作轴交直线于,过点B作,延长交x轴于点F,如图:中,令得,解得或,,,,,,设,则,,∵,的面积等于面积的一半,,,或,解得或,的坐标为或或或.【点拨】本题考查二次函数的图像与性质,涉及待定系数法求函数解析式,抛物线与坐标轴交点问题,解一元二次方程,三角形面积等知识,解题的关键是用含字母的式子表示相关点坐标和相关线段的长度.。

2023年浙江省宁波市中考语文试卷及答案解析

2023年浙江省宁波市中考语文试卷及答案解析

宁波市2023年初中学业水平考试语文试题考生须知:1.全卷分试题卷和答题卷。

试题卷共8页,有五个语文学习活动,15个题目,满分为150分。

考试时长为120分钟。

2.答题必须使用黑色字迹钢笔或签字笔书写,答案必须按照题号顺序在答题卷各题目规定区域内作答,做在试题卷上或超出答题区域书写的答案无效。

3.请将姓名、准考证号分别填写在试题卷和答题卷的规定位置上。

温馨提示:全卷含书写分5分,请你在答题时努力做到书写规范、工整。

一、学校开展“寻踪美丽宁波领略甬城文化”研学活动,请你参与。

(26分)【第一站】甬之湖寻山水之诗1.下面是同学们研学时所说的诗句,请你补充完整。

(3分)2.下面是同学们在东钱湖研学时发现的古诗,请你赏析。

(6分)初至茂屿①[明]沈九畴清溪窈窕觅仙踪,临水看云面面重.。

山过雨声侵薜荔②,风吹秋色满芙蓉。

湖天____悬孤屿,海日东南引万峰。

岂是桃源无路到,扁舟今日使人逢。

【注释】①茂屿:茂屿山,据旧志记载,在东钱湖西南。

②薜(bì)荔:一种常绿灌木。

(1)《古汉语常用字字典》中,“重”有“chóng”和“zhòng”两种读音。

本诗首联中加点的“重”字,你会选哪个读音?结合画线句和颔联加以分析。

(3分)我认为_________填,分析:____________________________________________________________(2)你认为诗中空缺处应填“萧索”还是“浩渺”?结合相关诗句加以分析。

(3分)我认为_________填,分析:____________________________________________________________【第二站】甬之阁觅园林书香同学们在天一阁研学后,搜集了以下材料,打算向某杂志“园林书香——历代藏书楼博览”专栏投稿,请你参与。

【材料一】天一阁,位于浙江省宁波市海曙区,建于明嘉靖四十年至四十五年(1561年~1566年),由当时退隐的明朝兵部右侍郎范钦主持建造,占地面积2.6万平方米,已有400多年的历史。

2024年宁夏中考数学试卷及答案解析

2024年宁夏中考数学试卷及答案解析

2024年宁夏中考数学试卷一、选择题(本题共8小题,每小题3分,共24分.在每小题给出的四个选项中只有一个是符合题目要求的)1.(3分)下列各数中,无理数是()A.﹣1B.C.D.π2.(3分)下列运算正确的是()A.x3+x2=x5B.C.(3x)2=6x2D.﹣5﹣3=﹣23.(3分)小明与小亮要到科技馆参观.小明家、小亮家和科技馆的方位如图所示,则科技馆位于小亮家的()A.南偏东60°方向B.北偏西60°方向C.南偏东50°方向D.北偏西50°方向4.(3分)某班24名学生参加一分钟跳绳测试,成绩(单位:次)如表:成绩171及以下172173174175及以上人数38652则本次测试成绩的中位数和众数分别是()A.172和172B.172和173C.173和172D.173和1735.(3分)用5个大小相同的小正方体搭一个几何体,其主视图、左视图如图2,现将其中4个小正方体按图1方式摆放,则最后一个小正方体应放在()A.①号位置B.②号位置C.③号位置D.④号位置6.(3分)已知|3﹣a|=a﹣3,则a的取值范围在数轴上表示正确的是()A.B.C.D.7.(3分)数学活动课上,甲、乙两位同学制作长方体盒子.已知甲做6个盒子比乙做4个盒子少用10分钟,甲每小时做盒子的数量是乙每小时做盒子的数量的2倍.设乙每小时做x个盒子,根据题意可列方程()A.B.C.D.8.(3分)如图,在Rt△ABC中,∠ABC=90°,AB=3cm,BC=2cm,点A在直线l1上,点B,C在直线l2上,l1∥l2,动点P从点A出发沿直线l1以1cm/s的速度向右运动,设运动时间为t s.下列结论:①当t=2s时,四边形ABCP的周长是10cm;②当t=4s时,点P到直线l2的距离等于5cm;③在点P运动过程中,△PBC的面积随着t的增大而增大;④若点D,E分别是线段PB,PC的中点,在点P运动过程中,线段DE的长度不变.其中正确的是()A.①④B.②③C.①③D.②④二、填空题(本题共8小题,每小题3分,共24分)9.(3分)地球上水(包括大气水、地表水和地下水)的总体积约为14.2亿km3.请将数据1420000000用科学记数法表示为.10.(3分)为考查一种枸杞幼苗的成活率,在同一条件下进行移植试验,结果如表所示:移植总数n4015030050070010001500成活数m3513427145163189913500.8750.8930.9030.9020.9010.8990.900估计这种幼苗移植成活的概率是(结果精确到0.1).11.(3分)某水库警戒水位为29.8米,取警戒水位作为0点.如果水库水位为31.4米记作+1.6米,那么水库水位为28米记作米.12.(3分)若二次函数y=2x2﹣x+m的图象与x轴有交点,则m的取值范围是.13.(3分)如图,在正五边形ABCDE的内部,以CD边为边作正方形CDFH,连接BH,则∠BHC=_______°.14.(3分)在平面直角坐标系中,一条直线与两坐标轴围成的三角形是等腰三角形,则该直线的解析式可能为(写出一个即可).15.(3分)观察下列等式:第1个:1×2﹣2=22×0;第2个:4×3﹣3=32×1;第3个:9×4﹣4=42×2;第4个:16×5﹣5=52×3.…按照以上规律,第n个等式为.16.(3分)如图1是三星堆遗址出土的陶盉(hè),图2是其示意图.已知管状短流AB=2cm,四边形BCDE 是器身,BE∥CD,BC=DE=11cm,∠ABE=120°,∠CBE=80°.器身底部CD距地面的高度为21.5cm,则该陶盉管状短流口A距地面的高度约为cm(结果精确到0.1cm).(参考数据:sin80°≈0.9848,cos80°≈0.1736,tan80°≈5.6713,≈1.732)三、解答题(本题共10小题,其中17~22题每小题6分,23、24题每小题6分,25、26题每小题6分,共72分)17.(6分)解不等式组.18.(6分)先化简,再求值:,其中.19.(6分)如图,在△ABC中,点D是边BC的中点,以AB为直径的⊙O经过点D,点P是边AC上一点(不与点A,C重合).请仅用无刻度直尺按要求作图,保留作图痕迹,不写作法.(1)过点A作一条直线,将△ABC分成面积相等的两部分;(2)在边AB上找一点P′,使得BP′=CP.20.(6分)中国传统手工艺享誉海内外,扎染和刺绣体现了中国人民的智慧和创造力.某店销售扎染和刺绣两种工艺品,已知扎染175元/件,刺绣325元/件.(1)某天这两种工艺品的销售额为1175元,求这两种工艺品各销售多少件?(2)中国的天问一号探测器、奋斗者号潜水器等科学技术世界领先,国人自豪感满满,相关纪念品深受青睐.该店设立了一个如图所示可自由转动的转盘(转盘被分为5个大小相同的扇形).凡顾客在本店购买一件工艺品,就获得一次转动转盘的机会,当转盘停止时,顾客即可免费获得指针指向区域的纪念品一个(指针指向两个扇形的交线时,视为指向右边的扇形).一顾客在该店购买了一件工艺品,求该顾客获得纪念品的概率是多少?21.(6分)如图,在▱ABCD中,点M,N在AD边上,AM=DN,连接CM并延长交BA的延长线于点E,连接BN并延长交CD的延长线于点F.求证:AE=DF.小丽的思考过程如下:参考小丽的思考过程,完成推理.22.(6分)尊老敬老是中华民族的传统美德,爱老是全社会的共同责任.为了解某地区老年人的生活状况,随机抽取部分65岁及以上的老年人进行了一次问卷调查.调查问卷以下问题均为单选题,请根据实际情况选择(例:65~70岁表示大于等于65岁同时小于70岁).1.您的年龄范围()A.65~70岁B.70~75岁C.75~80岁D.80岁及以上2.您的养老需求()A.医疗服务B.社交娱乐C.健身活动D.餐饮服务E.其他3.您的健康状况()A.良好B.一般C.较差将调查结果绘制成如下统计图表.请阅读相关信息,解答下列问题:健康状况统计表65~70岁70~75岁75~80岁80岁及以上良好65%58%50%40%一般25%30%35%40%较差10%12%15%20%(1)参与本次调查的老年人共有人,有“医疗服务”需求的老年人有人;(2)已知该地区65岁及以上的老年人人口总数约为6万人,估计该地区健康状况较差的老年人人口数;(3)根据以上信息,针对该地区老年人的生活状况,你能提出哪些合理化的建议?(写出一条即可)23.(8分)在同一平面直角坐标系中,函数y=2x+1的图象可以由函数y=2x的图象平移得到.依此想法,数学小组对反比例函数图象的平移进行探究.【动手操作】列表:x…﹣5﹣4﹣3﹣2﹣112345……﹣1﹣221…描点连线:在已画出函数的图象的坐标系中画出函数的图象.【探究发现】(1)将反比例函数的图象向平移个单位长度得到函数的图象.(2)上述探究方法运用的数学思想是.A.整体思想B.类比思想C.分类讨论思想【应用延伸】(1)将反比例函数的图象先,再得到函数的图象.(2)函数图象的对称中心的坐标为.24.(8分)如图,⊙O是△ABC的外接圆,AB为直径,点D是△ABC的内心,连接AD并延长交⊙O于点E,过点E作⊙O的切线交AB的延长线于点F.(1)求证:BC∥EF;(2)连接CE,若⊙O的半径为,求阴影部分的面积(结果用含π的式子表示).25.(10分)综合与实践如图1,在△ABC中,BD是∠ABC的平分线,BD的延长线交外角∠CAM的平分线于点E.【发现结论】结论1:∠AEB=∠ACB;结论2:当图1中∠ACB=90°时,如图2所示,延长BC交AE于点F,过点E作AF的垂线交BF于点G,交AC的延长线于点H.则AE与EG的数量关系是.【应用结论】(1)求证:AH=GF;(2)在图2中连接FH,AG,延长AG交FH于点N,补全图形,求证:.26.(10分)抛物线与x轴交于A(﹣1,0),B两点,与y轴交于点C,点P是第四象限内抛物线上的一点.(1)求抛物线的解析式;(2)如图1,过P作PD⊥x轴于点D,交直线BC于点E.设点D的横坐标为m,当时,求m的值;(3)如图2点F(1,0),连接CF并延长交直线PD于点M,点N是x轴上方抛物线上的一点,在(2)的条件下,x轴上是否存在一点H,使得以F,M,N,H为顶点的四边形是平行四边形.若存在,直接写出点H的坐标;若不存在,请说明理由.2024年宁夏中考数学试卷参考答案与试题解析一、选择题(本题共8小题,每小题3分,共24分.在每小题给出的四个选项中只有一个是符合题目要求的)1.【分析】无理数即无限不循环小数,据此进行判断即可.【解答】解:﹣1,=2是整数,是分数,它们不是无理数;π是无限不循环小数,它是无理数;故选:D.【点评】本题考查无理数的识别,熟练掌握其定义是解题的关键.2.【分析】根据幂的乘方与积的乘方的运算方法,合并同类项的方法,有理数的减法的运算方法,以及负整数指数幂的运算方法,逐项判断即可.【解答】解:∵x3+x2≠x5,∴选项A不符合题意;∵2﹣1=,∴选项B符合题意;∵(3x)2=9x2,∴选项C不符合题意;∵﹣5﹣3=﹣8,∴选项D不符合题意.故选:B.【点评】此题主要考查了幂的乘方与积的乘方的运算方法,合并同类项的方法,有理数的减法的运算方法,以及负整数指数幂的运算方法,解答此题的关键是要明确:(1)①(a m)n=a mn(m,n是正整数);②(ab)n=a n b n(n是正整数);(2)合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;(3)有理数减法法则:减去一个数,等于加上这个数的相反数;(4)a﹣p=(a≠0,p为正整数).3.【分析】作CD∥AB,根据平行线的性质得∠DCE=60°,再根据CD∥EF,可得∠CEF=∠DCE=60°,根据方向角的定义即可得出答案.【解答】解:如图,作CD∥AB,则∠ACD=∠BAC=50°,∴∠DCE=100°﹣50°=60°,∵AB∥CD,AB∥EF,∴CD∥EF,∴∠CEF=∠DCE=60°,∴科技馆位于小亮家的南偏东60°方向.故选:A.【点评】本题考查了方向角,熟练掌握方向角的定义和平行线的性质是关键.4.【分析】根据众数和中位数的定义求解可得.【解答】解:中位数是第12、13个数据的平均数,所以中位数为=173,这组数据中172出现次数最多,所以众数为172,故选:C.【点评】本题主要考查中位数和众数的概念.在一组数据中出现次数最多的数叫做这组数据的众数;将一组数据从小到大依次排列,把中间数据(或中间两数据的平均数)叫做中位数.5.【分析】根据题意主视图和左视图即可得到结论.【解答】解:现将其中4个小正方体按图1方式摆放,则最后一个小正方体应放在②号位置.故选:B.【点评】本题考查了由三视图判断几何体,掌握简单组合体三视图的画法和形状是正确解答的关键.6.【分析】由|3﹣a|=a﹣3,可知a﹣3≥0,解这个不等式并在数轴表示出来即可.【解答】解:∵|3﹣a|=a﹣3,∴a﹣3≥0,∴a≥3.故选:A.【点评】本题考查在数轴上表示不等式的解集、绝对值,掌握一元一次不等式的解法及在数轴上表示不等式的解集是解题的关键.7.【分析】根据甲做6个盒子比乙做4个盒子少用10分钟,可以列出相应的分式方程,本题得以解决.【解答】解:由题意可得,,故选:C.【点评】本题主要考查由实际问题抽象出分式方程,解答本题的关键是明确题意,列出相应的分式方程.8.【分析】①根据t=2s时得出四边形ABCP为矩形,据此可解决问题.②根据“平行线间的距离处处相等”即可解决问题.③根据②中的发现即可解决问题.④利用三角形的中位线定理即可解决问题.【解答】解:①当t=2s时,AP=2cm,则AP=BC.又因为AP∥BC,∠ABC=90°,所以四边形ABCP是矩形,所以PC=AB=3cm,所以四边形ABCP的周长为:2×(2+3)=10(cm).故①正确.因为“平行线间的距离处处相等”,AB=3cm,∠ABC=90°,所以直线l1与直线l2之间的距离是3cm,所以当t=4s时,点P到直线l2的距离仍然是3cm.故②错误.由上述过程可知,点P到BC的距离为定值3cm,即△PBC的BC边上的高为3cm,又因为BC=2cm,所以△PBC的面积为定值.故③错误.因为点D,E分别是线段PB,PC的中点,所以DE是△PBC的中位线,所以DE=(cm),即线段DE的长度不变.故④正确.故选:A.【点评】本题主要考查了三角形面积及三角形的中位线定理,熟知三角形的中位线定理及三角形的面积公式是解题的关键.二、填空题(本题共8小题,每小题3分,共24分)9.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正整数;当原数的绝对值<1时,n是负整数.据此解答即可.【解答】解:1420000000用科学记数法可以表示成为1.42×109.故答案为:1.42×109.【点评】此题主要考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要确定a的值以及n的值.10.【分析】利用大量重复试验下事件发生的频率可以估计该事件发生的概率直接回答即可.【解答】解:∵根据表中数据,试验频率逐渐稳定在0.9左右,∴这种幼苗在此条件下移植成活的概率是0.9;故答案为:0.9.【点评】此题主要考查了利用频率估计概率,大量反复试验下频率稳定值即概率.11.【分析】根据正数和负数的实际意义即可求得答案.【解答】解:某水库警戒水位为29.8米,取警戒水位作为0点.如果水库水位为31.4米记作+1.6米,那么水库水位为28米记作﹣1.8米,故答案为:﹣1.8.【点评】本题考查正数和负数,理解正数和负数的实际意义是解题的关键.12.【分析】利用根的判别式的意义得到Δ=(﹣1)2﹣4×2×m≥0,然后解不等式即可.【解答】解:∵二次函数y=2x2﹣x+m的图象与x轴有交点,∴Δ=(﹣1)2﹣4×2×m≥0,解得m≤,即m的取值范围为m≤.故答案为:m≤.【点评】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程;Δ=b2﹣4ac决定抛物线与x轴的交点个数.13.【分析】先求出∠BCD的度数,再求出∠BCH的度数,最后根据等腰三角形的特征,即可得出答案.【解答】解:∵在正五边形ABCDE,∴∠BCD=180°﹣(360°÷5)=108°,∵∠HCD=90°,∴∠BCH=∠BCD﹣∠HCD=18°,∵BC=HC,∴∠BHC=∠CBH=(180°﹣∠BCH)=81°.故答案为:81.【点评】本题主要考查多边形内角和外角,熟练掌握多边形的外角和公式是解题的关键.14.【分析】利用等腰三角形的判定,设直线y=kx+b与x轴的交点坐标为(﹣1,0),与y轴的交点坐标为(0,1),然后利用待定系数法求出此时直线解析式.【解答】解:∵直线y=kx+b与两坐标轴围成的三角形是等腰三角形,∴可设直线y=kx+b与x轴的交点坐标为(﹣1,0),与y轴的交点坐标为(0,1),把(﹣1,0),(1,0)分别代入y=kx+b得,解得,∴此时直线解析式为y=x+1.故答案为:y=x+1.(答案不唯一)【点评】本题考查了待定系数法求一次函数解析式:求一次函数y=kx+b,则需要两组x,y的值.也考查了一次函数图象上点的坐标特征和等腰三角形的判定.15.【分析】分析所给的等式的形式,总结出规律,再对等式的左边进行整理即可.【解答】解:第1个:1×2﹣2=22×0;第2个:4×3﹣3=32×1;第3个:9×4﹣4=42×2;第4个:16×5﹣5=52×3.…按照以上规律,第n个等式为n2×(n+1)﹣(n+1)=(n+1)2×(n﹣1),故答案为:n2×(n+1)﹣(n+1)=(n+1)2×(n﹣1).【点评】本题主要考查数字的变化规律,解答的关键是对由所给的等式总结出存在的规律.16.【分析】过点C作CF⊥BE,垂足为F,过点A作AG⊥EB,交EB的延长线于点G,先利用平角定义可得∠ABG=60°,然后分别在Rt△ABG和Rt△BCF中,利用锐角三角函数的定义求出AG和CF的长,最后进行计算即可解答.【解答】解:过点C作CF⊥BE,垂足为F,过点A作AG⊥EB,交EB的延长线于点G,∵∠ABE=120°,∴∠ABG=180°﹣∠ABE=60°,在Rt△ABG中,AB=2cm,∴AG=AB•sin60°=2×=(cm),在Rt△BCF中,∠EBC=80°,BC=11cm,∴CF=BC•sin80°≈11×0.9848=10.8328(cm),∵器身底部CD距地面的高度为21.5cm,∴该陶盉管状短流口A距地面的高度=AG+CF+21.5=+10.8328+21.5≈34.1(cm),∴该陶盉管状短流口A距地面的高度约为34.1cm,故答案为:34.1.【点评】本题考查了解直角三角形的应用,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.三、解答题(本题共10小题,其中17~22题每小题6分,23、24题每小题6分,25、26题每小题6分,共72分)17.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【解答】解:,解不等式①得,x<﹣4,解不等式②得,,所以不等式组的解集为x<﹣4.【点评】本题考查了解一元一次不等式组,掌握同大取大;同小取小;大小小大中间找;大大小小找不到的原则是解答此题的关键.18.【分析】首先化简,然后把代入化简后的算式计算即可.【解答】解:=•=a﹣1.当时,原式=1﹣﹣1=﹣.【点评】此题主要考查了分式的化简求值问题,在化简的过程中要注意运算顺序和分式的化简.化简的最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.19.【分析】(1)过A,D两点画直线AD.利用点D是边BC的中点和三角形面积公式可判断直线AD满足条件;(2)连接BP交AD于点E,连接CE并延长交AB于点P,利用圆周角定理得到∠ADB=90°,则△ABC为等腰三角形,然后利用对称性可得到点P′满足条件.【解答】解:(1)如图,直线AD为所作;(2)如图,点P′为所作.【点评】本题考查了作图﹣复杂作图:解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了圆周角定理.20.【分析】(1)设扎染工艺品销售扎染x件,刺绣工艺品销售y件,根据某天这两种工艺品的销售额为1175元,列出二元一次方程,求出正整数解即可;(2)直接由概率公式求解即可.【解答】解:(1)设扎染工艺品销售扎染x件,刺绣工艺品销售y件,根据题意得:175x+325y=1175,整理得:x=,∵x,y均为正整数,∴,答:扎染工艺品销售扎染3件,刺绣工艺品销售2件;(2)转动一次转盘所有等可能结果共5种,指针指向有纪念品的扇形的结果有3种,∴该顾客获得纪念品的概率是.【点评】本题考查了二元一次方程组的应用以及概率公式,找准等量关系,正确列出二元一次方程组是解题的关键.21.【分析】由AM=DN,得AN=DM,则=,由AE∥DC,DF∥AB,证明△AME∽△DMC,△DNF∽△ANB,则=,=,所以=,即可证明AE=DF.【解答】证明:∵AM=DN,∴AM+MN=DN+MN,∴AN=DM,∴=,∵四边形ABCD是平行四边形,∴AB∥DC,AB=DC,∵AE∥DC,DF∥AB,∴△AME∽△DMC,△DNF∽△ANB,∴=,=,∴=,∴==1,∴AE=DF.【点评】此题重点考查平行四边形的性质、相似三角形的判定与性质等知识,证明△AME∽△DMC及△DNF∽△ANB是解题的关键.22.【分析】(1)把四个等级的人数相加可得样本容量;用样本容量乘A组所占百分比可得有“医疗服务”需求的老年人人数;(2)用样本估计总体即可;(3)根据养老需求统计图数据解答即可(答案不唯一).【解答】解:(1)参与本次调查的老年人共有:480+350+220+150=1200(人);有“医疗服务”需求的老年人有:1200×(1﹣20%﹣12%﹣8%﹣5%)=660(人);故答案为:1200;660.(2)根据题意得,×60000=2400+2100+1650+1500=7650.答:估计该地区健康状况较差的老年人有7650人;(3)根据养老需求统计图可知,医疗服务需求占比大,因此建议提高本地区老年人的医疗服务质量(答案不唯一,只要建议合理即可).【点评】此题考查了频数(率)分布直方图,扇形统计图,统计表,用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.23.【分析】【动手操作】列表,描点、连线画出函数的图象即可;【探究发现】结合图象填空即可;【应用延伸】根据发现的规律填空即可.【解答】解:【动手操作】列表:x…﹣6﹣5﹣4﹣3﹣212345…y=…﹣﹣﹣1﹣21…描点、连线画出函数图象如图示:【探究发现】(1)将反比例函数的图象向左平移1个单位长度得到函数的图象.故答案为:左,1;(2)上述探究方法运用的数学思想是B.故答案为:B;【应用延伸】(1)将反比例函数的图象先右平移2个单位长度,再向下平移1个得到函数的图象.故答案为:右平移2个单位长度;向下平移1个单位长度;(2)函数图象的对称中心的坐标为(2,﹣1).故答案为(2,﹣1).【点评】本题考查了反比例函数的图象,一次函数的图象,正比例函数图象,一次函数图象与几何变换,数形结合是解题的关键.24.【分析】(1)连接OE,交BC于点G,根据等腰三角形的性质得到∠OAE=∠OEA,由D为△ABC的内心,得到∠OAE=∠CAE,求得OE∥AC,根据圆周角定理得到∠ACB=90°,求得∠BGO=90°,根据切线的性质得到∠FEO=90°,根据平行线的判定定理得到结论;(2)连接BE,根据三角函数的定义得到∠AEC=30°,求得∠ABC=∠AEC=30°,求得EF=OE•tan60°=2,根据扇形和三角形的面积公式即可得到结论.【解答】(1)证明:连接OE,交BC于点G,∵OA=OE,∴∠OAE=∠OEA,又∵D为△ABC的内心,∴∠OAE=∠CAE,∴∠OEA=∠CAE,∴OE∥AC,又∵AB为⊙O的直径,∴∠ACB=90°,∴∠BGO=90°,又∵EF为⊙O的切线且OE为⊙O的半径,∴∠FEO=90°,∴∠BGO=∠FEO,∴BC∥EF;(2)解:连接BE,∵,∴∠AEC=30°,∴∠ABC=∠AEC=30°,∴∠BOE=60°,∠EFO=30°,∴EF=OE•tan60°=2,∴S阴影部分=S△EFO﹣S扇形BOE==.【点评】本题考查了三角形的内切圆与内心,三角函数的定义,圆周角定理,三角形的外接圆与外心,扇形面积的计算,正确地作出辅助线是解题的关键.25.【分析】【发现结论】结论1:根据角平分线的定义得到∠ABC=2∠ABE,∠CAM=2∠EAM,根据三角形外角的性质即可得到结论;结论2:由结论1得到∠AEB=ACB,求得∠AED=∠ACB=45°,根据全等三角形的性质得到AE=EG;【应用结论】(1)根据余角的性质得到∠EFG=∠EHA,根据全等三角形的性质得到FG=HA;(2)根据全等三角形的性质得到EF=EH,求得GN=HN,由AN=AG+GN,得到.【解答】【发现结论】解:结论1:∵BD是∠ABC的平分线,∴∠ABC=2∠ABE,∵AE是∠CAM的平分线,∴∠CAM=2∠EAM,∵∠CAM=∠ACB+∠ABC,∴2∠EAM=∠ACB+2∠ABE,∵∠EAM=∠AEB+∠ABE,∴2(∠AEB+∠ABE)=∠ACB+2∠ABE,∴∠AEB=ACB,故答案为:;结论2:由结论1知,∠AEB=ACB,∵∠ACB=90°,∴∠AED=∠ACB=45°,∵EH⊥AF,∴∠AEH=90°,∴∠AEB=∠BGG=45°,∵∠ABE=∠GBE,BE=BE,∴△ABE≌△GBE(ASA),∴AE=EG;故答案为:AE=EG;【应用结论】证明:(1)在Rt△AFC中,∠EFG+∠EAH=90°,在Rt△AEH中,∠AHE+∠EAH=90°,∴∠EFG=∠EHA,在△EFG和△EHA中,,∴△EFG△EHA(AAS);∴FG=HA;(2)证明:补全图形如图所示,在Rt△AEG中,∵∠EAG=∠EGA=45°,∴,∴Rt△EFG≌Rt△EHA(HL),∴EF=EH,∵∠FEH=90°,∴∠EFH=∠EHF=45°,∴∠AFN=∠FAN=45°,∠NGH=∠AGE=45°,∴FN=AN,∠NGH=∠NHG=45°,∴GN=HN,又∵AN=AG+GN,∴.【点评】本题是三角形的综合题,考查了全等三角形的判定和性质,等腰直角三角形的判定和性质.角平分线的定义,外角的性质,熟练掌握全等三角形的判定和性质定理是解题的关键.26.【分析】(1)将点A(﹣1,0)代入抛物线解析式,解之即可得出结论;(2)令y=0,可得B(4,0);令x=0可得点C的坐标(0,﹣2);则BC==2;BC的解析式为:y=x﹣2;根据题意,点D的坐标为(m,0),把x=m分别代入抛物线和直线BC的解析式,可得P(m,m2﹣m﹣2);E(m,m﹣2);所以DE=2﹣m,EP=2m﹣m2;由PD⊥x轴,可得PD∥y轴,所以△BDE∽△BOC,则BD:BO=BE:BC,即BE•BO=BC•BD,可得BE=(4﹣m),所以PE=BE=(4﹣m),由此可建立关于m的方程,解之即可;(3)由C、F的坐标可得,直线CF的解析式为:y=2x﹣2,所以M(,3);当y=3时,x2﹣x ﹣2=3,解得x=﹣2或x=5;当N(﹣2,3)时,FH=MN=;当N(5,3)时,FH=MN=;分别求解即可得出结论.【解答】解:(1)把点A(﹣1,0)代入得;解得a=;∴抛物线的解析式为:y=x2﹣x﹣2.(2)把y=0代入y=x2﹣x﹣2得,x2﹣x﹣2=0,解得x=﹣1或x=4,∴B(4,0);当x=0是,y=﹣2,∴点C的坐标(0,﹣2);∴BC==2;BC的解析式为:y=x﹣2;根据题意,点D的坐标为(m,0),把x=m代入y=x2﹣x﹣2得,y=m2﹣m﹣2.把x=m代入y=x﹣2,得y=m﹣2,∴P(m,m2﹣m﹣2);E(m,m﹣2);∴DE=2﹣m,EP=2m﹣m2;∵PD⊥x轴,∴PD∥y轴,∴△BDE∽△BOC,∴BD:BO=BE:BC,即BE•BO=BC•BD,∴BE=(4﹣m),∵PE=BE=(4﹣m),∴2m﹣m2=(4﹣m),解得m=或m=4(舍);(3)存在,点H的坐标为(﹣,0)或(,0)或(﹣,0)或(,0).理由如下:∵C(0,﹣2),F(1,0),∴直线CF的解析式为:y=2x﹣2,当x=时,y=2×﹣2=3;∴M(,3);∵点N是x轴上方抛物线上的一点,∴当y=3时,x2﹣x﹣2=3,解得x=﹣2或x=5;当N(﹣2,3)时,FH=MN=;∴H的坐标为:(﹣,0)或(,0);当N(5,3)时,FH=MN=;∴H的坐标为:(﹣,0)或(,0).综上,点H的坐标为(﹣,0)或(,0)或(﹣,0)或(,0).【点评】本题是二次函数的综合题,考查了待定系数法确定函数的解析式,二次函数的性质,相似三角形的判定和性质,二次函数与一次函数的交点,平行四边形的判定和性质,中点坐标公式等知识点,本题运用了分类讨论的思想.掌握函数的性质、相似三角形的定和性质、平行四边形的判定和性质是解题的关键。

2023全国乙卷高考语文试卷及答案解析

2023全国乙卷高考语文试卷及答案解析

2023全国乙卷高考语文试卷及答案解析绝密启用前2023年普通高等学校招生全国统一考试语文参考答案注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上,并将自己的姓名、准考证号、座位号填写在本试卷上。

2.回答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。

涂写在本试卷上无效。

3.作答非选择题时,将答案书写在答题卡上,书写在本试卷上无效。

4.考试结束后,将本试卷和答题卡一并交回。

一、现代文阅读(36分)(一)论述类文本阅读(本题共3小题,9分)【1~3题答案】【答案】1. B 2. D 3. C(二)实用类文本阅读(本题共3小题,12分)【4~6题答案】【答案】4. A 5. B6. ①一种行为是任凭宇宙和地球自然衰亡而什么也不做;②另一种行为是反思我们和地球、万物的关系,思考我们能为后代留下些什么,从而在现实世界中采取行动。

(三)文学类文本阅读(本题共3小题,15分)【7~9题答案】【答案】7. A 8. ①内容上,“人”“牛”和“犁”的组合,构成了一幅温馨的农耕田园图画。

②形式上,句式整齐,具有音韵和谐统一的节奏感。

③手法上,“人”“牛”和“犁”的形象相互映衬,彼此相依,浑然一体;用白描的手法勾勒出一个完整和谐的农耕世界,反映出中国农民对土地的深厚情感,景和情相谐相生,融为一体。

9. ①牛和犁没有回答德贵的提问,显示出其内心的孤独;②德贵不怕失败,坚持耕种,显示出他的执着和坚定,也体现出农民对土地的坚守与热爱和坚韧不拔的精神。

二、古代诗文阅读(34分)(一)文言文阅读(本题共4小题,19分)【10~13题答案】【答案】10. BFG 11. A 12. D13. (1)他如果返回祖国,必会声讨对他无礼的人,那曹就是第一个了。

(2)就在壶里盛上黄金,用饭把它装满,用璧盖上,晚上派人送给晋公子。

(二)古代诗歌阅读(本题共2小题,9分)【14~15题答案】【答案】14. D 15. ①看破虚幻的世界,放弃过往的无谓名利。

安全生产管理试题及答案解析

安全生产管理试题及答案解析

《安全生产管理》试卷及答案解析一、单项选择题(共 70 题)第 1 题:安全规章制度的管理流程一般不包()。

A.审核B.起草C.会签D.复审【正确答案】:D【试题解析】:安全规章制度的管理流程一般包括:(1)起草;(2)会签或公开征求意见;(3)审核;(4)签发;(5)发布;(6)培训;(7)反馈;(8)持续改进。

第 2 题:生产经营单位建立重大危险源档案后应向()安全生产监督管理部门备案。

A.县级B.市级C.省级D.国家【正确答案】:A【试题解析】:危险化学品单位新建、改建和扩建危险化学品建设项目,应当在建设项目竣工验收前完成重大危险源的辨识、安全评估和分级、登记建档工作,向所在地县级人民政府安全生产监督管理部门备案。

第 3 题:下列关于安全技术措施计划项目范围说法正确的是()。

A.在机加工车间机床旋转部位加装防护罩是安全技术措施类B.油气储罐加装防火防爆装置是卫生技术措施类C.配置安全教育培训室是辅助措施类D.涂装车间设置除尘装置是安全技术措施类【正确答案】:A【试题解析】:B-油气储罐加装防火防爆装置是安全技术措施类 C-配置安全教育培训室是安全宣传教育措施类 D-涂装车间设置除尘装置是卫生技术措施类。

第 4 题:单位实施新工艺、新技术或使用新设备、新材料时应对从业人员进行有()的安全生产教育培训。

A.计划性B.针对性C.时间性D.组织性【正确答案】:B【试题解析】:本题考查的是"三新"安全教育培训。

"三新"安全教育培训是生产经营单位实施新工艺、新技术、新设备(新材料)时,组织相关岗位对从业人员进行有针对性的安全生产教育培训。

第 5 题:同一种工艺条件对于不同类别的危险物质所体现的危险程度是不同的,因此必须确定相关系数。

下列对相关系数描述错误的是()。

A.Wij=0 表示没有关系B.Wij=0.2 表示关系密切C.Wij=0.7 表示关系大D.Wij=0.5 表示关系一般【正确答案】:B【试题解析】:本题考查的是重大危险源的评价。

计算机编程基础知识考试试卷及答案解析

计算机编程基础知识考试试卷及答案解析

计算机编程基础知识考试试卷及答案解析一、单项选择题(共10题)1. 下列选项中,不是计算机编程语言的是:- (A) C++- (B) Python- (D) Windows答案解析:正确答案是 D,Windows 不是一种编程语言,而是操作系统。

正确答案是 D,Windows 不是一种编程语言,而是操作系统。

2. 在计算机编程中,常用的循环结构是:- (A) for循环- (B) if语句- (C) switch语句- (D) try-catch语句答案解析:正确答案是A,for循环常用于重复执行一段代码,控制循环次数和条件。

正确答案是 A,for循环常用于重复执行一段代码,控制循环次数和条件。

3. 在Python中,用于输出内容到控制台的函数是:- (A) input()- (B) print()- (C) len()- (D) range()答案解析:正确答案是 B,print() 函数用于将内容输出到控制台。

正确答案是 B,print() 函数用于将内容输出到控制台。

4. 以下哪个是正确的变量命名规则?- (A) 123abc- (B) _abc- (C) @abc- (D) ABC()答案解析:正确答案是 B,变量命名可以以字母或下划线开头,不能以数字或特殊字符开头。

正确答案是 B,变量命名可以以字母或下划线开头,不能以数字或特殊字符开头。

- (A) <p>- (B) <span>- (C) <h1>- (D) <ul>答案解析:正确答案是C,<h1> 标签用于定义最重要的标题。

正确答案是 C,<h1> 标签用于定义最重要的标题。

6. 下面哪个是面向对象编程中的基本概念?- (A) 函数- (B) 循环- (C) 变量- (D) 类答案解析:正确答案是 D,面向对象编程的基本概念是类与对象。

正确答案是 D,面向对象编程的基本概念是类与对象。

新课标2025届高三数学上学期10月大联考试卷及答案解析

新课标2025届高三数学上学期10月大联考试卷及答案解析

2025届高三10月大联考(新课标卷)数学本卷满分150分,考试时间120分钟注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号\.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合{|13}A x x =-<≤,2{|4}B x x =>,则R ()A B = ð( )A. ()1,2- B. (]1,2-C. (]2,3- D. (]2,3【答案】B 【解析】【分析】解不等式化简集合B ,再利用补集、交集的定义求解即得.【详解】集合2{|4}(,2)(2,)B x x =>=-∞-+∞ ,则R [2,2]B =-ð,而{|13}A x x =-<≤,所以R ()(1,2]A B =- ð.故选:B 2. 使不等式312x≤-成立的一个必要不充分条件是( )A. ()(),12,-∞-+∞ B. (](),12,-∞-+∞ C. ()[),12,-∞-⋃+∞ D. (][),12,-∞-⋃+∞【答案】D 【解析】【分析】利用分式不等式化简可得2x ≥或1x <-,即可根据真子集关系求解.【详解】由312x ≤-可得()()120320220x x x x x ⎧+-≤-+≤⇒⎨--≠⎩,解得x >2或1x ≤-,设不等式312x≤-成立的一个必要不充分条件构成的集合是A ,则(](),12,∞∞--⋃+是A 的一个真子集,结合选项可知A 可以为(][),12,-∞-⋃+∞,故选:D3. 已知函数()lg f x x =,()13g x x =-,则()()13100g f f g ⎛⎫⎛⎫--= ⎪ ⎪⎝⎭⎝⎭( )A. 6B. 6- C. 5D. 5-【答案】A 【解析】【分析】由里往外代入即可求解.【详解】11lg 2100100f ⎛⎫==-⎪⎝⎭,()()313310g -=-⨯-=,故()()()()()13210132lg106100g f f g g f ⎛⎫⎛⎫--=--=-⨯--=⎪ ⎪⎝⎭⎝⎭,故选:A.4. 已知a ,b 为非零向量,1a b ⋅= ,()3,4b = ,则a 在b上的投影向量为( )A. 15b r B. 125b C. bD.1125b 【答案】B 【解析】【分析】由模长的坐标表示可得b,再结合投影向量的定义分析求解.【详解】由题意可得:5b == ,所以a 在b 上的投影向量为2125a b b b b ⎛⎫⋅= ⎪ ⎪⎝⎭r r r rr .故选:B.5. 已知角α的顶点在坐标原点,始边与x 轴的非负半轴重合,若角α的终边过点()6,8A -,则πsin 2α⎛⎫-= ⎪⎝⎭( )A.35B. 35-C.45D. 45-【答案】A 【解析】【分析】根据三角函数的定义可得3cos 5α==-,即可由诱导公式化简求解.【详解】由题意可知3cos 5α==-,π3sin cos 25αα⎛⎫-=-= ⎪⎝⎭,故选:A6. 已知函数32()22ln f x x x x =--,则曲线()y f x =在点(1,(1))f 处的切线与两坐标轴所围成的三角形的面积为( )A. 2 B. 1 C.12D.14【答案】D 【解析】【分析】利用导数的几何意义求出切线方程,进而求出三角形面积.【详解】函数32()22ln f x x x x =--,求导得22()62f x x x x'=--,则(1)2f '=,而(1)1f =,因此曲线()y f x =在点(1,(1))f 处的切线为12(1)y x -=-,即21y x =-,该切线交x 轴于点1(,0)2,交y 轴于点(0,1)-,所以切线与两坐标轴所围成的三角形的面积为1111224⨯⨯=.故选:D7. 已知函数()f x 满足()()2sin tan f x f x x x --=+,若函数()y f x =在[]3π,5π-上的零点为1x ,2x ,…,n x ,则1ni i x ==∑( )A. 8πB. 9πC. 16πD. 17π【答案】B 【解析】【分析】先利用方程组法求出()f x 的解析式,结合()f x 的奇偶性将[]3π,5π-上的零点和转化为(]3π,5π上的零点和问题,令()0f x =,转化为sin tan x x =-,结合正弦和正切函数的图象性质得到结果.【详解】由()()2sin tan f x f x x x --=+,可得()()()()2sin tan sin tan f x f x x x x x --=-+-=--,解得()()1sin tan 3f x x x =+,易知()f x 为奇函数,故()f x 的图象关于原点对称,则函数y =f (x )在[]3π,3π-上的图象关于原点对称,故函数y =f (x )在[]3π,3π-上的零点也关于原点对称,和为0,在(]3π,5π上的零点和即为[]3π,5π-上的零点和,令()0f x =,得sin tan 0x x +=,sin tan x x =-,(]3π,5πx ∈,作出sin y x =和tan y x =-在同一坐标系中的图象,可知y =f (x )在(]3π,5π内的零点有4π和5π两个,故14π5π9πni i x ==+=∑.故选:B.8. 已知函数()cos(2)(0,0π)f x x ωϕωϕ=+><<的图象过点1(0,)2A ,且对任意12π2π,(,)23x x ∈,都有1212()[()()]0x x f x f x --≥,则ω的取值范围是( )A. 25[,34B. 1(0,2C. 25811[,][,3434D. 15(0,][,2]23【答案】C 【解析】【分析】根据给定条件,利用图象所过点求出ϕ,再利用单调递增区间求出ω范围.【详解】依题意,1(0)cos 2f ϕ==,而0πϕ<<,则π3ϕ=,π()cos(23f x x ω=+,由对任意12π2π,(,23x x ∈,都有1212()[()()]0x x f x f x --≥,得函数()f x 在π2π(,23上单调递增,当2(,)2π3πx ∈时,ππ4ππ2(π,)3333x ωωω+∈++,而余弦函数cos y x =的递增区间为:[]()2ππ,2πk k k -∈Z ,则[]()π4πππ,2ππ,2π333k k k ωω⎛⎫++⊆-∈ ⎪⎝⎭Z ,于是ππ2ππ3,4ππ2π33k k k ωω⎧+≥-⎪⎪∈⎨⎪+≤⎪⎩Z ,解得423,3124k k k ωω⎧≥-⎪⎪∈⎨⎪≤-⎪⎩Z ,显然32k−14>02k−43<32k−14,即11366k <<,而k ∈Z ,因此1k =或2k =,所以ω的取值范围是2534ω≤∈或81134ω≤∈.故选:C【点睛】思路点睛:涉及求正(余)型函数在指定区间上的单调性问题,先根据给定的自变量取值区间求出相位的范围,再利用正(余)函数性质列出不等式求解即得.二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求,全部选对的得6分,部分选对的得部分分,有选错的得0分.9. 已知01d c a b <<<<<,则( )A. a d b c +<+ B. ac bd <C. b a a b < D.2b aa b+>【答案】ACD 【解析】【分析】利用不等式的性质判断A ;举例说明判断B ;利用指数函数、幂函数单调性判断C ;作差变形判断D.【详解】对于A ,由,d c a b <<,得a d b c +<+,A 正确;对于B ,取114,1,,32d c a b =-=-==,满足01d c a b <<<<<,而123ac bd =->-=,B 错误;对于C ,由01a b <<<,得函数x y a =在R 上递减,a y x =在(0,)+∞上递增,则b a a a a b <<,C 正确;对于D ,由01a b <<<,得220b a a b +-=>,D 正确.故选:ACD10. 已知函数π()cos )(0)6f x a x x a =->的最小值为,则( )A. 直线π2x =为()f x 图象的一条对称轴B. ()f x 在区间π4π(,)23上单调递减C. 将()f x 的图象向左平移π3个单位长度,得到一个奇函数的图象D. 当π[,]3x t ∈-时,()f x 的值域为[,则t 的取值范围为π[,π]3【答案】BD 【解析】【分析】根据给定条件,利用三角恒等变换,结合正弦函数性质求出a ,进而求出()f x ,再逐项分析判断即可.【详解】函数33()cos sin sin ()22f x a x x x x a x x ϕ=+=+=+,其中ϕ由tan ϕ=确定,依题意,=20a -=,而0a >,解得a =3π()sin )26f x x x x ==+,对于A ,πππ3(2262f =+=≠,即直线π2x =不是()f x 图象的对称轴,A 错误;对于B ,当π4π(,23x ∈时,2π3π(,32π6x ∈+,而正弦函数sin y x =在2π3π(,32上递减,因此()f x 在区间π4π(,23上单调递减,B 正确;对于C ,πππ(336f x x x +=++=是偶函数,C 错误;对于D ,当π[,]3x t ∈-时,()f x 的值域为[,则当πππ[,]666x t ++∈-时,1πsin()126x -≤+≤,因此ππ7π266t ≤+≤,解得ππ3t ≤≤,D 正确.故选:BD11. 已知函数()f x 对任意实数,x y 都有()()(1)()(1)f x y f x f y f y f x +=+++,且(1)1f =,(1)1f -=-,则( )A. (0)0f = B. (2)()f x f x +=-C.20241()2024n f n ==∑ D. 对任意*n ∈N ,都有(2)0f n =【答案】ABD 【解析】【分析】根据给定的函数等式,利用赋值法,结合周期函数的定义逐项分析判断即得.【详解】对任意实数,x y 都有()()(1)()(1)f x y f x f y f y f x +=+++,且(1)1,(1)1f f =-=-,对于A ,令0x y ==,得(0)(0)(1)(0)(1)2(0)f f f f f f =+=,则(0)0f =,A 正确;对于B ,令,1x y ∈=-R ,得(1)()(0)(1)(1)(1)f x f x f f f x f x -=+-+=-+,因此(2)()f x f x +=-,B 正确;对于C ,由(2)()f x f x +=-,得(4)(2)()f x f x f x +=-+=,即函数()f x 是周期为4的周期函数,又(1)(3)0,(2)(4)0f f f f +=+=,即(1)(2)(3)(4)0f f f f +++=,因此202410(1)(2)(3)(4)]()506[n f n f f f f =+++==∑,C 错误;对于D ,由(2)()f x f x +=-,得(2)(4)(0)0f f f =-=-=,又()f x 是周期为4的周期函数,因此对任意*n ∈N ,都有(42)(4)0f n f n +==,即(2)0f n =,D 正确故选:ABD【点睛】关键点点睛:涉及由抽象的函数关系求函数值,根据给定的函数关系,在对应的区间上赋值,再不断变换求解即可.三、填空题:本题共3小题,每小题5分,共15分.12. 已知平面向量a,b 满足2= a ,3b =,且a b += ,则a b -= ______.【解析】【分析】根据给定条件,利用平面向量数量积的运算律,列式计算即得..【详解】依题意,2222||||2||2||a b a a b b ++=+- ,而2= a ,3b = ,且a b += ,则29|23|242a b +=⨯-+⨯ ,所以a b -= .13. 已知α为锐角且πsin 2cos 24αα⎛⎫+= ⎪⎝⎭,则πsin 4α⎛⎫-= ⎪⎝⎭______.【答案】14-##0.25-【解析】cos sin αα=-,即可利用辅助角公式求解.【详解】由πsin 2cos 24αα⎛⎫+= ⎪⎝⎭可得)()()()22sin cos 2cos sin 2sin cos cos sin αααααααα+=-=+-,由于α为锐角,所以sin cos 0αα+>cos sin αα=-,()πcos sin sin cos 4ααααα⎛⎫=-=--=- ⎪⎝⎭,故π1sin 44α⎛⎫-=- ⎪⎝⎭,故答案为:14-14. 已知不等式()242e 822e 2ln x x axx a x x x ++--<-对任意0x >恒成立,则实数a 的取值范围为______.【答案】3a >【解析】【分析】原不等式可化为()()24ln 2e2ln e 2x xxaxx x x ax ++++<++,利用()2e x f x x =+为R 上的增函数可得2ln x x x ax +<+对任意0x >恒成立,结合参变分离可求a 的取值范围.【详解】原不等式等价于()242e82ln e 2xxaxx x x x ax +++<++,也就是()()24ln 2e24ln e 2x xxaxx x x ax ++++<++,因为2,e x y x y ==均为R 上的增函数,故()2e xf x x =+为R 上的增函数,故原不等式即为()()24ln f x x f x ax +<+,故24ln x x x ax +<+对任意0x >恒成立,故a >4−x +lnx x对任意0x >恒成立,设s (x )=4−x +lnx x,x >0,则()221ln x xs x x '--=,设()21ln v x x x =--,则()120v x x x'=--<,故()21ln v x x x =--在(0,+∞)上为减函数,而()10v =,故当x ∈(0,1)时,()0v x >即()0s x '>,故()s x 在(0,1)上为增函数;当x ∈(1,+∞)时,()0v x <即()0s x '<,故()s x 在(1,+∞)上减函数,故()()max 13s x s ==,故3a >,故答案为:3a >.【点睛】思路点睛:对于由指数函数和对数函数构成的较为复杂函数,我们可以利用指对数的运算法则对原有的不等式同构变形,从而把原不等式转化为简单不等式.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15. 已知函数()(ln sin cos f x x x =++.(1)证明:()f x 是周期函数;(2)求()f x 的单调递增区间.【答案】(1)证明见解析;(2)3ππ2π,2π,Z 44k k k ⎡⎤-++∈⎢⎥⎣⎦【解析】【分析】(1)由辅助角公式可得()πln 4f x x ⎛⎫=++ ⎪⎝⎭,利用三角函数周期性即可证明得出结论;(2)利用复合函数单调性以及正弦函数图象性质解不等式可得结果.【小问1详解】为由()(ln sin cos f x x x =++可得()πln 4f x x ⎛⎫=++ ⎪⎝⎭;ππ2π44x x ⎛⎫⎛⎫++=+ ⎪ ⎪⎝⎭⎝⎭,所以()()ππ2πln 2πln 44f x x x f x ⎛⎫⎛⎫+=+++=++= ⎪ ⎪⎝⎭⎝⎭,即可知()f x 是以2π为周期的周期函数【小问2详解】由复合函数单调性可知求得π4y x ⎛⎫=++ ⎪⎝⎭易知π04y x ⎛⎫=++> ⎪⎝⎭恒成立,可得函数()f x 的定义域为R ;因此只需πππ2π2π,Z 242k x k k -+≤+≤+∈,解得3ππ2π2π,Z 44k x k k -+≤≤+∈;即()f x 的单调递增区间为3ππ2π,2π,Z 44k k k ⎡⎤-++∈⎢⎥⎣⎦.16. 在平面四边形ABCD 中,AB BC ==120ABC ∠=︒,AC CD ⊥且AC =.(1)求AD 的长;(2)若M 为CD 的中点,求cos AMB ∠.【答案】(1)(2【解析】【分析】(1)在三角形ABC 中由余弦定理求出3AC =,然后利用勾股定理求解即可;(2)在BCM 与ADM △中,由余弦定理分别求出BM 与AM ,然后在AMB 中,由余弦定理求解即可.【小问1详解】在三角形ABC 中,AB BC ==120ABC ∠=︒,所以由余弦定理得:22212cos 332392AC AB BC AB BC ABC =+-⋅∠=++⨯⨯=,所以3AC =,又AC =,所以CD =,又AC CD ⊥,所以AD ==.【小问2详解】在三角形ABC 中,120ABC ∠=︒,所以30BAC ACB ∠=∠=︒,所以3090120BCD ∠=︒+︒=︒,所以在BCM 中,M 为CD 的中点,所以MC =,BC =,120BCM ∠=︒,所以由余弦定理得:22231212cos 3424BM BC CM BC CM BCM =+-⋅∠=++=,所以BM =,在ADM △中,60ADC ∠=︒,AD =DM =,所以由余弦定理得:22231392cos 122424AM AD DM AD DM ADM =+-⋅∠=+-⨯=所以AM =,所以在AMB中,由余弦定理得:222cos 2AM BM AB AMB AM BM +-∠===⋅17. 已知ABC V 的内角A ,B ,C 所对的边分别为a ,b ,c ,6a =,2π3A =,向量()cos ,cos m b C c B = ,()sin ,sin n B C =- ,且m n ⊥ ,ABC V 所在平面内存在点D ,满足()30AD AC AB λλ=+> .(1)判断ABC V 是否为等腰三角形;(2)当2λ=时,求ABD △的面积;【答案】(1)ABC V 等腰三角形,理由见解析(2)【解析】【分析】(1)由m n ⊥ ,得到cos sin cos sin 0b C B c B C -=,由正弦定理,余弦定理角化边整理即可判断;(2)画出图,在ABC V 中,由正弦定理求出b 与c ,设2AE AC AB =+ ,则13ABD ABE S S =求解即可.【小问1详解】因为m n ⊥ ,所以0m n ⋅= ,所以cos sin cos sin 0b C B c B C -=,由正弦定理角化边得22cos cos 0b C c B -=,由余弦定理得:22222222022a b c a c b b c ab ac +-+-⋅-⋅=,所以整理得:()()2222220b a b c c ac b +--+-=,所以()()22220b c a b c bc -+++=,所以0b c -=,所以b c =,故ABC V 是等腰三角形.【小问2详解】是在ABC V中,由正弦定理得:sin sin b a B A ===,所以12b ==,c =,当2λ=时,32AD AC AB =+ ,如图2AE AC AB =+ ,所以在ABE 中,60ABE ∠=,AB =BE =所以11111sin 33232ABD ABE S S AB BE ABE ==⨯⋅∠=⨯⨯= 18. 已知函数()()e 1()x f x x a a =++∈R .(1)若()0f x ≥恒成立,求实数a 的取值范围;(2)证明:当0x >时,e e e(e 1)x x x >-.【答案】(1)1a ≥-;(2)证明见解析.【解析】【分析】(1)根据给定条件,分离参数并构造函数,利用导数求出最大值即可得解.(2)构造函数()e ,0x h x x x =->,利用导数证得e 1x x >+,再利用函数单调性信不等式性质推理即得.【小问1详解】函数()()e 1x f x x a =++的定义域为R ,01()e x x a x f ≥--≥⇔,令1(e )x g x x -=-,依题意,()a g x ≥恒成立,1()1ex g x -+'=,当0x <时,()0g x '>,当0x >时,()0g x '<,则函数()g x 在(,0)-∞上单调递增,在(0,)+∞上单调递减,max ()(0)1g x g ==-,于是1a ≥-,所以实数a 的取值范围是1a ≥-.【小问2详解】当0x >时,令()e x h x x =-,求导得()e 10x h x '=->,函数()h x (0,)+∞上单调递增,在则()(0)1h x h >=,即e 1x x >+,因此e 1e e x x +>,e 1e e xx x x +>,令()e e 1,0x x x x x ϕ=-+>,求导得()e 0x x x ϕ=>,即函数()ϕx 在(0,)+∞上单调递增,()(0)0x ϕϕ>=,即e e 1x x x >-,于是1e e(e 1)x x x +>-,所以e e e(e 1)x x x >-.【点睛】关键点睛:涉及不等式恒成立问题,将给定不等式等价转化,构造函数,利用导数探求函数单调性、最值是解决问题的关键.19. 阅读材料一:设函数()f x 在区间D 上有定义,若对任意12,x x D ∈和任意()0,1λ∈,都有1212((1))(1())()f f x x x x f λλλλ+-≤+-,则称()f x 是区间D 上的下凸函数;反之,如果都有1212((1))(1())()f f x x x x f λλλλ+-≥+-,则称()f x 是区间D 上的上凸函数.阅读材料二:若函数()f x 在区间D 上可导,即()f x '存在,且导函数()f x '在区间D 上也可导,则称()f x 在区间D 上存在二阶导函数,即()()()f x x f ''''=.设函数()f x 在区间D 上存在二阶导函数,则()f x 在区间D 上是下凸(上凸)函数的充要条件是对任意x D ∈都有()0f x ''≥(()0f x ''≤)且在区间D 的任意子区间内()f x ''不恒为0.阅读材料三:设函数()f x 在区间D 上连续,00(,)x x D δδ-+⊆(其中δ为无限接近于0的正数),()f x 在00(,)x x δδ-+上存在二阶导函数,若()f x ''在00)(,x x δ-和00(,)x x δ+上的符号相反,则点00(,())x f x 为曲线()y f x =的拐点.请根据以上阅读材料,回答下列问题:(1)证明:对任意0a ≥,0b ≥≥(2)设函数32()69f x mx nx x =+-+,若点(1,1)是曲线()y f x =的拐点,求实数m ,n 的值,并证明()f x 的图象关于拐点(1,1)中心对称:(3)设函数2()2ln 33g x x x x =+-+,若点00(,())x g x 是曲线()y g x =的一个拐点,且120()()2()g x g x g x +=,其中12012x x <<<<,试证明:1202x x x +>.【答案】(1)证明见解析;(2)1,3m n ==-,证明见解析;(3)证明见解析.【解析】【分析】(1)构造函数()0x x ϕ=>,证明()ϕx 是上凸函数即可推理得证.(2)利用“拐点”的意义可得(1)0f ''=,结合(1)1f =求出,m n ;再利用中心对称的定义计算推理即可.(3)利用“拐点”的定义求出“拐点”,构造函数()(2)(),01h x g x g x x =-+<<,利用导数探讨单调性可得(2)()2g x g x -+<,再结合给定条件及函数()g x 的单调性推理即得.【小问1详解】当0a =或0b =≥成立,令函数()0x x ϕ=>,121()2x x ϕ-'=,321()04x x ϕ-''=-<,因此函数()x ϕ=是上凸函数,则对任意0,0a b >>,1212()333))(3(a b a b ϕϕϕ+≥+≥,所以对任意0a ≥,0b ≥≥恒成立.【小问2详解】函数32()69f x mx nx x =+-+,则2()326f x mx nx '=+-,()62f x mx n ''=+,由点(1,1)是曲线()y f x =的拐点,得当1x <时()f x ''值与当1x >时()f x ''值符号相反,因此(1)620f m n ''=+=,又(1)31f m n =++=,解得1,3m n ==-;32()369f x x x x =--+,3322(1)(1)(1)(1)3[(1)(1)]6[(1)(1)]18f x f x x x x x x x ++-=++--++--++-+22263(22)12182x x =+-+-+=,所以()f x 的图象关于拐点(1,1)中心对称.【小问3详解】函数2()2ln 33g x x x x =+-+的定义域为(0,)+∞,则2()23g x x x '=+-,22()2g x x''=-+,当01x <<时,()0g x ''<,当1x >时,()0g x ''>,依题意,01x =,0()(1)1g x g ==,当12012x x <<<<时,12()()2+=g x g x ,即21()2()g x g x =-,令22()(2)()(2)(23)2ln 332ln (2)3h x g x g x x x x x x x +-++-+--+=--+=2(2)2l 2ln 4n 42x x x x =+-+-+,01x <<,求导得32(1)2444(1)()444402(2)(2)x x h x x x x x x x x x ⋅---'=+-+=+-=>---,即函数()h x 在(0,1)上单调递增,(0,1),()(1)2x h x h ∀∈<=,即(2)()2g x g x -+<,而101x <<,则11(2)()2g x g x -+<,即11(2)2()g x g x -<-,因此12(2)()g x g x -<,当0x >时,2()23310g x x x '=+-≥-=>,当且仅当1x =时取等号,于是函数()g x 在(0,)+∞上单调递增,又121x ->,因此122x x -<,即122x x +>,所以1202x x x +>.【点睛】结论点睛:函数()y f x =的定义域为D ,x D ∀∈,①存在常数a ,b 使得()(2)2()()2f x f a x b f a x f a x b +-=⇔++-=,则函数()y f x =图象关于点(,)a b 对称.②存常数a 使得()(2)()()f x f a x f a x f a x =-⇔+=-,则函数()y f x =图象关于直线x a =对称.在。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

泉州彩亮电子有限公司产品基础知识试卷(答案)试卷总分:100分答卷时间:1小时答卷人:实际得分:综合判断题(每题1分,共100题,合计100分,对的打“√”,错的打“×”)1、静电主要是指由于电荷和电场的存在而产生电荷转移,从而形成两个电压极性相反的能量叫静电. 摩擦、感应、传导将产生静电(√)2、静电对电子元器件主要危害是静电击穿(√)3、静电防护的最有效的措施是接地,让产生的静电达到及时泄放, 佩带静电手环主要目的是为了阻止静电的产生(× )佩带静电手环主要目的是静电达到及时泄放,不能阻止静电的产生4、生产中对静电敏感的物料有:IC、灯管、电容、套件(×)套件不是静电敏感器件5、LED灯的抗静电能力取决于LED发光芯片(晶片)本身,静电击穿容易造成LED死点\暗亮.( √)6、红管的抗静电能力大于蓝管\绿管,是因为它的工作电压比较小( ×)芯片结构区别,红管属于单电极结构,蓝管\绿管属于双电极结构,单电极结构的抗静电能力大于双电极结构7、减少静电产生的方法有:静电屏蔽、离子中和、接地(√)8、静电的产生无处不在只能减少静电产生而不能消除(√ )9、发光二极管的亮度主单位中文名称叫坎德拉,英文单位用“cd”表示,每平方的亮度单位“cd/㎡”(√)10、本公司目前正式在使用的抽检方案是:GB9254-1998标准( × ) GB2828-200311、单位面积内象素的大小称为象素密度(×)单位面积内象素的多少为像素密度12、像素是:LED显示屏中的每一个可被单独控制的发光单元(√)13、像素间距:LED显示屏的两像素间的中心距离,如P10表示他们的点间距是10mm(√)14、信息容量:单位面积内所含显示内容的数量,点间距越小,象素密度越高,信息容量越多,适合观看的距离越远;点间距越大,象素密度越低,信息容量越少,适合观看的距离越近(×)点间距越小,象素密度越高,信息容量越多,适合观看的距离越近;点间距越大,象素密度越低,信息容量越少,适合观看的距离越远15、IP65是产品防护等级的代称,其数字越大代表防护性能越弱。

如IP65的防护等级大于IP68防护等级(×)IP68﹥IP65的防护能力,数字越大代表防护性能越强16、目前我们公司在投产使用的红管,它们的波长范围一般在520---526nm之间,工作电压:3.0—3.6V。

( × ) 红管波长在620--625nm 电压:1.6—2.3V17、目前我们公司在投产使用的蓝管,它们的波长范围一般在465---470nm之间,工作电压:3.0—3.6V。

(√ )18、目前我们公司在投产使用的绿管,它们的波长范围一般在620--625nm之间,工作电压:1.6—2.3V。

(× ) 绿管的波长在520--526nm 电压:3.0—3.6V19、灯管包装标识:546型号是指∮3的灯管(如P10全彩灯管),405型号指∮5的灯管(如P16全彩灯管)(×)546型号是指∮5的灯管(如P16全彩灯管),405型号指∮3的灯管(如P10全彩灯管)20、VF=2.3V,IF=20MA,VR=5V,表示LED灯的工作电压是2.3V,正向电流20MA,反向电压是5V (√ )21、插件作业中R:代表红管G:代表蓝管B:绿管(×) R是红管 G是绿管 B是蓝管22、在对LED进行弯脚及切脚时,弯脚及切脚的位置距胶体底面至少大于2mm以上,当管脚弯成90°,再回到原位置允许为3次而不折断(×)当管脚弯成90°,再回到原位置允许为1次23、LED的特点是:环保、节能、色彩还原性强、寿命短,因此得到广泛运用(×)寿命长24、LED可视角度的大小决定着显示屏受众面的大小,所以可视角越大越好(√)25、亮度决定显示效果室内全彩屏的亮度要在800 cd/㎡以上,户外全彩屏的亮度要在1500cd/㎡以上才能正常工作(√)26、双色模组主要由红管、绿管组成,全彩模组主要由红管、绿管、蓝管组成(√)27、SMT与SMD的区别是:SMT指表面贴装器件,SMD指指表面组装技术(×)SMT表面贴装技术;SMD指表面贴装器件28、什么是DIP?DIP是 DOUBLE IN-LINE PACKAGE 的缩写,双列直插式组装,主要用于室内全彩屏(√)29、从灯管外观区别,短脚代表:+ 极,长脚代表:- 极(×)短脚代表:- 极,长脚代表:+极30、发光强度在10~100mcd间的LED灯叫超高亮度发光二极管。

(×)100mcd以上的才叫超高亮31、现有LED灯允许的焊接温度是260℃,自胶体底部以下3mm,时间是 10 S,(×)时间是≤3S32、生产焊接时允许烙铁在同一部位停留的时间≤3S(√)33、LED灯正常的工作温度是:-40℃--- +100℃(×)工作温度是:-20℃--- +80℃贮存温度:-30℃--- +80℃34、LED灯按照发光角度大小可分为:高指向性、标准型、散射型,其中标准型发光角度通常在20°~45°(√)35、指向性越高的灯管发光面积越大(×)指向性越高的灯管发光面积越小,发光面积大灯管的指向性低36、灯管参数标识辨别:波长用符号:wl表示,单位是nm;灯管的发光强度用符号:IV表示,单位是:lm ( × ) 发光强度用符号:IV表示,单位是:mcd37、电路是由相互连接的电子电气器件,如电阻、电容、电感、二极管、三极管和开关等,构成的网络(√ )38、电阻的符合是R,单位是欧姆.Ω,201标识电阻读数是201Ω(×)正确读数是20*10Ω=200Ω39、电阻标识:200阻值读数是20 Ω(√)40、电容的符号是C,常见单位是微法.uF,104标识电容的容量是10*10000PF (√)41、电解电容:16V/470uF,表示电容的耐压是16V,容量是470uF (√)42、电阻在电路中主要作用是滤波,电容在电路中的主要作用是限流(×)电容在电路中主要作用是滤波,电阻在电路中的主要作用是限流43、室内3.75单元板用符号∮3.75表示,数值3.75是指两个发光点的中心距,而不是指发光点的直径(×)数值∮3.75是以发光点的直径区分44、控制极性的区别即所有LED灯负极联结一起称为阴极控制,所有LED灯正极联结一起称为阳极控制,P10亚户外单元板极性控制方式属于阴极控制(√)45、74HC245的作用:信号缓冲及功率放大,当第20脚断开的现象是整板不亮(√)46、实像素屏就是指构成显示屏的红绿蓝三种发光管中的每一种发光管最终只参与一个像素的成像使用,简单区别是用万用表测量即:2个红管串联是实像素,2个红管分开是虚拟像素,P16全彩(16*8点)模组(2R1G1B)的控制方式是实像素恒流驱动(√)47、恒流:电流不会随负载的变化而变化,芯片595、5026、5024均属于恒流芯片(×)595是恒压芯片48、恒压:电压不会随负载的变化而变化,室内3.75单元板属于恒流控制,P16全彩属于恒压控制(×)P16全彩属于恒流控制,室内3.75单元板属于恒压控制49、1/8扫描方式的单元板亮度大于1/16扫描方式的单元板(√)50、EN使能信号:整屏亮度控制信号,也用于显示屏消隐。

当使能信号出现异常时,会使整板显示杂乱无章现象。

(×)当时钟CLK信号或锁存STB信号出现异常时,会使整板显示杂乱无章现象。

无 EN使能信号整屏不亮51、当行控制信号出现异常时,将会出现显示错位、高亮或图像重叠等现象,当室内5.0双色单元板整板出现隔2行亮隔2行不亮是C信号出现异常(×) B信号异常才会出现隔2行亮隔2行不亮52、芯片138、4953是属于行控制芯片(√)53、恒压的P10A板当595芯片第9脚悬空时,后一级将出现无扫描现象(×)后一级将出现无红色数据54、若绿色数据信号短路到正极或负极时,则对应的该颜色将会出现全亮或是不亮(√)55、户外P10单色模组根据生产工艺流程,那么调试工序过后是灌胶工序(×)调试工序过后的工序是刷漆56、什么是质量?质量就是一组固有特性满足明示的、通常隐含的或必须履行的需求或期望的程度。

简单地说:满足客户要求,能够达到某种使用性能要求的程度。

(√)57、TQM的中文意思是全面质理管理,全面质量管理即所有品管人员参加的质量管理(×)TQM的中文意思是全面质理管理是公司所有部门、人员参与的质量管理活动58、质量管理(quality management)是指确定质量方针、目标和职责,并通过质量体系中的质量策划、质量控制、质量保证和质量改进来使其实现的所有管理职能的全部活动,品管人员对产品检测属于质量管理(√)59、什么是产品质量认证?指依据产品标准和相应技术要求,经认证机构确认并通过颁发认证证书和认证标志来证明某一产品符合相应标准和相应技术要求的活动,我们公司通过质量认证有ISO质量体系认证、3C认证、CE认证(×)我们公司没有通过 CE认证,CE是欧盟的一个强制性认证60、所谓3C认证,就是中国强制性产品认证制度,英文缩写CCC。

3C认证有两种1、涉及电气安全的认证图标是图A2、涉及电气安全及电磁兼容认证图标是图B(√)61、IQC指来料检验主要职责是负责原材料和成品检验(×)IQC指来料检验主要职责是负责原材料检验62、ENC的中文意思是工程更改通知单,如技术通知、生产指令单均属于ENC范畴(×)生产指令单不属于ENC63、BOM的中文意思是物料清单,仓库日常使用的配料清单是属于BOM单(√)64、AQL的中文意思是:允收水准,其中AC代表允收数,RE代表拒收数(√)65、下列术语均属于QC七大手法内容:a 柏拉图 b 层别法c 鱼骨图 d 2/8法则(×)QC旧七大手法指的是:检查表、层别法、柏拉图、因果图、散布图、直方图、管制图66、产品质量主要由品管检验出来,与生产制程控制无关(×)产品质量主要由生产制造出来,主要取决于生产制程质量控制67、QC是指“质量保证”,QA是指“质量检验”。

(×)QA是指“质量保证”,QC是指“质量检验68、品质检验中:合格用NG表示,不合格用:PASS表示(×)合格:PASS,不合格:NG69、品管术语辨区别:IQC指来料检验,OQC指出货检验,FQC指成品检验,IPQC指制程巡检(√)70、我们公司品管部的品质控制流程结构有:来料管制、制程管制、出货管制(√)71、什么是一次检验合格率?是指依照公司相应的检验标准对来料或成品进行第一次检验时的合格比率的简称(√)72、常见的检验方式有:抽检、全检、免检(×)常见的检验方式有:抽检、全检73、IQC检验标识按照颜色区分有红、绿、黄色3中颜色,它们分别代表合格、不合格、特采(×)红色:不合格绿色:合格黄色:特采74、品质管理中通用对不合格品的处理方式有:返修(返工)、降级、报废(√)75、品质管理中PDCA循环字母含义:P:计划D:检查C:实施A:改进(×)品质管理中PDCA循环P:计划D:实施C:检查A:改进76、生产出现的不良品,只要经过返工后就是合格的产品(×)合格品就是指满足全部规定要求的产品。

相关文档
最新文档