考研专业课:材料科学基础7 位错理论基础共84页
材料科学基础——位错课件
z
b 2 r
螺型位错的应力场
柱面坐标表示:
直角坐标表示:
z z G z
Gb 2r
rr r rz 0
式中,G为切变模量,b为柏氏矢量,r为距位错中心的距离
螺型位错应力场的特点: (1)只有切应力分量,正应力分量全为零,这表明螺型位错不引起晶体的膨胀 和收缩。 (2)螺型位错所产生的切应力分量只与r有关(成反比),且螺型位错的应力场 是轴对称的,并随着与位错距离的增大,应力值减小。 (3)这里当r→0时,τθz→∞,显然与实际情况不符,这说明上述结果不适用位错 中心的严重畸变区(r =b)。
因原子间斥力的短程性,能量曲线不是正弦形的,所以上面的估计是过
高的,τc的更合理值约为G/30。实验测定的切变强度比理论切变强度低 2~3 个数量级。 晶体 理论强度(G/30)GPa 实验强度/MPa 理论强度 /实验强度
Fe Al Cu Ni Mo Ti
(柱面滑移)
7.10 2.37 4.10 6.70 11.33
位 错 (Dislocations)
位错基本知识
主要内容
概论
位错的应力场
位错的应变能 位错受力 位错的运动 割阶及其运动 弯结及其运动
0 位错概论 位错理论提出——理论强度和实际强度的差异
• 变形时,若晶体在滑移面两侧相对滑过,则在滑移面上所有的键都要破断 来产生永久的位移。据此,可估算滑移所需的临界分切应力。
• 1947年 Cottrell阐明溶质原子和位错的交互作用并用以解释低碳纲 的屈服现象,第一次成功地利用位错理论解决金属机械性能的具体问题。 同年,Shockley描绘了面心立方形成扩展位错的过程。 • 1950年 Frank和Read共同提出了位错的增殖机制。
材料科学基础位错理论
1.1 点缺陷
一、点缺陷的形式与分类
• 金属晶体中,点缺陷的存在形式有:空位、间隙原子,置换原子。 • 半金属Si、Ge中掺入三价和五价杂质元素,晶体中产生载流子,得
到P型(空穴)和N型(电子)半导体材料。 • 离子晶体中,单一点缺陷的出现,晶体将失去电平衡。为了保持电
中性,将以复合点缺陷形式出现,形成能较高。
返回
• 半共格界面:(界面能中等) 当相邻晶粒的晶面间距相差较大时,将由若干位
错来补偿其错配,出现共格区与非共格区相间界面。
AB
半共格界面中的 共格区A +非共格区B
返回
• 非共格界面: (界面能高) 当两相邻的晶粒的晶面间距相差很大时,界面上的
原子排列完全不吻合,出现高缺陷分布的界面。
返回
二、界面结构
螺位错柏氏矢量的确定:
b
右旋闭合回路
完整晶体中回路
•
螺位错
∥
b
右螺
左螺
b b
b b
b
b
返回
混合型位错的柏氏矢量
b
bs
be
be b sin bs b cos
返回
2、柏氏矢量的意义
• 意义在于:通过比较反映出位错周围点阵畸变的总积 累(包括强度和取向)。位错可定义为柏氏矢量不为 零的晶体缺陷。
┻
返回
4、实际晶体中的柏氏矢量
• 实际晶体中位错的 b,通常用晶向表示。
b
a
uvw
n
ra b n
u2 v2 w2
b表示错排的程度,称为位错的强度。一般晶体的滑移是
在原子最密集的平面和最密集的方向上进行,所以沿该方
向造成的位错柏氏矢量,等于最短的滑移矢量。(称为初 基矢量)。这种位错称为单位位错。—— 为b最近邻的原子
考研材料科学基础题库与答案
考研材料科学基础题库与答案考研材料科学基础是一门重要的专业课程,对于想要在材料领域深入研究的同学来说,掌握这门课程的知识至关重要。
以下为大家整理了一套较为全面的考研材料科学基础题库,并附上详细的答案解析,希望能对大家的备考有所帮助。
一、晶体结构1、画出面心立方(FCC)和体心立方(BCC)晶体结构的晶胞,并分别计算其原子半径与晶格常数之间的关系。
答案:面心立方(FCC)晶胞中,原子半径 r 与晶格常数 a 的关系为 r =√2a/4;体心立方(BCC)晶胞中,原子半径 r 与晶格常数 a 的关系为 r =√3a/4。
2、简述晶体结构与空间点阵的区别。
答案:晶体结构是指晶体中原子、离子或分子的具体排列方式,它不仅包括空间点阵的形式,还包括原子的种类、数量以及它们之间的相互作用等。
而空间点阵是将晶体结构中的质点抽象为几何点,所得到的几何图形,它只反映质点的分布规律和周期性。
二、晶体缺陷1、什么是点缺陷?点缺陷有哪些类型?答案:点缺陷是指在晶体中三维方向上尺寸都很小的缺陷。
点缺陷的类型主要包括空位、间隙原子和杂质原子。
2、简述位错的基本类型及它们的运动方式。
答案:位错的基本类型有刃型位错和螺型位错。
刃型位错的运动方式有滑移和攀移;螺型位错的运动方式只有滑移。
三、凝固与结晶1、简述纯金属结晶的条件和过程。
答案:纯金属结晶的条件是要有一定的过冷度。
结晶过程包括形核和长大两个阶段。
形核又分为均匀形核和非均匀形核。
均匀形核是依靠液态金属本身的结构起伏自发地形成晶核;非均匀形核是依靠液态金属中存在的固态杂质或容器壁等现成表面形成晶核。
长大过程是晶核形成后,原子不断向晶核表面堆砌,使晶核不断长大,直至液态金属全部转变为固态晶体。
2、比较均匀形核和非均匀形核的异同。
答案:相同点:都是形核的方式,都需要一定的过冷度,都包含形核功。
不同点:均匀形核依靠液态金属本身的结构起伏自发形成晶核,所需的过冷度较大,形核功较大;非均匀形核依靠现成表面形成晶核,所需过冷度较小,形核功较小。
《位错理论基础》课件
1.11 实际晶体中的位错 堆垛层错
(1)形成 密排堆垛次序有误
形成
层错
面缺陷
fcc晶体的层错类型:
抽出型:
插入型:
(2)类型
肖克莱(Shock12 扩展位错
位错反应 位错反应:分解或合成
条件:
1)几何条件:反应前各位错柏氏矢量之和应等于反 应后各位错柏氏矢量之和。
1.6 位错在应力场中的受力
外力使晶体变形做的功=位错在F力作用下移动 ds距离所作的功。
1.7 位错间的相互作用
(1)写出位错间作用力的表达式(不要求计算) (2)分析位错的受力
同符号刃型位错:
/2 稳定平衡位置; /4不稳定平衡位置。
1.9 位错的交割
割阶与扭折
割阶的形成增加了位错线长度,要消耗一定的能量。 因此交割对位错运动是一种阻碍。增加变形困难, 产生应变硬化。
即: Σb前=Σb后
2)能量条件:反应过程是能量降低的过程。 E∝b2 Σb2前≥Σb2后
扩展位错:一个位错分解成两个半位错和它们中间夹的层错带 构成的位错。
面心立方晶体的滑移
如: 1 a1 10 1 a1 2 1 1 a211
2
6
6
1 a1 10
2
1 a1 2 1
6
1 a211
6
2)τp随a值的增大和b值的减小而下降。在晶体中,原子最密排 面其面间距a为最大,原子最密排方向其b值为最 小,可解释 晶体滑移为什么多是沿着晶体中原子密度最大的面和原子密 排方向进行。
3)τp随位错宽度减小而增大。 强化金属途径:一是建 立无位错状态,二是引入大量位错或其它障碍物,使其难以运 动。
1.5 位错的运动及晶体的塑性变形
材料科学基础位错理论共59页文档
1、不要轻言放弃,否则对不ቤተ መጻሕፍቲ ባይዱ自己。
2、要冒一次险!整个生命就是一场冒险。走得最远的人,常是愿意 去做,并愿意去冒险的人。“稳妥”之船,从未能从岸边走远。-戴尔.卡耐基。
梦 境
3、人生就像一杯没有加糖的咖啡,喝起来是苦涩的,回味起来却有 久久不会退去的余香。
材料科学基础位错理论 4、守业的最好办法就是不断的发展。 5、当爱不能完美,我宁愿选择无悔,不管来生多么美丽,我不愿失 去今生对你的记忆,我不求天长地久的美景,我只要生生世世的轮 回里有你。
谢谢
11、越是没有本领的就越加自命不凡。——邓拓 12、越是无能的人,越喜欢挑剔别人的错儿。——爱尔兰 13、知人者智,自知者明。胜人者有力,自胜者强。——老子 14、意志坚强的人能把世界放在手中像泥块一样任意揉捏。——歌德 15、最具挑战性的挑战莫过于提升自我。——迈克尔·F·斯特利
《材料科学基础》研究生试题A参考答案及评分标准
二、填空题(每空1分,共22分)
1.包晶转变是由一个液相和一个固相在(恒温)下,生成另一个(固)相的转变。
2.体心立方金属的的密排面是(110),密排方向是(111),致密度为(0.68),配位数为(8)。
3.面心立方金属的密排面是(111),密排方向是(110),密排面的堆垛顺序是(ABC),致密度为(0.74),配位数为(12)。
(注:回答其中三种方式即可)
八、实际生产中怎样控制铸件的晶粒大小?试举例说明(15分)
答:生产实际中常采用的控制晶粒尺寸的措施有:(1)提高过冷度,如采用导热性好的金属模,降低浇注温度等。(2)变质处理,即浇注前向液态金属中加入变质剂。(3)振动、搅拌,即在浇注和结晶过程中实施振动和搅拌,以提供形核功,增加晶核数量。
共价晶体以共价键的方式结合。共价晶体很强的方向性,所以如果发生相对移动,将使共价键遭到破坏,故共价晶体硬度较高,脆性较大。
4.什么是临界变形度?在工业生产中有什么意义?(8分)
答:变形量很小时,储存能少,不足以发生再结晶,故退火后晶粒尺寸不变(较小);当变形量在2%-8%范围时,形核率低,再结晶退火后晶粒特别粗大,称为“临界变形度”;超过临界变形度后,随变形量增加,储存能增加,再结晶驱动力增加,因形核率的增加速率大于长大率,故再结晶退火后晶粒细化。
陕西理工学院
2009年攻读硕士学位研究生入学考试试题(A卷)
参考答案及评分标准
考试科目名称:材料科学基础考试科目代码:840
一、名词解释(每题2分,共20分)
1.配位数:是指晶体中,与任一原子最近邻并且等距离的原子数。
2.位错反应:位错之间的互相转化。
3.共晶转变:一个液相在恒温下转变成两个固相的转变。
材料科学基础试题及答案考研专用
一、名词:相图:表示合金系中的合金状态与温度、成分之间关系的图解。
匀晶转变:从液相结晶出单相固溶体的结晶过程。
平衡结晶:合金在极缓慢冷却条件下进行结晶的过程。
成分起伏:液相中成分、大小和位置不断变化着的微小体积。
异分结晶:结晶出的晶体与母相化学成分不同的结晶。
枝晶偏析:固溶体树枝状晶体枝干和枝间化学成分不同的现象。
共晶转变:在一定温度下,由—定成分的液相同时结晶出两个成分一定的固相的转变过程。
脱溶:由固溶体中析出另一个固相的过程,也称之为二次结晶。
包晶转变:在一定温度下,由一定成分的固相与一定成分的液相作用,形成另一个一定成分的固相的转变过程。
成分过冷:成分过冷:由液相成分变化而引起的过冷度。
二、简答:1. 固溶体合金结晶特点?答:异分结晶;需要一定的温度围。
2. 晶偏析程度与哪些因素有关?答:溶质平衡分配系数k0;溶质原子扩散能力;冷却速度。
3. 影响成分过冷的因素?答:合金成分;液相温度梯度;凝固速度。
三、书后习题1、何谓相图?有何用途?答:相图:表示合金系中的合金状态与温度、成分之间关系的图解。
相图的作用:由相图可以知道各种成分的合金在不同温度下存在哪些相、各个相的成分及其相对含量。
2、什么是异分结晶?什么是分配系数?答:异分结晶:结晶出的晶体与母相化学成分不同的结晶。
分配系数:在一定温度下,固液两平衡相中溶质浓度之比值。
3、何谓晶偏析?是如何形成的?影响因素有哪些?对金属性能有何影响,如何消除?答:晶偏析:一个晶粒部化学成分不均匀的现象形成过程:固溶体合金平衡结晶使前后从液相中结晶出的固相成分不同,实际生产中,液态合金冷却速度较大,在一定温度下扩散过程尚未进行完全时温度就继续下降,使每个晶粒部的化学成分布均匀,先结晶的含高熔点组元较多,后结晶的含低熔点组元较多,在晶粒部存在着浓度差。
影响因素:1)分配系数k0:当k0<1时,k0值越小,则偏析越大;当k0>1时,k0越大,偏析也越大。
《材料成型金属学》教学资料:第一章位错理论基础
位错密度
单位体积中位错的总长度:
ρ = L , cm / cm3 V
将位错线看作于垂直某一平面的直位错线
ρ = nL = n ,1/ cm3 AL A
位错密度
在金属材料中,退火状态下,接近平衡状态所得 到的材料,这时位错的密度较低,约在106-8的数量级;
经过较大的冷塑性变形,位错的密度可达1011-12 的数量级。
1 位错理论基础
Fundamentals of dislocation theory
理想晶体 完全按照空间点阵有规则排列
实际晶体 不可能完全规则排列,存在晶格缺陷 lattice defect
1.1 晶体缺陷概述
晶体中的缺陷: 原子排列偏离完整性的区域
点缺陷-在三个方向上尺寸都很小 线缺陷-在二个方向上尺寸很小 面缺陷-在一个方向上尺寸很小
特征: 无多余半原子面,原子错排呈轴对称; 螺型位错线与滑移矢量平行,因此一定是直线; 纯螺型位错的滑移面不唯一; 螺型位错周围发生点阵畸变; 线缺陷。
混合位错(mixed dislocation)
滑移矢量既不平行也不垂直于位错线,而与位错 线相交成一定角度。
Screw Dislocation
点缺陷的类型 :
1) 空位 在晶格结点位置应有原子的 地方空缺,这种缺陷称为“空位”。
2) 间隙原子 在晶格非结点位置,往 往是晶格的间隙,出现了多余的原 子。它们可能是同类原子,也可能 是异类原子。
3) 异类原子 在一种类型的原子组成 的晶格中,不同种类的原子替换原 有的原子占有其应有的位置。
空位平衡浓度
Edge Dislocation
Has both edge and
screw character.
材料科学基础---简答题【可编辑全文】
可编辑修改精选全文完整版材料科学基础---简答题(总14页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--第二部分简答题第一章原子结构1、原子间的结合键共有几种各自的特点如何【11年真题】答:(1)金属键:基本特点是电子的共有化,无饱和性、无方向性,因而每个原子有可能同更多的原子结合,并趋于形成低能量的密堆结构。
当金属受力变形而改变原子之间的相互位置时不至于破坏金属键,这就使得金属具有良好的延展性,又由于自由电子的存在,金属一般都具有良好的导电性和导热性能。
(2)离子键:正负离子相互吸引,结合牢固,无方向性、无饱和性。
因此,七熔点和硬度均较高。
离子晶体中很难产生自由运动的电子,因此他们都是良好的电绝缘体。
(3)共价键:有方向性和饱和性。
共价键的结合极为牢固,故共价键晶体具有结构稳定、熔点高、质硬脆等特点。
共价结合的材料一般是绝缘体,其导电能力较差。
(4)范德瓦尔斯力:范德瓦尔斯力是借助微弱的、瞬时的电偶极矩的感应作用,将原来稳定的原子结构的原子或分子结合为一体的键合。
它没有方向性和饱和性,其结合不如化学键牢固。
(5)氢键:氢键是一种极性分子键,氢键具有方向性和饱和性,其键能介于化学键和范德瓦耳斯力之间。
2、陶瓷材料中主要结合键是什么?从结合键的角度解释陶瓷材料所具有的特殊性能。
【模拟题一】答:陶瓷材料中主要的结合键是离子键和共价键。
由于离子键和共价键很强,故陶瓷的抗压强度很高、硬度很高。
因为原子以离子键和共价键结合时,外层电子处于稳定的结构状态,不能自由运动,故陶瓷材料的熔点很高,抗氧化性好、耐高温、化学稳定性高。
第二章固体结构1、为什么密排六方结构不能称为一种空间点阵【11年真题】答:空间点阵中每个阵点应该具有完全相同的周围环境。
密排六方晶体结构位于晶胞内的原子具有不同的周围环境。
如将晶胞角上的一个原子与相应的晶胞之内的一个原子共同组成一个阵点,这样得出的密排六方结构应属于简单六方点阵。
位错理论.ppt
1.5 位错与溶质的交互作用
• 溶剂原子、溶质原子体积不同,晶体中的
溶质原子会使周围晶体发生弹性畸变,产
生应力场。 • 位错与溶质原子的弹性相互作用-应力场
发生作用。
科氏气团
• 位错与溶质原子交互作用-溶质原子相位 错线聚集-溶质原子气团。
• 位错更加稳定。
1.6 位错的增殖与塞积
Heterogeneous Nucleation Frank-Reed Source F-R源的形核
• 位错中心处原子严重错排,周围原子偏离 中心位置-位错周围产生应力场,晶体的 内能也增加。
• 因晶体中存在位错而使晶体增加内能-位 错的应变能。
线张力
位错应变能与位错线长度成正比。为降 低能量,位错线具有尽量缩短其长度的倾向, 从而使位错产生线张力。 其作用是使位错变直—降低位错能量 • 相当于 物质弹性—称之为位错的弹性性质 • 类似于液体 为降低表面能产生的表面张力。
• F-R源的开动条件:
推动力(外力)> 位错运动点阵摩擦力和障 碍物阻力
当外力作用在两端不能自由运动的位错上 时,位错将发生弯曲。
Dislocation Loop: Frank ed
m
Left & right screw intersects at m => cancellation 螺位错相消
全位错与不全位错(1)实际晶体中的 位错类型
简单立方:b≡点阵矢量—只有全位错
实际晶体:b > = <点阵矢量 b=点阵矢量整数倍— 全位错 其中b=点阵矢量——单位位错 b≠点阵矢量整数倍——不全位错 其中b <点阵矢量——部分位错
位错反应
— 位错的合并与分解
• 几何条件:反应前后柏氏矢量和相等(方向、大 小);
考研专业课:材料科学基础7 位错理论基础
5.位错滑移的点阵阻力(P-N力) 位错滑移会受到晶体点阵的阻力, 源自滑移面上下两层原子发生位移和错配导 致能量的变化,称其为点阵阻力,表示式为
b-位错柏氏矢量大小; W-称为位错宽度,一般w=(1-10)b。 位错受到的作用力大于点阵阻力时,才能进行 滑移。
晶体特性与P-N力: fcc结构的位错宽度大,其P-N力小,故其容易屈 服; bcc相反,其屈服应力大; 共价键和离子键晶体的位错宽度很小,所以表现 出硬而脆的特性。 滑移面滑移方向与P-N力: P-N力与(-d/b)成指数关系; 最密排面的面间距d最大,最密排方向的原子间 距最小(b最小); 所以,位错滑移面和滑移方向通常是原子密排面 和密排方向。
3.弯曲位错的受力 外力作用下,两端固定的位错弯曲成曲率半径r, 产生力F : 平衡条件:
由于ds=rd,当ds很小时
故:
外力、位错 b、r间关系式。
7.3 位错与晶体缺陷间的交互作用 位错具有应力场,且可移动; 其它位错或点缺陷也有应力场, 位错与其它应力场会相互作用,产生作用力。 一.位错间的交互作用 1.两平行螺型位错的交互作用 在b1应力场作用下,b2 受力为
•当y=0时(x轴上), 若x>0,则fx>0; 若x<0,则fx<0。
结论:
同号位错相互排斥, 位错间距越小,排斥 力越大。
(b)攀移力fy
fy与y同号; 当位错d2在位错d1的滑移面上部时, 攀移力fy是 正值,即指向上;
当d2在d1滑移面下部时, fy为负值,即指向下。
因此,两位错沿y轴方向是互相排斥的。
(2)两个平行的异号刃型位错
• fx和fy的方向与同号位错时相反,
位错d2的稳定位臵和介稳位臵正好互相对换, |x|=|y|时, d2处于稳定位臵。 • fy与y异号,
材料科学基础I 7-2 线缺陷——位错的基本概念
条相反的途径来获得高强度:曲的极小值对应于退火金属的情况。
1、尽量减小位错密度。例如,晶须;
2、尽量增大位错密度。例如,非晶
态材料。
§7-3 位错的运动
位错最重要的性质之一是它可以在晶体中运动。 视频
一、刃型位错的运动
刃型位错有两种运动形式:滑移和攀移。
1、滑移
动画
位错的滑移就是它在滑移面上的运动。
vl三混合位错的运动混合位错只有一个柏氏矢量位错运动的方向总是与位错线垂直混合位错线各部位的运动方向不尽相同但是晶体滑移的结果是由b决定的晶体只能向一个方向滑移
§7-2 线缺陷——位错的基本概念
线缺陷(linear defects)又称为位错(dislocation)。也就是说, 位错是一种线型的晶体缺陷,位错线周围附近的原子偏离自己 的平衡位置,造成晶格畸变。
3、左、右旋螺型位错的规定
左旋螺型位错:符合左手定则(上图) 右旋螺型位错:符合右手定则(下图)
三、柏氏矢量(Burgers vector) 1、柏氏矢量b的确定方法
2、柏氏矢量b的物理意义
柏氏矢量b是描述位错实质的重要物理量。它反映了柏氏回 路包含位错所引起点阵畸变的总积累,通常将柏氏矢量称为位 错强度。位错的许多性质,如位错的能量、应力场、位错反应 等均与其有关。它也表示出晶体滑移的大小和方向。
b)中:AB、CD段与柏氏矢量b垂直,所以是单纯的刃型位错,
AC、BD段与柏氏矢量b平行,所以是单纯的螺型位错。
3、正、负刃型位错的规定
正刃型位错:半原子面位于滑移面上方,表示符号“丄” 负刃型位错:半原子面位于滑移面下方,表示符号“丅” 正负刃型位错并无本质的差别,只是相对的区别。
二、螺型位错 1、螺型位错的形成 动画
中南材料科学基础位错课后答案PPT学习教案
T2=20℃(293K) 计算C2 取A=1,代入T2,T1及Q,有
C1/C2=6.84672×1013
C1 C2
Q
e kT1 Q
e kT2
Q( 1 1 )
e k T2 T1
第1页/共26页
2
3.计算银晶体接近熔点时多少个结点上会出现一个空位(已知:银 的熔点为960℃,银的空位形成能为1.10eV,1ev=)?若已知Ag的原子 直径为0.289nm,问空位在晶体中的平均间距。 1eV=1.602*10-19J
第7页/共26页
a [010]
8
8.一个b=a[-110]/2的螺位错在(111)面上运 动。若在运动过程中遇到障碍物而发生交滑移, 请指出交滑移系统。
第8页/共26页
9
(111)
[-110]
(-1-11)
(111)面上b=a[-110]/2的螺 位错运动过程中遇到障碍物而 发生交滑移,理论上能在任何 面上交滑移,但实际上只能在 与原滑移面相交于位错线的 fcc密排面(滑移面)上交滑 移。
反应前柏氏矢量1102aa6a6a6a2110121211266aaa??14反应后柏氏矢量?能量条件反应前反应后?几何条件和能量条件均能满足121211330110aaaa???222110??42aab???2222141??411??36363aaab?????当两个肖克莱不全位错a1216和a2116之间排斥力f层错能时位错组态处于平衡gbbf?gbbgbbbb????12d2???a2121212cos22d?????立方晶系中任意两个晶向u1v1w1与u2v2w2之间夹角12?12vv21w12coscosuuvww????????故依据位错之间相互作用力15110a1216a2116a夹角601202222211222uuvw???故a1216和a2116之间夹角cos1221212bb666162cos2224g??g??aagadbb???????位错210题p116?在面心立方晶体中111晶面和111晶面上分别形成一个扩展位错
材料科学基础I 7-9 实际晶体中的位错
二、密排六方晶体和体心立方晶体中的位错
晶体一样, 同FCC晶体一样,除存在全位错外,也有 晶体一样 除存在全位错外,也有Shockley分位错 分位错 分位错存在, )、柏 和Frank分位错存在,但它们的结构(有关晶面和晶向)、柏 分位错存在 但它们的结构(有关晶面和晶向)、 氏矢量等各不相同。( 。(略 氏矢量等各不相同。(略)
§7-9 实际晶体中的位错
前面介绍了位错的一般性质,本节将讨论实际晶体中的位错, 前面介绍了位错的一般性质,本节将讨论实际晶体中的位错, 特别是面心立方晶体中的位错。 特别是面心立方晶体中的位错。
一、面心立方晶体中的位错 1、全位错 、
定义:柏氏矢量为沿着滑移方向的原子间距的整数倍的位错。 定义:柏氏矢量为沿着滑移方向的原子间距的整数倍的位错。 若沿着滑移方向连接相邻原子的矢量为s, 若沿着滑移方向连接相邻原子的矢量为 ,则全位错的柏氏 矢量b=ns,为正整数,一般 矢量 ,为正整数,一般n=1,此时位错的能量最低。 ,此时位错的能量最低。 FCC晶体的全位错的柏氏矢量应为 晶体的全位错的柏氏矢量应为b=a/2<110>,简写成 晶体的全位错的柏氏矢量应为 , b=1/2<110>。全位错的滑移面是 。全位错的滑移面是{111},刃型位错的攀移面(垂 ,刃型位错的攀移面( 直于滑移面和滑移方向的平面) 直于滑移面和滑移方向的平面)是{110}。 。
2、不全位错 、
柏氏矢量小于滑移方向上的原子间距的位错称为分位错; 柏氏矢量小于滑移方向上的原子间距的位错称为分位错; 分位错 不全位错。 大于原子间距,但不是整数倍的位错称为不全位错 大于原子间距,但不是整数倍的位错称为不全位错。实际研 究中没有必要将它们细分,可以统称为不全位错。 究中没有必要将它们细分,可以统称为不全位错。 (1) Shockley分位错 分位错 右图所示为FCC晶体的(111) 右图所示为FCC晶体的(111) 晶体的 晶面(纸面),注意ABC三层 ),注意 晶面(纸面),注意 三层 原子的位置, 原子的位置,b1为全位错柏氏 矢量。 层及以上原子由B位 矢量。当B层及以上原子由 位 层及以上原子由 置滑移到B位置时 位置时, 置滑移到 位置时,分两步进 行需要的能量更小: → , 行需要的能量更小:B→C, C→B。 → 。
材料科学基础位错反应和扩展位错 ppt课件
4. 位错反应
位错反应能否进行取决于两个条件:
➢ ①几何条件:反应前的柏氏矢量和等于反应后的柏氏矢量和。
b前b后
b2
注意:b的方向与规定的ξ的正向有关。所
以位错反应中,一般规定反应前位错 线指向节点,反应后离开节点。
b1
b3
➢ ②能量条件:反应后诸位错的总能量小于反应前诸位错的总 能量,这是热力学定律所要求的。
另外另外它还带着两片分别位于它还带着两片分别位于111111和和111111面上的层错以及两个不全位错面上的层错以及两个不全位错在两个在两个111111面的面面的面角上这种由于三个不全位错和两片层错构成的位错组这种由于三个不全位错和两片层错构成的位错组态称为态称为lomerlomercottrellcottrell位错另外另外它还带着两片分别位于它还带着两片分别位于111111和和面上面上的层错以及两个不全位错的层错以及两个不全位错在两个在两个111111面的面角上面的面角上这种由于三个不全位错和两片层错构成的位错组态这种由于三个不全位错和两片层错构成的位错组态称为称为lomerlomercottrellcottrell位错11111111111122111111121122211011122110111211122211111121在外力作用下两个扩展位错向两个滑移面的交线处滑移
a 6112 a 31 1 1 a 211 0
③两个全位错合并成另一全位错。
a 2011 a 21 1 0 a 211 0
④两个位错合并重新组合成另两个位错,如体心立方中:
a 10 a 0 01 a 2 0 11 a 2 1 1 1
8
4. 位错反应
[100 ]
[100 ]
b 2a[100]
材料科学基础位错部分知识点
材料科学基础位错部分知识点第三章晶体结构缺陷(位错部分)1.刃型位错及螺型位错的特征刃型位错特征:1)刃型位错是由一个多余半原子面所组成的线缺陷;2)位错滑移矢量(柏氏向量)垂直于位错线,而且滑移面是位错线和滑移矢量所构成唯一平面;3)位错的滑移运动是通过滑移面上方的原子面相对于下方原子面移动一个滑移矢量来实现的;4)刃型位错线的形状可以是直线、折线和曲线;5)晶体中产生刃型位错时,其周围的点阵发生弹性畸变,使晶体处于受力状态,既有正应变,又有切应变。
螺型位错特征:1)螺型位错是由原子错排呈轴线对称的一种线缺陷;2)螺型位错线与滑移矢量平行,因此,位错线只能是直线;3)螺型位错线的滑移方向与晶体滑移方向、应力矢量方向互相垂直;4)位错线与滑移矢量同方向的为右螺型位错;为此系与滑移矢量异向的为左螺型位错。
刃型位错螺型位错位错线和柏氏矢量关系(判断位错类型)⊥∥滑移方向∥b∥b位错线运动方向和柏氏矢量关系∥⊥相关概念(ppt上的,大概看一看):A.位错运动与晶体滑移:通过位错运动可以在较小的外加载荷下晶体产生滑移,宏观显现为产生塑性变形。
B.位错线:位错产生点阵畸变区空间呈线状分布。
对于纯刃型位错,其可以描述为刃型位错多余半原子面的下端沿线。
为了与其它类型位错统一,位错线可表述为已滑移区与未滑移区的交界线。
C.混合型位错:在外力作用下,两部分之间发生相对滑移,在晶体内部已滑移和未滑移部分的交线既不垂直也不平行滑移方向(柏氏矢量b),这样的位错称为混合位错。
(位错线上任意一点,经矢量分解后,可分解为刃位错和螺位错分量。
晶体中位错线的形状可以是任意的。
)=l/V;单位面积内位错条数来表示位错密度:D.错位密度:单位体积内位错线的长度:ρv=n/S。
(金属中位错密度通常在106~8—1010~121/c㎡之间。
)ρs2.柏氏矢量:1)刃型位错和螺型位错的柏氏矢量表示:2)柏氏矢量的含义:柏氏矢量反映出柏氏回路包含的位错所引起点阵畸变的总累计。