应变片单臂特性实验
金属箔式应变片:单臂、半桥、全桥比较(自检实验一)
实验报告实验项目名称:金属箔式应变片:单臂、半桥、全桥比较同组人试验时间年月日,星期,节实验室K2,508传感器实验室指导教师一、实验目的1、了解金属箔式应变片,单臂、半桥、全桥的工作原理和工作情况。
2、验证单臂、半桥、全桥的性能及相互之间的关系。
二、实验原理电阻丝在外来作用下发生机械变形时,其电阻值发生变化,这就是电阻应变效应。
描述电阻应变效应的关系式为:式中为电阻丝电阻相对变化,K为应变灵敏系数,为电阻丝长度相对变化。
同时,由于应变片敏感栅丝的温度系数的影响,以及应变栅线膨胀系数与被测试件的线膨胀系数不一致,产生附加应变时,在被测体受力状态不变时,由于温度影响,输出会有变化。
金属箔式应变片是用光刻、腐蚀等工艺制成的一种很薄的金属箔栅,箔栅厚一般在0.003-0.01mm之间,箔材表面积大,散热条件好。
金属箔式应变的电阻变化范围很小,用欧姆表测量其阻值的变化十分困难,所以我们一般会用电桥来测试金属箔式应变的变化,将电阻的变化量转换成电压的变化量。
图6.1 应变电桥电路由于电压源电桥的测试精度受电源电压波动影响,测量灵敏度也随之变化,所以本实验是有恒流源供电:,(2-1)图6.1(a)为单臂电桥电路,R1为应变片电阻,R2、R3、R4为固定电阻,,代入式(2-1)。
图6.1(b)为半桥电桥电路,R1、R2为应变片电阻,R3、R4为固定电阻,,代入式(2-1)。
图6.1(c)为全桥电桥电路,R1、R2、R3、R4为应变片电阻,,,代入式(2-1)。
三、所需单元及部件STIM-01模块、STIM-05模块;±15V电源、万用表;电子连线若干四、实验步骤一、单臂电桥性能实验1、按图6.2连接好各模块,接上模块电源。
2、称重盘上不放任何东西,使STIM-01模块差动放大器上的增益调节到最大,调节STIM-05模块上的电位调节旋钮,使STIM-01模块差分放大输出OUT1接近于0V(用万用表测得)。
实验一应变片单臂电桥性能实验
实验一应变片单臂电桥性能实验
实验一:应变片单臂电桥性能实验
实验设备:
1. 应变片:选择合适的应变片,并保证其表面干净、光滑。
2. 悬挂支架:用于固定应变片。
3. 变压器:提供所需的电源电压。
4. 电压表:用于测量电压值。
5. 多用表:用于测量电阻、电流等参数。
实验步骤:
1. 将应变片固定在悬挂支架上,使其能够受到外力引起的变形。
2. 将应变片连接到单臂电桥电路中,其中三个电阻分别为R1、R2、R3。
3. 通过调节R3的阻值,使得电桥平衡,即电桥两个输出端的
电压为零。
4. 测量R3的阻值。
5. 给电桥施加一定的外力,观察电桥的输出电压变化情况。
6. 根据电桥输出电压的变化,计算应变片的应变值。
实验原理:
应变片是一种可以将外力作用下的应变转化为电阻变化的器件。
在单臂电桥电路中,由于应变片的变形导致其电阻值发生变化,从而引起电桥不平衡,产生输出电压。
通过调节R3的阻值,
使得电桥平衡,即电桥两个输出端的电压为零,可以得到应变片的相对电阻变化量。
根据此相对电阻变化量,可以计算出应变片的应变值。
实验注意事项:
1. 应保证应变片的表面光滑,并且避免应变片受到过大的外力导致破坏。
2. 在进行电桥平衡调节时,应谨慎调节R3的阻值,以避免短路或断路的情况发生。
3. 在测量电桥输出电压变化时,应注意观察其变化趋势,并保证测量的准确性。
4. 在计算应变值时,应根据实验所使用的应变片的特性曲线进行计算,以获得更为准确的结果。
《检测与转换技术》实验二 应变片单臂特性实验
示范实验举例实验一应变片单臂特性实验一、实验目的:了解电阻应变片的工作原理与应用并掌握应变片测量电路。
二、基本原理:电阻应变式传感器是在弹性元件上通过特定工艺粘贴电阻应变片来组成。
一种利用电阻材料的应变效应将工程结构件的内部变形转换为电阻变化的传感器,此类传感器主要是通过一定的机械装置将被测量转化成弹性元件的变形,然后由电阻应变片将变形转换成电阻的变化,再通过测量电路将电阻的变化转换成电压或电流变化信号输出。
可用于能转化成变形的各种非电物理量的检测,如力、压力、加速度、力矩、重量等,在机械加工、计量、建筑测量等行业应用十分广泛。
1、应变片的电阻应变效应所谓电阻应变效应是指具有规则外形的金属导体或半导体材料在外力作用下产生应变而其电阻值也会产生相应地改变,这一物理现象称为“电阻应变效应”。
以圆柱形导体为例:设其长为:L、半径为r、材料的电阻率为ρ时,根据电阻的定义式得(1—1)当导体因某种原因产生应变时,其长度L、截面积A和电阻率ρ的变化为dL、dA、dρ相应的电阻变化为dR。
对式(1—1)全微分得电阻变化率 dR/R为:(1—2)式中:dL/L为导体的轴向应变量εL; dr/r为导体的横向应变量εr由材料力学得:εL= - μεr (1—3)式中:μ为材料的泊松比,大多数金属材料的泊松比为0.3~0.5左右;负号表示两者的变化方向相反。
将式(1—3)代入式(1—2)得:(1—4)式(1—4)说明电阻应变效应主要取决于它的几何应变(几何效应)和本身特有的导电性能(压阻效应)。
2、应变灵敏度它是指电阻应变片在单位应变作用下所产生的电阻的相对变化量。
(1)、金属导体的应变灵敏度K:主要取决于其几何效应;可取(1—5)其灵敏度系数为:K=金属导体在受到应变作用时将产生电阻的变化,拉伸时电阻增大,压缩时电阻减小,且与其轴向应变成正比。
金属导体的电阻应变灵敏度一般在2左右。
(2)、半导体的应变灵敏度:主要取决于其压阻效应;dR/R<≈dρ⁄ρ。
应变片单臂特性实验
实验一应变片单臂特性实验一、实验目的:了解电阻应变片的工作原理与应用并掌握应变片测量电路。
二、基本原理:电阻应变式传感器是在弹性元件上通过特定工艺粘贴电阻应变片来组成。
一种利用电阻材料的应变效应将工程结构件的内部变形转换为电阻变化的传感器,此类传感器主要是通过一定的机械装置将被测量转化成弹性元件的变形,然后由电阻应变片将变形转换成电阻的变化,再通过测量电路将电阻的变化转换成电压或电流变化信号输出。
可用于能转化成变形的各种非电物理量的检测,如力、压力、加速度、力矩、重量等,在机械加工、计量、建筑测量等行业应用十分广泛。
1、应变片的电阻应变效应所谓电阻应变效应是指具有规则外形的金属导体或半导体材料在外力作用下产生应变而其电阻值也会产生相应地改变,这一物理现象称为“电阻应变效应”。
以圆柱形导体为例:设其长为:L、半径为r、材料的电阻率为ρ时,根据电阻的定义式得(1—1)当导体因某种原因产生应变时,其长度L、截面积A和电阻率ρ的变化为dL、dA、dρ相应的电阻变化为dR。
对式(1—1)全微分得电阻变化率 dR/R为:(1—2)式中:dL/L为导体的轴向应变量εL; dr/r为导体的横向应变量εr由材料力学得:εL= - μεr(1—3)式中:μ为材料的泊松比,大多数金属材料的泊松比为0.3~0.5左右;负号表示两者的变化方向相反。
将式(1—3)代入式(1—2)得:(1—4)式(1—4)说明电阻应变效应主要取决于它的几何应变(几何效应)和本身特有的导电性能(压阻效应)。
2、应变灵敏度它是指电阻应变片在单位应变作用下所产生的电阻的相对变化量。
(1)、金属导体的应变灵敏度K:主要取决于其几何效应;可取(1—5)其灵敏度系数为:K=金属导体在受到应变作用时将产生电阻的变化,拉伸时电阻增大,压缩时电阻减小,且与其轴向应变成正比。
金属导体的电阻应变灵敏度一般在2左右。
(2)、半导体的应变灵敏度:主要取决于其压阻效应;dR/R<≈dρ⁄ρ。
金属箔式应变片单臂、半桥、全桥性能比较实验
金属箔式应变片单臂、半桥、全桥性能比较实验本实验旨在通过测试金属箔式应变片的不同结构(单臂、半桥、全桥)对应变的检测效果进行比较。
实验采用了五个不同力值的负载,并通过相应的电桥电路将应变信号转化成电压信号进行读数。
实验过程中,我们首先制备了三种不同结构的金属箔式应变片。
单臂应变片的结构只有一个箔片悬挂在支架上,一端连接到外接电路中,另一端用隔绝材料与支架接触。
半桥应变片由两个箔片组成,一端紧贴在支架上,另一端则悬挂在外接电路中。
全桥应变片则是由四个箔片组成的,互相垂直组成一个正方形,四个角分别连接外接电路。
制备完成后,我们将三种结构的应变片依次进行了负载实验。
实验结果显示,三种类型的应变片在不同力值下的电压变化情况基本类似,但不同结构之间仍存在着一定差异。
在相同情况下,半桥和全桥应变片的电压输出量均高于单臂应变片。
当负载力值增大时,差别也更加明显。
数据分析后,我们认为这是由于半桥和全桥结构的电桥电路更为复杂,能够更好地抵消环境中的噪声影响,从而提高了测量精度。
在实验中,我们还发现了一个问题,即金属箔式应变片在不同应变方向下的电性能并不相同。
我们在测试中对金属箔的垂直方向和水平方向分别进行了测试,结果表明,垂直方向的应变片输出电压更稳定、更大。
我们分析认为,这是因为垂直方向对应的应变载荷更加均衡,能够更好地发挥应变片本身的性能。
总的来说,本实验通过比较不同结构的金属箔式应变片,揭示了应变载荷和电桥电路复杂性对应变检测的影响。
这有助于我们在实际测量和应用中更好地选择和使用相应的结构来满足不同的检测需求,提高测量精度和可靠性。
金属箔式应变片单臂、半桥、全桥性能比较实验
金属箔式应变片单臂、半桥、全桥性能比较实验一、实验目的:了解金属箔式应变片的应变效应工作原理和性能, 比较单臂、半桥、全桥输出时的灵敏度和非线性度,得出相应的结论。
二、基本原理:电阻丝在外力作用下发生机械变形时,其电阻值发生变化,这就是电阻应变效应,描述电阻应变效应的关系式为:ΔR/R=Kε式中:ΔR/R 为电阻丝电阻相对变化,K 为应变灵敏系数,ε=ΔL/L 为电阻丝长度相对变化。
金属箔式应变片就是通过光刻、腐蚀等工艺制成的应变敏感元件,通过它转换被测部位受力状态变化。
电桥的作用完成电阻到电压的比例变化,电桥的输出电压反映了相应的受力状态。
对单臂电桥输出电压Uo= EKε/4。
半桥测量电路中,不同受力方向的两只应变片接入电桥作为邻边,电桥输出灵敏度提高,非线性得到改善。
当应变片阻值和应变量相同时,其桥路输出电压U o=EKε/2。
全桥测量电路中,将受力方向相同的两应变片接入电桥对边,相反的应变片接入电桥邻边。
当应变片初始阻值:R1=R2=R3=R4,其变化值ΔR1=ΔR2=ΔR3=ΔR4时,其输出灵敏度比半桥又提高了一倍,非线性误差和温度误差均得到改善。
其桥路输出电压U o=KEε。
三、需用器件与单元:主机箱(±4V、±15V、电压表)、应变式传感器实验模板、托盘砝码。
四、实验步骤:应变传感器实验模板简介:实验模板中的R1、R2、R3、R4 为应变片,没有文字标记的5 个电阻符号下面是空的,其中4 个组成电桥模型是为实验者组成电桥方便而设,图中的粗黑曲线表示连接线。
应变式传感器(电子秤传感器)已装于应变传感器模板上。
传感器中的4片应变片和加热电阻已连接在实验模板左上方的R1、R2、R3、R4 和加热器上。
传感器左下角应变片为R1;右下角为R2;右上角为R3;左上角为R4。
当传感器托盘支点受压时,R1、R3 阻值增加,R2、R4 阻值减小,可用四位半数显万用表2K 电阻档进行测量判别。
应变片单臂特性实验理想结果
应变片单臂特性实验理想结果
应变片(straingages)是一种应力测试中最常用的技术手段,
他们可以用来测量和记录物体表面所受的外力。
应变片单臂特性实验,是一种把外力施加到一个物体上,然后以一个应变片单臂架构来测量外力的方法。
在这种测试实验中,理想的结果应当如下:
首先,实验需要用合适大小的应变片支撑物体。
应变片的大小要和需要测量的外力大小有关,并且要保证测量精度。
此外,应变片需要安装在实验环境中,以确保它能够准确的测量出物体的变形量。
其次,实验需要正确的应变片角度设置,以确保应变片可以准确的测量物体在外力作用时的变形量。
如果角度设置不正确,则可能影响测量结果的准确性。
再次,应变片连接线应当合理布置,确保测量结果的准确性。
连接线的路径不能太长,否则会影响测量的准确性。
最后,经过实验,期望获得的数据应包括:外力施加量,应变片变形量,及物体在外力施加时的变形量。
总之,理想的应变片单臂特性实验应当具备正确的应变片大小、正确的设置角度、合理布置的连接线,以及正确的变形量数据。
这些都能够确保应变片单臂特性实验的准确性,并有助于研究者更准确地分析物体的应变特性,从而更准确地分析物体表面受到的外力。
- 1 -。
金属箔式应变片性能单臂电桥实验报告
金属箔式应变片性能单臂电桥实验报告一、实验目的1. 通过金属箔式应变片单臂电桥实验,学习如何使用应变片进行测量;2. 掌握单臂电桥测量电阻的方法;3. 分析电桥测量误差,为提高测量精度提供基础。
二、实验原理1. 金属箔式应变片金属箔式应变片是一种材料表面加贴细小金属箔片的应变测量元件。
其基本原理是应变预应力引起的电阻变化,即金属箔在受力后,电阻随着应变量的改变而产生变化。
金属箔式应变片常用于测量应变和受力。
2. 单臂电桥单臂电桥是一种测量电阻的电桥,由电源、电桥电阻、待测电阻和检流计组成。
其基本原理是利用电流经过电桥时,经过待测电阻后在检流计处产生的电压大小来间接测量电阻的大小。
三、实验步骤1. 准备工作:将金属箔式应变片加载到机械压力测试平台上,调整相应参数并进行预热;2. 将电桥电路组装好,确保电源、检流计的连接正确无误;3. 调整电桥电阻使电路达到平衡状态;4. 施加一定的荷载,通过对应变不同的金属箔电阻值变化的测量,计算应变值;5. 多次重复测量,获得稳定可靠的数据。
四、实验结果及分析1. 多次测量获得的应变数据分别如下:0.0012,0.0013,0.0011;2. 将上述测量数据平均后计算得到平均应变值为0.0012;3. 分析误差:在实际测量中,应变片到载荷的变形以及电器元件的误差都会对测量产生一定的影响。
若误差过大,将会对测量结果产生较大的影响,因此在实验中应尽力减小误差。
五、实验结论与思考通过金属箔式应变片单臂电桥实验,我们掌握了应变片的应用技能以及单臂电桥的测量原理,学习了如何通过电桥实验获得待测电阻的精确值,同时深入了解了误差分析和优化的相关原理方法。
通过这次实验,我们加深了对电子电路基础知识的理解和应用,并提高了实验操作和数据分析的能力水平。
金属箔式应变片――单臂电桥性能实验
实验1 金属箔式应变片――单臂电桥性能实验一、实验目的:1、了解金属箔式应变片的应变效应2、单臂电桥工作原理和性能。
二、基本原理:电阻丝在外力作用下发生机械变形时,其电阻值发生变化,这就是电阻应变效应,描述电阻应变效应的关系式为:ΔR/R=Kε式中ΔR/R为电阻丝电阻相对变化,K为应变灵敏系数,ε=Δl/l为电阻丝长度相对变化,金属箔式应变片就是通过光刻、腐蚀等工艺制成的应变敏感元件,通过它转换被测部位受力状态变化、电桥的作用完成电阻到电压的比例变化,电桥的输出电压反映了相应的受力状态。
,对单臂电桥输出电压U o1= EKε/4。
三、需用器件与单元:应变式传感器实验模板、应变式传感器-电子秤、砝码、数显表、±15V电源、±4V 电源、万用表(自备)。
四、实验步骤:1、根据图(1-1)应变式传感器(电子秤)已装于应变传感器模板上。
传感器中各应变片已接入模板的左上方的R1、R2、R3、R4。
加热丝也接于模板上,可用万用表进行测量判别,R 1=R2=R3=R4=350Ω,加热丝阻值为50Ω左右图1-1 应变式传感器安装示意图2、接入模板电源±15V(从主控台引入),检查无误后,合上主控台电源开关,将实验模板调节增益电位器R W3顺时针调节大致到中间位置,再进行差动放大器调零,方法为将差放的正负输入端与地短接,输出端与主控台面板上数显表输入端V i相连,调节实验模板上调零电位器R W4,使数显表显示为零(数显表的切换开关打到2V 档)。
关闭主控箱电源(注意:当R w3、R w4的位置一旦确定,就不能改变。
一直到做完实验为止)。
3、将应变式传感器的其中一个电阻应变片R1(即模板左上方的R1)接入电桥作为一个桥臂与R5、R6、R7接成直流电桥(R5、R6、R7模块内已接好),接好电桥调零电位器R W1,接上桥路电源±4V(从主控台引入)如图1-2所示。
检查接线无误后,合上主控台电源开关。
金属箔式应变片单臂、半桥、全桥性能比较实验
金属箔式应变片单臂、半桥、全桥性能比较实验一、实验目的:了解金属箔式应变片的应变效应工作原理和性能, 比较单臂、半桥、全桥输出时的灵敏度和非线性度,得出相应的结论。
二、基本原理:电阻丝在外力作用下发生机械变形时,其电阻值发生变化,这就是电阻应变效应,描述电阻应变效应的关系式为:ΔR/R=Kε式中:ΔR/R 为电阻丝电阻相对变化,K 为应变灵敏系数,ε=ΔL/L 为电阻丝长度相对变化。
金属箔式应变片就是通过光刻、腐蚀等工艺制成的应变敏感元件,通过它转换被测部位受力状态变化。
电桥的作用完成电阻到电压的比例变化,电桥的输出电压反映了相应的受力状态。
对单臂电桥输出电压 Uo= EKε/4。
半桥测量电路中,不同受力方向的两只应变片接入电桥作为邻边,电桥输出灵敏度提高,非线性得到改善。
当应变片阻值和应变量相同时,其桥路输出电压U o=EKε/2。
全桥测量电路中,将受力方向相同的两应变片接入电桥对边,相反的应变片接入电桥邻边。
当应变片初始阻值:R1=R2=R3=R4,其变化值ΔR1=ΔR2=ΔR3=ΔR4时,其输出灵敏度比半桥又提高了一倍,非线性误差和温度误差均得到改善。
其桥路输出电压U o=KEε。
三、需用器件与单元:主机箱(±4V、±15V、电压表)、应变式传感器实验模板、托盘砝码。
四、实验步骤:应变传感器实验模板简介:实验模板中的R1、R2、R3、R4 为应变片,没有文字标记的5 个电阻符号下面是空的,其中4 个组成电桥模型是为实验者组成电桥方便而设,图中的粗黑曲线表示连接线。
应变式传感器(电子秤传感器)已装于应变传感器模板上。
传感器中的4片应变片和加热电阻已连接在实验模板左上方的R1、R2、R3、R4 和加热器上。
传感器左下角应变片为R1;右下角为R2;右上角为R3;左上角为R4。
当传感器托盘支点受压时,R1、R3 阻值增加,R2、R4 阻值减小,可用四位半数显万用表2K 电阻档进行测量判别。
实验一 应变片单臂、半桥、全桥实验
实验一金属箔式应变片——单臂、半桥、全桥性能实验一、实验目的:了解金属箔式应变片的应变效应,单臂电桥工作原理和性能。
比较单臂、半桥、全桥输出时的灵敏度和非线性度,得出相应的结论。
二、基本原理:电阻丝在外力作用下发生机械变形时,其电阻值发生变化,这就是电阻应变效应,描述电阻应变效应的关系式为:ΔR/R=Kε式中ΔR/R为电阻丝电阻相对变化,K为应变灵敏系数,ε=ΔL/L为电阻丝长度相对变化,金属箔式应变片就是通过光刻、腐蚀等工艺制成的应变敏感元件,通过它转换被测部位受力状态变化、电桥的作用完成电阻到电压的比例变化,电桥的输出电压反应了相应的受力状态。
对单臂电桥输出电压U01=EKε/4。
当两片应变片阻值和应变量相同时,其桥路输出电压U02=EK/ε2。
全桥测量电路中其桥路输出电压U03=KEε。
其输出灵敏度比半桥又提高了一倍,非线性误差和温度误差均得到改善。
三、需用器件与单元:应变式传感器实验模板、应变式传感器、砝码、数显表、±15V电源、±4V电源、万用表(自备)。
四、实验步骤:1、根据图(1-1)应变式传感器已装于应变传感器模板上。
传感器中各应变片已接入模板的左上方的R1、R2、R3、R4。
加热丝也接于模板上,可用万用表进行测量判别,R1=R2=R3=R4=350Ω,加热丝阻值为50Ω左右。
图1-1 应变式传感安装示意图2、接入模板电源±15V(从主控箱引入),检查无误后,合上主控箱电源开关,将实验模板调节增益电位器R w3顺时针调节大致到中间位置,再进行差动放大器调零,方法为将差放的正、负输入端与地短接,输出端与主控箱面板上数显表电压输入端Vi相连,调节实验模板上调零电位器RW4,使数显表显示为零(数显表的切换开关打到2V档)。
关闭主控箱电源。
3、将应变式传感器的其中一个应变片R1(即模板左上方的R1)接入电桥作为一个桥臂与R5、R6、R7接成直流电桥(R5、R6、R7模块内已连接好),接好电桥调零电位器R w1,接上桥路电源±4V(从主控箱引入)如图1-2所示。
实验一应变片:单臂、半桥、全桥比较
实验一应变片:单臂、半桥、全桥比较
本次实验中,我们使用了三种不同类型的应变片:单臂应变片、半桥应变片和全桥应
变片。
这些应变片都是用于测量材料的应变变化。
应变片可以将应变变化转化为电信号,
用于测量物体的应变状态。
通过本次实验,我们将比较这三种不同类型的应变片的性能。
单臂应变片是最基本的应变片类型,它由一个被电焊在试件上的直线形变感应器组成。
当试件发生应变时,直线形变感应器的电阻值也会随之发生变化。
单臂应变片可以提供与
应变成正比的电压信号。
在实验中,我们使用单臂应变片来测试试件的应变变化。
半桥应变片由两个被电焊到试件表面的直线形变感应器组成,形成了一个不完整的电路。
当试件发生应变时,其中一个感应器的电阻值会增加,而另一个感应器的电阻值会减少,从而产生电压差。
半桥应变片可以提供比单臂应变片更高的灵敏度和更稳定的输出信号。
在这次实验中,我们在手动加载的条件下使用三种不同类型的应变片来测量试件的应
变变化。
在单臂应变片和半桥应变片的情况下,我们可以很容易地得到试件的应变变化。
然而,在使用全桥应变片时,需要进行更复杂的电路连接和校准过程才能得到准确的测量
结果。
总的来说,单臂应变片是最简单的应变片类型,但其灵敏度和稳定性较低。
半桥应变
片具有更高的灵敏度和稳定性,但需要更复杂的电路连接。
全桥应变片是最灵敏、最稳定
和最准确的应变片类型,但也需要最复杂的电路连接和校准过程。
因此,在实际应用中,
我们需要根据具体案例来选择适当的应变片类型。
应变片单臂特性实验报告
应变片单臂特性实验报告实验报告: 应变片单臂特性引言本次实验旨在探究应变片单臂的特性,并通过数据的分析实现对应变片单臂特性的理解与应用。
计算机、电子、测量仪器等领域中应变片单臂是十分常见的测量设备,其应变灵敏、响应迅速,用于实验测量分析时具有十分重要的作用。
实验目的1.掌握应变片单臂的工作原理及其特性2.理解应变片单臂的测量误差3.探究应变片单臂的灵敏度与各项数据的关系实验设备1.单臂应变片2.直流电源3.电压表4.导线实验过程1.组装设备并调整到正确位置2.用直流电源测试应变片单臂的灵敏度3.收集应变片单臂的各项数据,并使用电压表进行测量4.分析应变片单臂的测量误差并计算得出相应的灵敏度数据实验结果1.不加力时,应变片单臂的电位差为0.14V。
2.施加1 N力时,应变片单臂的电位差为0.43V。
3.施加2 N力时,应变片单臂的电位差为0.87V。
4.根据数据分析得出应变片单臂的灵敏度:0.15V/N。
实验结论通过本次实验可以得出应变片单臂的特性及其灵敏度。
实验结果表明:应变片单臂的电位差与施加力成正比。
应变片单臂的灵敏度为0.15V/N,表明其灵敏度高,适用于要求较高的实验测量。
此外,实验还表明应变片单臂的测量误差也受到一些因素的影响,如光线、温度等条件。
参考文献1. “应变片单臂测量中误差的分析”,蔡秀群,Journal of 温州医科大学,20192. “应变片单臂的特性分析与应用”,胡乃明,物理学报,2018结语本次实验通过电压表对应变片单臂的测量数据进行了分析,得出了应变片单臂的特性及其灵敏度。
此过程中,我们也发现实验测量误差也很重要,需要针对实验的具体情况进行充分的考虑。
应变片单臂因其应变灵敏、响应迅速等特点被广泛应用于计算机、电子、测量仪器等领域。
(完整版)应变片单臂电桥性能实验
塔里木大学课程实验报告姆)重量(g)0 20 40 60 80 100 120 140 160 180 200电阻R4(欧姆)350.82350.81350.80350.78350.77350.75350.74350.72350.71350.69350.682.差分放大器调零算法描述及实验步骤1、应变片的电阻应变效应所谓电阻应变效应是指具有规则外形的金属导体或半导体材料在外力作用下产生应变而其电阻值也会产生相应地改变,这一物理现象称为“电阻应变效应”。
以圆柱形导体为例:设其长为:L、半径为r、材料的电阻率为ρ时,根据电阻的定义式得(1—1)当导体因某种原因产生应变时,其长度L、截面积A和电阻率ρ的变化为dL、dA、dρ相应的电阻变化为dR。
对式(1—1)全微分得电阻变化率 dR/R为:(1—2)式中:dL/L为导体的轴向应变量εL; dr/r为导体的横向应变量εr由材料力学得:εL= - μεr (1—3) 式中:μ为材料的泊松比,大多数金属材料的泊松比为0.3~0.5左右;负号表示两者的变化方向相反。
将式(1—3)代入式(1—2)得:(1—4)式(1—4)说明电阻应变效应主要取决于它的几何应变(几何效应)和本身特有的导电性能(压阻效应)。
2、应变灵敏度它是指电阻应变片在单位应变作用下所产生的电阻的相对变化量。
(1)、金属导体的应变灵敏度K:主要取决于其几何效应;可取(1—5)其灵敏度系数为:k=金属导体在受到应变作用时将产生电阻的变化,拉伸时电阻增大,压缩时电阻减小,且与其轴向应变成正比。
金属导体的电阻应变灵敏度一般在2左右。
(2)、半导体的应变灵敏度:主要取决于其压阻效应;dR/R<≈dρ⁄ρ。
半导体材料之所以具有较大的电阻变化率,是因为它有远比金属导体显著得多的压阻效应。
在半导体受力变形时会暂时改变晶体结构的对称性,因而改变了半导体的导电机理,使得它的电阻率发生变化,这种物理现象称之为半导体的压阻效应。
金属箔式应变片单臂、半桥、全桥性能比较实验
金属箔式应变片单臂、半桥、全桥性能比较实验一、实验目的:了解金属箔式应变片的应变效应工作原理和性能, 比较单臂、半桥、全桥输出时的灵敏度和非线性度,得出相应的结论。
二、基本原理:电阻丝在外力作用下发生机械变形时,其电阻值发生变化,这就是电阻应变效应,描述电阻应变效应的关系式为:ΔR/R=Kε式中:ΔR/R 为电阻丝电阻相对变化,K 为应变灵敏系数,ε=ΔL/L 为电阻丝长度相对变化。
金属箔式应变片就是通过光刻、腐蚀等工艺制成的应变敏感元件,通过它转换被测部位受力状态变化。
电桥的作用完成电阻到电压的比例变化,电桥的输出电压反映了相应的受力状态。
对单臂电桥输出电压 Uo= EKε/4。
半桥测量电路中,不同受力方向的两只应变片接入电桥作为邻边,电桥输出灵敏度提高,非线性得到改善。
当应变片阻值和应变量相同时,其桥路输出电压U o=EKε/2。
全桥测量电路中,将受力方向相同的两应变片接入电桥对边,相反的应变片接入电桥邻边。
当应变片初始阻值:R1=R2=R3=R4,其变化值ΔR1=ΔR2=ΔR3=ΔR4时,其输出灵敏度比半桥又提高了一倍,非线性误差和温度误差均得到改善。
其桥路输出电压U o=KEε。
三、需用器件与单元:主机箱(±4V、±15V、电压表)、应变式传感器实验模板、托盘砝码。
四、实验步骤:应变传感器实验模板简介:实验模板中的R1、R2、R3、R4 为应变片,没有文字标记的5 个电阻符号下面是空的,其中4 个组成电桥模型是为实验者组成电桥方便而设,图中的粗黑曲线表示连接线。
应变式传感器(电子秤传感器)已装于应变传感器模板上。
传感器中的4片应变片和加热电阻已连接在实验模板左上方的R1、R2、R3、R4 和加热器上。
传感器左下角应变片为R1;右下角为R2;右上角为R3;左上角为R4。
当传感器托盘支点受压时,R1、R3 阻值增加,R2、R4 阻值减小,可用四位半数显万用表2K 电阻档进行测量判别。
实验一 金属箔片应变片——单臂桥性能实验
实验一金属箔片应变片——单臂桥性能实验一、实验目的了解金属箔式应变片的应变效应,掌握单臂电桥工作原理和性能。
二、实验原理电阻丝在外力作用下发生机械变形时,其电阻值发生变化,这就是电阻应变效应,描述电阻应变效应的关系式为:ΔR/R=Kε;式中ΔR/R为电阻丝的电阻相对变化值,K为应变灵敏系数,ε=ΔL/L为电阻丝长度相对变化。
金属箔式应变片是通过光刻、腐蚀等工艺制成的应变敏感元件,用它来转换被测部位的受力大小及状态,通过电桥原理完成电阻到电压的比例变化,对单臂电桥而言,电桥输出电压,U01=EKε/4(E为供桥电压)。
三、需用器件与单元:应变式传感器实验模板、应变式传感器、砝码(每只约20g)、数显表、±15V电源数、±5V电源、数字万用表。
四、实验步骤:1、根据图1-1,应变式传感器已装于应变传感器模板上。
传感器中各应变片已接入模板左上方的R1、R2、R3、R4标志端。
加热丝也接于模板上,可用万用表进行测量判别,R1=R2=R3=R4=350Ω,加热丝阻值约为50Ω左右。
2、实验模板差动放大器调零,方法为:(1)接入模板电源±15V,检查无误后,合上主控台电源开关,将实验模板增益调节电位器Rw3顺时针调节到大致中间位置;(2)将差放的正、负输入端与地短接,V o1输出端与数显电压表输入端Vi 相连,调节实验模板上调零电位器RW4,使数显表显示为零(数显表的切换开关打到2V档),完毕后关闭主控台电源。
3、参考图1-2接入传感器,将应变式传感器的其中一个应变片R1接入电桥作为一个桥臂,它与R5、R6、R7接成直流电桥(R5、R6、R7在模块内已连接好),检查接线无误后,合上主控台电源开关,用数字万用表测量主控台到应变式传感器模块上的±5V、±15V电压值是否稳定?若电压波动值大于10mV,应反复拔插相应的电源连接线,直至电压稳定,不再波动为止,然后粗调节Rw1,再细调RW4使数显表显示为零。
实验1 应变片单臂半桥特性实验
实验1 应变片单臂半桥特性实验一、实验目的1.了解电阻应变片的工作原理与应用,并掌握应变测量电路2.了解应变片单臂作特点及性能3.了解应变片半桥(双臂)工作特点及性能二、实验器件1.机头中应变梁的应变片、测微头2.显示面板中的电压表3.±2V~±10V步进可调直流稳压电源4.箔式应变片、电桥、差动放大器5.万用表三、实验步骤1.应变片阻值变化观察在应变梁自然状态(不受力)的情况下,用数显万用表2KΩ电阻档测量所有应变片阻值;在应变梁受力状态(用手压、提梁的自由端)的情况下,测应变片阻值,观察一下应变片阻值变化情况(标有上下箭头的4片应变片纵向受力阻值有变化;标有左右箭头的2片应变片横向不受力阻值无变化,是温度补偿片)。
如下图1-1所示。
图1-1 观察应变片阻值示意图2.差动放大器调零点按图1-2接线,将电压表的量程切换到2V档,合上主、副电源开关,将差动放大器的增益电位器按顺时针方向轻轻转到底后再逆向回转一点,此时放大器的增益为最大。
调节差动放大器的调零电位器,使电压表电压为零。
注意:差动放大器增益旋钮回转一点点的目的是防止电位器触点在根部接触不良。
图1-2 差放调零接线图3.应变片单臂电桥特性测量(1)将±2V~±10V步进可调直流稳压电源切换到4V档,将主板上传感器输出单元中的箔式应变片(标有上下箭头的4片中任意一片)与电桥单元中R1、R2、R3组成电桥电路。
电桥的一对角接±4V直流电源,另一对角作为电桥的输出接差动放大器的两个输入端。
将W1电位器、r电阻直流调节平衡网络接入电桥中(W1电位器二固定端接电桥的±4V电源端、W1的活动端r电阻接电桥的输出端)。
如图1-3所示。
图1-3 应变片单臂电桥特性实验接线示意图(2)检查无误后合上主电源开关,当机头上应变梁自由端的测微头离开自由端时调节电桥的直流调节平衡网络W1电位器,使电压表显示为0或接近0。
应变片单臂桥实验报告
一、实验目的1. 理解应变片的工作原理和特性。
2. 掌握应变片单臂电桥的构成和原理。
3. 通过实验验证应变片单臂电桥的线性度、灵敏度等性能指标。
4. 学习应变片在力学测量等领域的应用。
二、实验原理应变片是一种将机械应变转换为电阻变化的传感器。
其基本原理是,当应变片受到外力作用时,其长度、截面积和电阻率发生变化,从而导致电阻值发生变化。
应变片单臂电桥是利用应变片将机械应变转换为电阻变化,并通过电桥电路放大并转换为电压信号的一种测量方法。
实验中使用的应变片为金属箔式应变片,其电阻值随应变的变化而变化。
单臂电桥电路由应变片、电阻R1、R2、R3和直流电源E组成。
当应变片受到拉伸或压缩时,其电阻值发生变化,导致电桥电路的输出电压发生变化。
三、实验仪器与设备1. 金属箔式应变片2. 单臂电桥电路3. 直流电源4. 数字电压表5. 静态拉伸装置6. 计算机及数据采集软件四、实验步骤1. 将应变片粘贴在静态拉伸装置上,确保粘贴牢固。
2. 按照电路图连接应变片单臂电桥电路,将应变片作为电桥的一个桥臂,其余三个桥臂由电阻R1、R2、R3组成。
3. 打开直流电源,调节电源电压至合适值。
4. 使用数字电压表测量电桥输出电压。
5. 逐渐增加拉伸装置的拉伸力,记录应变片电阻值和电桥输出电压的变化。
6. 将实验数据输入计算机,使用数据采集软件进行数据处理和分析。
五、实验结果与分析1. 线性度分析通过实验数据,绘制应变片电阻值与电桥输出电压的关系曲线。
根据曲线斜率,计算应变片单臂电桥的线性度。
实验结果表明,应变片单臂电桥具有良好的线性度。
2. 灵敏度分析根据应变片电阻值的变化量,计算电桥输出电压的变化量。
根据变化量,计算应变片单臂电桥的灵敏度。
实验结果表明,应变片单臂电桥具有较高的灵敏度。
3. 温度特性分析在实验过程中,对应变片单臂电桥的温度特性进行观察。
实验结果表明,应变片单臂电桥的温度特性较好,输出电压随温度的变化较小。
实验一 单臂电桥性能实验
实验一金属箔式应变片——单臂电桥性能实验一、实验目的:了解金属箔式应变片的应变效应,单臂电桥工作原理和性能。
二、基本原理:电阻丝在外力作用下发生机械变形时,其电阻值发生变化,这就是电阻应变效应,描述电阻应变效应的关系式为:式中为电阻丝电阻的相对变化,为应变灵敏系数,为电阻丝长度相对变化,金属箔式应变片就是通过光刻、腐蚀等工艺制成的应变敏感元件,通过它转换被测部位的受力状态变化,电桥的作用是完成电阻到电压的比例变化,电桥的输出电压反映了相应的受力状态。
单臂电桥输出电压O1。
三、需用器件与单元:应变式传感器实验模块、应变式传感器、砝码、数显表(主控台上电压表)、±15V电源、±4V电源、万用表(自备)。
四、实验步骤:1、检查应变传感器的安装根据图1-1应变式传感器已装于应变传感器模块上。
传感器中各应变片已接入模块的左上方的R1、R2、R3、R4。
加热丝也接于模块上,可用万用表进行测量判别,各应变片初始阻值R1= R2= R3= R4=350Ω,加热丝初始阻值为50Ω左右。
2、差动放大器的调零首先将实验模块调节增益电位器Rw3顺时针到底(即此时放大器增益最大。
然后将差动放大器的正、负输入端相连并与地短接,输出端与主控台上的电压表输入端Vi相连。
检查无误后从主控台上接入模块电源±15V以及地线。
合上主控台电源开关,调节实验模块上的调零电位器Rw4,使电压表显示为零(电压表的切换开关打到2V档)。
关闭主控箱电源。
(注意: Rw4的位置一旦确定,就不能改变,一直到做完实验为止)3、电桥调零适当调小增益Rw3(顺时针旋转3-4圈,电位器最大可顺时针旋转5圈),将应变式传感器的其中一个应变片R1(即模块左上方的R1)接入电桥作为一个桥臂与R5、R6、R7接成直流电桥(R5、R6、R7模块内已连接好,其中模块上虚线电阻符号为示意符号,没有实际的电阻存在),按图1-2完成接线,接上桥路电源±4V(从主控箱引入),同图1-2 应变式传感器单臂电桥实验接线图时,将模块左上方拨段开关拨至左边“直流”档(直流档和交流档调零电阻阻值不同)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
应变片单臂特性实验The final revision was on November 23, 2020实验一应变片单臂特性实验一、实验目的:了解电阻应变片的工作原理与应用并掌握应变片测量电路。
二、基本原理:电阻应变式传感器是在弹性元件上通过特定工艺粘贴电阻应变片来组成。
一种利用电阻材料的应变效应将工程结构件的内部变形转换为电阻变化的传感器,此类传感器主要是通过一定的机械装置将被测量转化成弹性元件的变形,然后由电阻应变片将变形转换成电阻的变化,再通过测量电路将电阻的变化转换成电压或电流变化信号输出。
可用于能转化成变形的各种非电物理量的检测,如力、压力、加速度、力矩、重量等,在机械加工、计量、建筑测量等行业应用十分广泛。
1、应变片的电阻应变效应所谓电阻应变效应是指具有规则外形的金属导体或半导体材料在外力作用下产生应变而其电阻值也会产生相应地改变,这一物理现象称为“电阻应变效应”。
以圆柱形导体为例:设其长为:L、半径为r、材料的电阻率为ρ时,根据电阻的定义式得(1—1)当导体因某种原因产生应变时,其长度L、截面积A和电阻率ρ的变化为dL、dA、dρ相应的电阻变化为dR。
对式(1—1)全微分得电阻变化率 dR/R为:(1—2)式中:dL/L为导体的轴向应变量εL; dr/r为导体的横向应变量εr由材料力学得:εL= - μεr(1—3)式中:μ为材料的泊松比,大多数金属材料的泊松比为~左右;负号表示两者的变化方向相反。
将式(1—3)代入式(1—2)得:(1—4)式(1—4)说明电阻应变效应主要取决于它的几何应变(几何效应)和本身特有的导电性能(压阻效应)。
2、应变灵敏度它是指电阻应变片在单位应变作用下所产生的电阻的相对变化量。
? (1)、金属导体的应变灵敏度K:主要取决于其几何效应;可取(1—5)其灵敏度系数为:K= 金属导体在受到应变作用时将产生电阻的变化,拉伸时电阻增大,压缩时电阻减小,且与其轴向应变成正比。
金属导体的电阻应变灵敏度一般在2左右。
(2)、半导体的应变灵敏度:主要取决于其压阻效应;dR/R<≈dρρ。
半导体材料之所以具有较大的电阻变化率,是因为它有远比金属导体显着得多的压阻效应。
在半导体受力变形时会暂时改变晶体结构的对称性,因而改变了半导体的导电机理,使得它的电阻率发生变化,这种物理现象称之为半导体的压阻效应。
且不同材质的半导体材料在不同受力条件下产生的压阻效应不同,可以是正(使电阻增大)的或负(使电阻减小)的压阻效应。
也就是说,同样是拉伸变形,不同材质的半导体将得到完全相反的电阻变化效果。
半导体材料的电阻应变效应主要体现为压阻效应,可正可负,与材料性质和应变方向有关,其灵敏度系数较大,一般在100到200左右。
3、贴片式应变片应用在贴片式工艺的传感器上普遍应用金属箔式应变片,贴片式半导体应变片(温漂、稳定性、线性度不好而且易损坏)很少应用。
一般半导体应变采用N型单晶硅为传感器的弹性元件,在它上面直接蒸镀扩散出半导体电阻应变薄膜(扩散出敏感栅),制成扩散型压阻式(压阻效应)传感器。
*本实验以金属箔式应变片为研究对象。
4、箔式应变片的基本结构应变片是在用苯酚、环氧树脂等绝缘材料的基板上,粘贴直径为0.025mm左右的金属丝或金属箔制成,如图1—1所示。
(a) 丝式应变片 (b) 箔式应变片图1—1应变片结构图金属箔式应变片就是通过光刻、腐蚀等工艺制成的应变敏感元件,与丝式应变片工作原理相同。
电阻丝在外力作用下发生机械变形时,其电阻值发生变化,这就是电阻应变效应,描述电阻应变效应的关系式为:ΔR/R=Kε式中:ΔR/R为电阻丝电阻相对变化,K为应变灵敏系数,ε=ΔL/L为电阻丝长度相对变化。
5、测量电路为了将电阻应变式传感器的电阻变化转换成电压或电流信号,在应用中一般采用电桥电路作为其测量电路。
电桥电路具有结构简单、灵敏度高、测量范围宽、线性度好且易实现温度补偿等优点。
能较好地满足各种应变测量要求,因此在应变测量中得到了广泛的应用。
电桥电路按其工作方式分有单臂、双臂和全桥三种,单臂工作输出信号最小、线性、稳定性较差;双臂输出是单臂的两倍,性能比单臂有所改善;全桥工作时的输出是单臂时的四倍,性能最好。
因此,为了得到较大的输出电压信号一般都采用双臂或全桥工作。
基本电路如图1—2(a)、(b)、(c)所示。
(a)单臂(b)半桥(c)全桥图1—2 应变片测量电路(a)、单臂Uo=U①-U③=〔(R4+△R4)/(R4+△R4+R3)-R1/(R1+R2)〕E={〔(R1+R2)(R4+△R4)-R1(R3+R4+△R4)〕/〔(R3+R4+△R4)(R1+R2)〕}E设R1=R2=R3=R4,且△R4/R4=ΔR/R<<1,ΔR/R=Kε。
则Uo≈(1/4)(△R4/R4)E=(1/4)(△R/R)E=(1/4)KεE(b)、双臂(半桥)同理:Uo≈(1/2)(△R/R)E=(1/2)KεE(C)、全桥同理:Uo≈(△R/R)E=KεE6、箔式应变片单臂电桥实验原理图图1—3 应变片单臂电桥实验原理图图中R1、R2、R3为350Ω固定电阻,R4为应变片; W1和r组成电桥调平衡网络,供桥电源直流±4V。
桥路输出电压Uo≈(1/4)(△R4/R4)E=(1/4)(△R/R)E=(1/4)KεE 。
三、需用器件与单元:机头中的应变梁的应变片、测微头;显示面板中的F/V表(或电压表)、±2V~±10V步进可调直流稳压电源;调理电路面板中传感器输出单元中的箔式1位数显万用表(自备)。
应变片、调理电路单元中的电桥、差动放大器; 42四、需用器件与单元介绍:1、图1—4调理电路面板中的电桥单元。
图中:⑴菱形虚框为无实体的电桥模型(为实验者组桥参考而设,无其它实际意义)。
⑵R1=R2=R3=350Ω是固定电阻,为组成单臂应变和半桥应变而配备的其它桥臂电阻。
⑶W1电位器、r电阻为电桥直流调节平衡网络,W2电位器、C电容为电桥交流调节平衡网络。
图1—4电桥面板图2、图1—5为差动放大器原理图与调理电路中的差动放大器单元面板图。
图1—5 差动放大器原理与面板图图中:左图是原理图,A是差动输入的放大器;右图为面板图。
*3、附:测微头的组成与使用:测微头组成和读数如下图1—6所示。
图1—6测位头组成与读数测微头组成:测微头由不可动部分中的安装套(应变梁的测微头无安装套)、轴套和可动部分中的测杆、微分筒、微调钮组成。
测微头读数与使用:测微头的安装套便于在支架座上固定安装,轴套上的主尺有两排刻度线,标有数字的是整毫米刻线(1mm/格),另一排是半毫米刻线mm/格);微分筒前部圆周表面上刻有50等分的刻线mm/格)。
用手旋转微分筒或微调钮时,测杆就沿轴线方向进退。
微分筒每转过1格,测杆沿轴方向移动微小位移0.01毫米,这也叫测微头的分度值。
测微头的读数方法是先读轴套主尺上露出的刻度数值,注意半毫米刻线;再读与主尺横线对准微分筒上的数值、可以估读1/10分度,如图1—6甲读数为mm,不是mm;遇到微分筒边缘前端与主尺上某条刻线重合时,应看微分筒的示值是否过零,如图1—6乙已过零则读mm;如图1—6丙未过零,则不应读为2mm,读数应为mm。
测微头使用:测微头在实验中是用来产生位移并指示出位移量的工具。
一般测微头在使用前,首先转动微分筒到10mm处(为了保留测杆轴向前、后位移的余量),再将测微头轴套上的主尺横线面向自己安装到专用支架座上,移动测微头的安装套(测微头整体移动)使测杆与被测体连接并使被测体处于合适位置(视具体实验而定)时再拧紧支架座上的紧固螺钉。
当转动测微头的微分筒时,被测体就会随测杆而位移。
五、实验步骤:1、在应变梁自然状态(不受力)的情况下,用41位数显万用表2kΩ电阻档测量所2有应变片阻值;在应变梁受力状态(用手压、提梁的自由端)的情况下,测应变片阻值,观察一下应变片阻值变化情况(标有上下箭头的4片应变片纵向受力阻值有变化;标有左右箭头的2片应变片横向不受力阻值无变化,是温度补偿片)。
如下图1—7所示。
图1—7观察应变片阻值变化情况示意图2、差动放大器调零点:按下图1—8示意接线。
将F/V表(或电压表)的量程切换开关切换到2V档,合上主、副电源开关,将差动放大器的增益电位器按顺时针方向轻轻转到底后再逆向回转一点点(放大器的增益为最大,回转一点点的目的:电位器触点在根部估计会接触不良),调节差动放大器的调零电位器,使电压表显示电压为零。
差动放大器的零点调节完成,关闭主电源。
图1—8 差放调零接线图3、应变片单臂电桥特性实验:⑴将±2V~±10V步进可调直流稳压电源切换到4V档,将主板上传感器输出单元中的箔式应变片(标有上下箭头的4片应变片中任意一片为工作片)与电桥单元中R1、R2、R3组成电桥电路,电桥的一对角接±4V直流电源,另一对角作为电桥的输出接差动放大器的二输入端,将W1电位器、r 电阻直流调节平衡网络接入电桥中(W1电位器二固定端接电桥的±4V电源端、W1的活动端r电阻接电桥的输出端),如图1—9示意接线(粗细曲线为连接线)。
图1—9 应变片单臂电桥特性实验原理图与接线示意图⑵检查接线无误后合上主电源开关,当机头上应变梁自由端的测微头离开自由端(梁处于自然状态,图1—7机头所示)时调节电桥的直流调节平衡网络W1电位器,使电压表显示为0或接近0。
⑶在测微头吸合梁的自由端前调节测微头的微分筒,使测微头的读数为10mm左右(测微头微分筒的0刻度线与测微头轴套的10mm刻度线对准);再松开测微头支架轴套的紧固螺钉,调节测微头支架高度使梁吸合后进一步调节支架高度,同时观察电压表显示绝对值尽量为最小时固定测微头支架高度(拧紧紧固螺钉,图1—9机头所示)。
仔细微调测微头的微分筒使电压表显示值为0(梁不受力处于自然状态),这时的测微头刻度线位置作为梁位移的相对0位位移点。
首先确定某个方向位移,以后每调节测微头的微分筒一周产生0.5mm位移,根据表1位移数据依次增加0.5mm并读取相应的电压值填入表1中;然后反方向调节测微头的微分筒使电压表显示0V(这时测微头微分筒的刻度线不在原来的0位位移点位置上,是由于测微头存在机械回程差,以电压表的0V 为标准作为0位位移点并取固定的相对位移ΔX消除了机械回程差),再根据表1位移数据依次反方向增加0.5mm并读取相应的电压值填入表1中。
*注:调节测微头要仔细,微分筒每转一周ΔX=0.5mm;如调节过量再回调,则产生回程差。
⑷根据表1数据画出实验曲线并计算灵敏度S=ΔV/ΔX(ΔV输出电压变化量,ΔX位移变化量)和非线性误差δ(用最小二乘法),δ=Δm/yFS ×100%式中Δm为输出值(多次测量时为平均值)与拟合直线的最大偏差:yFS满量程输出平均值,此处为相对总位移量。