牛奶中蛋白质的测定分析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

牛奶中蛋白质的测定分析蛋白质是生物的重要组成部分,在人类发现蛋白质后一直没有停下过研究得脚步。蛋白质是生命的物质基础没有蛋白质就没有生命。因此,它是与生命及与各种形式的生命活动紧密联系在一起的物质。机体中的每一个细胞和所有重要组成部分都有蛋白质参与。蛋白质是构成生物体细胞组织的重要成分。食物中的蛋白质是人体中氮的惟一来源, 具有糖类和脂肪不可替代的作用。蛋白质与营养代谢、细胞结构、酶、激素、病毒、免疫、物质运转和遗传等密切相关, 其分离与定性、定量分析是生物化学和其他生物学科、食品检验、临床检验、诊断疾病、生物药物分离提纯和质量检验中最重要的工作。随着分析手段的不断进步, 对食品中蛋白质含量的测定方法也正向准确和快速的方向发展。在实验室提取蛋白质的过程中,目标蛋白质的来源是广泛的,而不同的样品中目标蛋白质的含量是不同的,为了得到更多的目标蛋白,就需要了解样品中蛋白质的含量。在实际的生活中也需要运用蛋白质含量的测定,例如牛奶、奶粉中蛋白质含量。记得前几年轰动一时三聚氰胺事件,国家的标准蛋白质检测方法被不法分子所利用,通过蛋白质检测方法的缺陷来谋取暴利。目前常用的蛋白质检测方法有五种:凯式定氮法、福林-酚法、考马斯亮蓝法、紫外法、双缩脲法。不同的方法有不同的优缺点。

一、双缩脲法

双缩脲在碱性溶液中与硫酸铜反应生成紫红色化合物,称为双缩脲反应,蛋白质分子中含有许多肽键在碱性溶液中也能与

Cu2+反应产生紫红色化合物。在一定范围内,其颜色的深浅与蛋白质浓度成正比。因此,可以利用比色法测定蛋白质浓度。双缩脲法是测定蛋白质浓度的常用方法之一。操作简便、迅速、受蛋白质种类性质的影响较小,但灵敏度较差,而且特异性不高。除-CONH-有此反应外,-CONH2、-CH2NH2、-CS-NH2等基团也有此反应。

二、考马斯亮蓝法

考马斯亮蓝法测定蛋白质浓度,是利用蛋白质与染料结合的原理定量测定微量蛋白浓度的方法。这种蛋白质测定法快速、灵敏、优点突出,因而得到广泛的应用。考马斯亮蓝法是目前灵敏度最高的蛋白质定量方法。考马斯亮兰G-250染料,在酸性溶液中与蛋白质结合,使染料的最大吸收峰(ma)位置由465 nm变为595 nm,溶液颜色也由棕黑色变为兰色。通过测定595 nm处光吸收的增加量可知与其结合蛋白质的量。研究发现,染料主要是与蛋白质中的碱性氨基酸(特别是精氨酸)和芳香族氨基酸残基结合。

考马斯亮蓝染色法的突出优点是:

(1)灵敏度高,据估计比Lowry法约高四倍,其最低蛋白质检测量可达1 mg。这是因为蛋白质与染料结合后产生的颜色变化很大,蛋白质-染料复合物有更高的消光系数,因而光吸收值随蛋白质浓度的变化比Lowry法要大得多。

(2)测定快速、简便,只需加一种试剂。完成一个样品的测定,只需要5分钟左右。由于染料与蛋白质结合的过程,大约只要2分钟即

可完成,其颜色可以在1小时内保持稳定,且在5分钟至20分钟之间,颜色的稳定性最好。因而完全不用像Lowry法那样费时和严格地控制时间。

(3)干扰物质少。如干扰Lowry法的K+、Na+、Mg2+离子、Tris缓冲液、糖和蔗糖、甘油、巯基乙醇、EDTA等均不干扰此测定法。

三、福林-酚法

在碱性条件下蛋白质与铜作用生成蛋白质-铜复合物。该复合物随后将磷钼酸-磷钨酸还原发生显色反应,产生蓝色(钨兰+钼兰)。蓝色的强度在蛋白质浓度为25~250μg/mL之间时与蛋白质的含量成正比。根据多组标准蛋白质溶液与福林-酚试剂反应后所测得的吸光度绘制标准曲线。以此便可求出未知蛋白质溶液中的蛋白质含量。

Cu和Folin试剂联合测定蛋白质具有以下优点:(1)与纳氏(Nessler)试剂一样灵敏,而不需要消化;(2)灵敏度为测定280 nm 处紫外吸收的10~20倍,特异性更强且对浊度干扰较不敏感;(3)灵敏度为茚三酮反应的数倍[23]且操作简便更适于小规模分析。茚三酮反应中,游离氨基酸比蛋白质显更多色,而与Folin试剂正好相反;(4)灵敏度为双缩脲反应的100倍。Folin反应有两个主要的缺点:(1)显色量随蛋白质的不同有差异。从这一方面看,Folin反应的稳定情况不如双缩脲反应,但高于测定280 nm处的吸收;(2)色与浓度并不呈严格地比例关系。

考虑到Cu-Folin反应的优点和缺点,这一反应的可能应用包括:(1)酶分级分离等过程中蛋白质的测量;(2)混合组织蛋白质的测

量,尤其是不要求绝对值时;(3)绝对微量或高度稀释蛋白质的测量(如脊髓液)及与有色或其他含氮物质混合的蛋白质;(4)相似蛋白质样品的大量分析,如抗原-抗体沉淀物。

四、紫外法

蛋白质分子中,酪氨酸、苯丙氨酸和色氨酸残基的苯环含有共轭双键,使蛋白质具有吸收紫外光的性质。吸收高峰在280nm处,其吸光度(即光密度值)与蛋白质含量成正比。此外,蛋白质溶液在238nm的光吸收值与肽键含量成正比。利用一定波长下,蛋白质溶液的光吸收值与蛋白质浓度的正比关系,可以进行蛋白质含量的测定。紫外吸收法简便、灵敏、快速,不消耗样品,测定后仍能回收使用。低浓度的盐,例如生化制备中常用的(NH4)2SO4等和大多数缓冲液不干扰测定。特别适用于柱层析洗脱液的快速连续检测,因为此时只需测定蛋白质浓度的变化,而不需知道其绝对值。此法的特点是测定蛋白质含量的准确度较差,干扰物质多,在用标准曲线法测定蛋白质含量时,对那些与标准蛋白质中酪氨酸和色氨酸含量差异大的蛋白质,有一定的误差。故该法适于用测定与标准蛋白质氨基酸组成相似的蛋白质。若样品中含有嘌呤、嘧啶及核酸等吸收紫外光的物质,会出现较大的干扰。核酸的干扰可以通过查校正表,再进行计算的方法,加以适当的校正。但是因为不同的蛋白质和核酸的紫外吸收是不相同的,虽然经过校正,测定的结果还是存在一定的误差。此外,进行紫外吸收法测定时,由于蛋白质吸收高峰常因pH的改变而有变化,因此要注意溶液的pH值,测定样品时的pH要与测定标准曲线的

pH相一致。

五、凯氏定氮法

目前蛋白质测定最常用的方法是凯氏定氮法。凯氏定氮法是通过测出样品中的总含氮量再乘以相应的蛋白质系数而求出蛋白质的含量,此法的结果称为粗蛋白质含量。由于样品中含有少量非蛋白质含氮化合物,如核酸、生物碱、含氮类脂、卟啉以及含氮色素等非蛋白质的含氮化合物,所以凯氏定氮不能分辨蛋白质与其他含氮化合物。凯氏定氮法是测定总有机氮量较为准确、操作较为简单的方法之一,可用于所有动、植物食品的分析及各种加工食品的分析,可同时测定多个样品,故国内外应用较为普遍,是个经典分析方法。至今仍被作为标准检验方法。凯氏定氮法可分为全量法、微量法及经改进后的改良凯氏定氮法。目前通常以硫酸铜作催化剂的常量、半微量、微量凯氏定氮法样品质量及试剂用量较少,且有一套微量凯氏定氮器,所以选用微量凯氏定氮法。

凯氏定氮仪是依据经典凯氏定氮方法设计的自动测定系统,根据蛋白质中氮的含量恒定的原理,通过测定样品中氮的含量从而计算蛋白质含量。该仪器安装、操作简单;适用于粮油检测、饲料分析、植物养分测试、土肥检测、环保、医药、化工等行业的分析、教学及研究中主要用来检测粮食、食品、乳制品、饮料、饲料、土壤、水、药物、沉淀物和化学品等中的氨氮、蛋白质氮等含量,是操作人员的理想工具,同时利用定氮仪也可以测二氧化硫等物质,是实验室比较重要的理化分析仪器。样品经加硫酸消化使蛋白质分解,其中氮素与

相关文档
最新文档