近世代数证明

合集下载

近世代数考试复习

近世代数考试复习

近世代数考试复习 Prepared on 22 November 2020<近世代数复习题>一、定义描述(8’)1、群:设G是一个非空集合,是它的一个代数运算。

如果满足以下条件:(1)结合律成立,即对G中任意元素a,b,c都有(a b) c = a (b c).(2)G中有元素e.叫做G的左单位元,它对G中每个元素a都有e a = a .(3)对G中每个元素a,在G中都有元素a-1,叫做a的左逆元,使a-1 a = e .则称G对代数运算做成一个群。

2、正规子群:设N是群G的一个子群,如果对G中每个元素a都有 aN=Na,即 aNa-1=N ,则称N是群G的一个正规子群(或不变子群)。

3、环:设非空集合R有两个代数运算,一个叫做加法并用加号 + 表示,另一个叫做乘法用乘号表示,如果:(1)R对加法作成一个加群;(2)R对乘法满足结合律:(ab)c = a(bc);(3)乘法对加法满足左右分配率:a(b+c)= ab + ac ,(b+c)a = ba + ca .其中a,b,c为R中任意元素,则称R对这两个代数运算作成一个环。

4、极大理想:设N是环R的一个理想,且N≠R .如果除R和N外,R中没有包含N的其它理想,则称N为环R的一个极大理想。

5、惟一分解整环:设K是有单位元的整环。

如果K中每个既不是零又不是单位的元素都能惟一分解,则称K为惟一分解整环。

整数环Z及域F上多项式环F[ x ]都是惟一分解整环。

6、欧氏环:设K是一个有单位元的整环,如果(1)有一个从K的非零元集K – { 0}到非负整数集的映射ψ存在;(2)这个ψ对K中任意元素a及b≠0,在K中有元素q,r使a=bq + r,r=0 或ψ(r)<ψ(b),则称R关于ψ作成一个欧氏环。

-------------7、素理想:设R是一个交换环,P R .如果ab∈P => a∈P或b∈P,其中a,b∈R,则称P是R的一个素理想。

近世代数考试复习

近世代数考试复习

<近世代数复习题>一、定义描述(8’)1、群:设G是一个非空集合,是它的一个代数运算。

如果满足以下条件:(1)结合律成立,即对G中任意元素a,b,c都有(a b)c = a (b c).(2)G中有元素e.叫做G的左单位元,它对G中每个元素a都有e a = a .(3)对G中每个元素a,在G中都有元素a-1,叫做a的左逆元,使a-1 a = e .则称G对代数运算做成一个群。

2、正规子群:设N是群G的一个子群,如果对G中每个元素a都有aN=Na,即aNa-1=N ,则称N是群G的一个正规子群(或不变子群)。

3、环:设非空集合R有两个代数运算,一个叫做加法并用加号+ 表示,另一个叫做乘法用乘号表示,如果:(1)R对加法作成一个加群;(2)R对乘法满足结合律:(ab)c = a(bc);(3)乘法对加法满足左右分配率:a(b+c)= ab + ac ,(b+c)a = ba + ca .其中a,b,c为R中任意元素,则称R对这两个代数运算作成一个环。

4、极大理想:设N是环R的一个理想,且N≠R .如果除R和N外,R中没有包含N的其它理想,则称N为环R的一个极大理想。

5、惟一分解整环:设K是有单位元的整环。

如果K中每个既不是零又不是单位的元素都能惟一分解,则称K为惟一分解整环。

整数环Z及域F上多项式环F[ x ]都是惟一分解整环。

6、欧氏环:设K是一个有单位元的整环,如果(1)有一个从K的非零元集K – { 0}到非负整数集的映射ψ存在;(2)这个ψ对K中任意元素a及b≠0,在K中有元素q,r使a=bq + r,r=0或ψ(r)<ψ(b),则称R关于ψ作成一个欧氏环。

-------------7、素理想:设R是一个交换环,P ◁R .如果ab∈P => a∈P或b∈P,其中a,b∈R,则称P是R的一个素理想。

显然,环R本身是R的一个素理想;又零理想{ 0}是R的素理想当且仅当R无零因子,亦即R是一个整环。

近世代数——精选推荐

近世代数——精选推荐

近世代数⽬录基本概念元素。

集合。

空集合。

⼦集 。

真⼦集 。

A =B ⟺A ⊆B ∧B ⊆A 。

幂集:⼀个集合所有⼦集组成的集合, P (A ) 。

交集。

并集。

性质:幂等性;交换律;结合律;⼆者之间有分配律。

关系:M ×M 的⼦集。

即 ∀a ,b ∈M ,法则 R 可以确定 a 和 b 符合/不符合这个法则。

记做 aRb 和 a ¯R b 。

等价关系:满⾜⾃反性(∀a ∈M ,aRa )、对称性( aRb ⇔bRa )和传递性( aRb ,bRc ⇒aRc )的关系,⽤ ∼ 表⽰,即 a ∼b 。

分类:把集合 M 的全体元素分为若⼲互不相交的⼦集。

每个分类与⼀个等价关系⼀⼀对应。

映射:集合 A ,B ,有⼀个 法则 φ 使得所有的 x ∈A 存在唯⼀的 y ∈B 与之对应。

记作 φ:x ⟶y 或 y =φ(x ) 。

y 叫做 x 在映射 φ 下的像,把 x 叫做 y 在映射 φ 下的原像或逆像。

满射:B 中每个元素在 A 中都有原像。

单射:A 中不同的元素在 B 中像不同。

双射:满射+单射。

逆映射:只有双射才有逆映射,记为 φ−1 。

有限集合满⾜ |A |=|B | 且 φ 是 A 到 B 的⼀个映射,则 φ 是满射 ⟺ φ 是单射;推论:得出 φ 是双射。

相等映射 : A 到 B 的映射 σ 和 τ 满⾜ ∀x ∈A ,σ(x )=τ(x ) 。

映射合成/映射乘法: τ:A ⟶B ,σ:B ⟶C ,则 x ⟶σ(τ(x ))(∀x ∈A ) 是 A 到 C 的⼀个映射,记为 στ(x ) 。

代数运算:集合 M 的对应法则 M ×M ⟶M ,即任意两个有次序的元素 a 和 b 有唯⼀确定的元素 d 与它们对应。

代数系统:有代数运算的集合。

(注意代数运算的封闭性。

即 d ∈M )。

⽤“乘法表”法表⽰有限集合的代数运算时,注意每列⾏⾸(第⼀列)是参与运算第⼀个元素,每列列⾸(第⼀⾏)是第⼆个元素。

【大学课程】近世代数教材习题答案

【大学课程】近世代数教材习题答案

§1.1 集合1、 设A B ⊆ ,证明:A B A = ,A B B = .证明:由A B ⊆,可知A 的所有元素都属于B ,既A 的所有元素,都是A 和B 的共同元, 则由交集定义可知 A A B ⊆ . 又A B A ⊆ ,所以A B A = .由并集定义知,A B 的所有元素,都属于A 或B ; 又A B ⊆,所以A B 的所有元素都属于B ,即A B B ⊆. 又B A B ⊆,故A B B =2、 设B ,()i A i I ∈ 均为集合Ω 的子集,试证:()1 ()i i i I i I B A B A ∈∈⎛⎫=⎪⎝⎭ ()2 ()i i i I i IBA B A ∈∈⎛⎫=⎪⎝⎭ 证明:()1 由定义i i Ix B A ∈⎛⎫∈⎪⎝⎭当且仅当x B ∈且x 属于某一i A ;当且仅当x 属于某一i B A ;当且仅当()i i Ix B A ∈∈.()2 由定义i i I x BA ∈⎛⎫∈⎪⎝⎭当且仅当x 属于B ,或x 属于任一i A ,i I ∈;当且仅当x 属于任一i B A ,i I ∈;当且仅当()i i Ix B A ∈∈.§1.2 等价关系1、设为整数集,问以下各关系是否为M 的等价关系?1)0aRb ab ⇔≥ 2)4aRb a b ⇔+ 3)aRb a b ⇔= 4)220aRb a b ⇔+≥ 解:1)不是,因为不满足传递性2)不是,不满足反身性和传递性 3)是 4)是2、试指出上题中等价关系所决定的分类.解:3)每个元素是一个类 4)整个整数集作成一个类 3、找出下列证明中的错误:若S 的关系R 有对称性和传递性,则必有反身性.这是因为,对任意的a S ∈ ,由对称性,如果aRb ,则bRa .再由传递性,得aRa ,所以R 有反身性.解:以上证明过程中只考虑了当aRb 成立的情况,但是当对于元素a ,不存在b 使aRb 成立时,aRa 就不能得到.4、在复数集中,规定关系"" :a b a b ⇔=. (1)证明:是的一个等价关系;(2)试确定相应的商集,并给出每个等价类的一个代表元素.(1)证明:设a ,b ,c ∈ ,则()a 因为aa =,所以a a ,于是 是有反身性;()b 若ab ,则a b =,于是b a =,从而b a ,说明是具有对称性;()c 若ab ,bc ,则a b =,b c =,于是a c =,从而a c ,从而具有传递性.所以是的一个等价关系.(2)解:相应的商集[]{}0r r R r =∈≥且,其中[]{}()[]{}cos sin 0,2r x x r r i θθθπ=∈==+∈对任意的c ∈ ,等价是[]c :代表元素可取作c .§1.31、{}1,2,,100S = ,找一个A A ⨯到A 的映射.解:设(),a b 表示A A ⨯的任意元素,,a b A ∈ ,则作映射:f A A A ⨯→ ,()(),f a b b = .f 是一个A A ⨯到A 的映射.2、设A ,B 是两个有限集合,则(1)A 到B 的不同映射共有多少?(2)A 到B 的单射共有多少个?解:(1)设A n = , B m =,则A 到B 的映射有n m 个 (2)设A n = , B m =,若n >m ,则A 到B 没有单射; 若n m ≤,则A 到B 有()!!m m n - 个单射. 3、设x 是数域F 上全体n (n >1)阶方阵作成的集合.问::A A ϕ→是否为x 到F 的一个映射?其中A 为A 的行列式,是否为满射或单射?解:ϕ 是映射,且是满射,但不是单射4、设:f A B →为双射,则f 的逆映射1:f B A -→也是一个双射且()11f f --=.证明:设()() ,f x y x A y B =∈∈ ,则1:f y x -→,即()1f y x -=, 因f 是A B →的双射, 所以1f -是B 到A 的双射, 且1f -的逆映射就是f ,即()11ff --=.5、设:f A B →,:g B C →为两个双射到:g f A C → 也是双射且()111g f f g ---= .证明:()()11111B C g f f g g g ---⋅⋅==,()()111111B A fg gf f f ----==,故g f 也是双射,且()111gf f g ---= .§1.41、设A 是一个有限集合,则A 上不同的二元运算共有多少个?解:设A n = ,则2A A n ⨯= ,故A A ⨯到A 有2n n 个不同的映射. 即A 上有2n n 个不同的二元运算.2、{},,A a b c = ,规定A 的两个不同的代数运算.解:()a 第一个代数运算() , ,R x y a xRy x y A →=∀∈ ()b 第二个代数运算() , ,R x y y xRy x y A →=∀∈3、设M 为整数集,问()22 ,a b a b a b M =+∀∈是否满足结合律和交换律.解:交换律满足,但结合律不满足.例如()1104=,()1102= 4、设M 为实数集,问:23a b a b =+ (),a b M ∀∈是否满足结合律和交换律.解:都不满足.例()1004=,()1002=,故()()100100≠,又102=,013=,故1001≠.5、数域F 上全体非零多项式的集合对于()()()()(),f x g x f x g x =是否满足结合律和交换律?其中()()(),f x g x 表示()f x 与()g x 的首项函数为1的最大公因式.解:显然是代数运算且满足交换律.又结合律也满足,因为根据最大公因式的性质知:())()(()()(),,,,f g h f g h f g h f g h ===§2.11、有限群中每个元素的阶都是有限的。

《近世代数》期末辅导

《近世代数》期末辅导

如果 c 是可逆元,由于
1 1 an (1 a)(1 a a2 ... an1 )
并且 c1a 也是幂零元,所以 1 (c1a) 是可逆元,故 1 c a c(1 (c a)) 是可逆元。 10
2、左理想,右理想,理想 (1)定义:I是环R的左理想,如果对I中任意两个元
的任意一个不属于H的元素。从而对任意两个不属于 1 H的元素a和b,有aH=bH. 如果存在h H, 使得 aha H
则 aH
aha 1H ,于是 H ha1H ,故 a H ,矛盾。
因此 aha 1 H ,即H是G的不变子群。 例3:设A,B是群G的两个子群,证明:如果AB是G的子 群,则AB=BA. 4
2 i j2
n i jn
(2) 循环表达,如:
1 2 3 4 1 2 3 4 5 (1 4 2 3), (1 2 5 4) 4 3 1 2 2 5 3 1 4
6
例:计算
(2 31)(1 2 4 3) (13 2 4),(1 2 3)(13 2) (1)(2)(3) (1)
解: f ( x) g ( x) x 4 2 x3 5 x 2 2 x 5
f ( x) g ( x) 5 x 6 x 5 x 4 3x 3 5 x 2 5 x 4
12
例:在 Z8 中求元素 5 的逆元。 解:由于
5 5 3 8 1
一、群论 二、环论
1
一、群论:
1、群的定义,子群,不变子群 例1:设G={a, b, c}, 其乘法表如下:
a b c
a a a a
b b b b
c c c c
证明:G是半群,但不是群。 2

近世代数习题第二章资料讲解

近世代数习题第二章资料讲解

近世代数习题第二章第二章 群论近世代数习题第二章 第一组 1-13题;第二组 14-26题;第三组 27-39题;第四组 40-52题,最后提交时间为11月25日1、设G 是整数集,则G 对运算4++=b a b a ο是否构成群?2、设G 是正整数集,则G 对运算b a b a =ο是否构成群?3、证明:正整数对于普通乘法构成幺半群.4、证明:正整数对于普通加法构成半群,不含有左右单位元.5、G 是整数集,则G 对运算1=b a ο是否构成群?6、设b a ,是群G 中任意两元素. 证明:在G 中存在唯一元素x ,使得b axba =.7、设u 是群G 中任意取定的元素,证明:G 对新运算aub b a =ο也作成群.8、证:在正有理数乘群中,除1外,其余元素阶数都是无限.9、证:在非零有理数乘群中,1的阶是1,-1的是2,其余元素阶数都是无限.10、设群G 中元素a 阶数是n ,则m n e a m |⇔=.11、设群G 中元素a 阶数是n ,则 ),(||n m n a m =.,其中k 为任意整数. 设(m,n )=d,m=dk,n=dl,(k,l)=1. 则(a^m)^l=a^(ml)=a^(kdl)=(a^(n))^k=e. 设(a^m )^s=e,,即a^(ms)=e,所以n|ms,则l|ks,又因为(l,k)=1,所以l|s,即a^m 的阶数为l.12、证明:在一个有限群中,阶数大于2的元素个数一定是偶数.13、设G 为群,且n G 2||=,则G 中阶数等于2的一定是奇数.14、证明:如果群G 中每个元素都满足e x =2,则G 是交换群.对每个x ,从x^2=e 可得x=x^(-1),对于G 中任一元x ,y ,由于(xy )^2=e ,所以xy=(xy )^(-1)=y^(-1)*x(-1)=yx.或者 :(ab)(ba)=a(bb)a=aea=aa=e ,故(ab)的逆为ba ,又(ab)(ab)=e ,这是因为ab 看成G 中元素,元素的平方等于e. 由逆元的唯一性,知道ab=ba15、证明:n 阶群中元素阶数都不大于n .16、证明:p 阶群中有1-p 个p 阶元素,p 为素数.17、设群G 中元素a 阶数是n ,则)(|t s n a a t s -⇔=.18、群G 的任意子群交仍是子群.19、设G 为群,G b a ∈,,证明:a a bab bab k k =⇔=--11)(.20、证明:交换群中所有有限阶元素构成子群.21、证明:任何群都不能是两个真子群的并.证明:任何群都不能是两个真子群的并. 可以用反证法,设G=HUK ,H 、K 均为真子群,存在a,b\in G, a\not\in H,b\not\in K ,从而a\in K, b\in H. ab\in G, 则ab\in H 或ab\in K. 若ab\in H 得出矛盾,ab\in K ,也可得出矛盾.22、设G 为群,H a a G a G H n m ∈∈≤,,,,证明:若1),(=n m ,则H a ∈.23、证明:整数加群是无限循环群.24、证明:n 次单位根群为n 阶循环群.25、证明:循环群的子群仍是循环群.26、设>=<a G 为6阶循环群,给出它的所有生成元及所有子群.27、求模18的剩余类加群(Z 18,+,[0])的所有子群及这些子群的生成元.28、设群G 是24阶群,G 中元素a 的阶是6,则元素a 2的阶为?28、解: 在群G 中,对于ㄧa ㄧ=n ,a^r ∈G ,有ㄧa^r ㄧ=n/(n ,r ),所以由 ㄧa ㄧ=6 可得:ㄧa^2ㄧ=6/(6,2)=3.29、设H 1和H 2分别是群(G ,ο,e )的子群,并且| H 1 |=m ,| H 2 | =n ,m 、n 有限,(m ,n )=1,试证:H 1∩H 2={e }.30、设群中元素a 的阶数为无限,证明:t s a a t s ±=>⇔>=<<.31、设群中元素a 的阶数为n ,证明:),(),(n t n s a a t s =>⇔>=<<.32、设G 是交换群,e 是G 的单位元,n 是正整数,},,|{e a G a a H n =∈=问:H 是否是G 的子群?为什么?32解:H 是G 的子群. 下证:① 由e ∈H ,故H 为非空子集;②对于任意a ,b ∈H ,a^n=e ,b^n=e ,故[b^(-1)]^n=e ,因为G 是交换群,所以有:(a^n)* ﹛[b^(-1)]^n ﹜=aa ···a*[b^(-1)] [b^(-1)]···[b^(-1)]= ﹛a[b^(-1)] ﹜^n=e ,从而a[b^(-1)] ∈H ,故 H 是G 的子群. 证毕.(注:刚才a 和[b^(-1)]展开均为n 个相乘)33、设群G 中两元素满足1|)||,(|,==b a ba ab ,证明:>>=<<ab b a ,.34、证明:⎭⎬⎫⎩⎨⎧ΛΛ,!1,,21,1n 是有理数加群的一个生成系. 35、设b a ,是群G 的两个元,,ba ab =a 的阶是m ,b 的阶是n ,n m ,有限且)(),(,1),(b K a H n m ===,求K H I36、设S 3是3次对称群,a=(123)∈S 3.(1) 写出H =< a>的所有元素.(2) 计算H 的所有左陪集和所有右陪集.(3) 判断H 是否是S3的不变子群,并说明理由.37、在5次对称群S 5中,求(12)(145),(4521)-1以及(354)的阶数.37、解: (12)(145)的阶数为[2,3]=6 ; (4521)-1的阶数为4 ; (354)的阶数为3.38、设G 是一交换群,n 是一正整数,H 是G 中所有阶数是n 的因数的元素的集合. 试问:H 是否是G 的子群?为什么?39、设1||>M ,证明:M 的全体变换作成一个没有单位元的半群.40、设1||>M ,证明:M 的全体非双射变换关于变换的乘法不作成群.41、证明:不相连的循环相乘可以交换.42、将3S 所有元素用循环表示.43、将4S 所有元素用循环乘积表示.(1)(12), (13),(14),(23),(24),(34)(123),(124),(134),(132),(142),(143),(234),(243)(1234),(1243),(1324),(1342),(1423),(1432),(12)(34),(13)(24),(14)(23)44、3S 中不能同)123(交换的所有元素.45、写出5S 中阶数等于2的所有元素.46、置换δ与其逆1-δ具有相同的奇偶性.置换\delta=\delta_1\delta_2\cdots\delta_s,\delta_i 为对换,又因为(\delta_1\delta_2\cdots\delta_s )(\delta_s\delta_(s-1)\cdots\delta_1)=(1),从而得到\delta^{-1},进而得证结果.47、求下列置换的阶数)48)(3172(;)26)(5172(;⎪⎪⎭⎫ ⎝⎛641523123456. 48、设H ={(1),(123),(132)}是对称群S3的子群,写出H 的所有左陪集和所有右陪集,问H 是否是S3的不变子群?为什么?49、给出4S 的所有子群.50、证明:无限循环群的非e 子群指数均有限.H\not={e},H=(a^s)为G 的子群,其中s 为H 中所含元素的指数最小正整数. 证明G=a^0HUaHU\cdotsUa^{s-1}H,且a^iH 与a^jH 煤油交集,i\not=j.51、设G 是整数集,规定3-+=b a b a ο,证明:G 关于此运算构成群,并求出单位元.52、证明:指数是2的子群必是正规子群.53、证明:素数阶群是循环单群.54、设>=<a N 是群G 的一个正规子群,若N H ≤,则H 也是G 的正规子群.55、证明:若群G 的n 阶子群有且仅有一个,则此子群必为G 的正规子群.56、四次对称群4S 关于Klein 四元群4K 的商群44/K S 与3S 同构.57、证明:群中子群的共轭关系是一个等价关系.58、证明:n S 的所有对换构成一个共轭类.59、写出3S 的所有Sylow p -子群.60、证明:15阶群都是循环群.61、证明:200阶群不是单群.62、证明:196阶群必有一个阶数大于1的Sylow 子群,此子群为正规子群.28、解: 在群G 中,对于ㄧa ㄧ=n ,a^r ∈G ,有ㄧa^r ㄧ=n/(n ,r ),所以由 ㄧa ㄧ=6 可得:ㄧa^2ㄧ=6/(6,2)=3.32解:H 是G 的子群. 下证:① 由e ∈H ,故H 为非空子集;②对于任意a ,b ∈H ,a^n=e ,b^n=e ,故[b^(-1)]^n=e ,因为G 是交换群,所以有:(a^n)* ﹛[b^(-1)]^n ﹜=aa ···a*[b^(-1)] [b^(-1)]···[b^(-1)]=﹛a[b^(-1)] ﹜^n=e ,从而a[b^(-1)] ∈H ,故 H 是G 的子群. 证毕.(注:刚才a 和[b^(-1)]展开均为n 个相乘)37、解: (12)(145)的阶数为6 ; (4521)-1的阶数为4 ;(354)的阶数为3.。

近世代数科普

近世代数科普

近世代数科普群论⼆1. 同态与同构群的同态:设f:G→G′,如果其满⾜∀a,b∈G,f(a)f(b)=f(ab),则称f是⼀个同态当f是⼀个满射时,称为满同态当f是⼀个单射时,称为单同态当f是⼀个双射时,称为同构,称为G≅G′常记f(G)={f(x):x∈G},f−1(x)={a:f(a)=x},f−1(S)={a:f(a)∈S}常⽤结论设f:G→G′为⼀个同态,则f(e)=e′,f(a)−1=f(a−1)设f:G→G′为⼀个同态,则f(G)⩽G′Prof:对a′,b′∈f(G),∃a,b∈G,f(a)=a′,f(b)=b′,则a′b′−1=f(a)f(b)−1=f(ab−1)∈f(G)2. 正规⼦群Def:设H⩽G,若∀a∈G,aH=Ha,则称H为⼀个正规⼦群,记做H⊲G正规⼦群的等价结论:设H⩽G,∀a∈G,aHa−1=H设H⩽G,∀a∈G,aHa−1⊆HProf:取a和a−1,aHa−1⊆H,a−1Ha⊆H设H⊲G,K⩽G,则H∩K⊲KProf:∀x∈H∩K,∀g∈K,g−1xg∈H∩K(H是由正规⼦群,K由群的封闭性)3. 核Def:设f:G→G′是⼀个同态,则f−1(e)称为f的核,记做ker(f)核⼀定是正规⼦群:⼦群:∀a,b∈ker(f),f(ab−1)=f(a)f(b−1)=e∈ker(f)正规⼦群:∀g∈G,h∈ker(f),f(ghg−1)=f(g)ef(g−1)=e∈ker(f),从⽽g ker(f)g−1⊆ker(f),从⽽ker(f)是正规⼦群f−1(a)=a ker(f)4. 商群定义⼀种集合运算,AB={ab|a∈A,b∈B}Def:设H⩽G,G/H为H的陪集的集合,若H⊲G,G/H在上述集合运算下构成群,称为商群,商群的单位元为H,元素aH的逆元为a−1HProf:∀aH,bH∈G/H,aHb−1H=ab−1H∈G/H5. ⾃然同态设H⊲G,则存在G→G/H的同态φ(a)=aH,称为H的⾃然同态⾃然同态⼀定是满同态φ(H)=φ−1(H)=H6. 群同态基本定理设f:G→G′是⼀个满同态,则G/ker(f)≅G′Prof:记N=ker(f),构建映射ϕ(aN)=f(a)先证为双射,如果f(a)=f(b),则a∈bN,则aN=bN,故为单射∀a′∈G′,∃a∈f−1(a′),s.t.ϕ(aN)=a′,故为满射再证同构,ϕ(aN)ϕ(bN)=f(a)f(b)=f(ab)=ϕ(abN)=ϕ(aNbN)推论:设f:G→G′是⼀个同态,则G/ker(f)≅f(G)7. 群同态定理设f:G→G′是⼀个满同态,记N=ker(f)f建⽴G包含N的⼦群与G′的⼦群之间的⼀⼀对应Prof:设S1={K:N⩽K⩽G},S2={K:K⩽G′}(a) ⾸先证明映射合法,∀H∈S1,f:H→G′是⼀个同态,因此f(H)⩽G′(b) 证明单射,先证∀H∈S1,f−1(f(H))=H,知H⊂f−1(f(H)),并且∀x∈f−1(f(H)),f(x)∈f(H),因⽽∃h∈H,f(x)=f(h),故x∈hN⊂H,故f−1(f(H))⊂H,因此f−1(f(H))=H,那么如果f(H1)=f(H2)就有H1=H2(c) 证明满射,∀H′∈S2,f(f−1(H′))=H′f建⽴G包含N的正规⼦群与G′的正规⼦群之间的⼀⼀对应Prof:设S a={K:N⩽K⊲G},S b={K:K⊲G′}(a) f:S a→S b合法,因为∀K∈S a,∀g∈G,gKg−1=K,故f(K)=f(gKg−1)=f(g)f(K)f(g)−1,由f是满同构知f(K)∈S b,⼜由f:S1→S2是双射知,f是⼀个单射(b) 反之,∀K′∈S b,∀g∈G,f(g−1f−1(K′)g)=f(g)−1K′f(g)=K′,从⽽g−1f−1(K′)g⊂f−1(K′),从⽽f−1(K′)∈S a,由f:S1→S2是双射知,f是⼀个满射上述两条主要是为了接下来的定理的描述第⼀群同构定理:设f:G→G′是⼀个满同态,设N=ker(f),设N⊂H⊲G,则G/H≅G′/f(H)Prof:设G′/f(H)的⾃然同态为π,那么我们考虑同态φ=πf(G→G′/f(H)),由π,f为满同态,则φ为满同态我们考虑证明H=ker(φ),即{x|πf(x)∈f(H)},显然H⊆ker(φ),⽽∀x∈ker(φ),有πf(x)∈f(H),即f(x)∈f(H),即x∈f−1(f(x))⊆H,从⽽H=ker(φ),由群同态基本定理,我们得到G/H≅G′/f(H)第⼆群同构定理:设H⩽G,N⊲G,则HN/N≅H/H∩N为了使定理有意义,先证HN是⼦群,⾸先HN=NH,∀h1,h2∈H,n1,n2∈N,n1h1(n2h2)−1=n1(h1h−12)n2∈NHN=HN,故HN为⼦群Prof:设H/H∩N的⾃然同态为π,π(a)=a(H∩N),构造f:HN→H,∀x∈aN,f(x)=a,则ϕ=πf是⼀个满同态我们考虑证明N=ker(ϕ),即{x|πf(x)∈H∩N},⾸先f(N)=e,π(e)=H∩N,故N⊆ker(ϕ)⽽且∀x∈ker(ϕ),f(x)∈{e},故x∈N,故ker(ϕ)⊆N第三群同构定理:设N⊲G,N⩽H⊲G,则G/H≅(G/N)/(H/N)Prof:第⼀群同构定理,取G′=G/N的特例群论三1. 单群Def:如果G没有⾮平凡的正规⼦群({e}和G),那么G称为单群G≠{e}是交换单群,当且仅当G为素数阶的循环群Prof:对任意g≠e,考虑⟨g⟩2. ⽣成⼦群记最⼩包含S的⼦群为⟨S⟩,即⟨S⟩=⋂S⊂H⩽G H∀x∈S,x=x1x2...x m(x1,x2,...,x m∈S∪S−1)当S有限时,⟨S⟩称为有限⽣成群3. 换位⼦群(导群)a−1b−1ab称为元素a,b的换位⼦(交换⼦),记做[a,b]所有的换位⼦⽣成的⼦群称为换位⼦群(导群),常记做G′, [G,G], G(1)(以后变量要取别的名字了...)当ab=ba时,[a,b]=a−1b−1ab=eG′⊲GProf:g[a,b]g−1=(ga−1g−1)(gb−1g−1)(gag−1)(gbg−1)=[gag−1,gbg−1]∀x∈G′,x=[a1,b1][a2,b2]...[a m,b m], 故gxg−1=[ga1g−1,gb1g−1][ga m g−1,gb m g−1]∈G′故∀g∈G,g−1G′g⊆G′,故G′⊲GG/G′是阿贝尔群Prof:aG′bG′=bG′aG′⇔aG′b=bG′a⇔G′=a−1bG′ab−1⇔G′=G′a−1bab−1⇔G′=G′[a,b−1]4. 可解群定义G(n)=(G(n−1))(1),注意到G⊳G(1)⊳G(2)⊳...Def:如果G(k)={e},则称G为可解群利⽤换位⼦群的商群的性质,有这样的充要条件:群G是可解群当且仅当存在G⊳G1⊳G2....⊳G k={e},且G i−1/G i(1≤i≤k)为阿贝尔群Prof:“⇒":显然,G,G(1),G(2),....,满⾜题意“⇐”:如果G/N是阿贝尔群,考虑φ:G→G/N为⾃然同态,那么有φ([a,b])=e,即[a,b]∈N从⽽我们有G(1)⩽N,在本题中,由于G/G1是阿贝尔群,故G(1)⩽G1,归纳得到G(k)⩽G k,即G(k)={e}5. 中⼼化⼦定义C(G)={x:∀a∈G,ax=xa},称为群G的中⼼C(G)⊲G类似的,定义C S(G)={x:∀a∈S,ax=xa},称为S的中⼼化⼦C S(G)⩽G6. 群对集合的作⽤设f:G×S→S,且满⾜[1] f(e,x)=x [2] f(g1g2,x)=f(g1,f(g2,x)),称f决定了群G在S上的作⽤,f(g1,x)常简写为g1(x)设G是⼀个群,X,X′是两个⾮空集合,G作⽤在X,X′上,如果存在双射ϕ:X→X′,使得ϕ(g(x))=g(ϕ(x)),则称这两个作⽤等价example:项链的旋转构成群,对长为n的全红项链和全蓝项链显然等价设G作⽤在X上,定义关系R={(x,y)|∃g∈G,g(x)=y},易证R是等价关系,在这个等价关系下,我们划分出的等价类称为轨道,和x 等价的元素记做O x={g(x)|g∈G}给⼀条项链染⾊,在旋转操作下等价的元素设G作⽤在X上,∀x∈X,定义H x={g∈G|g(x)=x}为x的稳定⼦群(显然为⼦群)如果|O x|=1,或者说∀g∈G,g(x)=x,则称x为不动点7. 齐性空间Def:设H⩽G,则H的所有左陪集构成的集合称为G的齐性空间⼀般的,默认g(aH)=gaH是G在G/H上的作⽤设G作⽤在X上,则\forall x \in X,G在O_x上的作⽤和其在G/H_x上的作⽤等价Prof:定义映射f:G/H_x \to O_x, f(aH_x) = a(x)其为单射,因为b(x) = a(x) \Leftrightarrow b^{-1}a(x)=x \Leftrightarrow bH_x=aH_x其显然为满射,因此此为⼀⼀映射,并且,f(gaH_x) = ga(x) = g(f(aH_x))设G为有限群,G作⽤在X上,则|O_x| = |G/H_x|Prof:由上⼀个命题,f是⼀个⼀⼀映射,故这两个集合的基数相等ex:求正⽅体的旋转群的⼤⼩我们考虑利⽤上式公式,不难得到|H_1| = 3,|O_1| = 8,从⽽|G| = 24在G作⽤到G上,并且g(x) = gxg^{-1}时,此时H_x = C_G(X),定义C(x)为和x共轭的元素的集合,则|C(x)| = |G :C_G(x)|根据等价类的定义,从每个共轭类中选择⼀个元素,得到|G| = \sum_x [G:C_G(x)]特别的,当x\in C(G)时,[G:C_G(x)] = 1,因此我们选择从每个⾮平凡的共轭类中选择⼀个x元,则有|G| = |C(G)| + \sum_x |G:C_G(x)|这称为共轭类⽅程设H\leqslant G,则H \cong xHx^{-1}(x\in G)8. p-群Def:如果|G| = p^k(k\geq 1),其中p为素数,则称G为p-群设p-群G作⽤于集合X上,设|X|=n,设t为X中不动点的数⽬,则t \equiv n(mod\;p)Prof:设集合X的全部轨道为O_1, O_2, ..., O_k,则有\sum |O_i| = n,注意到|O_i| = p^m(m\geq 0),当且仅当|O_i| = 1时,有|O_i|\;mod\;p =1,否则|O_i| \;mod\;p=0,因此t \equiv n(mod\;p)p-群⼀定有⾮\{e\}的中⼼Prof:考虑G到G上的共轭变换,任意G的中⼼中的元素⼀定是⼀个不动点,因此,我们有|C(G)|\equiv 0(mod\;p),⾃然我们得到|C(G)|>19. Burnside 引理设群G作⽤于集合S上,令t表⽰S在G作⽤下的轨道的条数,\forall g\in G,F(g)表⽰S在g作⽤下不动点的个数,则t = \frac{\sum_{g\in G} F(g)}{|G|}Prof:⾸先转化命题,我们运⽤双计数证明|G|*t = \sum_{g\in G}F(g)考虑右式,\sum_{g\in G}F(g) = \sum_{x\in S, g\in G} [gx = x] = \sum_{x\in S} \{g:g\in G, gx=x\} = \sum_{x\in S} |H_x|由于|H_x| = |G| / |O_x|,因此所求即|G|*\sum_{x \in S}\frac{1}{|O_x|},即证\sum_{x\in S} \frac{1}{|O_x|} = t考虑⼀个轨道O_x,这个轨道产⽣的贡献为|O_x| * \frac{1}{|O_x|} = 1,如此,t为不同的轨道的条数,命题得证群论四好像有些不太正常的要来了1. 西罗第⼀定理设G是⼀个阶为n的有限群,p为素数,如果p^k | n, k \geq 0,那么G中存在⼀个阶为p^k的⼦群Prof:引理:设n = p^r*m, (p, m) = 1,对k \leq r,有v_p(\binom{n}{p^k})=r-k(由Kummer\;TH显然)取G中所有含有p^k个元素的⼦集,构成集合X,令G作⽤在X上,定义g(A) = gA, A\in X那么有|X| = \sum |O_i|,由于p^{r-k+1} \nmid |X|,因此存在A\in X,使p^{r-k+1} \nmid |O_A|,下证|H_A|=p^k由|O_A| |H_A|= |G|知,v_p(H_A) \geq k,即|H_A| \geq p^k但\forall a\in A, H_Aa \subset A,故|H_A| \leqslant |A| = p^k,从⽽|H_A|=p^k设v_p(|G|) = k,则阶为p^k的⼦群称为西罗p-⼦群2. 西罗第⼆定理设v_p(|G|) = r,P是G的⼀个西罗p-⼦群,\forall H \leqslant G, |H|=p^k, \exists g\in G, s.t. H \leqslant gPg^{-1}Prof:考虑X为P的左陪集的集合,将H作⽤于X,h(aP)=haP由于(|X|, |H|) = 1,那么存在⼀个不动点,使得HgP = gP此时\forall h \in H ,\exists p_1, p_2\in P, hgp_1=gp_2,即h = gp_2p_1^{-1}g^{-1} \in gPg^{-1},因此H \leqslant gPg^{-1}推论1:任意两个西罗p-⼦群互相共轭推论的推论:⼀个群G有唯⼀的西罗p-⼦群P的充要条件为P \lhd G3. 正规化⼦Def:对H \leqslant G,定义\{g:g\in G, gH=Hg\}为H的正规化⼦,记做N(H) N(H) \leqslant GH \lhd N(H)C_G(H) \leqslant N(H)G中西罗p-⼦群的个数,以及对任⼀西罗p-⼦群P,N(P)的阶为|G|的因⼦Prof:设X为G中所有西罗p-⼦群的集合,在上⾯作共轭变换对任⼀西罗p-⼦群P,有O_P = X,H_P = N(P),从⽽|X|*|N(P)|= |G|4. 西罗第三定理若G中所有西罗p-⼦群的个数为t,则t \equiv 1(mod\;p)证明从略|G| = p^r * m, (p, m) = 1,结合t | |G|,我们有t | m。

近世代数习题解答(张禾瑞)三章

近世代数习题解答(张禾瑞)三章

近世代数习题解答第三章 环与域1 加群、环的定义1. 证明,本节内所给的加群的一个子集作成一个子群的条件是充分而且必要的.证 (ⅰ)若S 是一个子群 则S b a S b a ∈+⇒∈,'0是S 的零元,即a a =+'0对G 的零元,000'=∴=+a a 即.00S a a s ∈-=-∴∈ (ⅱ)若S b a S b a ∈+⇒∈, S a S a ∈-⇒∈今证S 是子群由S S b a S b a ,,∈+⇒∈对加法是闭的,适合结合律, 由S a S a ∈-⇒∈,而且得S a a ∈=-0 再证另一个充要条件:若S 是子群,S b a S b a S b a ∈-⇒∈-⇒∈,, 反之S a a S a a S a ∈-=-⇒∈=-⇒∈00 故S b a b a S b a ∈+=--⇒∈)(,2. },,,0{c b a R =,加法和乘法由以下两个表给定:+ 0 a b c ⨯0 a b c 0 0 a b c 0 0 0 0 0 a a 0 c b a 0 0 0 0 b b c 0 a b 0 a b c c c b a 0c0 a b c证明,R 作成一个环 证 R 对加法和乘法的闭的.对加法来说,由.9.2习题6,R 和阶是4的非循环群同构,且为交换群. 乘法适合结合律Z xy yz x )()(=事实上.当0=x 或a x =,)(A 的两端显然均为0. 当b x =或x=c,)(A 的两端显然均为yz .这已讨论了所有的可能性,故乘法适合结合律.两个分配律都成立xz xy z y x +=+)( zx yx x z y +=+)(事实上,第一个分配律的成立和适合律的讨论完全一样, 只看0=x 或a x =以及b x =或c x =就可以了.至于第二个分配律的成立的验证,由于加法适合交换律,故可看0=y 或a y = (可省略a z z ==,0的情形)的情形,此时两端均为zx剩下的情形就只有0,0)(=+=+=+x x bx bx x b b 0,0)(=+=+=+x x cx cx x c c 0,0)(=+=+==+x x cx bx ax x c b∴R 作成一个环.2 交换律、单位元、零因子、整环1. 证明二项式定理n n nn n b b a a b a +++=+- 11)()(在交换环中成立. 证 用数学归纳法证明. 当1=n 时,显然成立. 假定k n =时是成立的:k i i k k i k kk k b b a b a a b a +++++=+-- )()()(11 看1+=k n 的情形)()(b a b a k++))()()((11b a b b a b a a k i i k k i k kk ++++++=--1111111)]()[()()(++--+++++++++=+k i i k k i k i k k k k b b a b a a b a111111)()(+-+++++++++=k i i k k i k k k b b a b a a (因为)()()(11kr k r k r -++=)即二项式定理在交换环中成立.2. 假定一个环R 对于加法来说作成一个循环群,证明R 是交换环.证 设a 是生成元 则R 的元可以写成na (n 整数)2)]([)]([))((nma aa m n ma a n ma na === 2))((mna na ma =3. 证明,对于有单位元的环来说,加法适合交换律是环定义里其他条件的结果 (利用)11)((++b a ) 证 单位元是1,b a , 是环的任意二元,1)11(1)()11)((⋅++⋅+=++b a b ab a b a +++= )11()11(+++=b a b b a a +++=b b a a b a b a +++=+++∴ b a a b +=+4. 找一个我们还没有提到过的有零因子的环.证 令R 是阶为2的循环加群 规定乘法:R b a ∈,而0=ab 则R 显然为环.阶为2 ∴有R a ∈ 而 0≠a但 0=aa 即a 为零因子 或者R 为n n ⨯矩阵环.5. 证明由所有实数2b a + (b a ,整数)作成的集合对于普通加法和乘法来说 是一个整环.证 令2{b a R +=b a ,(整数)}(ⅰ) R 是加群2)()()2()2(d b c a d c b a +++=+++ 适合结合律,交换律自不待言.零元 200+2b a +的负元2b a --(ⅱ)2)()2()2)(2(bc ad bd ac d c b a +++=++ 乘法适合结合律,交换律,并满足分配律.(ⅲ)单位元 201+(ⅲ) R 没有零因子,任二实数00=⇒=a ab 或0=b3 除、环、域1. =F {所有复数bi a + b a ,是有理数}证明 =F 对于普通加法和乘法来说是一个域. 证 和上节习题5同样方法可证得F 是一个整环.并且 (ⅰ)F 有01≠+i(ⅱ) 0≠+bi a 即 b a , 中至少一个0≠022≠+∴b a 因而有,i b a b b a a 2222+-++ 使)((bi a +i b a bb a a 2222+-++1)= 故F 为域2. =F {所有实数,3b a + b a ,( 是有理数)} 证明 F 对于普通加法和乘法来说是一个域.证 只证明 03≠+b a 有逆元存在.则b a ,中至少有一个0≠ , 我们说0322≠-b a 不然的话,223b a =,0(≠b 若0=b 则 0=a 矛盾)223b a = 但 3 不是有理数既然0322≠-b a则 3b a + 的逆为3332222b a bb a a -+-4. 证明 例3的乘法适合结合律.证),)](,)(,[(332211βαβαβα=),)(,(331212121βααββαββαα--+----+--=,)()[(3212132121βαββααββαα ---+--])()(3212132121ααββαβββαα 又 )],)(,)[(,(332211βαβαβα],)[,(3232323211--+-=αββαββααβα -----------------+--=)()([3232132321αββαβββααα, )]()(3232132321----------------++ββααβαββαα ),([32321321321----------+--=βββαβββαααα )](32321321321----------++αββαβαβαβαα,[321321321321αβββαβββαααα-------= ]321321321321βββααβαβαβαα-----++ ,)()[(3212132121βαββααββαα--+--= 3212132121)()(---++-ααββαβββαα )])()[(())]()([(332211333211βαβαβαβαβαβα=∴5. 验证,四元数除环的任意元 )(),(di c bi a ++ ,这里d c b a ,,,是实数,可以写成 ),0)(0,()1,0)(0,()0,)(0,()0,(i d c i b a +++的形式.证 ),(),(),(di bi c a di c bi a +=++ ),0()0,(),0()0,(di bi c a +++=),0)(0,()0,)(0,()1,0)(0,()0,(i d i b c a +++=4 无零因子环的特征1. 假定F 是一个有四个元的域,证明.(a )的特征是2;(b )F 的0≠ 或11的两个元都适合方程 证 (a ) 设F 的特征为P 则P 的(加)群F 的非零元的阶 所 4P (4是群F 的阶) 但要求P 是素数, .2=∴P (b ) 设},,1,0{b a F =由于2=P ,所以加法必然是,0=+x x ,而b a a a =+⇒≠+11 故有0 1 a b0 0 1 a b 1 1 0 b a A a b 0 1 Bb a 1 0 又 },,1{b a 构成乘群,所以乘法必然是 1,=⇒≠≠ab b ab a ab1,22≠≠a a a (否则b a = )b a =⇒2故有.1 a b 11 a b a a b 1 bb a 1这样, b a , 显然适合12+=x x2. 假定 ][a 是模 的一个剩余类.证明,若a 同 n 互素,那么所有][a 的书都同n 互素(这时我们说][a 同n 互素). 证 设][a x ∈ 且d n x =),( 则11,dn n dx x ==由于)(1111q n x d q dn dx nq x a nq a x -=-=-=⇒=-故有 ,a d ,且有 n d因为 1),(=n a 所以1=d3. 证明, 所有同 n 互素的模 n 的剩余类对于剩余类的乘法来说作成一个群(同 互素的剩余类的个数普通用符号)(n φ 来表示,并且把它叫做由拉φ函数)证]{[a G =而][a 同n 互素}G 显然非空,因为)1),1((]1[=∈n G(ⅰ)G b a ∈][],[则][]][[ab b a =又1),(,1),(==n b n a 有1),(=n abG ab ∈∴][(ⅱ)显然适合结合律.(ⅲ)因为n 有限,所以G 的阶有限. 若]][[]][['x a x a = 即][]['ax ax =由此可得)(''x x a ax ax n -=-',1),(x x n n a -∴=即有][]['x x =另一个消去律同样可证成立.G 作成一个群4. 证明,若是1),(=n a , 那么)(1)(n an ≡φ(费马定理)证 ),(n a 则G a ∈][而 ][a 的阶是G 的阶 )(n φ的一个因子 因此]1[][)(=n a φ即]1[][)(=n aφ)(1)(n a n ≡∴φ5 子环、环的同态1. 证明,一个环的中心是一个交换子环.证 设N 是环的中心.显然N O ∈ N b a ∈,,x 是环的任意元N b a b a x xb x bx ax x b a ∈-⇒-=-=-=-)()( N ab ab x b xa b ax xb a bx a x ab ∈⇒=====)()()()()()(是子环,至于是交换环那是明显的.2. 证明, 一个除环的中心是个域.证 设!是除环!是中心 由上题知N 是R 的交换子环,1R ∈显然N ∈1,即N 包含非零元,同时这个非零元1是的单位元.R x N a ∈∈,即xa ax =N a x a xax axa xaa axa ∈⇒=⇒=⇒=------111111N ∴!是一个域3. 证明, 有理数域是所有复数b a bi a ,(+是有理数)作成的域)(i R 的唯一的真子域. 证 有理数域R 是)(i R 的真子域.设F !是)(i R 的一个子域,则R F ⊇(因为R 是最小数域) 若,F bi a ∈+ 而0≠b则)(i F F F i =⇒∈这就是说,R 是)(i R 的唯一真子域.4. 证明, )(i R 有且只有两自同构映射.证 有理数显然变为其自己. 假定α→i则由i i =⇒-=⇒-=αα1122或 i -=α这就证明完毕. 当然还可以详细一些:bi a bi a +→+:1φ bi a bi a -→+:2φ21,φφ确是)(i R 的两个自同构映射.现在证明只有这两个. 若bi a i +=→αφ:(有理数变为其自己)则由12)(12222-=+-=+⇒-=abi b a bi a i 1,0222-=-=b a ab若 102-=⇒=a b 是有理数,在就出现矛盾,所以有0=a 因而.1±=b在就是说, 只能i i → 或i i -→i5. 3J 表示模3的剩余类所作成的集合.找出加群3J 的所有自同构映射,这找出域3J !的所有自同构映射.证 1)对加群3J 的自同构映射 自同构映射必须保持!00←→ 故有i i →:1φ2)对域3J 的自同构映射.自同构映射必须保持00←→,11←→所有只有i i →:φ6. 令R 是四元数除环, R 是子集=S {一切)}0,(a 这里a 阿是实数,显然与实数域-S 同构.令-R 是把R 中S 换成-S 后所得集合;替R 规定代数运算.使-≅R R ,分别用k j i ,,表示R 的元),,0(),1,0(),0,(i i ,那么-R 的元可以写成d c b a dk cj bi a ,,,(+++是实数)的形式(参看.3.3 习题5). 验证.1222-===k j i ,.,,j ik ki i kj jk k ji ij =-==-==-=证 1)对a a →)0,(:φ来说显然-≅S S 2)=S {一切)}0,(a a 实数 =-S {一切()0,a a 实数 βα,{(=R 一切)}0,(a 复数对)(αβ是不属于S 的R 的元. =-R βα,{(一切}a规定a a →→)0,(),,(),(:βαβαψ由于S 与-S 的补足集合没有共同元,容易验证ψ是R 与-R 间的一一映射. 规定-R 的两个唤的和等于它们的逆象的和的象. -R 的两个元的积等于它们的逆象的积的象.首先,这样规定法则确是-R 的两个代数运算.其次,对于这两个代数运算以及R 的两个代数运算来说在ψ之下-≅R R(3)由.3.3习题5知),0)(0,()1,0)(0,()0,)(0,()0,(),(i d c i b a di c bi a +++=++ 这里 d c b a ,,, 实数这是因为令),0(),1,0(),0,(i k j i i ===(4)1)0,1()0,)(0,(2-=-==i i i1)0,1()1,0)(1,0(2-=-==j 1)0,1()1,0)(1,0(2-=-==k k i ij -===)1,0()1,0)(0,( k i i ji -=-==),0()0,)(1,0(同样j ik ki i kj jk =-==-=,6 多项式环1. 证明, 假定R 是一个整环,那么R 上的一个多项式环][x R 也是一个整环. 证 R !是交换环][x R ⇒交换环, R 有单位元11⇒是][x R 的单位元, R 没有零因子][x R ⇒没有零因子事实上,0,)(10≠++=a x a x a a x f n n0,)(10≠++=m m m b x b x b b x g则m n m n x b a b a x g x f +++= 00)()( 因为R 没有零因子,所以0≠m n b a 因而0)()(≠x g x f 这样][x R 是整环2. 假定R 是模7的剩余类环,在][x R 里把乘积 ])3[]4])([4[]5[]3([23+--+x x x x 计算出来解 原式=]2[]5[]4[]5[]5[]5[]3[]5[345345++++=-++-x x x x x x x x 3. 证明:(ⅰ) ],[],[1221ααααR R =(ⅱ) 若n x x x ,,,21 是R 上的无关未定元,那么每一个i x 都是R 上的未定元. 证 (ⅰ)=],[21ααR {一切}211221i i i i aαα∑{],[12=ααR 一切}112212j j j j a αα∑由于=∑211221i i i i aαα112212j j j j a αα∑因而=],[21ααR ],[12ααR(ⅱ)设00=∑=nk k ik xa即∑=+-nk ni h i i k x x x xx a 00010101 因为n x x x ,,21是R 上的无关未定元,所以即i x 是R 上的未定元4. 证明:(ⅰ) 若是n x x x ,,21和n y y y ,,21上的两组无关未定元,那么],,[],,[2121n n y y y R x x x R ≅(ⅱ) R !上的一元多项式环][x R 能与它的一个真子环同构. 证 (ⅰ)),,(),,(:2121n n y y y f x x x f →φ 根据本节定理3 ],,[~],,[2121n n y y y R x x x R容易验证),,(),,(212211n n x x x f x x x f ≠),,(),,(212211n n y y y f y y y f ≠⇒ 这样],,[],,[2121n n y y y R x x x R ≅(ⅱ)令{][=x R 一切}2210n n x a x a a +++显然][][2x R x R ⊂ 但][2x R x ∉不然的话m m m m x b x b x b x b x b b x 22102210 ++-⇒++=这与x 是R 上未定元矛盾. 所以][2x R 是][x R 上未定元显然 故有(ⅰ)}[][2x R x R ≅这就是说,][2x R 是][x R 的真子环,且此真子环与][x R 同构.7 理想1. 假定R 是偶数环,证明,所有整数r 4是ϑ的一个理想,等式!对不对? 证 R r r r r ∈∈2121,,4,4ϑϑ∈-=-)(4442121r r r r R r r ∈-21 ϑ∈=∈)(4)4(,'1'1'r r r r R r R r r ∈'1 ϑ∴ 是R 的一个理想. 等式 )4(=ϑ不对这是因为R 没有单位元,具体的说)4(4∈但ϑ∉42. 假定R 是整数环,证明.1)7,3(=证 R 是整数环,显然)1(=R .1)7,3(=又 )7,3()7(13)2(1∈+-=1)7,3(=∴3. 假定例3的R 是有理数域,证明,这时),2(x 是一个主理想.证 因为2与x 互素,所以存在)(),(21x P x P 使),2(11)()(221x x xP x P ∈⇒=+),2()1(][x x R ==∴ 。

代数学引论(近世代数)答案

代数学引论(近世代数)答案

第一章代数基本概念习题解答与提示(P54)1.如果群G中,对任意元素a,b有(ab)2=a2b2,则G为交换群.证明:对任意a,b G,由结合律我们可得到(ab)2=a(ba)b, a2b2=a(ab)b再由已知条件以及消去律得到ba=ab,由此可见群G为交换群.2.如果群G中,每个元素a都适合a2=e, 则G为交换群.证明: [方法1]对任意a,b G,ba=bae=ba(ab)2=ba(ab)(ab)=ba2b(ab)=beb(ab)=b2(ab)=e(ab)=ab因此G为交换群.[方法2]对任意a,b G,a2b2=e=(ab)2,由上一题的结论可知G为交换群.3.设G是一非空的有限集合,其中定义了一个乘法ab,适合条件:(1)a(bc)=(ab)c;(2)由ab=ac推出a=c;(3)由ac=bc推出a=b;证明G在该乘法下成一群.证明:[方法1]设G={a1,a2,…,a n},k是1,2,…,n中某一个数字,由(2)可知若i j(I,j=1,2,…,n),有a k a i a k a j------------<1>a i a k a j a k------------<2>再由乘法的封闭性可知G={a1,a2,…,a n}={a k a1, a k a2,…, a k a n}------------<3>G={a1,a2,…,a n}={a1a k, a2a k,…, a n a k}------------<4>由<1>和<3>知对任意a t G, 存在a m G,使得a k a m=a t.由<2>和<4>知对任意a t G, 存在a s G,使得a s a k=a t.由下一题的结论可知G在该乘法下成一群.下面用另一种方法证明,这种方法看起来有些长但思路比较清楚。

[方法2]为了证明G在给定的乘法运算下成一群,只要证明G内存在幺元(单位元),并且证明G内每一个元素都可逆即可.为了叙述方便可设G={a1,a2,…,a n}.(Ⅰ) 证明G内存在幺元.<1> 存在a t G,使得a1a t=a1.(这一点的证明并不难,这里不给证明);<2> 证明a1a t= a t a1;因为a1(a t a1)a t=(a1a t) (a1a t)=(a1)2a1(a1a t)a t=(a1a1)a t=a1(a1a t)= (a1)2,故此a1(a t a1)a t= a1(a1a t)a t.由条件(1),(2)可得到a1a t= a t a1.<3> 证明a t就是G的幺元;对任意a k G,a1(a t a k) =(a1a t)a k=a1a k由条件(2)可知a t a k=a k.类似可证a k a t=a k.因此a t就是G的幺元.(Ⅱ) 证明G内任意元素都可逆;上面我们已经证明G内存在幺元,可以记幺元为e,为了方便可用a,b,c,…等符号记G内元素.下面证明任意a G,存在b G,使得ab=ba=e.<1> 对任意a G,存在b G,使得ab=e;(这一点很容易证明这里略过.)<2> 证明ba=ab=e;因为a(ab)b=aeb=ab=ea(ba)b=(ab)(ab)=ee=e再由条件(2),(3)知ba=ab.因此G内任意元素都可逆.由(Ⅰ),(Ⅱ)及条件(1)可知G在该乘法下成一群.4.设G是非空集合并在G内定义一个乘法ab.证明:如果乘法满足结合律,并且对于任一对元素a,b G,下列方程ax=b和ya=b分别在G内恒有解,则G在该乘法下成一群.证明:取一元a G,因xa=a在G内有解, 记一个解为e a ,下面证明e a为G内的左幺元. 对任意b G, ax=b在G内有解, 记一个解为c,那么有ac=b ,所以e a b= e a(ac)= (e a a)c=ac=b,因此e a为G内的左幺元.再者对任意d G, xd=e a在G内有解,即G内任意元素对e a存在左逆元, 又因乘法满足结合律,故此G在该乘法下成一群.[总结]群有几种等价的定义:(1)幺半群的每一个元素都可逆,则称该半群为群.(2)设G是一个非空集合,G内定义一个代数运算,该运算满足结合律, 并且G内包含幺元,G内任意元素都有逆元,则称G为该运算下的群.(3)设G是一个非空集合,G内定义一个代数运算,该运算满足结合律, 并且G内包含左幺元, G内任意元素对左幺元都有左逆元,则称G为该运算下的群.(4)设G是一个非空集合,G内定义一个代数运算,该运算满足结合律, 并且对于任一对元素a,b G,下列方程ax=b和ya=b分别在G内恒有解,则称G为该运算下的群.值得注意的是如果一个有限半群满足左右消去律, 则该半群一定是群.5.在S3中找出两个元素x,y,适合(xy)2x2y2.[思路] 在一个群G中,x,y G, xy=yx(xy)2x2y2(这一点很容易证明).因此只要找到S3中两个不可交换的元素即可. 我们应该在相交的轮换中间考虑找到这样的元素.解: 取x=, y=那么(xy)2= x2y2.[注意]我们可以通过mathematica软件编写S n的群表,输出程序如下:Pr[a_,b_,n_]:=(*两个置换的乘积*)(Table[a[[b[[i]]]],{I,1,n}]);Se[n_]:=(*{1,2,…,n}的所有可能的排列做成一个表格*)(Permutations[Table[i,{I,1,n}]]);Stable[n_]:=(*生成S n群表*)(a=Se[n];Table[pr[a[[i]],a[[j]],n],{I,1,n},{j,1,n}])当n=3时群表如下:[说明]:表示置换, 剩下的类似.为了让更清楚,我们分别用e,a,b,c,d,f表示,,,,6.对于n>2,作一阶为2n的非交换群.7.设G是一群, a,b G,如果a-1ba=b r,其中r为一正整数,证明a-i ba i=.证明:我们采用数学归纳法证明.当k=1时, a-1ba=b r=, 结论成立;假设当k=n时结论成立, 即a-n ba n=成立, 下面证明当k=n+1时结论也成立.我们注意到a-1b k a== b kr,因此a-(n+1)ba n+1= a-1 (a-n ba n)a=a-1a==,可见k=n+1时结论也成立.由归纳原理可知结论得证.8.证明:群G为一交换群当且仅当映射是一同构映射.证明:(Ⅰ)首先证明当群G为一个交换群时映射是一同构映射.由逆元的唯一性及可知映射为一一对应,又因为,并且群G为一个交换群,可得.因此有.综上可知群G为一个交换群时映射是一同构映射.(Ⅱ)接着证明当映射是一同构映射,则群G为一个交换群.若映射是一同构映射,则对任意有,另一方面,由逆元的性质可知.因此对任意有,即映射是一同构映射,则群G为一个交换群.9.设S为群G的一个非空子集合,在G中定义一个关系a~b当且仅当ab-1S.证明这是一个等价关系的充分必要条件为S是一个子群.证明:首先证明若~是等价关系,则S是G的一个子群.对任意a G,有a~a,故此aa-1=e S;对任意a,b S,由(ab)b-1=a S,可知ab~b,又be-1=b S,故b~e,由传递性可知ab~e,即(ab)e-1=ab S.再者因ae-1=a S, 故a~e,由对称性可知e~a,即ea-1=a-1S.可见S是G的一个子群.接着证明当S是G的一个子群,下面证明~是一个等价关系.对任意a G, 有aa-1=e S,故此a~a(自反性);若a~b,则ab-1S,因为S为G的子群,故(ab-1)-1=ba-1S,因此b~a(对称性);若a~b,b~c,那么ab-1S,bc-1S,故ab-1 bc-1=ac-1S,因此a~c(传递性).综上可知~是一个等价关系.10.设n为一个正整数, nZ为正整数加群Z的一个子群,证明nZ与Z同构.证明:我们容易证明为Z到nZ的同构映射,故此nZ与Z同构.11.证明:在S4中,子集合B={e,(1 2)(3 4),(1 3)(2 4),(1 4)(2 3)}是子群,证明B与U4不同构.证明:由该表格可以知道B中的元素对置换的乘法封闭,并且B的每一元都可逆(任意元的逆为其本身),因此B为S4的子群. 这个群(以及与其同构的群)称为Klein四元群.假设B与U4同构,并设f为B到U4的同构映射, 则存在B中一元x使得f(x)=i(i 为虚数单位),那么f(x2)= f2(x)=i2=-1另一方面, f(x2)=f(e)=1(注意x2=e),产生矛盾.所以假设不成立, 即B与U4不同构.[讨论] B与U4都是4元交换群,但是后者是循环群, 前者不是, 这是这两个群的本质区别.12.证明:如果在一阶为2n的群中有一n阶子群,它一定是正规子群.证明:[方法1]设H是2n阶群G的n阶子群, 那么对任意a H, 有H aH=,并且aH G,H G,又注意到aH和H中都有n个元素, 故此H aH=G.同理可证对任意a H, 有H Ha=, H Ha=G,因此对任意a H,有aH=Ha.对任意a H, 显然aH H, Ha H又因aH,Ha及H中都有n个元素,故aH=Ha=H.综上可知对任意a G,有aH=Ha,因此H是G的正规子群.[方法2]设H是2n阶群G的n阶子群,那么任取a H, h H, 显然有aha-1H.对给定的x H, 有H xH=, H xH=G.这是因为若假设y H xH, 则存在h H,使得y=xh,即x=yh-1H产生矛盾,因此H xH=;另一方面, xH G,H G, 又注意到xH和H中都有n个元素, 故此H xH=G.那么任取a H,由上面的分析可知a xH, 从而可令a=xh1这里h1H.假设存在h H, 使得aha-1H,则必有aha-1xH,从而可令aha-1=xh2这里h2H.那么xh1ha-1=xh2,即a= h2h1h H,产生矛盾.因此,任取a H, h H, 有aha-1H.综上可知对任取a G, h H, 有aha-1H,因此H为G的一个正规子群.13.设群G的阶为一偶数,证明G中必有一元素a e适合a2=e.证明:设b G,且阶数大于2,那么b≠b-1,而b-1的阶数与b的阶数相等.换句话说G中阶数大于2的元素成对出现,幺元e的阶数为1,注意到G的阶数为宜偶数,故此必存在一个2阶元,(切确的说阶数为2的元素有奇数个).[讨论][1] 设G是一2n阶交换群,n为奇数则G中只有一个2阶元.为什么提示:采用反证法,并注意用Lagrange定理.[2] 群G中,任取a G,有a n=e,那么G一定是有限群吗如果不是请举出反例,若是有限群,阶数和n有什么关系14.令A=, B=证明:集合{B,B2,…,B n,AB,AB2,…,AB n}在矩阵的乘法下构成一群, 而这个群与群D n 同构.证明:下面证明G={B,B2,…,B n,AB,AB2,…,AB n}在矩阵的乘法下构成一群.(Ⅰ)首先证明对乘法运算封闭. 下面进行分类讨论:(1)B i B j=B i+j,注意到B n=故此B i B j=B r G这里i+j=kn+r,k Z,0<r n.(2)A B i B j=B r G这里i+j=kn+r,k Z,0<r n.(3)容易证明BAB=A=AB n,BA=B i AB(s+1)n=AB n-t G,这里i=sn+t,k Z,0<t n.那么B i(AB j)=( B i A)B j=(AB n-t)B j G(4)(AB i)(AB j)=A(B i AB j)=A((AB n-t)B j)=A2(B n-t B j)= B n-t B j)G由(1),(2),(3),(4)知G对乘法运算封闭.(Ⅱ)因集合G对矩阵乘法封闭,再由矩阵乘法的性质可知,结合律肯定成立.(Ⅲ)显然B n=A2=E为幺元.(Ⅳ)对B i(i=1,2,…,n),有B i B n-i=E;对AB i(i=1,2,…,n),有(AB i)(B n-i A)=E,因此G内任何一元都可逆.由(Ⅰ),(Ⅱ),(Ⅲ),(Ⅳ)可知G在矩阵乘法下构成一群.最后证明G与D n同构.令f:G→D nf(B i)=T i, f(AB i)=ST i(i=1,2,…,n),可以证明f就是G到D n的同构映射,这里不予证明了.15.设i是一个正整数, 群G中任意元素a,b都适合(ab)k=a k b k, k=I,i+1,i+2,证明G为交换群.证明:对任意a,b Ga i+2b i+2=(ab)i+2=(ab) (ab)i+1=(ab) (a i+1b i+1)=a(ba i+1)b i+1,根据消去律可得a i+1b=ba i+(1)同时a i+1b i+1=(ab)i+1=(ab) (ab)i=(ab) (a i b i)=a(ba i)b i+1,根据消去律可得a i b=(2)因此a i+1b=a(a i b)=a(ba i)=(ab)a i----(3)另外ba i+1=(ba)a i----------------------(4)结合(1),(3),(4)有(ab)a i=(ba)a i---------------------(5)由消去律可得到ab=ba.因此G为交换群.16.在群SL2(Q)中,证明元素a=的阶为4,元素b=的阶为3,而ab为无限阶元素.证明:可以直接验证a的阶为4,b的阶为3.因为ab=,对任何正整数n,(ab)n=≠可见ab的阶为无限.[注意] 在一群中,有限阶元素的乘积并不一定也是有限阶的,但两个可交换的有限阶元素的乘积一定是有限阶元素.[问题] 若一群中所有元素的阶数都有限,那么这个群一定是有限群吗17.如果G为一个交换群,证明G中全体有限阶元素组成一个子群.证明:交换群G中全体有限阶元素组成的集合记为S,任取a,b S,并设a的阶为m,b的阶为n,则(ab)mn=(a m)n(b n)m=e因此ab为有限阶元素,即ab S.a-1的阶数与a相同,故此a-1也是有限阶元素,即a-1S.综上可知S为G的一个子群.18.如果G只有有限多个子群,证明G为有限群.证明:采用反证法证明.假设G为无限群,则G中元素只可能有两种情况:(1)G中任意元素的阶数都有限、(2)G中存在一个无限阶元素.(1)首先看第一种情况:G中取a1≠e,并设其阶数为n1,则循环群G1={,…}为G的一个子群;G中取a2G1,并设其阶数为n2,则循环群G2={,…}为G的一个子群;G中取a3G1∪G2,并设其阶数为n3,则循环群G3={,…}为G的一个子群;………我们一直这样做下去,可以得到G的互不相同的子群构成的序列G n(n=1,2,…),所以G有无穷多个子群,产生矛盾;(2)再看第二种情况:设a∈G的阶数为无穷,那么序列G1=<>,G2=<>,…,G n=<>,…是G的互不相同的子群,所以G有无穷多个子群,产生矛盾.综上就可知“G是无限群”这个假设不成立,因此G是有限群.19.写出D n的所有正规子群.20.设H,K为群G的子群,HK为G的一子群当且仅当HK=KH.证明:(Ⅰ)设HK=KH,下面证明HK为G的一子群.任取a,b∈HK,可令a=h1k1,b=h2k2这里h i∈H,k i∈K,i=1,2.那么ab=(h1k1)(h2k2)=h1(k1h2)k2 ---------------(1)因HK=KH,故此k1h2= h3k3 ----------------------(2)这里h3∈H,k3∈K.由(1),(2)知ab= h1(h3k3)k2=(h1h3)(k3k2)∈HK. ------------(3)另外,a-1= (h1k1)-1= ∈KH=HK. ----------------- (4)由(3),(4)知HK是G的子群.(Ⅱ) HK为G的一子群,下面证明HK=KH.若a∈HK,易知a-1∈KH. HK是子群,任取a∈HK,有a-1∈HK,因此(a-1)-1=a∈KH,那么有HK KH.若a∈KH,易知a-1∈HK. HK是子群,任取a∈KH,有a-1∈HK,因此(a-1)-1=a∈HK,那么有KH HK.综上知,HK=KH.21.设H,K为有限群G的子群,证明证明:因H∩K为H的子群,那么可设H的左陪集分解式为H=h1(H∩K)∪h2(H∩K)∪…∪h r(H∩K)这里r为H∩K在H中的指数,h i∈H,当i≠j,h i-1h j H∩K(事实上等价于h i-1h j K),i, j=1,2,…,r.又(H∩K)K=K,所以HK=h1K∪h2K∪…∪(1)注意到h i-1h j K,所以当i≠j(i, j=1,2,…,r)时,h i K∩h j K=.----------------(2)由(1),(2)我们得到[总结]左陪集的相关结论设H为G的一子群,那么(1)a∈aH;(2)a∈HaH=H;(3)b∈aHaH=bH;(4)aH=bHa-1b∈H;(5)aH∩bH≠,有aH=bH.22.设M,N是群G的正规子群.证明:(i)MN=NM;(ii)MN是G的一个正规子群;(iii)如果M N={e},那么MN/N与M同构.证明:(i)[方法1]任取a∈MN,可设a=mn(m∈M,n∈N).因为M为G的正规子群,故n-1mn∈M. 所以a=n(n-1mn) ∈NM,故此MNNM.同样的方法可以证明NMMN. 因此MN=NM.[方法2]任取a,b∈MN,可设a=m1n1(m1∈M,n1∈N),b=m2n2(m2∈M,n2∈N).下面只要证明MN为G的一个子群即可(由第20题可知),也就是说只要证明ab-1∈MN即可.因为ab-1=m1n1n2-1m2-1= [m1(n1n2-1m2-1n2n1-1)](n1n2-1),而M为G的正规子群,故n1n2-1m2-1n2n1-1∈M,所以ab-1∈MN.(ii) 由(i)可知MN为G的一个子群.任取a∈MN, 可设a=mn(m∈M,n∈N).因为M和N为G的正规子群,对任意g∈G,有g-1ag= g-1mng= (g-1mg)(g-1ng) ∈MN.所以MN为G的正规子群.(iii) 易知N为MN的正规子群,因此MN/N是一个群. 因为M N={e},对任何m i ≠m j∈M, 有m i N≠m j N[注].作一个MN/N到M的映射f[注],f: MN/N→MmN m,那么该映射显然是一一对应,另外f(m i N m j N)= f(m i m j N)= m i m j,因此f为MN/N到M的同构映射,即MN/N与M同构.[讨论]1. 只要M和N的一个是正规子群,那么MN就是子群,或者说成立MN=NM.这一点我们从(i)的证明方法2可知.2. M和N中有一个不是正规子群时MN一定不是正规子群.[注意]1M N={e},对任何m i≠m j∈M, 有m i N≠m j N.证明:若存在m i≠m j∈M, 有m i N=m j N,那么m i m j-1∈N,而m i m j-1∈M. 因此m i m j-1∈M N,产生矛盾.2. 设f: MN/N→MmN m,则由于对任何m i≠m j∈M, 有m i N≠m j N,故此f为MN/N到M的一个映射.23.设G是一个群,S是G的一非空子集合.令C(S)={x∈G|xa=ax,对一切a∈S}N(S)= {x∈G|x-1Sx=S}.证明:(i) C(S),N(S)都是G的子群;(ii) C(S)是N(S)的正规子群.证明:(i) 首先证明C(S)是G的子群.任取x,y∈C(S),那么对任意a∈S有xa=ax,ya=ay. 那么一方面,(xy)a=x(ya)=x(ay)=(xa)y=(ax)y=a(xy),所以xy∈C(S).另一方面,xa=ax a=x-1ax ax-1=x-1a所以x-1∈C(S).因此,C(S)是G的子群.接着证明N(S)都是G的子群.任取x,y∈N(S),则x-1Sx=S,y-1Sy=S. 那么一方面,(xy)-1S(xy)=x-1(y-1Sy)x=x-1Sx=S所以xy∈N(S).另一方面,x-1Sx=S S=xSx-1所以x-1∈N(S).因此,N(S)是G的子群.(ii) 任取x∈C(S),a∈S,则xa=ax,即a=x-1ax,亦即S= x-1Sx. 因此x∈N(S),即C(S)N(S).任取x∈C(S),y∈N(S),a∈S,则存在a y∈S使得yay-1=a y,因此a=y-1a y y.那么(y-1xy)a(y-1xy)-1=y1[x(yay-1)x-1]y= y1(xa y x-1)y= y-1a y y=a,即(y-1xy)a=a(y-1xy).所以y-1xy∈C(S),因此C(S)是N(S)的正规子群.24.证明任意2阶群都与乘法群{1,-1}同构.证明:略.25.试定出所有互不相同的4阶群.解:我们分类讨论:(1)存在四阶元;(2)不存在四阶元.(1)若存在一个四阶元,并设a为一个四阶元,那么该四阶群为<a>.(2)若不存在四阶元,那么除了单位元e的阶为1,其余元素的阶只能是2,即设四阶群222这是Klein四阶群.综上可知,四阶群群在同构意义下只有两种或者是四阶循环群或者是Klein 四阶群.26.设p为素数.证明任意两个p阶群必同构.证明:易知当p为素数时,p阶群必存在一个p阶元,即p阶群必是p阶循环群,故两个p阶群必同构.27.Z为整数环,在集合S=Z×Z上定义(a,b)+(c,d)=(a+c,b+d),(a,b)(c,d)=(ac+bd,ad+bc).证明S在这两个运算下成为幺环.提示:(1,0)为该环的单位元素.证明:略.28.在整数集上重新定义加法“”与乘法“”为a b=ab, a b=a+b试问Z在这两个运算下是否构成一环.答:不构成环.29.设L为交换幺环,在L中定义:a b=a+b-1,a b=a+b-ab.这里e为单位元素,证明在新定义的运算下,L仍称为交换幺环,并且与原来的环同构.证明:(i)证明L在运算下构成交换群:由的定义,得到(a b)c=(a+b-1)c=a+b-1+c-1=a+b+c-2a(b c)= a(b+c-1)= a+b+c-1-1=a+b+c-2这里2=1+1,所以(a b)c= a(b c).----------------(1)同时由的定义还可以得到a1= 1a=a,------------------------(2)a(2-a)=(2-a)a=1,---------------(3)a b=b a,----------------------------(4)由(1),(2),(3)(4)可知L在运算下构成交换群.(ii)证明L中运算满足结合律和交换律:容易证明这里略过.(iii)证明乘法对加法满足分配律:因为a(b c)= a(b+c-1)=a+(b+c-1)-a(b+c-1)=2a+b+c-ab-ac-1,(a b)(a c)=(a+b-1)(a+c-1)= (a+b-ab)+(a+c-ac)-1=2a+b+c-ab-ac-1,所以a(b c)= (a b)(a c).由于和满足交换律,故此(b c)a= (b a)(c a).因此新定义的乘法对新定义的加法满足分配律(iv) 设0为环(L,+,)的零元,则0a=a0=a由(i),(ii),(iii),(iv)可得到(L,,)为交换幺环.(v) 最后证明(L,+,)与(L,,)同构:设f: L→Lx1-x,容易证明f为(L,+,)到(L,,)的同构映射.30.给出环L与它的一个子环的例子,它们具有下列性质:(i) L具有单位元素,但S无单位元素;(ii) L没有单位元素,但S有单位元素;(iii) L, S都有单位元素,但互不相同;(iv) L不交换,但S交换.解:(i) L=Z,S=2Z;(ii) L={|a,b∈R},S={|a∈R};(iii) L={|a,b∈R},S={|a∈R};(iv) L={|a,b∈R},S={|a∈R};31.环L中元素e L称为一个左单位元,如果对所有的a∈L,e L a= a;元素e R称为右单位元,如果对所有的a∈L,ae R=a.证明:(i)如果L既有左单位元又有右单位元,则L具有单位元素;(ii)如果L有左单位元,L无零因子,则L具有单位元素;(iii)如果L有左单位元,但没有右单位元,则L至少有两个左单位元素.证明:(i) 设e L为一个左单位元,e R为右单位元,则e L e R=e R=e L.记e=e R=e L,则对所有的a∈L,ea=ae=a,因此e为单位元素;(ii) 设e L为一个左单位元,则对所有的a(≠0)∈L,a(e L a)=a2;另一方面,a(e L a)=(ae L)a.所以a2=(ae L a= ae L.另外,若a=0,则a= ae L=e L a.因此左单位元e L正好是单位元.(iii) 设e L为一个左单位元,因为L中无右单位元,故存在x∈L,使得xe L≠x,即xe L-x≠0,则e L+ xe L-x≠e L,但是对所有的a∈L,(e L+ xe L-x)a=a,因此e L+ xe L-x为另一个左单位元,所以L至少有两个左单位元素.[注意] L无零因子,则满足消去律(参考教材46页).32.设F为一域.证明F无非平凡双边理想.证明:设I为F的任意一个理想,且I≠{0},则对任意a(≠0)∈I,则a-1∈F,于是a-1a=1∈I.从而F中任意元素f,有f1=f∈I,故I=F,即F只有平凡双边理想.[讨论] 事实上,一个体(又称除环)无非平凡双边理想. 另一方面,若L是阶数大于1的(交换)幺环,并且除了平凡理想,没有左或右理想,则L是一体(域).33.如果L是交换环,a∈L,(i) 证明La={ra|r∈L}是双边理想;(ii) 举例说明,如果L非交换,则La不一定是双边理想.证明:(i) 容易验证La为L的一个加法群. 任取ra∈La,l∈L,则l(ra)=(lr)a∈La,(ra)l=r(al)=r(la)=(rl)a∈La故La为L的一个双边理想.(ii) 设L=M2(R),那么L显然不是交换环,取h=,下面考察Lh是否为L的理想:取k=,容易验证h∈Lh,hk Lh,因此Lh不是L的一个理想.34.设I是交换环L的一个理想,令rad I={r∈L|r n∈I对某一正整数n},证明rad I也是一个理想.radI叫做理想I的根.35.设L为交换幺环,并且阶数大于1,如果L没有非平凡的理想,则L是一个域.证明:只要证明非零元素均可逆即可.任取a∈L,那么La和aL是L的理想,且La ≠{0},aL≠{0},因L无平凡的理想,故此La=aL=L,因此ax=1和ya=1都有解,因而a为可逆元.36.Q是有理数域,M n(Q)为n阶有理系数全体矩阵环.证明无非平凡的理想(这种环称为单环).证明:我们社K为M n(Q)的非零理想,下面证明K=M n(Q).为了证明这一点,只要证明n阶单位矩阵E∈K.记E ij为除了第i行第j列元素为1,其余元素全为0的矩阵.那么E ij E st=而E=E11+E22+…+E nn.我们只要证明E ii∈K(i=1,2,…,n)就有E∈K.设A∈K,且A≠0,又令A=(a ij)n×n,假设a kj≠0,则有E ik AE ji=a kj E ii(i=1,2,…,n).由于a kj≠0,故存在逆元a kj-1.设B= a kj-1E ii,则BE ik AE ji= a kj-1E ii E ik AE ji= a kj-1E ik AE ji=E ik E kj E ji=E ii.因为K为理想,A∈K,所以E ii=BE ik AE ji∈K,证毕.37.设L为一环,a为L中一非零元素.如果有一非零元素b使aba=0,证明a是一个左零因子或一右零因子.证明:若ab=0,则a为左零因子;若ab≠0,则aba=(ab)a=0,故ab为右零因子.38.环中元素x称为一幂零元素,如果有一正整数n使x n=0,设a为幺环中的一幂零元素,证明1-a可逆.证明:设a n=0,那么(1+a+a2+…+a n-1)(1-a)=(1-a) (1+a+a2+…+a n-1)=1-a n=1因此1-a可逆.39.证明:在交换环中,全体幂零元素的集合是一理想.证明:略.40.设L为有限幺环.证明由xy=1可得yx=1.证明:当L只有一个元素,即L={0},亦即0=1[注],此时显然有xy=1=xy;当L有多于一个元素时(即0≠1时),若xy=1,y不是左零元[注],因此yL=L.又因L为有限环,所以存在z∈L,使得yz=1.注意到(xy)z=z,x(yz)=x,所以x=z,即yx=1.[注意]1.幺环多于一个元素当且仅当0≠1.2.当L有多于一个元素时(即0≠1时),若xy=1,y不是左零元.因为若存在z≠0使得yz=0,则z=(xy)z=x(yz)=0,产生矛盾.41.在幺环中,如果对元素a有b使ab=1但ba≠1,则有无穷多个元素x,适合ax=1. (Kaplansky定理)证明:首先,若ab=1但ba≠1,则a至少有两个右逆元[注].现在假设a只有n(>1)个右逆元,并设这些元素为x i(i=1,2,…,n).那么a(1-x i a+x1)=1(i=1,2,…,n),又当i≠j时,1-x i a+x1≠1-x j a+x1[注],这里i,j=1,2,…,n.于是{x i|i=1,2,…,n}={1-x i a+x1| i=1,2,…,n },故存在x k∈{x i|i=1,2,…,n}使得x1=1-x k a+x1,即x k a=1.因为n>1,我们取x t≠x k∈{x i|i=1,2,…,n},那么(x k a)x t=x t,(x k a)x t =x k(ax t)=x k因此x t=x k,产生矛盾,所以假设不成立,即a有无穷多个右逆元.[注意]1. 若ab=1但ba≠1,则a至少有两个右逆元. 因为易验证1-ba+a就是另一个右逆元.2. 假设当i≠j时,1-x i a+x1=1-x j a+x1,则x i a=x j a,故x i ax1=x j ax1,因此x i=x j,产生矛盾.42.设L是一个至少有两个元素的环. 如果对于每个非零元素a∈L都有唯一的元素b使得aba=a.证明:(i) L无零因子;(ii) bab=b;(iii) L有单位元素;(iv) L是一个体.证明:(i) 先证明L无左零因子,假设a为L的一个左零因子,那么a≠0,且存在c≠0,使得ac=0,于是cac=0. 因a≠0,则存在唯一b使得aba=a.但a(b+c)a=a,b+c≠b产生矛盾,所以L无左零因子.类似可证L无右零因子.(ii) 因aba=a,所以abab=ab. 由(i)的结论知L无零因子,因此满足消去律,而a ≠0,故bab=b.(iii) 我们任一选取a(≠0)∈L,再设aba=a(这里b是唯一的),首先证明ab=ba.因为a(a2b-a+b)a=a,所以a2b-a+b=b,即a2b=a=aba,由消去律得到ab=ba.任取c∈L,则ac=abac,故此c=(ba)c=(ab)c;另一方面,ca=caba,故此c=c(ab).综上得到c=(ab)c=c(ab),所以ab就是单位元素,我们记ab=ba=1.(iv) 由(iii)可知任意a(≠0)∈L,ab=ba=1,即任意非零元素都可逆,因此L成为一个体.43.令C[0,1]为全体定义在闭区间[0,1]上的连续函数组成的环.证明:(i) 对于的任一非平凡的理想I,一定有个实数,,使得f()=0对所有的f(x)∈I;(ii) 是一零因子当且仅当点集{x∈[0,1]|f(x)=0}包含一个开区间.证明:(i) 证明思路:设I为非零的非平凡理想,假设对任意x∈[0,1],存在f(x)∈I使得f(x)≠0,想法构造一个g∈I可逆.(ii) 提示:用连续函数的局部保号性.44.令F=Z/pZ为p个元素的域.求(i) 环M n(F)的元素的个数;(ii) 群GL n(F)的元素的个数.解:45.设K是一体,a,b∈K,a,b不等于0,且ab≠1.证明华罗庚恒等式:a-(a-1+(b-1-a)-1)-1=aba.证明:因为a-(a-1+(b-1-a)-1)-1=aba1-(a-1+(b-1-a)-1)-1a-1=ab(aa-1+a(b-1-a)-1)-1=1-ab(1+a(b-1-a)-1)-1=1-ab(1+((ab)-1-1)-1)-1=1-ab,为了方便记x=ab,那么1-x,x,x-1-1都可逆,只要证明(1+(x-1-1)-1)-1=1-x即可,或者证明1+(x-1-1)-1=(1-x)-1即可.因为1+(x-1-1)-1=1+(x-1-x-1x)-1=1+(1-x)-1x=(1-x)-1(1-x) +(1-x)-1x=(1-x)-1,所以结论成立,即a-(a-1+(b-1-a)-1)-1=aba.网易全新推出企业邮箱。

近世代数习题第一章

近世代数习题第一章

第一章 基本概念1、设B A ,是两个有限集,证明:||||||||B A B A B A +=+ .2、设Y X ,都是有理数集,证明:法则b a ab + :δ 不是X 到Y 的映射.3、设},3,2,1{ =X ,Y 是有理数集,证明:法则2:x x δ是X 到Y 的映射.4、设X 为数域F 上的全体n 维向量构成的集合,证明:法则121),,,(:a a a a n δ是X 到F 的映射.5、设},3,2,1{ =X ,},6,4,2{ =Y ,证明:法则x x 2: δ是X 到Y 的双射.6、设X 为数域F 上的全体n 阶方阵作成的集合,},2,1,0{ =Y ,用)(A r 表示矩阵A 的秩,证明:法则)(:A r A δ是X 到Y 的满射,但不是单射.7、设Y X ,是两个有限集且||||Y X =,则X 到Y 的映射δ是满设当且仅当δ是单射.8、设},3,2,1{ =X ,证明:法则2:x x δ是X 到Y 的单射,但不是满射.9、证明:具有n 个元素的集合共可构成!n 个双射.10、判断法则b a b a +=是不是整数集的代数运算.11、判断法则1+=ab b a是不是整数集的代数运算.12、判断法则B A B A ||=是不是数域F 上的全体n 阶方阵的集合的代数运算.13、设M 是自然数集合,则M 的代数运算1+=ab b a 不满足结合律.14、变换的乘法满足结合律.15、设M 是实数集合,则M 的代数运算b a b a 32+= 是否满足结合律和交换律.16、设M 全校学生全体,规定b a aRb ,⇔同在一系.证明:这一关系是M 上的一个等价关系.17、求由等价关系)4(mod b a aRb ≡⇔所决定的整数集Z 的分类.18、设}10,6,4,2,1{=M ,规定b a aRb +⇔|4问:R 是不是M 上关系,是否满足反身性、对称性与传递性.19、设A 、B 是集合,| A |=3,| B |=2,则共可定义多少个从A 到B 的映射,其中 有多少个个单射,有多少个个满射,有多少个个双射.。

近世代数作业一

近世代数作业一

近世代数作业(一)1 若C A B A ⋂=⋂。

问:是否有C B =?把⋂改成⋃是又如何?2 设A 是有限集合,且n A =||。

证明:n A P 2|)(|=。

3 设B A ,是两个有限集合。

证明:||||||||B A B A B A +=⋂+⋃。

4 设}5,4,3,2,1{=X ,}10,8,6,4,2,0{=Y 。

试给出X 到Y 的两个单射。

5 设X 数域F 上全体n 阶方阵作成的集合,问:||:A A →α是否为X 到F 的一个映射?其中||A 为A 的行列式。

是否为满射?6 设A 与B 是数域F 上两个n 阶相似方阵,][A F 为系数属于F 的关于A 的一切多项式作成的集合。

问:法则)()(:B f A f →ϑ是否为][A F 到][B F 的映射?其中)(x f 是系数属于F 的任意多项式,是否为单射或满射?7 设M 是自然数集。

下列各法则哪些是M 的代数运算?(1) b a b a = ;(2)2-+=b a b a ;(3)a b a = 。

8设},,{c b a M =,试对M 规定两不同的代数运算。

9 设 与_集合M 的两个代数运算,如果在M 中存在元素使b a ,b a b a _≠则称 与_ 是M 的两个不同的代数运算。

如果n M =||。

问:可以为M 规定出多少不同的代数运算?10 设M 为实数集,问: b a b a 32+= ),(M b a ∈ 是否满足结合律和交换律?11设M 为实数集,代数运算是普通率乘法。

问:以下各映射是否为的自同态映射?是否为自同态满射?说明理由。

(1) ||x x →;(2)2x x →;(3)x x 2→;(4)x x -→。

12设Q 是有理数集,代数运算是普通加法。

试给出Q 的一个除恒等变换以外的自同构。

13 令}10,6,4,2,1{=M 规定||4b a aRb +⇔。

问:R 是否M 为的一个关系?是否满足反射性、对称 性和传递性?14 问:整数集Z 对运算1=b a 是否作成群?为什么?15 设}0,|),{(≠=a b a b a G 为实数且,并规定),(),(),(b ad ac d c b a += 。

近世代数的基础知识

近世代数的基础知识

近世代数的基础知识初等代数、高等代数和线性代数都称为经典代数(Classical algebra ),它的研究对象主要是代数方程和线性方程组)。

近世代数(modern algebra )又称为抽象代数(abstract algebra ),它的研究对象是代数系,所谓代数系,是由一个集合和定义在这个集合中的一种或若干种运算所构成的一个系统。

近世代数主要包括:群论、环论和域论等几个方面的理论,其中群论是基础。

下面,我们首先简要回顾一下集合、映射和整数等方面的基础知识,然后介绍本文需要用到的近世代数的相关知识。

3.1 集合、映射、二元运算和整数3.1.1 集合集合是指一些对象的总体,这些对象称为集合的元或元素。

“元素a 是集合A 的元”记作“A x ∈”,反之,“A a ∉”表示“x 不是集合A 的元”。

设有两个集合A 和B ,若对A 中的任意一个元素a (记作A a ∈∀)均有B a ∈,则称A 是B 的子集,记作B A ⊆。

若B A ⊆且A B ⊆,即A 和B 有完全相同的元素,则称它们相等,记作B A =。

若B A ⊆,但B A ≠,则称A 是B 的真子集,或称B 真包含A ,记作B A ⊂。

不含任何元素的集合叫空集,空集是任何一个集合的子集。

集合的表示方法通常有两种:一种是直接列出所有的元素,另一种是规定元素所具有的性质。

例如:{}c b a A ,,=;{})(x p x S =,其中)(x p 表示元素x 具有的性质。

本文中常用的集合及记号有:整数集合{} ,3,2,1,0±±±=Z ;非零整数集合{}{} ,3,2,10\±±±==*Z Z ; 正整数(自然数)集合{} ,3,2,1=+Z ;有理数集合Q ,实数集合R ,复数集合C 等。

一个集合A 的元素个数用A 表示。

当A 中有有限个元素时,称为有限集,否则称为无限集。

用∞=A 表示A 是无限集,∞<A 表示A 是有限集。

代数学引论(近世代数)答案

代数学引论(近世代数)答案

第一章代数基本概念习题解答与提示(P54)1.如果群G中,对任意元素a,b有(ab)2=a2b2,则G为交换群.证明:对任意a,b G,由结合律我们可得到(ab)2=a(ba)b, a2b2=a(ab)b再由已知条件以及消去律得到ba=ab,由此可见群G为交换群.2.如果群G中,每个元素a都适合a2=e, 则G为交换群.证明: [方法1]对任意a,b G,ba=bae=ba(ab)2=ba(ab)(ab)=ba2b(ab)=beb(ab)=b2(ab)=e(ab)=ab 因此G为交换群.[方法2]对任意a,b G,a2b2=e=(ab)2,由上一题的结论可知G为交换群.3.设G是一非空的有限集合,其中定义了一个乘法ab,适合条件:(1)a(bc)=(ab)c;(2)由ab=ac推出a=c;(3)由ac=bc推出a=b;证明G在该乘法下成一群.证明:[方法1]设G={a1,a2,…,a n},k是1,2,…,n中某一个数字,由(2)可知若i j(I,j=1,2,…,n),有a k a i a k a j------------<1>a i a k a j a k------------<2>再由乘法的封闭性可知G={a1,a2,…,a n}={a k a1, a k a2,…, a k a n}------------<3>G={a1,a2,…,a n}={a1a k, a2a k,…, a n a k}------------<4>由<1>和<3>知对任意a t G, 存在a m G,使得a k a m=a t.由<2>和<4>知对任意a t G, 存在a s G,使得a s a k=a t.由下一题的结论可知G在该乘法下成一群.下面用另一种方法证明,这种方法看起来有些长但思路比较清楚。

[方法2]为了证明G在给定的乘法运算下成一群,只要证明G内存在幺元(单位元),并且证明G内每一个元素都可逆即可.为了叙述方便可设G={a1,a2,…,a n}.(Ⅰ) 证明G内存在幺元.<1> 存在a t G,使得a1a t=a1.(这一点的证明并不难,这里不给证明);<2> 证明a1a t= a t a1;因为a1(a t a1)a t=(a1a t) (a1a t)=(a1)2a1(a1a t)a t=(a1a1)a t=a1(a1a t)= (a1)2,故此a1(a t a1)a t= a1(a1a t)a t.由条件(1),(2)可得到a1a t= a t a1.<3> 证明a t就是G的幺元;对任意a k G,a1(a t a k) =(a1a t)a k=a1a k由条件(2)可知a t a k=a k.类似可证a k a t=a k.因此a t就是G的幺元.(Ⅱ) 证明G内任意元素都可逆;上面我们已经证明G内存在幺元,可以记幺元为e,为了方便可用a,b,c,…等符号记G内元素.下面证明任意a G,存在b G,使得ab=ba=e.<1> 对任意a G,存在b G,使得ab=e;(这一点很容易证明这里略过.)<2> 证明ba=ab=e;因为a(ab)b=aeb=ab=ea(ba)b=(ab)(ab)=ee=e再由条件(2),(3)知ba=ab.因此G内任意元素都可逆.由(Ⅰ),(Ⅱ)及条件(1)可知G在该乘法下成一群.4.设G是非空集合并在G内定义一个乘法ab.证明:如果乘法满足结合律,并且对于任一对元素a,b G,下列方程ax=b和ya=b分别在G内恒有解,则G在该乘法下成一群.证明:取一元a G,因xa=a在G内有解, 记一个解为e a ,下面证明e a为G内的左幺元. 对任意b G, ax=b在G内有解, 记一个解为c,那么有ac=b ,所以e a b= e a(ac)= (e a a)c=ac=b,因此e a为G内的左幺元.再者对任意d G, xd=e a在G内有解,即G内任意元素对e a存在左逆元, 又因乘法满足结合律,故此G在该乘法下成一群.[总结]群有几种等价的定义:(1)幺半群的每一个元素都可逆,则称该半群为群.(2)设G是一个非空集合,G内定义一个代数运算,该运算满足结合律, 并且G内包含幺元, G内任意元素都有逆元,则称G为该运算下的群.(3)设G是一个非空集合,G内定义一个代数运算,该运算满足结合律, 并且G内包含左幺元, G内任意元素对左幺元都有左逆元,则称G为该运算下的群.(4)设G是一个非空集合,G内定义一个代数运算,该运算满足结合律, 并且对于任一对元素a,b G,下列方程ax=b和ya=b分别在G内恒有解,则称G为该运算下的群.值得注意的是如果一个有限半群满足左右消去律, 则该半群一定是群.5.在S3中找出两个元素x,y,适合(xy)2x2y2.[思路] 在一个群G中,x,y G, xy=yx(xy)2x2y2(这一点很容易证明).因此只要找到S3中两个不可交换的元素即可. 我们应该在相交的轮换中间考虑找到这样的元素.解: 取x=, y=那么(xy)2= x2y2.[注意]我们可以通过mathematica软件编写S n的群表,输出程序如下:Pr[a_,b_,n_]:=(*两个置换的乘积*)(Table[a[[b[[i]]]],{I,1,n}]);Se[n_]:=(*{1,2,…,n}的所有可能的排列做成一个表格*)(Permutations[Table[i,{I,1,n}]]);Stable[n_]:=(*生成S n群表*)(a=Se[n];Table[pr[a[[i]],a[[j]],n],{I,1,n},{j,1,n}])当n=3时群表如下:[说明]:表示置换, 剩下的类似.为了让更清楚,我们分别用e,a,b,c,d,f表示,,,,那么群表如下:6.对于n>2,作一阶为2n的非交换群.7.设G是一群, a,b G,如果a-1ba=b r,其中r为一正整数,证明a-i ba i=.证明:我们采用数学归纳法证明.当k=1时, a-1ba=b r=, 结论成立;假设当k=n时结论成立, 即a-n ba n=成立, 下面证明当k=n+1时结论也成立.我们注意到a-1b k a== b kr,因此a-(n+1)ba n+1= a-1 (a-n ba n)a=a-1a==,可见k=n+1时结论也成立.由归纳原理可知结论得证.8.证明:群G为一交换群当且仅当映射是一同构映射.证明:(Ⅰ)首先证明当群G为一个交换群时映射是一同构映射.由逆元的唯一性及可知映射为一一对应,又因为,并且群G为一个交换群,可得.因此有.综上可知群G为一个交换群时映射是一同构映射.(Ⅱ)接着证明当映射是一同构映射,则群G为一个交换群.若映射是一同构映射,则对任意有,另一方面,由逆元的性质可知.因此对任意有,即映射是一同构映射,则群G为一个交换群.9.设S为群G的一个非空子集合,在G中定义一个关系a~b当且仅当ab-1S.证明这是一个等价关系的充分必要条件为S是一个子群.证明:首先证明若~是等价关系,则S是G的一个子群.对任意a G,有a~a,故此aa-1=e S;对任意a,b S,由(ab)b-1=a S,可知ab~b,又be-1=b S,故b~e,由传递性可知ab~e,即(ab)e-1=ab S.再者因ae-1=a S, 故a~e,由对称性可知e~a,即ea-1=a-1S.可见S是G的一个子群.接着证明当S是G的一个子群,下面证明~是一个等价关系.对任意a G, 有aa-1=e S,故此a~a(自反性);若a~b,则ab-1S,因为S为G的子群,故(ab-1)-1=ba-1S,因此b~a(对称性);若a~b,b~c,那么ab-1S,bc-1 S,故ab-1 bc-1=ac-1S,因此a~c(传递性).综上可知~是一个等价关系.10.设n为一个正整数, nZ为正整数加群Z的一个子群,证明nZ与Z同构.证明:我们容易证明为Z到nZ的同构映射,故此nZ与Z同构.11.证明:在S4中,子集合B={e,(1 2)(3 4),(1 3)(2 4),(1 4)(2 3)}是子群,证明B与U4不同构.证明:可记a=(1 2)(3 4), b=(1 3)(2 4), c=(1 4)(2 3),那么置换的乘积表格如下:由该表格可以知道B中的元素对置换的乘法封闭,并且B的每一元都可逆(任意元的逆为其本身),因此B为S4的子群. 这个群(以及与其同构的群)称为Klein(C.L.Klein,1849-1925)四元群.假设B与U4同构,并设f为B到U4的同构映射, 则存在B中一元x使得f(x)=i(i为虚数单位),那么f(x2)= f2(x)=i2=-1另一方面, f(x2)=f(e)=1(注意x2=e),产生矛盾.所以假设不成立, 即B与U4不同构.[讨论] B与U4都是4元交换群,但是后者是循环群, 前者不是, 这是这两个群的本质区别.12.证明:如果在一阶为2n的群中有一n阶子群,它一定是正规子群.证明:[方法1]设H是2n阶群G的n阶子群, 那么对任意a H, 有H aH=,并且aH G,H G,又注意到aH和H中都有n个元素, 故此H aH=G.同理可证对任意a H, 有H Ha=, H Ha=G,因此对任意a H,有aH=Ha.对任意a H, 显然aH H, Ha H又因aH,Ha及H中都有n个元素,故aH=Ha=H.综上可知对任意a G,有aH=Ha,因此H是G的正规子群.[方法2]设H是2n阶群G的n阶子群,那么任取a H, h H, 显然有aha-1H.对给定的x H, 有H xH=, H xH=G.这是因为若假设y H xH, 则存在h H,使得y=xh,即x=yh-1H产生矛盾,因此H xH=;另一方面, xH G,H G, 又注意到xH和H中都有n个元素, 故此H xH=G.那么任取a H,由上面的分析可知a xH, 从而可令a=xh1这里h1H.假设存在h H, 使得aha-1H,则必有aha-1xH,从而可令aha-1=xh2这里h2H.那么xh1ha-1=xh2,即a= h2h1h H,产生矛盾.因此,任取a H, h H, 有aha-1H.综上可知对任取a G, h H, 有aha-1H,因此H为G的一个正规子群.13.设群G的阶为一偶数,证明G中必有一元素a e适合a2=e.证明:设b G,且阶数大于2,那么b≠b-1,而b-1的阶数与b的阶数相等.换句话说G 中阶数大于2的元素成对出现,幺元e的阶数为1,注意到G的阶数为宜偶数,故此必存在一个2阶元,(切确的说阶数为2的元素有奇数个).[讨论][1] 设G是一2n阶交换群,n为奇数则G中只有一个2阶元.为什么?提示:采用反证法,并注意用Lagrange定理.[2] 群G中,任取a G,有a n=e,那么G一定是有限群吗?如果不是请举出反例,若是有限群,阶数和n有什么关系?14.令A=, B=证明:集合{B,B2,…,B n,AB,AB2,…,AB n}在矩阵的乘法下构成一群, 而这个群与群D n同构.证明:下面证明G={B,B2,…,B n,AB,AB2,…,AB n}在矩阵的乘法下构成一群.(Ⅰ)首先证明对乘法运算封闭. 下面进行分类讨论:(1)B i B j=B i+j,注意到B n=故此B i B j=B r G这里i+j=kn+r,k Z,0<r n.(2) A B i B j=B r G这里i+j=kn+r,k Z,0<r n.(3)容易证明BAB=A=AB n,BA=B i AB(s+1)n=AB n-t G,这里i=sn+t,k Z,0<t n.那么B i(AB j)=( B i A)B j=(AB n-t)B j G(4)(AB i)(AB j)=A(B i AB j)=A((AB n-t)B j)=A2(B n-t B j)= B n-t B j)G由(1),(2),(3),(4)知G对乘法运算封闭.(Ⅱ)因集合G对矩阵乘法封闭,再由矩阵乘法的性质可知,结合律肯定成立.(Ⅲ)显然B n=A2=E为幺元.(Ⅳ)对B i(i=1,2,…,n),有B i B n-i=E;对AB i(i=1,2,…,n),有(AB i)(B n-i A)=E,因此G内任何一元都可逆.由(Ⅰ),(Ⅱ),(Ⅲ),(Ⅳ)可知G在矩阵乘法下构成一群.最后证明G与D n同构.令f:G→D nf(B i)=T i, f(AB i)=ST i(i=1,2,…,n),可以证明f就是G到D n的同构映射,这里不予证明了.15.设i是一个正整数, 群G中任意元素a,b都适合(ab)k=a k b k, k=I,i+1,i+2,证明G为交换群.证明:对任意a,b Ga i+2b i+2=(ab)i+2=(ab) (ab)i+1=(ab) (a i+1b i+1)=a(ba i+1)b i+1,根据消去律可得a i+1b=ba i+1.----------------------(1)同时a i+1b i+1=(ab)i+1=(ab) (ab)i=(ab) (a i b i)=a(ba i)b i+1,根据消去律可得a i b=ba i.---------------------------(2)因此a i+1b=a(a i b)=a(ba i)=(ab)a i----(3)另外ba i+1=(ba)a i----------------------(4)结合(1),(3),(4)有(ab)a i=(ba)a i---------------------(5)由消去律可得到ab=ba.因此G为交换群.16.在群SL2(Q)中,证明元素a=的阶为4,元素b=的阶为3,而ab为无限阶元素.证明:可以直接验证a的阶为4,b的阶为3.因为ab=,对任何正整数n,(ab)n=≠可见ab的阶为无限.[注意] 在一群中,有限阶元素的乘积并不一定也是有限阶的,但两个可交换的有限阶元素的乘积一定是有限阶元素.[问题] 若一群中所有元素的阶数都有限,那么这个群一定是有限群吗?17.如果G为一个交换群,证明G中全体有限阶元素组成一个子群.证明:交换群G中全体有限阶元素组成的集合记为S,任取a,b S,并设a的阶为m,b的阶为n,则(ab)mn=(a m)n(b n)m=e因此ab为有限阶元素,即ab S.a-1的阶数与a相同,故此a-1也是有限阶元素,即a-1S.综上可知S为G的一个子群.18.如果G只有有限多个子群,证明G为有限群.证明:采用反证法证明.假设G为无限群,则G中元素只可能有两种情况:(1)G 中任意元素的阶数都有限、(2)G中存在一个无限阶元素.(1)首先看第一种情况:G中取a1≠e,并设其阶数为n1,则循环群G1={,…}为G的一个子群;G中取a2G1,并设其阶数为n2,则循环群G2={,…}为G的一个子群;G中取a3G1∪G2,并设其阶数为n3,则循环群G3={,…}为G的一个子群;………我们一直这样做下去,可以得到G的互不相同的子群构成的序列G n(n=1,2,…),所以G有无穷多个子群,产生矛盾;(2)再看第二种情况:设a∈G的阶数为无穷,那么序列G1=<>,G2=<>,…,G n=<>,…是G的互不相同的子群,所以G有无穷多个子群,产生矛盾.综上就可知“G是无限群”这个假设不成立,因此G是有限群.19.写出D n的所有正规子群.20.设H,K为群G的子群,HK为G的一子群当且仅当HK=KH.证明:(Ⅰ)设HK=KH,下面证明HK为G的一子群.任取a,b∈HK,可令a=h1k1,b=h2k2这里h i∈H,k i∈K,i=1,2.那么ab=(h1k1)(h2k2)=h1(k1h2)k2 ---------------(1)因HK=KH,故此k1h2= h3k3 ----------------------(2)这里h3∈H,k3∈K.由(1),(2)知ab= h1(h3k3)k2=(h1h3)(k3k2)∈HK. ------------(3)另外,a-1= (h1k1)-1= ∈KH=HK. ----------------- (4)由(3),(4)知HK是G的子群.(Ⅱ) HK为G的一子群,下面证明HK=KH.若a∈HK,易知a-1∈KH. HK是子群,任取a∈HK,有a-1∈HK,因此(a-1)-1=a ∈KH,那么有HK KH.若a∈KH,易知a-1∈HK. HK是子群,任取a∈KH,有a-1∈HK,因此(a-1)-1=a ∈HK,那么有KH HK.综上知,HK=KH.21.设H,K为有限群G的子群,证明证明:因H∩K为H的子群,那么可设H的左陪集分解式为H=h1(H∩K)∪h2(H∩K)∪…∪h r(H∩K)这里r为H∩K在H中的指数,h i∈H,当i≠j,h i-1h j∉H∩K(事实上等价于h i-1h j ∉K),i, j=1,2,…,r.又(H∩K)K=K,所以HK=h1K∪h2K∪…∪h r K.------------(1)注意到h i-1h j∉K,所以当i≠j(i, j=1,2,…,r)时,h i K∩h j K=.----------------(2)由(1),(2)我们得到[总结]左陪集的相关结论设H为G的一子群,那么(1)a∈aH;(2)a∈H⇔aH=H;(3)b∈aH⇔aH=bH;(4)aH=bH⇔a-1b∈H;(5)aH∩bH≠,有aH=bH.22.设M,N是群G的正规子群.证明:(i)MN=NM;(ii)MN是G的一个正规子群;(iii)如果M N={e},那么MN/N与M同构.证明:(i)[方法1]任取a∈MN,可设a=mn(m∈M,n∈N).因为M为G的正规子群,故n-1mn ∈M. 所以a=n(n-1mn) ∈NM,故此MN⊆NM.同样的方法可以证明NM⊆MN. 因此MN=NM.[方法2]任取a,b∈MN,可设a=m1n1(m1∈M,n1∈N),b=m2n2(m2∈M,n2∈N).下面只要证明MN为G的一个子群即可(由第20题可知),也就是说只要证明ab-1∈MN即可.因为ab-1=m1n1n2-1m2-1= [m1(n1n2-1m2-1n2n1-1)](n1n2-1),而M为G的正规子群,故n1n2-1m2-1n2n1-1∈M,所以ab-1∈MN.(ii) 由(i)可知MN为G的一个子群.任取a∈MN, 可设a=mn(m∈M,n∈N).因为M和N为G的正规子群,对任意g∈G,有g-1ag= g-1mng= (g-1mg)(g-1ng) ∈MN.所以MN为G的正规子群.(iii) 易知N为MN的正规子群,因此MN/N是一个群. 因为M N={e},对任何m i≠m j∈M, 有m i N≠m j N[注].作一个MN/N到M的映射f[注],f: MN/N→MmN m,那么该映射显然是一一对应,另外f(m i N m j N)= f(m i m j N)= m i m j,因此f为MN/N到M的同构映射,即MN/N与M同构.[讨论]1. 只要M和N的一个是正规子群,那么MN就是子群,或者说成立MN=NM.这一点我们从(i)的证明方法2可知.2. M和N中有一个不是正规子群时MN一定不是正规子群.[注意]1M N={e},对任何m i≠m j∈M, 有m i N≠m j N.证明:若存在m i≠m j∈M, 有m i N=m j N,那么m i m j-1∈N,而m i m j-1∈M. 因此m i m j-1∈M N,产生矛盾.2. 设f: MN/N→MmN m,则由于对任何m i≠m j∈M, 有m i N≠m j N,故此f为MN/N到M的一个映射.23.设G是一个群,S是G的一非空子集合.令C(S)={x∈G|xa=ax,对一切a∈S}N(S)= {x∈G|x-1Sx=S}.证明:(i) C(S),N(S)都是G的子群;(ii) C(S)是N(S)的正规子群.证明:(i) 首先证明C(S)是G的子群.任取x,y∈C(S),那么对任意a∈S有xa=ax,ya=ay. 那么一方面,(xy)a=x(ya)=x(ay)=(xa)y=(ax)y=a(xy),所以xy∈C(S).另一方面,xa=ax a=x-1ax ax-1=x-1a所以x-1∈C(S).因此,C(S)是G的子群.接着证明N(S)都是G的子群.任取x,y∈N(S),则x-1Sx=S,y-1Sy=S. 那么一方面,(xy)-1S(xy)=x-1(y-1Sy)x=x-1Sx=S所以xy∈N(S).另一方面,x-1Sx=S S=xSx-1所以x-1∈N(S).因此,N(S)是G的子群.(ii) 任取x∈C(S),a∈S,则xa=ax,即a=x-1ax,亦即S= x-1Sx. 因此x∈N(S),即C(S)N(S).任取x∈C(S),y∈N(S),a∈S,则存在a y∈S使得yay-1=a y,因此a=y-1a y y.那么(y-1xy)a(y-1xy)-1=y1[x(yay-1)x-1]y= y1(xa y x-1)y= y-1a y y=a,即(y-1xy)a=a(y-1xy).所以y-1xy∈C(S),因此C(S)是N(S)的正规子群.24.证明任意2阶群都与乘法群{1,-1}同构.证明:略.25.试定出所有互不相同的4阶群.解:我们分类讨论:(1)存在四阶元;(2)不存在四阶元.(1)若存在一个四阶元,并设a为一个四阶元,那么该四阶群为<a>.(2)若不存在四阶元,那么除了单位元e的阶为1,其余元素的阶只能是2,即设四阶群G={e,a,b,c},那么a2=b2=c2=e,ab=ba=c,ac=ca=b,bc=cb=a. 群表如下:这是Klein四阶群.综上可知,四阶群群在同构意义下只有两种或者是四阶循环群或者是Klein 四阶群.26.设p为素数.证明任意两个p阶群必同构.证明:易知当p为素数时,p阶群必存在一个p阶元,即p阶群必是p阶循环群,故两个p阶群必同构.27.Z为整数环,在集合S=Z×Z上定义(a,b)+(c,d)=(a+c,b+d),(a,b)(c,d)=(ac+bd,ad+bc).证明S在这两个运算下成为幺环.提示:(1,0)为该环的单位元素.证明:略.28.在整数集上重新定义加法“”与乘法“”为a b=ab, a b=a+b试问Z在这两个运算下是否构成一环.答:不构成环.29.设L为交换幺环,在L中定义:a b=a+b-1,a b=a+b-ab.这里e为单位元素,证明在新定义的运算下,L仍称为交换幺环,并且与原来的环同构.证明:(i)证明L在运算下构成交换群:由的定义,得到(a b)c=(a+b-1)c=a+b-1+c-1=a+b+c-2a(b c)= a(b+c-1)= a+b+c-1-1=a+b+c-2这里2=1+1,所以(a b)c= a(b c).----------------(1)同时由的定义还可以得到a1= 1a=a,------------------------(2)a(2-a)=(2-a)a=1,---------------(3)a b=b a,----------------------------(4)由(1),(2),(3)(4)可知L在运算下构成交换群.(ii)证明L中运算满足结合律和交换律:容易证明这里略过.(iii)证明乘法对加法满足分配律:因为a(b c)= a(b+c-1)=a+(b+c-1)-a(b+c-1)=2a+b+c-ab-ac-1,(a b)(a c)=(a+b-1)(a+c-1)= (a+b-ab)+(a+c-ac)-1=2a+b+c-ab-ac-1,所以a(b c)= (a b)(a c).由于和满足交换律,故此(b c)a= (b a)(c a).因此新定义的乘法对新定义的加法满足分配律(iv) 设0为环(L,+,)的零元,则0a=a0=a由(i),(ii),(iii),(iv)可得到(L,,)为交换幺环.(v) 最后证明(L,+,)与(L,,)同构:设f: L→Lx1-x,容易证明f为(L,+,)到(L,,)的同构映射.30.给出环L与它的一个子环的例子,它们具有下列性质:(i) L具有单位元素,但S无单位元素;(ii) L没有单位元素,但S有单位元素;(iii) L, S都有单位元素,但互不相同;(iv) L不交换,但S交换.解:(i) L=Z,S=2Z;(ii) L={|a,b∈R},S={|a∈R};(iii) L={|a,b∈R},S={|a∈R};(iv) L={|a,b∈R},S={|a∈R};31.环L中元素e L称为一个左单位元,如果对所有的a∈L,e L a= a;元素e R称为右单位元,如果对所有的a∈L,ae R=a.证明:(i)如果L既有左单位元又有右单位元,则L具有单位元素;(ii)如果L有左单位元,L无零因子,则L具有单位元素;(iii)如果L有左单位元,但没有右单位元,则L至少有两个左单位元素.证明:(i) 设e L为一个左单位元,e R为右单位元,则e L e R=e R=e L.记e=e R=e L,则对所有的a∈L,ea=ae=a,因此e为单位元素;(ii) 设e L为一个左单位元,则对所有的a(≠0)∈L,a(e L a)=a2;另一方面,a(e L a)=(ae L)a.所以a2=(ae L故此a= ae L.另外,若a=0,则a= ae L=e L a.因此左单位元e L正好是单位元.(iii) 设e L为一个左单位元,因为L中无右单位元,故存在x∈L,使得xe L≠x,即xe L-x≠0,则e L+ xe L-x≠e L,但是对所有的a∈L,(e L+ xe L-x)a=a,因此e L+ xe L-x为另一个左单位元,所以L至少有两个左单位元素.[注意] L无零因子,则满足消去律(参考教材46页).32.设F为一域.证明F无非平凡双边理想.证明:设I为F的任意一个理想,且I≠{0},则对任意a(≠0)∈I,则a-1∈F,于是a-1a=1∈I.从而F中任意元素f,有f1=f∈I,故I=F,即F只有平凡双边理想.[讨论] 事实上,一个体(又称除环)无非平凡双边理想. 另一方面,若L是阶数大于1的(交换)幺环,并且除了平凡理想,没有左或右理想,则L是一体(域).33.如果L是交换环,a∈L,(i) 证明La={ra|r∈L}是双边理想;(ii) 举例说明,如果L非交换,则La不一定是双边理想.证明:(i) 容易验证La为L的一个加法群. 任取ra∈La,l∈L,则l(ra)=(lr)a∈La,(ra)l=r(al)=r(la)=(rl)a∈La故La为L的一个双边理想.(ii) 设L=M2(R),那么L显然不是交换环,取h=,下面考察Lh是否为L的理想:取k=,容易验证h∈Lh,hk Lh,因此Lh不是L的一个理想.34.设I是交换环L的一个理想,令rad I={r∈L|r n∈I对某一正整数n},证明rad I也是一个理想.radI叫做理想I的根.35.设L为交换幺环,并且阶数大于1,如果L没有非平凡的理想,则L是一个域.证明:只要证明非零元素均可逆即可.任取a∈L,那么La和aL是L的理想,且La≠{0},aL≠{0},因L无平凡的理想,故此La=aL=L,因此ax=1和ya=1都有解,因而a为可逆元.36.Q是有理数域,M n(Q)为n阶有理系数全体矩阵环.证明无非平凡的理想(这种环称为单环).证明:我们社K为M n(Q)的非零理想,下面证明K=M n(Q).为了证明这一点,只要证明n阶单位矩阵E∈K.记E ij为除了第i行第j列元素为1,其余元素全为0的矩阵.那么E ij E st=而E=E11+E22+…+E nn.我们只要证明E ii∈K(i=1,2,…,n)就有E∈K.设A∈K,且A≠0,又令A=(a ij)n×n,假设a kj≠0,则有E ik AE ji=a kj E ii(i=1,2,…,n).由于a kj≠0,故存在逆元a kj-1.设B= a kj-1E ii,则BE ik AE ji= a kj-1E ii E ik AE ji= a kj-1E ik AE ji=E ik E kj E ji=E ii.因为K为理想,A∈K,所以E ii=BE ik AE ji∈K,证毕.37.设L为一环,a为L中一非零元素.如果有一非零元素b使aba=0,证明a是一个左零因子或一右零因子.证明:若ab=0,则a为左零因子;若ab≠0,则aba=(ab)a=0,故ab为右零因子.38.环中元素x称为一幂零元素,如果有一正整数n使x n=0,设a为幺环中的一幂零元素,证明1-a可逆.证明:设a n=0,那么(1+a+a2+…+a n-1)(1-a)=(1-a) (1+a+a2+…+a n-1)=1-a n=1因此1-a可逆.39.证明:在交换环中,全体幂零元素的集合是一理想.证明:略.40.设L为有限幺环.证明由xy=1可得yx=1.证明:当L只有一个元素,即L={0},亦即0=1[注],此时显然有xy=1=xy;当L有多于一个元素时(即0≠1时),若xy=1,y不是左零元[注],因此yL=L.又因L为有限环,所以存在z∈L,使得yz=1.注意到(xy)z=z,x(yz)=x,所以x=z,即yx=1.[注意]1.幺环多于一个元素当且仅当0≠1.2.当L有多于一个元素时(即0≠1时),若xy=1,y不是左零元.因为若存在z ≠0使得yz=0,则z=(xy)z=x(yz)=0,产生矛盾.41.在幺环中,如果对元素a有b使ab=1但ba≠1,则有无穷多个元素x,适合ax=1. (Kaplansky定理)证明:首先,若ab=1但ba≠1,则a至少有两个右逆元[注].现在假设a只有n(>1)个右逆元,并设这些元素为x i(i=1,2,…,n).那么a(1-x i a+x1)=1(i=1,2,…,n),又当i≠j时,1-x i a+x1≠1-x j a+x1[注],这里i,j=1,2,…,n.于是{x i|i=1,2,…,n}={1-x i a+x1| i=1,2,…,n },故存在x k∈{x i|i=1,2,…,n}使得x1=1-x k a+x1,x k a=1.因为n>1,我们取x t≠x k∈{x i|i=1,2,…,n},那么(x k a)x t=x t,(x k a)x t =x k(ax t)=x k因此x t=x k,产生矛盾,所以假设不成立,即a有无穷多个右逆元.[注意]1. 若ab=1但ba≠1,则a至少有两个右逆元. 因为易验证1-ba+a就是另一个右逆元.2. 假设当i≠j时,1-x i a+x1=1-x j a+x1,则x i a=x j a,故x i ax1=x j ax1,因此x i=x j,产生矛盾.42.设L是一个至少有两个元素的环. 如果对于每个非零元素a∈L都有唯一的元素b使得aba=a.证明:(i) L无零因子;(ii) bab=b;(iii) L有单位元素;(iv) L是一个体.证明:(i) 先证明L无左零因子,假设a为L的一个左零因子,那么a≠0,且存在c ≠0,使得ac=0,于是cac=0. 因a≠0,则存在唯一b使得aba=a.但a(b+c)a=a,b+c≠b产生矛盾,所以L无左零因子.类似可证L无右零因子.(ii) 因aba=a,所以abab=ab. 由(i)的结论知L无零因子,因此满足消去律,而a≠0,故bab=b.(iii) 我们任一选取a(≠0)∈L,再设aba=a(这里b是唯一的),首先证明ab=ba.因为a(a2b-a+b)a=a,所以a2b-a+b=b,即a2b=a=aba,由消去律得到ab=ba.任取c∈L,则ac=abac,故此c=(ba)c=(ab)c;另一方面,ca=caba,故此c=c(ab).综上得到c=(ab)c=c(ab),所以ab就是单位元素,我们记ab=ba=1. (iv) 由(iii)可知任意a(≠0)∈L,ab=ba=1,即任意非零元素都可逆,因此L成为一个体.43.令C[0,1]为全体定义在闭区间[0,1]上的连续函数组成的环.证明:(i) 对于的任一非平凡的理想I,一定有个实数,,使得f()=0对所有的f(x)∈I;(ii) 是一零因子当且仅当点集{x∈[0,1]|f(x)=0}包含一个开区间.证明:(i) 证明思路:设I为非零的非平凡理想,假设对任意x∈[0,1],存在f(x)∈I使得f(x)≠0,想法构造一个g∈I可逆.(ii) 提示:用连续函数的局部保号性.44.令F=Z/pZ为p个元素的域.求(i) 环M n(F)的元素的个数;(ii) 群GL n(F)的元素的个数.解:45.设K是一体,a,b∈K,a,b不等于0,且ab≠1.证明华罗庚恒等式:a-(a-1+(b-1-a)-1)-1=aba.证明:因为a-(a-1+(b-1-a)-1)-1=aba⇔1-(a-1+(b-1-a)-1)-1a-1=ab⇔(aa-1+a(b-1-a)-1)-1=1-ab⇔(1+a(b-1-a)-1)-1=1-ab⇔(1+((ab)-1-1)-1)-1=1-ab,为了方便记x=ab,那么1-x,x,x-1-1都可逆,只要证明(1+(x-1-1)-1)-1=1-x即可,或者证明1+(x-1-1)-1=(1-x)-1即可.因为1+(x-1-1)-1=1+(x-1-x-1x)-1=1+(1-x)-1x=(1-x)-1(1-x) +(1-x)-1x=(1-x)-1,所以结论成立,即a-(a-1+(b-1-a)-1)-1=aba.网易全新推出企业邮箱。

第二章 近世代数简介

第二章 近世代数简介

对于元素A ( x ) = ∑ a i x 和
i i=0
n-1
B (x ) =
n -1
∑ b x ,多项式加“+”定义为:
i i i= 0
n-1
A ( x ) + B ( x ) = ∑ ( ai + bi )mod q xi
i =0
(2-2)
多项式modf(x)乘“.”定义为 :
n-1 n−1 j +k A ( x ) ⋅ B ( x ) = ∑∑ ( a j bk ) x (2-3) mod q k = 0 j =0 mod f ( x )
) 多项式剩余类环的环元素是模f(x)乘的产物,即 A ( x ) ⋅ B ( x除以f(x)的余 式。余式也就是“剩余”类环名称的来历。 [ ] deg n 如果f(x)的最高次幂是n,称此f(x)是n次多项式,写做 deg [ f ( x)] =。这 里 表示阶次degree。显然,多项式剩余类环Rq ( x ) f ( x)中所有环元 素的次数不高于n-1次,通式形式为:
∀a, b ∈ I , ∃a − b ∈ I ; ∀a ∈ I , r ∈ R, ∃a r = r a ∈ I ,
则I是R的理想子环,建成理想。 与一般子环相比,理想子环要求更多的条件:R必须是交换环且具 有凝聚力,即任意一个子环元素与任意一个非子环的环元素运算后所得 的元素一定位于子环内。 环R的任意多个理想子环的交集仍是R的理想子环。
②结合性(Associativity),即
∀ a , b ∈ G , ∃ a * (b * c ) = ( a * b ) * c o
③存在惟一的一个单元e(Identity),即
∀a ∈ G ,∃a * e = e * a = a o

近世代数证明题.

近世代数证明题.

证明题1、设G 是群,a ∈G ,令C G (a )= {x |x ∈G ,xa = ax },证明:C G (a )≤G2、设G ~ G ,H ≤G ,H = {x | x ∈G ,f (x )∈ H }。

证明:H /Kerf ≌H .3、证明:模m 的剩余类环Zm 的每一个理想都是主理想。

4、设R = ⎪⎪⎭⎫ ⎝⎛c o b a ,a ,b ,c ∈Z ,I = ⎪⎪⎭⎫ ⎝⎛o o x o x ∈Z 。

(1)验证R 是矩阵环Z 2×2的一个子环。

(2)证明I 是R 的一个理想。

5、设G 是群,u 是G 的一个固定元,定义“o ”:aob = a u 2 b (a ,b ∈G ),证明 (G ,o )构成一个群.6、设R 为主理想整环,I 是R 的一个理想,证明R /I 是域⇔I 是由R 的一个素元生成的主理想.7、证明:模m 的剩余类环Zm 的每个子环都是理想.8、设G 是群,H ≤G 。

令N G (H ) = {x | x ∈G ,xH = Hx }.C G (H )= { x | x ∈G ,∀h ∈H ,hx = xh }.证明:(1)N G (H )≤G (2)C G (H )△N G (H )9、证明数域F = {a +b 7|a ,b ∈Q}的自同构群是一个2阶循环群.10、设R 是主理想环,I = (a )是R 的极大理想,ε是R 的单位,证明:εa 是R 的一个素元.11、设G 与G 是两个群,G ~ G ,K = Kerf ,H ≤G ,令H = {x |x ∈G ,f (x ) ∈H },证明:H ≤G 且H /K ≌H . 12、在多项式环Z [x ]中,证明:(1)(3,x )= {3a 0+a 1x +…+a n x n |a i ∈Z }.(2)Z [x ]/(3,x )含3个元素.13、设H 是群G 的子群,令N G (H )={x |x ∈G , xH =Hx },证明N G (H)是G 的子群.14、在整数环Z 中, a, b ∈Z,证明(a, b )是Z 的极大理想的充要条件是a , b 的最大公因数是一个素数。

数学专业毕业论文近世代数

数学专业毕业论文近世代数

数学专业毕业论文近世代数群及其简单性质摘要:首先本文给出群的定义,继而讨论群的各种基本性质。

并且讨论了一种很重要的群——循环群。

本文的最后详细讲解了群同态的一些性质及其应用。

关键词:群、群的性质、循环群、群同态;Group and its simple propertiesAbstract:First the definition of group is given, and groups of all kinds of basic properties are discussed .and it discusses on an important group of cyclic group. at the end of this article some properties and applications of the group of homomorphism are discussed in detail.Key Words:group, the properties of group, cyclic group,group of homomorphism;0 前言:近世代数(modern algebra)又称为抽象代数(abstract algebra),它的研究对象是代数系统,所谓代数系统,是由一个集合和定义在这个集合中的一种或若干种运算所构成的一个系统。

由于代数系统中运算个数以及对运算所要求的附加条件不同,从而产生了各种不同的代数系统,这就形成了近世代数各个不同的分支。

其中最基本、最重要的分支是:群论、环论和域论,其中群论是基础。

体系的性质取决于一些基本定律(如闭合律、结合律、交换律、分配律、零和单位元素、负和逆等)中有哪些成立。

人们研究满足某些特定定律的抽象体系,而群是现代代数学中最基本、最重要的代数系,是一个非常活跃的领域,也是目前研究成果最丰富、研究最广泛的代数系。

群,简而言之是对某种运算满足闭合律、结合律、单位元素和逆这些定律的代数系。

近世代数凯莱定理证明_概述说明

近世代数凯莱定理证明_概述说明

近世代数凯莱定理证明概述说明1. 引言1.1 概述近世代数是研究代数结构的一个重要分支,它在数学和物理学领域中有着广泛的应用。

凯莱定理是近世代数中一项非常重要的定理,它关于群论的一个基本结果。

证明凯莱定理是近世代数领域内的一项经典研究课题,对于加深对近世代数以及群论的认识具有重要意义。

1.2 文章结构本文将围绕凯莱定理的证明展开详细讨论。

首先,在引言部分概述凯莱定理以及文章内容。

之后,我们会介绍近世代数的背景知识,包括定义与基本概念、关键定理和结果以及基础工具与技巧。

接下来,我们将会详细讲解凯莱定理的介绍与意义,包括凯莱定理的历史背景、核心内容以及在数学和物理中的应用。

然后,我们会对近世代数凯莱定理证明进行详述,包括准备工作与思路分析、主要步骤与推导过程以及重要细节与关键观察点。

最后,我们将进行结论与展望,总结回顾凯莱定理证明的要点,并对近世代数的未来发展进行展望和可能性探讨。

1.3 目的本文的目的是系统地介绍近世代数中凯莱定理的证明过程,帮助读者深入理解该定理以及相关的数学背景知识。

通过阅读本文,读者可以掌握凯莱定理证明所需的基本概念、技巧和推导过程,并在此基础上拓宽对近世代数领域的认识。

同时,本文也旨在引起读者对未来近世代数研究方向的思考,并为可能出现的新颖应用提供一些启示。

2. 近世代数的背景知识2.1 定义与基本概念:近世代数是代数学的一个分支,主要研究从16世纪到19世纪中叶的代数学发展。

在这个时期,代数学经历了一系列重要的转变和创新,从传统的基于几何概念和计算方法的代数进化为一门由抽象代数结构和符号运算定义的理论。

在近世代数中,人们广泛研究了群、环和域等抽象结构以及它们之间的关系。

群是指在一个集合上定义了一个二元运算,并满足一些特定的性质,如封闭性、结合律、单位元和逆元等。

环是指在一个集合上定义了两个二元运算,并满足一些特定的性质,如封闭性、结合律、分配律等。

域则是在一个集合上定义了两个二元运算,并满足更多特定性质,如交换律以及每个非零元素都有乘法逆元素等。

近世代数证明题.

近世代数证明题.

证明题1、设G 是群,a ∈G ,令C G (a )= {x |x ∈G ,xa = ax },证明:C G (a )≤G2、设G ~ G ,H ≤G ,H = {x | x ∈G ,f (x )∈ H }。

证明:H /Kerf ≌H .3、证明:模m 的剩余类环Zm 的每一个理想都是主理想。

4、设R = ⎪⎪⎭⎫ ⎝⎛c o b a ,a ,b ,c ∈Z ,I = ⎪⎪⎭⎫ ⎝⎛o o x o x ∈Z 。

(1)验证R 是矩阵环Z 2×2的一个子环。

(2)证明I 是R 的一个理想。

5、设G 是群,u 是G 的一个固定元,定义“o ”:aob = a u 2 b (a ,b ∈G ),证明 (G ,o )构成一个群.6、设R 为主理想整环,I 是R 的一个理想,证明R /I 是域⇔I 是由R 的一个素元生成的主理想.7、证明:模m 的剩余类环Zm 的每个子环都是理想.8、设G 是群,H ≤G 。

令N G (H ) = {x | x ∈G ,xH = Hx }.C G (H )= { x | x ∈G ,∀h ∈H ,hx = xh }.证明:(1)N G (H )≤G (2)C G (H )△N G (H )9、证明数域F = {a +b 7|a ,b ∈Q}的自同构群是一个2阶循环群.10、设R 是主理想环,I = (a )是R 的极大理想,ε是R 的单位,证明:εa 是R 的一个素元.11、设G 与G 是两个群,G ~ G ,K = Kerf ,H ≤G ,令H = {x |x ∈G ,f (x ) ∈H },证明:H ≤G 且H /K ≌H . 12、在多项式环Z [x ]中,证明:(1)(3,x )= {3a 0+a 1x +…+a n x n |a i ∈Z }.(2)Z [x ]/(3,x )含3个元素.13、设H 是群G 的子群,令N G (H )={x |x ∈G , xH =Hx },证明N G (H)是G 的子群.14、在整数环Z 中, a, b ∈Z,证明(a, b )是Z 的极大理想的充要条件是a , b 的最大公因数是一个素数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

11.10 设G是群, 则G中阶大于2的元素有偶数个.
证: 11.10 设G是群, 则G中阶大于2的元素有偶数个.
证: 首先由定理11.4 , 对?a ∈G, 有
a &su; = e ? |a| = 1 或|a|=2 (1)
其次来证明a &su;= e ? a = (2)
事实上, 若a &su;= e. 则
反之, 若 a = , 则
a &su; = a a = a = e.
故(2)式得证。

由(1)和(2)可知: a = ? |a| = 1 或|a|=2.
因此, G中阶大于2的任何元素a, 必有 a ≠. 又因|a|=||, 故G中阶大于2的元素必定成对出现, 从而G中阶大于2的元素必有偶数个(若G中无阶大于2的元素,则为0个, 也是偶数).
11.设G是非交换群,则G中存在非单位元a和b,a=!b且ab=ba’
证明:设存在|b|=k k>1
b^k=a^-1 b^k a =(a^-1 b a)^k
当k>2时|b^-1|=|b|=k 且b^-1 =!b (否则b^2=b b^-1=e,k=2,矛盾),所以b^-1
b =b b^-1=e
否则所有k<=2,由例题可指G是交换群,矛盾,所以G中存在非单位元a和b,a=!b且ab=ba 由定理11.4 , 对?a ∈G, 有
a &su; = e ? |a| = 1 或|a|=2 (1)
其次来证明a &su;= e ? a = (2)
事实上, 若a &su;= e. 则
反之, 若 a = , 则
a &su; = a a = a = e.
故(2)式得证。

由(1)和(2)可知: a = ? |a| = 1 或|a|=2.
因此, G中阶大于2的任何元素a, 必有 a ≠. 又因|a|=||, 故G中阶大于2的元素必定成对出现, 从而G中阶大于2的元素必有偶数个(若G中无阶大于2的元素,则为0个, 也是偶数).
11.设G是非交换群,则G中存在非单位元a和b,a=!b且ab=ba’
证明:设存在|b|=k k>1
b^k=a^-1 b^k a =(a^-1 b a)^k
当k>2时|b^-1|=|b|=k 且b^-1 =!b (否则b^2=b b^-1=e,k=2,矛盾),所以b^-1
b =b b^-1=e
否则所有k<=2,由例题可指G是交换群,矛盾,所以G中存在非单位元a和b,a=!b且ab=ba。

相关文档
最新文档