几种常见植被指数

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

常用的植被指数,土壤指数,水体指数有哪些?

植被指数与土壤指数

一、RVI——比值植被指数:RVI=NIR/R,或两个波段反射率的比值。

1、绿色健康植被覆盖地区的RVI远大于1,而无植被覆盖的地面(裸土、人工建筑、水体、植被枯死或严重虫害)的RVI在1附近。植被的RVI通常大于2;

2、RVI是绿色植物的灵敏指示参数,与LAI、叶干生物量(DM)、叶绿素含量相关性高,可用于检测和估算植物生物量;

3、植被覆盖度影响RVI,当植被覆盖度较高时,RVI对植被十分敏感;当植被覆盖度<50%时,这种敏感性显著降低;

4、RVI受大气条件影响,大气效应大大降低对植被检测的灵敏度,所以在计算前需要进行大气校正,或用反射率计算RVI。

二、NDVI——归一化植被指数:NDVI=(NIR-R)/(NIR+R),或两个波段反射率的计算。

1、NDVI的应用:检测植被生长状态、植被覆盖度和消除部分辐射误差等;

2、-1<=NDVI<=1,负值表示地面覆盖为云、水、雪等,对可见光高反射;0表示有岩石或裸土等,NIR和R近似相等;正值,表示有植被覆盖,且随覆盖度增大而增大;

3、NDVI的局限性表现在,用非线性拉伸的方式增强了NIR和R的反射率的对比度。对于同一幅图象,分别求RVI和NDVI时会发现,RVI值增加的速度高于NDVI增加速度,即NDVI对高植被区具有较低的灵敏度;

4、NDVI能反映出植物冠层的背景影响,如土壤、潮湿地面、学、枯叶、粗超度等,且与植被覆盖有关;

三、DVI\EVI——差值\环境植被指数:DVI=NIR-R,或两个波段反射率的计算。

1、对土壤背景的变化极为敏感;

四、SAVI\TSAVI\MSAVI——调整土壤亮度的植被指数:

SAVI=((NIR-R)/(NIR+R+L))(1+L),或两个波段反射率的计算。

1、目的是解释背景的光学特征变化并修正NDVI对土壤背景的敏感。与NDVI相比,增加了根据实际情况确定的土壤调节系数L,取值范围0~1。L=0 时,表示植被覆盖度为零;L=1时,表示土壤背景的影响为零,即植被覆盖度非常高,土壤背景的影响为零,这种情况只有在被树冠浓密的高大树木覆盖的地方才会出现。

2、SAVI仅在土壤线参数a=1,b=0(即非常理想的状态下)时才适用。因此有了TSAVI、ATSAVI、MSAVI、SAVI2、SAVI

3、SAVI4等改进模型。

五、GVI——绿度植被指数,k-t变换后表示绿度的分量。

1、通过k-t变换使植被与土壤的光谱特性分离。植被生长过程的光谱图形呈所谓的"穗帽"状,而土壤光谱构成一条土壤亮度线,土壤的含水量、有机质含量、粒度大小、矿物成分、表面粗糙度等特征的光谱变化沿土壤亮度线方向产生。

2、kt变换后得到的第一个分量表示土壤亮度,第二个分量表示绿度,第三个分量随传感器不同而表达不同的含义。如,MSS的第三个分量表示黄度,没有确定的意义;TM的第三个分量表示湿度。

3、第一二分量集中了>95%的信息,这两个分量构成的二位图可以很好的反映出植被和土壤光谱特征的差异。

4、GVI是各波段辐射亮度值的加权和,而辐射亮度是大气辐射、太阳辐射、环境辐射的综合结果,所以GVI受外界条件影响大。

六、PVI——垂直植被指数,在R-NIR的二为坐标系内,植被像元到土壤亮度线的垂直距离。PVI=((S R-VR)2+(SNIR-VNIR)2)1/2,S是土壤反射率,V 是植被反射率。

1、较好的消除了土壤背景的影响,对大气的敏感度小于其他VI

2、PVI是在R-NIR二位数据中对GVI的模拟,两者物理意义相同

3、PVI=(DNnir-b)cosq-DNr´sinq,b是土壤基线与NIR截距,q是土壤基线与R的夹角。

七、其他

1、根据具体情况改进型:如MSS的DVI = B4-aB2,

PVI=(B4-aB2-b)/(1+a2)1/2,SARVI = B4/(B2+b/a);RDVI=(NDVI´DVI)1/2等。

2、应用于高光谱数据的VI,如CARI(叶绿素吸收比值指数)和CACI(叶绿素吸收连续区指数)等。

VI划分

线性DVI 低LAI时,效果较好;LAI增加爱时对土壤背景敏感

归一化差值植被指数NDVI是植被遥感中应用最为广泛的指数之一,但它受土壤背景等因素的干扰比较强烈.结合实测的土壤数据以及公式推导、PROSAIL模型模拟等方法分析了这种影响.首先,假定与土壤线性混合且叶片呈水平分布的植被冠层,根据土壤与植被分别在红光、近红外波段处的反射率值、植被覆盖度等参数,利用公式推导了土壤背景对不同覆盖度下冠层NDVI的影响.其次,利用PROSAIL冠层光谱模拟模型,模拟分析了土壤背景对不同LAI下冠层NDVI的影响.分析的结果表明:LAI越小,土壤背景的影响越大;暗土壤背景下的冠层NDVI值大于亮土壤背景下冠层的NDVI值;并且,暗土壤条件下,NDVI值对土壤亮度的变化更敏感,而亮土壤下,NDVI值则对LAI或覆盖度的变化更敏感.最后利用实测的不同土壤背景下的冬小麦冠层光谱数据,验证了公式推导和模型模拟的结果.

1.Mcfeeters在1996年提出的归一化差分水体指数(NDWI

其表达式为:

NDWI =(p(Green)-p(NIR))/(p(Green)+p(NIR))

是基于绿波段与近红外波段的归一化比值指数。该NDWI一般用来提取影像中的水体信息,效果较好。

局限性:用NDWI来提取有较多建筑物背景的水体,如城市中的水体,其效果会较差。

2. Gao于1996年也命名了一个NDWI,用于研究植被的含水量。

其表达式为:

NDWI=(p(NIR)-p(MIR))/(p(NIR)+p(MIR))

=(p(0.86μm)-p(1.24μm))/(p(0.86μm)+p(1.24μm))

植被水分指数NDWI是基于中红外与近红外波段的归一化比值指数。与NDVI相比,它能有效地提取植被冠层的水分含量;在植被冠层受水分胁迫

时,NDWI指数能及时地响应,这对于旱情监测具有重要意义。

而Wilson等在研究美国缅甸因州的森林时,使用了归一化湿度指数(Normalized Difference Moisture Index, NDMI),其表达式与Gao的完全一致。由于Gao的NDWI与Wilson等的NDMI指数的意义与用途是一致的,而与Mcfeeters用于研究水体的NDWI指数有所不同,因此一般将用于研究植被含水量的指数改称为NDMI指数。

3.水体指数(MNDWI)指数

相关文档
最新文档