公务员考试排列组合与概率问题重难点讲解

合集下载

公务员行测数量关系答题技巧:排列组合不再难

公务员行测数量关系答题技巧:排列组合不再难

公务员行测数量关系答题技巧:排列组合不再难一、优限法对于有限制条件的元素(或位置)的排列组合问题,在解题时优先考虑这些元素(或位置),再去解决其它元素(或位置)。

【例】某宾馆有6个空房间,3间在一楼,3间在二楼。

现有4名客人要入住,每人都住单间,都优先选择一楼房间。

问宾馆共有多少种安排?A 24B 36C 48D 72中公教育【例】:奶奶有6块不同的糖,如今要把糖平均分给三个孙子,一共有多少种分法?A.360B.90C.45D.15行测数量关系模拟题及答案 1、用抽签的方法从3名同学中选1名去参加音乐会,准备3张一样的小纸条,并在1张纸条画上记号,其余2张纸条不画.把3张纸条折叠后放入一个盒子中搅匀,然后让甲、乙、丙依次去摸纸条,他们抽到画有记号的纸条的概率记P甲、P乙、P丙,那么( )A.P甲》P乙》P丙B.P甲C.P甲》P乙=P丙D.P甲=P乙=P丙2、学校要举行夏令营活动,由于名额有限,需要在符合条件的5个同学中通过抓阄的方式选择出两个同学去参加此次活动。

于是班长就做了5个阄,其中两个阄上写有“去”字,其余三个阄空白,混合后5个同学依次随机抓取。

计算第二个同学抓到“去”字阄的概率为( )A.0.2B.0.25C.0.4D.0.11、【答案】D。

解析:利用我们前面所学到总结到的结论,我们可以判断出不管这3名同学按照怎么的顺序进展摸纸条,最终的概率都是一样,所以这道题目我们直接选择D选项。

2、行测数学运算备考辅导:特殊计数问题行测数量关系备考辅导:速解抽屉问题行测逻辑判断备考辅导:假言命题之附属关系行测真题行测答案行测答题技巧行测题库模拟试题。

国家公务员考试数量排列组合与概率之一

国家公务员考试数量排列组合与概率之一

2016国家公务员考试数量排列组合与概率之一湖北分校魏坤2016年国考的脚步越来越近,数学模块作为行测中难度最高也是最容易拉开分差的模块,考生应及早复习,掌握技巧,方能笑傲考场。

本文给大家介绍国家公务员考试中考察频率较高的一种题型——排列组合与概率。

排列组合与概率难度高内容多,是必考题型之一。

我们会分几节给大家做详细的讲解。

本节重点介绍排列组合的基础知识。

排列组合的有两组基础的概念,一组是加法与乘法,一组是排列与组合。

首先我们来看第一组概念,加法与乘法。

当几个情况之间属于分类时用加法,属于分步即这些情况都要完成时用乘法;第二组概念排列与组合,他们都是计算从一堆元素中取出若干元素的情况数,当考虑顺序时用排列,不考虑顺序时用组合。

【例1】把6个标有不同标号的小球放入三个大小不同的盒子里。

大号盒子放3个,中号盒子放2个,小号盒子放1个,则其有()种放法。

A.50B.60C.70D.40依照题意,大中小这三个盒子都要放球,属于分步,所以彼此之间应该是乘法的关系。

不妨先放大盒子,我们只需要选出三个球往大盒子里放就行了,这三个球一旦选定,谁先放谁后放不会对情况造成影响,因此每一个盒子里的情况又是属于组合。

大盒子的情况数为从6个球中选3个出来组合,共有20种情况;中盒子中放球时只剩下3个,因此是从3个中选2个出来组合,共有3中情况,剩下的为小盒子里的。

所以情况数一共有20×3=60种。

【例2】有颜色不同的五盏灯,每次使用一盏、两盏、三盏、四盏或五盏,并按一定次序挂在灯杆上表示不同的信号,这些颜色不同的灯共可表示多少种不同的信号?A.240B.300C.320D.325根据题意,表示信号时要么选一盏,要么选两盏…因此,这些情况之间属于分类,用加法。

当我们选一盏时,就是5种;选两盏时,注意,他们的顺序不同时表示不一样的信号,所以与顺序有关,是排列,因此选两盏时,是从5盏中选2盏排列,有20种;同理,选3盏时有60种,4盏时120种,5盏时也是120种,共325种。

国家公务员考试行测备考-概率问题易错点分析

国家公务员考试行测备考-概率问题易错点分析

一、概率的基本概念
二、“有放回摸球”与“无放回摸球”的区别:
(1)无放回摸球主要是指每次摸出的球放在袋外,下次再摸球时总数比前次少一;而有放回的摸球是每次摸出一球放在袋内,下次再摸球时袋内球的总数不变。

(2)“无放回摸球”各次抽取不是相互独立的,而“有放回摸球”每次是相互独立的。

下面通过一个例题来进一步的说明“无放回摸球”与“有放回摸球”的区别。

从而
三、解题关键
分析:对于有放回摸球与无放回摸球题型,在审题时一定要注意是有放回还是无放回,然后根据题意来考虑排列与组合的应用,总之,一定要抓住题目的隐含条件与已知条件的关系,所要求的问题与已知条件之间的连接点,这样才能够很快的解决问题而不至于错误。

通过zg教育专家对国家公务员考试历年真题的分析可以发现,排列组合和概率问题每年都会出现一道,不是排列组合问题就是概率问题,所以总体来说,概率问题在国家公务员考试中出现的可能性还是比较大的,广大考生还是需要引起足够的重视,易错点更是需要特别关注,争取把这部分分值拿到手。

国考行测指导数量关系之概率问题解题技巧

国考行测指导数量关系之概率问题解题技巧

2012国考行测指导:数量关系之概率问题解题技巧在公务员考试行测数量关系的考核中,“排列组合”历来是广大考生最为头疼的“拦路虎”,“排列组合”既是难点,又是重点,所以是考生必须引起重视的核心模块,能否突破排列组合这道关卡,将是考生最后取得高分的关键。

而值得考生注意的是,最近联考的趋势,排列组合的考察逐渐出现创新点,就是基于传统排列组合问题之上的概率问题。

概率问题在近三年考试中出现频率很高。

联考历来以国考为风向标,而概率问题也将成为排列组合中考核的要点,所以必须引起考生的重视。

为帮助广大学生掌握此类题型的解题技巧,下面介绍一下概率问题的知识点,并以一道联考真题为例讲解一些概率问题解题思路。

在这里首先介绍一下概率问题的基本知识点,对于大多数基础比较差的考生而言,概率问题首先需要记住这样一个公式:概率=满足条件的情况数÷总情况数这个公式中,满足条件的情况数和总情况数的算法源于排列组合的相关知识,考生根据题意判断即可,而对于分情况概率和分步骤概率的解法,也是脱胎于排列组合问题,分类用加法,分步用乘法,因此有了这两个公式:总体概率=满足条件的各种情况概率之和;分步概率=满足条件的每个步骤概率之积。

以上是概率问题的一些基本概念,下面通过一道典型例题来讲解下概率问题的解题思路,这道题是是2011年424联考的第44题,一道典型的概率问题,题目是这样出的:【2011-424-44】小王开车上班需经过4个交通路口,假设经过每个路口遇到红灯的概率分别为0.1、0.2、0.25、0.4,则他上班经过4个路口至少有一处遇到绿灯的概率是()A.0.899B.0.988C.0.989D.0.998这道题问4个路口至少有一处遇到绿灯的概率,有两种解法:一种是分情况讨论,分别算出一处绿灯,二处绿灯,三处绿灯,四处绿灯的概率,然后相加即可;另一种方法是逆向思维法,上文中反复提到,概率问题是排列组合的延伸,排列组合是概率问题的基础,而在解决排列组合问题的过程中,我们常用到这样一个公式:满足条件的情况数=总情况数—不满足条件的情况数而在概率问题中,这个公式也能适用,具体公式为:某条件成立概率=总概率—该条件不成立的概率值得注意的是,这里的总概率指的就是全概率,就是1,落实到这道题中,“至少有一次遇到绿灯的概率”的反面情况就是“一次绿灯都遇不到的概率”,即“全遇到红灯的概率”,而“全遇到红灯的概率”是指先后四个路口均遇到红灯,是分步概率,等于0.1×0.2×0.25×0.4,而答案就是1—0.1×0.2×0.25×0.4,等于0.998,选D。

省考行测数学运算: 3个数学排列组合知识难点

省考行测数学运算: 3个数学排列组合知识难点

省考行测数学运算:3个数学排列组合知识难点步知公考行测风暴羚羊:很多同学问我,数学运算到底怎么复习?数学运算对于某些同学来说可能有难度,但是行测拉开差距的可能就是一两道数学运算题,所以亲爱的学员们,千万不可轻易放弃。

因为数学运算中有很多的小技巧,这些小技巧可以帮助我们更好更快地求解。

今天为大家总结的是排列组合当中经常会遇到的三个问题,破解了这三大难点,在做题的时候可以事半功倍。

对于许多刚接触排列组合的考生来说,通常会遇到三个基础性的问题:1.排列与组合如何区分;2.分步与分类如何区分;3.与到底怎么计算。

解决这三个基础性的问题后,一些普通的排列组合问题一般都能够快速进行求解。

排列与组合如何区分排列和组合的区分,根据我们中学学过的知识,其本质区别在于:排列与顺序有关,组合与顺序无关。

那么我们如何判定是否与顺序有关呢?可以用假设法来进行判定,举几个例子:1.一个小组有5个人,需要从这5个人中选出3个人去参加省里的表彰大会,有多少种不同的选法?本题从5个人中选出3个人,到底是用排列还是用组合,我们可以用假设法来进行判别。

首先假设一个方案,假设选出的三个人是甲、乙、丙,然后任意调换假定方案中两个人的顺序,看是否与之前假定的方案一致,一致则说明与顺序无关,是组合,反之则是排列。

本题假设调换的是甲、乙的顺序,发现最终选出的任然是甲、乙、丙三个人参加此次表彰大会,只是被选出的先后顺序不同而已。

因此本题是一个组合,即最终列式为。

2.某部门参加单位举办的合唱比赛,现在需要在参加合唱的10人中选出5人站在第一排,则第一排有多少种不同的站法?这道题核心的点在于,到底是排列还是组合。

依然用假设法进行判定。

假设选出的五个人是甲、乙、丙、丁、戊,分别站在第一排的A、B、C、D、E五个位置。

现在我调出甲、丁调换一下位置,变为丁站在A、甲站在D,其他几个人位置不变,对比发现调换前后两个方案是不一样的,故表明与顺序有关,本题就是一个排列问题,应该用表示。

湖北公务员考试:数量之排列组合与概率(三)

湖北公务员考试:数量之排列组合与概率(三)

湖北公务员考试:数量之排列组合与概率(三)湖北分校 魏坤2016湖北公务员考试的脚步越来越近,数学模块作为行测中难度最高也是最容易拉开分差的模块,考生应及早复习,掌握技巧,方能笑傲考场。

本文给大家介绍湖北公务员考试中考察频率较高的一种题型——排列组合与概率。

排列组合与概率难度高内容多,是必考题型之一。

我们会分几节给大家做详细的讲解。

本节重点介绍排列组合的特殊模型。

排列组合的有两个常见的模型,一个是捆绑模型,一组是插空模型。

我们这一节来学习第二个模型——插空模型。

当题中要求几个元素必须不在一起时,我们便将剩余的事物先排列,这样这些事物之间便形成了空,然后让这些要求不在一起的事物去选择这些空位,这样这些事物便满足了不在一起的要求。

【例1】三名同学和两名老师排成一排,其中两名老师必须不站在一起,共有( )种排法。

A. 120B. 72C. 48D. 24【解析】B.要求这两名老师不站在一起,那我们让这三名同学先排,有33A 种排法;这三名同学之间形成了四个空,我们接下来让这两名老师从这四个空里选出2个位置,有24A 种排法。

因此答案为33A 24A =72种。

【例2】把12棵同样的松树和6棵同样的柏树种植在道路两侧,每侧种植9棵,要求每侧的柏树数量相等且不相邻,且道路起点和终点处两侧种植的都必须是松树。

问有多少种不同的种植方法? A.36B.50C.100D.400【解析】根据题意,马路每边都应该是种植6棵松树和3棵柏树。

要求柏树彼此之间不相邻,因此我们先把这6棵松树先种植,会形成7个空,然后这3棵柏树只需要从中找到3个空位即可。

但是要注意这样一个条件“道路起点和终点处两侧种植的都必须是松树”,因C=10种方法。

此柏树不能种植在首尾两端形成的空里,只能从中间的5个空进行选择,有35而另外一边也是相同的情况,也是10种,因此共有10×10=100种。

插空模型的特征:题目中要求部分元素不相邻;对应方法:让其他元素先排,要求不在一起的元素进行插空。

排列组合与概率原理及解题技巧

排列组合与概率原理及解题技巧

排列组合与概率原理及解题技巧一、基础知识1.加法原理:做一件事有n 类办法,在第1类办法中有m 1种不同的方法,在第2类办法中有m 2种不同的方法,……,在第n 类办法中有m n 种不同的方法,那么完成这件事一共有N=m 1+m 2+…+m n 种不同的方法。

2.乘法原理:做一件事,完成它需要分n 个步骤,第1步有m 1种不同的方法,第2步有m 2种不同的方法,……,第n 步有m n 种不同的方法,那么完成这件事共有N=m 1×m 2×…×m n 种不同的方法。

3.排列与排列数:从n 个不同元素中,任取m(m ≤n)个元素,按照一定顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列,从n 个不同元素中取出m 个(m ≤n)元素的所有排列个数,叫做从n 个不同元素中取出m 个元素的排列数,用m n A 表示,mn A =n(n-1)…(n-m+1)=)!(!m n n -,其中m,n ∈N,m ≤n,注:一般地0n A =1,0!=1,nn A =n!。

4.N 个不同元素的圆周排列数为nA n n =(n-1)!。

5.组合与组合数:一般地,从n 个不同元素中,任取m(m ≤n)个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合,即从n 个不同元素中不计顺序地取出m 个构成原集合的一个子集。

从n 个不同元素中取出m(m ≤n)个元素的所有组合的个数,叫做从n 个不同元素中取出m 个元素的组合数,用mn C 表示:.)!(!!!)1()1(m n m n m m n n n C m n -=+--=6.组合数的基本性质:(1)m n n m n C C -=;(2)11--+=n nm n m n C C C ;(3)kn k n C C kn =--11;(4)n nk k n n nnnC C C C 2010==+++∑= ;(5)111++++-=+++k m k k m k k k k k C C C C ;(6)kn m n m k k n C C C --=。

行测技巧:扒一扒那个超级难的排列组合问题

行测技巧:扒一扒那个超级难的排列组合问题

扒一扒那个超级难的排列组合问题在公务员考试中,排列组合问题一直是我们考察的难点,同时也是我们学生失分最严重的的重灾区。

但是,这一类题型只要记住常考的几类题型,按照常用思路和方法解题,就能轻易解决。

排列组合问题指的是一类所求为方法数、结果数、情况数的一类计数问题,排列就是指从n 个不同元素中取出m 个元素排成一列,用表示m n A 。

组合就是从n 个不同元素中取出m 个元素组成一组,用表示mn C 。

这两者的区别就在于元素有无顺序那下面老师就带大家扒一扒排列组合问题里常见的使用方法,并帮助大家解决这一类问题。

一、优限法方法技巧:优先考虑具有绝对限制的元素或者位置例题:5个人站在一排照相,其中甲、乙两人不站在两边,则其站队的种类有多少种?A. 36B. 12C. 6D. 24【答案】A 解析:五个人站在一排站位因此有五个位子,甲乙两人是有要求的,所以优先考虑两人的站位要求,不站在两边因此必须站在中间的三个位置,从中间三个位置中选择两个位子给甲和乙,共有23A 种不同的站位方式,安排完甲乙还有其他三个人,这三个人没有位置要求可以随便站,有33A 种不同的排列方式,所以共有3623123A A 2333=⨯⨯⨯⨯=⨯种,选择A 。

二、捆绑法方法技巧:遇到相邻问题采用捆绑法,既要考虑捆绑内部的顺序要求,也要考虑捆绑外部的顺序要求。

例题:某公司筹办年度晚会节目包括4个小品,3个演唱和3个舞蹈,为便于对节目进行评选,要求同类节目必须连续出现,那么共有多少种出场顺序。

A. 5184B.2160C.3768D.4372【答案】A 中公解析:小品、演唱和舞蹈同类节目必须连续出现,这是典型的相邻问题采用捆绑法,将4个小品捆在一起有44A 种,将3个演唱捆在一起有33A 种,将3个舞蹈捆在一起有 33A 种,三种节目外部有 33A 种,最后相乘有518466624A A A A 33333344=⨯⨯⨯=⨯⨯⨯种,选择A 。

【数量关系】国家公务员考试行测排列组合与概率重难点讲解

【数量关系】国家公务员考试行测排列组合与概率重难点讲解

【数量关系】国家公务员考试行测排列组合与概率重难点讲解中公教育专家通过对真题的深入研究发现,排列组合与概率问题在国家公务员考试中出现频率较大,几乎每年都会考查该类题型。

公务员的日常工作更多地涉及到统计相关知识,因此这部分题型会愈加被重视。

在现实生活中我们经常会遇到排座次、分配任务等问题,用到的都是排列组合原理,即便是最简单的概率问题也要利用排列组合原理计算。

与此同时,排列组合中还有很多经典问题模型,其结论可以帮助我们速解该部分题型。

一、基础原理二、基本解题策略面对排列组合问题,中公教育专家通过多年的研究经验找出了其常用的三种解题策略:1.合理分类策略①类与类之间必须互斥(互不相容);②分类涵盖所有情况。

2.准确分步策略①步与步之间互相独立(不相互影响);②步与步之间保持连续性。

3.先组后排策略当排列问题和组合问题相混合时,应该先通过组合问题将需要排列的元素选择出来,然后再进行排列。

【例题1】奶奶有6 颗口味各不相同的糖,现分给3 个孙子,其中1 人得1 颗、1 人得2 颗、1人得3颗,则共有( )种分法。

A.60B.120C.240D.360中公解析:此题答案为D。

此题既涉及排列问题(参加6颗口味各不同的糖),又涉及组合问题(分给三个孙子,每人分得糖数不同),应该先组后排。

三、概率问题概率是一个介于0到1之间的数,是对随机事件发生可能性的测度。

概率问题经常与排列组合结合考查。

因此解决概率问题要先明确概率的定义,然后运用排列组合知识求解。

1.传统概率问题【例题2】田忌与齐威王赛马并最终获胜被传为佳话。

假设齐威王以上等马、中等马和下等马的固定顺序排阵,那么田忌随机将自己的三匹马排阵时,能够获得两场胜利的概率是( )。

2.条件概率在事件B已经发生的前提下,事件A发生的概率称为条件概率,即A在B条件下的概率。

P(AB)为AB同时发生的概率,P(B)为事件B单独发生的概率。

【例题3】小孙的口袋里有四颗糖,一颗巧克力味的,一颗果味的,两颗牛奶味的。

国家公务员行测高频考点排列组合解答技巧

国家公务员行测高频考点排列组合解答技巧

国家公务员行测高频考点排列组合解答技巧国家公务员行测考试中,排列组合也是一个比较常见的考点。

这部分的内容的特点是题型的种类很多,单独看排列组合的形式,常考的也有6种以上的题型。

据分析,近几年虽然没有直接的考察排列组合,但是这个知识点和概率的考察现在紧密的联系在一起,另外就是和最值问题考察,这也符合近几年行测试题的难度变化。

拿排列组合来说,题型有很多种,解答的方法有“优限法”、“捆绑法”、“插空法”、“间接法”、“穷举法”等,每一种方法是针对一种题型而设置,而且这些方法之间并不是单独存在的,有些时候一道题需要几种方法的混合使用,虽然这种题目的难度不大,但是综合性很强。

这里就拿“捆绑法”、“插空法”来说,“相邻问题”捆绑法,即在解决对于某几个元素要求相邻的问题时,先将其“捆绑”后整体考虑,也就是将相邻元素视作“一个”大元素进行排序,然后再考虑大元素内部各元素间排列顺序。

“不邻问题”插空法,即在解决对于某几个元素要求不相邻的问题时,先将其它元素排好,再将指定的不相邻的元素插入已排好元素的间隙或两端位置,从而将问题解决的策略。

例1.若有A、B、C、D、E五个人排队,要求A和B两个人必须站在相邻位置,则有多少排队方法?。

排列组合问题,看这个就够了!

排列组合问题,看这个就够了!

排列组合问题也是公考中一个比重较大的问题,也是公考的重点和难点之一,也是进一步解答概率的基础。

事实上,许多概率问题也可归结为排列组合问题。

这一类问题不仅内容抽象,解法灵活,而且解题过程极易出现“重复”和“遗漏”的错误,这些错误甚至不容易检查出来,所以解题时要注意不断积累经验,总结解题规律,掌握若干技巧,最终达到能够灵活运用。

先说排列组合,分类用加法,分步用乘法,排列P与顺序有关,排列C与顺序无关两个大类:1、分类计数原理(加法原理) 完成一件事,有n类办法,在第1类办法中有m1种不同的方法,在第2类办法中有m2种不同的方法,…,在第n类办法中有m n种不同的方法,那么完成这件事共有:N=m1+m2+…+m n种不同的方法.2、分步计数原理(乘法原理)完成一件事,需要分成n个步骤,做第1步有m1种不同的方法,做第2步有m2种不同的方法,…,做第n步有m n种不同的方法,那么完成这件事共有:N=m1.m2…m n种不同的方法.分类计数原理和分步计数原理区别:1、分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。

2、分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件.解决排列组合综合性问题的一般过程如下1.认真审题弄清要做什么事2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。

3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素.排列组合问题是高考的必考题,它联系实际生动有趣,但题型多样,思路灵活,不易掌握,实践证明,掌握题型和解题方法,识别模式,熟练运用,是解决排列组合应用题的有效途径以下是解解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略排列组合从解法上看,大致有以下几种:(1)有附加条件的排列组合问题,大多需用分类讨论的方法;(2)排列与组合的混合型问题,需分步骤,要用乘法原理解决;(3)不相邻问题插空法,相邻问题捆绑法;(4)排除法,将不符合条件的排列或组合剔除掉;(5)枚举法,将符合条件的所有排列或组合一一写出来,或写出一部分发现规律;(6)定序问题“无序化”,即若某几个元素必须保持一定的顺序,则可按通常排列后再除以这几个元素的排列数;(7)隔板法,例如:10个相同的小球分给三人,每人至少1个,有多少种方法?可将10个球排成一排,再用2块“隔板”将它们分成三个部分,有C92种方法。

公务员考试行测数量关系排列组合题四种常见解答方法

公务员考试行测数量关系排列组合题四种常见解答方法
排列组合掌握了相应的解题方法,中公教育专家相信大家在以后的解题过程中会更加得心应手。
例1:1-7的自然数,问组成一个没有重复数字的3位数并且是偶数有多少个?
【中公ቤተ መጻሕፍቲ ባይዱ析】观察题目明显属于排列组合题型,而题目要求3位数,其实就是从7个数选3个排列,但是它有个特殊的要求,即:需要是偶数,偶数顾名思义个位数是偶数,所以有一个绝对位置要求的数,采用优限法,先将个位数确定,1-7里面有3个偶数,
公务员考试行测数量关系排列组合题四种常见解答方法
公务员考试行政职业能力测验主要测查与公务员职业密切相关的、适合通过客观化纸笔测验方式进行考查的基本素质和能力要素,包括言语理解与表达、数量关系、判断推理、资料分析和常识判断等部分。行政职业能力测验涉及多种题目类型,试题将根据考试目的、报考群体情况,在题型、数量、难度等方面进行组合。了解公务员成绩计算方法,可以让你做到心中有数,认真备考。
行测排列组合是学习古典概率的基础,而在公考中排列组合和概率问题出题的可能性比较大,但是很多同学从高中就没有将其弄明白,遇见了就是躲避,其实大家要认知到排列组合与以往数学理论没有关联,其实大家都是在同一起跑线上,只要掌握相应的方法还是可以解决大部分的题目的。下面中公教育专家介绍四种常见方法:
一、 优限法(优先排列有绝对位置要求的元素)

考公排列组合解题技巧

考公排列组合解题技巧

考公排列组合解题技巧
在各类考试中,排列组合问题一直是重点与难点。

为了更有效地解决这类问题,以下是一些关键的解题技巧。

一、理解基本概念
在处理排列组合问题时,首先需要明确什么是排列、什么是组合。

排列是指从n个不同元素中取出m个元素(0≤m≤n),按照一定的顺序放入一起,构成一个有序的组合;而组合则是从n个不同元素中取出m个元素(0≤m≤n),不考虑顺序放入一起。

两者的主要区别在于顺序是否重要。

二、掌握计算公式
1. 排列数公式:A=n(n-1)(n-2)...(n-m+1)
2. 组合数公式:C=n!/[m!(n-m)!]
3. 插空法、捆绑法等其他常用方法。

三、分析具体问题
针对具体问题,首先要明确是排列问题还是组合问题,其次要分析元素的性质、限制条件等因素,选择合适的方法进行计算。

四、运用间接法
在某些情况下,通过间接法可以更简便地解决问题。

例如,在求排列数时,可以先求出总数,然后减去其他不满足条件的情况数。

五、重视组合特点
组合问题有其自身的特点,如无序性、独立性等。

在解题时,要充分利用这些特点简化问题。

六、培养逻辑思维
排列组合问题往往涉及到复杂的逻辑关系,需要我们进行深入的分析和推理。

培养逻辑思维有助于更好地解决这类问题。

七、熟悉常见问题
为了更好地应对考试,需要对各种类型的排列组合问题都有所了解,并掌握相应的解题技巧。

总的来说,解决排列组合问题需要扎实的理论基础、灵活的思维方式和丰富的解题经验。

希望以上技巧能对大家有所帮助。

国家公务员考试排列组合问题解题技巧深度剖析

国家公务员考试排列组合问题解题技巧深度剖析

2018年国家公务员考试排列组合问题解题技巧深度剖析(一)排列组合问题概述1、题型特征排列组合问题是公务员考试中非常重要的题型,几乎每个级别的考试都会涉及到,而且在国考中尤其突出,在国考数量关系题中,基本上会考到1道,有时会考2道,有些年份甚至可能会达到3道排列组合题,特别是在最近的几次考试中,尤为明显,因此,排列组合问题可以说是近年来数量关系各种题型中最受考官青睐的题型。

排列组合问题之所以比较受命题人的青睐,是因为排列组合问题考查课本上的理论知识比较少,而应用灵活的思维方式比较多,所以能力区分度也比较大。

要想提高解决排列组合问题的能力,就需要我们平时多动动脑,多掌握一些有针对性的技巧和方法,才能在考试中破解各脱颖而出,在这个模块得到比较理想的分数。

2、题型分类常见的排列组合问题可以简单分为三类,排列问题,组合问题,概率问题。

(二)国考历年命题规律根据上表可知,在国考中,排列组合问题的考察一直保持着较高的水平,每次考试都有涉及到,而且最多的时候可以考到3道题,这个比重是非常高的,因此,对于想考国考的考生来说,要重视对排列组合问题解题技巧的积累,把这个模块作为数量关系的重点模块来备考是非常有必要的。

(三)高分技巧解读1、解题技巧分析1、捆绑法:如果题目要求一部分元素必须在一起,需要先将要求在一起的部分视为一个整体,再与其他元素一起进行排列。

2、插空法:如果题目要求一部分元素不能在一起,则需要先排列其他主体,然后把不能在一起的元素插空到已经排列好的元素中间。

3、隔板法:如果题目表述为一组相同的元素分成数量不等的若干组,要求每组至少一个元素,则将隔板插入元素之间,计算出分类总数。

4、错位排列:有n个元素和n个位置,如果要去每个元素的位置与元素本身的序号都不同,则n个元素对应的排列情况分别为,D1=0种,D2=1种,D3=2种,D4=9种,D5=44种,……Dn=(n-1)(Dn-2+Dn-1)种。

2、典型例题分析【例1】(2016-国家-68)为加强机关文化建设,某市直机关在系统内举办演讲比赛,3 个部门分派出3、2、4名选手参加比赛,要求每个部门的参赛选手比赛顺序必须相连,问不同参赛顺序的种以下哪个范围之内? ( )A. 大于20000B. 5001~20000C. 1000~5000D. 小于1000【答案】C【思路剖析】题中要求每个部门的参赛选手比赛顺序必须连续,因为需要用到捆绑法去解决。

公务员考试:公职考试中的概率综合题

公务员考试:公职考试中的概率综合题

公职考试中的概率综合题排列组合与概率是公职类考试中的必考题型,难度为中等或中等偏上。

概率问题包括三种,一是概率定义的考查,二是条件概率,三是几何概率。

几何概率题出现的概率很低,基本不做考查,因此大家复习概率模块时,只需准备前两种即可。

有关概率的基本知识点,在以往文章中有过阐述,本文不再重复,本文主要针对概率的综合性难题做一个简单梳理。

概率的难题一般是各种方法技巧的综合。

要想顺利解决此类问题,必须熟悉常见方法技巧。

常见考点有捆绑法、插空法、插板法、环形排列、错位排列、等概率事件、反向推导、赋值、不等式、数字特性等。

下面通过例题进行详细阐述。

【例1】有5对夫妇参加一场婚宴,他们被安排在一张10个座位的圆桌就餐,但是婚礼操办者并不知道他们彼此之间的关系,只是随机安排座位。

问5对夫妇恰好都被安排在一起相邻而坐的概率是多少?()A. 在1‰到5‰之间B. 在5‰到1%之间C. 超过1%D. 不超过1‰解析:本题是一道概率的难题,解答此类问题时,首先要明确题目考查哪些方法,将这些方法结合起来即可推出答案。

首先此题问的是概率,前已叙述,概率问题包括概率定义、条件概率、几何概率三种,此题易断定考查的是概率定义。

根据概率定义,概率等于满足条件的情况数除以全部情况数。

一般来说,全部情况数比较好确定,所以可先计算出总的情况。

5对夫妇共10人,10人坐成一圈,很明显是环形排列,根据环形排列的公式,N个人环形排列,排列方法数为N-1的阶乘,所以总数为9的阶乘,即9A。

下面分析满足条件的情况。

9“5对夫妇恰好都被安排在一起相邻而坐”考查捆绑法,“在一起”是捆绑法的标志。

捆绑法包括两步,一是整体处理,二是细节处理。

首先把每对夫妇“捆绑”起来当作整体处理,A种情况。

第二步处理细节即每一对夫此时5对夫妇即相当于5个人,5个人环形排列即44A*25。

因此概率妇的情况,每一对夫妇的情况很明显是2种,所以满足条件的情况数为44为4A*25/99A,计算结果约为 2.1‰,因此选A。

公务员考试--概率问题

公务员考试--概率问题

在公务员考试中与排列组合联系最紧密的是概率问题,在考试过程中概率问题也是我们要掌握的重要题型之一,也是与我们生活密切相关的一部分内容。

怎样才能在考试中快速准确地解决概率呢,在这里与各位分享如何解决此问题。

第一点:要了解概率问题的分类(1)古典型概率(等可能事件概率):如果实验中可能出现的结果有n个,而事件A包含的结果有m个,那么事件A的概率。

例:一个袋子里有4个珠子,其中2个红色,2个蓝色,除颜色外其余特征均相同,若从这个袋中任取2个珠子,都是蓝色珠子的概率是:答案:D解析:第一次取得蓝色珠子的概率是,第二次取得蓝色珠子的概率是,两次都是的概率就是这两个概率的乘积,利用了排列组合中的分步思想。

所以答案为D。

此题目就是最基本的概率问题,并且结合分步思想。

多次独立重复实验:某一实验独立重复n次,其中每次实验中某一事件A发生的概率是,那么事件A出现m次的概率是:。

(2)几何概率:若对于一个随机试验,每个样本点出现是等可能的,样本空间所含的样本点个数为无穷多个,且具有非零的,有限的几何度量,即,则称这一随机试验是几何概率。

当随机试验的样本空间是某个区域,并且任意一点落在度量(长度,面积,体积)相同的子区域是等可能的,则事件A的概率可定义为,其中是样本空间的度量,是构成事件A的子区域的度量。

第二点:了解常见题型注意事项(1)在题干描述过程中关于物品放回与不放回(2)当一个事件发生的概率难以求解时,往往去求其对立面发生的概率例:一个口袋共有2个红球和8个黄球,从中随机连取三个球(有放回),则恰有一个红球概率是:答案:B解析:由题意要求三个球中恰有一个红球的概率,则要么是第一个球是红球,第二第三是黄球,要么第二个是红球,第一和第三是黄球,要么是第三个球是红球,第一个和第二个是黄球。

因为题上说是有放回抽取,所以不管第几个是红球,每一种概率都是,所以三种情况加起来就是。

掌握了以上两点内容,我们就可以解决基本的概率问题,通过这几道例题希望能帮助广大考生对概率问题有更深刻的认识。

公务员考试高频考点汇总排列组合

公务员考试高频考点汇总排列组合

排列组合一、考情分析排列组合与概率问题作为数学运算中相对独立的一块,难度本身不小,在国家公务员考试中的出场率颇高,近几年几乎都有出现。

这部分题型的难度逐渐在加大,这就需要考生在掌握基本方法原理的基础上,掌握更多的特殊解题方法。

二、加法原理与乘法原理加法原理和乘法原理是解决排列组合与概率问题的基础,也是最常用、最基本的原理,所以熟练掌握这两个原理至关重要。

加法原理完成一件事情,有m类不同的方式,而每种方式又有多种方法可以实现。

那么,完成这件事的方法数就需要把每一类方式对应的方法数加起来。

例如:从A地到B地,坐火车有3种方法,坐汽车有5种方法,坐飞机有2种方法,那么从A地到B地一共应该有3+5+2=10种方法。

这里从A地到B地有火车、汽车和飞机三类方式,可使用加法原理。

乘法原理完成一件事请,需要n个步骤,每一个步骤又有多种方法可以实现。

那么完成这件事的方法数就是把每一个步骤所对应的方法数乘起来。

例如:从A地到B地坐飞机需要在C地转机,已知从A地到C地有4种方法,从C地到B地有3种方法。

这里从A地到B地,需要分两个步骤完成,第一步从A地到C地,第二步从C地到B地,因此从A地到B地有4×3=12种方法。

总之,记住:分类用加法原理,分步用乘法原理有的同学可能在面对具体题目时,不知道什么时候分类、什么是分步。

实际上,对于分类和分步,可以这样区分:在分类的情况下,完成一件事,每一类中的每一种方法都可以达到目的,即都可以完成这件事。

在分步计数中,完成一件事,只有各个步骤都完成了,才算完成这件事。

我们回过头来看前面举的那个例子:从A地到B地,坐火车有3种方法,坐汽车有5种方法,坐飞机有2种方法,那么我们只要任选一种方式,都可以从A地到达B地,所以这是一个分类的过程;而对于第二个例子,就必须要先到C地,才能到B地,也就是说A-B、B-C这两步你要都完成了,才能最终成功,所以这是一个分步的过程。

互动小练习:1.现有各不相同的饼干3个,面包4个,小马要从中选一个,有几种选法?该用加法原理还是乘法原理?分析:很显然,可以按所选食物类别分为两类:(1)选饼干:有3种选法;(2)选面包:有4种选法。

排列组合概率题解题技巧

排列组合概率题解题技巧

排列组合概率题解题技巧排列组合概率题解题技巧有哪些?怎么样解决这类问题?下面是小编为大家整理的关于排列组合概率题解题技巧,希望对您有所帮助。

欢迎大家阅读参考学习!排列组合概率题解题技巧1.排列、组合、概率与错位公式2.排列组合概率解题思路——分类法3.例题1:繁琐的计算导致正确率变低4.例题2:通过选项思考暴力的可能性5.例题3:极为简单,一半做错的题6.例题4:分不同情况考虑安排方案7.例题5:分不同情况考虑安排方案8.例题6:理解排列组合题的关键一、排列、组合、概率与错位公式「数量关系」板块中的「排列、组合、概率」方面的题目每年必考、国考省考都会考,而此类题的难度一般较高,因此掌握它们的解题方法是非常有必要的。

总体来说,此类题目的公式非常简单,大致只有三个半,即排列公式、组合公式、概率公式和错位排列公式。

(1)排列公式A(总个数,选出排列的个数)特点是每个个体有「排列」的独特性,谁先选、谁后选会影响结果。

例如5个人选3个排队,5个项目选3个先后完成,两种情况的运算均为:A(5,3)=5×4×3=60种方式(2)组合公式C(总个数,选出组合的个数)特点是每个个体没有「排列」的独特性,谁先选、谁后选都不影响结果。

例如5个人选3个参加比赛,5个项目选3个于今年内完成(不要求完成顺序),则运算均为:C(5,3)=C(5,2)=5×4÷(1×2)=10种方式注意C(5,3)一般要转换为C(5,2),其原因是:C(5,3)=5×4×3÷(1×2×3)=5×4÷2,中间要约去3,因此可能会多花两三秒钟,故要尽量节约时间。

注:排列组合公式很好记忆,由于公考中考察的「排列组合概率」题的数值不会很大,因此在实际考试中,直接在纸上用笔列草稿即可:总数×(总数-1)×(总数-2)×……一直让相乘数字的个数达到「选出的个数」,即为排列公式;再从1开始乘,乘到「选出的个数」,用排列公式得出的结果除以该数即为「组合公式」。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2013国家公务员考试行测暑期向前冲数学运算:排列组合与
概率问题重难点讲解
排列组合与概率问题在国家公务员考试中出现频率较大,几乎每年都会考查该类题型。

公务员的日常工作更多涉及到统计相关知识,因此这部分题型会愈加被强调。

在现实生活中我们经常会遇到排座次、分配任务等问题,用到的都是排列组合原理,即便是最简单的概率问题也要利用排列组合原理计算。

与此同时,排列组合中还有很多经典问题模型,其结论可以帮助我们速解该部分题型。

一、基础原理
二、基本解题策略
面对排列组合问题常用以下三种策略解题:
1.合理分类策略
①类与类之间必须互斥(互不相容);②分类涵盖所有情况。

2.准确分步策略
①步与步之间互相独立(不相互影响);②步与步之间保持连续性。

3.先组后排策略
当排列问题和组合问题相混合时,应该先通过组合问题将需要排列的元素选择出来,然后再进行排列。

【例题1】班上从7名男生和5名女生中选出3男2女去参加五个竞赛,每个竞赛参加一人。

问有多少种选法?
A.120 B.600 C.1440 D.42000
中公解析:此题答案为D。

此题既涉及排列问题(参加五个不同的竞赛),又涉及组合问题(从12名学生中选出5名),应该先组后排。

三、概率问题
概率是一个介于0到1之间的数,是对随机事件发生可能性的测度。

概率问题经常与排列组合结合考查。

因此解决概率问题要先明确概率的定义,然后运用排列组合知识求解。

1.传统概率问题
2.条件概率
在事件B已经发生前提下事件A发生的概率称为条件概率,即A在B条件下的概率。

P(AB)为AB同时发生的概率,P(B)为事件B单独发生的概率。

【例题3】小孙的口袋里有四颗糖,一颗巧克力味的,一颗果味的,两颗牛奶味的。

小孙任意从口袋里取出两颗糖,他看了看后说,其中一颗是牛奶味的。

问小孙取出的另一颗糖也是牛奶味的可能性(概率)是多少?
四、排列组合问题特殊解法
排列组合问题用到的方法比较特殊,缘于这些方法都是在对问题进行变形,把不容易理解的问题转化为简单的排列组合问题。

1.捆绑法
排列时如要求几个元素相邻,则将它们捆绑起来视为一个整体参与排列,然后再考虑它们内部的排列情况。

【例题4】某展览馆计划4月上旬接待5个单位来参观,其中2个单位人较多,分别连续参观3天和2天,其他单位只参观1天,且每天最多只接待1个单位。

问:参观的时间安排共()种。

A.30
B.120
C.2520
D.30240
2.插空法
排列时如要求几个元素不相邻,则把不能相邻的元素插到其他元素形成的“空隙”中去。

【例题5】将三盆同样的红花和四盆同样的黄花摆放成一排,要求三盆红花互不相邻,共有多少种不同的方法?
A.8 B.10 C.15 D.20
3.插板法
若要求把n个元素分成m堆(每堆至少有1个),则把(m-1)个木板插入这n个元素形成的(n-1)个“空隙”中去可实现上述要求【例题6】某单位订阅了30份学习材料发放给3个部门,每个部门至少发放9份材料。

问一共有多少种不同的发放方法?
A.7
B.9
C.10
D.12
【例题7】一张节目表上原有3个节目,如果保持这3个节目的相对顺序不变,再添进去2个新节目,有多少种安排方法?
A.20
B.12
C.6
D.4
5.分析问题对立面
很多问题分类讨论起来很麻烦,但是它的对立面却很好计算,此时只需要算出总体的情况数再减去对立面的情况数。

【例题8】某班同学要订A、B、C、D四种学习报,每人至少订一种,最多订四种,那么每个同学有多少种不同的订报方式?
A.7种 B.12种 C.15种 D.21种
中公解析:从中公的命题分析来看,题中的事件有多种情况,最直接的方法自然是分类讨论,但类别太多,此时应优先考虑它的对立面,看是不是要比问题本身简单。

“至少1种,至多4种”,结合题干,其反面是“1本都不订”。

每种报纸有订或不订2种选择,则共有2×2×2×2=16种订法,反面情况为1种,则所求就是16-1=15种。

五、经典问题模型
排列组合中有若干经典问题分析起来较复杂,我们可直接利用这类问题的结论。

其中主要介绍以下三类经典问题:环线排列问题、错位重排问题、传球问题。

我们需要记住这些问题的结论。

相关文档
最新文档