(完整word版)北师大版八年级下册第六章平行四边形练习题

合集下载

北师大版八年级下册第6章平行四边形单元练习题(word无答案)

北师大版八年级下册第6章平行四边形单元练习题(word无答案)

第6章平行四边形单元练习一、填空题1.一组对边平行,另一组对边相等的四边形,可以是平行四边形,还可以是形.2.在四边形ABCD中,AD∥BC,AD不等于BC,AB=CD,则四边形ABCD的形状是.3.如图,在△ABC中,∠ACB=60°,AC=1,D是边AB的中点,E是边BC上一点.若DE平分△ABC的周长,则DE的长是.4.在△ABC中,点E,F分别是边AB,AC的中点,点D在BC边上,连接DE,DF,EF,请你添加一个条件,使△BED与△FDE全等.5.如图,已知在△ABC中,D、E分别是AB、AC的中点,BC=6cm,则DE的长度是cm.6.如图,四边形ABCD中,点P是对角线BD的中点,点E,F分别是AB,CD的中点,AD=BC,∠PEF=35°,则∠PFE的度数是.7.如图所示,在梯形ABCD中,AD∥BC,∠B=90°,AB=14cm,AD=18cm,BC=21cm,点P从点A开始沿AD边向点D以1cm/s的移动,点Q从点C开始沿CB边向点B以2cm/s的速度移动.如果P,Q分别从A,C同时出发,设移动时间为t秒,则t=秒时,梯形PQCD是等腰梯形.8.如图,在Rt△ABC中,∠ACB=90°,∠B=60°.点O是AC的中点,过点O的直线l 从与AC重合的位置开始,绕点O作逆时针旋转,交AB边于点D.过点C作CE∥AB 交直线l于点E,设直线l的旋转角为α.当α=度时,四边形EDBC是等腰梯形.二、解答题9.已知三角形ABC中,AD是中线,点E是AD的中点,连接BE并延长交AC于点F.判断AF与FC之间有什么数量关系?并加以证明.10.已知:如图,在n边形中,AF∥DE,∠B=130°,∠C=110°.求∠A+∠D的度数.11.如图,△ABC中,AD是高,E、F分别是AB、AC的中点.(1)若AB=10,AC=8,求四边形AEDF的周长;(2)EF与AD有怎样的位置关系?请证明你的结论.12.如图,在△ABC中,AB=AC,点D,E分别是边AB,AC的中点,连接DE、BE,点F,G,H分别为BE,DE,BC的中点.(1)求证:FG=FH;(2)若∠A=90°,求证:FG⊥FH;(3)若∠A=80°,求∠GFH的度数.13.如图,在△RtABC中,∠ACB=90°,DE、DF是△ABC的中位线,连接EF、CD,求证:CD=EF.14.如图,在△ABC中,点D,E,F分别是各边中点,AG是BC边上的高.求证:∠GDE =∠GFE.15.如图,在△ABC中,∠ACB=90°,点D,E分别是BC,AB上的中点,连接DE并延长至点F,使EF=2DE,连接CE,AF.(1)证明:AF=CE;(2)若∠B=30°,AC=2,连接BF,求BF的长.16.如图、在△ABC中,AB=AC,M,N分别为AC,BC的中点,以AC为斜边在△ABC 的外侧作Rt△ACD,且∠CAD=30°,连接MN,DM,DN.(1)求证:△DMN是等腰三角形;(2)若AC平分∠BAD,AB=6,求DN的长.17.如图,在△ABC中,∠ACB=90°,D、E、F分别是AC、AB、BC的中点,若CE=2,求DF的长.18.如图,△ABC的中线BD、CE交于点O,F、G分别是OB、OC的中点.求证:EF=DG且EF∥DG.19.如图,在四边形ABCD中,∠ABC=90°,AC=AD,M、N分别为AC、DC的中点.(1)判断∠MBN与∠MNB是否相等;(2)证明你的结论.20.问题:已知△ABC中,∠BAC=2∠ACB,点D是△ABC内的一点,且AD=CD,BD=BA.探究∠DBC与∠ABC度数的比值.请你完成下列探究过程:先将图形特殊化,得出猜想,再对一般情况进行分析并加以证明.(1)当∠BAC=90°时,依问题中的条件补全右图;观察图形,AB与AC的数量关系为;当推出∠DAC=15°时,可进一步推出∠DBC的度数为;可得到∠DBC与∠ABC度数的比值为;(2)当∠BAC<90°时,请你画出图形,研究∠DBC与∠ABC度数的比值是否与(1)中的结论相同,写出你的猜想并加以证明.。

新北师大版八年级下学期期末复习第六章平行四边形测试题

新北师大版八年级下学期期末复习第六章平行四边形测试题

新北师大版八年级下学期期末复习测试题第六章平行四边形一、选择题1、如图将四个全等的矩形分别等分成四个全等的小矩形,其中阴影部分面积相等的是( )A.只有①和②相等 B.只有③和④相等 C.只有①和④相等 D.①和②,③和④分别相等2、如图,已知四边形ABCD中,R、P分别是BC、CD上的点,E、F分别是AP、RP的点,当点P在CD上从C向D移而点R不动时,那么下列结论成立的是()A.线段EF的长逐渐增大B.线段EF的长逐渐减小 C.线段EF的长不变D.线段EF的长与点P的位置有关第二题图3、下面关于平行四边形的说法不正确的是() A.对边平行且相等 B.两组对角分别相等C.对角线互相平分 D.每条对角线平分一组对角4、四边形ABCD中,对角线AC,BD相交于点O,给出下列四个条件:①AD∥BC;②AD=BC;③OA=OC;④OB=OD. 从中任选两个条件,能使四边形ABCD为平行四边形的选法有( )A.3种B.4种C.5种D.6种5、如图,点E是▱ABCD的边CD的中点,AD,BE的延长线相交于点F,DF=3,DE=2,则▱ABCD的周长为( ) A.5 B.7 C.10 D.146、如图,在周长为20cm的▱ABCD中,AB≠AD,AC,BD相交于点O,OE⊥BD交AD于E,则△ABE的周长为( ) A.4 cm B.6 cm C.8 cm D.10 cm7、如图,在平行四边形ABCD中,AB=6,AD=9,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG AE,垂足为G,BG=4,则的周长为()A. 8B.9.5C. 10D.11.58、如右图,在中,,平分交边于点,且,则的长为()A. 3B. 4C.D.29、如图,▱ABCD中,∠C=108°,BE平分∠ABC,则∠ABE等于()A. 18° B. 36°C. 72° D. 108°10、如图,平行四边形纸片ABCD,CD=5,BC=2,∠A=60°,将纸片折叠,使点A落在射线AD上(记为点),折痕与AB交于点P,设AP的长为x,折叠后纸片重叠部分的面积为y,可以表示y与x之间关系的大致图象是()A.B. C. D.二、填空题11、已知:四边形ABCD的面积为1. 如图1,取四边形ABCD各边中点,则图中阴影部分的面积为;如图2,取四边形ABCD各边三等分点,则图中阴影部分的面积为;…;取四边形ABCD各边的n(n为大于1的整数)等分点,则图中阴影部分的面积为.12、如图,在Rt△ABC中,∠BAC=90°,点D、E、F分别是三边的中点,且CF=3cm,则DE= cm.13、如图,在平行四边形ABCD中,点E、F分别在边BC、AD上,请添加一个条件_________ ,使四边形AECF是平行四边形(只填一个即可).14、如图(1)是四边形纸片ABCD,其中∠B=120°,∠D=50度.若将其右下角向内折出△PCR,恰使CP∥AB,RC∥AD,如图(2)所示,则∠C= 度.15、如图,在ABCD中,∠B的平分线BE交AD于E,AE=10,ED=4,那么ABCD的周长= 。

北师大版数学八年级下册:第六章 平行四边形 阶段测试(6.1-6.2)(附答案)

北师大版数学八年级下册:第六章 平行四边形  阶段测试(6.1-6.2)(附答案)

第六章平行四边形阶段测试(6.1-6.2)(时间:40分钟满分:100分)一、选择题(每小题4分,共40分)1.下面的性质中,平行四边形不一定具有的是()A.对角互补B.邻角互补C.对角相等D.对边相等2.如图,在▱ABCD中,E是AB延长线上的一点.若∠1=55°,则∠D的度数为()A.125°B.120°C.115°D.110°3.用一根6米长的绳子围成一个平行四边形,其中一边长1.6米,则其邻边长为()A.1.2米B.1.4米C.1.6米D.1.8米4.如图,在四边形ABCD中,对角线AC,BD相交于点O,AD∥BC,添加下列条件不能使四边形ABCD成为平行四边形的是()A.AD=BCB.OA=OCC.∠ABC+∠BCD=180°D.AB=CD第4题图第5题图5.如图,在▱ABCD中,AE平分∠DAB,∠B=100°,则∠DEA等于()A.100°B.80°C.60°D.40°6.如图,在▱ABCD中,过点P作直线EF,GH分别平行于AB,BC,那么图中共有平行四边形()A.4个B.5个C.8个D.9个第6题图第7题图7.如图,在四边形ABCD中,AD∥BC,DE∥AB,DE=DC,∠C=80°,则∠A等于()A.80°B.90°C.100°D.110°8.如图,在▱ABCD中,将△ADC沿AC折叠后,点D恰好落在DC的延长线上的点E处.若∠B=60°,AB=3,则△ADE的周长为()A.12 B.15 C.18 D.21第8题图第9题图9.如图,▱ABCD的对角线AC与BD相交于点O,AE⊥BC,垂足为E,AB=3,AC=2,BD=4,则AE 的长为()A.32 B.32 C.217 D.221710.如图,已知▱ABCD与▱DCFE的周长相等,且∠BAD=60°,∠CFE=110°.则下列结论:①四边形ABFE 为平行四边形;②△ADE是等腰三角形;③▱ABCD与▱DCFE全等;④∠DAE=25°.其中正确的有()A.4个B.3个C.2个D.1个二、填空题(每小题4分,共20分)11.在▱ABCD中,已知∠A-∠B=60°,则∠C=.12.如图,已知▱ABCD的对角线AC,BD相交于点O,且AC=8,BD=10,AB=5,则△OCD的周长为14.第12题图第13题图13.如图,点E,F分别在▱ABCD的边BC,AD上,AC,EF交于点O,请你添加一个条件(只添一个即可),使四边形AECF是平行四边形,你所添加的条件是.14.如图,在△ABC中,∠A=∠B,D是AB上任意一点,DE∥BC,DF∥AC,AC=4 cm,则四边形DECF 的周长是.第14题图第15题图15.如图,已知BC为等腰三角形纸片ABC的底边,AD⊥BC,∠BAC≠90°.将此三角形纸片沿AD剪开,得到两个三角形.若把这两个三角形拼成一个平行四边形,则能拼出种平行四边形.三、解答题(共50分)16.(10分)如图,已知在四边形ABCD中,AE⊥BD于点E,CF⊥BD于点F,AE=CF,BF=DE,求证:四边形ABCD是平行四边形.17.(12分)如图,将▱ABCD的对角线AC分别向两个方向延长至点E,F,且AE=CF,连接BE,DF.求证:BE=DF.18.(14分)提出命题:如图,在四边形ABCD中,∠A=∠C,∠ABC=∠ADC,求证:四边形ABCD是平行四边形.小明提供了如下证明过程:证明:连接BD.∵∠1+∠3=180°-∠A,∠2+∠4=180°-∠C,∠A=∠C,∴∠1+∠3=∠2+∠4.∵∠ABC=∠ADC,∴∠1=∠4,∠2=∠3.∴AB∥CD,AD∥BC.∴四边形ABCD是平行四边形(两组对边分别平行的四边形是平行四边形).反思交流:(1)请问小明的解法正确吗?若正确,请说明理由;若不正确,请写出正确的证明过程;(2)用语言叙述上述命题.运用探究:下列条件中,能判定四边形ABCD是平行四边形的是()A.∠A∶∠B∶∠C∶∠D=1∶2∶3∶4B.∠A∶∠B∶∠C∶∠D=1∶3∶1∶3C.∠A∶∠B∶∠C∶∠D=2∶3∶3∶2D.∠A∶∠B∶∠C∶∠D=1∶1∶3∶319.(14分)如图,在▱ABCD中,BD⊥BC,∠BDC=60°,∠DAB和∠DBC的平分线相交于点E,F为AE 上一点,EF=EB,G为BD延长线上一点,BG=AB,连接GE.(1)若▱ABCD的面积为93,求AB的长;(2)求证:AF=GE.参考答案:一、选择题(每小题4分,共40分)1.下面的性质中,平行四边形不一定具有的是(A)A.对角互补B.邻角互补C.对角相等D.对边相等2.如图,在▱ABCD中,E是AB延长线上的一点.若∠1=55°,则∠D的度数为(A)A.125°B.120°C.115°D.110°3.用一根6米长的绳子围成一个平行四边形,其中一边长1.6米,则其邻边长为(B)A.1.2米B.1.4米C.1.6米D.1.8米4.如图,在四边形ABCD中,对角线AC,BD相交于点O,AD∥BC,添加下列条件不能使四边形ABCD成为平行四边形的是(D)A.AD=BCB.OA=OCC.∠ABC+∠BCD=180°D.AB=CD第4题图第5题图5.如图,在▱ABCD中,AE平分∠DAB,∠B=100°,则∠DEA等于(D)A.100°B.80°C.60°D.40°6.如图,在▱ABCD中,过点P作直线EF,GH分别平行于AB,BC,那么图中共有平行四边形(D)A.4个B.5个C.8个D.9个第6题图第7题图7.如图,在四边形ABCD中,AD∥BC,DE∥AB,DE=DC,∠C=80°,则∠A等于(C)A.80°B.90°C.100°D.110°8.如图,在▱ABCD中,将△ADC沿AC折叠后,点D恰好落在DC的延长线上的点E处.若∠B=60°,AB=3,则△ADE的周长为(C)A.12 B.15 C.18 D.21第8题图第9题图9.如图,▱ABCD的对角线AC与BD相交于点O,AE⊥BC,垂足为E,AB=3,AC=2,BD=4,则AE 的长为(D)A.32 B.32 C.217 D.221710.如图,已知▱ABCD与▱DCFE的周长相等,且∠BAD=60°,∠CFE=110°.则下列结论:①四边形ABFE 为平行四边形;②△ADE是等腰三角形;③▱ABCD与▱DCFE全等;④∠DAE=25°.其中正确的有(B)A.4个B.3个C.2个D.1个二、填空题(每小题4分,共20分)11.在▱ABCD中,已知∠A-∠B=60°,则∠C=120°.12.如图,已知▱ABCD的对角线AC,BD相交于点O,且AC=8,BD=10,AB=5,则△OCD的周长为14.第12题图第13题图13.如图,点E,F分别在▱ABCD的边BC,AD上,AC,EF交于点O,请你添加一个条件(只添一个即可),使四边形AECF是平行四边形,你所添加的条件是AF=CE(答案不唯一).14.如图,在△ABC中,∠A=∠B,D是AB上任意一点,DE∥BC,DF∥AC,AC=4 cm,则四边形DECF 的周长是8_cm.第14题图第15题图15.如图,已知BC为等腰三角形纸片ABC的底边,AD⊥BC,∠BAC≠90°.将此三角形纸片沿AD剪开,得到两个三角形.若把这两个三角形拼成一个平行四边形,则能拼出3种平行四边形.三、解答题(共50分)16.(10分)如图,已知在四边形ABCD 中,AE ⊥BD 于点E ,CF ⊥BD 于点F ,AE =CF ,BF =DE ,求证:四边形ABCD 是平行四边形.证明:∵AE ⊥BD 于点E ,CF ⊥BD 于点F. ∴∠AED =∠CFB =90°. 在△AED 和△CFB 中,⎩⎨⎧DE =BF ,∠AED =∠CFB ,AE =CF ,∴△AED ≌△CFB (SAS ). ∴AD =BC ,∠ADE =∠CBF. ∴AD ∥BC.∴四边形ABCD 是平行四边形.17.(12分)如图,将▱ABCD 的对角线AC 分别向两个方向延长至点E ,F ,且AE =CF ,连接BE ,DF.求证:BE =DF.证明:∵四边形ABCD 是平行四边形, ∴AD =BC ,AD ∥BC. ∴∠BCE =∠DAF. ∵AE =CF ,∴CA +AE =AC +CF ,即CE =AF.在△BCE 和△DAF 中,⎩⎨⎧BC =DA ,∠BCE =∠DAF ,CE =AF ,∴△BCE ≌△DAF (SAS ). ∴BE =DF.18.(14分)提出命题:如图,在四边形ABCD 中,∠A =∠C ,∠ABC =∠ADC ,求证:四边形ABCD 是平行四边形. 小明提供了如下证明过程:证明:连接BD.∵∠1+∠3=180°-∠A,∠2+∠4=180°-∠C,∠A=∠C,∴∠1+∠3=∠2+∠4.∵∠ABC=∠ADC,∴∠1=∠4,∠2=∠3.∴AB∥CD,AD∥BC.∴四边形ABCD是平行四边形(两组对边分别平行的四边形是平行四边形).反思交流:(1)请问小明的解法正确吗?若正确,请说明理由;若不正确,请写出正确的证明过程;(2)用语言叙述上述命题.运用探究:下列条件中,能判定四边形ABCD是平行四边形的是(B)A.∠A∶∠B∶∠C∶∠D=1∶2∶3∶4B.∠A∶∠B∶∠C∶∠D=1∶3∶1∶3C.∠A∶∠B∶∠C∶∠D=2∶3∶3∶2D.∠A∶∠B∶∠C∶∠D=1∶1∶3∶3解:(1)正确.理由如下:∵∠1+∠3=180°-∠A,∠2+∠4=180°-∠C,∠A=∠C,∴∠1+∠3=∠2+∠4.①∵∠ABC=∠ADC,即∠1+∠2=∠3+∠4,②由①②相加、相减,得∠1=∠4,∠2=∠3.∴AB∥CD,AD∥BC.∴四边形ABCD是平行四边形(两组对边分别平行的四边形是平行四边形).(2)两组对角分别相等的四边形是平行四边形.19.(14分)如图,在▱ABCD中,BD⊥BC,∠BDC=60°,∠DAB和∠DBC的平分线相交于点E,F为AE 上一点,EF=EB,G为BD延长线上一点,BG=AB,连接GE.(1)若▱ABCD的面积为93,求AB的长;(2)求证:AF=GE.解:(1)∵四边形ABCD 为平行四边形, ∴AD ∥BC ,AB ∥CD. ∵∠BDC =60°, ∴∠ABD =60°.∵BD ⊥BC ,∴∠ADB =∠DBC =90°. ∴∠DAB =30°.∴在Rt △ADB 中,BD =12AB ,AD =AB 2-BD 2=32AB.∵S ▱ABCD =AD·BD =34AB 2=93,∴AB =6. (2)证明:连接BF.∵AE ,BE 分别平分∠BAD ,∠DBC ,∴∠BAE =12∠BAD =15°,∠DBE =12∠DBC =45°.∵∠ABE +∠BAE +∠AEB =180°,∠ABE =∠ABD +∠DBE =105°, ∴∠AEB =60°.∵EF =BE ,∴△BFE 为等边三角形. ∴BE =BF ,∠FBE =60°.∴∠ABD =∠FBE =60°.∴∠ABF =∠GBE.在△ABF 和△GBE 中,⎩⎨⎧AB =GB ,∠ABF =∠GBE ,BF =BE ,∴△ABF ≌△GBE (SAS ). ∴AF =GE.。

北师大版八年级数学下册第六章 平行四边形单元测试题

北师大版八年级数学下册第六章 平行四边形单元测试题

第六章第Ⅰ卷(选择题共36分)一、选择题(每小题3分,共36分)1.如图1,在▱ABCD中,∠D=50°,则∠A等于()图1A.45°B.135°C.50°D.130°2.如图2,在四边形ABCD中,对角线AC,BD相交于点O,下列条件不能判定这个四边形是平行四边形的是()图2A.AB∥DC,AD∥BC B.AB=DC,AD=BCC.AO=CO,BO=DO D.AB∥DC,AD=BC3.如图3,在△ABC中,D,E分别是边AB,AC的中点.若BC=10,则DE的长为()图3A.3 B.4 C.5 D.63.如图4,a,b是两条平行线,则甲、乙两个平行四边形的面积关系是()图4A.甲>乙B.甲<乙C.甲=乙D.无法判断5.一个正多边形的内角和等于外角和的5倍,则这个正多边形的边数为()A.8 B.10 C.11 D.126.如图5,在△ABC中,AB=8,∠C=90°,∠A=30°,DE是中位线,则DE的长为()图5A.4 B.3 C.2 D. 37.如图6所示,a∥b,直线a与直线b之间的距离是()图6A.线段PA的长度B.线段PB的长度C.线段PC的长度D.线段CD的长度8.若直线a∥b,点A,B分别在直线a,b上,且AB=2 cm,则a,b之间的距离() A.等于2 cm B.大于2 cmC.不大于2 cm D.不小于2 cm9.如图7,在平行四边形ABCD中,下列结论中错误的是()图7A.∠1=∠2 B.∠BAD=∠BCDC.AB=CD D.AC⊥BD10.将两个边长分别为2,3,4的全等三角形拼成四边形,可以拼得不同形状的平行四边形的个数是()A.1 B.2 C.3 D.611.如图8,在四边形ABCD中,AB∥CD,AD=BC=5,CD=7,AB=13,点P从点A出发以每秒3个单位长度的速度沿AD→DC向终点C运动,同时点Q从点B出发,以每秒1个单位长度的速度沿BA向终点A运动.当四边形PQBC为平行四边形时,运动的时间为()图8A.4秒B.3秒C.2秒D.1秒12.如图9,已知△ABC的周长为1,连接△ABC三边的中点得到第2个三角形,再连接第2个三角形三边的中点得到第3个三角形……依此类推,则第2019个三角形的周长为()图9A.12018B.12019C.⎝⎛⎭⎫122018D.⎝⎛⎭⎫122019请将选择题答案填入下表:第Ⅱ卷(非选择题共64分)二、填空题(每小题3分,共12分)13.在▱ABCD中,若AB=5,BC=3,则这个平行四边形的周长是________.14.从一个多边形的一个顶点出发,一共可作10条对角线,则这个多边形的内角和是________°.15.如图10,在▱ABCD中,E,F分别为BC,AD边上的点,要使BF=DE,需添加一个条件:______________.图1016.在平面直角坐标系中,已知A(-2,1),B(-2,-1),O(0,0).若以A,B,C,O 为顶点的四边形为平行四边形,则点C的坐标是____________.三、解答题(共52分)17.(8分)如图11,四边形ABCD是平行四边形.求:(1)∠ADC,∠BCD的度数;(2)边AB,BC的长.图1118.(8分)如图12,在四边形ABCD中,∠B=∠D,∠1=∠2,求证:四边形ABCD 是平行四边形.图1219.(8分)如图13,已知BD是△ABC的角平分线,点E,F分别在边AB,BC上,ED ∥BC,EF∥AC.求证:BE=CF.图1320.(8分)如图14,在△ABC 中,∠ACB =90°,M ,N 分别是AB ,AC 的中点,延长BC 至点D ,使CD =13BD ,连接DN ,MN.若AB =6.(1)求证:MN =CD ; (2)求DN 的长.图1421.(8分)若一个多边形的内角和与外角和相加是1800°,则这个多边形是几边形?22.(12分)如图15,在△ABC中,AB=AC,点D在边BC所在的直线上,过点D作DE∥AC交直线AB于点E,DF∥AB交直线AC于点F.(1)当点D在边BC上时,如图①,求证:DE+DF=AC.(2)当点D在边BC的延长线上时,如图②;当点D在边BC的反向延长线上时,如图③.请分别写出图②、图③中DE,DF,AC之间的数量关系,不需要证明.(3)若AC=6,DE=4,则DF=________.图151.[解析] D ∵在▱ABCD 中,∠D =50°,∴∠A =180°-∠D =180°-50°=130°. 故选D. 2.[答案] D3.[解析] C 因为D ,E 分别是边AB ,AC 的中点,所以DE 是△ABC 的中位线,所以DE =12BC =12×10=5.4.[解析] C 由题图可知:阴影部分是同底等高的两个平行四边形,所以它们的面积相等,故选C. 5.[答案] D6.[解析] C ∵∠C =90°,∠A =30°, ∴BC =12AB =4.又∵DE 是中位线,∴DE =12BC =2.故选C. 7.[答案] A 8.[答案] C 9.[答案] D 10.[答案] C11.[解析] B 设运动时间为t 秒,则CP =12-3t ,BQ =t ,根据题意得12-3t =t ,解得t =3.故选B.12.[解析] C △ABC 的周长为1,根据中位线的性质,可得第2个三角形的周长为12,第3个三角形的周长为(12)2,第4个三角形的周长为(12)3……依此类推,第n 个三角形的周长为(12)n -1,所以第2019个三角形的周长为(12)2018.故选C. 13.[答案] 16[解析] 在▱ABCD 中,CD =AB =5,AD =BC =3,所以▱ABCD 的周长为2AB +2BC =2×5+2×3=16.14.[答案] 1980[解析] 从一个多边形的一个顶点出发,一共可作10条对角线,则这个多边形的边数是13.∵(13-2)×180°=1980°,∴这个多边形的内角和是1980°.15.[答案] 答案不唯一,如BE =DF 或BF ∥DE 或AF =CE 或∠BFD =∠BED 等 16.[答案] (0,2)或(0,-2)或(-4,0)[解析] 如图,①当AB 为该平行四边形的边时,AB =OC .∵A (-2,1),B (-2,-1),O (0,0), ∴C (0,2)或C 1(0,-2).②当AB 为该平行四边形的对角线时,C 2(-4,0). 综上所述,点C 的坐标是(0,2)或(0,-2)或(-4,0). 17.解:(1)∵四边形ABCD 是平行四边形, ∴∠B =∠ADC ,∠BCD +∠B =180°.∵∠B =56°,∴∠ADC =56°,∠BCD =124°. (2)∵四边形ABCD 是平行四边形, ∴AB =CD ,AD =BC . ∵AD =30,CD =25, ∴AB =25,BC =30.18.证明:∵∠1+∠B +∠ACB =180°,∠2+∠D +∠CAD =180°,∠B =∠D ,∠1=∠2,∴∠ACB =∠CAD ,∴AD ∥BC . ∵∠1=∠2, ∴AB ∥CD ,∴四边形ABCD 是平行四边形. 19.证明:∵ED ∥BC ,EF ∥AC , ∴四边形EFCD 是平行四边形, ∴ED =CF .∵BD 平分∠ABC ,∴∠EBD =∠DBC . ∵ED ∥BC ,∴∠EDB =∠DBC , ∴∠EBD =∠EDB , ∴BE =ED ,∴BE =CF .20.解:(1)证明:∵M ,N 分别是AB ,AC 的中点,∴MN ∥BC ,MN =12BC .∵CD =13BD ,∴CD =12BC ,∴MN =CD .(2)连接CM ,由(1)知MN ∥CD ,MN =CD ,∴四边形MCDN 是平行四边形,∴DN =CM .∵∠ACB =90°,M 是AB 的中点,∴CM =12AB ,∴DN =12AB =3.21.解:设这个多边形的边数为n .依题意,得(n -2)×180°+360°=1800°,解得n=10.因此,这个多边形是十边形.22.解:(1)证明:∵DE∥AC,DF∥AB,∴四边形AEDF是平行四边形,∴DE=AF.∵AB=AC,∴∠B=∠C.∵DF∥AB,∴∠CDF=∠B,∴∠CDF=∠C,∴DF=CF,∴DE+DF=AF+CF=AC.(2)当点D在边BC的延长线上时,DE-DF=AC;当点D在边BC的反向延长线上时,DF-DE=AC.(3)2或10。

2021-2022学年北师大版八年级数学下册第六章平行四边形章节练习试题(精选)

2021-2022学年北师大版八年级数学下册第六章平行四边形章节练习试题(精选)

北师大版八年级数学下册第六章平行四边形章节练习考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,小明从点A出发沿直线前进10m到达点B,向左转30,后又沿直线前进10m到达点C,再向左转30°后沿直线前进10m到达点...照这样走下去,小明第一次回到出发点A,一共走了()米.A.80 B.100 C.120 D.1402、在平行四边形ABCD中,∠A=30°,那么∠B与∠A的度数之比为()A.4:1 B.5:1 C.6:1 D.7:13、若一个正多边形每个外角都是36°,则这个正多边形的边数为()A.8 B.9 C.10 D.114、如图,求∠A+∠B+∠C+∠D+∠E+∠F=()A.90°B.130°C.180°D.360°5、如图,在△ABC中,点E,F分别是AB,AC的中点.已知∠B=55°,则∠AEF的度数是()A.75°B.60°C.55°D.40°6、如图,一张含有80°的三角形纸片,剪去这个80°角后,得到一个四边形,则∠1+∠2的度数是()A.200°B.240°C.260°D.300°7、如图,点O是▱ABCD的对称中心,l是过点O的任意一条直线,它将平行四边形分成甲、乙两部分,在这个图形上做扎针试验,则针头扎在甲、乙两个区域的可能性的大小是()A .甲大B .乙大C .一样大D .无法确定8、一个多边形每一个外角都等于30°,则这个多边形的边数为( )A .11B .12C .13D .149、如图,在四边形ABCD 中,AB ∥CD ,添加下列一个条件后,一定能判定四边形ABCD 是平行四边形的是( )A .AB BC = B .AD BC = C .A C ∠=∠ D .180B C ∠+=︒10、如图所示,在 ABCD 中,对角线AC ,BD 相交于点O ,过点O 的直线EF 分别交AD 于点E ,BC于点F , 35AOE BOF S S ==, ,则 ABCD 的面积为( )A .24B .32C .40D .48第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、若正n 边形的每个内角都等于120°,则这个正n 边形的边数为________.2、点D 、E 、F 分别是△ABC 三边的中点,△ABC 的周长为24,则△DEF 的周长为______.3、已知一个正多边形的内角和为1080°,那么从它的一个顶点出发可以引 _____条对角线.4、如图,四边形ABCD 中,AB ∥CD ,AD ∥BC ,且∠BAD 、∠ADC 的角平分线AE 、DF 分别交BC 于点E 、F .若EF =2,AB =5,则AD 的长为_______.5、如图,四边形ABCD 中,∠C =58°,∠B =∠D =90°,E 、F 分别是BC 、DC 上的点,当△AEF 的周长最小时,∠EAF 的度数为_____.三、解答题(5小题,每小题10分,共计50分)1、四边形ABCD 中,BAD ∠的平分线与边BC 交于点E ;ADC ∠的平分线交直线AE 于点O .(1)若点O 在四边形ABCD 的内部.①如图1,若AD BC ∥,50B ∠=︒,70C ∠=︒,则DOE ∠=______.②如图2,试探索B 、C ∠、DOE ∠之间的数量关系,并将你的探索过程写下来.(2)如图3,若点O 在四边形ABCD 的外部,请探究B 、C ∠、DOE ∠之间的数量关系,并说明理由.2、如果一个多边形的各边都相等且各角也都相等,那么这样的多边形叫做正多边形,如下图所示就是一组正多边形.(1)观察上面每个正多边形中的∠a,填写下表:(2)是否存在正n边形使得∠a=12°?若存在,请求出n的值;若不存在,请说明理由.3、(问题情景)课外兴趣小组活动时,老师提出了如下问题:如图1,在△ABC中,若AB=10,AC=6,求BC边上的中线AD的取值范围.小明在组内经过合作交流,得到了如下的解决方法:延长AD至点E,使DE=AD,连接BE.请根据小明的方法思考:(1)由已知和作图能得到△ADC ≌△EDB ,其依据是 ,请选择正确的一项.A .SSS ;B .SAS ;C .AAS ;D .HL(2)由“三角形的三边关系”可求得AD 的取值范围是 .(初步运用)(3)如图2,在四边形ABCD 中,AB ∥CD ,点E 是BC 的中点,若AE 是∠BAD 的平分线,试猜想线段AB ,AD ,DC 之间的数量关系,并证明你的猜想.(灵活运用)(4)如图3,AD 是△ABC 的中线,BE 交AC 于E ,交AD 于F ,且AE =EF ,若EF =5,EC =3,求线段BF 的长;(拓展延伸)(5)如图4,CB 是△AEC 的中线,CD 是△ABC 的中线,且AB =AC ,下列四个选项中:A .∠ACD =∠BCDB .CE =2CDC .∠BCD =∠BCE D .CD =CB所有正确选项的序号是 .4、已知:如图,在ABC 中,AD DB =,BE EC =,AF FC =.求证:AE DF、互相平分.5、若一个多边形的内角和与外角的和是1440°,求这个多边形的边数.-参考答案-一、单选题1、C【分析】由小明第一次回到出发点A,则小明走过的路程刚好是一个多边形的周长,由多边形的外角和为360︒,每次的转向的角度的大小刚好是多边形的一个外角,则先求解多边形的边数,从而可得答案. 【详解】解:由360=12,30可得:小明第一次回到出发点A,一个要走1210=120⨯米,故选C【点睛】本题考查的是多边形的外角和的应用,掌握“由多边形的外角和为360︒得到一共要走12个10米”是解本题的关键.2、B【分析】根据平行四边形的性质先求出∠B的度数,即可得到答案.【详解】解:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠B=180°-∠A=150°,∴∠B:∠A=5:1,故选B.【点睛】本题主要考查了平行四边形的性质,解题的关键在于能够熟练掌握平行四边形邻角互补.3、C【分析】设这个正多边形的边数为n,正n边形有n个外角,外角和为360°,那么边数n=360°÷一个外角的度数.【详解】解:这个正多边形的边数为n,∵正n边形每个外角都是36°,∴n=360°÷36°=10.故选C.【点睛】本题考查的是正多边形的外角和,掌握正多边形的外角和是360度是解题的关键.4、D【分析】连接AD,由三角形内角和外角的关系可知∠E+∠F=∠ADE+∠DAF,由四边形内角和是360°,即可求∠BAF+∠B+∠C+∠CDE+∠E+∠F=360°.【详解】解如图,连接AD,∵∠1=∠E+∠F,∠1=∠ADE+∠DAF,∴∠E+∠F=∠ADE+∠DAF,∵∠BAD+∠B+∠C+∠CDA=360°,∴∠BAF+∠B+∠C+∠CDE+∠E+∠F=360°.∴∠BAF+∠B+∠C+∠CDE+∠E+∠F=360°.故选:D.【点睛】本题考查三角形的外角的性质、四边形内角和定理等知识,解题的关键是灵活应用所学知识解决问题,属于基础题.5、C【分析】证EF是△ABC的中位线,得EF∥BC,再由平行线的性质即可求解.【详解】解:∵点E,F分别是AB,AC的中点,∴EF是△ABC的中位线,∴EF∥BC,∴∠AEF =∠B =55°,故选:C .【点睛】本题考查了三角形中位线定理以及平行线的性质;熟练掌握三角形中位线定理,证出EF ∥BC 是解题的关键.6、C【分析】三角形纸片中,剪去其中一个80°的角后变成四边形,则根据多边形的内角和等于360度即可求得∠1+∠2的度数.【详解】解:根据三角形的内角和定理得:四边形除去∠1,∠2后的两角的度数为180°-80°=100°,则根据四边形的内角和定理得:∠1+∠2=360°-100°=260°.故选:C .【点睛】本题主要考查四边形的内角和,解题的关键是掌握四边形的内角和为360°及三角形的内角和为180°.7、C【分析】如图,连接,,AC BD 记过O 的直线交,AD BC 于,,N H 则O 为,AC BD 的中点,,,,OA OC OB OD AD BC ∥再证明,ANO CHO ≌ ,,DNO BHO AOB COD ≌≌ 可得,ANHB CHND S S 四边形四边形 从而可得答案.【详解】解:如图,连接,,AC BD 记过O 的直线交,AD BC 于,,N HO 为▱ABCD 的对称中心,O ∴为,AC BD 的中点,,,,OA OC OB OD AD BC ∥,,NAO HCO ANO CHO,ANO CHO ≌同理:,,DNO BHO AOB COD ≌≌,ANHB CHND S S 四边形四边形所以针头扎在甲、乙两个区域的可能性的大小是一样的,故选C【点睛】本题考查的是全等三角形的判定与性质,平行四边形的性质,随机事件发生的可能性的大小,几何概率的意义,理解几何概率的意义是解本题的关键.8、B【分析】根据一个多边形每一个外角都等于30°,多边形外角和360°,根据多边形外角和的性质求解即可.【详解】解:∵一个多边形每一个外角都等于30°,多边形外角和360°,∴多边形的边数为3603012︒÷︒=.故选B .【点睛】此题考查了多边形的外角和,关键是掌握多边形的外角和为360°.9、C【分析】由平行线的性质得180A D +=︒∠∠,再由A C ∠=∠,得180C D ∠+∠=︒,证出//AD BC ,即可得出结论.【详解】解:一定能判定四边形ABCD 是平行四边形的是A C ∠=∠,理由如下://AB CD ,180A D ∴∠+∠=︒,A C ∠=∠,180C D ∴∠+∠=︒,//AD BC ∴,又//AB CD ,∴四边形ABCD 是平行四边形,故选:C .【点睛】本题考查了平行四边形的判定,解题的关键是熟练掌握平行四边形的判定,证明出//AD BC .10、B【分析】先根据平行四边形的性质可得,OB OD AD BC =,再根据三角形全等的判定定理证出DOE BOF ≅,根据全等三角形的性质可得5DOE BOF S S ==,从而可得8AOD S =△,然后根据平行四边形的性质即可得.【详解】解:∵四边形ABCD 是平行四边形,,OB OD AD BC ∴=,EDO FBO ∴∠=∠,在DOE △和BOF 中,∵EDO FBO OD OB DOE BOF ∠=∠⎧⎪=⎨⎪∠=∠⎩, ()DOE BOF ASA ∴≅,5DOE BOFS S ∴==, 358AOD AOE DOE S S S ∴=+=+=,则ABCD 的面积为44832AOD S=⨯=,故选:B .【点睛】 本题考查了平行四边形的性质、三角形全等的判定定理与性质等知识点,熟练掌握平行四边形的性质是解题关键.二、填空题1、6【分析】多边形的内角和可以表示成(2)180n -⋅︒,因为所给多边形的每个内角均相等,故又可表示成120n ︒,列方程可求解.解:设所求正n 边形边数为n ,则120(2)180n n ︒=-⋅︒,解得6n =,故答案是:6.【点睛】本题考查根据多边形的内角和计算公式求多边形的边数,解题的关键是要会根据公式进行正确运算、变形和数据处理.2、12【分析】据D 、E 、F 分别是AB 、AC 、BC 的中点,可以判断DF 、FE 、DE 为三角形中位线,利用中位线定理求出DF 、FE 、DE 与AB 、BC 、CA 的长度关系即可解答.【详解】解:∵如图所示,D 、E 、F 分别是AB 、BC 、AC 的中点,∴ED 、FE 、DF 为△ABC 中位线,∴DF 12=BC ,FE 12=AB ,DE 12=AC , ∴△DEF 的周长=DF +FE +DE 12=BC 12+AB 12+AC 12=(AB +BC +CA )12=⨯24=12.故答案为:12.本题考查了三角形的中位线定理,根据中点判断出中位线,再利用中位线定理是解题的基本思路.3、5【分析】n解方程求解,n结合从n边形的一个顶点出发设这个正多边形有n条边,再建立方程21801080,n-条对角线,从而可得答案.可以引()3【详解】解:设这个正多边形有n条边,则n21801080,∴-=26,nn=解得:8,所以从一个正八边形的一个顶点出发可以引835-=条对角线,故答案为:5【点睛】本题考查的是正多边形的内角和定理的应用,正多边形的对角线问题,掌握“多边形的内角和公式为()2180,n-条对角线”是解本题的关键.n-︒从n边形的一个顶点出发可以引()34、8【分析】根据题意由平行线的性质得到∠ADF=∠DFC,再由DF平分∠ADC,得∠ADF=∠CDF,则∠DFC=∠FDC,然后由等腰三角形的判定得到CF=CD,同理BE=AB,则四边形ABCD是平行四边形,最后由平行四边形的性质得到AB=CD,AD=BC,即可得到结论.【详解】解:∵AD∥BC,∴∠ADF=∠DFC,∵DF平分∠ADC,∴∠ADF=∠CDF,∴∠DFC=∠CDF,∴CF=CD,同理BE=AB,∵AB∥CD,AD∥BC,∴四边形ABCD是平行四边形,∴AB=CD,AD=BC,∴AB=BE=CF=CD=5,∴BC=BE+CF﹣EF=5+5﹣2=8,∴AD=BC=8,故答案为:8.【点睛】本题考查等腰三角形的判定和性质和平行线的性质以及平行四边形的性质等知识,解答本题的关键是熟练掌握平行线的性质以及平行四边形的性质.5、64°【分析】根据要使△AEF的周长最小,即利用点的对称,使三角形的三边在同一直线上,作出A关于BC和CD 的对称点A′,A″,即可得出∠AA′E+∠A″=∠HAA′=58°,进而得出∠AEF+∠AFE=2(∠AA′E+∠A″),即可得出答案.【详解】解:作A关于BC和CD的对称点A′,A″,连接A′A″,交BC于E,交CD于F,则A′A″即为△AEF的周长最小值.作DA延长线AH,∵∠C=58°,∴∠ABC=∠ADC=90°,∴∠DAB=360°-∠ABC=∠ADC -∠C=122°,∴∠HAA′=58°,∴∠AA′E+∠A″=∠HAA′=58°,∵∠EA′A=∠EAA′,∠FAD=∠A″,∴∠EAA′+∠A″AF=58°,∵∠AEF=∠FAD+∠A″,∠AFE=∠EA′A+∠EAA′,∴∠AEF+∠AFE+∠AFE=2(∠AA′E+∠A″)=116°∴∠EAF=180°-∠AEF-∠AFE=64°,故答案为:64°.【点睛】本题考查平面内最短路线问题求法、三角形的外角的性质和垂直平分线的性质,根据已知得出E,F 的位置是解题关键.三、解答题1、(1)120°;(2)1118022DOE B C ︒∠=-∠-∠;(3)1122DOE B C ∠=∠+∠ 【分析】(1)①根据平行线的性质和角平分线的定义可求∠BAE ,∠CDO ,再根据三角形外角的性质可求∠AEC ,再根据四边形内角和等于360°可求∠DOE 的度数;②根据三角形外角的性质和角平分线的定义可得∠DOE 和∠BAD 、∠ADC 的关系,再根据四边形内角和等于360°可求∠B 、∠C 、∠DOE 之间的数量关系;(2)根据四边形和三角形的内角和得到∠BAD +∠ADC =360°-∠B -∠C ,∠EAD +∠ADO =180°-∠DOE ,根据角平分线的定义得到∠BAD =2∠EAD ,∠ADC =2∠ADO ,于是得到结论.【详解】解:(1)①∵//AD BC∴180,180B BAD C ADC ∠+∠=∠+∠=又∵∠B =50°,∠C =70°∴∠BAD =130°,∠ADC =110°∵AE 、DO 分别平分∠BAD 、∠ADC∴∠BAE =65°,∠ODC =55°∴∠AEC =115°∴∠DOE =360°-115°-70°-55°=120°故答案为:120° ②1118022DOE B C ︒∠=-∠-∠,理由如下: AE ∵平分BAD ∠12DAE BAD ∴∠=∠ DO 平分ADC ∠12ADO ADC ∠= DAE ADO ∴∠+∠ 1122BAD ADC =∠+()12BAD ADC =∠+∠360B C BAD ADC ︒∠+∠+∠+∠=360BAD ADC B C ︒∴∠+∠=-∠-∠DAE ADO ∴∠+∠ ()13602B C ︒=-∠-∠1118022B C ︒=-∠-∠ ()180AOD DAE ADO ︒∴∠=-∠+∠1122B C =∠+∠ 180DOE AOD ︒∴∠=-∠1118022B C ︒=-∠-∠ 即1118022DOE B C ︒∠=-∠-∠ (2)1122DOE B C ∠=∠+∠,理由如下: AE ∵平分BAD ∠12DAE BAD ∴∠=∠ DO 平分ADC ∠12ADO ADC ∠= DAE ADO ∴∠+∠ 1122BAD ADC =∠+ ()12BAD ADC =∠+∠ 360B C BAD ADC ︒∠+∠+∠+∠=360BAD ADC B C ︒∴∠+∠=-∠-∠DAE ADO ∴∠+∠ ()13602B C ︒=-∠-∠ 1118022B C ︒=-∠-∠ ()180AOD DAE ADO ︒∴∠=-∠+∠1122B C =∠+∠ 即:1122DOE B C ∠=∠+∠. 【点睛】本题考查多边形内角与外角平行线的性质,角平分线的定义,关键是熟练掌握四边形内角和等于360°,这是解题的重点.2、(1)18045,3630,(),n︒︒︒︒;(2)存在,15 【分析】(1)根据正多边形的外角和,求得内角的度数,根据等腰三角形性质和三角形内角和定理即可求得α∠的度数;(2)根据(1)的结论,将12α∠=︒代入求得n 的值即可【详解】解:(1)正多边形的每一个外角都相等,且等于360n ︒ 则正多边形的每个内角为360180n︒︒-, 根据题意,正多边形的每一条边都相等,则α∠所在的等腰三角形的顶角为:360180n ︒︒-,另一个底角为α∠,1360180=1801802n n α⎡︒⎤⎛⎫⎛⎫∴∠︒-︒-=︒ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦ 当4n =时,45α∠=︒当5n =时,α∠=36︒当6n =时,α∠=30 故答案为:18045,3630,(),n ︒︒︒︒(2)存在.设存在正n 边形使得12a ∠=︒, ∴180()12n︒=︒,解得15n =. 【点睛】本题考查了正多边形的外角和与内角的关系,等腰三角形的性质和三角形内角和定理,根据正多边形的外角与内角互补求得内角是解题的关键.3、(1)B ,(2)2<AD <8,(3)AD =AB+DC ;证明见解析,(4)8(5)B 、C【分析】(1)根据全等三角形的判定定理解答;(2)根据三角形的三边关系计算;(3)延长AE 交DC 延长线于点M ,类似(1)证明三角形全等,根据全等三角形的性质解答;(4)延长AD 到M ,使AD =DM ,连接BM ,证明△ADC ≌△MDB ,根据全等三角形的性质解答;(5)根据三角形的中线的概念、等腰三角形的性质、三角形的中位线定理以及全等三角形的判定和性质进行分析判断.【详解】解:(1)在△ADC 和△EDB 中,CD BD CDA BDE AD DE =⎧⎪∠=∠⎨⎪=⎩, ∴△ADC ≌△EDB (SAS ),故选:B ;(2)由(1)得:△ADC ≌△EDB ,∴AC =BE =6,在△ABE 中,AB ﹣BE <AE <AB +BE ,即10﹣6<2AD <10+6,∴2<AD <8,故答案为:2<AD <8;(3)AD =AB+DC ;延长AE 交DC 延长线于点N ,∵点E 是BC 的中点,,∴CE =BE ,∵AB ∥CD ,∴∠NCE =∠ABE ,∵在△NCE 和△ABE 中,EC EB CEN BEA NCE ABE =⎧⎪∠=∠⎨⎪∠=∠⎩, ∴△NCE ≌△ABE (SAS ),∴CN =AB ,∠BAE =∠N ,∵AE 是∠BAD 的平分线,∴∠BAE =∠DAE ,,∴∠EAD =∠N ,∴AD =DN =AB+DC ;(4)延长AD 到M ,使AD =DM ,连接BM ,如图②所示:∵AE =EF .EF =5,∴AC =AE +EC =5+3=8,∵AD 是△ABC 中线,∴CD =BD ,∵在△ADC 和△MDB 中,DC DB ADC MDB DA DM =⎧⎪∠=∠⎨⎪=⎩, ∴△ADC ≌△MDB (SAS ),∴BM =AC ,∠CAD =∠M ,∵AE =EF ,∴∠CAD =∠AFE ,∵∠AFE =∠BFD ,∴∠BFD =∠CAD =∠M ,∴BF =BM =AC =8;(5)取CE的中点F,连接BF.∵AB=BE,CF=EF,∴BF∥AC,BF=0.5AC.∴∠CBF=∠ACB.∵AC=AB,∴∠ACB=∠ABC.∴∠CBF=∠DBC.又∵CD是三角形ABC的中线,∴AC=AB=2BD.∴BD=BF.又∵BC=BC,∴△BCD≌△BCF,∴CF=CD.∠BCD=∠BCE.∴CE=2CD.故B、C选项正确.若要∠ACD=∠BCE,则需∠ACB=∠DCE,又∠ACB=∠ABC=∠BCE+∠E=∠DCE,则需∠E=∠BCD.根据全等,得∠BCD=∠BCE,则需∠E=∠BCE,则需BC=BE,显然不成立,故A选项错误;若要CD=CB,则需∠A=∠BCD,也不一定成立,故D选项错误;故答案为:B 、C .【点睛】本题以阅读为背景考查了三角形的全等和四边形等知识,解题的关键是通过辅助线构造全等三角形.4、证明见解析【分析】连接,DE EF ,由三角形中位线定理可得DE AC ∥,EF AB ∥,可证四边形ADEF 是平行四边形,由平行四边形的性质可得AE ,DF 互相平分;【详解】证明:连接,DE EF ,∵AD =DB ,BE =EC ,∴DE AC ∥,∵BE =EC ,AF =FC ,∴EF AB ∥,∴四边形ADEF是平行四边形,∴AE,DF互相平分.【点睛】本题考查了平行四边形的性质判定和性质及三角形中位线定理,灵活运用这些性质是解题的关键.5、这个多边形的边数为8【分析】设这个多边形的边数为n,根据多边形内角和及外角和可进行求解.【详解】解:设这个多边形的边数为n,由题意得:()21803601440n-⨯︒+︒=︒,解得:8n=,∴这个多边形的边数为8.【点睛】本题主要考查多边形内角和与外角和,熟练掌握多边形的内角和与外角和是解题的关键.。

2021北师大版八年级数学下第六章《平行四边形》常考综合题专练含答案

2021北师大版八年级数学下第六章《平行四边形》常考综合题专练含答案

北师大版八年级下册第六章《平行四边形》常考综合题专练(一)1.如图1,在平行四边形ABCD中,过点A作AE⊥BC交BC于点E,连接ED,且ED平分∠AEC.(1)求证:AE=BC;(2)如图2,过点C作CF⊥DE交DE于点F,连接AF,BF,猜想△ABF的形状并证明.2.如图,△ABC中,D是AB边上任意一点,F是AC中点,过点C作CE∥AB交DF的延长线于点E,连接AE,CD.(1)求证:四边形ADCE是平行四边形;(2)若∠B=30°,∠CAB=45°,AC=,CD=BD,求AD的长.3.如图,在▱ABCD中,∠BAD的平分线与BC的延长线交于点E,与DC交于点F.(1)求证:CD=BE;(2)若点F为DC的中点,DG⊥AE于G,且DG=1,AB=4,求AE的长.4.【教材呈现】如图是华师版九年级上册数学教材第80页的第3题,请完成这道题的证明.【结论应用】(1)如图②,在上边题目的条件下,延长图①中的线段AD交NM的延长线于点E,延长线段BC交NM的延长线于点F.求证:∠AEN=∠F.(2)若(1)中的∠A+∠ABC=122°,则∠F的大小为.5.如图,▱ABCD的对角线AC、BD交于点O,M,N分别是AB、AD的中点.(1)求证:四边形AMON是平行四边形;(2)若AC=6,BD=4,∠AOB=90°,求四边形AMON的周长.6.已知:如图所示,在平行四边形ABCD中,DE、BF分别是∠ADC和∠ABC的角平分线,交AB、CD于点E、F,连接BD、EF.(1)求证:BD、EF互相平分;(2)若∠A=60°,AE=2EB,AD=4,求线段BD的长.7.如图,在平行四边形ABCD中,M、N分别是AD,BC的中点,连接AN、CM.(1)求证:△ABN≌△CDM;(2)连接MN,过点C作CE⊥MN于点E,连接DN,交OM于点O交CE于点P,若∠AND=90°,PE=1,∠1=∠2,求AN的长.8.已知:在▱ABCD中,点E是边AD上一点,点F是线段AE的中点,连接BF并延长BF至点G,使FG=BF,连接DG、EG.(1)如图1,求证:四边形CDGE是平行四边形;(2)如图2,当DA平分∠CDG时,在不添加任何辅助线的情况下,请直接写出图2中与AB相等的线段(AB除外).9.如图,在▱ABCD中,点E、F分别在BC、AD上,AC与EF相交于点O,且AO=CO.(1)求证:△AOF≌△COE;(2)连接AE、CF,则四边形AECF(填“是”或“不是”)平行四边形.10.如图,已知平行四边形ABCD,过A作AM⊥BC于M,交BD于E,过C作CN⊥AD于N,交BD于F,连接AF、CE.(1)求证:BM=DN;(2)求证:四边形AECF为平行四边形.参考答案1.(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,又∵AE⊥BC,∴∠AEC=90°,又∵ED平分∠AEC,∴∠ADE=∠CED=45°,∴∠AED=∠ADE,∴AE=AD,∴AE=BC;(2)△ABF是等腰直角三角形,证明:∵CF⊥DE,∴∠CFE=90°,又∵∠CEF=45°,∴∠ECF=45°,∴∠FEC=∠FCE=∠AEF,∴EF=CF,在△AEF和△BCF中,,∴△AEF≌△BCF(SAS),∴AF=BF,∠AFE=∠BFC,∴∠AFE﹣∠BFE=∠BFC﹣∠BFE,即∠AFB=∠EFC=90°,∴△ABF是等腰直角三角形.2.(1)证明:∵AB∥CE,∴∠CAD=∠ACE,∠ADE=∠CED.∵F是AC中点,∴AF=CF.在△AFD与△CFE中,.∴△AFD≌△CFE(AAS),∴AD=CE,∴四边形ADCE是平行四边形;(2)解:过点C作CG⊥AB于点G.∵CD=BD,∠B=30°,∴∠DCB=∠B=30°,∴∠CDA=60°.在△ACG中,∠AGC=90°,,∠CAG=45°,∴.在△CGD中,∠DGC=90°,∠CDG=60°,,∴GD=1,∴.3.(1)证明:∵AE为∠BAD的平分线,∴∠DAE=∠BAE.∵四边形ABCD是平行四边形,∴AD∥BC,CD=AB.∴∠DAE=∠E.∴∠BAE=∠E.∴AB=BE.∴CD=BE.(2)解:∵四边形ABCD是平行四边形,∴CD∥AB,∴∠BAF=∠DFA.∴∠DAF=∠DFA.∴DA=DF.∵F为DC的中点,AB=4,∴DF=CF=DA=2.∵DG⊥AE,DG=1,∴AG=GF.∴AG=.∴AF=2AG=2.在△ADF和△ECF中,,∴△ADF≌△ECF(AAS).∴AF=EF,∴AE=2AF=4.4.【教材呈现】证明:∵P是BD的中点,M是DC的中点,∴PM=BC,同理,PN=AD,∵AD=BC,∴PM=PN,∴∠PMN=∠PNM,【结论应用】(1)证明:∵P是BD的中点,M是DC的中点,∴PM∥BC,∴∠PMN=∠F,同理,∠PNM=∠AEN,∵∠PMN=∠PNM,∴∠AEN=∠F;(2)解:∵PN∥AD,∴∠PNB=∠A,∵∠DPN是△PNB的一个外角,∴∠DPN=∠PNB+∠ABD=∠A+∠ABD,∵PM∥BC,∴∠MPD=∠DBC,∴∠MPN=∠DPN+∠MPD=∠A+∠ABD+∠DBC=∠A+∠ABC=122°,∵PM=PN,∴∠PMN=×(180°﹣122°)=29°,∴∠F=∠PMN=29°,故答案为:29°.5.(1)根据平行四边形的性质得到AO=OC,BO=OD,AB∥CD,AD∥BC,由三角形的中位线的性质得到MO∥BC,NO∥CD,∴MO∥AN,NO∥AM,∴四边形AMON是平行四边形;(2)解:∵AC=6,BD=4,∴AO=3,BO=2,∵∠AOB=90°,∴AB===,∴OM=AM=MB=,∴NO=AN=,四边形AMON的周长=AM+OM+AN+NO=2.6.(1)证明:∵四边形ABCD是平行四边形,∴CD∥AB,CD=AB,AD=BC,∵DE、BF分别是∠ADC和∠ABC的角平分线,∴∠ADE=∠CDE,∠CBF=∠ABF,∵CD∥AB,∴∠AED=∠CDE,∠CFB=∠ABF,∴∠AED=∠ADE,∠CFB=∠CBF,∴AE=AD,CF=CB,∴AE=CF,∴AB﹣AE=CD﹣CF即BE=DF,∵DF∥BE,∴四边形DEBF是平行四边形.∴BD、EF互相平分;(2)∵∠A=60°,AE=AD,∴△ADE是等边三角形,∵AD=4,∴DE=AE=4,∵AE=2EB,∴BE=GE=2,∴BG=4,过D点作DG⊥AB于点G,在Rt△ADG中,AD=4,∠A=60°,∴AG=AD=2,∴DG==2,∴BD===2.7.(1)证明:∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,∠B=∠CDM,∵M、N分别是AD,BC的中点,∴BN=DM,在△ABN和△CDM中,,∴△ABN≌△CDM(SAS);(2)解:∵M是AD的中点,∠AND=90°,∴MN=MD=AD,∴∠1=∠MND,∵AD∥BC,∴∠1=∠CND,∵∠1=∠2,∴∠MND=∠CND=∠2,∴PN=PC,∵CE⊥MN,∴∠CEN=90°,∴∠2=∠PNE=30°,∵PE=1,∴PN=2PE=2,∴CE=PC+PE=3,∴CN==,∵N是BC的中点,∴AD=BC=CN=,∴AN=AD×sin∠1=4=.8.解:(1)∵点F是线段AE的中点,∴AF=EF,在△ABF和△EGF中,,∴△ABF≌△EGF(SAS),∴AB=GE,∠ABF=∠FGE,∴AB∥GE,又∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴GE=CD,GE∥DC,∴四边形CDGE是平行四边形;(2)图2中与AB相等的线段为:GE,GD,DC,CE.理由:∵DA平分∠CDG,∴∠CDE=∠GDE,由(1)可得,GE∥CD,∴∠CDE=∠GED,∴∠GDE=∠GED,∴GE=GD,又∵四边形CDGE是平行四边形,∴四边形CDGE是菱形,∴CD=DG=GE=CE,又∵AB=CD,∴图2中与AB相等的线段为:GE,GD,DC,CE.9.(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠OAF=∠OCE,在△AOF和△COE中,,∴△AOF≌△COE(ASA)(2)解:四边形AECF是平行四边形,理由如下:由(1)得:△AOF≌△COE,∴FO=EO,又∵AO=CO,∴四边形AECF是平行四边形;故答案为:是.10.证明:(1)∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∵AM⊥BC,CN⊥AD,∴AM∥CN,∴四边形AMCN为平行四边形,∴CM=AN,∴BC﹣CM=AD﹣AN,即BM=DN;(2)∵AD∥BC,∴∠ADB=∠CBD,∵AM⊥BC,CN⊥AD,∴∠EMB=∠FND=90°,在△BME和△DNF中,,∴△BME≌△DBF(ASA),∴EM=DF,∵四边形AMCN为平行四边形,∴AM=CN,AM∥CN,∴AE=CF,又∵AE∥CF,∴四边形AECF为平行四边形.。

北师大版2020八年级数学下册《第6章 平行四边形 》单元练习试题【含答案】

北师大版2020八年级数学下册《第6章 平行四边形 》单元练习试题【含答案】

∵AC=8,
∴AO=4,
∵AB=6,AC⊥AB,
∴BO=

=2 ,
∴BD=2BO=4 . 19.解:(1)∵四边形 ABCD 是平行四边形,
∴OA=OC, ∵点 E 为 OA 中点,AD=AO,AD=2 ,
∴OE= ,OC=2 ,
∴CE=OE+OC=3 ,
∵DE⊥CD,CD=6,
∴DE=
=3;
(2)证明:取 AD 的中点 F,连接 OF, ∵AD=AO,点 E 为 OA 中点, ∴AE=AF, 在△ADE 和△AOF 中,
三.解答题(共 7 小题) 16.如图,在平行四边形 ABCD 中,点 E 为 AD 的中点,延长 CE 交 BA 的延长线于点 F.
(1)求证:AB=AF; (2)若 BC=2AB,∠BCD=100°,求∠ABE 的度数.
17.已知:如图,在▱ABCD 中,点 E、F 是对角线 AC 上的两点,且 AE=CF.求证: BF∥DE.
8,CD=10,点 F、M、N 分别是 BC、BD、CE 的中点,则 MN 的长为( )
A.
B.6
C.4
D.3
10.如图,正五边形 ABCDE 绕点 A 顺时针旋转后得到正五边形 AB′C′D′E′,旋转角
为 α (0°<α<90°),若 DE⊥B′C′,则∠α 为( )
A.36°
B.54°
C.60°
22.如图,在平行四边形 ABCD 中,点 E 在 AD 上,连接 BE、CE,EB 平分∠AEC. (1)如图 1,判断△BCE 的形状,并说明理由; (2)如图 2,∠A=90°,BC=5,AE=1,求线段 BE 的长.
一.选择题(共 10 小题) 1. D. 2. A. 3. B. 4. D. 5. B. 6. D. 7. D. 8. A. 9. A. 10. B. 二.填空题(共 5 小题) 11. .

2022年北师大版八年级数学下册第六章平行四边形综合练习试题(含答案解析)

2022年北师大版八年级数学下册第六章平行四边形综合练习试题(含答案解析)

北师大版八年级数学下册第六章平行四边形综合练习考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,四边形ABCD中,AD=BC,点P是对角线BD的中点,E、F分别是AB、CD的中点,若∠EPF =130°,则∠PEF的度数为()A.25°B.30°C.35°D.50°2、如图,桐桐从A点出发,前进3m到点B处后向右转20°,再前进3m到点C处后又向右转20°,…,这样一直走下去,她第一次回到出发点A时,一共走了()A.100m B.90m C.54m D.60m3、若一个多边形的外角和是它内角和的23,那么这个多边形是()A.三角形B.四边形C.五边形D.六边形4、如图,已知四边形ABCD和四边形BCEF均为平行四边形,∠D=60°,连接AF,并延长交BE于点P,若AP⊥BE,AB=3,BC=2,AF=1,则BE的长为()A.5 B.C.D.5、如图,平行四边形ABCD的周长为36,对角线AC,BD相交于点O,点E是CD的中点,BD=12,则△DOE的周长是()A.12 B.15 C.18 D.246、一个正多边形的每个外角都等于45°,则这个多边形的边数和对角线的条数分别是()A.8,20 B.10,35 C.6,9 D.5,57、一个多边形每个外角都等于36°,则这个多边形是几边形()A.7 B.8 C.9 D.108、如图,平行四边形ABCD的周长为16,AC、BD相交于点O,OE⊥AC交AD于E,则△DCE的周长为()A.4 B.6 C.8 D.109、如图,在△ABC 中,∠ABC =90°,AC =18,BC =14,D ,E 分别是AB ,AC 的中点,连接DE ,BE ,点M 在CB 的延长线上,连接DM ,若∠MDB =∠A ,则四边形DMBE 的周长为( )A .16B .24C .32D .4010、如果一个多边形的每个内角都是144°,那么这个多边形的边数是( )A .5B .6C .10D .12第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,将一个正八边形与一个正六边形如图放置,顶点A 、B 、C 、D 四点共线,E 为公共顶点.则∠FEG =_____.2、如图,平行四边形ABCD ,AD =5,AB =8,点A 的坐标为(-3,0)点C 的坐标为______.3、如图,直线MN 过ABCD 的中心点O ,交AD 于点M ,交BC 于点N ,己知4ABCD S ,则S 阴影=______.4、如图,在平面直角坐标系中,等边△ABC的顶点B、C的坐标分别为(2,0),(6,0),点N从A点出发沿AC向C点运动,连接ON交AB于点M.当边AB恰平分线段ON时,则ANAM=___.5、如图,在△ABC中,D,E分别是边AB,AC的中点,∠B=50°.现将△ADE沿DE折叠点A落在三角形所在平面内的点为A1,则∠BDA1的度数为 _____.三、解答题(5小题,每小题10分,共计50分)1、如图.在ABC中,AB BC=.(1)按要求画图.尺规作图作出ABC∠的角平分线(射线)BD.交AC于点E;(2)在(1)的结果下.画图并计算:点F 为BC 的中点.连接EF ,若2BE AC ==,求CEF △的周长.2、如图,在△ABC 中,AD 是BC 边上的中线,△ADC 的周长比△ABD 的周长少6cm ,AB 与AC 的和为18cm ,求AC 的长3、如图,△ABC 为等边三角形,点D 为线段BC 上一点,将线段AD 以点A 为旋转中心顺时针旋转60°得到线段AE ,连接BE ,点D 关于直线BE 的对称点为F ,BE 与DF 交于点G ,连接DE ,EF .(1)求证:∠BDF =30°(2)若∠EFD =45°,AC ,求BD 的长;(3)如图2,在(2)条件下,以点D 为顶点作等腰直角△DMN ,其中DN =MN FM ,点O 为FM 的中点,当△DMN 绕点D 旋转时,求证:EO 的最大值等于BC .4、一个多边形的每个外角为60°,求这个多边形的内角和.5、(2)将图1中的CDE △绕点C 逆时针旋转()090αα︒<<︒,如图若F 是BD 的中点,判断2AE CF =是否仍然成立.如果成立,请证明;如果不成立,请说明理由.2.角的平分线的判定定理:角的内部到角的两边的距离相等的点在角的平分线上.小强证明该定理的步骤如下:已知:如图1,点P 在OC 上,PD OA ⊥于点D ,PE OB ⊥于点E ,且PD PE =.求证:OC 是AOB ∠的平分线.证明:通过测量可得23AOC ∠=︒,23BOC ∠=︒.∴AOC BOC ∠=∠.∴OC 是AOB ∠的平分线.(1)关于定理的证明,下面说法正确的是( )A .小强用到了从特殊到一般的方法证明该定理.B .只要测量一百个到角的两边的距离相等的点都在角的平分线上,就能证明该定理.C .不能只用这个角,还需要用其它角度进行测量验证,该定理的证明才完整.D .小强的方法可以用作猜想,但不属于严谨的推理证明.(2)利用小强的已知和求证,请你证明该定理;(3)如图2,在五边形ABCDE 中,BC CD DE ==,80ABC ∠=︒,110BAE ∠=︒,100AED ∠=︒,在五边形ABCDE 内有一点F ,使得BCF CDF DEF S S S ==.直接写出CFD ∠的度数.-参考答案-一、单选题1、A【分析】 根据三角形的中位线定理,可得11,22PE AD PF BC == ,从而PE =PF ,则有∠PEF =∠PFE ,再根据三角形的内角和定理,即可求解.【详解】解:∵点P 是对角线BD 的中点,E 、F 分别是AB 、CD 的中点, ∴11,22PE AD PF BC == , ∵AD =BC ,∴PE =PF ,∴∠PEF =∠PFE ,∵∠EPF =130°, ∴()1180252PEF EPF ∠=︒-∠=︒ . 故选:A【点睛】本题主要考查了三角形的中位线定理,等腰三角形的性质,三角形的内角和定理,熟练掌握三角形的中位线定理是解题的关键.2、C【分析】根据多边形的外角和及每一个外角的度数,可求出多边形的边数,再根据题意求出正多边形的周长即可.【详解】解:由题意可知,当她第一次回到出发点A时,所走过的图形是一个正多边形,由于正多边形的外角和是360°,且每一个外角为20°,360°÷20°=18,所以它是一个正18边形,因此所走的路程为18×3=54(m),故选:C.【点睛】本题考查了多边形的内角与外角,能熟记多边形的外角和定理是解此题的关键,注意:多边形的外角和=360°.3、C【分析】根据多边形的内角和的计算公式与外角和是360°列出方程,解方程即可.【详解】解:设这个多边形边数是n,则(n−2)×180°×23=360°,解得n=5.故选:C.【点睛】本题考查的是多边形的内角与外角,掌握n边形的内角和为(n−2)•180°、外角和是360°是解题的关键.4、D【分析】过点D 作DH ⊥BC ,交BC 的延长线于点H ,连接BD ,DE ,先证∠DHC =90º,再证四边形ADEF 是平行四边形,最后利用勾股定理得出结果.【详解】过点D 作DH ⊥BC ,交BC 的延长线于点H ,连接BD ,DE ,∵四边形ABCD 是平行四边形,AB =3,∠ADC =60º,∴CD =AB =3,∠DCH =∠ABC =∠ADC =60º,∵DH ⊥BC ,∴∠DHC =90º,∴∠ADC +∠CDH =90°,∴∠CDH =30°,在Rt △DCH 中,CH =12CD =32,DH ,∴222223(2)192BD BH DH =+=++=, ∵四边形BCEF 是平行四边形,∴AD =BC =EF ,AD ∥EF ,∴四边形ADEF 是平行四边形,∴AF ∥DE ,AF =DE =1,∵AF ⊥BE ,∴DE ⊥BE ,∴22219118BE BD DE =-=-=,∴BE =故选D .【点睛】本题考查了平行四边形的判定与性质,勾股定理,解题的关键是熟练运用这些性质解决问题.5、B【分析】根据平行四边形的对边相等和对角线互相平分可得,OB=OD,又因为E点是CD的中点,可得OE是△BCD的中位线,可得OE=12BC,所以易求△DOE的周长.【详解】解:∵▱ABCD的周长为36,∴2(BC+CD)=36,则BC+CD=18.∵四边形ABCD是平行四边形,对角线AC,BD相交于点O,BD=12,∴OD=OB=12BD=6.又∵点E是CD的中点,∴OE是△BCD的中位线,DE=12CD,∴OE=12BC,∴△DOE的周长=OD+OE+DE=12BD+12(BC+CD)=6+9=15,故选:B.【点睛】本题考查了三角形中位线定理、平行四边形的性质.解题时,利用了“平行四边形对角线互相平分”、“平行四边形的对边相等”的性质.6、A【分析】利用多边形的外角和是360度,正多边形的每个外角都是45°,求出这个多边形的边数,再根据一个多边形有()32n n-条对角线,即可算出有多少条对角线.【详解】解:∵正多边形的每个外角都等于45°,∴360÷45=8,∴这个正多边形是正8边形,∴()8832⨯-=20(条),∴这个正多边形的对角线是20条.故选:A.【点睛】本题主要考查的是多边的外角和,多边形的对角线及正多边形的概念和性质,任意多边形的外角和都是360°,和边数无关.正多边形的每个外角都相等.任何多边形的对角线条数为()32n n-条.7、D【分析】根据任何多边形的外角和都是360度,利用360除以外角的度数就可以求出外角和中外角的个数,即多边形的边数.【详解】解:∵360°÷36°=10,∴这个多边形的边数是10.故选D.【点睛】本题考查了多边形内角与外角,外角和的大小与多边形的边数无关,熟练掌握多边形内角与外角是解题关键.8、C【分析】先证明AE=EC,再求解AD+DC=8,再利用三角形的周长公式进行计算即可.【详解】解:∵平行四边形ABCD,∴AD=BC,AB=CD,OA=OC,∵EO⊥AC,∴AE=EC,∵AB+BC+CD+AD=16,∴AD+DC=8,∴△DCE的周长是:CD+DE+CE=AE+DE+CD=AD+CD=8,故选:C.【点睛】本题考查的是平行四边形性质,线段垂直平分线的性质,证明AE=EC是解本题关键.9、C【分析】BC,根据平行线的性由中点的定义可得AE=CE,AD=BD,根据三角形中位线的性质可得DE//BC,DE=12质可得∠ADE=∠ABC=90°,利用ASA可证明△MBD≌△EDA,可得MD=AE,DE=MB,即可证明四边形DMBE是平行四边形,可得MD=BE,进而可得四边形DMBE的周长为2DE+2MD=BC+AC,即可得答案.【详解】∵D,E分别是AB,AC的中点,∴AE =CE ,AD =BD ,DE 为△ABC 的中位线,∴DE //BC ,DE =12BC ,∵∠ABC =90°,∴∠ADE =∠ABC =90°,在△MBD 和△EDA 中,90MDB A BD AD MBD ADE ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩, ∴△MBD ≌△EDA ,∴MD =AE ,DE =MB ,∵DE //MB ,∴四边形DMBE 是平行四边形,∴MD =BE ,∵AC =18,BC =14,∴四边形DMBE 的周长=2DE +2MD =BC +AC =18+14=32.故选:C .【点睛】本题考查全等三角形的判定与性质、三角形中位线的性质及平行四边形的判定与性质,三角形中位线平行于第三边且等于第三边的一半;有一组对边平行且相等的四边形是平行四边形;熟练掌握相关性质及判定定理是解题关键.10、C【分析】根据多边形的内角求出多边形的一个外角,然后根据多边形外角和等于360︒,计算即可.【详解】解:∵一个多边形的每个内角都是144°,∴这个多边形的每个外角都是(180°﹣144°)=36°,∴这个多边形的边数360°÷36°=10.故选:C.【点睛】本题考查了多边形的外角和,熟知多边形外角和等于360︒是解本题的关键.二、填空题1、30°【分析】根据多边形的内角和,分别得出∠ABE=∠BEF=135°,∠DCE=∠CEG=120°,再根据三角形的内角和算出∠BEC,得出∠FEG=360°-∠BEF-∠CEG-∠BEC即可.【详解】解:由多边形的内角和可得,∠ABE=∠BEF=()821808-⨯︒=135°,∴∠EBC=180°-∠ABE=180°-135°=45°,∵∠DCE=∠CEG=()621806-⨯︒=120°,∴∠BCE=180°-∠DCE=60°,由三角形的内角和得:∠BEC=180°-∠EBC-∠BCE=180°-45°-60°=75°,∴∠FEG=360°-∠BEF-∠CEG-∠BEC=360°-135°-120°-75°=30°.故答案为:30°.【点睛】本题考查了多边形的内角和定理,熟记各图形的性质并准确识图是解题的关键.2、(8,4)【分析】先根据勾股定理得到OD的长,即可得到点D的坐标,再根据平行四边形的性质和平行x轴两点坐标特征即可得到点C的坐标.【详解】解:∵点A的坐标为(-3,0),在Rt△ADO中,AD=5,AO=3,90=,∠︒AOD∴OD4,∴D(0,4),∵平行四边形ABCD,∴AB=CD=8,AB∥CD,∵AB在x轴上,∴CD∥x轴,∴C、D两点的纵坐标相同,∴C(8,4) .故答案为(8,4).【点睛】本题考查平行四边形性质,勾股定理,平行x轴两点坐标特征,解答本题的关键是熟练掌握平行于x 轴的直线上的点的纵坐标相同,平行于y轴的直线上的点的横坐标相同.3、1【分析】证明△MOD≌△NOB,得到S △MOD=S△NOB,利用平行四边形的性质得到S阴影=14ABCDS,由此求出答案.【详解】解:∵四边形ABCD是平行四边形,∴AD∥BC,OB=OD,∴∠MDO=∠NBO,∵∠MOD=∠NOB,∴△MOD≌△NOB,∴S△MOD=S△NOB,∴S 阴影=114AOM BON AOD ABCDS S S S+===,故答案为:1.【点睛】此题考查平行四边形的性质,全等三角形的判定及性质,熟记全等三角形的判定是解题的关键.4、2 3【分析】过点N作NE AB∥交BC于点E,可得BM为ONE的中位线,NE为ABC的中位线,利用三角形中位线定理和等边三角形的性质得到:14BM AB=,1AN AB2=,即可求解.【详解】解:过点N作NE AB∥交BC于点E,如下图:∵B 、C 的坐标分别为(2,0),(6,0)∴2OB =,4BC =∵边AB 恰平分线段ON∴点M 是ON 的中点∴2OB BE ==,12BM EN = ∴12BE BC =∴EN 是ABC 的中位线 ∴12EN AB =,12AN AC = 又∵ABC 为等边三角形∴AB AC = ∴34AM AB =,1AN AB 2= ∴122334AB AN AM AB == 故答案为23【点睛】本题考查了三角形中位线定理,等边三角形的性质以及坐标与图形的性质,解题的关键是正确作出辅助线,构造出三角形的中位线.5、80°【分析】由翻折的性质得∠ADE=∠A1DE,由中位线的性质得DE//BC,由平行线的性质得∠ADE=∠B=50°,即可解决问题.【详解】解:由题意得:∠ADE=∠A1DE;∵D、E分别是边AB、AC的中点,∴DE//BC,∴∠ADE=∠B=∠A1DE=50°,∴∠A1DA=100°,∴∠BDA1=180°−100°=80°.故答案为:80°.【点睛】本题主要考查了翻折变换及其应用问题;同时还考查了三角形的中位线定理等几何知识点.熟练掌握各性质是解题的关键.三、解答题1、(1)见解析;(2)1【分析】(1)根据角平分线的尺规作图方式进行解答即可;(2)根据等腰三角形三线合一以及三角形中位线的知识进行解答即可.【详解】解:(1)如图即为所作:;(2)∵AB BC =,BE 平分ABC ∠,∴,BE AC AE CE ⊥=, ∴112EC AC ==, 在Rt BEC △中,BC∵E 是AC 的中点,F 为BC 的中点,∴EF 为CAB △的中位线,∴1122EF AB BC ==,12FC BC =∴CEF △的周长=11CE EF CF ++= 【点睛】本题考查了尺规作图-角平分线,等腰三角形三线合一的性质,以及三角形中位线的性质,熟练掌握以上性质是解本题的关键.2、6AC =【分析】根据中线的定义知CD BD =,结合三角形周长公式知6AB AC -=;因为AB 与AC 的和为18cm ,则可求出AC 的长度.【详解】解:∵AD 是BC 边上的中线,∴D 是BC 的中点,CD BD =,∵△ADC 的周长比△ABD 的周长少6cm ,即:()6AB BD AD AC AD DC ++-++=cm ,∴6AB AC -=①,∵AB 与AC 的和为18cm ,即:18AB AC +=②,②-①得:6AC =cm .【点睛】本题考查了三角形的角平分线、中线和高,三角形一边的中点与此边所对顶点的连线叫做三角形中线.3、(1)见解析;(2)2;(3)见解析【分析】(1)由△ABC 是等边三角形,可得∠ABC =60°,由D 、F 关于直线BE 对称,得到BF =BD ,则∠BFD =∠BDF ,由三角形外角的性质得到∠BFD +∠BDF =∠ABD ,则∠BDF =∠BFD =30°;(2)设BG x =,由D 、F 关于直线BE 对称,得到∠BGD =∠BGF =90°,EF =ED ,EG =DG ,由含30度角的直角三角形的性质和勾股定理得2BD x =,DG =,证明△EAB ≌△DAC 得到CD BE EG BG GD BG x ==-=-=-,再由1BC AC ==,得到21BD CD x x +=+-=,由此求解即可;(3)连接OG ,先求出2MD =,证明OG 是三角形DMF 的中位线,得到112OG DM ==,再根据两点之间线段最短可知1OE EG OG ≤+=OE 的最大值等于BC .【详解】解:(1)∵△ABC 是等边三角形,∴∠ABC=60°,∵D、F关于直线BE对称,∴BF=BD,∴∠BFD=∠BDF,∵∠BFD+∠BDF=∠ABD,∴∠BDF=∠BFD=30°;=,(2)设BG x∵D、F关于直线BE对称,∴∠BGD=∠BGF=90°,EF=ED,∴∠EDG=EFG=45°,∴EG=DG,∵∠BDG=30°,∴22==,BD BG x∴DG=,由旋转的性质可得AE=AD,∠EAD=∠BAC=60°,∴∠EAB+∠BAD=∠CAD+∠BAD,即∠EAB=∠DAC,又∵AB=AC,∴△EAB≌△DAC(SAS),∴CD BE EG BG GD BG x==-=-=-,∵1==,BC AC∴21+=-=,BD CD x x∴22BD x ==;(3)如图所示,连接OG ,∵在等腰直角三角形DMN 中,DN MN ==∴2MD ==,∵D 、F 关于直线BE 对称,∴G 为DF 的中点,又∵O 为FM 的中点,∴OG 是三角形DMF 的中位线, ∴112OG DM ==,由(2)可得EG =根据两点之间线段最短可知1OE EG OG ≤+=∴OE 的最大值等于BC .【点睛】本题主要考查了等边三角形的性质,轴对称的性质,全等三角形的性质与判定,勾股定理,含30度角的直角三角形性质,三角形中位线定理,两点之间线段最短等等,解题的关键在于能够熟练掌握轴对称的性质和等边三角形的性质.【分析】先根据外角和为360°求得多边形的边数,进而根据外角和内角互补即可求得每一个内角的度数,进而求得内角和.【详解】一个多边形的每个外角为60°,∴这个多边形的边数为360606︒÷︒=,这个多边形的每一个内角为18060=︒-︒120︒∴这个多边形的内角和为6120720⨯︒=︒.【点睛】本题考查了多边形的内角和,多边形的外角和,求得多边形的边数是解题的关键.5、(1)D ;(2)证明见详解;(3)55CFD ∠=︒.【分析】(1)根据题意可得:小强通过测量角度大小证明出角平分线,证明方程不严谨,即可得出选项;(2)根据直角三角形全等的特殊方法(直角边,斜边)得出Rt POD Rt POE ∆≅∆,然后由全等三角形的性质得出AOC BOC ∠=∠,即可证明角平分线;(3)过点F 分别作FG BC ⊥,FH CD ⊥,FK DE ⊥,根据题意可得FG FH FK ==,运用角平分线的逆定理可得FC 平分BCD ∠,FD 平分CDE ∠,再由五边形内角和及题中已知条件可得250BCD CDE ∠+∠=︒,运用各角之间的数量关系可得125FCD FDC ∠+∠=︒,再由三角形内角和定理即可得出结果.【详解】解:(1)根据题意可得:小强通过测量角度大小证明出角平分线,证明方程不严谨,故选:D ;(2)在Rt POD ∆与Rt POE ∆中,PD PE OP OP=⎧⎨=⎩, ∴Rt POD Rt POE ∆≅∆,∴AOC BOC ∠=∠,∴OC 是AOB ∠的平分线;(3)如图所示,过点F 分别作FG BC ⊥,FH CD ⊥,FK DE ⊥,∵BC CD DE ==,且FBC FCD FDE S S S ∆∆∆==,∴FG FH FK ==,∴FC 平分BCD ∠,FD 平分CDE ∠, ∴12BCF FCD BCD ∠=∠=∠,12FDC FDE CDE ∠=∠=∠ ∵80ABC ∠=︒,110BAE ∠=︒,100AED ∠=︒,五边形内角和为:()52180540-⨯︒=︒,∴250BCD CDE ∠+∠=︒, ∴()111125222FCD FDC BCD CDE BCD CDE ∠+∠=∠+∠=∠+∠=︒, ∴()18055CFD FCD FDC ∠=︒-∠+∠=︒,故55CFD ∠=︒.【点睛】题目主要考查角平分线的判定和性质,三角形内角和定理,全等三角形的判定和性质,多边形内角和等,理解题意,作出相应辅助线,综合运用这些知识点是解题关键.。

北师大版八年级数学下册第六章平行四边形测试题(原题版 )

北师大版八年级数学下册第六章平行四边形测试题(原题版 )

【北师大版八年级数学(下)单元测试卷】第六章:平行四边形一.选择题:(每小题3分共30分)1.已知一个正多边形的内角是140°,则它是几边形( )A .10B .9C .8D .72.一个正多边形的一个外角是60︒,则该正多边形的内角和是( )A .720︒B .900︒C .1085︒D .1260︒3.如图,在ABCD 中,AB=3,AD=5,∠ABC 的平分线BE 交AD 于点E,则DE 的长是( ).A .4B .3C .3.5D .24.在平行四边形ABCD 中,AE ⊥BC 于E,AF ⊥CD 于F,AE=4,AF=6,平行四边形ABCD 的周长为40,则平行四边形ABCD 的面积是( )A .36B .48C .40D .245.如图,在平行四边形OABC 中,对角线相交于点E,OA 边在x 轴上,点O 为坐标原点,已知点()4,0A ,3,1E ,则点C 的坐标为( )A .()1,1B .()1,2C .()2,1D .()2,26.如图,△ABC 中,点D,E 在边BC 上,∠ABC 的平分线垂直AE,垂足为点N,∠ACB 的平分线垂直AD,垂足为点M,连接MN .若7BC =,32MN =,则△ABC 的周长为( )A .17B .18C .19D .207.如图,在Rt ABC 中,90ACB ∠=︒,点D ,E 分别是边AB ,BC 的中点,延长AC 至F ,使12CF AC =,若10AB =,则EF 的长是( )A .8B .6C .5D .48.如图,在▱ABCD 中,AB =2,BC =4,∠D =60°,点P 、Q 分别是AC 和BC 上的动点,在点P 和点Q 运动的过程中,PB+PQ 的最小值为( )A .4B .3C .23D .439.▱ABCD 中,E 、F 是对角线BD 上不同的两点,下列条件中,不能得出四边形AECF 一定为平行四边形的是( )A .BE =DFB .AF ∥CEC .CE =AFD .∠DAF =∠BCE10.在▱ABCD 中,对角线AC 、BD 相交于点O,BD =2AD,E 、F 、G 分别是OC 、OD 、AB 的中点,下列结论:①GN =NE ;②AE ⊥GF ;③AC 平分∠BCD ;④AC ⊥BD,其中正确的个数是( )A .1B .2C .3D .4二.填空题:(每小题3分共15分)11.如图,▱ABCD 的对角线AC,BD 相交于点O,点E,F 分别是线段AO,BO 的中点,若AC+BD =18cm,△OCD 的周长是15cm,则EF =_____cm .12.在平面直角坐标系xOy 中,已知(10,0)A ,点P 在线段OA 上运动,分别以OP 、PA 为边在x 轴上方作等边OPM ∆和等边ΔPAN ,连接MN ,Q 为MN 的中点,当点P 从O 运动至点A 时,点Q 运动的路径长为 __.13.如图,在平行四边形ABCD 中,ABC ∠的平分线交AD 于E,150BED ∠=︒,则A ∠的大小____________.14.如图,已知AG ⊥BD,AF ⊥CE,BD 、CE 分别是∠ABC 和∠ACB 的角平分线,若BF =2,ED =3,GC =4,则△ABC 的周长为_____.15.已知线段10AB =,C .D 是AB 上两点,且2AC DB ==,P 是线段CD 上一动点,在AB 同侧分别作等边三角形APE 和等边三角形PBF ,G 为线段EF 的中点,点P 由点C 移动到点D 时,G 点移动的路径长度为___.三.解答题:(共55分)16.(6分)已知:如图,▱ABCD中,BD是对角线,AE⊥BD于E,CF⊥BD于F.求证:BE=DF.17.(8分)如图,在△ABC中,AB=3,AC=4,BC=5,△ABD,△ACE,△BCF都是等边三角形.(1)证明:四边形AEFD是平行四边形;(2)求∠DFE的度数.18.(6分)如图,已知四边形ABCD是平行四边形,BE⊥AC,DF⊥AC,求证:BE=DF.19.(8分)如图,四边形ABCD 中AC 、BD 相交于点O,延长AD 至点E,连接EO 并延长交CB 的延长线于点F,∠E =∠F,AD =BC .(1)求证:O 是线段AC 的中点:(2)连接AF 、EC,证明四边形AFCE 是平行四边形.20.(8分)如图,在ABC 中,点D 在BC 上,点E 在AD 上,BF AD ∥,且BF DE =,CD EF =.(1)求证:BD CD =;(2)若BE AD =,BED DAC ∠=∠.求证:AD AC =.21.(9分)如图,在平面直角坐标系中,(),0A a ,()0,B b ,且a ,b 满足2(2)40a b -+-=.(1)求直线AB 的解析式;(2)若M 为直线1y k x =上一点,且ABM 是以AB 为底的等腰直角三角形,求1k 的值;(3)在(2)条件下,设N 为坐标平面内的一点,如果以点M ,A ,B ,N 为顶点的四边形是平行四边形,写出满足条件的N 点的坐标(本小题直接写出答案,不要求写解题过程).22.(10分)如图,已知()1,1C --关于x 轴的对称点A 在直线1l :2y kx =+上,1l 与直线2l :25y x =-+交于点B .(1)求直线1l 的解析式与点B 的坐标;(2)2l 上是否存在一点P,使得2BCP S =△,若存在,求出P 点坐标,若不存在,说明理由;(3)已知点()3,0D ,M 、N 是1l 上两个动点,且2MN =N 在M 的右侧),当CM MN ND ++的值最小时,直接写出点M 、N 的坐标;已知点E 是平面内除原点外一点,点M 、N 、C 、E 组成的四边形是平行四边形,直接写出点E 的坐标,若不存在,说明理由.。

北师大版八年级数学下册第六章平行四边形全章综合复习练习(无答案)

北师大版八年级数学下册第六章平行四边形全章综合复习练习(无答案)

全章综合复习一、选择题1.关于四边形ABCD:①两组对边分别平行;②两组对边分别相等;③有一组对边平行且相等;④对角线AC和BD相等;以上四个条件中可以判定四边形ABCD是平行四边形的有()A.1个B.2个C.3个D.4个2.如图,AC、BD是平行四边形ABCD的对角线,AC与BD交于点O,AC=4,BD=5,BC=3,则△BOC 的周长是()A.7.5B.12C.6D.无法确定3.直角三角形两直角边边长分别为6和8,则连结这两条直角边中点的线段长为()A.3B.4C.5D.104.若一个多边形的内角和与外角和相加是1800°,则此多边形是()A.八边形B.十边形C.十二边形D.十四边形5.下列度数中,不可能是某个多边形的内角和的是()A.180°B.270°C.2700°D.1800°6.如图,在Rt△ABC中,∠B=90°,AB=3,BC=4,点D在BC上,以AC为对角线的所有平行四边形ADCE中,DE的最小值是()A.2B.3C.4D.3.75二、填空题7.如图所示,EF是△ABC的中位线,BD平分∠ABC,交EF于D,若DE=2,则EB=.8.如图,在▱ABCD中,AE⊥BC于E,AF⊥CD于F,若AE=4,AF=6,▱ABCD的周长为40,则▱ABCD 的面积为.9.如图,平行四边形ABCD中,AC=4cm,BC=5cm,CD=3cm,则▱ABCD的面积.10.如图,已知△ABC的周长是1,连接△ABC三边的中点构成第二个三角形,再连接第二个三角形三边的中点构成第三个三角形…依此类推,则第2017个三角形的周长为___.11.如图,△ACE是以▱ABCD的对角线AC为边的等边三角形,点C与点E关于x轴对称.若E点的坐标是(7,﹣3),则D点的坐标是.12.如图所示,在▱ABCD中,E为AD中点,CE交BA的延长线于F,若BC=2AB,∠FBC=70°,则∠EBC的度数为度.三、解答题13.如图,E,F是四边形ABCD对角线AC上的两点,AD∥BC,DF∥BE,AE=CF.求证:(1)△AFD≌△CEB;(2)四边形ABCD是平行四边形.14.已知:如图,在▱ABCD中,E为BC的中点,连接AE并延长交DC的延长线于点F,连接BF.(1)求证:四边形ABFC是平行四边形;(2)在不添加任何辅助线的情况下,请直接写出图中与△ABC面积相等的三角形.15.如图,在△ABC中,△ACB=90°,CD△AB垂足为D,AE平分△CAB交CD于点F,交BC于点E,EH△AB,垂足为H,连接FH.求证:(1)CF=CE(2)四边形CFHE是平行四边形。

北师大版八年级下册数学 第六章 平行四边形 同步课时练习题(含答案)

北师大版八年级下册数学 第六章 平行四边形 同步课时练习题(含答案)

北师大版八年级下册数学第六章平行四边形同步课时练习题6.1平行四边形的性质第1课时平行四边形的边、角的性质01基础题知识点1平行四边形的概念1.在四边形ABCD中,若AB∥CD,BC∥AD,则四边形ABCD为平行四边形.知识点2平行四边形的对称性2.如图,在▱ABCD中,点A关于点O的对称点是点C.知识点3平行四边形的边、角的性质3.如图,在▱ABCD中,E是AB延长线上的一点,若∠A=60°,则∠1的度数为(B)A.120°B.60°C.45°D.30°4.在▱ABCD中,AB=3 cm,BC=5 cm,∠A=30°,则CD=3_cm,AD=5_cm,∠B=150°,∠C=30°,∠D=150°.5.(2017·扬州)在▱ABCD中,∠B+∠D=200°,则∠A=80°.6.(2016·江西)如图,在▱ABCD中,∠C=40°,过点D作AD的垂线,交AB于点E,交CB的延长线于点F,则∠BEF的度数为50°.7.(2017·山西)已知:如图,在▱ABCD中,延长AB至点E,延长CD至点F,使得BE=DF,连接EF,与对角线AC交于点O.求证:OE=OF.证明:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD.∵BE=DF,∴AB+BE=CD+DF,即AE=CF.∵AB∥CD,∴∠OAE=∠OCF,∠E=∠F.∴△AOE≌△COF(ASA).∴OE=OF.02中档题8.(2016·河北)如图,将▱ABCD沿对角线AC折叠,使点B落在B′处.若∠1=∠2=44°,则∠B为(C) A.66°B.104°C.114°D.124°9.如图,在▱ABCD中,AC,BD为对角线,BC=6,BC边上的高为4,则图中阴影部分的面积为(C) A.3 B.6 C.12 D.2410.(2017·绵阳)如图,将▱ABCO放置在平面直角坐标系xOy中,O为坐标原点.若点A的坐标是(6,0),点C的坐标是(1,4),则点B的坐标是(7,4).11.(2017·陕西蓝田县期末)在▱ABCD中,∠BCD的平分线与BA的延长线相交于点E,BH⊥EC于点H,求证:CH=EH.证明:∵四边形ABCD是平行四边形,∴BE∥CD.∴∠E=∠2.∵CE平分∠BCD,∴∠1=∠2.∴∠1=∠E.∴BE=BC.又∵BH⊥EC,∴CH=EH(三线合一).03综合题12.(2017·通辽)在▱ABCD中,AE平分∠BAD交边BC于点E,DF平分∠ADC交边BC于点F.若AD=11,EF=5,则AB=8或3.提示:根据平行四边形的性质得到AB=CD,AD=BC,得出AB=BE=CD=CF,分两种情况,即可得到结论.第2课时平行四边形的对角线的性质01基础题知识点平行四边形的对角线互相平分1.平行四边形的对角线一定具有的性质是(B)A.相等B.互相平分C.互相垂直D.互相垂直且相等2.如图,在▱ABCD中,O是对角线AC,BD的交点,下列结论错误的是(C)A.AB∥CD B.AB=CDC.AC=BD D.OA=OC3.如图,在▱ABCD中,已知∠ODA=90°,AC=10 cm,BD=6 cm,则AD的长为(A)A .4 cmB .5 cmC .6 cmD .8 cm4.若点O 为▱ABCD 的对角线AC 与BD 的交点,且AO +BO =11 cm ,则AC +BD =22cm.5.在▱ABCD 中,AB =3,BC =5,对角线AC ,BD 相交于点O ,则OA 的取值范围是1<OA <4.6.如图,已知▱ABCD 的对角线AC ,BD 相交于点O ,AC =12,BD =18,且△AOB 的周长为23,求AB 的长.解:∵▱ABCD 的对角线AC ,BD 相交于点O ,AC =12,BD =18, ∴AO =12AC =6,BO =12BD =9.又∵△AOB 的周长为23,∴AB =23-(AO +BO)=23-(6+9)=8.02 中档题 7.(2017·眉山)如图,EF 过▱ABCD 对角线的交点O ,交AD 于点E ,交BC 于点F.若▱ABCD 的周长为18,OE =1.5,则四边形EFCD 的周长为(C)A .14B .13C .12D .108.如图,在▱ABCD 中,AC ,BD 相交于点O ,AB =10 cm ,AD =8 cm ,AC ⊥BC ,则OB9.如图,▱ABCD 的对角线相交于点O ,且AB ≠AD ,过点O 作OE ⊥BD 交BC 于点E.若△CDE 的周长为10,则▱ABCD 的周长为20.10.如图,四边形ABCD 是平行四边形,E 是AB 边上一点,只用无刻度直尺在CD 边上作点F ,使得CF =AE. (1)作出满足题意的点F ,简要说明你的作图过程; (2)依据你的作图,证明:CF =AE.解:(1)连接EO 并延长交CD 于点F ,则F 点即为所求. (2)证明:∵四边形ABCD 是平行四边形, ∴AO =CO ,AB ∥CD. ∴∠BAO =∠DCO.在△AOE 和△COF 中,⎩⎨⎧∠BAO =∠DCO ,AO =CO ,∠AOE =∠COF ,∴△AOE ≌△COF(ASA). ∴AE =CF.03 综合题11.如图,▱ABCD 中,对角线AC 与BD 相交于点E ,∠AEB =45°,BD =2,将△ABC 沿AC 所在直线翻折180°到其原来所在的同一平面内.若点B 的落点记为B′,则DB′6.2 平行四边形的判定第1课时 平行四边形的判定定理1、201 基础题知识点1 两组对边分别相等的四边形是平行四边形1.用两根长40 cm 的木条,作为四边形的一组对边,再用两根长30 cm 的木条作为四边形的另一组对边,拼成一个四边形,这个四边形是平行四边形,其根据是两组对边分别相等的四边形是平行四边形.2.已知四边形ABCD 的四条边长依次为a ,b ,c ,d ,且满足(a -c)2+(b -d)2=0,求证:AB ∥CD. 证明:∵(a -c)2+(b -d)2=0, ∴a -c =0,b -d =0. ∴a =c ,b =d.∴四边形ABCD 是平行四边形. ∴AB ∥CD.3.如图1是某公交汽车挡风玻璃的雨刮器,其工作原理如图2.雨刷EF ⊥AD ,垂足为A ,AB =CD 且AD =BC ,这样能使雨刷EF 在运动时,始终垂直于玻璃窗下沿BC ,请证明这一结论.证明:∵AB =CD ,AD =BC , ∴四边形ABCD 是平行四边形. ∴AD ∥BC. 又∵EF ⊥AD ,∴EF ⊥BC.知识点2 一组对边平行且相等的四边形是平行四边形4.小李拿出两段长度相等的木棒平行摆放,然后顺次连接四个端点得到的图形一定是(C)A .正方形B .长方形C .平行四边形D .任意四边形5.如图,四边形ABCD 中,对角线AC ,BD 交于点O ,AD ∥BC ,请添加一个条件:答案不唯一,如:AD =BC(或AB ∥DC),使四边形ABCD 为平行四边形(不添加任何辅助线).6.如图,△ABC ≌△A ′B ′C ′,点B ,C ′,C ,B ′在同一直线上,且B 与B′不重合,则以点A ,B ,A ′,B ′为顶点的四边形一定是平行四边形.(填某种特殊四边形的名称)7.如图,在四边形ABCD 中,对角线BD ⊥AD ,BD ⊥BC ,AD =11-x ,BC =x -5,则当x =8时,四边形ABCD 是平行四边形.8.(2016·新疆)如图,四边形ABCD 中,AD ∥BC ,AE ⊥AD 交BD 于点E ,CF ⊥BC 交BD 于点F ,且AE =CF.求证:四边形ABCD 是平行四边形.证明:∵AE ⊥AD ,CF ⊥BC , ∴∠EAD =∠FCB =90°. ∵AD ∥BC ,∴∠ADE =∠CBF.在△AED 和△CFB 中,⎩⎨⎧∠ADE =∠CBF ,∠EAD =∠FCB ,AE =CF ,∴△AED ≌△CFB(AAS). ∴AD =BC. 又∵AD ∥BC ,∴四边形ABCD 是平行四边形.02 中档题9.不能判定四边形ABCD 为平行四边形的条件是(B)A .AB ∥CD ,AD ∥BC B .AB ∥CD ,AD =BC C .AB ∥CD ,∠A =∠C D .AD ∥BC ,AD =BC10.如图,在四边形ABCD 中,E 是BC 边的中点,连接DE 并延长,交AB 的延长线于点F ,AB =BF.添加一个条件,使四边形ABCD 是平行四边形.你认为下面四个条件中可选择的是(D)。

北师大版初中数学八年级下册《第6章 平行四边形》单元测试卷(2)

北师大版初中数学八年级下册《第6章 平行四边形》单元测试卷(2)

北师大新版八年级下学期《第6章平行四边形》单元测试卷一.选择题(共3小题)1.如图所示,四边形ABCD是平行四边形,已知AB=4,BC=3,则AC2+BD2的值是()A.45B.50C.55D.602.如图在▱ABCD中,∠ABC=60°,BC=2AB=8,点C关于AD的对称点为E,连接BE 交AD于点F,点G为CD的中点,连接EG,BG.则△BEG的面积为()A.16B.14C.8D.73.有两个内角分别为90°,60°,30°的完全一样的三角形拼成四边形,其形状不同的有()A.2个B.3个C.4个D.6个二.填空题(共6小题)4.如图,将一张等腰直角三角形沿中位线剪成一个三角形与一个梯形后,则这两个图形可能拼成的平面四边形是.(不许重合、折叠)5.如图所示,则(∠1+∠2﹣∠3)+(∠4+∠5﹣∠6)+(∠7+∠8﹣∠9)=度.6.若对图1中星形截去一个角,如图2,再对图2中的角进一步截去,如图3,则图中的∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H+∠M+∠N=度.7.多边形所有外角中,最多有个钝角,个直角.8.如图,点E是平行四边形ABCD的对角线BD上一点,连接CE,若点E在线段AD的垂直平分线上,点D在线段EC的垂直平分线上,且∠DCE=66°,则∠BCE=.9.如图所示,在梯形ABCD中,AD∥BC,AB⊥BC,∠C=60°,AB=,点P从A 点沿AD边以1cm/s的速度向D运动,s后,四边形PBCD是等腰梯形.三.解答题(共25小题)10.如图,在△ABC中,AE平分∠BAC,BE⊥AE于点E,点F是BC的中点.(1)如图1,BE的延长线与AC边相交于点D,求证:EF=(AC﹣AB);(2)如图2,请直接写出线段AB、AC、EF的数量关系.11.如图等边三角形ABC的边长为2,D、E分别为AB、AC的中点,延长BC至F,使CF=BC,连结CD和EF.(1)求证:DE=CF(2)求EF的长.12.已知:如图,在Rt△ABC中,∠C=90°,CD平分∠ACB,AD⊥CD,垂足为点D,M是边AB的中点,AB=20,AC=10,求线段DM的长.13.如图,△ABC中,AD是中线,AE是角平分线,CF⊥AE于F,AB=10,AC=6,求DF的长.14.如图,在△ABC中,AD是高,E、F分别是AB、AC的中点.(1)若四边形AEDF的周长为24,AB=15,求AC的长;(2)求证:EF垂直平分AD.15.定义:如图1,点M,N把线段AB分割成AM,MN和BN,若以AM,MN,BN为边的三角形是一个直角三角形,则称点M,N是线段AB的勾股分割点.请解决下列问题:(1)已知点M,N是线段AB的勾股分割点,且BN>MN>AM.若AM=2,MN=3,求BN的长;(2)如图2,若点F、M、N、G分别是AB、AD、AE、AC边上的中点,点D,E是线段BC的勾股分割点,且EC>DE>BD,求证:点M,N是线段FG的勾股分割点.16.已知,如图,在△ABC中,∠ACB=90°,D,E分别是AC,AB的中点,连接DE并延长到F,使EF=2DE,连接CE,BF(1)求证:CE=BF;(2)当∠A=30°时,试判断四边形BCEF的形状并说明理由.17.如图,在四边形ABCD中,M、N分别是对角线AC、BD的中点,又AD、BC的延长线交于P,求证:S△PMN=S四边形ABCD.18.证明:三角形中位线定理.已知:如图,D,E分别是△ABC的边AB,AC的中点.求证:.证明:19.如图,△ABC中,AD是△ABC的边BC上的高,E、F分别是AB、AC的中点,AC=13、AB=20、BC=21.(1)求四边形AEDF的周长;(2)求△ABC的面积.20.如图,某厂房屋顶钢架外框是等腰三角形,其中AB=AC,D,E,F分别是BC,AB,AC的中点.已知AB=8m,求DE+DF的长.21.如图,⊙O的直径AB=4,sin∠ABC=,BC交⊙O于D,D是BC的中点.(1)求BC的长;(2)过点D作DE⊥AC,垂足为E,求证:直线DE是⊙O的切线.22.如图,在四边形ABCD中,∠ABC=∠ADC=90°,O是AC上的中点,E为BD上的中点.(1)求证:OE⊥BD;(2)若AC=26,OE=5,求BD的长度.23.连接多边形不相邻的两个顶点的线段,叫做多边形的对角线,如图1,AC、AD是五边形ABCDE的对角线.思考下列问题:(1)如图2,n边形A1A2A3A4…A n中,过顶点A1可以画条对角线,它别是;过顶点A2可以画条对角线,过顶点A3可以画条对角线.(2)过顶点A1的对角线与过顶点A2的对角线有相同的吗?过顶点A1的对角线与过顶点A3的对角线有相同的吗?(3)在此基础上,你能发现n边形的对角线条数的规律吗?(4)在此基础上,推导出n边形的内角和.24.(1)四边形有几条对角线?五边形有几条对角线?六边形有几条对角线?…猜想并探索:n边形有几条对角线?(2)一个n边形的边数增加1,对角线增加多少条?25.“转化”是数学中的一种重要思想,即把陌生的问题转化成熟悉的问题,把复杂的问题转化成简单的问题,把抽象的问题转化为具体的问题.(1)请你根据已经学过的知识求出下面星形图(1)中∠A+∠B+∠C+∠D+∠E的度数;(2)若对图(1)中星形截去一个角,如图(2),请你求出∠A+∠B+∠C+∠D+∠E+∠F 的度数;(3)若再对图(2)中的角进一步截去,你能由题(2)中所得的方法或规律,猜想图3中的∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H+∠M+∠N的度数吗?只要写出结论,不需要写出解题过程)26.如图,△ABC中,∠ABC的角平分线与∠ACB的外角∠ACD的平分线交于A1.(1)当∠A为70°时,∵∠ACD﹣∠ABD=∠∴∠ACD﹣∠ABD=°∵BA1、CA1是∠ABC的角平分线与∠ACB的外角∠ACD的平分线∴∠A1CD﹣∠A1BD=(∠ACD﹣∠ABD)∴∠A1=°;(2)∠A1BC的角平分线与∠A1CD的角平分线交于A2,∠A2BC与A2CD的平分线交于A3,如此继续下去可得A4、…、A n,请写出∠A与∠A n的数量关系;(3)如图2,四边形ABCD中,∠F为∠ABC的角平分线及外角∠DCE的平分线所在的直线构成的角,若∠A+∠D=230度,则∠F=.(4)如图3,若E为BA延长线上一动点,连EC,∠AEC与∠ACE的角平分线交于Q,当E滑动时有下面两个结论:①∠Q+∠A1的值为定值;②∠Q﹣∠A1的值为定值.其中有且只有一个是正确的,请写出正确的结论,并求出其值.27.如图,平行四边形ABCD中,AE平分∠BAD,交BC于点E,且AB=AE,延长AB与DE的延长线交于点F.求证:(1)△ABE是等边三角形;(2)△ABC≌△AED;(3)S△ABE=S△CEF.28.如图,在▱ABCD中,E是BC的中点,连接AE并延长交DC的延长线于点F.(1)求证:AB=CF;(2)连接DE,若AD=2AB,求证:DE⊥AF.29.求证:两组对角分别相等的四边形是平行四边形.30.已知:如图,△ABC中,∠ACB=90°,点D、E分别是AC、AB的中点,点F在BC 的延长线上,且∠CDF=∠A.求证:四边形DECF是平行四边形.31.在平行四边形ABCD中,点E在CD上,点F在AB上,连接AE、CF、DF、BE,∠DAE=∠BCF.(1)如图1,求证:四边形DFBE是平行四边形;(2)如图2,若E是CD的中点,连接GH,在不添加任何辅助线的情况下,请直接写出图2中以GH为边或以GH为对角线的所有平行四边形.32.如图,已知四边形ABCD为平行四边形,E、F为对角线BD上的两点,且DF=BE,连接AE,CF.(1)求证:∠DAE=∠BCF.(2)连接AC交于BD点O,求证:AC,EF互相平分.33.如图,在△ABC中,AC=BC,D是AC上一点,DE∥AB交BC于点E,且AD=DE,F是AB上一点,BF=BE,连接FD.(1)试判断四边形ADEB的形状,并说明理由;(2)求证:BE=FD.34.已知:如图,在等腰梯形ABCD中,AD∥BC,∠BDC=∠BCD,点E是线段BD上一点,且BE=AD.(1)证明:△ADB≌△EBC;(2)直接写出图中所有的等腰三角形.北师大新版八年级下学期《第6章平行四边形》2019年单元测试卷参考答案与试题解析一.选择题(共3小题)1.如图所示,四边形ABCD是平行四边形,已知AB=4,BC=3,则AC2+BD2的值是()A.45B.50C.55D.60【分析】如图,作DE⊥AB于E,CF⊥AB交AB的延长线于F.连接AC、BD.设BF =a,CF=b.首先证明Rt△ADE≌△Rt△BCF,推出AE=BF=a,再利用勾股定理即可解决问题;【解答】解:如图,作DE⊥AB于E,CF⊥AB交AB的延长线于F.连接AC、BD.设BF=a,CF=b.∵四边形ABCD是平行四边形,DE⊥AB,CF⊥AB,∴AD=BC,DE=CF=b,∠DEA=∠F=90°,∴Rt△ADE≌△Rt△BCF,∴AE=BF=a,∴AC2+BD2=CF2+AF2+DE2+BE2=b2+(4+a)2+b2+(4﹣a)2=2(a2+b2)+32=18+32=50,故选:B.【点评】本题考查平行四边形的性质、勾股定理、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,根据全等三角形解决问题,属于中考常考题型.2.如图在▱ABCD中,∠ABC=60°,BC=2AB=8,点C关于AD的对称点为E,连接BE 交AD于点F,点G为CD的中点,连接EG,BG.则△BEG的面积为()A.16B.14C.8D.7【分析】如图,取BC中点H,连接AH,连接EC交AD于N,作EM⊥CD交CD的延长线于M.构建S△BEG=S△BCE+S ECG﹣S△BCG计算即可;【解答】解:如图,取BC中点H,连接AH,连接EC交AD于N,作EM⊥CD交CD 的延长线于M.∵BC=2AB,BH=CH,∠ABC=60°,∴BA=BH=CH,∴△ABH是等边三角形,∴HA=HB=HC,∴∠BAC=90°,∴∠ACB=30°,∵EC⊥BC,∠BCD=180°﹣∠ABC=120°,∴∠ACE=60°,∠ECM=30°,∵BC=2AB=8,∴CD=4,CN=EN=2,∴EC=4,EM=2,∴S△BEG=S△BCE+S ECG﹣S△BCG=×8×4+×2×2﹣S平行四边形ABCD=16+2﹣4=14故选:B.【点评】本题考查平行四边形的性质、轴对称图形、勾股定理、等边三角形的判定和性质、直角三角形的判定和性质等知识,解题的关键是学会添加常用辅助线没工作直角三角形解决问题,属于中考常考题型.3.有两个内角分别为90°,60°,30°的完全一样的三角形拼成四边形,其形状不同的有()A.2个B.3个C.4个D.6个【分析】可动手拼图,出现四种不同的四边形,根据平行四边形的性质,可推出3个平行四边形,不是平行四边形的有一个.【解答】解:根据平行四边形的基本性质:平行四边形的两组对角分别相等,可知角分别为,(1)90°,90°,90°90°;(2)120°,60°,120°,60°;(3)150°,30°,150°,30°;不是平行四边形的四边形为(4)60°,90°,120°,90°.共4种,故选:C.【点评】主要考查了平行四边形的基本性质,并利用性质解题.注意不要漏掉不是平行四边形的那一种.平行四边形基本性质:①平行四边形两组对边分别平行;②平行四边形的两组对边分别相等;③平行四边形的两组对角分别相等;④平行四边形的对角线互相平分.二.填空题(共6小题)4.如图,将一张等腰直角三角形沿中位线剪成一个三角形与一个梯形后,则这两个图形可能拼成的平面四边形是等腰梯形或矩形或平行四边形.(不许重合、折叠)【分析】让相等边重合,动手操作即可.【解答】解:如图:可拼成以上三种图形:等腰梯形、矩形、平行四边形.【点评】本题考查学生的动手操作能力.5.如图所示,则(∠1+∠2﹣∠3)+(∠4+∠5﹣∠6)+(∠7+∠8﹣∠9)=180度.【分析】利用多边形的内角和公式即可求出答案.【解答】解:∵∠1+∠2+(360°﹣∠3)+∠4+∠5+(360°﹣∠6)+∠7+∠8+(360°﹣∠9)=180°•(9﹣2)=1260度,∴(∠1+∠2﹣∠3)+(∠4+∠5﹣∠6)+(∠7+∠8﹣∠9)=1260﹣360×3=180°.【点评】主要考查了多边形的内角和定理.n边形的内角和为:180°(n﹣2).此类题型直接根据内角和公式计算可得.6.若对图1中星形截去一个角,如图2,再对图2中的角进一步截去,如图3,则图中的∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H+∠M+∠N=1080度.【分析】根据图中可找出规律∠A+∠B+∠C+∠D+∠E=180°,并且每截去一个角则会增加180度,由此即可求出答案.【解答】解:根据图中可得出规律∠A+∠B+∠C+∠D+∠E=180°,每截去一个角则会增加180度,所以当截去5个角时增加了180×5度,则∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H+∠M+∠N=180×5+180=1080°.【点评】本题主要考查了多边形的内角与外角之间的关系.有关五角星的角度问题是常见的问题,其5个角的和是180度.解此题的关键是找到规律利用规律求解.7.多边形所有外角中,最多有3个钝角,4个直角.【分析】一个多边形的外角和360度,多边形的内角与外角互为邻补角,在这些外角中如果钝角的个数超过三个,外角和就超过360度,但如果有3个钝角,再有一个或几个锐角,外角和可以是360度.因而一个多边形中,它的外角最多可以有3个钝角.则内角最多可以有3个锐角.当有4个直角时,四角的和是360度,当超过四个直角时,外角和就超过360度,即可求得直角的个数.【解答】解:∵多边形的外角和360度,∴外角最多可以有3个钝角;又∵当有4个直角时,四角的和是360度,∴多边形所有外角中,最多有4个直角.【点评】考虑多边形的内角的问题,由于内角和不确定,而外角和是一个定值,因而转化为考虑外角和的问题比较简单.8.如图,点E是平行四边形ABCD的对角线BD上一点,连接CE,若点E在线段AD的垂直平分线上,点D在线段EC的垂直平分线上,且∠DCE=66°,则∠BCE=42°.【分析】连结AE,根据线段垂直平分线的性质和三角形内角和定理求出∠CED,∠CDE,根据平行四边形的性质得到AB∥CD,AD∥BC,CD=AB,可得∠ABE=∠CDE=48°,再根据线段垂直平分线的性质和等腰三角形的判定与性质,以及平行线的性质可求∠BCE.【解答】解:连结AE,∵∠DCE=66°,点D在线段EC的垂直平分线上,∴∠CED=66°,∠CDE=48°,DE=CD,∵四边形ABCD是平行四边形,∴AB∥CD,AD∥BC,CD=AB,∴∠ABE=∠CDE=48°,∵若点E在线段AD的垂直平分线上,∴EA=ED,∴AB=AE,∴∠AEB=48°,∴∠AED=132°,∴∠ADE=24°,∴∠BCE=180°﹣24°﹣48°﹣66°=42°.故答案为:42°.【点评】考查了平行四边形的性质,线段垂直平分线的性质,三角形内角和定理以及等腰三角形的判定与性质等知识点.难度较大,综合性较强.9.如图所示,在梯形ABCD中,AD∥BC,AB⊥BC,∠C=60°,AB=,点P从A 点沿AD边以1cm/s的速度向D运动,2s后,四边形PBCD是等腰梯形.【分析】首先过点D作DE⊥BC于点E,由在梯形ABCD中,AD∥BC,AB⊥BC,∠C =60°,AB=,可求得CE的长,由当BP=CD时,四边形PBCD是等腰梯形,可得AP=CE=2cm,继而可得2s后,四边形PBCD是等腰梯形.【解答】解:过点D作DE⊥BC于点E,∵在梯形ABCD中,AD∥BC,AB⊥BC,∴四边形ABED是矩形,∴DE=AB=2cm,∵∠C=60°,∴CE=AB•tan∠C=2×=2(cm),当BP=CD时,四边形PBCD是等腰梯形,∵∠A=∠DEC=90°,∴在Rt△ABP和Rt△EDC中,,∴Rt△ABP≌Rt△EDC(HL),∴CE=AP=2cm,∵点P从A点沿AD边以1cm/s的速度向D运动,∴2÷1=2(s),∴2s后,四边形PBCD是等腰梯形.故答案为:2.【点评】此题考查了梯形的性质、等腰梯形的判定与性质以及直角三角形的性质与判定.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想与方程思想的应用.三.解答题(共25小题)10.如图,在△ABC中,AE平分∠BAC,BE⊥AE于点E,点F是BC的中点.(1)如图1,BE的延长线与AC边相交于点D,求证:EF=(AC﹣AB);(2)如图2,请直接写出线段AB、AC、EF的数量关系.【分析】(1)先证明AB=AD,根据等腰三角形的三线合一,推出BE=ED,根据三角形的中位线定理即可解决问题.(2)结论:EF=(AB﹣AC),先证明AB=AP,根据等腰三角形的三线合一,推出BE =ED,根据三角形的中位线定理即可解决问题.【解答】(1)证明:如图1中,∵AE⊥BD,∴∠AED=∠AEB=90°,∴∠BAE+∠ABE=90°,∠DAE+∠ADE=90°,∵∠BAE=∠DAE,∴∠ABE=∠ADE,∴AB=AD,∵AE⊥BD,∴BE=DE,∵BF=FC,∴EF=DC==(AC﹣AB).(2)结论:EF=(AB﹣AC),理由:如图2中,延长AC交BE的延长线于P.∵AE⊥BP,∴∠AEP=∠AEB=90°,∴∠BAE+∠ABE=90°,∠P AE+∠APE=90°,∵∠BAE=∠P AE,∴∠ABE=∠ADE,∴AB=AP,∵AE⊥BD,∴BE=PE,∵BF=FC,∴EF=PC=(AP﹣AC)=(AB﹣AC).【点评】本题考查三角形的中位线定理、等腰三角形的判定和性质等知识,解题的关键是熟练应用所学知识解决问题,属于中考常考题型.11.如图等边三角形ABC的边长为2,D、E分别为AB、AC的中点,延长BC至F,使CF=BC,连结CD和EF.(1)求证:DE=CF(2)求EF的长.【分析】(1)直接利用三角形中位线定理得出DE∥BC,DE=BC,进而得出DE=FC;(2)利用平行四边形的判定与性质得出DC=EF,进而利用等边三角形的性质以及勾股定理即可得出EF的长.【解答】解:(1)证明:∵DE分别是AB、AC的中点,∴DE是△ABC的中位线,∴,又∵,∴DE=CF;(2)∵△ABC是等边三角形,D是AB的中点,∴,CD⊥AB,在Rt△BDC中,BD2+CD2=BC2,即,∴CD=3,又∵DE是△ABC的中位线,∴DE∥CF,∵DE=CF,∴四边形DCFE是平行四边形,∴EF=CD=3.【点评】此题主要考查了等边三角形的性质以及平行四边形的判定与性质和三角形中位线定理等知识,得出四边形DCFE是平行四边形是解题的关键.12.已知:如图,在Rt△ABC中,∠C=90°,CD平分∠ACB,AD⊥CD,垂足为点D,M是边AB的中点,AB=20,AC=10,求线段DM的长.【分析】延长AD交BC于E,根据勾股定理求出BC,根据等腰三角形的性质得到AD=DE,根据三角形中位线定理计算即可.【解答】解:延长AD交BC于E,∵∠C=90°,∴BC==10,∵CD平分∠ACB,AD⊥CD,∴∠ACD=∠ECD,∠ADC=∠EDC=90°,∴∠CAD=∠CED,∴CA=CE=10,∴AD=DE,∵M是边AB的中点,∴DM=BE=×(10﹣10)=5﹣5.【点评】本题考查的是三角形中位线定理、等腰三角形的性质以及直角三角形的性质,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.13.如图,△ABC中,AD是中线,AE是角平分线,CF⊥AE于F,AB=10,AC=6,求DF的长.【分析】延长CF交AB于点G,判断出AF垂直平分CG,得到AC=AG,根据三角形中位线定理解答.【解答】解:延长CF交AB于点G,∵AE平分∠BAC,∴∠GAF=∠CAF,∴AF垂直平分CG,∴AC=AG,GF=CF,又∵点D是BC中点,∴DF是△CBG的中位线,∴DF=BG=(AB﹣AG)=(AB﹣AC)=2.【点评】本题关键是通过题目角平分线和垂线合一启发构造等腰三角形,从而构造出DF 为△BCG的中位线,利用中位线定理解决问题.14.如图,在△ABC中,AD是高,E、F分别是AB、AC的中点.(1)若四边形AEDF的周长为24,AB=15,求AC的长;(2)求证:EF垂直平分AD.【分析】(1)根据直角三角形斜边上的中线等于斜边的一半可得DE=AE=AB,DF=AF=AC,然后求出AE+DE=AB,再求解即可;(2)根据到线段两端点距离相等的点在线段的垂直平分线证明.【解答】(1)解:∵AD是高,E、F分别是AB、AC的中点,∴DE=AE=AB,DF=AF=AC,∴AE+DE=AB=15,AF+DF=AC,∵四边形AEDF的周长为24,AB=15,∴AC=24﹣15=9;(2)证明:∵DE=AE,DF=AF,∴点E、F在线段AD的垂直平分线上,∴EF垂直平分AD.【点评】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,到线段两端点距离相等的点在线段的垂直平分线的性质,熟记性质是解题的关键.15.定义:如图1,点M,N把线段AB分割成AM,MN和BN,若以AM,MN,BN为边的三角形是一个直角三角形,则称点M,N是线段AB的勾股分割点.请解决下列问题:(1)已知点M,N是线段AB的勾股分割点,且BN>MN>AM.若AM=2,MN=3,求BN的长;(2)如图2,若点F、M、N、G分别是AB、AD、AE、AC边上的中点,点D,E是线段BC的勾股分割点,且EC>DE>BD,求证:点M,N是线段FG的勾股分割点.【分析】(1)由M、N为线段AB的勾股分割点,利用题中的新定义列出关系式,将MN 与AM的长代入求出BN的长即可;(2)由F、M、N、G分别为各边中点,得到FM、MN、NG分别为中位线,利用中位线定理得到BD=2FM,DE=2MN,EC=2NG,再利用题中新定义列出关系式,即可得证.【解答】(1)解∵点M,N是线段AB的勾股分割点,且BN>MN>AM,AM=2,MN =3,∴BN2=MN2+AM2=9+4=13,∴BN=;(2)证明∵点F、M、N、G分别是AB、AD、AE、AC边上的中点,∴FM、MN、NG分别是△ABD、△ADE、△AEC的中位线,∴BD=2FM,DE=2MN,EC=2NG,∵点D,E是线段BC的勾股分割点,且EC>DE>BD,∴EC2=DE2+DB2,∴4NG2=4MN2+4FM2,∴NG2=MN2+FM2,∴点M,N是线段FG的勾股分割点.【点评】此题考查了勾股定理,弄清题中的新定义是解本题的关键.16.已知,如图,在△ABC中,∠ACB=90°,D,E分别是AC,AB的中点,连接DE并延长到F,使EF=2DE,连接CE,BF(1)求证:CE=BF;(2)当∠A=30°时,试判断四边形BCEF的形状并说明理由.【分析】(1)根据三角形中位线定理得到DE=BC,DE∥BC,由题意得到EF=BC,根据平行四边形的判定和性质证明;(2)根据直角三角形的性质、菱形的判定定理解答.【解答】(1)证明:∵D,E分别是AC,AB的中点,∴DE=BC,DE∥BC,∵EF=2DE,∴EF=BC,又DE∥BC,∴四边形ECBF是平行四边形,∴CE=BF;(2)解:∠A=30°时,四边形BCEF的菱形,理由如下:∠ACB=90°,∠A=30°,∴∠ABC=60°,BC=AB=BE,∴△BEC是等边三角形,∵四边形ECBF是平行四边形,∴四边形ECBF是菱形.【点评】本题考查的是三角形中位线定理、菱形的判定定理,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.17.如图,在四边形ABCD中,M、N分别是对角线AC、BD的中点,又AD、BC的延长线交于P,求证:S△PMN=S四边形ABCD.【分析】先连接DM,BM,根据三角形的中线将三角形分成面积相等的两部分,得到△ADM的面积+△ABM的面积=×四边形ABCD的面积,根据三角形的中线将三角形分成面积相等的两部分,得到△BPM的面积=×△ABP的面积,最后根据三角形的中线将三角形分成面积相等的两部分,得到△PMN的面积=△BPM的面积﹣△BPN的面积﹣△BMN的面积=S四边形ABCD.【解答】解:如图所示,连接DM,BM,∵M是AC的中点,∴△ADM的面积=×△ACD的面积,△ABM的面积=×△ACB的面积,∴△ADM的面积+△ABM的面积=(△ACD的面积+△ACB的面积)=×四边形ABCD的面积,∵M是AC的中点,∴△BPM的面积=△MPC的面积+△MBC的面积=×△ACP的面积+×△ABC的面积=×△ABP的面积,∵N是BD的中点,∴△BPN的面积=×△BDP的面积,△BMN的面积=×△BDM的面积,∴S△PMN=△BPM的面积﹣△BPN的面积﹣△BMN的面积=×△ABP的面积﹣×△BDP的面积﹣×△BDM的面积=(△ABP的面积﹣△BDP的面积﹣△BDM的面积)=(△ADM的面积+△ABM的面积)=××S四边形ABCD=S四边形ABCD【点评】本题考查的是三角形中线性质的应用,掌握三角形的中线将三角形分成面积相等的两部分是解题的关键.18.证明:三角形中位线定理.已知:如图,D,E分别是△ABC的边AB,AC的中点.求证:DE∥BC,DE=BC.证明:【分析】延长DE至点F,使EF=DE连接CF,根据SAS定理得出△ADE≌△CFE,故可得出四边形BCFD是平行四边形,据此可得出结论.【解答】求证:DE∥BC,DE=BC.证明:延长DE至点F,使EF=DE连接CF.∵E是AC的中点,∴AE=CE.在△ADE与△CFE中,∵,∴△ADE≌△CFE(SAS),∴AD=CF,∠ADE=∠F,∴BD∥CF,∴四边形BCFD是平行四边形,∴DF∥BC,DF=BC,∴DE∥BC,DE=BC.故答案为:DE∥BC,DE=BC.【点评】本题考查的三角形中位线定理,根据题意作出辅助线,构造出平行四边形是解答此题的关键.19.如图,△ABC中,AD是△ABC的边BC上的高,E、F分别是AB、AC的中点,AC=13、AB=20、BC=21.(1)求四边形AEDF的周长;(2)求△ABC的面积.【分析】(1)根据直角三角形的性质、中点的定义得到AE=DE=AB=10,AF=DF=AC=6.5,根据四边形的周长公式计算即可;(2)根据勾股定理求出BD、AD,根据三角形的面积公式计算即可.【解答】解:(1)∵AD是△ABC的边BC上的高,E、F分别是AB、AC的中点,∴AE=DE=AB=10,AF=DF=AC=6.5,∴四边形AEDF的周长=AE+DE+DF+AF=33;(2)设BD=x,则CD=21﹣x,由勾股定理得,202﹣x2=132﹣(21﹣x)2,解得,x=16,∴AD==12,∴△ABC的面积=×BC×AD=126.【点评】本题考查的是直角三角形的性质、勾股定理的应用,掌握在直角三角形中,斜边上的中线等于斜边的一半是解题的关键.20.如图,某厂房屋顶钢架外框是等腰三角形,其中AB=AC,D,E,F分别是BC,AB,AC的中点.已知AB=8m,求DE+DF的长.【分析】由三角形中位线定理得到:DE=AC,DF=AB,可得到DE+DF=(AC+AB)=AB,继而求得答案.【解答】解:D,E,F分别是BC,AB,AC的中点,∴DE=AC,DF=AB,∴DE+DF=(AC+AB)=AB=8(m).【点评】本题主要考查了三角形中位线定理,整体代入思想方法,熟练掌握中位线定理是解决问题的关键.21.如图,⊙O的直径AB=4,sin∠ABC=,BC交⊙O于D,D是BC的中点.(1)求BC的长;(2)过点D作DE⊥AC,垂足为E,求证:直线DE是⊙O的切线.【分析】(1)连接AD.由圆周角定理可知∠ADB=90°,然后由含30°直角三角形的性质和勾股定理可求得BD的长,从而可求得BC的长;(2)连接OD.由三角形的中位线定理可得到OD∥AC,然后依据平行线的性质定理得到∠ODE=∠CED,从而可证明∠EDO=90°,故此可证明DE是圆的切线.【解答】解:如图1所示:连接AD.∵AB是⊙O的直径,∴∠ADB=90°.又∵sin∠ABC=,AB=4,∴∠ABC=30°.∴AD=AB=2.∴Rt△ABD中,由勾股定理得:BD==2.∵D是BC的中点,∴BC=2DB=4.(2)连接OD.∵D是BC的中点,O是AB的中点,∴OD∥AC.∴∠EDO=∠CED.∵DE⊥AC,∴∠CED=90°.∴∠EDO=90°.∴DE是⊙O的切线.【点评】本题主要考查的是切线的判定、三角形中位线定理、勾股定理的应用、含30°直角三角形的性质,由三角形的中位线定理证得OD∥AC是解题的关键.22.如图,在四边形ABCD中,∠ABC=∠ADC=90°,O是AC上的中点,E为BD上的中点.(1)求证:OE⊥BD;(2)若AC=26,OE=5,求BD的长度.【分析】(1)根据直角三角形斜边上的中线等于斜边的一半,可得OB=AC=OD,再根据等腰三角形三线合一的性质证明.(2)根据AC=26,可得OD=×26=13,再根据OE=5,∠OED=90°,利用勾股定理可得DE==12,进而得到BD=2DE=24.【解答】解:(1)∵∠ABC=∠ADC=90°,O是AC上的中点,∴OB=AC=OD,即△BOD是等腰三角形,又∵E为BD上的中点,∴OE⊥BD;(2)∵AC=26,∴OD=×26=13,又∵OE=5,∠OED=90°,∴DE==12,∴BD=2DE=24.【点评】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,等腰三角形三线合一的性质,熟记性质并利用勾股定理是解题的关键.23.连接多边形不相邻的两个顶点的线段,叫做多边形的对角线,如图1,AC、AD是五边形ABCDE的对角线.思考下列问题:(1)如图2,n边形A1A2A3A4…A n中,过顶点A1可以画n﹣3条对角线,它别是A1A n(n>3);过顶点A2可以画(n﹣3)条对角线,过顶点A3可以画(n﹣3)﹣1条对角线.(2)过顶点A1的对角线与过顶点A2的对角线有相同的吗?过顶点A1的对角线与过顶点A3的对角线有相同的吗?(3)在此基础上,你能发现n边形的对角线条数的规律吗?(4)在此基础上,推导出n边形的内角和.【分析】(1)过点A1和任意不相邻的两点连接可得出到一条对角线;同理可得过点A2、A3的情况.(2)过点A1的和过点A2的没有重复的,但和过点A3的有重复的(A1A3和A3A1重复);(3)过每一点有(n﹣3)条对角线,除去重复的即可得出总对角线的条数.(4)过一点有(n﹣3)条对角线,分成(n﹣2)个三角形,根据三角形的内角和为180°即可得出答案.【解答】解:(1)过顶点A1可以画(n﹣3)条对角线,它别是A1A n﹣1(n>3);过顶点A2可以画(n﹣3)条对角线,过顶点A3可以画(n﹣3)条对角线;(2)过点A1的和过点A2的没有重复的,但和过点A3的有重复的(A1A3和A3A1重复);(3)n边形的一个顶点不能与它本身及左右两个邻点相连成对角线,故可连出(n﹣3)条,共有n个顶点,应为n(n﹣3)条,这样算出的数,正好多出了一倍,所以再除以2.即n边形的对角线条数的为:.(4)过一点有(n﹣3)条对角线,分成(n﹣2)个三角形,故n边形的内角和为180°•(n﹣2).【点评】此题考查了多边形的对角线及多边形的内角和的知识,属于基础题,注意一些基本知识的掌握.24.(1)四边形有几条对角线?五边形有几条对角线?六边形有几条对角线?…猜想并探索:n边形有几条对角线?(2)一个n边形的边数增加1,对角线增加多少条?【分析】(1)从n边形的一个顶点出发,向其他顶点共可引(n﹣3)条对角线,n个顶点共可引n(n﹣3)条,但这些对角线每一条都重复了一次,故n边形的对角线条数为.(2)利用(1)中的规律解答.【解答】解:(1)四边形有2条对角线;五边形有5条对角线;六边形有9条对角线;…n边形有条对角线.(2)当n边形的边数增加1时,对角线增加(n﹣1)条.【点评】本题考查了多边形的对角线.多边形有n条边,熟记n边形对角线数目为.25.“转化”是数学中的一种重要思想,即把陌生的问题转化成熟悉的问题,把复杂的问题转化成简单的问题,把抽象的问题转化为具体的问题.(1)请你根据已经学过的知识求出下面星形图(1)中∠A+∠B+∠C+∠D+∠E的度数;(2)若对图(1)中星形截去一个角,如图(2),请你求出∠A+∠B+∠C+∠D+∠E+∠F 的度数;(3)若再对图(2)中的角进一步截去,你能由题(2)中所得的方法或规律,猜想图3中的∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H+∠M+∠N的度数吗?只要写出结论,不需要写出解题过程)【分析】(1)根据三角形外角的性质和三角形内角和定理可得∠A+∠B+∠C+∠D+∠E 的度数;(2)根据三角形外角的性质和四边形内角和等于360°可得∠A+∠B+∠C+∠D+∠E+∠F的度数;(3)根据图中可找出规律∠A+∠B+∠C+∠D+∠E=180°,并且每截去一个角则会增加180度,由此即可求出答案.【解答】解:(1)∵∠1=∠2+∠D=∠B+∠E+∠D,∠1+∠A+∠C=180°,∴∠A+∠B+∠C+∠D+∠E=180°;(2))∵∠1=∠2+∠F=∠B+∠E+∠F,∠1+∠A+∠C+∠D=360°,∴∠A+∠B+∠C+∠D+∠E+∠F=360°;(3)根据图中可得出规律∠A+∠B+∠C+∠D+∠E=180°,每截去一个角则会增加180度,所以当截去5个角时增加了180×5度,则∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H+∠M+∠N=180×5+180=1080°.【点评】本题主要考查了多边形的内角与外角之间的关系.有关五角星的角度问题是常见的问题,其5个角的和是180度.解此题的关键是找到规律利用规律求解.26.如图,△ABC中,∠ABC的角平分线与∠ACB的外角∠ACD的平分线交于A1.(1)当∠A为70°时,∵∠ACD﹣∠ABD=∠A∴∠ACD﹣∠ABD=70°∵BA1、CA1是∠ABC的角平分线与∠ACB的外角∠ACD的平分线∴∠A1CD﹣∠A1BD=(∠ACD﹣∠ABD)∴∠A1=35°;(2)∠A1BC的角平分线与∠A1CD的角平分线交于A2,∠A2BC与A2CD的平分线交于A3,如此继续下去可得A4、…、A n,请写出∠A与∠A n的数量关系∠A n=∠A;(3)如图2,四边形ABCD中,∠F为∠ABC的角平分线及外角∠DCE的平分线所在的直线构成的角,若∠A+∠D=230度,则∠F=25°.。

北师大八年级下册-第六章-平行四边形证明题专项练习(包含答案)

北师大八年级下册-第六章-平行四边形证明题专项练习(包含答案)

北师大八年级下册-第六章-平行四边形证明题专项练习(包含答案)本页仅作为文档页封面,使用时可以删除This document is for reference only-rar21year.March1.如图,四边形ABCD是平行四边形,DE平分∠ADC,交AB于点E,BF平分∠ABC,交CD于点F.求证:DE=BF2.如图,在平行四边形ABCD中,将△BCD沿BD翻折,使点C落在点E处,BE和AD相交于点O.求证:OA=OE.3.如图所示,把平行四边形ABCD折叠,使点C与点A重合,这时点D落在点D1处,折痕为EF,若∠BAE=55°,求∠D1AD的度数4.如图(1),▱ABCD的对角线AC,BD相交于点O,EF过点O且与AD、BC分别相交于点E、F,则OE=OF.若将EF向两方延长与平行四边形的两对边的延长线分别相交(如图(2)和图(3)),OE与OF还相等吗?若相等,请你说明理由.5.如图,点E为▱ABCD的边AB上一点,将△BCE沿CE翻折得到△FCE,点F落在对角线AC上,且AE=AF,若∠BAC=28°,求∠BCD的度数。

6.如图,在▱ABCD中,点E是BC边的中点,连接AE并延长与DC的延长线交于F.(1)求证:CF=CD;(2)若AF平分∠BAD,连接DE,试判断DE与AF的位置关系,并说明理由.7.如图,在▱ABCD中,连接BD,在BD的延长线上取一点E,在DB的延长线上取一点F,使BF=DE,连接AF、CE.求证:AF∥CE.8.如图,在▱ABCD中,O是对角线AC的中点,EF经过点O交AD,BC于E,F.四边形AFCE是平行四边形吗?请说明理由.9.如图,四边形ABCD是平行四边形,直线EF∥BD,与CD、CB的延长线分别交于点E、F,与AB、AD 交于点G、H.(1)求证:四边形FBDH为平行四边形;(2)求证:FG=EH.10.如图,已知△ABC是等边三角形,点D、F分别在线段BC、AB上,∠EFB=60°,EF=DC.(1)求证:四边形EFCD是平行四边形;(2)若BF=EF,求证:AE=AD.11.如图①,已知在△ABC中,AB=AC,点P为底边BC上(端点B、C除外)的任意一点,且PE∥AC,PF∥AB.(1)线段PE、PF、AB之间有什么数量关系?并说明理由;(2)如图②,将“点P为底边BC上任意一点”改为“点P为底边BC延长线上任意一点”,其他条件不变,上述结论还成立吗如果不成立,你能得出什么结论请说明你的理由.12.如图,已知△ABC是等边三角形,点D、F分别在线段BC、AB上,∠EFB=60°,EF=DC.(1)求证:四边形EFCD是平行四边形;(2)若BF=EF,求证:AE=AD.13.如图,在平行四边形ABCD中,∠C=60°,M、N分别是AD、BC的中点,BC=2CD.(1)求证:四边形MNCD是平行四边形;(2)求证:BD=3MN.14.如图,已知△ABC的中线BD、CE交于点O,F、G分别是OB、OC的中点.求证:四边形DEFG是平行四边形.15.如图,在△ABC中,D、E分别是边AB、AC的中点,∠B=50°.将△ADE沿DE折叠,使点A落在点A1处,求∠BDA1的度数.16.如图,M是△ABC的边BC的中点,AN平分∠BAC,BN⊥AN于点N,延长BN交AC于点D,已知AB=10,BC=15,MN=3.(1)求证:BN=DN;(2)求△ABC的周长.17.如图,在△ABC中,BC=AC,E、F分别是AB、AC的中点,延长EF交∠ACD的平分线于点G.(1)AG与CG有怎样的位置关系?说明你的理由;(2)求证:四边形AECG是平行四边形.18.我们知道“连接三角形两边中点的线段叫三角形的中位线”“三角形的中位线平行于三角形的第三边,且等于第三边的一半”.类似地,我们把连接梯形两腰中点的线段叫做梯形的中位线.如图所示,在梯形ABCD中,AD∥BC,点E,F分别是AB,CD的中点,那么EF就是梯形ABCD的中位线,通过观察、测量,猜想EF和AD,BC有怎样的位置和数量关系,并证明你的结论.19.如图,四边形纸片ABCD中,∠A=70°,∠B=80°,将纸片折叠,使C,D落在AB边上的C',D'处,折痕为MN,求∠AMD'+∠BNC' 的度数20.如图所示,E,F分别为平行四边形ABCD中AD,BC的中点,G,H在BD上,且BG=DH,求证四边形EGFH是平行四边形.21.如图所示,在直角梯形ABCD中,AD∥BC,∠B=90°,AD=24 ㎝,BC=26㎝,动点P从点A 开始沿AD边以每秒1㎝的速度向D点运动,动点Q从点C开始沿CB边以每秒3㎝的速度向B运动,P,Q分别从A,C同时出发,当其中一点到达端点时,另一点也随之停止运动,设运动时间为t s.(1)t为何值时,四边形PQCD为平行四边形? (2)t为何值时,四边形PQCD为等腰梯形? (3)t为何值时,四边形ABQP为矩形?22.如图,M是△ABC的边BC的中点,AN平分∠BAC,BN⊥AN于点N,延长BN交AC于点D,已知AB=10,BC=15,MN=3 (1)求证:BN=DN;(2)求△ABC的周长.23.(1)如图①,口ABCD的对角线AC,BD交于点O,直线EF过点O,分别交AD,BC于点E,F.求证:AE =CF.(2)如图②,将口ABCD(纸片)沿过对角线交点O的直线EF折叠,点A落在点A1处,点B落在点B1处,设FB1交CD于点G,A1B1分别交CD,DE于点H,I.求证:EI=FG.答案1.证法一:∵四边形ABCD是平行四边形,∴AD=CB,∠A=∠C,∠ADC=∠CBA.∵DE平分∠ADC,BF平分∠ABC,∴∠ADE= ∠ADC,∠CBF= ∠CBA,∴∠ADE=∠CBF,∴△ADE≌△CBF(ASA).∴DE=BF.证法二:∵四边形ABCD是平行四边形,∴DC∥AB,∴∠CDE=∠AED,∵DE平分∠ADC,∴∠ADE=∠CDE,∴∠ADE=∠AED,∴AE=AD.同理,CF=CB,又AD=CB,∴AE=CF,∵AB=CD,∴DF=BE,∴四边形DEBF是平行四边形,∴DE=BF.2.证法一:∵四边形ABCD为平行四边形,∴AD∥BC,且AD=BC,∴∠ADB=∠CBD,由折叠可知∠EBD=∠CBD,BE=BC,∴∠EBD=∠ADB,AD=BE,∴BO=DO,∴AD-DO=BE-BO,即OA=OE.证法二:∵四边形ABCD为平行四边形,∴∠A=∠C,且AB=DC.由折叠可知∠E=∠C,DE=DC,∴∠A=∠E,AB=DE.在△AOB和△EOD中,∴△AOB≌△EOD,∴OA=OE.3.∵四边形ABCD是平行四边形,∴∠BAD=∠C,由折叠性质知,∠D1AE=∠C,∴∠D1AE=∠BAD,∴∠D1AD=∠BAE=55°.4.题图(2)中OE=OF.理由:在▱ABCD中,AB∥CD,OA=OC,∴∠E=∠F,又∵∠AOE=∠COF,∴△AOE ≌△COF(AAS),∴OE=OF题图(3)中OE=OF.理由:在▱ABCD中,AD∥BC,OA=OC,∴∠E=∠F,又∵∠AOE=∠COF,∴△AOE≌△COF(AAS),∴OE=OF5.∵∠BAC=28°,AE=AF,∴∠AFE=∠AEF= =76°,∴∠EFC=180°-76°=104°,由折叠的性质知,∠B=∠EFC=104°,∵四边形ABCD是平行四边形,∴AB∥CD,∴∠B+∠BCD=180°,∴∠BCD=180°-104°=76°.6. (1)证明:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∵点F为DC的延长线上一点,∴AB∥DF,∴∠BAE=∠CFE,∠ECF=∠EBA,∵E为BC的中点,∴BE=CE,则在△BAE和△CFE中,∴△BAE≌△CFE(AAS),∴AB=CF,∴CF=CD.(2)DE⊥AF.理由:∵AF平分∠BAD,∴∠BAF=∠DAF,∵∠BAF=∠F,∴∠DAF=∠F,∴DA=DF,又由(1)知△BAE≌△CFE,∴AE=EF,∴DE⊥AF.7.∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC.∴∠ADF=∠CBE.又∵BF=DE,∴BF+BD=DE+BD,∴DF=BE.∴△ADF≌△CBE.∴∠AFD=∠CEB.∴AF∥CE.8.四边形AFCE是平行四边形.理由如下:∵四边形ABCD是平行四边形,∴AD∥BC.∴∠DAC=∠BCA.又∵O是AC的中点,∴OA=OC.又∵∠AOE=∠COF,∴△AOE≌△COF.∴OE=OF.∵OE=OF,OA=OC,∴四边形AFCE是平行四边形.9. (1)∵四边形ABCD是平行四边形,∴AD∥BC,又∵EF∥BD,∴四边形FBDH为平行四边形.(2)由(1)知四边形FBDH为平行四边形,∴FH=BD,∵EF∥BD,AB∥DC,∴四边形BDEG是平行四边形, ∴BD=EG,∴FH=EG,∴FH-GH=EG-GH,∴FG=EH.10.(1)∵△ABC是等边三角形,∴∠ABC=60°.∵∠EFB=60°,∴∠ABC=∠EFB.∴EF∥BC.又∵EF=DC,∴四边形EFCD是平行四边形.(2)连接BE.∵BF=EF,∠EFB=60°∴△BEF是等边三角形∴EB=EF∠ABE=60°又∵EF=DC∴BE=DC∵△ABC是等边三角形,∴∠ACB=60°,AB=AC.∴∠ABE=∠ACD,又∵BE=DC,AB=AC,∴△ABE≌△ACD,∴AE=AD.11. (1)PE+PF=AB.理由:∵PE∥AC,PF∥AB,∴∠EPB=∠C,四边形PEAF是平行四边形,∴PF=AE,∵AC=AB,∴∠B=∠C,∴∠EPB=∠B,∴PE=BE.∵BE+AE=AB,∴PE+PF=AB.(2)(1)中结论不成立.此时结论为PE-PF=AB.理由:∵PE∥AC,PF∥AB,∴∠FPC=∠ABC,四边形PEAF 是平行四边形,∴PE=AF,又AB=AC,∴∠ABC=∠ACB,∴∠FPC=∠ACB=∠FCP,∴PF=FC,∴PE-PF=AF-FC=AC=AB.12. (1)∵△ABC是等边三角形,∴∠ABC=60°.∵∠EFB=60°,∴∠ABC=∠EFB.∴EF∥BC.又∵EF=DC,∴四边形EFCD是平行四边形.(2)连接BE.∵BF=EF,∠EFB=60°,∴△BEF是等边三角形.∴EB=EF,∠ABE=60°.又∵EF=DC,∴BE=DC. ∵△ABC是等边三角形,∴∠ACB=60°,AB=AC.∴∠ABE=∠ACD,又∵BE=DC,AB=AC,∴△ABE≌△ACD,∴AE=AD.13. (1)∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC.∵M、N分别是AD、BC的中点,∴MD=NC,又MD∥NC,∴四边形MNCD是平行四边形.(3)如图,连接DN.∵N是BC的中点,BC=2CD,∴CD=NC.∵∠C=60°,∴△DCN是等边三角形.∴ND=NC,∠DNC=∠NDC=60°.∴ND=NB=CN.∴∠DBC=∠BDN=30°.∴∠BDC=∠BDN+∠NDC=90°. ∴∵四边形MNCD是平行四边形,∴MN=CD.∴BD= MN.1BC,又∵F、G分别是14.∵D,E分别为AC、AB的中点,∴DE是△ABC的中位线,∴DE∥BC,且DE=2OB、OC的中点,1BC,∴DE∥FG,DE=FG,∴四边形DEFG是平行四边形. ∴FG是△BCO的中位线,∴FG∥BC,且FG= 215.∵D、E分别是边AB、AC的中点,∴DE∥BC,∴∠ADE=∠B=50°(两直线平行,同位角相等),又∵∠ADE=∠A1DE,∴∠A1DA=2∠B,∴∠BDA1=180°-2∠B=80°.16. (1)证明:∵AN平分∠BAC,∴∠1=∠2,∵BN⊥AN,∴∠ANB=∠AND=90°,又AN=AN,∴△ABN≌△ADN,∴BN=DN.(2)由△ABN≌△ADN知,AD=AB=10,点N为BD的中点,又M是BC的中点,∴MN为△BCD的中位线,∴CD=2MN=6,∴AC=AD+CD=16,∴△ABC的周长=AB+BC+AC=10+15+16=41.17. (1)AG ⊥CG.理由:∵E 、F 分别是AB 、AC 的中点,∴EF 是△ABC 的中位线,AF=CF,∴EF ∥BC,∴∠FGC=∠GCD,∵CG 平分∠ACD,∴∠FCG=∠GCD,∴∠FCG=∠FGC,∴FG=FC,又∵AF=CF,∴AF=FG,∴∠FAG=∠AGF,∵∠FAG+∠AGC+∠ACG=180°,∴∠AGC=90°,∴AG ⊥CG.(2)证明:由(1)知,FG= 21AC,∵EF 是△ABC 的中位线,∴EF= 21BC,∴FG=EF,又∵AF=CF,∴四边形AECG 是平行四边形.18. 结论:EF ∥AD ∥BC,EF= 21(AD+BC).证明如下:如图所示,连接AF 并延长交BC的延长线于点G,∵AD ∥BC,∴∠DAF=∠G,在△ADF 和△GCF 中,∠DAF=∠G,∠DFA=∠CFG,DF=FC,∴△ADF ≌△GCF(AAS),∴AF=FG,AD=CG,又∵AE=EB,∴EF ∥BG,EF= 21BG,即EF ∥AD ∥BC,EF= 21(AD+BC). 19.四边形纸片ABCD 中,∠A=70°,∠B=80°,∴∠D+∠C=360°-∠A-∠B=210°.∵将纸片折叠,使C,D 落在AB 边上的C',D'处,∴∠MD'B=∠D,∠NC'A=∠C,∴∠MD'B+∠NC'A=210°, ∴∠AD'M+∠BC'N=150°,∴∠AMD'+∠BNC'=360°-∠A-∠B-∠AD'M-∠BC'N=60°20. 证明:∵四边形ABCD 是平行四边形,∴AD ∥BC ,AD =BC (平行四边形对边平行且相等).∴∠EDH =∠FBG .又∵E ,F 分别为AD ,BC 的中点,∴DE =BF .又∵BG =DH ,∴.△DEH ≌△BFG (SAS ),∴EH =FG ,∠DHE =∠BGF .∴∠EHG =∠FGH (等角的补角相等).∴EH ∥FG .∴四边形EGFH 是平行四边形21.由已知得AP =t ,CQ =3t ,PD =24-t ,BQ =26-3t .(1)∵PD ∥CQ ,∴当PD =CQ 时,即3t =24-t 时,四边形PQCD 为平行四边形,解得t =6.故当t =6时,四边形PQCD 为平行四边形. (2)如图3—38所示,作DE ⊥BC ,PF ⊥BC ,垂足分别为E ,F ,则CE =2.当QF =CE 时,即QF+CE =2CE =4时,四边形PQCD 是等腰梯形.此时有CQ -EF =4,即3t —(24一t )=4,解得t =7.故当t =7时,四边形PQCD 为等腰梯形.(3)若四边形ABQP 为矩形,则AP =BQ ,即t =26—3t ,解得t =213.故当t =213时,四边形ABQP 为矩形. 22.(1)证明:在△ABN 和△ADN 中, ∵12AN ANANB AND ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ABN ≌△ADN , ∴BN =DN .(2)解:∵△ABN ≌△ADN ,∴AD =AB =10,DN =NB , 又∵点M 是BC 中点,∴MN 是△BDC 的中位线,∴CD =2MN =6, 故△ABC 的周长=AB +BC +CD +AD =10+15+6+10=41.23.证明:(1)∵四边形ABCD 是平行四边形,∴AD ∥BC ,OA =OC ,∴∠1=∠2,∵在△AOE 和△COF 中,1234OA OC∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△AOE ≌△COF (ASA ),∴AE =CF ; (2)∵四边形ABCD 是平行四边形,∴∠A =∠C ,∠B =∠D ,由(1)得AE =CF ,由折叠的性质可得:AE =A 1E ,∠A 1=∠A ,∠B 1=∠B ,∴A 1E =CF ,∠A 1=∠A =∠C ,∠B 1=∠B =∠D ,又∵∠1=∠2,∴∠3=∠4,∵∠5=∠3,∠4=∠6,∴∠5=∠6,∵在△A 1IE 与△CGF 中,1156A C A E CF ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△A 1IE ≌△CGF (AAS ),∴EI =FG .。

2022-2023学年北师大版八年级数学下册第六章《平行四边形》测试卷附答案解析

2022-2023学年北师大版八年级数学下册第六章《平行四边形》测试卷附答案解析

2022-2023学年八年级数学下册第六章《平行四边形》测试卷一、单选题1.下列条件中不能判定四边形ABCD 是平行四边形的是()A .AB CD ∥,AB CD=B .AB CD ∥,AD BC ∥C .AB CD ∥,AD BC =D .AB CD ∥,A C∠=∠2.下列∠A :∠B :∠C :∠D 的值中,能判定四边形ABCD 是平行四边形的是()A .1:2:3:4B .1:4:2:3C .1:2:2:1D .3:2:3:23.下列说法正确的是()A .平行四边形是轴对称图形B .平行四边形的邻边相等C .平行四边形的对角线互相垂直D .平行四边形的对角线互相平分4.已知一个多边形的内角和与外角和的和为2160°,这个多边形的边数为()A .9B .10C .11D .125.如图,▱ABCD 的周长为36,对角线AC 、BD 相交于点O ,点E 是CD 的中点,BD=12,则△DOE 的周长为()A .15B .18C .21D .246.一个正多边形每个内角与它相邻外角的度数比为3:1,则这个正多边形是()A .正方形B .正六边形C .正八边形D .正十边形7.如图,把△ABC 纸片沿DE 折叠,当点A 落在四边形BCDE 内部时,则∠A 与∠1+∠2之间有一种数量关系始终保持不变.请试着找一找这个规律,你发现的规律是()A .∠A =∠1+∠2B .2∠A =∠1+∠2C .3∠A =2∠1+∠2D .3∠A =2(∠1+∠2)8.如图,P 是面积为S 的ABCD Y 内任意一点,PAD 的面积为1S ,PBC 的面积为2S ,则()A .122S S S +>B .122S S S +<C .122SS S +=D .12S S +的大小与P 点位置有关9.如图,小明从A 点出发,沿直线前进10米后向左转36°,再沿直线前进10米,再向左转36°……照这样走下去,他第一次回到出发点A 点时,一共走的路程是()A .100米B .110米C .120米D .200米10.如图,△ABC 是等边三角形,P 是三角形内一点,PD ∥AB ,PE ∥BC ,PF ∥AC ,若△ABC 的周长为24,则PD +PE +PF =()A .8B .9C .12D .1511.有下列说法:①平行四边形具有四边形的所有性质:②平行四边形是中心对称图形:③平行四边形的任一条对角线可把平行四边形分成两个全等的三角形;④平行四边形的两条对角线把平行四边形分成4个面积相等的小三角形.其中正确说法的序号是().A .①②④B .①③④C .①②③D .①②③④12.如图,△ABC 的周长为19,点D ,E 在边BC 上,∠ABC 的平分线垂直于AE ,垂足为N ,∠ACB 的平分线垂直于AD ,垂足为M ,若BC =7,则MN 的长度为()A.32B.2C.52D.3二、填空题13.一个多边形的内角和是它的外角和的4倍,这个多边形是_____边形.14.一个多边形外角和是内角和的29,则这个多边形的边数为________.15.一个多边形的每一个外角都等于36°,则这个多边形的边数为____________.16.一个多边形,除了一个内角外,其余各角的和为3000°,则内角和是______.17.如图,▱ABCD中,AB=3cm,BC=5cm,BE平分∠ABC交AD于E点,CF平分∠BCD交AD于F 点,则EF的长为_____cm.18.如图,将等边三角形、正方形和正五边形按如图所示的位置摆放.1230∠=∠= ,则3∠=___.19.如图, ABCD的对角线AC,BD相交于点O,点E,F分别是线段AO,BO的中点,若AC+BD=24厘米,△OAB的周长是18厘米,则EF=___厘米.20.如图,在四边形ABCD中,P是对角线BD的中点,E,F分别是AB,CD的中点,AD=BC,∠PEF =18°,则∠PFE的度数是__________.21.如图,在平行四边形ABCD 中,AE ⊥BC 于E ,AF ⊥CD 于F ,∠EAF =45°,且32AE AF +=平行四边形ABCD 的周长等于______.三、解答题22.在 ABCD ,过点D 作DE ⊥AB 于点E ,点F 在边CD 上,DF =BE ,连接AF ,BF .(1)求证:四边形BFDE 是矩形;(2)若CF =3,BF =4,DF =5,求证:AF 平分∠DAB .23.在ABC 中,点D ,F 分别为边AC ,AB 的中点.延长DF 到点E ,使DF EF =,连接BE .(1)求证:ADF BEF ≌△△;(2)求证:四边形BCDE 是平行四边形.24.如图,在Rt △ABC 中,∠ACB =90°,点D ,E 分别是边AB ,AC 的中点,延长BC 到点F ,使CF =12BC .连结CD 、EF ,那么CD 与EF 相等吗?请证明你的结论.25.已知:如图A 、C 是▱DEBF 的对角线EF 所在直线上的两点,且AE =CF .求证:四边形ABCD 是平行四边形.26.如图所示,点E ,F ,G ,H 分别是四边形ABCD 的边,,,AB BC CD DA 的中点,求证:四边形EFGH 是平行四边形.27.如图,平行四边形ABCD 的对角线AC ,BD 相交于О点,DE AC ⊥于E 点,BF AC ⊥于F .(1)求证:四边形DEBF 为平行四边形;(2)若20AB =,13AD =,21AC =,求DOE 的面积.28.如图,四边形ABCD 中,∠A =∠ABC =90°,AD =1,BC =3,点E 是边CD 的中点,连接BE 并延长与AD 的延长线交于点F .(1)求证:四边形BDFC 是平行四边形;(2)若BC =BD ,求BF 的长.29.如图,点A 、D 、C 、B 在同一条直线上,AC BD =,AE BF =,//AE BF .求证:(1)ADE BCF ∆≅∆;(2)四边形DECF 是平行四边形.30.如图,分别以Rt △ABC 的直角边AC 及斜边AB 向外作等边△ACD ,等边△ABE ,已知∠BAC =30°,EF ⊥AB ,垂足为F ,连接DF(1)试说明AC =EF ;(2)求证:四边形ADFE 是平行四边形.31.如图,△ABC 中,D 是AB 边上任意一点,F 是AC 中点,过点C 作CE //AB 交DF 的延长线于点E ,连接AE ,CD .(1)求证:四边形ADCE 是平行四边形;(2)若∠B =30°,∠CAB =45°,2AC =,求AB 的长.32.如图,在四边形ABCD 中,AB CD =,BE DF =;AE BD ⊥,CF BD ⊥,垂足分别为E ,F .(1)求证:ABE ≌CDF ;(2)若AC 与BD 交于点O ,求证:AO CO =.33.如图,在平行四边形ABCD 中,点E 是边AD 的中点,连接CE 并延长交BA 的延长线于点F ,连接AC ,DF .(1)求证: AEF ≌ DEC ;(2)求证:四边形ACDF 是平行四边形.34.如图,在□ABCD 中,点O 是对角线AC 、BD 的交点,EF 过点O 且垂直于AD .(1)求证:OE =OF ;(2)若S ▱ABCD =63,OE =3.5,求AD 的长.35.如图,AB ,CD 相交于点O ,AC ∥DB ,OA =OB ,E 、F 分别是OC ,OD 中点.(1)求证:OD =OC .(2)求证:四边形AFBE 平行四边形.36.已知:如图,在ABC 中,中线,BE CD 交于点,,O F G 分别是,OB OC 的中点.求证:(1)//DE FG ;(2)DG 和EF 互相平分.37.如图,▱ABCD 中,BD ⊥AD ,∠A =45°,E 、F 分别是AB ,CD 上的点,且BE =DF ,连接EF 交BD 于O .(1)求证:BO =DO ;(2)若EF ⊥AB ,延长EF 交AD 的延长线于G ,当FG =1时,求AD 的长.38.如图,点D 是ABC 内一点,点E ,F ,G ,H 分别是AB ,AC ,CD ,BD 的中点.(1)求证:四边形EFGH 是平行四边形;(2)如果∠BDC =90°,∠DBC =30°,2CD =,AD =6,求四边形EFGH 的周长.39.在四边形ABCD 中,已知AD ∥BC ,∠B =∠D ,AE ⊥BC 于点E ,AF ⊥CD 于点F .(1)求证:四边形ABCD 是平行四边形;(2)若AF =2AE ,BC =6,求CD 的长.40.如图,在四边形ABCD 中,//,90,16cm,12cm,21cm AD BC B AD AB BC ∠==== .动点P 从点B 出发,沿射线BC 的方向以每秒2cm 的速度运动到C 点返回,动点Q 从点A 出发,在线段AD 上以每秒1cm 的速度向点D 运动,点P ,Q 分别从点B ,A 同时出发,当点Q 运动到点D 时,点P 随之停止运动,设运动时间为t (秒).(1)当010.5t <<时,若四边形PQDC 是平行四边形,求出满足要求的t 的值;(2)当010.5t <<时,若以C ,D ,Q ,P 为顶点的四边形面积为260cm ,求相应的t 的值;(3)当10.516t ≤<时,若以C ,D ,Q ,P 为顶点的四边形面积为260cm ,求相应的t 的值.41.如图,在平面直角坐标系xOy 中,已知直线AB :y =23x +4交x 轴于点A ,交y 轴于点B .直线CD :y =-13x -1与直线AB 相交于点M ,交x 轴于点C ,交y 轴于点D .(1)直接写出点B 和点D 的坐标;(2)若点P 是射线MD 的一个动点,设点P 的横坐标是x ,△PBM 的面积是S ,求S 与x 之间的函数关系;(3)当S =20时,平面直角坐标系内是否存在点E ,使以点B ,E ,P ,M 为顶点的四边形是平行四边形?若存在,请直接写出点P 坐标并求出所有符合条件的点E 的坐标;若不存在,请说明理由.42.在ABC 中,AB AC =,点D 在边BC 所在的直线上,过点D 作//DF AC 交直线AB 于点F ,//DE AB 交直线AC 于点E .(1)当点D 在边BC 上时,如图①,求证:DE DF AC +=.(2)当点D 在边BC 的延长线上时,如图②,线段DE ,DF ,AC 之间的数量关系是_____,为什么?(3)当点D 在边BC 的反向延长线上时,如图③,线段DE ,DF ,AC 之间的数量关系是____(不需要证明).43.如图,在平面直角坐标系xOy 中,直线y =-12x +32与y =x 相交于点A ,与x 轴交于点B .(1)求点A ,B 的坐标;(2)在平面直角坐标系xOy 中,是否存在一点C ,使得以O ,A ,B ,C 为顶点的四边形是平行四边形?如果存在,试求出所有符合条件的点C 的坐标;如果不存在,请说明理由;(3)在直线OA 上,是否存在一点D ,使得△DOB 是等腰三角形?如果存在,试求出所有符合条件的点D 的坐标,如果不存在,请说明理由.参考答案:1.C2.D3.D4.D5.A6.C7.B8.C9.A10.A11.D12.C 13.十14.1115.1016.3060 17.118.42︒19.320.18.21.1222.【详解】(1)证明:∵四边形ABCD 是平行四边形,∴AB ∥CD .∵BE ∥DF ,BE =DF ,∴四边形BFDE 是平行四边形.∵DE ⊥AB ,∴∠DEB =90°,∴四边形BFDE 是矩形;(2)∵四边形ABCD 是平行四边形,∴AB ∥DC ,∴∠DFA =∠FAB .在Rt △BCF 中,由勾股定理,得BC 22FC FB +2234+,∴AD =BC =DF =5,∴∠DAF =∠DFA ,∴∠DAF =∠FAB ,即AF 平分∠DAB .23.【详解】(1)证明:∵点F 为边AB 的中点,∴BF AF =,在ADF △与BEF △中,AF BF AFD BFE DF EF =⎧⎪∠=∠⎨⎪=⎩,∴(SAS)ADF BEF △△≌;(2)证明:∵点D 为边AC 的中点,∴AD DC =,由(1)得ADF BEF ≌△△,∴AD BE =,ADF BEF ∠=∠,∴DC BE =,//DC BE ,∴四边形BCDE 是平行四边形.24.【详解】解:结论:CD =EF .理由如下:∵D 、E 分别是边AB 、AC 的中点,∴DE ∥BC ,DE 12=BC .∵CF 12=BC ,∴DE =CF ,∴四边形DEFC 是平行四边形,∴CD =EF .25.【详解】证明:∵平行四边形DEBF ,∴//DE BF ,//DF BE ,∴DEF BFE ∠=∠,DFE BEF ∠=∠,∵180DEF DEA ∠+∠=︒,180BFE BFC ∠+∠=︒,180DFE DFC ∠+∠=︒,180BEF BEA ∠+∠=︒,∴DEA BFC ∠=∠,DFC BEA ∠=∠,∵平行四边形DEBF ,∴DE BF =,DF BE =,在DEA △和BFC △中,DE BF DEA BFC AE CF =⎧⎪∠=∠⎨⎪=⎩∴DEA BFC △≌△,∴AD BC =,在DFC △和BEA △中,DF BE DFC BEA AE CF =⎧⎪∠=∠⎨⎪=⎩∴DFC BEA △≌△,∴CD AB =,∴四边形ABCD 是平行四边形.26.【详解】解:如图,连接BD.∵点E ,H 分别是线段,AB DA 的中点,∴EH 是ABD △的中位线,∴EH ∥BD ,12EH BD =.同理,1//,2FG BD FG BD =.∴//,=EH FG EH FG ,∴四边形EFGH 是平行四边形.27.【详解】(1)证明:,DE AC BF AC ⊥⊥ ,,90DE BF AED CFB ∴∠=∠=︒ ,四边形ABCD 是平行四边形,,AD BC AD BC ∴= ,DAE BCF ∴∠=∠,在ADE V 和CBF V 中,90AED CFB DAE BCF AD CB ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,()ADE CBF AAS ∴≅ ,DE BF ∴=,又DE BF ,∴四边形DEBF 为平行四边形;(2)解: 四边形ABCD 是平行四边形,20,21AB AC ==,12120,22CD AB OA AC ∴====,,13DE AC AD ⊥= ,22222AD AE DE CD CE ∴-==-,即22221320AE CE -=-,()()231CE AE CE AE ∴+-=,即()231AC CE AE -=,23111CE AE AC∴-==①,又21CE AE AC +== ②,∴联立①、②得:5AE =,2211,122OE OA AE DE AD AE ∴=-==-=,则DOE 的面积为11111233222OE DE ⋅=⨯=.28.(1)证明:∵90A ABC ∠∠︒==,∴180A ABC ∠∠︒+=,∴BC ∥AF ,∴CBE DFE ∠∠=,∵E 是边CD 的中点,∴CE =DE ,在△BEC 与△FED 中,CBE DFEBEC FED CE DE ∠∠⎧⎪∠=∠⎨⎪=⎩=∴△BEC ≌△FED (AAS ),∴D BC F =,∴四边形BDFC 是平行四边形;(2)解:∵BD =BC =3,∠A =90°,1AD =,∴22223122AB BD AD -=-==∵四边形BDFC 是平行四边形∴3BC DF ==∴4AF =∴()222222426BF AB AF ++==29.【详解】证明:(1)AC BD = ,AC CD BD CD ∴-=-,即AD BC =,//AE BF ,A B ∴∠=∠,在ADE ∆与BCF ∆中,AD BC A B AE BF =⎧⎪∠=∠⎨⎪=⎩,()ADE BCF SAS ∴∆≅∆;(2)由(1)得:ADE BCF ∆≅∆,DE CF ∴=,ADE BCF ∠=∠,EDC FCD ∴∠=∠,//DE CF ∴,∴四边形DECF 是平行四边形.30.【详解】证明:(1)∵Rt △ABC 中,∠BAC =30°,∴AB =2BC .又∵△ABE 是等边三角形,EF ⊥AB ,∴AB =2AF .∴AF =BC .∵在Rt △AFE 和Rt △BCA 中,AF =BC ,AE =BA ,∴△AFE ≌△BCA (HL ).∴AC =EF .(2)∵△ACD 是等边三角形,∴∠DAC =60°,AC =AD .∴∠DAB =∠DAC +∠BAC =90°.∴EF //AD .∵AC =EF ,AC =AD ,∴EF =AD .∴四边形ADFE 是平行四边形.31.(1)证明:∵AB //CE ,∴∠CAD =∠ACE ,∠ADE =∠CED .∵F 是AC 中点,∴AF =CF .在△AFD 与△CFE 中,CAD ACE ADE CED AF CF ∠∠⎧⎪∠∠⎨⎪⎩===,∴△AFD ≌△CFE (AAS ),∴DF =EF ,∴四边形ADCE 是平行四边形;(2)解:过点C 作CG ⊥AB 于点G,∵∠CAB =45°,∴AG CG =,在△ACG 中,∠AGC =90°,∴222AG CG AC +=,∵2AC =CG =AG =1,∵∠B =30°,∴12CG BC =,∴2BC =,在Rt △BCG 中,22413BG BC CG =-=-=,∴13AB AG BG =+=.32.【详解】(1)证明:∵AE BD ⊥,CF BD ⊥,∴90AEB CFD ∠=∠=︒,∵AB CD =,BE DF =,∴ABE ≌CDF .(2)由(1)ABE ≌CDF ,∴AE CF =,∵AE BD ⊥,CF BD ⊥,∴90AEO CFO ∠=∠=︒,∵AOE COF ∠=∠,∴()AEO CFO AAS ≌∴AO CO =.33.【详解】(1)∵在平行四边形ABCD 中,AB ∥CD ,∴∠FAE =∠CDE ,∵点E 是边AD 的中点,∴AE =DE ,在△AEF 和△DEC 中FAE CDE AE DE AEF DEC ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△AEF ≌△DEC (ASA ).(2)∵△AEF ≌△DEC ,∴AF =DC ,∵AF ∥DC ,∴四边形ACDF 是平行四边形.34.(1)解:∵四边形ABCD 是平行四边形,O 是AC 与BD 的交点,∴AO =CO ,AD ∥BC ,∴∠OAE =∠OCF ,∠OEA =∠OFC ,∴△AOE ≌△COF (AAS ),∴OE =OF ;(2)解:由(1)得OE =OF =3.5,∴EF =7,∵AD ∥BC ,EF ⊥AD ,∴EF 的长即为平行四边形ABCD 中AD 边上的高,∵四边形ABCD 的面积为63,∴=63AD EF ⋅,∴AD =9.35.【详解】证明:(1)∵AC ∥DB ,∴∠CAO =∠DBO ,∵∠AOC =∠BOD ,OA =OB ,∴△AOC ≌△BOD ,∴OC =OD ;(2)∵E 是OC 中点,F 是OD 中点,∴OE =12OC ,OF =12OD ,∵OC =OD ,∴OE =OF ,又∵OA =OB ,∴四边形AFBE 是平行四边形.36.【详解】(1)在△ABC 中,∵BE 、CD 为中线∴AD =BD ,AE =CE ,∴DE ∥BC 且DE =12BC .在△OBC 中,∵OF =FB ,OG =GC ,∴FG ∥BC 且FG =12BC .∴DE ∥FG(2)由(1)知:DE ∥FG ,DE =FG .∴四边形DFGE 为平行四边形.∴DG 和EF 互相平分37.【详解】(1)证明:∵四边形ABCD 是平行四边形,∴DC AB ∥,∴OBE ODF ∠=∠,在OBE △与ODF △中OBE ODF BOE DOF BE DF =⎧⎪=⎨⎪=⎩∠∠∠∠∴()OBE ODF AAS ≌△△,∴BO DO =.(2)解:∵BD AD ⊥,∴90ADB ∠=︒,∴45DBA A ∠=∠=︒,∴AD DB =,∴EF AB ⊥,∴45G A ∠=∠=︒,∵EF AB ⊥,,AB DC ∴DF OG ⊥,∴45GDF G ==︒∠∠,∴GDF 为等腰直角三角形,∴1DF FG ==,∴2222112DG DF FG =+=+=,∵BD AD ⊥,∴90ADB GDO ∠=∠=︒,∴45GOD G ∠=∠=︒,∴2DO DG ==由(1)OBE ODF ≌△△,∴=2OB OD =∴2222DB OD OB =+==22AD DB ==,故答案为:22AD =.38.(1)证明:∵点E ,F ,G ,H 分别是AB ,AC ,CD ,BD 的中点.∴EH =FG =12AD ,EF HG ==12BC ,∴四边形EFGH 是平行四边形;(2)∵∠BDC =90°,∠DBC =30°,∴BC =2CD =4.由(1)得:四边形EFGH 的周长=EH +GH +FG +EF =AD +BC ,又∵AD =6,∴四边形EFGH 的周长=AD +BC =6+4=10.39.【详解】(1)证明:∵AD //BC ,∴∠BAD +∠B =180°,∵∠B =∠D ,∴∠BAD +∠D =180°,∴AB //CD ,又∵AD//BC,∴四边形ABCD是平行四边形;(2)解:∵AE⊥BC于点E,AF⊥CD于点F,∴平行四边形的面积=BC×AE=CD×AF,∵AF=2AE,∴BC=2CD=6,∴CD=3.40.【详解】解:(1)∵四边形PQDC是平行四边形,∴DQ=CP,当0<t<10.5时,P、Q分别沿AD、BC运动,如图1所示:∵DQ=AD-AQ=16-t,CP=21-2t∴16-t=21-2t解得:t=5;即当t=5秒时,四边形PQDC是平行四边形;(2)当0<t<10.5时,P、Q分别沿AD、BC运动,如图1所示:CP=21-2t,DQ=16-t,若以C,D,Q,P为顶点的四边形面积为60cm2,则12(DQ+CP)×AB=60,即12(16-t+21-2t)×12=60,解得:t=9;即当0<t<10.5时,若以C,D,Q,P为顶点的四边形面积为60cm2,t的值为9秒;(3)当10.5≤t<16时,如图2所示,点P到达C点返回,CP=2t-21,DQ=16-t,则同(2)得:12(DQ+CP)×AB=60,即12(16-t+2t-21)×12=60,解得:t=15.即当10.5≤t<16时,若以C,D,Q,P为顶点的四边形面积为60cm2,t的值为15秒.41.【详解】解:(1)∵点B是直线AB:y=23x+4与y轴的交点坐标,∴B(0,4),∵点D 是直线CD :y =-13x -1与y 轴的交点坐标,∴D (0,-1);(2)如图1,∵直线AB 与CD 相交于M ,∴243113y x y x ⎧=⎪⎪⎨⎪=-⎪⎩+①-②①-②可得:x +5=0,∴x =-5,把x =-5代入②可得:y =23,∴M 坐标为(-5,23),∵B (0,4),D (0,-1),∴BD =5,∵点P 在射线MD 上,当P 在MD 的延长线上时,x ≥0,S =S △BDM +S △BDP =12×5(5+x )=52522x +,当P 在线段MD 上时,-5<x <0,S =S △BDM -S △BDP =12×5(5+x )=52522x +,∴S =52522x +(x >-5)(3)如图,由(2)知,S =52522x +,当S =20时,52522x +=20,∴x =3,∴P (3,-2),①当BP 是对角线时,取BP 的中点G ,连接MG 并延长取一点E '使GE '=GM ,设E '(m ,n ),∵B (0,4),P (3,-2),∴BP 的中点坐标为(32,1),∵M (-5,23),∴25331222nm +-+==,,∴m =8,n =43,∴E '(8,43),②当AB 为对角线时,同①的方法得,E (-8,203),③当MP 为对角线时,同①的方法得,E ''(-2,-163),即:满足条件的点E 的坐标为(8,43)、(-8,203)、(-2,-163).42.【详解】证明:(1)∵//DF AC ,//DE AB .∴四边形AFDE 是平行四边形.∴DF AE =.∵AB AC =.∴B C ∠=∠.∵//DE AB .∴EDC B ∠=∠.∴EDC C ∠=∠.∴DE EC =.∴DE DF EC AE AC +=+=.(2)DF AC DE =+.理由:∵//DF AC ,//DE AB ,∴四边形AFDE 是平行四边形.∴AE DF =.∵//DE AB ,∴B BDE ∠=∠.∵AB AC =,∴B ACB ∠=∠.∵DCE ACB ∠=∠,∴BDE DCE ∠=∠.∴DE CE =.∴AC DE AC CE AE DF +=+==.(3)DE AC DF=+理由:∵DF ∥AC ,DE ∥AB ,∴四边形AEDF是平行四边形,∴DF=AE,∠EDC=∠ABC,又∵∠AB=AC,∴∠ABC=∠C∴∠EDC=∠C,∴DE=EC,∴DE EC AE AC AC DF==+=+.43.【详解】(1)∵直线y=-12x+32与y=x相交于点A,∴联立得1322y xy x⎧=-+⎪⎨⎪=⎩,解得11xy=⎧⎨=⎩,∴点A(1,1),∵直线y=-12x+32与x轴交于点B,∴令y=0,得-12x+32=0,解得x=3,∴B(3,0),(2)存在一点C,使得以O,A,B,C为顶点的四边形是平行四边形.①如图1,过点A作平行于x轴的直线,过点O作平行于AB的直线,两直线交于点C,∵AC∥x轴,OC∥AB,∴四边形CABO是平行四边形,∵A(1,1),B(3,0),∴AC=OB=3,∴C(-2,1),②如图2,过点A作平行于x轴的直线,过点B作平行于AO的直线,两直线交于点C,∵AC∥x轴,BC∥AO,∴四边形CAOB是平行四边形,∵A(1,1),B(3,0),∴AC=OB=3,∴C(4,1),③如图3,过点O作平行于AB的直线,过点B作平行于AO的直线,两直线交于点C,∵OC∥AB,BC∥AO,∴四边形CBAO是平行四边形,∵A(1,1),B(3,0),∴AO=BC,OC=AB,作AE⊥OB,CF⊥OB,易得OE=EF=FB=1,∴C(2,-1),(3)在直线OA上,存在一点D,使得△DOB是等腰三角形,①如图4,当OB=OD时,作DE⊥x轴,交x轴于点E∵OB=3,点D在OA上,∠DOE=45°∴DE=OE=32,∴D(-32,-32),②如图5,当OD=OB时,作DE⊥x轴,交x轴于点E∵OB=3,点D在OA上,∠DOE=45°∴DE=OE=322,∴D(322,322),③如图6,当OB=DB时,21∵∠AOB =∠ODB =45°,∴DB ⊥OB ,∵OB =3,∴D (3,3),④如图7,当DO =DB 时,作DE ⊥x 轴,交x 轴于点E ∵∠AOB =∠OBD =45°,∴OD ⊥DB ,∵OB =3,∴OE =32,AE =32,∴D (32,32).综上所述,在直线OA 上,存在点D (-322,-322),D (322,322),D (3,3)或D (32,32),使得△DOB 是等腰三角形.。

八年级数学下册第六章平行四边形试题(新版)北师大版

八年级数学下册第六章平行四边形试题(新版)北师大版

第六章平行四边形1.平行四边形的性质(1)根据平行四边形对边相等,可知平行四边形相邻两边长之和是平行四边形周长的一半.(2)平行四边形的对角相等,邻角互补,这是根据平行线的性质进行推导得出的,可以用来求角的度数.(3)平行四边形的对角线互相平分,且一条对角线将平行四边形分成两个全等的三角形,两条对角线将平行四边形分成两组全等的三角形,可以应用全等三角形的性质进行解题.【例1】在▱ABCD中,AB=6cm,BC=8cm,则▱ABCD的周长为__________cm.【标准解答】∵在▱ABCD中,AB=6cm,BC=8cm,∴CD=AB=6cm,AD=BC=8cm,∴▱ABCD的周长为6+6+8+8=28(cm).答案:28【例2】在平面直角坐标系中,▱ABCD的顶点A,B,C的坐标分别是(0,0),(3,0),(4,2),则顶点D 的坐标为( )A.(7,2)B.(5,4)C.(1,2)D.(2,1)【标准解答】选C.如图.∵四边形ABCD是平行四边形,∴CD=AB,CD∥AB,∵▱ABCD的顶点A,B,C的坐标分别是(0,0),(3,0),(4,2),∴顶点D的坐标为(1,2).【例3】如图,在▱ABCD中,AB=3,AD=4,∠ABC=60°,过BC的中点E作EF⊥AB,垂足为点F,与DC的延长线相交于点H,则△DEF的面积是________.【标准解答】∵四边形ABCD是平行四边形,∴AB=CD=3,AD=BC=4,∵EF⊥AB,∴EH⊥DC,∠BFE=90°,∵∠ABC=60°,∴∠HCB=∠B=60°,∴∠FEB=∠CEH=180°-∠B-∠BFE=30°,∵E为BC的中点,∴BE=CE=2,∴CH=BF=1,由勾股定理得:EF=EH=.∴△DEF的面积是EF·DH=2.答案:2【例4】如图,E,F是平行四边形ABCD的对角线AC上的点,CE=AF,请你猜想:线段BE与线段DF有怎样的关系?并对你的猜想加以证明.【标准解答】猜想:BE DF.证明:∵四边形ABCD是平行四边形,∴CB=AD,CB∥AD,∴∠BCE=∠DAF在△BCE和△DAF中,∴△BCE≌△DAF.∴BE=DF,∠BEC=∠DFA.∴BE∥DF,故BE DF.【例5】如图,在▱ABCD中,∠B=80°,AE平分∠BAD交BC于点E,CF∥AE交AD于点F,则∠1=( )A.40°B.50°C.60°D.80°【标准解答】选B.因为∠B=80°,所以∠BAD=100°,又AE平分∠BAD,所以∠BAE=∠DAE=∠BEA=50°,因为CF∥AE,所以∠1=∠BEA=50°.【例6】如图,在四边形ABCD中,AB∥CD,AD∥BC,AC,BD相交于点O.若AC=6,则线段AO的长度等于________.【标准解答】易知四边形ABCD是平行四边形,所以AO=OC=AC=3.答案:3【例7】如图所示,在▱ABCD中,对角线AC,BD相交于点O,且AB≠AD,则下列式子不正确的是( )A.AC⊥BDB.AB=CDC.BO=ODD.∠BAD=∠BCD【标准解答】选A.∵四边形ABCD为平行四边形,∴AB=CD,则选项B正确;又根据平行四边形的对角线互相平分,∴BO=OD,则选项C正确;又∵四边形ABCD为平行四边形,∴AB∥CD,AD∥BC,∴∠ABC+∠BCD=180°,∠BAD+∠ABC=180°,∴∠BAD=∠BCD,则选项D正确;由BO=OD,假设AC⊥BD,又∵OA=OA,∴△ABO≌△ADO,∴AB=AD与已知AB≠AD矛盾,∴AC不垂直BD,则选项A错误.1.已知▱ABCD的周长为32,AB=4,则BC=( )A.4B.12C.24D.282.若平行四边形ABCD的周长为22cm.AC,BD相交于O,△AOD的周长比△AOB的周长小3cm,则AD=________,AB=________.2.平行四边形的判定(1)利用“两组对边分别平行的四边形是平行四边形”来说明【例1】如图,在平行四边形ABCD中,点E是AB的延长线上的一点,且EC∥BD,试说明:四边形BECD 是平行四边形.【标准解答】∵四边形ABCD是平行四边形,∴AB∥CD,即BE∥CD,∵EC∥BD,∴四边形BECD是平行四边形(两组对边分别平行的四边形是平行四边形).(2)利用“两组对边分别相等的四边形是平行四边形”来说明【例2】在平行四边形ABCD中,∠DAB=60°,点E,F分别在CD,AB的延长线上,且AE=AD,CF=CB,试说明:四边形AFCE是平行四边形.【标准解答】∵四边形ABCD是平行四边形,∴DC∥AB,∠DCB=∠DAB=60°,∴∠ADE=∠CBF=60°,又∵AE=AD,CF=CB,∴△AED,△CFB是等边三角形,又在平行四边形ABCD中,AD=BC,DC=AB,∴AE=CF,ED=BF,∴ED+DC=BF+AB,即EC=AF,∴四边形AFCE是平行四边形(两组对边分别相等的四边形是平行四边形)(3)利用“一组对边平行且相等的四边形是平行四边形”来说明【例3】如图,在△ABC中,点D,E分别是AB,AC边的中点,若把△ADE绕着点E顺时针旋转180°得到△CFE.试判断四边形DBCF是怎样的四边形,说明你的理由.【标准解答】四边形DBCF是平行四边形.理由如下:∵△ADE绕点E顺时针旋转180°,得到△CFE,∴△ADE≌△CFE,且A,E,C和D,E,F在一条直线上,∴AD=CF,∠A=∠ECF,∴AB∥CF,又∵D是AB的中点,∴AD=DB=CF,∴四边形DBCF是平行四边形(一组对边平行且相等的四边形为平行四边形).(4)利用“两组对角分别相等的四边形是平行四边形”来说明【例4】如图,已知,在平行四边形ABCD中,∠ABC,∠ADC的平分线分别交CD,AB于点E,F,求证:四边形DFBE是平行四边形.【标准解答】∵四边形ABCD是平行四边形,∴∠ABC =∠ADC,∠A=∠C,∵BE,DF分别平分∠ABC,∠ADC,∴∠1=∠3=∠ADC,∠2=∠4=∠ABC,∴∠1=∠2=∠3=∠4,又∵∠DEB=∠4+∠C,∠DFB=∠3+∠A,∠A=∠C,∴∠DEB=∠DFB,∴四边形DFBE是平行四边形(两组对角分别相等的四边形是平行四边形).(5)利用“对角线互相平分的四边形是平行四边形”来说明【例5】如图,平行四边形ABCD的对角线AC和BD交于O,点E,F分别为OB,OD的中点,过O任作一直线分别交AB,CD于点G,H.说明:四边形EHFG是平行四边形.【标准解答】∵四边形ABCD是平行四边形,∴OA=OC,AB∥CD,∴∠BAO=∠DCO,又∵∠AOG=∠COH,∴△AOG≌△COH.∴OG=OH.又∵E,F分别为OB,OD的中点,∴OE=OF,∴四边形EHFG是平行四边形(对角线互相平分的四边形是平行四边形).1.如图,四边形ABCD的对角线相交于点O,AO=CO,请添加一个条件________(只添一个即可),使四边形ABCD是平行四边形.2.已知:如图,在四边形ABCD中,AB∥CD,点E,F为对角线AC上两点,且AE=CF,DF∥BE.求证:四边形ABCD为平行四边形.3.三角形中位线(1)三角形的中位线定理:三角形的中位线平行于第三边,且等于第三边的一半.(2)三角形的中位线定理中说明了三角形中位线与三角形第三边的位置关系与数量关系,为我们证明平行或求线段的长度提供了依据.【例1】如图所示,小明为了测量学校里一池塘的宽度AB,选取可以直达A,B两点的点O,再分别取OA,OB的中点M,N,量得MN=20m,则池塘的宽度AB为__________m.【标准解答】由三角形的中位线定理可知,AB=2MN=40m.答案:40【例2】已知:如图,在△ABC中,DE,DF是△ABC的中位线,连接EF,AD,其交点为O.求证:(1)△CDE≌△DBF.(2)OA=OD.【标准解答】(1)∵DE,DF是△ABC的中位线,∴DF=CE,DF∥CE,DB=DC.∵DF∥CE,∴∠C=∠BDF.在△CDE和△DBF中∴△CDE≌△DBF(SAS).(2)∵DE,DF是△ABC的中位线,∴DF=AE,DF∥AE,∴四边形DEAF是平行四边形,∵EF与AD交于O点,∴AO=OD.1.如图,在△ABC中,CD是高,CE是中线,CE=CB,点A,D关于点F对称,过点F作FG∥CD,交AC边于点G,连接GE.若AC=18,BC=12,则△CEG的周长为________.2.如图,在△A1B1C1中,已知A1B1=7,B1C1=4,A1C1=5,依次连接△A1B1C1的三边中点,得△A2B2C2,再依次连接△A2B2C2的三边中点得△A3B3C3,…,则△A5B5C5的周长为________.4.多边形的有关问题(1)多边形的角度计算①利用多边形内角和公式计算多边形的内角和或边数【例1】一个多边形的内角和是900°,则这个多边形的边数为( )A.6B.7C.8D.9【标准解答】选B.设边数为n,由题意得(n-2)·180°=900°,解得n=7.②利用多边形外角和,计算多边形中各角的度数或边数.【例2】已知一个正多边形的一个内角是120°,则这个多边形的边数是________.【标准解答】外角是180°-120°=60°,360÷60=6,则这个多边形是六边形.答案:六③利用多边形内角和公式和外角和,计算多边形中对角线条数【例3】若凸n边形的内角和为1260°,则从一个顶点出发引的对角线条数是________.【标准解答】由题意可知(n-2)×180°=1260°,解得n=9,所以从一个顶点出发能引9-3=6(条)对角线. 答案:61.正八边形的每个内角为( )A.120°B.135°C.140°D.144°2.若一个正多边形的每个内角为150°,则这个正多边形的边数是( )A.12B.11C.10D.93.如果一个多边形的内角和是其外角和的一半,那么这个多边形是( )A.六边形B.五边形C.四边形D.三角形(2)解决多边形问题的方法①将多边形问题转化为三角形问题解决在解决多边形问题时,如果无法直接应用内角和公式或外角和时,我们可以将多边形通过连接对角线转化成三角形问题解决.【例1】求五边形的内角和.【标准解答1】连接对角线AC,AD,将五边形ABCDE转化成三个三角形:△ABC,△ADC,△ADE,此时五边形ABCDE的内角和=3×180°=540°.【标准解答2】在五边形ABCDE内部任取一点O,连接AO,BO,CO,DO,EO,将五边形ABCDE转化为五个三角形△ABO,△BCO,△DCO,△DEO,△AEO,∴五边形ABCDE的内角和=5×180°-360°=540°.实际上点O的位置也可以放在五边形的任意一条边上,或五边形的外部.②将内角问题转化为外角来解决一个正多边形的每个内角都相等,根据内角与外角互为邻补角,因而就可以求出外角的度数,根据任何多边形的外角和都是360度,利用360除以多边形的边数就可以求出外角的度数,再转化为内角的度数.或者利用360除以外角的度数就可以求出外角的个数,即多边形的边数.【例2】正五边形的每一个内角都等于________°.【标准解答】正五边形的外角是:360÷5=72°,则内角的度数是:180°-72°=108°.答案:1081.正多边形的一个内角为135°,则该多边形的边数为( )A.9B.8C.7D.42.正多边形的一个外角等于20°,则这个正多边形的边数是________.(3)多边形剪去一个角的三种情况①过多边形的一条对角线剪去一个角,则新多边形的边数比原多边形的边数少1.②过多边形的一个顶点剪去一个角,则新多边形的边数与原多边形的边数相同.③不过多边形的顶点剪去一个角,则新多边形的边数比原多边形的边数多1.【例】若把一个多边形剪去一个角,剩余部分的内角和为1440°,那么原多边形有________条边.【标准解答】设新多边形是n边形,由多边形内角和公式得(n-2)180°=1440°,解得n=10,原多边形边数是10-1=9或10+1=11或10.答案:9,10或11凸六边形纸片剪去一个角后,得到的多边形的边数可能是多少?画出图形说明.(4)多边形的镶嵌问题判断多边形能否进行平面镶嵌,关键是检验拼接在同一点的各个角的和是否等于360°.若等于360°,则可以镶嵌;若不等于360°,则不能进行镶嵌.【例】下列正多边形中,不能铺满地面的是( )A.正三角形B.正方形C.正六边形D.正七边形【标准解答】选D.A.∵正三角形的内角是60°,6×60°=360°,∴正三角形能铺满地面;B.∵正方形的内角是90°,4×90°=360°,∴正方形能铺满地面;C.∵正六边形的内角是120°,3×120°=360°,∴正六边形能铺满地面;D.∵正七边形的内角是,同任何一个正整数相乘都不等于360°,∴正七边形不能铺满地面.小芳家房屋装修时,选中了一种漂亮的正八边形地砖.建材店老板告诉她,只用一种八边形地砖是不能密铺地面的,便向她推荐了几种形状的地砖.你认为要使地面密铺,小芳应选择另一种形状的地砖是( )跟踪训练答案解析1.平行四边形的性质【跟踪训练】1.【解析】选B.∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,∵平行四边形ABCD的周长是32,∴2(AB+BC)=32,∴BC=12.2.【解析】由平行四边形对角线互相平分知BO=OD,故△AOD周长比△AOB的周长小3cm,实际上就是AB-AD=3(cm).由平行四边形的周长为22cm可知AD+AB=11cm,解得AB=7cm,AD=4cm.答案:4cm 7cm2.平行四边形的判定【跟踪训练】1.【解析】∵AO=CO,BO=DO,∴四边形ABCD是平行四边形.答案:BO=DO2.【证明】∵AB∥CD,∴∠DCA=∠BAC,∵DF∥BE,∴∠DFA=∠BEC,∴∠AEB=∠DFC,在△AEB和△CFD中∴△AEB≌△CFD(ASA),∴AB=CD,∵AB∥CD,∴四边形ABCD为平行四边形.3.三角形中位线【跟踪训练】1.【解析】由题意得:CE=CB=12,∵点F是AD的中点,FG∥CD,∴FG是△ADC的中位线,所以CG=AC=9,∵点E是AB的中点,∴EG是△ABC的中位线,∴GE=BC=6,∴△CEG的周长为:CE+GE+CG=12+6+9=27.答案:272.【解析】因为A2,B2,C2是△A1B1C1的三边中点,所以△A2B2C2的周长是=8,以此类推△A5B5C5的周长为=1.答案:14.多边形的有关问题(1)多边形的角度计算【跟踪训练】1.【解析】选B.根据多边形的内角和公式,可得正八边形内角和为:(8-2)×180°=1080°,又因为正八边形的每个内角都相等,所以正八边形的每个内角等于1080°÷8=135°. 2.【解析】选A.∵一个正多边形的每个内角为150°,∴这个正多边形的每个外角=180°-150°=30°,∴这个正多边形的边数==12.3.【解析】选D.根据题意,得(n-2)·180°=180°,解得:n=3.(2)解决多边形问题的方法【跟踪训练】1.【解析】选B.∵正多边形的一个内角为135°,∴外角是180°-135°=45°,∵360÷45=8,则这个多边形是八边形.2.【解析】因为外角是20°,360÷20=18,则这个正多边形是18边形.答案:18(3)多边形剪去一个角的三种情况【跟踪训练】【解析】∵六边形剪去一个角的边数有增加1、减少1、不变三种情况,∴新多边形的边数为7,5,6三种情况,如图:(4)多边形的镶嵌问题【跟踪训练】【解析】选B.A.正八边形、正三角形内角分别为135°,60°,显然不能构成360°的周角,故不能铺满;B.正方形、正八边形内角分别为90°,135°,由于135×2+90=360,故能铺满;C.正六边形和正八边形内角分别为120°,135°,显然不能构成360°的周角,故不能铺满;D.正八边形、正五边形内角分别为135°,108°,显然不能构成360°的周角,故不能铺满.。

北师大版八年级数学下册第6章《平行四边形》章节综合测试含答案

北师大版八年级数学下册第6章《平行四边形》章节综合测试含答案
∵AD=a, ∴a 的取值范围是:2<a<10. 故答案为:2<a<10. 15.【解答】解:∵四边形 ABCD 是平行四边形, ∴∠AEB=∠EBC,AD=BC=5cm, ∵BE 平分∠ABC,
∴∠ABE=∠EBC, ∴∠ABE=∠AEB, ∴AB=AE=3cm, 同理可得:DF=DC=3cm, ∴EF=AE+FD﹣AD=3+3﹣5=1(cm). 故答案为:1cm. 16.【解答】解:连接 DE 并延长交 AB 于 H. ∵CD∥AB, ∴∠C=∠A, ∵E 是 AC 中点, ∴DE=EH, 在△DCE 和△HAE 中,
新多边形的内角和为 720°,则对应的图形是( )
A.
B.
C.
D.
10.平面直角坐标系中一个平行四边形的三个顶点的坐标分别(0,0),(3,0),(1,3),
则第四个顶点的坐标可能是下列坐标:①(4,3)②(﹣2,3)③(﹣1,﹣3)④(2,
﹣3)中的哪几个( )
A.①②③
B.②③④
C.①②④
D.①③④
有( )
A.1 对
B.2 对
C.3 对
D.4 对
5.如图,在平行四边形 ABCD 中,AB⊥AC,若 AB=8,AC=12,则 BD 的长是( )
A.22
B.16
6.下列结论正确的是( )
C.18
D.20
A.平行四边形是轴对称图形
B.平行四边形的对角线相等
C.平行四边形的对边平行且相等
D.平行四边形的对角互补,邻角相等
北师大版八年级数学下册第 6 章《平行四边形》章节综合测试含答案
一.选择题(共 10 小题,满分 30 分)
1.在▱ ABCD 中,∠A:∠B=7:2,则∠C 的度数是( )

(常考题)北师大版初中数学八年级数学下册第六单元《平行四边形》测试卷(含答案解析)(4)

(常考题)北师大版初中数学八年级数学下册第六单元《平行四边形》测试卷(含答案解析)(4)

一、选择题1.如图,在ABCD 中,AB AD ≠,对角线AC 与BD 相交于点O ,OE BD ⊥交AD 于E ,若ABE △的周长为12cm ,则ABCD 的周长是( )A .24cmB .40cmC .48cmD .无法确定 2.如图,在下列条件中,能判定四边形ABCD 是平行四边形的是( )A .AD//BC ,AB=CDB .∠AOB=∠COD ,∠AOD=∠COBC .OA=OC ,OB=ODD .AB=AD ,CB=CD 3.如图,在平面直角坐标系中,▱ABCD 三个顶点坐标分别为A (-1,-2),D (1,1),C(5,2),则顶点B 的坐标为( )A .(-1,3)B .(4,-1)C .(3,-1)D .(3,-2) 4.把边长相等的正五边形ABCDE 和正方形ABFG ,按照如图所示的方式叠合在一起,连结AD ,则∠DAG =( )A .18°B .20°C .28°D .30°5.给出下列4个命题:①四边形的内角和等于外角和;②有两个角互余的三角形是直角三角形;③若|x |=2,则x =2;④同旁内角的平分线互相垂直.其中真命题的个数为( )A .1个B .2个C .3个D .4个 6.如图,将四边形ABCD 去掉一个60°的角得到一个五边形BCDEF ,则∠1与∠2的和为( )A .60°B .108°C .120°D .240°7.如图,AD 、BE 分别是ABC 的中线和角平分线,AD BE ⊥,4AD BE ==,F 为CE 的中点,连接DF ,则AF 的长等于( )A .2B .3C .5D .25 8.一个多边形每个外角都等于30°,则这个多边形是几边形( ) A .9B .10C .11D .12 9.如图,▱ABCD 与▱DCFE 的周长相等,且∠BAD =60°,∠F =100°,则∠DAE 的度数为( )A .20°B .25°C .30°D .35° 10.若一个正n 边形的每个内角为156°,则这个正n 边形的边数是( ) A .13 B .14 C .15 D .16 11.在Rt ABC 中,45A ∠=︒,90C ∠=︒,点D 在BC 边上(不与点C ,B 重合),点P 、点Q 分别是AC ,AB 边上的动点,当DPQ 的周长最小时,PDQ ∠的度数是( )A .70°B .90°C .100°D .120° 12.正多边形的一个外角的度数为72°,则这个正多边形的边数为( )A .4B .5C .6D .7 二、填空题13.如图,在ABC 中,13AB AC ==,10BC =.M ,N 分别是AB ,AC 的中点,D ,E 为BC 上的动点,且5DE =.连接DN ,EM ,则图中阴影部分的面积和为______.14.如图是一块正多边形的碎瓷片,经测得30ACB ∠=︒,则这个正多边形的边数是_________.15.如图,线段AB ,BC 的垂直平分线1l ,2l 相交于点O .若135∠=︒,则A C ∠+∠的度数为______.16.七边形的外角和为________.17.在ABCD 中,边15AB =,对角线13AC =,BC 边的高12AE =,则ABCD 的周长为__________.18.如图,Rt △ABC 中,∠ACB =90°,∠A =50°,将其折叠,使点A 落在边CB 上A′处,折痕为CD ,则A DB '∠=________.19.有一个正五边形和一个正方形边长相等,如图放置,则∠1=______.20.一个多边形的内角和是1080°,则这个多边形是边形__________边形.三、解答题21.如图,点E 在ABCD 外,连接BE ,DE ,延长AC 交DE 于F ,F 为DE 的中点.(1)求证://AF BE ;(2)若2AD =,60ADC ∠=︒,90ACD ∠=︒,2AC CF =,求BE 的长.22.如图,在ABC 中, 2AB AC ==,延长BC 至点D ,使CD BC =,连接AD ,E F 、分别为AC AD 、中点,连接EF ,若120ACD ∠=︒,求线段EF 的长度.23.如图,已知BD 是△ABC 的角平分线,点E 、F 分别在边AB 、BC 上,ED ∥BC ,EF ∥AC .求证:BE=CF .24.如图,在▱ABCD 中,DE =CE ,连接AE 并延长交BC 的延长线于点F.(1)求证:△ADE ≌△FCE ;(2)若AB =2BC ,∠F =36°,求∠B 的度数.25.如图,已知:平行四边形ABCD 中,,ABC BCD ∠∠的平分线交于点E ,且点E 刚好落在AD 上,分别延长,BE CD 交于F()1AB 与AD 之间有什么数量关系?并证明你的猜想()2CE 与BF 之间有什么位置关系?并证明你的猜想26.如果正多边形的每个内角都比它相邻的外角的4倍还多30°,求这个多边形的内角和.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】根据平行四边形的性质,及OE BD ⊥交AD 于E 可以证明OE 是线段BD 的垂直平分线,再根据垂直平分线的性质,可以得到BE DE =,再利用线段间的关系可以证明ABCD 的周长为ABE △周长的两倍.【详解】解:∵四边形ABCD 为平行四边形∴AO CO =,BO DO =;∵OE BD ⊥交AD 于E ;∴OE 是线段BD 的垂直平分线,∴BE DE =;∴AE ED AE BE +=+;∴ABE △的周长为12AE BE +=∴ABCD 的周长为2()21224AB AD +=⨯=.故选:A.【点睛】本题主要考查平行四边形的性质和垂直平分线的性质,具有一定的综合性,属于中等题型. 2.C解析:C【分析】由平行四边形的判定可求解.【详解】A 、由AD ∥BC ,AB=CD 不能判定四边形ABCD 为平行四边形;B 、由∠AOB=∠COD ,∠AOD=∠COB 不能判定四边形ABCD 为平行四边形;C 、由OA=OC ,OB=OD 能判定四边形ABCD 为平行四边形;D 、AB=AD ,CB=CD 不能判定四边形ABCD 为平行四边形;故选:C .【点睛】本题考查了平行四边形的判定定理,注意:平行四边形的判定定理有:①有两组对边分别平行的四边形是平行四边形,②有两组对边分别相等的四边形是平行四边形,③有两组对角分别相等的四边形是平行四边形,④有一组对边平行且相等的四边形是平行四边形,⑤对角线互相平分的四边形是平行四边形.3.C解析:C【分析】根据平行四边形的性质,CD=AB ,CD ∥AB ,根据平移的性质即可求得顶点B 的坐标.【详解】∵四边形ABCD 是平行四边形,∴CD=AB ,CD ∥AB ,∵▱ABCD 的顶点A 、D 、C 的坐标分别是A (-1,-2)、D (1,1)、C (5,2), D (1,1)向左平移2个单位,再向下3个单位得到A (-1,-2),则C (5,2)向左平移2个单位,再向下3个单位得到(3,-1),∴顶点B 的坐标为(3,-1).故选:C .【点睛】本题考查了平行四边形的性质,平移的性质.注意数形结合思想的应用是解此题的关键.4.A解析:A【分析】利用多边形内角和公式求得∠E的度数,在等腰三角形AED中可求得∠EAD的度数,进而求得∠BAD的度数,再利用正方形的内角得出∠BAG=90°,进而得出∠DAG的度数.【详解】解:∵正五边形ABCDE的内角和为(5﹣2)×180°=540°,∴∠E=∠BAE=1×540°=108°,5又∵EA=ED,∴∠EAD=1×(180°﹣108°)=36°,2∴∠BAD=∠BAE﹣∠EAD=72°,∵正方形GABF的内角∠BAG=90°,∴∠DAG=90°﹣72°=18°,故选:A.【点睛】本题考查正多边形的内角和,掌握多边形内角和公式是解题的关键.5.B解析:B【分析】根据四边形内角和、直角三角形性质和绝对值性质判断即可;【详解】解:①四边形的内角和和外角和都是360°,∴四边形的内角和等于外角和,是真命题;②有两个角互余的三角形是直角三角形,是真命题;③若|x|=2,则x=±2,本说法是假命题;④两直线平行时,同旁内角的平分线互相垂直,本说法是假命题;故选:B.【点睛】本题主要考查了四边形的内角和、直角三角形两锐角互余、绝对值的性质和平行线的知识点,准确分析是解题的关键.6.D解析:D【分析】利用四边形的内角和得到∠B+∠C+∠D的度数,进而让五边形的内角和减去∠B+∠C+∠D的度数即为所求的度数.【详解】∵四边形的内角和为(4−2)×180°=360°,∴∠B+∠C+∠D=360°−60°=300°,∵五边形的内角和为(5−2)×180°=540°,∴∠1+∠2=540°−300°=240°,故选D.【点睛】本题考查多边形的内角和知识,求得∠B+∠C+∠D的度数是解决本题的突破点.7.D解析:D【分析】已知AD是ABC的中线,F为CE的中点,可得DF为△CBE的中位线,根据三角形的中位线定理可得DF∥BE,DF=12BE=2;又因AD BE⊥,可得∠BOD=90°,由平行线的性质可得∠ADF=∠BOD=90°,在Rt△ADF中,根据勾股定理即可求得AF的长.【详解】∵AD是ABC的中线,F为CE的中点,∴DF为△CBE的中位线,∴DF∥BE,DF=12BE=2;∵AD BE⊥,∴∠BOD=90°,∵DF∥BE,∴∠ADF=∠BOD=90°,在Rt△ADF中,AD=4,DF=2,∴22224225AD DF+=+=故选D.【点睛】本题考查了三角形的中位线定理及勾股定理,利用三角形的中位线定理求得DF∥BE,DF=12BE=2是解决问题的关键.8.D解析:D 【分析】根据正多边形的性质,边数等于360°除以每一个外角的度数计算即可.【详解】∵一个多边形的每个外角都等于30°,外角和为360°,∴n=360°÷30°=12,故选D.【点睛】本题主要考查了多边形外角和、利用外角求正多边形的边数的方法,解题的关键是掌握任意多边形的外角和都等于360度.第II卷(非选择题)请点击修改第II卷的文字说明9.A解析:A【分析】由▱ABCD与▱DCFE的周长相等,可得到AD=DE即△ADE是等腰三角形,再由且∠BAD=60°,∠F=100°,即可求出∠DAE的度数.【详解】∵▱ABCD与▱DCFE的周长相等,且CD=CD,∴AD=DE,∵∠DAE=∠DEA,∵∠BAD=60°,∠F=100°,∴∠ADC=120°,∠CDE═∠F=100°,∴∠ADE=360°﹣120°﹣100°=140°,∴∠DAE=(180°﹣140°)÷2=20°,故选A.【点睛】本题考查了平行四边形的性质:平行四边形的对边相等、平行四边形的对角相等以及邻角互补和等腰三角形的判定和性质、三角形的内角和定理.10.C解析:C【解析】试题分析:由一个正多边形的每个内角都为156°,可求得其外角的度数,继而可求得此多边形的边数,则可求得答案.解:∵一个正多边形的每个内角都为156°,∴这个正多边形的每个外角都为:180°﹣156°=24°,∴这个多边形的边数为:360°÷24°=15,故选C.考点:多边形内角与外角.11.B解析:B【分析】作D关于AC的对称点E,作D关于AB的对称点F,连接EF交AC于P,交AB于Q,则此时△DPQ的周长最小,根据四边形的内角和得到∠EDF=135°,求得∠E+∠F=45°,根据等腰三角形的性质即可得到结论.【详解】作D关于AC的对称点E,作D关于AB的对称点F,连接EF交AC于P,交AB于Q,则此时△DPQ的周长最小,∵∠AGD=∠ACD=90°,∠A=45°,∴∠EDF=135°,∴∠E+∠F=45°,∵PE=PD,DQ=FQ,∴∠EDP=∠E,∠QDF=∠F,∴∠CDP+∠QDG=∠E+∠F=45°,∴∠PDQ=135°-45°=90°,故选:B.【点睛】本题考查了轴对称-最短路线问题,等腰三角形的性质,三角形内角和定理,四边形内角和定理,正确的作出图形是解题的关键.12.B解析:B【分析】正多边形的外角和是360°,且正多边形的每个外角相等,因而用360°除以外角的度数,就得到外角和中外角的个数,外角的个数就是多边形的边数.【详解】∵正多边形的外角和是360°,∴360÷72=5,那么它的边数是5.故选B.【点睛】本题考查了多边形的内角与外角.根据正多边形的外角和求多边形的边数是常用的一种方法,需要熟练掌握.二、填空题13.30【分析】连接MN 根据题意可以得到MN 是三角形ABC 的中位线过点A 作AF 垂直于BC 与点F 进而求解面积即可;【详解】连接MN ∵MN 分别是ABAC 的中点∴MN 为三角形ABC 的中位线∵BC=10∴过点A解析:30【分析】连接MN ,根据题意可以得到MN 是三角形ABC 的中位线,过点A 作AF 垂直于BC 与点F ,进而求解面积即可;【详解】连接MN ,∵ M 、N 分别是AB 、AC 的中点,∴ MN 为三角形ABC 的中位线,∵BC=10,∴ 152MN BC == , 过点A 作AF 垂直于BC 与点F ,∵AB=AC=13,∴点F 为BC 的中点,∴152BF BC ==, ∴22=135=12AF - ,∴阴影部分的高为12,∵MN=DE=5,∴1=512=302S ⨯⨯阴影 , 故答案为:30.【点睛】本题考查了三角形的面积和中位线的性质,掌握数形结合的方法是解题的关键; 14.12【分析】根据瓷片为正多边形及可知正多边形的外角为进而可求得正多边形的边数【详解】如图延长BC 可知∠1为正多边形的外角∵瓷片为正多边形∴AD=DB=BC ∠ADB=∠DBC ∴四边形ACBD 为等腰梯形解析:12【分析】根据瓷片为正多边形及=30ACB ∠︒,可知正多边形的外角为30︒,进而可求得正多边形的边数.【详解】如图,延长BC ,可知∠1为正多边形的外角,∵瓷片为正多边形,∴AD=DB=BC ,∠ADB=∠DBC ,∴四边形ACBD 为等腰梯形,∴BD ∥AC ,∴∠1==30ACB ∠︒,∴正多边形的边数为:360=1230︒︒, 故答案为:12.【点睛】本题考查正多边形的外角和,掌握相关知识点是解题的关键. 15.35°【分析】连接OB 同理得AO=OB=OC 由等腰三角形的性质得∠A=∠ABO ∠C=∠CBO 进而得到∠A+∠C=∠ABC 由等腰三角形三线合一得∠AOD=∠BOD ∠BOE=∠COE 由平角的定义得∠DO解析:35°【分析】连接OB ,同理得AO=OB=OC ,由等腰三角形的性质得∠A=∠ABO ,∠C=∠CBO ,进而得到∠A+∠C=∠ABC ,由等腰三角形三线合一得∠AOD=∠BOD ,∠BOE=∠COE ,由平角的定义得∠DOE=145°,最后由四边形内角和定理可得结论.【详解】解:连接OB ,∵线段AB、BC的垂直平分线l1、l2相交于点O,∴AO=OB=OC,∴∠AOD=∠BOD,∠BOE=∠COE,∠A=∠ABO,∠C=∠CBO,∴∠A+∠C=∠ABC,∵∠DOE+∠1=180°,∠1=35°,∴∠DOE=145°,∴∠ABC=360°-∠DOE-∠BDO-∠BEO=35°;故答案为:35°【点睛】本题主要考查线段的垂直平分线的性质,等腰三角形的性质,四边形内角和定理,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.16.360°【分析】根据多边形的外角和等于360°即可求解;【详解】∵多边形的外角和都是360°∴七边形的外角和为360°故答案为:360°【点睛】本题考查了多边形的外角的性质掌握多边形的外角和等于36解析:360°【分析】根据多边形的外角和等于360°即可求解;【详解】∵多边形的外角和都是360°,∴七边形的外角和为360°,故答案为:360°.【点睛】本题考查了多边形的外角的性质,掌握多边形的外角和等于360°是解题的关键;17.58或38【分析】由题意可分为两种情况进行分析:①点E在边BC上;②点E在边BC的延长线上;由勾股定理分别求出BC的长度即可得到答案【详解】解:根据题意①当点E在边BC上时如图:∵∠AEC=∠AEB解析:58或38【分析】由题意,可分为两种情况进行分析:①点E在边BC上;②点E在边BC的延长线上;由勾股定理,分别求出BC的长度,即可得到答案.【详解】解:根据题意,①当点E在边BC上时,如图:∵15AB =,13AC =,12AE =,∠AEC=∠AEB=90°,由勾股定理,则 2213125CE =-=,2215129BE =-=, ∴5914BC =+=,∴周长为:(1415)258+⨯=;②当点E 在边BC 的延长线上时,如图:由①可知,2213125CE =-=,2215129BE -=,∴954BC =-=,∴周长为:(415)238+⨯=;故答案为:58或38.【点睛】本题考查了平行四边形的性质,勾股定理的应用,解题的关键是正确的确定点E 的位置,注意运用分类讨论的思想进行解题.18.10°【分析】由对折可得:∠A=∠CA′D=50°∠ACD=∠A′CD=45°再利用三角形的内角和求解【详解】解:由对折可得:∠A=∠CA′D=50°∠ACD=∠A′CD=×90°=45°∴∠ADC解析:10°【分析】由对折可得:∠A=∠CA ′D=50°,∠ACD=∠A ′CD=45°,再利用三角形的内角和求解.【详解】解:由对折可得:∠A=∠CA′D=50°,∠ACD=∠A′CD=12×90°=45°, ∴∠ADC=∠A′DC=180°−45°−50°=85°,∴∠A′DB=180°−85°×2=10°.故答案为:10°.【点睛】本题利用对折考查轴对称的性质,三角形的内角和定理,掌握以上知识是解题的关键.19.18°【解析】根据多边形的内角和公式可求得正五边形的内角∠BAE=108°所以∠1=∠BAE-∠BAG=108°-90°=18°解析:18°【解析】根据多边形的内角和公式可求得正五边形的内角∠BAE=108°,所以∠1=∠BAE-∠BAG=108°-90°=18°.20.八【分析】首先设这个多边形的边数为n由n边形的内角和等于180(n-2)即可得方程180(n-2)=1080解此方程即可求得答案【详解】解:设这个多边形的边数为n根据题意得:180(n-2)=108解析:八【分析】首先设这个多边形的边数为n,由n边形的内角和等于180︒(n-2),即可得方程180(n-2)=1080,解此方程即可求得答案.【详解】解:设这个多边形的边数为n,根据题意得:180(n-2)=1080,解得:n=8,故答案为:八.【点睛】此题考查了多边形的内角和公式.此题比较简单,注意熟记公式是准确求解此题的关键,注意方程思想的应用.三、解答题21.(1)见解析;(2)【分析】(1)连接BD交AC于点O,根据平行四边形的性质可以判定OF为△DBE的中位线,即可证明;(2)根据AD=2,∠ACD=90°,∠ADC=60°,可求出AC的长,再根据中位线的性质即可求解;【详解】解:(1)连接BD交AC于点O,∵四边形ABCD是平行四边形,=,∴OB OD=,∵DF EF∴OF为△DBE的中位线AF BE.∴//(2)∵AD=2,∠ACD=90°,∠ADC=60°, ∴3AC =∵OF 是DBE 的中位线,∴2BE OF =.∴222BE OC CF AC CF =+=+.∵2AC CF =, ∴223BE AC ==【点睛】本题考查了三角形中位线的性质以及平行四边形的性质,正确掌握知识点是解题的关键; 22.线段EF 的长度为1.【分析】根据邻补角的定义得到∠ACB =60°,根据等边三角形的性质得到BC =AB =2,根据三角形的中位线定理即可得到结论.【详解】∵∠ACD =120°,∴∠ACB =60°,∵AB =AC =2,∴△ABC 是等边三角形,∴BC =AB =2,∴CD =BC =2,∵E 、F 分别为AC 、AD 的中点,∴EF =12CD =1. 【点睛】本题考查了三角形中位线定理,等边三角形的判定和性质,正确的识别图形是解题的关键.23.证明见解析.【解析】试题分析:先利用平行四边形性质证明DE=CF ,再证明EB=ED ,即可解决问题. 试题∵ED ∥BC ,EF ∥AC ,∴四边形EFCD 是平行四边形,∴DE=CF ,∵BD 平分∠ABC ,∴∠EBD=∠DBC ,∵DE ∥BC ,∴∠EDB=∠DBC ,∴∠EBD=∠EDB ,∴EB=ED ,∴EB=CF . 考点:平行四边形的判定与性质.24.(1)见解析;(2)108°【分析】(1)利用平行四边形的性质得出AD ∥BC ,AD=BC ,证出∠D=∠ECF ,由ASA 即可证出△ADE ≌△FCE ;(2)证出AB=FB ,由等腰三角形的性质和三角形内角和定理即可得出答案.【详解】证明:∵四边形ABCD 是平行四边形,∴AD ∥BC ,AD=BC ,∴∠D=∠ECF ,在△ADE 和△FCE 中,D ECF DE CEAED FEC ===∠∠⎧⎪⎨⎪∠∠⎩∴△ADE ≌△FCE (ASA );(2)∵△ADE ≌△FCE ,∴AD=FC ,∵AD=BC ,AB=2BC ,∴AB=FB ,∴∠BAF=∠F=36°,∴∠B=180°-2×36°=108°.【点睛】运用了平行四边形的性质,全等三角形的判定与性质,等腰三角形的性质、三角形内角和定理;熟练掌握平行四边形的性质,证明三角形全等是解决问题的关键.25.(1)AD=2AB ,证明见解析;(2)CE ⊥BF ,证明见解析.【分析】(1)结论:AD=2AB .只要证明AB=AE ,CD=DE 即可解决问题;(2)结论:CE ⊥BF .只要证明∠EBC+∠BCE=90°即可;【详解】解:(1)结论:AD=2AB .理由:∵BF 平分∠ABC ,∴∠ABE=∠FBC ,∵四边形ABCD 是平行四边形,∴AD ∥BC ,AB=CD ,∴∠FBC=∠AEB ,∴∠AEB=∠ABE ,∴AB=AE ,同理可证:CD=DE ,∴AD=AE+ED=AB+CD=2AB.(2)结论:CE⊥BF.理由:∵BF平分∠ABC,∴∠ABC=2∠EBC,∵CE平分∠BCD,∴∠BCD=2∠BCE,∵四边形ABCD是平行四边形,∴AB∥CD,∴∠ABC+∠BCD=180°,∴2∠EBC+2∠BCE=180°,∴∠EBC+∠BCE=90°,∴∠BEC=90°,即CE⊥BF.【点睛】本题考查平行四边形的性质、角平分线的定义,三角形的内角和定理的应用、等腰三角形的判定等知识,解题的关键是熟练掌握基本知识.26.1800°.【分析】设正多边形一个外角是x°,根据题意列方程,求出外角的度数,再根据多边形的外角和为360°,即可求出边数,进而求出内角和.【详解】解:设正多边形一个外角是x°,则与它相邻的内角是(4x°+30°),∴x°+4 x°+30°=180°,解得x°=30°,∵多边形的外角和是360°,∴个多边形的边数是360°÷30°=12,∴内角和为(12-2)×180°=1800°.答:这个多边形的内角和为1800°.【点睛】本题考查了多边形的内角和,外角和定理,内角与外角的关系,熟练掌握多边形的内角和定理,外角和定理是解题关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平行四边形练习题
一、填空题
1、如图,□ABCD 中,∠A =120°,则∠1= °
2、□ABCD 中,∠A 比∠B 大20°,则∠C 的度数为_____
4、在ABCD 中,对角线AC 、BD 相交于点0,点E 在边AD 上,且AE :DE=1:3,连结BE ,BE 与AC 相交于点M,若AC=6
,则M0的
长 是 .
6、□ABCD 中, AB :BC=1:2,周长为24cm, 则AB=_____cm, AD=_____cm
7、巳知□ABCD ,周长为36,相邻两边的差为4,则相邻两边的长分别为_________
8、平行四边形两个邻角的平分线互相______,两个对角的平分线互相______(填“平行”或“垂直”)
9、□ABCD 中,∠A=150°,AB=15cm ,则AD 与BC 间的距离为______cm 二、选择题
13、在下列命题中,正确的是( )
A .一组对边平行的四边形是平行四边形
B .有一个角是直角的四边形是矩形
C .有一组邻边相等的平行四边形是菱形
D .对角线互相垂直平分的四边形是正方形
14、平行四边形ABCD ,AC 、BD 交于O ,则图中共有( )对形状大小相同的三角形。

A. 2 B. 3 C. 4 D. 5 15、平行四边形ABCD 中,∠A=50°,则∠D=( ) A. 40° B. 50° C. 130° D. 不能确定
16、 用两个形状大小相同的三角形按不同的方式拼成的平行四边形有( )个 A. 1 B. 2 C. 3 D. 4 17、平行四边形ABCD 中,∠A :∠B :∠C :∠D 的值可以是( )
A .1:2:3:4 B. 3:4:4:3 C. 3:3:4:4 D. 3:4:3:4
18、下列条件中,能判定四边形是平行四边形的是( ) A. 一组对边相等 B. 对角线互相平分 C. 一组对角相等 D. 对角线互相垂直
19、如图,在□ABCD 中,点E 为AB 的中点,点F 为AD 上一点,EF 交AC 于点G ,AF =4cm ,DF =8cm ,AG =5cm ,则AC 的长为( ) A .7.5cm B .15cm C .12.5cm D .25cm 21、如图,在平行四边形ABCD 中,BD =4cm ,将平行四边形ABCD 绕其对称中心O 旋转90°,则点D 经过的路径长为( ) (A)4πcm (B)3πcm (C)2πcm (D) πcm
22、已知□ABCD 的周长为32,AB =4,则BC 等于【 】 A .4 B .12 C .24 D .28
三、简答题 23、如图,已知E 、F 分别是□ABCD 的边BC 、AD 上的点,且BE =DF . 求第四题图 第19题第21题图
24、平行四边形ABCD中,已知:∠A=2∠B,试求平行四边形各内角的度数
25、平行四边形ABCD中,已知AB:BC=3:5,周长为48cm,求CD、DA长。

29、如图,已知E,F是四边形ABCD对角线AC上的两点,AE=CF,BE=FD,BE∥FD.
求证:四边形ABCD是平行四边形.
30、已知:如图,□ABCD中,∠ABC的平分线交AD于E,
∠CDA的平分线交BC于F.
(1)求证:△ABE≌△CDF;(2)连接EF、BD,求证:EF与BD互相平分.
31、已知:如图,□ABCD中,点E是AD的中点,延长CE交BA的延长线于点F.求证:AB=AF.
32、已知:如图,□ABCD中,E、F分别是边AB、CD的中点.
(1)求证:四边形EBFD是平行四边形;
(2)若AD=AE=2,∠A =,求四边形EBFD的周长.
33、已知:如图,在□ABCD中,E是CA延长线上的点,F是AC延长线上的点,且AE=CF.求证:(1)△ABE≌△CDF;(2)BE∥DF.
37、已知:如图,在□ABCD中,E是CA延长线上的点,F是AC延长线上的点,且AE=CF.求证:(1)△ABE≌△CDF;(2)BE∥DF.
38、已知:如图,在△ABC中,D、E、F分别是各边的中点,AH是边BC上的高.那么,图中的∠DHF与∠DEF相等吗?为什么?
39、已知:如图,□ABCD中,点E是AD的中点,延长CE交BA的延长线于点F.
求证:AB=AF.。

相关文档
最新文档