有理数及其运算知识点汇总

合集下载

(完整版)有理数的性质及其运算知识点汇总

(完整版)有理数的性质及其运算知识点汇总

(完整版)有理数的性质及其运算知识点汇总有理数的性质及其运算知识点汇总一、有理数性质有理数是可用两个整数的比表示的数,包括正整数、负整数和零。

有理数的性质如下:1. 有理数可以进行加法、减法、乘法和除法运算。

2. 有理数的加法和乘法满足交换律和结合律。

3. 有理数的乘法满足分配律。

4. 有理数的加法、减法和乘法仍然是有理数。

5. 有理数可以用小数形式表示。

二、有理数运算知识点1. 有理数的加法有理数的加法满足以下规则:- 两个正有理数相加,结果仍为正有理数。

- 两个负有理数相加,结果仍为负有理数。

- 正有理数和负有理数相加,结果为它们的差的绝对值的符号与较大绝对值的符号相同。

2. 有理数的减法有理数的减法可以转化为加法运算,规则如下:- 减去一个有理数等于加上这个有理数的相反数。

3. 有理数的乘法有理数的乘法满足以下规则:- 正有理数乘以正有理数,结果仍为正有理数。

- 负有理数乘以负有理数,结果仍为正有理数。

- 正有理数乘以负有理数,结果为它们的积的符号为负。

- 任何数乘以零,结果为零。

4. 有理数的除法有理数的除法可以转化为乘法运算,规则如下:- 除以一个有理数等于乘以这个有理数的倒数(除数不为零)。

5. 有理数的运算顺序有理数的运算顺序遵循以下规则:1. 先计算括号中的内容。

2. 然后按照先乘除,后加减的顺序计算。

3. 如果有多个乘法或除法,按照从左到右的顺序进行。

6. 有理数的小数形式表示有理数可以用小数形式表示,其中:- 有限小数是按照小数位数为限的。

- 循环小数是具有重复循环数字的。

以上是有理数的性质及其运算知识点的汇总,希望对你有所帮助。

(完整版)有理数及其运算知识点汇总

(完整版)有理数及其运算知识点汇总

⎪⎪⎪⎩⎪⎪⎪⎨⎧有理数⎪⎩⎪⎨⎧)3,2,1:()3,2,1:( 如负整数如正整数整数)0(零⎪⎩⎪⎨⎧----)8.4,3.2,31,21:( 如负分数分数)8.3,3.5,31,21:( 如正分数有理数及其运算知识点汇总 1、2、数轴的三要素:原点、正方向、单位长度(三者缺一不可)。

3、任何一个有理数,都可以用数轴上的一个点来表示。

(反过来,不能说数轴上所有的点都表示有理数)4、如果两个数只有符号不同,那么我们称其中一个数为另一个数的相反数,也称这两个数互为相反数。

(0的相反数是0)5、在数轴上,表示互为相反数的两个点,位于原点的侧,且到原点的距离相等。

数轴上两点表示的数,右边的总比左边的大。

正数在原点的右边,负数在原点的左边。

6、绝对值的定义:一个数a 的绝对值就是数轴上表示数a 的点与原点的距离。

数a 的绝对值记作|a|。

7、正数的绝对值是它本身;负数的绝对值是它的数;0的绝对值是0。

⎪⎩⎪⎨⎧<-=>)0()0(0)0(||a a a a a a 或 ⎩⎨⎧<-≥)0()0(||a a a a a 8、绝对值的性质:除0外,绝对值为一正数的数有两个,它们互为相反数; 互为相反数的两数(除0外)的绝对值相等;任何数的绝对值总是非负数,即|a|≥09、比较两个负数的大小,绝对值大的反而小。

比较两个负数的大小的步骤如下: ①先求出两个数负数的绝对值;②比较两个绝对值的大小;③根据“两个负数,绝对值大的反而小”做出正确的判断。

10、绝对值的性质:①对任何有理数a ,都有|a|≥0②若|a|=0,则|a|=0,反之亦然③若|a|=b ,则a=±b④对任何有理数a,都有|a|=|-a|11、有理数加法法则:①同号两数相加,取相同符号,并把绝对值相加。

②异号两数相加,绝对值相等时和为0;绝对值不等时取绝对值较大的数的符号,并 用较大数的绝对值减去较小数的绝对值。

③一个数同0相加,仍得这个数。

(完整版)有理数及其运算知识点汇总

(完整版)有理数及其运算知识点汇总

⎪⎪⎪⎩⎪⎪⎪⎨⎧有理数⎪⎩⎪⎨⎧)3,2,1:()3,2,1:( 如负整数如正整数整数)0(零⎪⎩⎪⎨⎧----)8.4,3.2,31,21:( 如负分数分数)8.3,3.5,31,21:( 如正分数有理数及其运算知识点汇总1、2、数轴的三要素:原点、正方向、单位长度(三者缺一不可).3、任何一个有理数,都可以用数轴上的一个点来表示。

(反过来,不能说数轴上所有的点都表示有理数)4、如果两个数只有符号不同,那么我们称其中一个数为另一个数的相反数,也称这两个数互为相反数.(0的相反数是0)5、在数轴上,表示互为相反数的两个点,位于原点的侧,且到原点的距离相等。

数轴上两点表示的数,右边的总比左边的大。

正数在原点的右边,负数在原点的左边.6、绝对值的定义:一个数a 的绝对值就是数轴上表示数a 的点与原点的距离.数a 的绝对值记作|a |.7、正数的绝对值是它本身;负数的绝对值是它的数;0的绝对值是0.⎪⎩⎪⎨⎧<-=>)0()0(0)0(||a a a a a a 或 ⎩⎨⎧<-≥)0()0(||a a a a a 8、绝对值的性质:除0外,绝对值为一正数的数有两个,它们互为相反数;互为相反数的两数(除0外)的绝对值相等;任何数的绝对值总是非负数,即|a|≥09、比较两个负数的大小,绝对值大的反而小。

比较两个负数的大小的步骤如下:①先求出两个数负数的绝对值;②比较两个绝对值的大小;③根据“两个负数,绝对值大的反而小"做出正确的判断。

10、绝对值的性质:①对任何有理数a ,都有|a|≥0②若|a |=0,则|a|=0,反之亦然③若|a |=b ,则a=±b④对任何有理数a ,都有|a |=|-a |11、有理数加法法则:①同号两数相加,取相同符号,并把绝对值相加。

②异号两数相加,绝对值相等时和为0;绝对值不等时取绝对值较大的数的符号,并 用较大数的绝对值减去较小数的绝对值。

有理数及其运算要点整理

有理数及其运算要点整理

有理数及其运算要点整理1. 有理数的定义有理数是指可以表示为两个整数的比值的数,它们可以是正数、负数或零。

有理数包括整数、分数和小数。

2. 有理数的运算2.1 加法与减法有理数的加法和减法遵循以下规则:- 同号相加:两个正数相加,结果仍为正数;两个负数相加,结果仍为负数。

- 异号相减:一个正数减去一个负数,相当于两个正数相加;一个负数减去一个正数,相当于两个负数相加。

- 异号相减取相反数:减去一个数,等于加上这个数的相反数。

2.2 乘法与除法有理数的乘法和除法遵循以下规则:- 同号相乘:两个正数相乘,结果仍为正数;两个负数相乘,结果仍为正数。

- 异号相乘:两个不相等的有理数相乘,结果为负数。

- 除法是乘法的逆运算:一个数除以另一个数,等于将被除数乘以除数的倒数。

3. 有理数运算的要点3.1 加法与减法的要点- 将有理数按照同号、异号分类进行计算,遵循同号相加、留号不变;异号相减,取相反数相加的原则。

- 确保有理数的运算过程中,将同种类型的数进行运算,如整数与整数相加,分数与分数相加,小数与小数相加。

3.2 乘法与除法的要点- 乘法的结果符号由乘数和被乘数决定,同号得正,异号得负。

- 除法的结果符号由被除数和除数决定,同号得正,异号得负。

- 乘法和除法都要注意化简分数,使结果尽量简化。

4. 示例4.1 加法与减法示例例1:计算 -5 + (-3)。

解:两个负数相加,结果仍为负数,所以 -5 + (-3) = -8。

例2:计算 -4 - 2。

解:一个负数减去一个正数,相当于两个负数相加,所以 -4 -2 = -6。

4.2 乘法与除法示例例3:计算 -2 × 3。

解:两个不相等的有理数相乘,结果为负数,所以-2 ×3 = -6。

例4:计算 12 ÷ (-4)。

解:一个正数除以一个负数,结果为负数,所以 12 ÷ (-4) = -3。

以上是有理数及其运算的要点整理,希望对你理解有理数的运算有所帮助。

有理数及其运算知识点

有理数及其运算知识点

有理数及其运算知识点一、有理数的定义和表示方式有理数是可以表示为两个整数的比的数,包括正有理数、负有理数和零。

有理数可以用分数形式或小数形式来表示。

1. 分数形式:有理数的分数形式是一个分子与一个不等于零的分母的比,分数形式可以是正数也可以是负数。

例如:2/3、-4/52. 小数形式:有理数的小数形式可以是有限小数或循环小数。

有限小数是指小数部分有限位数的小数,循环小数是指小数部分有无限循环的小数。

例如:0.5、-1.3333...(循环小数可以用省略号表示)二、有理数的四则运算有理数的四则运算包括加法、减法、乘法和除法,具体规则如下:1. 加法:有理数相加时,将分母相同的分数相加,然后保持分母不变。

如果分母不同,则需要化为通分后再相加。

同时,要注意正数加正数等于正数,负数加负数等于负数,正数加负数等于正负相消,负数加正数等于负正相消,零加任意数等于这个数本身。

2. 减法:有理数相减时,可以将减法转化为加法运算,即改为加上被减数的相反数。

例如,a-b可以转化为a+(-b)。

然后按照加法运算规则进行计算。

3. 乘法:有理数相乘时,分子相乘得到新的分子,分母相乘得到新的分母。

同时,要注意正数乘以正数等于正数,负数乘以负数等于正数,正数乘以负数等于负数,负数乘以正数等于负数,零乘以任意数等于零。

4. 除法:有理数相除时,可以将除法转化为乘法运算,即改为用除数的倒数乘以被除数。

例如,a/b可以转化为a*(1/b)。

然后按照乘法运算规则进行计算。

同时,要注意正数除以正数等于正数,负数除以负数也等于正数,正数除以负数等于负数,负数除以正数等于负数,零除以任意非零数等于零。

三、绝对值和相反数在有理数的运算中,还有两个重要的概念:绝对值和相反数。

1. 绝对值:一个数的绝对值表示该数与零之间的距离,总是为非负数。

正数的绝对值等于该正数本身,负数的绝对值等于该负数去掉负号得到的正数,零的绝对值等于零。

2. 相反数:一个数的相反数指的是与该数绝对值相等但符号相反的数。

有理数及其运算知识归纳及练习

有理数及其运算知识归纳及练习

第二章 有理数及其运算班级**〔一〕有理数知识点1:正数和负数1、设上升为正,上升200米记作米,则下降300米应记作,不升不降应记作.200+2、〔2021·〕如果零上记作,则零下可记作〔 〕.5C o 5C +o 7C oA. B. C. D. 7C -o 7C +o 12C +o 12C -o知识点2:有理数及其分类3、大于零的数叫______,在正数前面加上“﹣〞〔读作负〕的数叫______;____既不是正数,也不是负数。

4、〔2021•〕如果收入50元,记作+50元,则支出30元记作( )元. A.+30 B.-30 C.+80 D.-805、把以下各数填在相应的大括号:1,-0.1,-789,25,0,-20,-3.14,52正整数集{…};非负整数集{ …}正分数集{…};负分数集{ …}正有理数集{ …};负有理数集{ …}〔二〕数轴知识点1:数轴的定义6、数轴的三要素:______,________,_________.知识点2:数轴上的点与有理数的关系7、比拟有理数的大小: ①数轴上右边的数总比左边的数__;②正数都______零;③负数都_____零;④正数______一切负数.8、〔1〕数轴上和原点距离等于4.3个单位的点所表示的数是________;〔2〕和表示的点距离等于4个单位的点所表示的数是_________;5-9、〔2001•呼和浩特〕在数轴上,原点及原点右边的点表示的数是〔 〕A .正数B .负数C .非正数D .非负数10、〔2021•莱芜〕如图,在数轴上点A 表示的数可能是〔 〕A .1.5B .-1.5C .-2.4D .2.411、数轴上A 、B 两点表示的数分别为a 、b ,且点A 在点B 的左边,以下结论正确的选项是( )A .a +b <0B .a +b >0C .a -b <0D .a -b >012、以下说法错误的选项是〔 〕A .数轴是一条直线 B .数轴上的原点表示数0C .数轴上表示数-a 的点在原点的左边 D .0是正数与负数的分界点〔三〕绝对值知识点1:相反数13、只有符号不同的两个数互为_______;数轴上表示互为相反数的两个点到原点的距离且分别在原点的两边;0的相反数是___;a 的相反数是_____;互为相反数的两个数相加和为_____.14、〔2005•〕如果□+2=0,则“□〞应填的实数是〔 〕A .﹣2B . C. D.2212115、以下关于相反数、数轴的说法,不正确的选项是〔 〕A .符号相反的两个数互为相反数 B .假设a=-a ,则数轴上表示a 的点是原点C .数轴上关于原点对称的两个点表示相反数 D .假设a +b=0,则a 、b 互为相反数16、写出以下各数的相反数,并在数轴上把这些相反数表示出来:知识点2:绝对值17、(1)数a 的点与原点的距离叫做,数a 的绝对值记作∣a∣;(2)意义:假设a >0,则∣a∣=. 假设a =0,则∣a∣=____. 假设a <0,则∣a∣=___ ;两个负数比拟大小,绝对值越大的负数反而____;两个点a 与b(a <b)之间的距离为:______。

《第二章有理数及其运算》归纳总结

《第二章有理数及其运算》归纳总结
1. 把一个大于10的数记成a×10n 的形式,其中a是整数数位只有一位 的数,这种记数法叫做科学记数法 .
2. 一个近似数,从左边第一个不是0 的数字起,到精确到的数位止,所 有的数字,都叫做这个数的有效数字.
有理数的五种运算
1.运算法则 2.运算顺序 3.运 算 律
1.运算法则
1)有理数加法法则 2)有理数减法法则 3)有理数乘法法则 4)有理数除法法则 5)有理数的乘方
2.运算顺序
1)有括号,先算括号里面的; 2)先算乘方,再算乘除,
最后算加减; 3)对只含乘除,或只含加减的
运算,应从左往右运算.
3.有理数的运算律
1)加法交换律 a+b=b+a
2)加法结合律(a+b)+c=a+(b+c)
3)乘法交换律
ab=ba
4)乘法结合律 (ab)c=a(bc) 5)分 配 律 a(b+c)=ab+ac
4)有理数除法法则
①除以一个数等于乘上这个数的倒数;
即 a÷b=a× 1(b≠0) b
② 两数相除,同号得正,异号得负, 并把绝对值相除;
0除以任何一个不等于0的数,都 得0.
5)有理数的乘方
①求n个相同因数的积的运算,叫做乘方.
即a·a·a·····aa= n
n个 幂
an 指数
底数
②正数的任何次幂都是正数; 负数的奇次幂是负数, 负数的偶次幂是正数.
3)所有有理数都可以用数轴上 的点表示.是另一个的相反数.
1)数a的相反数是-a
(a是任意一个有理数);
2)0的相反数是0. 3)若a、b互为相反数,则a+b=0.
-4
4

(完整版)有理数的除法及其运算知识点汇总

(完整版)有理数的除法及其运算知识点汇总

(完整版)有理数的除法及其运算知识点汇

1. 有理数的除法规则
- 有理数除以非零有理数,除数不为负时,商为正,除数为负时,商为负。

2. 有理数的除法步骤
- 将除法转化为乘法:除法问题可以转化为乘法问题,即将除数的倒数与被除数相乘。

- 计算乘积:将除数的倒数与被除数相乘,并化简答案。

3. 有理数的除法性质
- 除法的运算交换律:a ÷ b = b ÷ a
- 除法的运算结合律:(a ÷ b) ÷ c = a ÷ (b × c)
- 除法的运算分配律:a ÷ (b + c) = a ÷ b + a ÷ c
4. 有理数的除法运算技巧
- 将除数写成一个最简分数或小数,有助于计算时减小出错概率。

- 当除数很接近被除数时,可通过调整被除数变成除数的倍数,从而简化除法计算。

5. 有理数除法应用
- 有理数的除法在实际生活中有广泛应用,比如计算货币兑换、计算长短时间等。

6. 实例演算
以下是一个有理数的除法示例演算过程:
例如:计算-0.5 ÷ 0.2
从上述示例可见,有理数的除法运算需要注意符号、化简答案
和特殊情况的处理。

以上是有理数的除法及其运算知识点的汇总。

希望对您有帮助!。

有理数及其运算知识点总结

有理数及其运算知识点总结

有理数及其运算知识点总结
1. 有理数是可以表达为两个整数的比值的数,包括正整数、负整数、零以及可以用分数表示的数。

2. 有理数的加法和减法运算:
- 相同符号的有理数相加减,绝对值相加减,结果带相同符号。

- 不同符号的有理数相加减,绝对值相减,结果带绝对值大的符号。

3. 有理数的乘法和除法运算:
- 相同符号的有理数相乘、相除,结果为正数。

- 不同符号的有理数相乘、相除,结果为负数。

4. 有理数的乘法:
- 非零有理数相乘,绝对值相乘,符号由乘法规则决定。

- 0乘以任何数等于0。

5. 有理数的除法:
- 非零有理数相除,绝对值相除,符号由除法规则决定。

- 0不能作为除数。

6. 有理数的乘方:
- 正数的乘方:底数不变,指数相乘。

- 零的非负整数次幂为0,零的负整数次幂没有定义。

- 1的任何整数次幂仍为1。

- 负数的偶次幂为正数,奇次幂为负数。

7. 有理数的相反数是指与其绝对值相等,但符号相反的数。

8. 有理数的倒数是指其倒数等于它的分子和分母互换位置后的比值。

9. 有理数的绝对值是指其去掉符号的值。

10. 有理数的大小比较:
- 两个有理数绝对值相等,但符号相反时,负数较大。

- 两个正数比较大小,绝对值大的数较大。

- 两个负数比较大小,绝对值小的数较大。

这些是有理数及其运算的基本知识点总结,能够帮助理解有理数的概念和规则。

数学 第二单元 有理数及其运算 知识点汇总

数学 第二单元 有理数及其运算 知识点汇总
3. 数轴上的点与有理数的关系: ⑴所有的有理数都可以用数轴上的点来表示, 正有理数可用原点右边的点表示, 负有理数可用原点左边的点表示, 0 用原点表示。 ⑵所有的有理数都可以用数轴上的点表示出来, 但数轴上的点不都表示有理数, 也就是说,有理数与数轴上的点不 是一一对应关系。 (如, 数轴上的点π 不是有理数) 4. 利用数轴比较有理数的大小: 在数轴上表示的两个数, 右边的数总比左边的数大。 正数都大于 0; 负数都小于0; 正数大于一切负数。
七年级-上册
七年级上册-第二章 有理数及其运算
七年级上册-第二章 有理数及其运算
1.有理数 2.数轴 3.绝对值 4.有理数的加法 5.有理数的减法 6.有理数的加减混合运算 7.水位的变化 8.有理数的乘法 9.有理数的除法 10.有理数的乘方 11.科学记数法
七年级上册-第二章 有理数及其运算
思维导图
七年级上册-第二章 有理数及其运算
正数和负数的概念
⒈正数和负数的概念 负数:比 0 小的数 正数:比 0 大的数 0 既不是正数,也不是负数。 注意: ①字母 a 可以表示任意数,当 a 表示正数时,-a 是负数;当 a 表示负数时,-a 是正数;当 a 表示 0 时,-a 仍是 0。 (如果出判断题为:带正号的数是正数,带负号的数是负数,这种说法是错误的,例如+a, -a 就不能做出简单判断) ②正数有时也可以在前面加“+”,有时“+”省略不写。所以省略“+”的正数的符号是正号。 2. 具有相反意义的量 若正数表示某种意义的量,则负数可以表示具有与该正数相反意义的量, 比如:零上 8℃表示为: +8℃; 零下 8℃表示为: -8℃ 3. 0 表示的意义 ⑴0 表示“ 没有”,如教室里有 0 个人,就是说教室里没有人; ⑵0 是正数和负数的分界线,0 既不是正数,也不是负数。

有理数及其运算知识点

有理数及其运算知识点

有理数及其运算知识点一、有理数的定义有理数是可以表示为两个整数比的数,形式为a/b,其中a和b是整数,且b不为零。

有理数集合包括所有整数、分数和它们的负数。

二、有理数的分类1. 整数:包括正整数、零和负整数,如1, 0, -2等。

2. 分数:分子和分母都是整数的比值,如3/4, -5/2等。

3. 混合数:包含整数部分和分数部分的数,如1 3/4。

三、有理数的性质1. 封闭性:有理数集合在加法、减法、乘法和除法(除数不为零)运算下是封闭的。

2. 有序性:任何两个有理数都可以比较大小。

3. 加法和乘法的交换律、结合律:有理数的加法和乘法满足交换律和结合律。

4. 加法和减法的逆元:任何有理数a都有加法逆元(-a),使得a + (-a) = 0;任何非零有理数a都有减法逆元(-a/a = -1)。

四、有理数的运算规则1. 加法:a. 同号相加,取相同的符号,并将绝对值相加。

b. 异号相加,取绝对值较大的数的符号,并将绝对值相减。

c. 任何数与零相加,结果为原数。

2. 减法:a. 减去一个数等于加上它的相反数。

b. a - b = a + (-b)。

3. 乘法:a. 同号得正,异号得负,并将绝对值相乘。

b. 任何数与零相乘,结果为零。

c. 乘法满足交换律和结合律。

4. 除法:a. 除以一个非零数等于乘以它的倒数。

b. a / b = a * (1/b)。

c. 除数不能为零。

5. 混合运算:a. 在混合运算中,先进行乘除运算,再进行加减运算。

b. 同级运算应按照从左到右的顺序进行。

五、有理数的运算律1. 加法交换律:a + b = b + a2. 加法结合律:(a + b) + c = a + (b + c)3. 乘法交换律:a * b = b * a4. 乘法结合律:(a * b) * c = a * (b * c)5. 分配律:a * (b + c) = a * b + a * c六、有理数的比较1. 正数大于零,零大于所有负数。

有理数及其运算知识要点归纳

有理数及其运算知识要点归纳

有理数及其运算知识要点归纳
一、有理数的概念
有理数包括整数和分数,它们都可以用分数的形式表示,而且可以是正数、负数或零。

二、有理数的表示与比较
有理数的表示可以使用小数形式或分数形式,小数形式可以是有限小数或无限循环小数。

比较有理数时,可以将它们表示成相同的分数形式,然后比较分子大小。

三、有理数的加法与减法运算
有理数的加法和减法运算可以直接进行,只需将同类项相加或相减即可。

注意要充分理解负数的加法和减法规则,以及对负数的运算顺序。

四、有理数的乘法与除法运算
有理数的乘法和除法运算同样可以直接进行,将分子乘(除)以分子,分母乘(除)以分母,并进行约分。

注意正数、负数相乘的规则,以及除法时被除数和除数的正负情况。

五、有理数的运算性质
有理数的四则运算包括交换律、结合律、分配律等运算性质。

理解并熟练运用这些性质可以简化计算过程,提高计算的准确性。

六、有理数的绝对值
有理数的绝对值是其去掉正负号后的数值。

可以用公式表示绝对值,也可以通过分情况讨论来计算。

七、有理数的倒数
有理数的倒数是指一个数的倒数与该数相乘的结果为1。

分母不为零时,可以直接写出有理数的倒数。

总结:有理数的概念、表示与比较、加法与减法运算、乘法与除法运算、运算性质、绝对值和倒数是掌握有理数及其运算知识的重要要点。

以上是关于有理数及其运算知识要点的归纳。

《有理数及其运算》知识点

《有理数及其运算》知识点

《有理数及其运算》知识点 xsh1、最小的正整数_________最大的负整数_________相反数等于本身的数__________互为相反数的两个数的和__________互为相反数的两个数(0除外)的商__________绝对值等于本身的数__________绝对值大于本身的数__________绝对值不大于本身的数__________倒数等于本身的数__________互为倒数的两个数的积__________互为负倒数的两个数的积__________平方等于本身的数__________立方等于本身的数__________2、(-1)2n -1=____________ (-1)2n=__________ -3.4的倒数是_________ 相反数是__________3、|x|=2,则x=__________ |-x|=3,则x=__________ |x -2|=5,则x=_______ x 2=16,则x=__________x 3=-64,则x=________ x 6=64. 则x=__________4、a 的相反数是________,-a 是负数吗?_____,a -b 的相反数_______,a+b 的相反数_______|a|=a ,则a_____0,|a|=-a ,则a_____0,|a -2|=2-a ,则a__________5、|x -2|+(y -3)2=0,则x+y=________-(-2011),则a=_________6、绝对值不大于4的非负整数有________________,整数有_______个。

绝对值不大于2011的所有整数的和为_________,积为_________。

7、x 、z 互为倒数,|y|=7,m 、n 互为相反数,求y y n m xy -++-105=_________ 8、-24=________,(-2)4=__________,-(-2)4=___________。

有理数及其运算知识点

有理数及其运算知识点

有理数及其运算知识点有理数是指可以表示为两个整数的比值的数,包括正整数、负整数、零和分数。

在数学中,有理数的运算是非常重要的基础知识点之一。

本文将介绍有理数的基本概念和运算规则。

首先,让我们来了解有理数的定义。

有理数可以表示为 p/q 的形式,其中 p 和 q 是整数,且 q 不等于零。

有理数包含了整数、分数和小数。

例如,2、-3、1/2 和 0.75 都是有理数。

有理数的运算主要包括加法、减法、乘法和除法。

下面将详细介绍每种运算的规则。

1. 加法有理数的加法是一个基本的运算。

当两个有理数的符号相同时,只需按照整数的加法规则相加,并保留符号。

例如,2+3=5,-5+(-2)=-7。

当两个有理数的符号不同时,我们需要先计算绝对值的和,然后根据绝对值的大小决定结果的符号。

例如,2+(-3)=-1,-5+3=-2。

2. 减法有理数的减法可以转化为加法运算。

对于一个减法运算 a-b,我们可以将其转化为 a+(-b) 的形式,然后按照加法的规则进行计算。

例如,2-3 可以写成 2+(-3),然后计算为 -1。

3. 乘法有理数的乘法运算是通过相乘得到一个新的有理数。

当两个有理数的符号相同时,乘积为正;当两个有理数的符号不同时,乘积为负。

例如,2*3=6,-2*(-3)=6,-2*3=-6。

4. 除法有理数的除法是通过相除得到一个新的有理数。

除法的结果可以通过将被除数除以除数得到。

如果除数为零,则除法运算没有意义。

例如,3/2=1.5,-10/5=-2。

除了基本的四则运算外,还有一些其他的运算法则和性质与有理数相关。

一些重要的知识点如下:- 乘法逆元:对于一个非零有理数 a,它的乘法逆元记为 1/a。

乘法逆元满足 a*(1/a) = 1。

- 除法换算:对于一个有理数 a 和非零有理数 b,a/b 可以换算为 a*(1/b)。

- 分数化简:将一个有理数化为最简分数形式,也就是将分子和分母的公因子约去。

除了以上的运算规则和知识点,有理数还有很多应用和拓展。

第二章有理数、数轴、绝对值知识点汇总

第二章有理数、数轴、绝对值知识点汇总

非负整数第二章《有理数及其运算》知识点汇总§2.1~2.3、2.10一. 有理数学习目标:会判断一个数是正数还是负数,能用正、负数表示具有相反意义的量;理解有理数的意义,会将有理数正确分类. 学习重点:正、负数的意义 学习难点:有理数的分类1.定义: 和 统称有理数. 注意: π不是有理数 2.分类分类一:依据:先确定数的性质(类型),再确定数的符号 有理数分类二:依据:先确定数的符号,再确定数的性质(类型)正有理数有理数 0 3.比较:法一:依据符号:0>正数 , 0负数<, 所以负数正数>。

法二:数形结合:数轴上两个点表示的数,右边的总比左边的大。

特别地:两个负数比大小,绝对值大的反而小。

整数正整数 负整数零分数正分数 负分数非正整数负有理数正整数 正分数负整数 负分数4.特殊的0 : 0既不是正数也不是负数;0的相反数是0;0没有倒数.5.两数之间的特殊关系:若两个数的和为0,则它们互为相反数. 若a+b=0,则a、b互为相反数,反之也成立.若两个数的乘积为1,则它们互为倒数. 若ab=1,则a、b互为倒数,反之也成立.若两个数的乘积为-1,则它们互为负倒数. 若ab=-1,则a、b互为负倒数,反之也成立.)的倒数是_______.-a是a的_______. a(a06.最小的正整数是____,最大的负整数是____,最小的非负数是____.习题整理:二.数轴学习目标:认识数轴,会用数轴上的点表示有理数;能利用数轴比较连个有理数的大小;体会数形结合的思想学习重点:能将已知数在数轴上表示出来,说出数轴已知点所表示的数学习难点:利用数轴比较有理数的大小1.定义:具有原点、正方向、单位长度的直线叫数轴.2.三要素:原点、正方向、单位长度 .3.画法:画一条水平直线,在这条直线上任取一点作为_______,选取某一长度作为_______,规定直线上向右的方向为_______.4.数轴上的点与实数(有理数和无理数)一一对应.任何一个有理数都可以用数轴上的点表示,反之不成立.三.相反数、绝对值学习目标:能借助数轴理解相反数的概念,会求一个数的相反数;能借助数轴理解绝对值的概念,会求一个数的绝对值;会利用绝对值比较负数的大小;理解绝对值的非负性;体会数形结合和分类讨论的思想学习重点:正确理解绝对值的含义,求一个数的绝对值 学习难点:比较两个负数的大小,去绝对值1.相反数的定义:只有 的两个数互为相反数.2.在数轴上,表示互为相反数的两个点,位于原点的______,且与原点的距离_______. 3.绝对值的定义:几何:在数轴上,一个数所对应的点到原点的距离叫做该数的绝对值 数a 的绝对值写作: a ; 读作:a 的绝对值.代数:正数的绝对值是 ,负数的绝对值是 ,0的相反数是 . a (a 0)即:a = 0(a=0)-a (a 0) 4.绝对值的非负性: 0≥a5.互为相反数的两个数的绝对值 . 即a a -= ,因为它们到原点的距离相同。

有理数知识点考点难点总结归纳

有理数知识点考点难点总结归纳

有理数知识点考点难点总结归纳理数是数的一种,它包括整数、分数和小数。

在初中数学中,有理数是一个重要的知识点,学生需要掌握有理数的性质、运算和应用。

下面我来总结归纳一下有理数的知识点、考点和难点。

一、有理数的基本概念1.整数:正整数、负整数、零。

整数的性质:加法逆元、乘法逆元、绝对值。

2.分数:分子、分母、约分、通分、分数的比较大小、分数的性质。

3.小数:有限小数、无限循环小数、无限不循环小数。

二、有理数的运算1.四则运算:加法、减法、乘法、除法及其性质。

2.混合运算:不同运算符的运算顺序。

3.绝对值与大小比较:有理数的绝对值性质、绝对值大小的比较。

4.整数幂:整数的正、负、零幂及其性质。

5.分数的四则运算:加法、减法、乘法、除法及其性质。

6.有理数的乘方:有理数的正、负、零次幂及其性质。

三、有理数的应用1.推理与解答问题:通过有理数知识解答实际问题。

2.田字格法则:计算有理数乘法与除法的结果。

3.分数的应用:计算问题中的比例、百分数、利率等。

四、有理数的考点1.正数、负数、零的概念及其性质与运算。

2.分数的概念、运算、比较和应用。

3.分数与整数、分数与小数的转化。

4.有理数四则运算的规则与性质。

5.有理数乘方与有理数四则混合运算。

6.有理数的比较和绝对值的计算。

7.有理数运算在实际问题中的应用。

五、有理数的难点1.分数的约分、通分和比较大小。

2.分数与整数、小数的互化。

3.有理数四则运算的运算顺序。

4.有理数运算的特殊性质的把握。

6.有理数应用题的解答思路与方法。

以上是有理数的知识点、考点和难点的总结归纳。

通过系统学习和不断练习,学生可以掌握有理数的基本概念、运算规则和应用技巧,提高数学能力。

有理数及其运算知识要点概括

有理数及其运算知识要点概括

有理数及其运算知识要点概括有理数是可以表示为整数比整数的形式的数,包括整数、分数和小数。

有理数的运算主要包括加法、减法、乘法和除法。

一、有理数的分类1.整数:整数是不带小数部分的数,包括正整数、负整数和零。

2.分数:分数是带有分子和分母的数,分子为整数,分母为正整数。

3.小数:小数是带有小数部分的数,可分为有限小数和无限循环小数。

二、有理数的加法和减法1.同号数相加(减):同号的两个有理数相加(减),将它们的绝对值加(减)起来并保持其符号不变。

2.异号数相减:异号的两个有理数相减,先将它们的绝对值相加,并将绝对值较大的数的符号保留在结果中。

3.加法和减法的运算律:加法和减法都满足交换律、结合律和分配率。

三、有理数的乘法和除法1.乘法法则:将两个有理数的绝对值相乘,再根据相乘数的符号规定乘积的符号。

2.乘法的运算律:乘法满足交换律、结合律和分配率。

3.除法法则:将除数的倒数乘以被除数,再根据除数和被除数的符号规定商的符号。

四、有理数的大小比较1.同号比较:绝对值相同的同号有理数,正数大于负数。

2.异号比较:绝对值较小的数大于绝对值较大的数。

五、有理数的表示与化简1.分数的表示与化简:分数可以化简为最简形式,即分子和分母没有公因数。

2.小数的表示与化简:有限小数可以表示为分数形式,无限循环小数可以表示为无限循环小数形式或者分数形式。

六、应用领域综上所述,有理数及其运算是数学中基础且重要的概念。

掌握有理数的分类、运算规则以及表示与化简方法,能够帮助我们更好地理解和应用数学知识,在解决实际问题中发挥重要作用。

有理数及其运算

有理数及其运算

有理数及其运算一、知识点回忆1、掌握有理数的概念和分类。

2、知道有理数与数轴上的点的关系。

掌握数轴的定义 ,会用数轴上的点表示有理数 ,理解有理数的有序性 ,会比拟两个有理数的大小。

3、利用数轴理解数的绝对值和一对相反数的意义。

4、掌握有理数的运算法那么。

5、有理数的乘方。

了解底数、指数、幂等概念。

6、掌握有理数的运算律。

7、熟练进行有理数的混合运算。

运算时可合理运用运算律 ,使运算简便。

8、掌握科学计数法。

二、典型例题分析1、计算〔1〕、〔2〕、〔- 2 〕+ 1 + 1 + (- 5 )〔3〕、-150〔- 〕-250.125+50〔- 〕〔4〕、〔+3 〕〔3 -7 〕〔5〕、3 〔- 〕-〔- 〕2 - 〔- 〕〔6〕- ( + - )〔7〕、{1+[ -〔- 〕](-2)}(- - -0.05)〔8〕、〔9〕、〔10〕、〔11〕、|x|= ,|y|= ,且xy0,求代数式5x+7y-9的值。

〔12〕、〔13〕、〔14〕、的值。

2、实数在数轴上的位置如图,化简:3、a、b互为相反数 ,c、d互为倒数 ,求的值;4、有理数a、b、c满足 + + = -1 求的值。

5、用计算器计算以下各式 ,并将结果填写在横线上。

①1715873=②2715873=③3715873=④4715873=⑴你发现了什么规律?把你发现的规律用简练的语言写出来;⑵不用计算器 ,请你直接写出9715873的结果。

6、任意写出一个数3的倍数 ,把它的各个数位上数字分别立方 ,再把这些立方数相加 ,得到一个新的数;接着 ,把这个新得到的数的各个数位上的数字分别立方 ,再把这些立方数相加 ,又得到一个新的数; ,如此重复做下去 ,你发现了什么规律?请借助计算器进行探索。

7、欢欢在一家玩具厂里测量了20个底座是圆形玩具的底座直径 ,测得直径如下〔单位 mm〕:25、 25、 24、 24、 23、24、 24、 25、 26、 25、 23、 23、 24、 25、 25、 24、24、 26、 26、 25。

有理数及其运算知识点总结

有理数及其运算知识点总结

有理数及其运算知识点总结有理数是指可以表示为两个整数的比值的数,包括整数、分数和小数。

在数学中,有理数是重要的数集,是整数的推广,可以用来表示包括整数在内的所有数。

有理数主要涉及四则运算、绝对值、比较大小、转化等方面的知识。

一、有理数的定义和性质1.有理数的定义:有理数是可以记作a/b的数,其中a、b是整数,b≠0,a和b没有公共因子。

2.有理数的性质:(1)有理数可以分为整数、正分数和负分数三种形式。

(2)有理数可以相加、相减、相乘、相除,并且运算结果仍然是有理数。

(3)有理数的相反数是指具有相同绝对值但符号相反的数,如-2的相反数是2(4)有理数加0的运算性质:a+0=a,0+a=a。

(5)有理数的逆元:对于任何有理数a,存在一个有理数-b,使得a+(-b)=0。

(6)有理数的乘法消去律:对于任何有理数a、b、c,如果ab=ac且a≠0,则b=c。

二、有理数的四则运算1.加法:两个有理数相加时,将它们的分子通分为相同的分母,然后将分子相加即可。

2.减法:两个有理数相减时,可以转化为加法运算,即将被减数加上减数的相反数。

3.乘法:两个有理数相乘时,将它们的分子和分母分别相乘即可。

如果两个有理数都为分数,可以先约分,再相乘。

4.除法:两个有理数相除时,可以转化为乘法运算,即将除数乘以被除数的倒数。

三、有理数的绝对值1.绝对值的定义:一个数a的绝对值,记作,a,是指a与0之间的距离,可以表示为:当a≥0时,a,=a;当a<0时,a,=-a。

2.绝对值的性质:(1)非负性:对于任何有理数a,有,a,≥0;(2)相等性:对于任何有理数a,有,a,=0当且仅当a=0;(3)三角不等式:对于任何有理数a、b,有,a+b,≤,a,+,b。

四、有理数的比较大小1.有理数的大小比较遵循以下规则:(1)对于相同符号的两个有理数,绝对值越大,表示的值越大;(2)对于不同符号的两个有理数,正数大于负数;(3)对于两个正数来说,分母相同的情况下,分子越大,表示的值越大;(4)对于两个负数来说,分母相同的情况下,分子越小,表示的值越大。

代数知识点

代数知识点

)(无限不循环小数负有理数正有理数无理数⎩⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧--⎩⎨⎧---)()32,21()32,21()()3,2,1()3,2,1,0(无限循环小数有限小数整数负分数正分数小数分数负整数自然数整数有理数、、 ⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧实数一、有理数及其运算1.有理数: (1)凡能写成)0p q ,p (pq≠为整数且形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;π不是有理数;(2)有理数的分类: ① ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 ② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数 2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0; (2)相反数的和为0 ⇔ a+b=0 ⇔ a 、b 互为相反数. 4.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 或⎩⎨⎧<-≥=)0a (a )0a (aa ;绝对值的问题经常分类讨论;5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数 > 0,小数-大数 < 0.6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若 a ≠0,那么a 的倒数是a1;若ab=1⇔ a 、b 互为倒数;若ab=-1⇔ a 、b 互为负倒数. 7.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b ). 8. 有理数乘法的运算律: (1)乘法的交换律:ab=ba ;(2)乘法的结合律:(ab )c=a (bc ); (3)乘法的分配律:a (b+c )=ab+ac . 9.有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n 为正奇数时: (-a)n =-a n 或(a -b)n =-(b-a)n , 当n 为正偶数时: (-a)n =a n 或 (a-b)n =(b-a)n . 10.乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂; 11.科学记数法:把一个大于10的数记成a ×10n 的形式,其中a 是整数数位只有一位的数,这种记数法叫科学记数法.二、 实数1.算术平方根:一般地,如果一个正数x 的平方等于a ,即x 2=a ,那么正数x 叫做a 的算术平方根,记作a 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

⎪⎪⎪⎩⎪⎪⎪⎨⎧有理数⎪⎩⎪⎨⎧)3,2,1:()3,2,1:( 如负整数如正整数整数)0(零⎪⎩⎪⎨⎧----)8.4,3.2,31,21:( 如负分数分数)8.3,3.5,31,21:( 如正分数有理数及其运算知识点汇总 1、
2、数轴的三要素:原点、正方向、单位长度(三者缺一不可)。

3、任何一个有理数,都可以用数轴上的一个点来表示。

(反过来,不能说数轴上所有的点都表示有理数)
4、如果两个数只有符号不同,那么我们称其中一个数为另一个数的相反数,也称这两个数互为相反数。

(0的相反数是0)
5、在数轴上,表示互为相反数的两个点,位于原点的侧,且到原点的距离相等。

数轴上两点表示的数,右边的总比左边的大。

正数在原点的右边,负数在原点的左边。

6、绝对值的定义:一个数a 的绝对值就是数轴上表示数a 的点与原点的距离。

数a 的绝对值记作|a|。

7、正数的绝对值是它本身;负数的绝对值是它的数;0的绝对值是0。

⎪⎩⎪⎨⎧<-=>)0()0(0)0(||a a a a a a 或 ⎩⎨⎧<-≥)0()0(||a a a a a 8、绝对值的性质:除0外,绝对值为一正数的数有两个,它们互为相反数; 互为相反数的两数(除0外)的绝对值相等;
任何数的绝对值总是非负数,即|a|≥0
9、比较两个负数的大小,绝对值大的反而小。

比较两个负数的大小的步骤如下: ①先求出两个数负数的绝对值;
②比较两个绝对值的大小;
③根据“两个负数,绝对值大的反而小”做出正确的判断。

10、绝对值的性质:
①对任何有理数a ,都有|a|≥0
②若|a|=0,则|a|=0,反之亦然
③若|a|=b ,则a=±b
④对任何有理数a,都有|a|=|-a|
11、有理数加法法则:
①同号两数相加,取相同符号,并把绝对值相加。

②异号两数相加,绝对值相等时和为0;绝对值不等时取绝对值较大的数的符号,并 用较大数的绝对值减去较小数的绝对值。

③一个数同0相加,仍得这个数。

12、加法的交换律、结合律在有理数运算中同样适用。

越来越大
灵活运用运算律,使用运算简化,通常有下列规律:①互为相反的两个数,可以先相加; ②符号相同的数,可以先相加;
③分母相同的数,可以先相加;
④几个数相加能得到整数,可以先相加。

13、有理数减法法则: 减去一个数,等于加上这个数的相反数。

有理数减法运算时注意两“变”:①改变运算符号;
②改变减数的性质符号(变为相反数)
有理数减法运算时注意一个“不变”:被减数与减数的位置不能变换,也就是说,减法没有交换律。

14、有理数的加减法混合运算的步骤:
①写成省略加号的代数和。

在一个算式中,若有减法,应由有理数的减法法则转化为加法,然后再省略加号和括号;
②利用加法则,加法交换律、结合律简化计算。

(注意:减去一个数等于加上这个数的相反数,当有减法统一成加法时,减数应变成它本身的相反数。


15、有理数乘法法则: ①两数相乘,同号得正,异号得负,绝对值相乘。

②任何数与0相乘,积仍为0。

如果两个数互为倒数,则它们的乘积为1。

(如:-2与21 、 3
553与…等) 16、乘法的交换律、结合律、分配律在有理数运算中同样适用。

有理数乘法运算步骤:①先确定积的符号;
②求出各因数的绝对值的积。

乘积为1的两个有理数互为倒数。

注意:
①零没有倒数
②求分数的倒数,就是把分数的分子分母颠倒位置。

一个带分数要先化成假分数。

③正数的倒数是正数,负数的倒数是负数。

17、有理数除法法则: ①两个有理数相除,同号得正,异号得负,并把绝对值相除。

②0除以任何非0的数都得0。

0不可作为除数,否则无意义。

18、有理数的乘方 注意:①一个数可以看作是本身的一次方,如5=51;
②当底数是负数或分数时,要先用括号将底数括上,再在右上角写指数。

19、乘方的运算性质:
①正数的任何次幂都是正数;
②负数的奇次幂是负数,负数的偶次幂是正数;
③任何数的偶数次幂都是非负数;
④1的任何次幂都得1,0的任何次幂都得0;
⑤-1的偶次幂得1;-1的奇次幂得-1;
⑥在运算过程中,首先要确定幂的符号,然后再计算幂的绝对值。

20、有理数混合运算法则:①先算乘方,再算乘除,最后算加减。

②如果有括号,先算括号里面的。

=⨯⨯⨯⨯ a n a a a a 个。

相关文档
最新文档