江苏省高考数学真题含答案
2021年江苏省高考数学真题及参考答案
2021年江苏省高考数学真题及参考答案一、选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设集合{}42<<x x A -=,{}5432,,,=B ,则B A ⋂=()A.{}2 B.{}3,2 C.{}4,3 D.{}4,3,22.已知i z -=2,则()=+i z z ()A.i26- B.i24- C.i26+ D.i24+3.已知圆锥的底面半径为2,其侧面展开图为一个半圆,则该圆锥的母线长为()A.2B.22 C.4D.244.下列区间中,函数()⎪⎭⎫⎝⎛-=6sin 7πx x f 单调递增的区间是()A.⎪⎭⎫ ⎝⎛20π, B.⎪⎭⎫⎝⎛ππ,2 C.⎪⎭⎫ ⎝⎛23ππ, D.⎪⎭⎫⎝⎛ππ223,5.已知1F ,2F 是椭圆149:22=+y x C 的两个焦点,点M 在C 上,则21MF MF ⋅的最大值为()A.13B.12C.9D.66.若2tan -=θ,则()=++θθθθcos sin 2sin 1sin ()A.56-B.52-C.52 D.567.若过点()b a ,可以左曲线xe y =的两条切线,则()A.ae b< B.be a< C.bea <<0 D.aeb <<08.有6个相同的球,分别标有数字1,2,3,4,5,6,从中有放回的随机取两次,每次取1个球,甲表示事件“第一次取出的球的数字是1”,乙表示事件“第二次取出的球的数字是2”,丙表示事件“两次取出的数字之和是8”,丁表示事件“两次取出的球的数字之和是7”,则()A.甲与丙相互独立B.甲与丁相互独立C.乙与丙相互独立D.丙与丁相互独立二、选择题:本题共4小题,每小题5分,共20分。
在每小题给出的选项中,有多项符合题目要求。
全部答对的得5分,部分选对的得2分,有选错的得0分。
9.有一组样本数据n x x x 21,,由这组数据得到新样本数据n y y y 21,,其中()n i c x y i i ,2,1=+=,c 为非零常数,则()A.两组样本数据的样本平均数相同B.两组样本数据的样本中位数相同C.两组样本数据的样本标准差相同D.两组样本数据的样本极差相同10.已知O 为坐标原点,点()ααsin ,cos 1P ,()ββsin ,cos 2-P ,()()()βαβα++sin ,cos 3P ,()0,1A ,则()==C.213OP OP OP OA ⋅=⋅ D.321OP OP OP OA ⋅=⋅11.已知点P 在圆()()165522=-+-y x 上,点()04,A ,()20,B ,则()A.点P 到直线AB 的距离小于10B.点P 到直线AB 的距离大于2C.当PBA ∠最小时,23=PB D.当PBA ∠最大时,23=PB 12.在正三棱柱111C B A ABC -中,11==AA AB ,点P 满足1BB BC PB μλ+=,其中[]1,0∈λ,[]1,0∈μ,则()A.当1=λ时,P AB 1∆的周长为定值B.当1=μ时,三棱锥BC A P 1-的体积为定值C.当21=λ时,有且仅有一个点P ,使得BP P A ⊥1D.当21=μ时,有且仅有一个点P ,使得B A 1⊥平面PAB 1三、填空题:本题共4小题,每小题5分,共20分。
2022年江苏省高考数学真题及参考答案
2022年江苏省高考数学真题及参考答案一、选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设集合{}4<x x M =,{}13N ≥=x x ,则N M ⋂=()A.{}20<x x ≤ B.⎭⎬⎫⎩⎨⎧≤231<x xC.{}163<x x ≤ D.⎭⎬⎫⎩⎨⎧≤1631<x x2.已知()11=-z i ,则=+z z()A.2- B.1- C.1 D.23.在ABC ∆中,点D 在边AB 上,DA BD 2=.记m A C=,n D C=,则=B C()A.nm23- B.nm32+- C.nm23+ D.nm32+4.南水北调工程缓解了北方一些地区水资源短缺问题,其中一部分水蓄入某水库.已知该水库水位为海拔148.5m 时,相应水面的面积为140.0km ²;水位为海拔157.5m 时,相应水面的面积为180.0km ².将该水库在这两个水位间的形状看做一个棱台,则该水库水位从海拔148.5m 上升到157.5m 时,增加的水量约为()65.27≈()A.39100.1m⨯ B.39102.1m⨯ C.39104.1m⨯ D.39106.1m⨯5.从2至8的7个整数中随机取2个不同的数,则这2个数互质的概率为()A.61 B.31 C.21 D.326.记函数()()04sin >ωπωb x x f +⎪⎭⎫ ⎝⎛+=的最小正周期为T .若ππ223<<T ,且()x f y =的图象关于点⎪⎭⎫ ⎝⎛223,π中心对称,则=⎪⎭⎫ ⎝⎛2πf ()A.1B.23 C.25 D.37.设1.01.0ea =,91=b ,9.0ln -=c ,则()A.c b a << B.a b c << C.b a c << D.bc a <<8.已知正四棱锥的侧棱长为l ,其各顶点都在同一球面上.若该球的体积为π36,且333≤≤l ,则该正四棱锥体积的取值范围是()A.⎥⎦⎤⎢⎣⎡48118, B.⎥⎦⎤⎢⎣⎡481427, C.⎥⎦⎤⎢⎣⎡364427, D.[]27,18二、选择题:本题共4小题,每小题5分,共20分。
江苏新高考一卷数学试题及答案
江苏新高考一卷数学试题及答案一、选择题(每题5分,共40分)1. 下列哪个数是无理数?A. 2.5B. √2C. 0.33333...D. 1答案:B2. 已知函数f(x) = x^2 - 4x + 4,求f(2)的值。
A. 0B. 4C. 8D. -4答案:A3. 以下哪个选项是等差数列?A. 2, 4, 6, 8B. 1, 1, 1, 1C. 3, 7, 11, 15D. 5, 7, 9, 11答案:A4. 已知三角形ABC,AB = 5,AC = 7,BC = 6,求三角形ABC的面积。
A. 10B. 12C. 14D. 16答案:B5. 以下哪个表达式是正确的?A. sin^2(x) + cos^2(x) = 1B. tan(x) = sin(x) / cos(x)C. sin(2x) = 2sin(x)cos(x)D. cos(2x) = 1 - 2sin^2(x)答案:C6. 已知圆的半径为5,求圆的周长。
A. 10πB. 15πC. 20πD. 25π答案:C7. 以下哪个是二次方程的解?A. x = 2B. x = -2C. x = 3D. x = -3答案:B8. 已知向量a = (3, 4),向量b = (-1, 2),求向量a与向量b的点积。
A. 10B. 11C. 12D. 13答案:B二、填空题(每题4分,共24分)9. 已知函数g(x) = 3x - 2,求g(1)的值。
答案:110. 一个正六边形的内角和是多少?答案:720°11. 已知等比数列的首项为2,公比为3,求第三项的值。
答案:1812. 一个圆的直径是14,求这个圆的面积。
答案:153.94(保留两位小数)13. 已知向量c = (1, -1),向量d = (2, 3),求向量c与向量d的叉积。
答案:-1三、解答题(每题16分,共40分)14. 解不等式:|x - 3| < 2。
解:首先,我们可以将不等式分为两部分来考虑:x - 3 < 2 以及 -(x - 3) < 2解得:x < 5 以及 x > 1因此,不等式的解集为 {x | 1 < x < 5}。
江苏数学高考试卷真题答案
江苏数学高考试卷真题答案一、选择题(每题5分,共40分)1. 已知函数\( f(x) = 2x^2 - 3x + 1 \),求\( f(-1) \)的值。
A. 6B. 4C. 2D. 02. 若\( \sin \alpha = \frac{3}{5} \),且\( \alpha \)为锐角,求\( \cos \alpha \)的值。
A. \( \frac{4}{5} \)B. \( \frac{3}{4} \)C.\( \frac{1}{2} \) D. \( \frac{2}{3} \)3. 已知等差数列\( \{a_n\} \)的首项为1,公差为2,求第10项的值。
A. 19B. 21C. 23D. 254. 已知\( \triangle ABC \)的三边长分别为3, 4, 5,求\( \cos A \)的值。
A. \( \frac{3}{5} \)B. \( \frac{4}{5} \)C.\( \frac{1}{2} \) D. \( \frac{3}{4} \)5. 已知圆的方程为\( (x-2)^2 + (y-3)^2 = 9 \),求圆心到直线\( x + y - 5 = 0 \)的距离。
A. 1B. 2C. 3D. 46. 已知函数\( g(x) = \ln(x) \),求\( g(1) \)的值。
A. 0B. 1C. 2D. 37. 若\( \log_{10}100 = 2 \),求\( \log_{10}1000 \)的值。
A. 3B. 4C. 5D. 68. 已知\( \frac{1}{x} + \frac{1}{y} = 5 \),且\( xy = 6 \),求\( x + y \)的值。
A. 3B. 4C. 5D. 6二、填空题(每题4分,共24分)9. 已知\( a^2 + b^2 = 13 \),\( a + b = 5 \),求\( ab \)的值。
10. 若函数\( h(x) = x^3 - 3x^2 + 2 \),求\( h(2) \)的值。
江苏省2021年高考数学真题试卷(含详细解析)
江苏省2021年高考数学真题试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把题卡上对应题目的答案标号涂黑。
如需改动,用皮擦干净后,再选涂其他答案标号,回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、单选题1.已知集合{}1,3M =,{}1,3N a =-,若{}1,2,3M N =,则a 的值是( )A .-2B .-1C .0D .12.若数组()2,1,3a =-和11,,2b x ⎛⎫=- ⎪⎝⎭满足2a b =-,则实数x 等于( )A .-3B .-2C .32- D .12-3.若复数z 满足()1i 3i z +=-,则z 的虚部等于( ) A .4B .2C .-2D .-44.逻辑表达式A B +等于( ) A .A B +B .A B ⋅C .A B ⋅D .A B ⋅5.已知()12nx -的展开式中2x 的系数为40,则n 等于( ) A .5B .6C .7D .86.已知双曲线()222210,0x y a b a b-=>>的一条渐近线与直线230x y -+=平行,则该双曲线的离心率是( )A B C .2D 7.若圆锥的轴截面为等腰直角三角形,则它的底面积与侧面积之比是( )AB .2:1C .D .1:28.下图是某项工程的网络图(单位:天),则从开始节点①到终止节点⑧的路径共有( )A .14条B .12条C .9条D .7条9.若函数()()4sin 03f x x πωω⎛⎫=-> ⎪⎝⎭的最小正周期为π,则它的一条对称轴是( )A .12x π=- B .0x = C .6x π=D .23x π=10.已知奇函数()f x 是定义在R 上的单调函数,若正实数a ,b 满足()()240f a f b +-=则121a b++的最小值是( ) A .23B .43C .2D .4二、填空题11.下图是一个程序框图,执行该程序框图,则输出的n 值是___________.12.已知等比数列{}n a 的公比为q ,且116a ,24a ,3a 成等差数列,则q 的值是___________.13.已知5cos 213πθ⎛⎫+= ⎪⎝⎭,且,22ππθ⎛⎫∈- ⎪⎝⎭,则()tan 9θπ-的值是_________.14.以抛物线214y x =的焦点为圆心,且与直线x ⎧=⎪⎨⎪(t 为参数)相切的圆的标准方程是____________.15.已知函数()()2212,642,40x x f x x x +-≤<-⎧⎪=⎨+-≤≤⎪⎩,若其图像上存在互异的三个点()11,x y ,()22,x y ,()33,x y ,使得312123y y yk x x x ===,则实数k 的取值范围是__________.三、解答题16.已知函数()()23log 2x f x a x a =-+的定义域是R .(1)求实数a 的取值范围;(2)解关于x 的不等式241421xx aa -->. 17.已知函数()f x 是定义在()(),00,-∞⋃+∞上的偶函数,当0x <时,()()log 2a f x x x =-+(0a >,且1a ≠).又直线():250l mx y m m R +++=∈恒过定点A ,且点A 在函数()f x 的图像上. (1) 求实数a 的值; (2) 求()()48f f -+的值; (3) 求函数()f x 的解析式.18.已知关于x 的二次函数()24f x ax bx a =-+.(1)若{}1,1,2,3a ∈-,{}0,1,2b ∈,求事件(){A f x =在[)1,+∞上是增函数}的概率; (2)若[]1,2a ∈,[]0,2b ∈,求事件B =“方程()0f x =没有实数根”的概率.19.已知向量()223sin ,cos a x x =-,()cos ,6b x =,设函数()f x a b =⋅.(1)求函数()f x 的最大值;(2)在锐角ABC 中,三个角A ,B ,C 所对的边分别为a ,b,c ,若()0,f B b ==3sin 2sin 0A C -=,求ABC 的面积.20.某化工厂引进一条先进生产线生产某种化工产品,其生产的总成本y 万元与年产量x 吨之间的函数关系可以近似地表示为22420005x y x =-+,已知此生产线的年产量最小为60吨,最大为110吨.(1)年产量为多少吨时,生产每吨产品的平均成本最低?并求最低平均成本;(2)若每吨产品的平均出厂价为24万元,且产品能全部售出,则年产量为多少吨时,21.已知数列{}n a 满足12a =,且()*1321n n a a n n N +=+-∈.(1)求证:数列{}n a n +为等比数列; (2)求数列{}n a 的通项公式; (3)求数列{}n a 的前n 项和n S .22.某广告公司接到幸福社区制作疫情防控宣传标牌的任务,要制作文字标牌4个,绘画标牌5个,该公司现有两种规格的原料,甲种规格原料每张3m 2,可做文字标牌1个和绘画标牌2个;乙种规格原料每张2m 2,可做文字标牌2个和绘画标牌1个.问两种规格的原料各用多少张时,才能使总的用料面积最小?并求最小用料面积.23.已知椭圆()2222:10x y C a b a b +=>>(1)证明:3a b ;(2)若点9,10M ⎛ ⎝⎭在椭圆C 的内部,过点M 的直线l 交椭圆C 于P 、Q 两点,M为线段PQ 的中点,且OP OQ ⊥. ①求直线l 的方程; ②求椭圆C 的标准方程.参考答案1.B 【分析】根据集合N 和并集,分别讨论a 的值,再验证即可. 【详解】 因为{}1,2,3MN =,若110a a -=⇒=,经验证不满足题意;若121a a -=⇒=-,经验证满足题意. 所以1a =-. 故选:B. 2.C 【分析】数组的基本运算,由数组相等转化为对应项相等. 【详解】因为()2,1,3a =-,11,,2b x ⎛⎫=- ⎪⎝⎭,所以()22,1,2b x -=--.由2a b =-,得23x -=,32x =-.故选:C. 3.C 【分析】利用复数的运算性质,化简得出12z i =-. 【详解】若复数z 满足()1i 3i z +=-,则()()()()3i 1i 3i 12i 1i 1i 1i z ---===-++-, 所以z 的虚部等于2-. 故选:C. 4.D 【分析】从集合角度去理解逻辑表达式 【详解】如图,A B +类似于()C A B U ,则A B +类似于()()U U U C C A B A C B ⋃=⋂故选:D. 5.A 【分析】写出x 2项,进一步即可解出. 【详解】()()222221n C x n n x -=-,所以()21405n n n -=⇒=.故选:A. 6.D 【分析】写出渐近线,再利用斜率相等,进而得到离心率 【详解】双曲线的渐近线为by x a =±,易知b y x a=与直线230x y -+=平行,所以=2b e a ⇒==故选:D. 7.C 【分析】根据题意作图,由轴截面得出母线与底面圆半径的等量关系,再套公式求解. 【详解】 根据题意作图,设圆锥的底面圆半径为r ,高为h ,母线长为l . 若圆锥的轴截面为等腰直角三角形,则有2cos45r l ︒=,l =.该圆锥的底面积与侧面积比值为22r rl ππ故选:C. 8.B 【分析】根据分步乘法计算原理即可求解. 【详解】由图可知,由①→④有3条路径,由④→⑥有2条路径,由⑥→⑧有2条路径,根据分步乘法计算原理可得从①→⑧共有32212⨯⨯=条路径. 故选:B 9.A 【分析】 由2T πω=,可得2ω=,所以()4sin 23f x x π⎛⎫=- ⎪⎝⎭,令2()32x k k Z πππ-=+∈,得51()122x k k Z ππ=+∈,从而可得到本题答案. 【详解】 由题,得222T ππωπ===,所以()4sin 23f x x π⎛⎫=- ⎪⎝⎭,令2()32x k k Z πππ-=+∈,得51()122x k k Z ππ=+∈, 所以()f x 的对称轴为51()122x k k Z ππ=+∈, 当1k =-时,12x π=-,所以函数()f x 的一条对称轴为12x π=-.故选:A10.B 【分析】由奇函数()f x 是定义在R 上的单调函数,()()240f a f b +-=,可得24a b +=,即2(1)6a b ++=,所以12112[2(1)]161a b a b a b ⎛⎫+=+++ ⎪++⎝⎭,化简后利用基本不等式可求得结果 【详解】解:因为()()240f a f b +-=,所以(2)(4)f a f b =--, 因为奇函数()f x 是定义在R 上的单调函数, 所以(2)(4)(4)f a f b f b =--=-, 所以24a b =-,即24a b +=, 所以226a b ++=,即2(1)6a b ++=, 所以12112[2(1)]161a b a b a b ⎛⎫+=+++ ⎪++⎝⎭14(1)2261b a a b +⎡⎤=+++⎢⎥+⎣⎦14(1)461b a a b +⎡⎤=++⎢⎥+⎣⎦1144(44)663⎡⎤≥=+=⎢⎥⎣⎦, 当且仅当4(1)1b a a b+=+,即1,32a b ==时取等号,所以121a b ++的最小值是43. 故选:B 11.2 【分析】程序框图中的循环结构,一般需重复计算,根据判断框中的条件,确定何时终止循环,输出结果. 【详解】初始值:0S =,1n =当1n =时,33111014228S S n ⎛⎫⎛⎫=+-=+-=< ⎪ ⎪⎝⎭⎝⎭,进入循环;当13122n =+=时,3311319428228S S n ⎛⎫⎛⎫=+-=+-=< ⎪ ⎪⎝⎭⎝⎭,进入循环;当31222n =+=时,331919242822S S n ⎛⎫⎛⎫=+-=+-=> ⎪ ⎪⎝⎭⎝⎭,终止循环,输出n 的值为2.故答案为:2. 12.4 【分析】根据三数成等差数列列等式,再将2a ,3a 用含1a 和q 的式子表示,代入等式求解. 【详解】因为{}n a 为等比数列,且公比为q , 所以21a a q =⋅,231a a q =⋅且10a ≠,0q ≠. 因为116a ,24a ,3a 成等差数列, 所以1321624a a a +=⨯,有21111624a a q a q +⋅=⨯⋅,28160q q -+=, 解得4q =. 故答案为:4. 13.512-【分析】先用诱导公式化简,再通过同角三角函数的基本关系求得. 【详解】55cos sin 21313πθθ⎛⎫+=⇒=- ⎪⎝⎭,因为,22ππθ⎛⎫∈- ⎪⎝⎭,所以,02πθ⎛⎫∈- ⎪⎝⎭,所以12cos 13θ=,所以sin θ5tan θcos θ12,所以()5tan 9tan 12θπθ-==-.故答案为:512-. 14.()2211x y +-= 【分析】将抛物线方程化为标准方程,直线参数方程化为普通方程,结合点到直线的距离公式求得圆的半径,进而得答案. 【详解】解:将抛物线方程化为标准方程得24y x =,所以焦点坐标为0,1,10y --=,所以点0,110y --=的距离为1d =,所以所求圆的方程为()2211x y +-=. 故答案为:()2211x y +-= 15.1,0【分析】先画出函数()f x 的图象,转化为函数y kx =与函数()f x 的图象有三个不同的交点,再画函数y kx =的图象,观察交点的个数,从而求得k 的取值范围.【详解】解:画出函数()f x 的图象如下图,由题意得函数图象上存在互异的三个点,且312123y y y k x x x ===, 则可看做函数y kx =与函数()f x 的图象有三个不同的交点, 由图知,当1k =-或0k =时,有且仅有两个交点,要使两个图象有三个不同的交点,则k 的取值范围为(1,0)-. 故答案为:(1,0)-. 16.(1)()0,1;(2)()2,6-. 【分析】(1)本题可根据对数函数的性质得出220x ax a -+>恒成立,然后通过∆<0即可得出结果; (2)本题首先可根据()0,1a ∈得出24142x x --<-,然后通过计算即可得出结果. 【详解】(1)因为函数()()23log 2x f x a x a =-+的定义域是R ,所以220x ax a -+>恒成立,则2440a a ∆=-<,解得01a <<,a 的取值范围为()0,1.(2)241421xx aa-->,即24142x x a a --->, 因为()0,1a ∈,所以24142x x --<-,即24120x x --<,解得26x -<<, 故不等式241421x x aa -->的解集为()2,6-. 17.(1) 12a =;(2) 29-;(3) 1212log ()20()log 20x x x f x x xx -+<⎧⎪=⎨->⎪⎩.【分析】(1) 求出直线所过定点,由定点在函数图象上,求出a 的值; (2) 利用偶函数的性质,求(8)f ,进而可求出(4)(8)f f -+的值; (3) 利用偶函数的性质求出0x >时,()f x 的表达式. 【详解】(1) 由直线l 过定点可得:(2)5m x y +=--,由2050x y +=⎧⎨--=⎩,解得25x y =-⎧⎨=-⎩,所以直线l 过定点()2,5A --.又因为0x <时,()log ()2a f x x x =-+, 所以(2)log 245a f -=-=-, 有log 21a =-,12a =. (2) 12(4)log 4810f -=-=-, 因为()f x 为偶函数,所以12(8)(8)log 81619f f =-=-=-, 所以(4)(8)29f f -+=-.(3) 由(1)知,当0x <时,12()log ()2f x x x =-+.当0x >时,0x -<,1122()log 2()log 2f x x x x x-=+⋅-=-,又()f x 为偶函数,所以12()()log 2f x f x x x =-=-,综上可知,1212log ()20()log 20x xx f x x x x -+<⎧⎪=⎨->⎪⎩.18.(1)512;(2)38.【分析】(1)根据题意有:0a >,且对称轴21bx a=,求出基本事件总数,再求出满足事件A 的事件数,然后利用古典概型概率公式求解;(2)方程240ax bx a -+=无实根,则[1a ∈,2],[0b ∈,2],且20a b ->,画出图形,由测度比是面积比得答案. 【详解】(1)根据题意有:0a >,且对称轴21bx a=. 基本事件总数为114312C C ⋅=,满足事件A 的事件数为(1,0),(2,0),(2,1),(3,0),(3,1)共有5个,P ∴(A )512=; (2)方程240ax bx a -+=无实根,则22(4)40a b a ≠⎧⎨--<⎩, ∴2240a a b ≠⎧⎨->⎩, 又[1a ∈,2],[0b ∈,2],20a b ∴->, 如图,∴11(1)1322()28P B +⨯==.19.(1)max ()3f x =;(2【分析】(1)结合平面向量的数量积运算、二倍角公式和辅助角公式,可得2()233f x x π⎛⎫=++ ⎪⎝⎭,进而可得()f x 的最大值;(2)由锐角ABC ,推出22333B πππ-<-<,再结合f (B )0=,求得3B π=,由正弦定理知32a c =,再利用余弦定理求出2a =,3c =,最后由三角形面积公式得解. 【详解】(1)因为()223sin ,cos a x x =-,()cos ,6b x =,所以函数()f x a b =⋅2cos 6cos 23cos 23x x x x x =-+=++2233x π⎛⎫=++ ⎪⎝⎭∴当2sin 213x π⎛⎫+= ⎪⎝⎭时,max ()3f x =(2)∵ABC 为锐角三角形,02B π∴<<.25233B πππ∴<+< 又()0f B =2si n 23B π⎛⎫∴+= ⎪⎝⎭24233B ππ∴+= 3B π∴= 3sin 2sin 032A C a c -=∴=2221cos 22a cb B ac +-==即222971432a a a +-= 2,3a c ∴==1232ABCS∴=⨯⨯=20.(1)年产量为100吨时,平均成本最低为16万元;(2)年产量为110吨时,最大利润为860万元. 【分析】(1)列出式子,通过基本不等式即可求得;(2)将式子化简后,通过二次函数的角度求得最大值. 【详解】 (1)2000245y x x x=+-,[60,110]x ∈2416≥= 当且仅当20005x x=时,即100x =取“=”,符合题意;∴年产量为100吨时,平均成本最低为16万元.(2)()()2212424200012088055x L x x x x ⎛⎫=--+=--+ ⎪⎝⎭又60110x ≤≤,∴当110x =时,max ()860L x =. 答:年产量为110吨时,最大利润为860万元. 21.(1)见解析;(2)3nn a n =-;(3)12332n n n +--- 【分析】 (1)计算得到113n n a n a n+++=+,得到答案.(2)1333n n n a n -+=⨯=,得到数列通项公式.(3)根据分组求和法计算得到答案. 【详解】(1)由1321n n a a n +=+-,得()113n n a n a n +++=+,∴113n n a n a n+++=+,又113a +=,∴{}n a n +是首项为3,公比为3的等比数列.(2)1333n nn a n -+=⨯=,∴3n n a n =-.(3)()1233312nn S n =+++-+++()1133132n n n ++-=--()11213333222n n n n n n +++----=-=. 【点睛】本题考查了等比数列的证明,分组求和法,意在考查学生对于数列公式方法的综合应用. 22.甲2块,乙1块,8 m 2. 【分析】设需要甲种原料x 张,乙种原料y 张,则所用原料的总面积32z x y =+,由题意列出关于x ,y 的不等式组,作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数得答案. 【详解】设需要甲种原料x 张,乙种原料y 张, 则25240,0,x y x y x y x y N+⎧⎪+⎪⎨⎪⎪∈⎩,所用原料的总面积32z x y =+. 由约束条件作出可行域如图,联立2425x y x y +=⎧⎨+=⎩,解得2x =,1y =,即(2,1)A ,由32z x y =+,得322z y x =-+,由图可知,当直线322zy x =-+过A 时,z 取得最小值为32218⨯+⨯=.故需要甲种原料2张,乙种原料1张,才能使总的用料面积最小,为8 m 2. 23.(1)证明见解析;(2)0y -=;②2213x y +=.【分析】 (1)由ba=可证得结论成立; (2)①设点()11,P x y 、()22,Q x y ,利用点差法可求得直线l 的斜率,利用点斜式可得出所求直线的方程;②将直线l 的方程与椭圆C 的方程联立,列出韦达定理,由OP OQ ⊥可得出0OP OQ ⋅=,利用平面向量数量积的坐标运算可得出关于2b 的等式,可求出2b 的值,即可得出椭圆C 的方程. 【详解】(1)c e a====b a ∴=,因此,3a b ;(2)①由(1)知,椭圆C 的方程为222213x y bb+=,即22233x y b +=,当9,10⎛ ⎝⎭在椭圆C 的内部时,22293310b⎛⎛⎫+⋅< ⎪ ⎝⎭⎝⎭,可得b >设点()11,P x y 、()22,Q x y ,则121292102x x y y +⎧=⎪⎪⎨+⎪=⎪⎩,所以,1212y y x x +=+ 由已知可得22211222223333x y b x y b ⎧+=⎨+=⎩,两式作差得()()()()1212121230x x xx y y y y+-++-=, 所以()12121212133y y x x x x y y -+⎛=-=-⨯= -+⎝ 所以,直线l 方程为910yx ⎛⎫-=- ⎪ ⎭⎝⎭,即y =所以,直线l0y -;②联立)222331x y by x ⎧+=⎪⎨=-⎪⎩,消去y 可得221018930x x b -+-=.()222184093120360b b ∆=--=->,由韦达定理可得1295x x +=,2129310b x x -=,又OP OQ ⊥,而()11,OP x y =,()22,OQ x y =,))()12121212121211433OP OQ x x y y x x x x x x x x ∴⋅=+=--=-++()22293271566055b b --+-===,解得21b =合乎题意,故2233a b ==, 因此,椭圆C 的方程为2213x y +=.。
2022年江苏省高考数学试卷(新高考I)(含答案)
2022年江苏省高考数学试卷(新高考I)(含答案)一、选择题1. 若函数f(x) = 2x^3 3x^2 + x + 1,则f'(1)的值为多少?A. 6B. 7C. 8D. 9答案:B解析:我们需要求出函数f(x)的导数f'(x)。
根据导数的定义,f'(x) = 6x^2 6x + 1。
将x = 1代入f'(x)中,得到f'(1) = 61^2 6 1 + 1 = 1。
因此,f'(1)的值为1,选项B正确。
2. 若直线y = kx + b与圆(x 2)^2 + (y 3)^2 = 25相切,则k的值是多少?A. 1/2B. 1C. 2D. 3答案:A解析:由于直线与圆相切,它们在切点处具有相同的斜率。
直线的斜率为k,圆的斜率可以通过求导得到。
对圆的方程求导,得到2(x 2) + 2(y 3)y' = 0。
在切点处,x和y的值满足圆的方程,因此可以解出y' = 1/2。
由于直线和圆在切点处斜率相同,所以k = 1/2。
因此,选项A正确。
3. 若等差数列{an}的前n项和为Sn,且a1 = 2,d = 3,则S10的值为多少?A. 155B. 165C. 175D. 185答案:C解析:等差数列的前n项和公式为Sn = n/2 (a1 + an)。
由于an = a1 + (n 1)d,代入a1 = 2和d = 3,得到an = 2 + 3(n 1)= 3n 1。
将an代入Sn的公式中,得到Sn = n/2 (2 + 3n 1) =n/2 (3n + 1)。
将n = 10代入,得到S10 = 10/2 (3 10 + 1) = 175。
因此,选项C正确。
4. 若函数f(x) = log2(x) + log2(x + 1),则f(1)的值为多少?A. 1B. 2C. 3D. 4答案:C解析:将x = 1代入函数f(x)中,得到f(1) = log2(1) +log2(1 + 1) = log2(1) + log2(2) = 0 + 1 = 1。
2023年江苏高考数学真题及参考答案
2023年江苏高考数学真题及参考答案一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}21012,,,,--=M ,{}062>--=x x x N ,则M ∩=N ()A .{}1012,,,--B .{}2,1,0C .{}2-D .{}22.已知iiz 221+-=,则=-z z ()A .i -B .iC .0D .13.已知向量()1,1=a,()1,1-=b .若()()b a b a μλ+⊥+,则()A .1=+μλB .1-=+μλC .1=λμD .1-=λμ4.设函数()()a x x x f -=2在区间()1,0单调递减,则a 的取值范围是()A .(]2-∞-,B .[)0,2-C .(]2,0D .[)∞+,25.设椭圆12221=+y a x C :()1>a ,14222=+y x C :的离心率分别21,e e .若123e e =,则=a ()A .332B .2C .3D .66.过点()20-,与圆01422=--+x y x 相切的两条直线的夹角为α,则=αsin ()A .1B .415C .410D .467.记n S 为数列{}n a 的前n 项和,设甲:{}n a 为等差数列;乙:⎭⎫⎩⎨⎧n S n 为等差数列,则()A .甲是乙的充分条件但不是必要条件B .甲是乙的必要条件但不是充分条件C .甲是乙的充要条件D .甲既不是乙的充分条件也不是乙的必要条件8.已知()31sin =-βα,61sin cos =βα,则()=+βα22cos ()A .97B .91C .91-D .97-二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.有一组样本数据621,,x x x ,其中1x 是最小值,6x 是最大值,则()A .5432,,,x x x x 的平均数等于621,,x x x 的平均数B .5432,,,x x x x 的中位数等于621,,x x x 的中位数C .5432,,,x x x x 的标准差不小于621,,x x x 的标准差D .5432,,,x x x x 的极差不大于621,,x x x 的极差10.噪声污染问题越来越受到重视,用声压级来度量声音的强弱,定义声压级lg20p pL p ⨯=,其中常数()000>p p 是听觉下线的阈值,p 是实际声压.下表为不同声源的声压级:已知在距离燃油汽车、混合动力汽车、电动汽车10m 处测得实际声压分别为321,,p p p ,则()A .21p p >B .3210p p >C .03100p p =D .21100p p <11.已知函数()x f 的定义域为R ,()()()y f x x f y xy f 22+=,则()A .()00=fB .()01=f C .()x f 是偶函数D .0=x 为()x f 的极小值点12.下列物体中,能够被整体放入棱长为1(单位:m)的正方体容器(容器壁厚度忽略不计)内的有()A .直径为m 99.0的球体B .所有棱长均为m 4.1的四面体C .底面直径为m 01.0,高为m 8.1的圆柱体D .底面直径为m 2.1,高为m 01.0的圆柱体声源与声源的距离/m 声压级/dB 燃油汽车1060~90混合动力汽车1050~60电动汽车1040三、填空题:本大题4小题,每小题5分,共20分.13.某学校开设了4门体育类选修课和4门艺术类选修课,学生需从这8门课中选修2门或3门课,并且每类选修课至少选修1门,则不同的选修方案共有种(用数字作答).14.在正四棱台1111D C B A ABCD -中,2=AB ,111=B A ,21=AA ,则该棱台的体积为.15.已知函数()()01cos >-=ωωx x f 在区间[]π2,0有且仅有3个零点,则ω的取值范围是.16.已知双曲线()0012222>>=-b a by a x C ,:的左、右焦点分别为21F F ,,点A 在C 上.点B 在y 轴上,B F A F 11⊥,B F A F 2232-=,则C 的离心率为.四、解答题:本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤.17.已知在ABC ∆中,C B A 3=+,()B C A sin sin 2=-.(1)求A sin ;(2)设5=AB ,求AB 边上的高.18.如图,在正四棱柱1111D C B A ABCD -中,2=AB ,41=AA .点2222,,,D C B A 分别在棱1111,,,DD CC BB AA 上,12=AA ,222==DD BB ,32=CC .(1)证明:2222D A C B ∥;(2)点P 在棱1BB 上,当二面角222D C A P --为150°时,求P B 2.19.已知函数()()x a e a x f x-+=.(1)讨论()x f 的单调性;(2)证明:当0>a 时,()23ln 2+>a x f .20.设等差数列{}n a 的公差为d ,且1>d ,令nn a nn b +=2,记n n T S ,分别为数列{}n a ,{}n b 的前n 项和.(1)若31223a a a +=,2133=+T S ,求{}n a 的通项公式;(2)若{}n b 为等差数列,且999999=-T S ,求d .21.甲乙两人投篮,每次由其中一人投篮,规则如下:若命中则此人继续投篮,若未命中则换为对方投篮.无论之前投篮情况如何,甲每次投篮的命中率均为6.0,乙每次投篮的命中率均为8.0,由抽签决定第一次投篮的任选,第一次投篮的人是甲、乙的概率各为5.0.(1)求第2次投篮的人是乙的概率;(2)求第i 次投篮的人是甲的概率;(3)已知:若随机变量i X 服从两点分布,且()()i i i q X P X P ==-==011,n i ,,2,1 =,则()∑∑===ni i ni i q X E11,记前n 次(即从第1次到第n 次投篮)中甲投篮的次数为Y ,求()Y E .22.在直角坐标系xOy 中,点P 到x 轴的距离等于点P 到点⎪⎭⎫ ⎝⎛210,的距离,记动点P 的轨迹为W .(1)求W 的方程;(2)已知矩形ABCD 有三个顶点在W 上,证明:矩形ABCD 的周长大于33.参考答案一、选择题12345678CADDABCB1.解:(][)∞+⋃-∞-∈,,32N ,∴{}2=⋂N M 2.解:i i i z 21221-=+-=,∴i z z -=-3.解:()()b a b aμλ+⊥+∵,∴()()()01222=+=+⋅++λμλμμλb b a a ,∴1-=λμ4.解:由复合函数的单调性可知()a x x y -=在区间()1,0单调递减,∴12≥a,∴a 的取值范围是[)∞+,2.5.解:由题意得:a a e 121-=,232=e ,得2112=-a a ,解得332=a .6.解:易得()5222=+-y x ,故圆心()0,2B ,5=R 记()20-,A ,设切点为N M ,,则22=AB ,5=BM ,可得3=AM 223sin 2sin==∠=AB AM MBA α,2252cos =α∴4152cos 2sin 2sin ααα=7.解:甲:∵{}n a 为等差数列,设其首项为1a ,公差为d ,则()d n n na S n 211++=,∴222111d a n d d n a n S n -+=-+=,211d n S n S n n =-++,故⎭⎬⎫⎩⎨⎧n S n 为等差数列,则甲是乙的充分条件;反之,⎭⎫⎩⎨⎧n S n 为等差数列,即()()()1111111+-=++-=-++++n n S na n n S n nS n S n S n n n n n n 为常数,设为t ,即()t n n S na nn =+-+11,故()11+⋅-=+n n t na S n n ,故()()111-⋅--=-n n t a n S n n ,2≥n ,两式相减有:()tn n a na a n n n 211---=+,即t a a n n 21=-+,对1=n 也成立,故{}n a 为等差数列,∴甲是乙的必要条件综上,甲是乙的充要条件.8.解:∵()31sin cos cos sin sin =-=-βαβαβα,61sin cos =βα,则21cos sin =βα,故()326131sin cos cos sin sin =+=+=+βαβαβα.()()913221sin 2122cos 22=⎪⎭⎫⎝⎛⨯-=+-=+βαβα.二、选择题9101112BDACDABCABD10.解:∵0lg 20lg 20lg2021020121≥⨯=⨯-⨯=-p p p p p p L L ,∴121≥p p,即21p p >∴A 正确;10lg 203232>⨯=-p p L L ,即21lg 32>p p ,∴213210>p p ,∴B 错误;∵40lg20033=⨯=p p L ,∴10010203==p p,∴C 正确;405090lg202121=-≤⨯=-p p L L ,∴2lg 21≤p p ,∴10021≤p p,∴D 正确.11.解:选项A ,令0==y x ,则()()()000000=⨯+⨯=f f f ,故A 正确;选项B ,令1==y x ,则()()()11111f f f ⨯+⨯=,则()01=f 故B 正确;选项C,令1-==y x ,则()()()()()1111122-⨯-+-⨯-=f f f ,则()01=f ,再令1-=y ,则()()()()1122-+⨯-=-f x x f x f ,即()()x f x f =-,故C 正确;选项D,对式子两边同时除以22yx ()022≠y x,得到:()()()2222xx f y y f y x xy f +=,故可设()()0ln 2≠=x x x x f ,故可以得到()⎩⎨⎧=≠=0,00,ln 2x x x x x f ,故D 错误.12.解:选项A,球直径为199.0<,故球体可以放入正方体容器内,故A 正确;选项B,连接正方体的面对角线,可以得到一个正四面体,其棱长为4.12>,故B 正确;选项C,底面直径m 01.0,可以忽略不计,但高为38.1>,3为正方体的体对角线的长,故C 不正确;选项D,底面直径为32.1<,高为m 01.0的圆柱体,其高度可以忽略不计,故D 正确.三、填空题13.64;14.667;15.32<≤ω;16.55313.解:当从这8门课中选修2门课时,共有161414=C C ;当从这8门课中选修3门课时,共有4814242414=+C C C C ;综上共有64种.14.解:如图,将正四棱台1111D C B A ABCD -补成正四棱锥,则2=AO ,22=SA ,261=OO ,故()()667261212313122222121=⋅⋅++=++=h S S S S V .15.解:令()01cos =-=x x f ω得1cos =x ω,又[]π2,0∈x ,则[]ωπω2,0∈x ,∴ππωπ624<≤,即32<≤ω.16.解:由B F A F 2232-=32=,设x A F 22-=,x B F 32=.由对称性可得x 3=,由定义可得,a x 22+=x 5=,设θ=∠21AF F ,则5353sin ==x x θ,∴xax 52254cos +==θ,解得a x =,∴a x AF 221+=,a AF 22=,在21F AF ∆中,由余弦定理可得54164416cos 2222=-+=a c a a θ,即2295a c =可得553=e .四、解答题17.解:(1)由题意得C B A 3=+,∴,π==++C C B A 4,∴4π=C ∴A C A B -=--=43ππ,∵()B C A sin sin 2=-,∴⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-A A ππ43sin 4sin 2,即A A A A sin 22cos 22cos 22sin 222+=⎪⎪⎭⎫⎝⎛-,整理得:A A cos 3sin =又∵1cos sin 22=+A A ,()π,0∈A ∴0sin >A ,∴0cos >A 解得10103sin =A ,1010cos =A (2)∵()552sin cos cos sin sin sin =+=+=C A C A C A B 由正弦定理可知C c B b sin sin =,即22510103=b ,解得102=b 设AB 边上的高为h ,∵ch A bc S 21sin 21==,∴6sin ==A b h 18.解:以C 为原点,CD 为x 轴,CB 为y 轴,1CC 为z 轴建立空间直角坐标系则()2,2,02B ,()3,0,02C ,()1,222,A ,()2,0,22D (1)∵()1,2022-=,C B ,()12022,,-=D A ∴=22C B 22D A ,∴2222D A C B ∥(2)设()t P ,2,0,其中42≤≤t ∴()t P A -=1022,,,()t PC --=3,202,,()1,0,222-=C D ,()12,022-=,A D .设平面22C P A 的一个法向量为()z y x m ,,= ,则⎪⎩⎪⎨⎧=⋅=⋅022PC m P A m 即()()⎩⎨⎧=-+-=-+032012z t y z t x ,令2=z ,则()2,3,1t t m --=.设平面222C A D 的一个法向量为()z y x n '''=,, ,则⎪⎩⎪⎨⎧=⋅=⋅02222C D n A D n即⎩⎨⎧=-'=+'-0202z y z x ,令2=z ,则()2,1,1=n .∵二面角222D C A P --为150°,∴2314826150cos 2=+-=︒⇒=t t ,解得:1=t (舍去)或3=t .∴12=P B 19.解:(1)由题可得()1-='xae x f ①当0≤a 时,()0<'x f ,()x f 在()∞+∞-,单调递减;②当0>a 时,令()0='x f 得ax ln -=∴当()a x ln ,-∞-∈时,()0<'x f ,()x f 在()a ln ,-∞-单调递减;当()∞+-∈,a x ln 时,()0>'x f ,()x f 在()∞+-,a ln 单调递增.(2)由(1)得当0>a 时,()()a a a f x f ln 1ln 2min ++=-=.设()21ln 23ln 2ln 122--=⎪⎭⎫ ⎝⎛+-++=a a a a a a g ,则()a a a g 12-=',令()0='a g 可得22=a ∴当⎪⎪⎭⎫ ⎝⎛∈22,0a 时,()0<'a g ,()a g 在⎪⎪⎭⎫⎝⎛22,0上单调递减;当⎪⎪⎭⎫ ⎝⎛∞+∈,22a 时,()0>'a g ,()a g 在⎪⎪⎭⎫⎝⎛∞+,22上单调递增.∴()02ln 22min >=⎪⎪⎭⎫⎝⎛=g a g ,故()0>a g ,∴当0>a 时,()23ln 2+>a x f .20.解:(1)∵31223a a a +=,∴d a a d 2313+==,即d a =1,nd a n =故nd a n =,∴d n a n n b n n 12+=+=,()21d n n S n +=,()dn n T n 23+=,又2133=+T S ,即21263243=⨯+⨯dd ,即03722=+-d d ,解得3=d 或21=d (舍),故{}n a 的通项公式为:n a n 3=.(2)若{}n b 为等差数列,则3122b b b +=,即da a d a 24321322111+⨯+⨯=+⨯⋅,即0232121=+-d d a a ,∴d a =1或d a 21=,当d a =1时,nd a n =,故()21d n n S n +=,()dn n T n 23+=.又999999=-T S ,即99210299210099=⨯-⨯dd ,即051502=--d d ,∴5051=d 或1=d (舍).当d a 21=时,()d n a n 1+=,d n b n =,故()23d n n S n +=,()dn n T n 21+=.又999999=-T S ,即99210099210299=⨯-⨯dd ,即050512=--d d ,∴5051-=d (舍)或1=d (舍).综上所述:5051=d .21.解:(1)第二次是乙的概率为6.08.05.04.05.0=⨯+⨯.(2)第i 次投篮的人是甲的概率为i p ,则第i 次投篮的人是甲的概率为i p -1,则()2.04.012.06.01+=-+=+i i i i p p p p ,构造等比数列()λλ+=++i i p p 521,解得31-=λ,则⎪⎭⎫ ⎝⎛-=-+3152311i i p p ,又211=p ,∴61311=-p ∴1526131-⎪⎭⎫ ⎝⎛⋅=-i i p ,则3152611+⎪⎭⎫⎝⎛⋅=-i i p .(3)当*∈N n 时,()352118535215216121n n p p p Y E n nn +⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-=+-⎪⎭⎫ ⎝⎛-⋅=+++= .11当0=n 时,()0=Y E ,符合上式,故()3521185n Y E n+⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫⎝⎛-=.22.解:(1)设()y x P ,,∵点P 到x 轴的距离等于点P 到点⎪⎭⎫ ⎝⎛210,的距离,∴2221⎪⎭⎫ ⎝⎛-+=y x y ,化简得412+=x y .故W 的方程为412+=x y .(2)不妨设D B A ,,三点在W 上,且有DA BA ⊥.设⎪⎭⎫ ⎝⎛+41,2a a A ,设DA BA ,的斜率分别为kk 1-,,由对称性不妨设1≤k ,则直线BA 的方程为:()412++-=a a x k y 联立()⎪⎪⎩⎪⎪⎨⎧++-=+=414122a a x k y x y ,整理可得:022=-+-a ka kx x ,则kx x B A =+∴()()ak k y y x x AB B A B A 21222-+=-+-=同理可得:a kk AD 21112++=∴CD AB +a k k 212-+=a kk 21112+++()232221112121k k k k k a k a k k +=⎪⎭⎫ ⎝⎛++≥⎪⎪⎭⎫ ⎝⎛++-+≥设()()313123+++=+=m m m mm m f ,则()()()222112132m m m m m m f +-=-+=',可知()m f 在⎪⎭⎫ ⎝⎛210,上单调递减,在⎪⎭⎫ ⎝⎛021,上单调递增,∴()m f 在()10,上最小值为42721=⎪⎭⎫ ⎝⎛f ,∴()3232≥=+kf CD AB ,由于两处相等的条件不一致,∴矩形ABCD 的周长为()332>+CD AB .。
2020年高考真题:数学(江苏卷)【含答案及解析】
2020年普通⾼等学校招⽣全国统⼀考试(江苏卷)数学Ⅰ柱体的体积V Sh =,其中S 是柱体的底面积,h 是柱体的高.一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置.......上..1.已知集合{1,0,1,2},{0,2,3}A B =-=,则A B =I _____.2.已知i 是虚数单位,则复数(1i)(2i)z =+-的实部是_____.3.已知一组数据4,2,3,5,6a a -的平均数为4,则a 的值是_____.4.将一颗质地均匀的正方体骰子先后抛掷2次,观察向上的点数,则点数和为5的概率是_____.5.如图是一个算法流程图,若输出y 的值为2-,则输入x 的值是_____.6.在平面直角坐标系xOy 中,若双曲线22x a ﹣25y =1(a >0)的一条渐近线方程为y=2x ,则该双曲线的离心率是____.7.已知y =f (x )是奇函数,当x ≥0时,()23f x x=,则f (-8)的值是____.8.已知2sin ()4p a + =23,则sin 2a 的值是____.9.如图,六角螺帽毛坯是由一个正六棱柱挖去一个圆柱所构成的.已知螺帽的底面正六边形边长为2 cm ,高为2 cm ,内孔半轻为0.5 cm ,则此六角螺帽毛坯的体积是____cm.10.将函数y =πsin(243x ﹢的图象向右平移π6个单位长度,则平移后的图象中与y 轴最近的对称轴的方程是____.11.设{a n }是公差为d 的等差数列,{b n }是公比为q 的等比数列.已知数列{a n +b n }的前n 项和221()n n S n n n +=-+-ÎN ,则d +q 的值是_______.12.已知22451(,)x y y x y R +=Î,则22x y +的最小值是_______.13.在△ABC 中,43=90AB AC BAC ==°,,∠,D 在边BC 上,延长AD 到P ,使得AP =9,若3()2PA mPB m PC =+-u u u r u u u r u u u r (m 为常数),则CD 的长度是________.14.在平面直角坐标系xOy 中,已知0)2P ,A ,B 是圆C :221()362x y +-=上的两个动点,满足PA PB =,则△P AB 面积的最大值是__________.二、解答题:本大题共6小题,共计90分,请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤.15.在三棱柱ABC -A 1B 1C 1中,AB ⊥AC ,B 1C ⊥平面ABC ,E ,F 分别是AC ,B 1C 的中点.(1)求证:EF ∥平面AB 1C 1;(2)求证:平面AB 1C ⊥平面ABB 1.16.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知3,45a c B ===°.(1)求sin C 的值;(2)在边BC 上取一点D ,使得4cos 5ADC Ð=-,求tan DAC Ð的值.17.某地准备在山谷中建一座桥梁,桥址位置的竖直截面图如图所示:谷底O 在水平线MN 上、桥AB 与MN 平行,OO ¢为铅垂线(O ¢在AB 上).经测量,左侧曲线AO 上任一点D 到MN 的距离1h (米)与D 到OO ¢的距离a (米)之间满足关系式21140h a =;右侧曲线BO 上任一点F 到MN 的距离2h (米)与F 到OO ¢的距离b (米)之间满足关系式3216800h b b =-+.已知点B 到OO ¢的距离为40米.(1)求桥AB 的长度;(2)计划在谷底两侧建造平行于OO ¢的桥墩CD 和EF ,且CE 为80米,其中C ,E 在AB 上(不包括端点).桥墩EF 每米造价k (万元)、桥墩CD 每米造价32k (万元)(k >0).问O E ¢为多少米时,桥墩CD 与EF 的总造价最低18.在平面直角坐标系xOy 中,已知椭圆22:143x y E +=的左、右焦点分别为F 1,F 2,点A 在椭圆E 上且在第一象限内,AF 2⊥F 1F 2,直线AF 1与椭圆E 相交于另一点B .(1)求△AF 1F 2的周长;(2)在x 轴上任取一点P ,直线AP 与椭圆E 的右准线相交于点Q ,求OP QP ×uu u r uu u r的最小值;(3)设点M 在椭圆E 上,记△OAB 与△MAB 的面积分别为S 1,S 2,若S 2=3S 1,求点M 的坐标.19.已知关于x 的函数(),()y f x y g x ==与()(,)h x kx b k b =+ÎR 在区间D 上恒有()()()f x h x g x ³³.(1)若()()222 2()f x x x g x x x D =+=-+=¥-¥+,,,,求h (x )的表达式;(2)若21ln ,()()()(0)x x g k x h kx k D f x x x =-+==-=+¥,,,,求k 的取值范围;(3)若()422242() 2()(48 () 4 3 02 f x x x g x x h x t t x t t t =-=-=--+<,,,[] , D m n =Íéë,求证:n m -£.20.已知数列{}*()În a n N 的首项a 1=1,前n 项和为S n .设λ与k 是常数,若对一切正整数n ,均有11111k k kn n n S S a l ++-=成立,则称此数列为“λ–k ”数列.(1)若等差数列{}n a 是“λ–1”数列,求λ的值;(2)若数列{}n a 是2”数列,且a n >0,求数列{}n a 的通项公式;(3)对于给定的λ,是否存在三个不同的数列{}n a 为“λ–3”数列,且a n ≥0?若存在,求λ的取值范围;若不存在,说明理由,数学Ⅱ(附加题)【选做题】本题包括A 、B 、C 三小题,请选定其中两小题,并在相应的答题区域内作答......................若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤.A .[选修4-2:矩阵与变换]21.平面上点(2,1)A -在矩阵11a b éù=êú-ëûM 对应的变换作用下得到点(3,4)B -.(1)求实数a ,b 的值;(2)求矩阵M 的逆矩阵1M -.B .[选修4-4:坐标系与参数方程]22.在极坐标系中,已知点1π(,)3A r 在直线:cos 2l r q =上,点2π(,6B r 在圆:4sinC r q =上(其中0r ³,02q p £<).(1)求1r ,2r 的值(2)求出直线l 与圆C 的公共点的极坐标.C .[选修4-5:不等式选讲]23.设x ÎR ,解不等式2|1|||4x x ++£.【必做题】第24题、第25题,每题10分,共计20分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤.24.在三棱锥A —BCD 中,已知CB =CD BD =2,O 为BD 的中点,AO ⊥平面BCD ,AO =2,E 为AC 的中点.(1)求直线AB 与DE 所成角的余弦值;(2)若点F 在BC 上,满足BF =14BC ,设二面角F —DE —C 的大小为θ,求sin θ的值.25.甲口袋中装有2个黑球和1个白球,乙口袋中装有3个白球.现从甲、乙两口袋中各任取一个球交换放入另一口袋,重复n 次这样的操作,记甲口袋中黑球个数为X n ,恰有2个黑球的概率为p n ,恰有1个黑球的概率为q n .(1)求p 1·q 1和p 2·q 2;(2)求2p n +q n 与2p n-1+q n-1的递推关系式和X n 的数学期望E (X n )(用n 表示).答案及解析一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置.......上..1.已知集合{1,0,1,2},{0,2,3}A B =-=,则A B =I _____.【答案】{}0,2【解析】【分析】根据集合的交集即可计算.【详解】∵{}1,0,1,2A =-,{}0,2,3B =∴{}0,2A B =I 故答案为:{}0,2.【点睛】本题考查了交集及其运算,是基础题型.2.已知i 是虚数单位,则复数(1i)(2i)z =+-的实部是_____.【答案】3【解析】【分析】根据复数的运算法则,化简即可求得实部的值.【详解】∵复数()()12z i i =+-∴2223z i i i i=-+-=+∴复数的实部为3.故答案为:3.【点睛】本题考查复数的基本概念,是基础题.3.已知一组数据4,2,3,5,6a a -的平均数为4,则a 的值是_____.【答案】2【解析】【分析】根据平均数的公式进行求解即可.【详解】∵数据4,2,3,5,6a a -的平均数为4∴4235620a a ++-++=,即2a =.故答案为:2.【点睛】本题主要考查平均数的计算和应用,比较基础.4.将一颗质地均匀的正方体骰子先后抛掷2次,观察向上的点数,则点数和为5的概率是_____.【答案】19【解析】【分析】分别求出基本事件总数,点数和为5的种数,再根据概率公式解答即可.【详解】根据题意可得基本事件数总为6636´=个.点数和为5的基本事件有()1,4,()4,1,()2,3,()3,2共4个.∴出现向上的点数和为5的概率为41369P ==.故答案为:19.【点睛】本题考查概率的求法,考查古典概型、列举法等基础知识,考查运算求解能力,是基础题.5.如图是一个算法流程图,若输出y 的值为2-,则输入x 的值是_____.【答案】3-【解析】【分析】根据指数函数的性质,判断出1y x =+,由此求得x 的值.【详解】由于20x >,所以12y x =+=-,解得3x =-.故答案为:3-【点睛】本小题主要考查根据程序框图输出结果求输入值,考查指数函数的性质,属于基础题.6.在平面直角坐标系xOy 中,若双曲线22x a ﹣25y =1(a >0)的一条渐近线方程为y=2x ,则该双曲线的离心率是____.【答案】32【解析】【分析】根据渐近线方程求得a ,由此求得c ,进而求得双曲线的离心率.【详解】双曲线22215x y a -=,故b =由于双曲线的一条渐近线方程为2y x =,即22b a a =Þ=,所以3c ===,所以双曲线的离心率为32c a =.故答案为:32【点睛】本小题主要考查双曲线的渐近线,考查双曲线离心率的求法,属于基础题.7.已知y =f (x )是奇函数,当x ≥0时,()23f x x=,则f (-8)的值是____.【答案】4-【解析】【分析】先求(8)f ,再根据奇函数求(8)f -【详解】23(8)84f ==,因为()f x 为奇函数,所以(8)(8)4f f -=-=-故答案为:4-【点睛】本题考查根据奇函数性质求函数值,考查基本分析求解能力,属基础题.8.已知2sin ()4p a + =23,则sin 2a 的值是____.【答案】13【解析】【分析】直接按照两角和正弦公式展开,再平方即得结果.【详解】221sin ()sin )(1sin 2)4222p a a a a +=+=+Q 121(1sin 2)sin 2233a a \+=\=故答案为:13【点睛】本题考查两角和正弦公式、二倍角正弦公式,考查基本分析求解能力,属基础题.9.如图,六角螺帽毛坯是由一个正六棱柱挖去一个圆柱所构成的.已知螺帽的底面正六边形边长为2 cm ,高为2 cm ,内孔半轻为0.5 cm ,则此六角螺帽毛坯的体积是____cm.【答案】2p -【解析】【分析】先求正六棱柱体积,再求圆柱体积,相减得结果.【详解】正六棱柱体积为2624´´´圆柱体积为21()222p p ×=所求几何体体积为2p-故答案为:2p-【点睛】本题考查正六棱柱体积、圆柱体积,考查基本分析求解能力,属基础题.10.将函数y =πsin(243x ﹢的图象向右平移π6个单位长度,则平移后的图象中与y 轴最近的对称轴的方程是____.【答案】524x p =-【解析】【分析】先根据图象变换得解析式,再求对称轴方程,最后确定结果.【详解】3sin[2()]3sin(26412y x x p p p =-+=-72()()122242k x k k Z x k Z p p p p p -=+Î\=+Î当1k =-时524x p =-故答案为:524x p =-【点睛】本题考查三角函数图象变换、正弦函数对称轴,考查基本分析求解能力,属基础题.11.设{a n }是公差为d 的等差数列,{b n }是公比为q 的等比数列.已知数列{a n +b n }的前n 项和221()n n S n n n +=-+-ÎN ,则d +q 的值是_______.【答案】4【解析】【分析】结合等差数列和等比数列前n 项和公式的特点,分别求得{}{},n n a b 的公差和公比,由此求得d q +.【详解】设等差数列{}n a 的公差为d ,等比数列{}n b 的公比为q ,根据题意1q ¹.等差数列{}n a 的前n 项和公式为()2111222n n n d d P na d n a n -æö=+=+-ç÷èø,等比数列{}n b 的前n 项和公式为()1111111n n n b q b b Q q q q q-==-+---,依题意n n n S P Q =+,即22111212211n n b b d d n n n a n q q q æö-+-=+--+ç÷--èø,通过对比系数可知111212211d d a q b qì=ïïï-=-ïíï=ïï=-ï-îÞ112021d a q b =ìï=ïí=ïï=î,故4d q +=.故答案为:4【点睛】本小题主要考查等差数列和等比数列的前n 项和公式,属于中档题.12.已知22451(,)x y y x y R +=Î,则22x y +的最小值是_______.【答案】45【解析】【分析】根据题设条件可得42215y x y -=,可得4222222114+555y y x y y y y -+=+=,利用基本不等式即可求解.【详解】∵22451x y y +=∴0y ¹且42215y x y -=∴2245x y +==,当且仅当221455y y =,即2231,102x y ==时取等号.∴22xy +的最小值为45.故答案为:45.【点睛】本题考查了基本不等式在求最值中的应用.利用基本不等式求最值时,一定要正确理解和掌握“一正,二定,三相等”的内涵:一正是,首先要判断参数是否为正;二定是,其次要看和或积是否为定值(和定积最大,积定和最小);三相等是,最后一定要验证等号能否成立(主要注意两点,一是相等时参数否在定义域内,二是多次用³或£时等号能否同时成立).13.在△ABC 中,43=90AB AC BAC ==°,,∠,D 在边BC 上,延长AD 到P ,使得AP =9,若3()2PA mPB m PC =+-u u u r u u u r u u u r (m 为常数),则CD 的长度是________.【答案】185【解析】【分析】根据题设条件可设()0PA PD l l =>u u u r u u u r ,结合32PA mPB m PC æö=+-ç÷èøu u u ru u u r u u u r 与,,B D C 三点共线,可求得l ,再根据勾股定理求出BC ,然后根据余弦定理即可求解.【详解】∵,,A D P 三点共线,∴可设()0PA PD l l =>u u u r u u u r ,∵32PA mPB m PC æö=+-ç÷èøu u u r u u u r u u u r ,∴32PD mPB m PC l æö=+-ç÷èøu u u r u u u r u u u r ,即32m m PD PB PC l læö-ç÷èø=+u u u r u u u r u u u r ,若0m ¹且32m ¹,则,,B D C 三点共线,∴321m m l læö-ç÷èø+=,即32l =,∵9AP =,∴3AD =,∵4AB =,3AC =,90BAC Ð=°,∴5BC =,设CD x =,CDA q Ð=,则5BD x =-,BDA p q Ð=-.∴根据余弦定理可得222cos 26AD CD AC xAD CD q +-==×,()()()222257cos 265x AD BD AB AD BD x p q --+--==×-,∵()cos cos 0q p q +-=,∴()()2570665x x x --+=-,解得185x =,∴CD 的长度为185.当0m =时,32PA PC =u u u ru u ur ,,C D 重合,此时CD 的长度为0,当32m =时,32PA PB =u u u r u u u r ,,B D 重合,此时12PA =,不合题意,舍去.故答案为:0或185.【点睛】本题考查了平面向量知识的应用、余弦定理的应用以及求解运算能力,解答本题的关键是设出()0PA PD l l =>u u u r u u u r.14.在平面直角坐标系xOy 中,已知0)2P ,A ,B 是圆C :221()362x y +-=上的两个动点,满足PA PB =,则△P AB 面积的最大值是__________.【答案】【解析】【分析】根据条件得PC AB ^,再用圆心到直线距离表示三角形PAB 面积,最后利用导数求最大值.【详解】PA PB PC AB=\^Q设圆心C 到直线AB 距离为d ,则||1AB PC ==所以11)2PAB S d £×+=V 令222(36)(1)(06)2(1)(236)04y d d d y d d d d ¢=-+£<\=+--+=\=(负值舍去)当04d £<时,0y ¢>;当46d £<时,0y ¢£,因此当4d =时,y 取最大值,即PAB S V 取最大值为故答案为:【点睛】本题考查垂径定理、利用导数求最值,考查综合分析求解能力,属中档题.二、解答题:本大题共6小题,共计90分,请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤.15.在三棱柱ABC -A 1B 1C 1中,AB ⊥AC ,B 1C ⊥平面ABC ,E ,F 分别是AC ,B 1C 的中点.(1)求证:EF ∥平面AB 1C 1;(2)求证:平面AB 1C ⊥平面ABB 1.【答案】(1)证明详见解析;(2)证明详见解析.【解析】【分析】(1)通过证明1//EF AB ,来证得//EF 平面11AB C .(2)通过证明AB ^平面1AB C ,来证得平面1AB C ^平面1ABB .【详解】(1)由于,E F 分别是1,AC B C 的中点,所以1//EF AB .由于EF Ì/平面11AB C ,1AB Ì平面11AB C ,所以//EF 平面11AB C .(2)由于1B C ^平面ABC ,AB Ì平面ABC ,所以1B C AB ^.由于1,AB AC AC B C C ^Ç=,所以AB ^平面1AB C ,由于AB Ì平面1ABB ,所以平面1AB C ^平面1ABB .【点睛】本小题主要考查线面平行的证明,考查面面垂直的证明,属于中档题.16.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知3,45a c B ===°.(1)求sin C 的值;(2)在边BC 上取一点D ,使得4cos 5ADC Ð=-,求tan DAC Ð的值.【答案】(1)sin 5C =;(2)2tan 11DAC Ð=.【解析】【分析】(1)利用余弦定理求得b ,利用正弦定理求得sin C .(2)根据cos ADC Ð的值,求得sin ADC Ð的值,由(1)求得cos C 的值,从而求得sin ,cos DAC DAC ÐÐ的值,进而求得tan DAC Ð的值.【详解】(1)由余弦定理得2222cos 922352b ac ac B =+-=+-´=,所以b =.由正弦定理得sin sin sin sin 5c b c B C C B b =Þ==.(2)由于4cos 5ADC Ð=-,,2ADC p p æöÐÎç÷èø,所以3sin 5ADC Ð==.由于,2ADC p p æöÐÎç÷èø,所以0,2C p æöÎç÷èø,所以cos 5C ==所以()sin sin DAC DAC p Ð=-Ð()sin ADC C =Ð+Ðsin cos cos sin ADC C ADC C =Ð×+Ð×34555525æö=´+-´=ç÷èø.由于0,2DAC p æöÐÎç÷èø,所以cos 25DAC Ð==.所以sin 2tan cos 11DAC DAC DAC ÐÐ==Ð.【点睛】本小题主要考查正弦定理、余弦定理解三角形,考查三角恒等变换,属于中档题.17.某地准备在山谷中建一座桥梁,桥址位置的竖直截面图如图所示:谷底O 在水平线MN 上、桥AB 与MN 平行,OO ¢为铅垂线(O ¢在AB 上).经测量,左侧曲线AO 上任一点D 到MN 的距离1h (米)与D 到OO ¢的距离a (米)之间满足关系式21140h a =;右侧曲线BO 上任一点F 到MN 的距离2h (米)与F 到OO ¢的距离b (米)之间满足关系式3216800h b b =-+.已知点B 到OO ¢的距离为40米.(1)求桥AB 的长度;(2)计划在谷底两侧建造平行于OO ¢的桥墩CD 和EF ,且CE 为80米,其中C ,E 在AB 上(不包括端点).桥墩EF 每米造价k (万元)、桥墩CD 每米造价32k (万元)(k >0).问O E ¢为多少米时,桥墩CD 与EF 的总造价最低?【答案】(1)120米(2)20O E ¢=米【解析】【分析】(1)根据A,B 高度一致列方程求得结果;(2)根据题意列总造价的函数关系式,利用导数求最值,即得结果.【详解】(1)由题意得2311||40640||8040800O A O A ¢¢=-´+´\=||||||8040120AB O A O B ¢¢\=+=+=米(2)设总造价为()f x 万元,21||8016040O O ¢=´=,设||O E x ¢=,32131()(1606)[160(80)],(040)800240f x k x x k x x =+-+--<<3221336()(160),()()0208008080080f x k x x f x k x x x ¢\=+-\=-=\=(0舍去)当020x <<时,()0f x ¢<;当2040x <<时,()0f x ¢>,因此当20x =时,()f x 取最小值,答:当20O E ¢=米时,桥墩CD 与EF 的总造价最低.【点睛】本题考查实际成本问题、利用导数求最值,考查基本分析求解能力,属中档题.18.在平面直角坐标系xOy 中,已知椭圆22:143x y E +=的左、右焦点分别为F 1,F 2,点A 在椭圆E 上且在第一象限内,AF 2⊥F 1F 2,直线AF 1与椭圆E 相交于另一点B .(1)求△AF 1F 2的周长;(2)在x 轴上任取一点P ,直线AP 与椭圆E 的右准线相交于点Q ,求OP QP ×uu u r uu u r的最小值;(3)设点M 在椭圆E 上,记△OAB 与△MAB 的面积分别为S 1,S 2,若S 2=3S 1,求点M 的坐标.【答案】(1)6;(2)-4;(3)()2,0M 或212,77æö--ç÷èø.【解析】【分析】(1)根据椭圆定义可得124AF AF +=,从而可求出12AF F △的周长;(2)设()0,0P x ,根据点A 在椭圆E 上,且在第一象限,212AF F F ^,求出31,2A æöç÷èø,根据准线方程得Q 点坐标,再根据向量坐标公式,结合二次函数性质即可出最小值;(3)设出设()11,M x y ,点M 到直线AB 的距离为d ,由点O 到直线AB 的距离与213S S =,可推出95d =,根据点到直线的距离公式,以及()11,M x y 满足椭圆方程,解方程组即可求得坐标.【详解】(1)∵椭圆E 的方程为22143x y +=∴()11,0F -,()21,0F 由椭圆定义可得:124AF AF +=.∴12AF F △的周长为426+=(2)设()0,0P x ,根据题意可得01x ¹.∵点A 在椭圆E 上,且在第一象限,212AF F F ^∴31,2A æöç÷èø∵准线方程为4x =∴()4,QQ y ∴()()()()200000,04,4244Q OP QP x x y x x x ×=×--=-=--³-u u u r u u u r ,当且仅当02x =时取等号.∴OP QP ×uu u r uu u r的最小值为4-.(3)设()11,M x y ,点M 到直线AB 的距离为d .∵31,2A æöç÷èø,()11,0F -∴直线1AF 的方程为()314y x =+∵点O 到直线AB 的距离为35,213S S =∴2113133252S S AB AB d ==´´´=×∴95d =∴113439x y -+=①∵2211143x y +=②∴联立①②解得1120x y =ìí=î,1127127x y ì=-ïïíï=-ïî.∴()2,0M 或212,77æö--ç÷èø.【点睛】本题考查了椭圆的定义,直线与椭圆相交问题、点到直线距离公式的运用,熟悉运用公式以及根据213S S =推出95d =是解答本题的关键.19.已知关于x 的函数(),()y f x y g x ==与()(,)h x kx b k b =+ÎR 在区间D 上恒有()()()f x h x g x ³³.(1)若()()222 2()f x x x g x x x D =+=-+=¥-¥+,,,,求h (x )的表达式;(2)若21ln ,()()()(0)x x g k x h kx k D f x x x =-+==-=+¥,,,,求k 的取值范围;(3)若()422242() 2()(48 () 4 3 02 f x x x g x x h x t t x t t t =-=-=--+<,,,[] , D m n =Íéë,求证:n m -£.【答案】(1)()2h x x =;(2)[]0,3k Î;(3)证明详见解析【解析】【分析】(1)求得()f x 与()g x 的公共点,并求得过该点的公切线方程,由此求得()h x 的表达式.(2)先由()()0h x g x -³,求得k 的一个取值范围,再由()()0f x h x -³,求得k 的另一个取值范围,从而求得k 的取值范围.(3)先由()()f x h x ³,求得t 的取值范围,由方程()()0g x h x -=的两个根,求得n m -的表达式,利用导数证得不等式成立.【详解】(1)由题设有2222x x kx b x x -+£+£+对任意的x ÎR 恒成立.令0x =,则00b ££,所以0b =.因此22kx x x £+即()220x k x +-³对任意的x ÎR 恒成立,所以()220k D =-£,因此2k =.故()2h x x =.(2)令()()()()()1ln 0F x h x g x k x x x =-=-->,()01F =.又()1x F x k x-¢=×.若k 0<,则()F x 在()0,1上递增,在()1,+?上递减,则()()10F x F £=,即()()0h x g x -£,不符合题意.当0k =时,()()()()()0,F x h x g x h x g x =-==,符合题意.当0k >时,()F x 在()0,1上递减,在()1,+?上递增,则()()10F x F ³=,即()()0h x g x -³,符合题意.综上所述,0k ³.由()()()21f x h x x x kx k -=-+--()()2110x k x k =-+++³当102k x +=<,即1k <-时,()211y x k x k =-+++在()0,+?为增函数,因为()()0010f h k -=+<,故存在()00,x Î+¥,使()()0f x h x -<,不符合题意.当102k x +==,即1k =-时,()()20f x h x x -=³,符合题意.当102k x +=>,即1k >-时,则需()()21410k k D =+-+£,解得13k -<£.综上所述,k 的取值范围是[]0,3k Î.(3)因为()423422243248x x t t x t t x -³--+³-对任意[,][x m n ÎÌ恒成立,()423422432x x t t x t t -³--+对任意[,][x m n ÎÌ恒成立,等价于()222()2320x t xtx t -++-³对任意[,][x m n ÎÌ恒成立.故222320x tx t ++-³对任意[,][x m n ÎÌ恒成立令22()232M x x tx t =++-,当201t <<,2880,11t t D =-+>-<-<,此时1n m t -£+<+<,当212t ££,2880t D =-+£,但()234248432x t t x t t -³--+对任意的[,][x m n ÎÌ恒成立.等价于()()()2322443420x t t x t t --++-£对任意的[,][x m n ÎÌ恒成立.()()()2322443420x t t x t t --++-=的两根为12,x x ,则4231212328,4t t x x t t x x --+=-×=,所以12=n m x x --==.令[]2,1,2t l l =Î,则n m -=.构造函数()[]()325381,2P l l l l l =-++Î,()()()23103331P l l l l l ¢=-+=--,所以[]1,2l Î时,()0P l ¢<,()P l 递减,()()max 17P P l ==.所以()max n m -=n m -£.【点睛】本小题主要考查利用的导数求切线方程,考查利用导数研究不等式恒成立问题,考查利用导数证明不等式,考查分类讨论的数学思想方法,属于难题.20.已知数列{}*()În a n N 的首项a 1=1,前n 项和为S n .设λ与k 是常数,若对一切正整数n ,均有11111k k kn n n S S a l ++-=成立,则称此数列为“λ–k ”数列.(1)若等差数列{}n a 是“λ–1”数列,求λ的值;(2)若数列{}n a 是2”数列,且a n >0,求数列{}n a 的通项公式;(3)对于给定的λ,是否存在三个不同的数列{}n a 为“λ–3”数列,且a n ≥0?若存在,求λ的取值范围;若不存在,说明理由,【答案】(1)1(2)21,134,2n n n a n -=ì=í׳î(3)01l <<【解析】【分析】(1)根据定义得+11n n n S S a l +-=,再根据和项与通项关系化简得11n n a a l ++=,最后根据数列不为零数列得结果;(2)根据定义得111222+1+1()3n n n n S S S S -=-,根据平方差公式化简得+1=4n n S S ,求得n S ,即得n a ;(3)根据定义得111333+11n n n SS a l +-=,利用立方差公式化简得两个方程,再根据方程解的个数确定参数满足的条件,解得结果【详解】(1)+111111101n n n n n n S S a a a a a l l l ++++-=\==\º\=/Q (2)11221100n n n n n a S S SS ++>\>\->Q111222+1+1()3n nn n S S S S -=-Q 1111112222222+1+1+11()()()3n n n n n n S S S S S S \-=-+1111111222222+1+1+1+11()=2=443n n nn n n n n n n S S S S S S S S S -\-=+\\\=111S a ==Q ,14n n S -=1224434,2n n n n a n ---\=-=׳21,134,2n n n a n -=ì\=í׳î(3)假设存在三个不同的数列{}n a 为"3"l -数列.111113333333+11+1+1()()n n n n n n n S S a S S S S l l +-=\-=-1133+1n n S S \=或11221123333333+1+1+1()()n n n n n n S S S S S S l -=+++1n n S S \=或22113333333+1+1(1)(1)(2)0n n n n SS S S l l l -+-++=∵对于给定的l ,存在三个不同的数列{}n a 为"3"l -数列,且0n a ³1,10,2n n a n =ì\=í³î或()22113333333+1+1(1)(1)(2)01n n n n S S S S l l l l -+-++=¹有两个不等的正根.()22113333333+1+1(1)(1)(2)01n n n n S S S S l l l l -+-++=¹可转化为()2133333+1+12133(1)(2)(1)01n n nnS S S S l l l l -++-+=¹,不妨设()1310n n S x x S +æö=>ç÷èø,则()3233(1)(2)(1)01x x l l l l -+++-=¹有两个不等正根,设()()3233(1)(2)(1)01f x x x l l l l =-+++-=¹.①当1l <时,32323(2)4(1)004l l l D =+-->Þ<<,即01l <<,此时()3010f l =-<,33(2)02(1)x l l +=->-对,满足题意.②当1l >时,32323(2)4(1)004l l l D =+-->Þ<<,即1l <<()3010f l =->,33(2)02(1)x l l +=-<-对,此情况有两个不等负根,不满足题意舍去.综上,01l <<【点睛】本题考查数列新定义、由和项求通项、一元二次方程实根分步,考查综合分析求解能力,属难题.数学Ⅱ(附加题)【选做题】本题包括A 、B 、C 三小题,请选定其中两小题,并在相应的答题区域内作答......................若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤.A .[选修4-2:矩阵与变换]21.平面上点(2,1)A -在矩阵11a b éù=êú-ëûM 对应的变换作用下得到点(3,4)B -.(1)求实数a ,b 的值;(2)求矩阵M 的逆矩阵1M -.【答案】(1)22a b =ìí=î;(2)121551255M -éù-êú=êúêúêúëû.【解析】【分析】(1)根据变换写出具体的矩阵关系式,然后进行矩阵的计算可得出实数,a b 的值;(2)设出逆矩阵,由定义得到方程,即可求解.【详解】(1)∵平面上点()2,1A -在矩阵 11a M b éù=êú-ëû对应的变换作用下得到点()3,4B -∴ 1 2 31 14a b éùéùéù=êúêúêú---ëûëûëû∴21324a b -=ìí--=-î,解得22a b =ìí=î(2)设1m n Mc d -éù=êúëû,则12 2 1 0=2 20 1m c n d MM m c n d -++éùéù=êúêú-+-+ëûëû∴21202021m c n d m c n d +=ìï+=ïí-+=ïï-+=î,解得25151525m n c d ì=ïïï=-ïíï=ïïï=î∴121551255M -éù-êú=êúêúêúëû【点睛】本题考查矩阵变换的应用,考查逆矩阵的求法,解题时要认真审题,属于基础题.B .[选修4-4:坐标系与参数方程]22.在极坐标系中,已知点1π(,)3A r 在直线:cos 2l r q =上,点2π(,6B r 在圆:4sinC r q =上(其中0r ³,02q p £<).(1)求1r ,2r 的值(2)求出直线l 与圆C 的公共点的极坐标.【答案】(1)1242r r ==,(2))4p【解析】【分析】(1)将A,B 点坐标代入即得结果;(2)联立直线与圆极坐标方程,解得结果.【详解】(1)以极点为原点,极轴为x 轴的正半轴,建立平面直角坐标系,11cos2,43pr r =\=Q ,因为点B 为直线6p q =上,故其直角坐标方程为3y x =,又4sin r q =对应的圆的直角坐标方程为:2240x y y +-=,由22340y x x y y ì=ïíï+-=î解得00x y ==ìíî或1x y ì=ïí=ïî对应的点为())0,0,,故对应的极径为20r =或22r =.(2)cos 2,4sin ,4sin cos 2,sin 21r q r q q q q ==\=\=Q ,5[0,2),,44p p q p q Î\=Q ,当4pq =时r =当54p q =时0r =-<,舍;即所求交点坐标为当4p 【点睛】本题考查极坐标方程及其交点,考查基本分析求解能力,属基础题.C .[选修4-5:不等式选讲]23.设x ÎR ,解不等式2|1|||4x x ++£.【答案】22,3éù-êúëû【解析】【分析】根据绝对值定义化为三个方程组,解得结果【详解】1224x x x <-ìí---£îQ 或10224x x x -££ìí+-£î或0224x x x >ìí++£î21x \-£<-或10x -≤≤或203x <£所以解集为22,3éù-êúëû【点睛】本题考查分类讨论解含绝对值不等式,考查基本分析求解能力,属基础题.【必做题】第24题、第25题,每题10分,共计20分.请在答题卡指....定区域...内作答,解答时应写出文字说明、证明过程或演算步骤.24.在三棱锥A —BCD 中,已知CB =CD BD =2,O 为BD 的中点,AO ⊥平面BCD ,AO =2,E 为AC 的中点.(1)求直线AB 与DE 所成角的余弦值;(2)若点F 在BC 上,满足BF =14BC ,设二面角F —DE —C 的大小为θ,求sin θ的值.【答案】(1)15(2)13【解析】【分析】(1)建立空间直角坐标系,利用向量数量积求直线向量夹角,即得结果;(2)先求两个平面法向量,根据向量数量积求法向量夹角,最后根据二面角与向量夹角关系得结果.【详解】(1)连,CO BC CD BO OD CO BD==\^Q 以,,OB OC OA 为,,x y z 轴建立空间直角坐标系,则(0,0,2),(1,0,0),(0,2,0),(1,0,0)(0,1,1)A B C D E -\(1,0,2),(1,1,1)cos ,15AB DE AB DE \=-=\<>==-uu u r uu u r uu u r uuu r 从而直线AB 与DE所成角的余弦值为15(2)设平面DEC 一个法向量为1(,,),n x y z =u r11200(1,2,0),00x y n DC DC x y z n DE ì+=×=ìï=\íí++=×=ïîîu v u u u vu uu v u v uu u vQ 令112,1(2,1,1)y x z n =\=-=\=-u r设平面DEF 一个法向量为2111(,,),n x y z =u u r 11221117100171(,,0),4244200x y n DF DF DB BF DB BC n DE x y z ìì+=×=ïï=+=+=\íí×=ïîï++=îu u v u u u v u uu v u u u v u u u v u u u v uu u v u uv u u u v Q 令111272,5(2,7,5)y x z n =-\==\=-u ur12cos ,n n \<>==u r u u r因此sin 13q ==【点睛】本题考查利用向量求线线角与二面角,考查基本分析求解能力,属中档题.25.甲口袋中装有2个黑球和1个白球,乙口袋中装有3个白球.现从甲、乙两口袋中各任取一个球交换放入另一口袋,重复n 次这样的操作,记甲口袋中黑球个数为X n ,恰有2个黑球的概率为p n ,恰有1个黑球的概率为q n .(1)求p 1·q 1和p 2·q 2;(2)求2p n +q n 与2p n-1+q n-1的递推关系式和X n 的数学期望E (X n )(用n 表示).【答案】(1)112212716,,332727p q p q ====;;(2)()111222+33n n n n p q p q --+=+【解析】【分析】(1)直接根据操作,根据古典概型概率公式可得结果;(2)根据操作,依次求n n p q ,,即得递推关系,构造等比数列求得2n n p q +,最后根据数学期望公式求结果.【详解】(1)11131232,333333p q ´´====´´,211131211227++3333333927p p q ´´=´´=´´=´´,211231122222516+0+3333333927q p q ´´+´=´´+=´´=´´(2)1111131212++333339n n n n n p p q p q ----´´=´´=´´,111112*********+(1)+33333393n n n n n n q p q p q q -----´´+´´=´´+--´=-´´´,因此112122+333n n n n p q p q --+=+,从而11111212(2+),21(2+1)333n n n n n n n n p q p q p q p q ----+=+\+-=-,即1111121(2+1),2133n n n n n n p q p q p q -+-=-\+=+.又n X 的分布列为nX 012P1n np q --n q np 故1()213n n n nE X p q =+=+.【点睛】本题考查古典概型概率、概率中递推关系、构造法求数列通项、数学期望公式,考查综合分析求解能力,属难题.。
2020年江苏高考数学试题及答案
绝密★启用前2020年普通高等学校招生全国统一考试(江苏卷)数学Ⅰ注意事项考生在答题前请认真阅读本注意事项及各题答题要求1.本试卷共4页,均为非选择题目(第1题~第20题,共20题)。
本卷满分为160分,考试时间为120分钟。
考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员从答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答试题,必须用0.5毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗.参考公式:柱体的体积V Sh ,其中S 是柱体的底面积,h 是柱体的高.一、填空题目:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上.1.已知集合{1,0,1,2},{0,2,3}A B ,则A B ∩_____.2.已知i 是虚数单位,则复数(1i)(2i)z 的实部是_____.3.已知一组数据4,2,3,5,6a a 的平均数为4,则a 的值是_____.4.将一颗质地均匀的正方体骰子先后抛掷2次,观察向上的点数,则点数和为5的概率是_____.5.如图是一个算法流程图,若输出y 的值为2 ,则输入x 的值是_____.6.在平面直角坐标系xOy 中,若双曲线22x a ﹣25y =1(a >0)的一条渐近线方程为y=2x ,则该双曲线的离心率是____.7.已知y =f (x )是奇函数,当x ≥0时, 23 f x x ,则f (-8)的值是____.8.已知2sin ()4 =23,则sin 2 的值是____.9.如图,六角螺帽毛坯是由一个正六棱柱挖去一个圆柱所构成的.已知螺帽的底面正六边形边长为2cm ,高为2cm ,内孔半轻为0.5cm ,则此六角螺帽毛坯的体积是____cm.10.将函数y =πsin(2)43x ﹢的图象向右平移π6个单位长度,则平移后的图象中与y 轴最近的对称轴的方程是____.11.设{a n }是公差为d 的等差数列,{b n }是公比为q 的等比数列.已知数列{a n +b n }的前n 项和221()n n S n n n N ,则d +q 的值是_______.12.已知22451(,)x y y x y R ,则22x y 的最小值是_______.13.在△ABC 中,43=90AB AC BAC ,,∠,D 在边BC 上,延长AD 到P ,使得AP =9,若3()2PA mPB m PC (m 为常数),则CD 的长度是________.14.在平面直角坐标系xOy 中,已知0)P ,A ,B 是圆C :221(362x y 上的两个动点,满足PA PB ,则△PAB 面积的最大值是__________.二、解答题:本大题共6小题,共计90分,请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤.15.在三棱柱ABC -A 1B 1C 1中,AB ⊥AC ,B 1C ⊥平面ABC ,E ,F 分别是AC ,B 1C 的中点.(1)求证:EF ∥平面AB 1C 1;(2)求证:平面AB 1C ⊥平面ABB 1.16.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知3,45a c B.(1)求sin C 的值;(2)在边BC 上取一点D ,使得4cos 5ADC ,求tan DAC 的值.17.某地准备在山谷中建一座桥梁,桥址位置的竖直截面图如图所示:谷底O 在水平线MN 上、桥AB 与MN 平行,OO 为铅垂线(O 在AB 上).经测量,左侧曲线AO 上任一点D 到MN 的距离1h (米)与D 到OO 的距离a (米)之间满足关系式21140h a ;右侧曲线BO 上任一点F 到MN 的距离2h (米)与F 到OO 的距离b (米)之间满足关系式3216800h b b.已知点B 到OO 的距离为40米.(1)求桥AB 的长度;(2)计划在谷底两侧建造平行于OO 的桥墩CD 和EF ,且CE 为80米,其中C ,E 在AB 上(不包括端点).桥墩EF 每米造价k (万元)、桥墩CD 每米造价32k (万元)(k >0).问O E 为多少米时,桥墩CD 与EF 的总造价最低?18.在平面直角坐标系xOy 中,已知椭圆22:143x y E 的左、右焦点分别为F 1,F 2,点A 在椭圆E 上且在第一象限内,AF 2⊥F 1F 2,直线AF 1与椭圆E 相交于另一点B .(1)求△AF 1F 2的周长;(2)在x 轴上任取一点P ,直线AP 与椭圆E 的右准线相交于点Q ,求OP QP的最小值;(3)设点M 在椭圆E 上,记△OAB 与△MAB 的面积分别为S 1,S 2,若S 2=3S 1,求点M 的坐标.19.已知关于x 的函数(),()y f x y g x 与()(,)h x kx b k b R 在区间D 上恒有()()()f x h x g x .(1)若 222 2()f x x x g x x x D ,,,,求h (x )的表达式;(2)若2 1 ln ,()()()(0) x x g k x h kx k D f x x x ,,,,求k 的取值范围;(3)若422242() 2() (48 () 4 3 02 f x x x g x x h x t t x t t t ,,, , D m n ,求证:n m .20.已知数列 *() n a n N 的首项a 1=1,前n 项和为S n .设λ与k 是常数,若对一切正整数n ,均有11111k k kn n n S S a 成立,则称此数列为“λ–k ”数列.(1)若等差数列 n a 是“λ–1”数列,求λ的值;(2)若数列 n a 是“2”数列,且a n >0,求数列 n a 的通项公式;(3)对于给定的λ,是否存在三个不同的数列 n a 为“λ–3”数列,且a n ≥0?若存在,求λ的取值范围;若不存在,说明理由,数学Ⅱ(附加题)【选做题】本题包括A 、B 、C 三小题,请选定其中两小题,并在相应的答题区域内作....................答..若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤.A .[选修4-2:矩阵与变换]21.平面上点(2,1)A 在矩阵11a bM 对应的变换作用下得到点(3,4)B .(1)求实数a ,b 的值;(2)求矩阵M 的逆矩阵1M .B .[选修4-4:坐标系与参数方程]22.在极坐标系中,已知点1π(,)3A 在直线:cos 2l 上,点2π(,6B 在圆:4sinC 上(其中0 ,02 ).(1)求1 ,2 的值(2)求出直线l 与圆C 的公共点的极坐标.C .[选修4-5:不等式选讲]23.设x R ,解不等式2|1|||4x x .【必做题】第24题、第25题,每题10分,共计20分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤.24.在三棱锥A —BCD 中,已知CB =CDBD =2,O 为BD 的中点,AO ⊥平面BCD ,AO =2,E 为AC 的中点.(1)求直线AB 与DE 所成角的余弦值;(2)若点F 在BC 上,满足BF =14BC ,设二面角F —DE —C 的大小为θ,求sin θ的值.25.甲口袋中装有2个黑球和1个白球,乙口袋中装有3个白球.现从甲、乙两口袋中各任取一个球交换放入另一口袋,重复n 次这样的操作,记甲口袋中黑球个数为X n ,恰有2个黑球的概率为p n ,恰有1个黑球的概率为q n .(1)求p 1·q 1和p 2·q 2;(2)求2p n +q n 与2p n-1+q n-1的递推关系式和X n 的数学期望E (X n )(用n 表示).答案解析一、填空题目:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上.1.已知集合{1,0,1,2},{0,2,3}A B ,则A B ∩_____.【答案】0,2【解析】【分析】根据集合交集即可计算.【详解】∵ 1,0,1,2A ,0,2,3B ∴0,2A B I 故答案为: 0,2.【点睛】本题考查了交集及其运算,是基础题型.2.已知i 是虚数单位,则复数(1i)(2i)z 的实部是_____.【答案】3【解析】【分析】根据复数的运算法则,化简即可求得实部的值.【详解】∵复数12z i i ∴2223z i i i i∴复数的实部为3.故答案为:3.【点睛】本题考查复数的基本概念,是基础题.3.已知一组数据4,2,3,5,6a a 的平均数为4,则a 的值是_____.【答案】2【解析】【分析】根据平均数的公式进行求解即可.【详解】∵数据4,2,3,5,6a a 的平均数为4∴4235620a a ,即2a .故答案为:2.【点睛】本题主要考查平均数的计算和应用,比较基础.4.将一颗质地均匀的正方体骰子先后抛掷2次,观察向上的点数,则点数和为5的概率是_____.【答案】19【解析】【分析】分别求出基本事件总数,点数和为5的种数,再根据概率公式解答即可.【详解】根据题意可得基本事件数总为6636 个.点数和为5的基本事件有 1,4, 4,1, 2,3, 3,2共4个.∴出现向上的点数和为5的概率为41369P .故答案为:19.【点睛】本题考查概率的求法,考查古典概型、列举法等基础知识,考查运算求解能力,是基础题.5.如图是一个算法流程图,若输出y 的值为2 ,则输入x 的值是_____.【答案】3【解析】【分析】根据指数函数的性质,判断出1y x ,由此求得x 的值.【详解】由于20x ,所以12y x ,解得3x .故答案为:3【点睛】本小题主要考查根据程序框图输出结果求输入值,考查指数函数的性质,属于基础题.6.在平面直角坐标系xOy 中,若双曲线22x a ﹣25y =1(a >0)的一条渐近线方程为y=2x ,则该双曲线的离心率是____.【答案】32【解析】【分析】根据渐近线方程求得a ,由此求得c ,进而求得双曲线的离心率.【详解】双曲线22215x y a ,故b .由于双曲线的一条渐近线方程为52y x ,即22b a a ,所以3c ,所以双曲线的离心率为32c a .故答案为:32【点睛】本小题主要考查双曲线的渐近线,考查双曲线离心率的求法,属于基础题.7.已知y =f (x )是奇函数,当x ≥0时, 23 f x x ,则f (-8)的值是____.【答案】4【解析】【分析】先求(8)f ,再根据奇函数求(8)f 【详解】23(8)84f ,因为()f x 为奇函数,所以(8)(8)4f f 故答案为:4【点睛】本题考查根据奇函数性质求函数值,考查基本分析求解能力,属基础题.8.已知2sin ()4 =23,则sin 2 的值是____.【答案】13【解析】【分析】直接按照两角和正弦公式展开,再平方即得结果.【详解】22221sin ()cos sin )(1sin 2)4222Q 121(1sin 2)sin 2233 故答案为:13【点睛】本题考查两角和正弦公式、二倍角正弦公式,考查基本分析求解能力,属基础题.9.如图,六角螺帽毛坯是由一个正六棱柱挖去一个圆柱所构成的.已知螺帽的底面正六边形边长为2cm ,高为2cm ,内孔半轻为0.5cm ,则此六角螺帽毛坯的体积是____cm.【答案】2【解析】【分析】先求正六棱柱体积,再求圆柱体积,相减得结果.【详解】正六棱柱体积为23624圆柱体积为21()222所求几何体体积为2故答案为:2【点睛】本题考查正六棱柱体积、圆柱体积,考查基本分析求解能力,属基础题.10.将函数y =πsin(2)43x ﹢的图象向右平移π6个单位长度,则平移后的图象中与y 轴最近的对称轴的方程是____.【答案】524x【解析】【分析】先根据图象变换得解析式,再求对称轴方程,最后确定结果.【详解】3sin[2(]3sin(2)6412y x x72()()122242k x k k Z x k Z 当1k 时524x 故答案为:524x 【点睛】本题考查三角函数图象变换、正弦函数对称轴,考查基本分析求解能力,属基础题.11.设{a n }是公差为d 的等差数列,{b n }是公比为q 的等比数列.已知数列{a n +b n }的前n 项和221()n n S n n n N ,则d +q 的值是_______.【答案】4【解析】【分析】结合等差数列和等比数列前n 项和公式的特点,分别求得 ,n n a b 的公差和公比,由此求得d q .【详解】设等差数列 n a 的公差为d ,等比数列 n b 的公比为q ,根据题意1q .等差数列 n a 的前n 项和公式为2111222n n n d d P na d n a n,等比数列 n b 的前n 项和公式为1111111n n n b q b b Q q q q q ,依题意n n n S P Q ,即22111212211n n b b d d n n n a n q q q,通过对比系数可知111212211d d a q b q112021d a q b ,故4d q .故答案为:4【点睛】本小题主要考查等差数列和等比数列的前n 项和公式,属于中档题.12.已知22451(,)x y y x y R ,则22x y 的最小值是_______.【答案】45【解析】【分析】根据题设条件可得42215y x y ,可得4222222114+555y y x y y y y ,利用基本不等式即可求解.【详解】∵22451x y y ∴0y 且42215y x y∴42222221144+5555y y x y y y y ,当且仅当221455y y ,即2231,102x y 时取等号.∴22x y 的最小值为45.故答案为:45.【点睛】本题考查了基本不等式在求最值中的应用.利用基本不等式求最值时,一定要正确理解和掌握“一正,二定,三相等”的内涵:一正是,首先要判断参数是否为正;二定是,其次要看和或积是否为定值(和定积最大,积定和最小);三相等是,最后一定要验证等号能否成立(主要注意两点,一是相等时参数否在定义域内,二是多次用 或 时等号能否同时成立).13.在△ABC 中,43=90AB AC BAC ,,∠,D 在边BC 上,延长AD 到P ,使得AP =9,若3()2PA mPB m PC (m 为常数),则CD 的长度是________.【答案】185【解析】【分析】根据题设条件可设 0PA PD ,结合32PA mPB m PC与,,B D C 三点共线,可求得 ,再根据勾股定理求出BC ,然后根据余弦定理即可求解.【详解】∵,,A D P 三点共线,∴可设 0PA PD ,∵32PA mPB m PC ,∴32PD mPB m PC ,即32m m PD PB PC,若0m 且32m ,则,,B D C 三点共线,∴321m m,即32 ,∵9AP ,∴3AD ,∵4AB ,3AC ,90BAC ,∴5BC ,设CD x ,CDA ,则5BD x ,BDA .∴根据余弦定理可得222cos 26AD CD AC x AD CD , 222257cos 265x AD BD AB AD BD x ,∵ cos cos 0 ,∴ 2570665x x x ,解得185x ,∴CD 的长度为185.当0m 时,32PA PC,,C D 重合,此时CD 的长度为0,当32m 时,32PA PB ,,B D 重合,此时12PA ,不合题意,舍去.故答案为:0或185.【点睛】本题考查了平面向量知识的应用、余弦定理的应用以及求解运算能力,解答本题的关键是设出 0PA PD .14.在平面直角坐标系xOy 中,已知(0)2P ,A ,B 是圆C :221(362x y 上的两个动点,满足PA PB ,则△PAB 面积的最大值是__________.【答案】【解析】【分析】根据条件得PC AB ,再用圆心到直线距离表示三角形PAB 面积,最后利用导数求最大值.【详解】PA PB PC ABQ设圆心C 到直线AB 距离为d ,则||1AB PC所以11)2PAB S d V 令222(36)(1)(06)2(1)(236)04y d d d y d d d d (负值舍去)当04d 时,0y ;当46d 时,0y ,因此当4d 时,y 取最大值,即PAB S 取最大值为,故答案为:【点睛】本题考查垂径定理、利用导数求最值,考查综合分析求解能力,属中档题.二、解答题:本大题共6小题,共计90分,请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤.15.在三棱柱ABC -A 1B 1C 1中,AB ⊥AC ,B 1C ⊥平面ABC ,E ,F 分别是AC ,B 1C 的中点.(1)求证:EF ∥平面AB 1C 1;(2)求证:平面AB 1C ⊥平面ABB 1.【答案】(1)证明详见解析;(2)证明详见解析.【解析】【分析】(1)通过证明1//EF AB ,来证得//EF 平面11AB C .(2)通过证明AB 平面1AB C ,来证得平面1AB C 平面1ABB .【详解】(1)由于,E F 分别是1,AC B C 的中点,所以1//EF AB .由于EF 平面11AB C ,1AB 平面11AB C ,所以//EF 平面11AB C .(2)由于1B C 平面ABC ,AB Ì平面ABC ,所以1B C AB .由于1,AB AC AC B C C ,所以AB 平面1AB C ,由于AB Ì平面1ABB ,所以平面1AB C 平面1ABB .【点睛】本小题主要考查线面平行的证明,考查面面垂直的证明,属于中档题.16.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知3,45a c B.(1)求sin C 的值;(2)在边BC 上取一点D ,使得4cos 5ADC ,求tan DAC 的值.【答案】(1)5sin 5C;(2)2tan 11DAC .【解析】【分析】(1)利用余弦定理求得b ,利用正弦定理求得sin C .(2)根据cos ADC 的值,求得sin ADC 的值,由(1)求得cos C 的值,从而求得sin ,cos DAC DAC 的值,进而求得tan DAC 的值.【详解】(1)由余弦定理得2222cos 922352b ac ac B ,所以b .由正弦定理得sin 5sin sin sin 5c b c B C C B b .(2)由于4cos 5ADC ,,2ADC ,所以3sin 5ADC .由于,2ADC ,所以0,2C ,所以cos 5C 所以 sin sin DAC DACsin ADC C sin cos cos sin ADC C ADC C 3254525555525.由于0,2DAC ,所以cos 25DAC .所以sin 2tan cos 11DAC DAC DAC .【点睛】本小题主要考查正弦定理、余弦定理解三角形,考查三角恒等变换,属于中档题.17.某地准备在山谷中建一座桥梁,桥址位置的竖直截面图如图所示:谷底O 在水平线MN 上、桥AB 与MN 平行,OO 为铅垂线(O 在AB 上).经测量,左侧曲线AO 上任一点D 到MN 的距离1h (米)与D 到OO 的距离a (米)之间满足关系式21140h a ;右侧曲线BO 上任一点F 到MN 的距离2h (米)与F 到OO 的距离b (米)之间满足关系式3216800h b b.已知点B 到OO 的距离为40米.(1)求桥AB 的长度;(2)计划在谷底两侧建造平行于OO 的桥墩CD 和EF ,且CE 为80米,其中C ,E 在AB 上(不包括端点).桥墩EF 每米造价k (万元)、桥墩CD 每米造价32k (万元)(k >0).问O E 为多少米时,桥墩CD 与EF 的总造价最低【答案】(1)120米(2)20O E 米【解析】【分析】(1)根据A,B 高度一致列方程求得结果;(2)根据题意列总造价的函数关系式,利用导数求最值,即得结果.【详解】(1)由题意得2311||40640||8040800O A O A ||||||8040120AB O A O B 米(2)设总造价为()f x 万元,21||8016040O O,设||O E x ,32131()(1606)[160(80)],(040)800240f x k x x k x x3221336()(160),()()0208008080080f x k x x f x k x x x (0舍去)当020x 时,()0f x ;当2040x 时,()0f x ,因此当20x =时,()f x 取最小值,答:当20O E 米时,桥墩CD 与EF 的总造价最低.【点睛】本题考查实际成本问题、利用导数求最值,考查基本分析求解能力,属中档题.18.在平面直角坐标系xOy 中,已知椭圆22:143x y E 的左、右焦点分别为F 1,F 2,点A 在椭圆E 上且在第一象限内,AF 2⊥F 1F 2,直线AF 1与椭圆E 相交于另一点B .(1)求△AF 1F 2的周长;(2)在x 轴上任取一点P ,直线AP 与椭圆E 的右准线相交于点Q ,求OP QP 的最小值;(3)设点M 在椭圆E 上,记△OAB 与△MAB 的面积分别为S 1,S 2,若S 2=3S 1,求点M 的坐标.【答案】(1)6;(2)-4;(3) 2,0M 或212,77.【解析】【分析】(1)根据椭圆定义可得124AF AF ,从而可求出12AF F △的周长;(2)设 0,0P x ,根据点A 在椭圆E 上,且在第一象限,212AF F F ,求出31,2A ,根据准线方程得Q 点坐标,再根据向量坐标公式,结合二次函数性质即可出最小值;(3)设出设 11,M x y ,点M 到直线AB 的距离为d ,由点O 到直线AB 的距离与213S S ,可推出95d ,根据点到直线的距离公式,以及 11,M x y 满足椭圆方程,解方程组即可求得坐标.【详解】(1)∵椭圆E 的方程为22143x y∴ 11,0F ,21,0F 由椭圆定义可得:124AF AF .∴12AF F △的周长为426(2)设 0,0P x ,根据题意可得01x .∵点A 在椭圆E 上,且在第一象限,212AF F F ∴31,2A∵准线方程为4x ∴ 4,QQ y ∴ 200000,04,4244Q OP QP x x y x x x ,当且仅当02x 时取等号.∴OP QP 的最小值为4 .(3)设 11,M x y ,点M 到直线AB 的距离为d .∵31,2A, 11,0F ∴直线1AF 的方程为 314y x∵点O 到直线AB 的距离为35,213S S ∴2113133252S S AB AB d ∴95d ∴113439x y ①∵2211143x y ②∴联立①②解得1120x y ,1127127x y.∴ 2,0M 或212,77.【点睛】本题考查了椭圆的定义,直线与椭圆相交问题、点到直线距离公式的运用,熟悉运用公式以及根据213S S 推出95d 是解答本题的关键.19.已知关于x 的函数(),()y f x y g x 与()(,)h x kx b k b R 在区间D 上恒有()()()f x h x g x .(1)若 222 2()f x x x g x x x D ,,,,求h (x )的表达式;(2)若2 1 ln ,()()()(0) x x g k x h kx k D f x x x ,,,,求k 的取值范围;(3)若422242() 2() (48 () 4 3 02 f x x x g x x h x t t x t t t ,,, , D m n ,求证:n m .【答案】(1) 2h x x ;(2) 0,3k ;(3)证明详见解析【解析】【分析】(1)求得 f x 与 g x 的公共点,并求得过该点的公切线方程,由此求得 h x 的表达式.(2)先由 0h x g x ,求得k 的一个取值范围,再由 0f x h x ,求得k 的另一个取值范围,从而求得k 的取值范围.(3)先由 f x h x ,求得t 的取值范围,由方程 0g x h x 的两个根,求得n m 的表达式,利用导数证得不等式成立.【详解】(1)由题设有2222x x kx b x x 对任意的x R 恒成立.令0x ,则00b ,所以0b .因此22kx x x 即 220x k x 对任意的x R 恒成立,所以 220k ,因此2k .故 2h x x .(2)令 1ln 0F x h x g x k x x x , 01F .又 1x F x k x.若k 0 ,则 F x 在()0,1上递增,在()1,+¥上递减,则 10F x F ,即 0h x g x ,不符合题意.当0k 时, 0,F x h x g x h x g x ,符合题意.当0k 时, F x 在()0,1上递减,在()1,+¥上递增,则 10F x F ,即 0h x g x ,符合题意.综上所述,0k .由 21f x h x x x kx k 2110x k x k 当102k x ,即1k 时, 211y x k x k 在()0,+¥为增函数,因为 0010f h k ,故存在 00,x ,使 0f x h x ,不符合题意.当102k x,即1k 时, 20f x h x x ,符合题意.当102k x ,即1k 时,则需 21410k k ,解得13k .综上所述,k 的取值范围是 0,3k .(3)因为 423422243248x x t t x t t x 对任意[,][x m n 恒成立, 423422432x x t t x t t对任意[,][x m n 恒成立,等价于222()2320x t x tx t 对任意[,][x m n 恒成立.故222320x tx t 对任意[,][x m n 恒成立令22()232M x x tx t ,当201t ,2880,11t t ,此时1n m t ,当212t ,2880t ,但 234248432x t t x t t 对任意的[,][x m n 恒成立.等价于 2322443420x t t x t t 对任意的[,][x m n 恒成立.2322443420x t t x t t 的两根为12,x x ,则4231212328,4t t x x t t x x ,所以12=n m x x .令 2,1,2t ,则n m.构造函数 325381,2P , 23103331P ,所以 1,2 时, 0P , P 递减, max 17P P .所以 max n m n m .【点睛】本小题主要考查利用的导数求切线方程,考查利用导数研究不等式恒成立问题,考查利用导数证明不等式,考查分类讨论的数学思想方法,属于难题.20.已知数列 *() n a n N 的首项a 1=1,前n 项和为S n .设λ与k 是常数,若对一切正整数n ,均有11111k k kn n n S S a 成立,则称此数列为“λ–k ”数列.(1)若等差数列 n a 是“λ–1”数列,求λ的值;(2)若数列 n a 是“2”数列,且a n >0,求数列 n a 的通项公式;(3)对于给定的λ,是否存在三个不同的数列 n a 为“λ–3”数列,且a n ≥0?若存在,求λ的取值范围;若不存在,说明理由,【答案】(1)1(2)21,134,2n n n a n(3)01【解析】【分析】(1)根据定义得+11n n n S S a ,再根据和项与通项关系化简得11n n a a ,最后根据数列不为零数列得结果;(2)根据定义得111222+1+13()3n n n n S S S S ,根据平方差公式化简得+1=4n n S S ,求得n S ,即得n a ;(3)根据定义得111333+11n n n S S a ,利用立方差公式化简得两个方程,再根据方程解的个数确定参数满足的条件,解得结果【详解】(1)+111111101n n n n n n S S a a a a a Q (2)11221100n n n n n a S S S SQ 111222+1+1()3n nn n S S S S Q 1111112222222+1+1+11()()()3n n n n n n S S S S S S 1111111222222+1+1+1+11()=2=443n n nn n n n n n n S S S S S S S S S 111S a ∵,14n n S 1224434,2n n n n a n 21,134,2n n n a n (3)假设存在三个不同的数列 n a 为"3" 数列.111113333333+11+1+1()()n n n n n n n S S a S S S S 1133+1n n S S 或11221123333333+1+1+1()()n n n n n n S S S S S S +1n n S S 或22113333333+1+1(1)(1)(2)0n n n n S S S S ∵对于给定的 ,存在三个不同的数列 n a 为"3" 数列,且0n a 1,10,2n n a n 或 22113333333+1+1(1)(1)(2)01n n n n S S S S 有两个不等的正根. 22113333333+1+1(1)(1)(2)01n n n n S S S S 可转化为 2133333+1+12133(1)(2)(1)01n n n n S S S S ,不妨设 1310n n S x x S ,则 3233(1)(2)(1)01x x 有两个不等正根,设3233(1)(2)(1)01f x x x .①当1 时,32323(2)4(1)004 ,即01 ,此时3010f ,33(2)02(1)x 对,满足题意.②当1 时,32323(2)4(1)004,即13010f ,33(2)02(1)x 对,此情况有两个不等负根,不满足题意舍去.综上,01【点睛】本题考查数列新定义、由和项求通项、一元二次方程实根分步,考查综合分析求解能力,属难题.数学Ⅱ(附加题)【选做题】本题包括A 、B 、C 三小题,请选定其中两小题,并在相应的答题区域内作....................答..若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤.A .[选修4-2:矩阵与变换]21.平面上点(2,1)A 在矩阵11a bM 对应的变换作用下得到点(3,4)B .(1)求实数a ,b 的值;(2)求矩阵M 的逆矩阵1M .【答案】(1)22a b ;(2)121 5512 55M.【解析】【分析】(1)根据变换写出具体的矩阵关系式,然后进行矩阵的计算可得出实数,a b 的值;(2)设出逆矩阵,由定义得到方程,即可求解.【详解】(1)∵平面上点 2,1A 在矩阵 11 a M b对应的变换作用下得到点 3,4B ∴ 1 2 31 14a b∴21324a b ,解得22a b (2)设1 m n M c d ,则1 2 21 0=2 20 1m c n d MM m c n d∴21202021m c n d m c n d ,解得25151525m n c d ∴121 5512 55M【点睛】本题考查矩阵变换的应用,考查逆矩阵的求法,解题时要认真审题,属于基础题.B .[选修4-4:坐标系与参数方程]22.在极坐标系中,已知点1π(,)3A 在直线:cos 2l 上,点2π(,6B 在圆:4sinC 上(其中0 ,02 ).(1)求1 ,2 的值(2)求出直线l 与圆C 的公共点的极坐标.【答案】(1)1242 ,(2)4【解析】【分析】(1)将A,B 点坐标代入即得结果;(2)联立直线与圆极坐标方程,解得结果.【详解】(1)以极点为原点,极轴为x 轴的正半轴,建立平面直角坐标系,11cos 2,43∵,因为点B 为直线6 上,故其直角坐标方程为33y x ,又4sin 对应的圆的直角坐标方程为:2240x y y ,由223340y x x y y解得00x y或1x y 对应的点为0,0,,故对应的极径为20 或22 .(2)cos 2,4sin ,4sin cos 2,sin 21 ∵,5[0,2),,44∵,当4时 ;当54时0,舍;即所求交点坐标为当),4【点睛】本题考查极坐标方程及其交点,考查基本分析求解能力,属基础题.C .[选修4-5:不等式选讲]23.设x R ,解不等式2|1|||4x x .【答案】22,3【解析】【分析】根据绝对值定义化为三个方程组,解得结果【详解】1224x x x ∵或10224x x x 或0224x x x 21x 或10x ≤≤或203x 所以解集为22,3【点睛】本题考查分类讨论解含绝对值不等式,考查基本分析求解能力,属基础题.【必做题】第24题、第25题,每题10分,共计20分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤.24.在三棱锥A —BCD 中,已知CB =CDBD =2,O 为BD 的中点,AO ⊥平面BCD ,AO =2,E 为AC 的中点.(1)求直线AB 与DE 所成角的余弦值;(2)若点F 在BC 上,满足BF =14BC ,设二面角F —DE —C 的大小为θ,求sin θ的值.【答案】(1)1515(2)23913【解析】【分析】(1)建立空间直角坐标系,利用向量数量积求直线向量夹角,即得结果;(2)先求两个平面法向量,根据向量数量积求法向量夹角,最后根据二面角与向量夹角关系得结果.详解】(1)连,CO BC CD BO OD CO BDQ 以,,OB OC OA 为,,x y z 轴建立空间直角坐标系,则(0,0,2),(1,0,0),(0,2,0),(1,0,0)(0,1,1)A B C D E 15(1,0,2),(1,1,1)cos ,15AB DE AB DE u u u r u u u r u u u r u u u r从而直线AB 与DE 所成角的余弦值为15(2)设平面DEC 一个法向量为1(,,),n x y z11200(1,2,0),00x y n DC DC x y z n DE ∵令112,1(2,1,1)y x z n u r 设平面DEF 一个法向量为2111(,,),n x y z u u r 11221117100171(,,0),4244200x y n DF DF DB BF DB BC n DE x y z ∵令111272,5(2,7,5)y x z n u ur 12cos ,n n u r u u r因此sin 13 【点睛】本题考查利用向量求线线角与二面角,考查基本分析求解能力,属中档题.25.甲口袋中装有2个黑球和1个白球,乙口袋中装有3个白球.现从甲、乙两口袋中各任取一个球交换放入另一口袋,重复n 次这样的操作,记甲口袋中黑球个数为X n ,恰有2个黑球的概率为p n ,恰有1个黑球的概率为q n .(1)求p 1·q 1和p 2·q 2;(2)求2p n +q n 与2p n-1+q n-1的递推关系式和X n 的数学期望E (X n )(用n 表示).【答案】(1)112212716,,332727p q p q;;(2) 111222+33n n n n p q p q 【解析】【分析】(1)直接根据操作,根据古典概型概率公式可得结果;(2)根据操作,依次求n n p q ,,即得递推关系,构造等比数列求得2n n p q ,最后根据数学期望公式求结果.【详解】(1)11131232,333333p q,211131211227++3333333927p p q ,211231122222516+0+3333333927q p q (2)1111131212++333339n n n n n p p q p q ,111112*********+(1)+33333393n n n n n n q p q p q q,因此112122+333n n n n p q p q ,从而11111212(2+),21(2+1)333n n n n n n n n p q p q p q p q ,即1111121(2+1),2133n n n n n n p q p q p q .又n X 的分布列为nX 012P 1n n p q n q np 故1()213n n n nE X p q .【点睛】本题考查古典概型概率、概率中递推关系、构造法求数列通项、数学期望公式,考查综合分析求解能力,属难题.祝福语祝你马到成功,万事顺意!。
高考数学试卷(含答案解析)
江苏省高考数学试卷一.填空题1.(5分)已知集合A={1, 2}, B={a, a2+3}.若A∩B={1}, 则实数a的值为.2.(5分)已知复数z=(1+i)(1+2i), 其中i是虚数单位, 则z的模是.3.(5分)某工厂生产甲、乙、丙、丁四种不同型号的产品, 产量分别为200, 400, 300, 100件.为检验产品的质量, 现用分层抽样的方法从以上所有的产品中抽取60件进行检验, 则应从丙种型号的产品中抽取件.4.(5分)如图是一个算法流程图:若输入x的值为, 则输出y的值是.5.(5分)若tan(α﹣)=.则tanα=.6.(5分)如图, 在圆柱O1O2内有一个球O, 该球与圆柱的上、下底面及母线均相切, 记圆柱O1O2的体积为V1, 球O的体积为V2, 则的值是.7.(5分)记函数f(x)=定义域为D.在区间[﹣4, 5]上随机取一个数x, 则x∈D的概率是.8.(5分)在平面直角坐标系xOy中, 双曲线﹣y2=1的右准线与它的两条渐近线分别交于点P, Q, 其焦点是F1, F2, 则四边形F1PF2Q的面积是.9.(5分)等比数列{a n}的各项均为实数, 其前n项为S n, 已知S3=, S6=, 则a8=.10.(5分)某公司一年购买某种货物600吨, 每次购买x吨, 运费为6万元/次, 一年的总存储费用为4x万元.要使一年的总运费与总存储费用之和最小, 则x的值是.11.(5分)已知函数f(x)=x3﹣2x+e x﹣, 其中e是自然对数的底数.若f (a﹣1)+f(2a2)≤0.则实数a的取值范围是.12.(5分)如图, 在同一个平面内, 向量, , 的模分别为1, 1, , 与的夹角为α, 且tanα=7, 与的夹角为45°.若=m+n(m, n ∈R), 则m+n=.13.(5分)在平面直角坐标系xOy中, A(﹣12, 0), B(0, 6), 点P在圆O:x2+y2=50上.若≤20, 则点P的横坐标的取值范围是.14.(5分)设f(x)是定义在R上且周期为1的函数, 在区间[0, 1)上, f (x)=, 其中集合D={x|x=, n∈N*}, 则方程f(x)﹣lgx=0的解的个数是.二.解答题15.(14分)如图, 在三棱锥A﹣BCD中, AB⊥AD, BC⊥BD, 平面ABD⊥平面BCD, 点E、F(E与A、D不重合)分别在棱AD, BD上, 且EF⊥AD.求证:(1)EF∥平面ABC;(2)AD⊥AC.16.(14分)已知向量=(cosx, sinx), =(3, ﹣), x∈[0, π].(1)若∥, 求x的值;(2)记f(x)=, 求f(x)的最大值和最小值以及对应的x的值.17.(14分)如图, 在平面直角坐标系xOy中, 椭圆E:=1(a>b>0)的左、右焦点分别为F1, F2, 离心率为, 两准线之间的距离为8.点P在椭圆E上, 且位于第一象限, 过点F1作直线PF1的垂线l1, 过点F2作直线PF2的垂线l2.(1)求椭圆E的标准方程;(2)若直线l1, l2的交点Q在椭圆E上, 求点P的坐标.18.(16分)如图, 水平放置的正四棱柱形玻璃容器Ⅰ和正四棱台形玻璃容器Ⅱ的高均为32cm, 容器Ⅰ的底面对角线AC的长为10cm, 容器Ⅱ的两底面对角线EG, E1G1的长分别为14cm和62cm.分别在容器Ⅰ和容器Ⅱ中注入水, 水深均为12cm.现有一根玻璃棒l, 其长度为40cm.(容器厚度、玻璃棒粗细均忽略不计)(1)将l放在容器Ⅰ中, l的一端置于点A处, 另一端置于侧棱CC1上, 求l 没入水中部分的长度;(2)将l 放在容器Ⅱ中, l 的一端置于点E 处, 另一端置于侧棱GG 1上, 求l 没入水中部分的长度.19.(16分)对于给定的正整数k, 若数列{a n }满足:a n ﹣k +a n ﹣k +1+…+a n ﹣1+a n +1+…+a n +k ﹣1+a n +k =2ka n 对任意正整数n (n >k )总成立, 则称数列{a n }是“P (k )数列”.(1)证明:等差数列{a n }是“P (3)数列”;(2)若数列{a n }既是“P (2)数列”, 又是“P (3)数列”, 证明:{a n }是等差数列.20.(16分)已知函数f(x)=x3+ax2+bx+1(a>0, b∈R)有极值, 且导函数f′(x)的极值点是f(x)的零点.(极值点是指函数取极值时对应的自变量的值)(1)求b关于a的函数关系式, 并写出定义域;(2)证明:b2>3a;(3)若f(x), f′(x)这两个函数的所有极值之和不小于﹣, 求a的取值范围.二.非选择题, 附加题(21-24选做题)【选修4-1:几何证明选讲】(本小题满分0分)21.如图, AB为半圆O的直径, 直线PC切半圆O于点C, AP⊥PC, P为垂足.求证:(1)∠PAC=∠CAB;(2)AC2 =AP•AB.[选修4-2:矩阵与变换]22.已知矩阵A=, B=.(1)求AB;(2)若曲线C1:=1在矩阵AB对应的变换作用下得到另一曲线C2, 求C2的方程.[选修4-4:坐标系与参数方程]23.在平面直角坐标系xOy中, 已知直线l的参数方程为(t为参数), 曲线C的参数方程为(s为参数).设P为曲线C上的动点, 求点P到直线l的距离的最小值.[选修4-5:不等式选讲]24.已知a, b, c, d为实数, 且a2+b2=4, c2+d2=16, 证明ac+bd≤8.【必做题】25.如图, 在平行六面体ABCD﹣A1B1C1D1中, AA1⊥平面ABCD, 且AB=AD=2, AA1=, ∠BAD=120°.(1)求异面直线A1B与AC1所成角的余弦值;(2)求二面角B﹣A1D﹣A的正弦值.26.已知一个口袋有m个白球, n个黑球(m, n∈N*, n≥2), 这些球除颜色外全部相同.现将口袋中的球随机的逐个取出, 并放入如图所示的编号为1, 2, 3, …, m+n的抽屉内, 其中第k次取出的球放入编号为k的抽屉(k=1, 2, 3, …, m+n).123…m+n(1)试求编号为2的抽屉内放的是黑球的概率p;(2)随机变量x表示最后一个取出的黑球所在抽屉编号的倒数, E(X)是X的数学期望, 证明E(X)<.江苏省高考数学试卷参考答案与试题解析一.填空题1.(5分)(2020•江苏)已知集合A={1, 2}, B={a, a2+3}.若A∩B={1}, 则实数a的值为1.【分析】利用交集定义直接求解.【解答】解:∵集合A={1, 2}, B={a, a2+3}.A∩B={1},∴a=1或a2+3=1,解得a=1.故答案为:1.【点评】本题考查实数值的求法, 是基础题, 解题时要认真审题, 注意交集定义及性质的合理运用.2.(5分)(2020•江苏)已知复数z=(1+i)(1+2i), 其中i是虚数单位, 则z 的模是.【分析】利用复数的运算法则、模的计算公式即可得出.【解答】解:复数z=(1+i)(1+2i)=1﹣2+3i=﹣1+3i,∴|z|==.故答案为:.【点评】本题考查了复数的运算法则、模的计算公式, 考查了推理能力与计算能力, 属于基础题.3.(5分)(2020•江苏)某工厂生产甲、乙、丙、丁四种不同型号的产品, 产量分别为200, 400, 300, 100件.为检验产品的质量, 现用分层抽样的方法从以上所有的产品中抽取60件进行检验, 则应从丙种型号的产品中抽取18件.【分析】由题意先求出抽样比例即为, 再由此比例计算出应从丙种型号的产品中抽取的数目.【解答】解:产品总数为200+400+300+100=1000件, 而抽取60辆进行检验, 抽样比例为=,则应从丙种型号的产品中抽取300×=18件,故答案为:18【点评】本题的考点是分层抽样.分层抽样即要抽样时保证样本的结构和总体的结构保持一致, 按照一定的比例, 即样本容量和总体容量的比值, 在各层中进行抽取.4.(5分)(2020•江苏)如图是一个算法流程图:若输入x的值为, 则输出y 的值是﹣2.【分析】直接模拟程序即得结论.【解答】解:初始值x=, 不满足x≥1,所以y=2+log2=2﹣=﹣2,故答案为:﹣2.【点评】本题考查程序框图, 模拟程序是解决此类问题的常用方法, 注意解题方法的积累, 属于基础题.5.(5分)(2020•江苏)若tan(α﹣)=.则tanα=.【分析】直接根据两角差的正切公式计算即可【解答】解:∵tan(α﹣)===∴6tanα﹣6=tanα+1,解得tanα=,故答案为:.【点评】本题考查了两角差的正切公式, 属于基础题6.(5分)(2020•江苏)如图, 在圆柱O1O2内有一个球O, 该球与圆柱的上、下底面及母线均相切, 记圆柱O1O2的体积为V1, 球O的体积为V2, 则的值是.【分析】设出球的半径, 求出圆柱的体积以及球的体积即可得到结果.【解答】解:设球的半径为R, 则球的体积为:R3,圆柱的体积为:πR2•2R=2πR3.则==.故答案为:.【点评】本题考查球的体积以及圆柱的体积的求法, 考查空间想象能力以及计算能力.7.(5分)(2020•江苏)记函数f(x)=定义域为D.在区间[﹣4, 5]上随机取一个数x, 则x∈D的概率是.【分析】求出函数的定义域, 结合几何概型的概率公式进行计算即可.【解答】解:由6+x﹣x2≥0得x2﹣x﹣6≤0, 得﹣2≤x≤3,则D=[﹣2, 3],则在区间[﹣4, 5]上随机取一个数x, 则x∈D的概率P==,故答案为:【点评】本题主要考查几何概型的概率公式的计算, 结合函数的定义域求出D, 以及利用几何概型的概率公式是解决本题的关键.8.(5分)(2020•江苏)在平面直角坐标系xOy中, 双曲线﹣y2=1的右准线与它的两条渐近线分别交于点P, Q, 其焦点是F1, F2, 则四边形F1PF2Q的面积是.【分析】求出双曲线的准线方程和渐近线方程, 得到P, Q坐标, 求出焦点坐标, 然后求解四边形的面积.【解答】解:双曲线﹣y2=1的右准线:x=, 双曲线渐近线方程为:y=x, 所以P(, ), Q(, ﹣), F1(﹣2, 0).F2(2, 0).则四边形F1PF2Q的面积是:=2.故答案为:2.【点评】本题考查双曲线的简单性质的应用, 考查计算能力.9.(5分)(2020•江苏)等比数列{a n}的各项均为实数, 其前n项为S n, 已知S3=, S6=, 则a8=32.【分析】设等比数列{a n}的公比为q≠1, S3=, S6=, 可得=,=, 联立解出即可得出.【解答】解:设等比数列{a n}的公比为q≠1,∵S3=, S6=, ∴=, =,解得a1=, q=2.则a8==32.故答案为:32.【点评】本题考查了等比数列的通项公式与求和公式, 考查了推理能力与计算能力, 属于中档题.10.(5分)(2020•江苏)某公司一年购买某种货物600吨, 每次购买x吨, 运费为6万元/次, 一年的总存储费用为4x万元.要使一年的总运费与总存储费用之和最小, 则x的值是30.【分析】由题意可得:一年的总运费与总存储费用之和=+4x, 利用基本不等式的性质即可得出.【解答】解:由题意可得:一年的总运费与总存储费用之和=+4x≥4×2×=240(万元).当且仅当x=30时取等号.故答案为:30.【点评】本题考查了基本不等式的性质及其应用, 考查了推理能力与计算能力, 属于基础题.11.(5分)(2020•江苏)已知函数f(x)=x3﹣2x+e x﹣, 其中e是自然对数的底数.若f(a﹣1)+f(2a2)≤0.则实数a的取值范围是[﹣1, ] .【分析】求出f(x)的导数, 由基本不等式和二次函数的性质, 可得f(x)在R上递增;再由奇偶性的定义, 可得f(x)为奇函数, 原不等式即为2a2≤1﹣a, 运用二次不等式的解法即可得到所求范围.【解答】解:函数f(x)=x3﹣2x+e x﹣的导数为:f′(x)=3x2﹣2+e x+≥﹣2+2=0,可得f(x)在R上递增;又f(﹣x)+f(x)=(﹣x)3+2x+e﹣x﹣e x+x3﹣2x+e x﹣=0,可得f(x)为奇函数,则f(a﹣1)+f(2a2)≤0,即有f(2a2)≤﹣f(a﹣1)=f(1﹣a),即有2a2≤1﹣a,解得﹣1≤a≤,故答案为:[﹣1, ].【点评】本题考查函数的单调性和奇偶性的判断和应用, 注意运用导数和定义法, 考查转化思想的运用和二次不等式的解法, 考查运算能力, 属于中档题.12.(5分)(2020•江苏)如图, 在同一个平面内, 向量, , 的模分别为1, 1, , 与的夹角为α, 且tanα=7, 与的夹角为45°.若=m+n(m, n∈R), 则m+n=3.【分析】如图所示, 建立直角坐标系.A(1, 0).由与的夹角为α, 且tanα=7.可得cosα=, sinα=.C.可得cos(α+45°)=.sin (α+45°)=.B.利用=m+n(m, n∈R), 即可得出.【解答】解:如图所示, 建立直角坐标系.A(1, 0).由与的夹角为α, 且tanα=7.∴cosα=, sinα=.∴C.cos(α+45°)=(cosα﹣sinα)=.sin(α+45°)=(sinα+cosα)=.∴B.∵=m+n(m, n∈R),∴=m﹣n, =0+n,解得n=, m=.则m+n=3.故答案为:3.【点评】本题考查了向量坐标运算性质、和差公式, 考查了推理能力与计算能力, 属于中档题.13.(5分)(2020•江苏)在平面直角坐标系xOy中, A(﹣12, 0), B(0, 6), 点P在圆O:x2+y2=50上.若≤20, 则点P的横坐标的取值范围是[﹣5, 1] .【分析】根据题意, 设P(x0, y0), 由数量积的坐标计算公式化简变形可得2x0+y0+5≤0, 分析可得其表示表示直线2x+y+5≤0以及直线下方的区域, 联立直线与圆的方程可得交点的横坐标, 结合图形分析可得答案.【解答】解:根据题意, 设P(x0, y0), 则有x02+y02=50,=(﹣12﹣x0, ﹣y0)•(﹣x0, 6﹣y0)=(12+x0)x0﹣y0(6﹣y0)=12x0+6y+x02+y02≤20,化为:12x0﹣6y0+30≤0,即2x0﹣y0+5≤0, 表示直线2x+y+5≤0以及直线下方的区域,联立, 解可得x0=﹣5或x0=1,结合图形分析可得:点P的横坐标x0的取值范围是[﹣5, 1],故答案为:[﹣5, 1].【点评】本题考查数量积的运算以及直线与圆的位置关系, 关键是利用数量积化简变形得到关于x0、y0的关系式.14.(5分)(2020•江苏)设f(x)是定义在R上且周期为1的函数, 在区间[0, 1)上, f(x)=, 其中集合D={x|x=, n∈N*}, 则方程f(x)﹣lgx=0的解的个数是8.【分析】由已知中f(x)是定义在R上且周期为1的函数, 在区间[0, 1)上, f (x)=, 其中集合D={x|x=, n∈N*}, 分析f(x)的图象与y=lgx 图象交点的个数, 进而可得答案.【解答】解:∵在区间[0, 1)上, f(x)=,第一段函数上的点的横纵坐标均为有理数,又f(x)是定义在R上且周期为1的函数,∴在区间[1, 2)上, f(x)=, 此时f(x)的图象与y=lgx有且只有一个交点;同理:区间[2, 3)上, f(x)的图象与y=lgx有且只有一个交点;区间[3, 4)上, f(x)的图象与y=lgx有且只有一个交点;区间[4, 5)上, f(x)的图象与y=lgx有且只有一个交点;区间[5, 6)上, f(x)的图象与y=lgx有且只有一个交点;区间[6, 7)上, f(x)的图象与y=lgx有且只有一个交点;区间[7, 8)上, f(x)的图象与y=lgx有且只有一个交点;区间[8, 9)上, f(x)的图象与y=lgx有且只有一个交点;在区间[9, +∞)上, f(x)的图象与y=lgx无交点;故f(x)的图象与y=lgx有8个交点;即方程f(x)﹣lgx=0的解的个数是8,故答案为:8【点评】本题考查的知识点是根的存在性及根的个数判断, 函数的图象和性质, 转化思想, 难度中档.二.解答题15.(14分)(2020•江苏)如图, 在三棱锥A﹣BCD中, AB⊥AD, BC⊥BD, 平面ABD⊥平面BCD, 点E、F(E与A、D不重合)分别在棱AD, BD上, 且EF ⊥AD.求证:(1)EF∥平面ABC;(2)AD⊥AC.【分析】(1)利用AB∥EF及线面平行判定定理可得结论;(2)通过取线段CD上点G, 连结FG、EG使得FG∥BC, 则EG∥AC, 利用线面垂直的性质定理可知FG⊥AD, 结合线面垂直的判定定理可知AD⊥平面EFG, 从而可得结论.【解答】证明:(1)因为AB⊥AD, EF⊥AD, 且A、B、E、F四点共面,所以AB∥EF,又因为EF⊊平面ABC, AB⊆平面ABC,所以由线面平行判定定理可知:EF∥平面ABC;(2)在线段CD上取点G, 连结FG、EG使得FG∥BC, 则EG∥AC,因为BC⊥BD, 所以FG∥BC,又因为平面ABD⊥平面BCD,所以FG⊥平面ABD, 所以FG⊥AD,又因为AD⊥EF, 且EF∩FG=F,所以AD⊥平面EFG, 所以AD⊥EG,故AD⊥AC.【点评】本题考查线面平行及线线垂直的判定, 考查空间想象能力, 考查转化思想, 涉及线面平行判定定理, 线面垂直的性质及判定定理, 注意解题方法的积累, 属于中档题.16.(14分)(2020•江苏)已知向量=(cosx, sinx), =(3, ﹣), x∈[0, π].(1)若∥, 求x的值;(2)记f(x)=, 求f(x)的最大值和最小值以及对应的x的值.【分析】(1)根据向量的平行即可得到tanx=﹣, 问题得以解决,(2)根据向量的数量积和两角和余弦公式和余弦函数的性质即可求出【解答】解:(1)∵=(cosx, sinx), =(3, ﹣), ∥,∴﹣cosx=3sinx,∴tanx=﹣,∵x∈[0, π],∴x=,(2)f(x)==3cosx﹣sinx=2(cosx﹣sinx)=2cos(x+),∵x∈[0, π],∴x+∈[, ],∴﹣1≤cos(x+)≤,当x=0时, f(x)有最大值, 最大值3,当x=时, f(x)有最小值, 最大值﹣2.【点评】本题考查了向量的平行和向量的数量积以及三角函数的化简和三角函数的性质, 属于基础题17.(14分)(2020•江苏)如图, 在平面直角坐标系xOy中, 椭圆E:=1(a>b>0)的左、右焦点分别为F1, F2, 离心率为, 两准线之间的距离为8.点P在椭圆E上, 且位于第一象限, 过点F1作直线PF1的垂线l1, 过点F2作直线PF2的垂线l2.(1)求椭圆E的标准方程;(2)若直线l1, l2的交点Q在椭圆E上, 求点P的坐标.【分析】(1)由椭圆的离心率公式求得a=2c, 由椭圆的准线方程x=±, 则2×=8, 即可求得a和c的值, 则b2=a2﹣c2=3, 即可求得椭圆方程;(2)设P点坐标, 分别求得直线PF2的斜率及直线PF1的斜率, 则即可求得l2及l1的斜率及方程, 联立求得Q点坐标, 由Q在椭圆方程, 求得y02=x02﹣1, 联立即可求得P点坐标;方法二:设P(m, n), 当m≠1时, =, =, 求得直线l1及l1的方程, 联立求得Q点坐标, 根据对称性可得=±n2, 联立椭圆方程, 即可求得P点坐标.【解答】解:(1)由题意可知:椭圆的离心率e==, 则a=2c, ①椭圆的准线方程x=±, 由2×=8, ②由①②解得:a=2, c=1,则b2=a2﹣c2=3,∴椭圆的标准方程:;(2)方法一:设P(x0, y0), 则直线PF2的斜率=,则直线l2的斜率k2=﹣, 直线l2的方程y=﹣(x﹣1),直线PF1的斜率=,则直线l2的斜率k2=﹣, 直线l2的方程y=﹣(x+1),联立, 解得:, 则Q(﹣x0, ),由P, Q在椭圆上, P, Q的横坐标互为相反数, 纵坐标应相等, 则y0=, ∴y02=x02﹣1,则, 解得:, 则,又P在第一象限, 所以P的坐标为:P(, ).方法二:设P(m, n), 由P在第一象限, 则m>0, n>0,当m=1时, 不存在, 解得:Q与F1重合, 不满足题意,当m≠1时, =, =,由l1⊥PF1, l2⊥PF2, 则=﹣, =﹣,直线l1的方程y=﹣(x+1), ①直线l2的方程y=﹣(x﹣1), ②联立解得:x=﹣m, 则Q(﹣m, ),由Q在椭圆方程, 由对称性可得:=±n2,即m2﹣n2=1, 或m2+n2=1,由P(m, n), 在椭圆方程, , 解得:, 或,无解,又P在第一象限, 所以P的坐标为:P(, ).【点评】本题考查椭圆的标准方程, 直线与椭圆的位置关系, 考查直线的斜率公式, 考查数形结合思想, 考查计算能力, 属于中档题.18.(16分)(2020•江苏)如图, 水平放置的正四棱柱形玻璃容器Ⅰ和正四棱台形玻璃容器Ⅱ的高均为32cm, 容器Ⅰ的底面对角线AC的长为10cm, 容器Ⅱ的两底面对角线EG, E1G1的长分别为14cm和62cm.分别在容器Ⅰ和容器Ⅱ中注入水, 水深均为12cm.现有一根玻璃棒l, 其长度为40cm.(容器厚度、玻璃棒粗细均忽略不计)(1)将l放在容器Ⅰ中, l的一端置于点A处, 另一端置于侧棱CC1上, 求l 没入水中部分的长度;(2)将l放在容器Ⅱ中, l的一端置于点E处, 另一端置于侧棱GG1上, 求l 没入水中部分的长度.【分析】(1)设玻璃棒在CC1上的点为M, 玻璃棒与水面的交点为N, 过N作NP∥MC, 交AC于点P, 推导出CC1⊥平面ABCD, CC1⊥AC, NP⊥AC, 求出MC=30cm, 推导出△ANP∽△AMC, 由此能出玻璃棒l没入水中部分的长度.(2)设玻璃棒在GG1上的点为M, 玻璃棒与水面的交点为N, 过点N作NP⊥EG, 交EG于点P, 过点E作EQ⊥E1G1, 交E1G1于点Q, 推导出EE1G1G为等腰梯形, 求出E1Q=24cm, E1E=40cm, 由正弦定理求出sin∠GEM=, 由此能求出玻璃棒l没入水中部分的长度.【解答】解:(1)设玻璃棒在CC1上的点为M, 玻璃棒与水面的交点为N,在平面ACM中, 过N作NP∥MC, 交AC于点P,∵ABCD﹣A1B1C1D1为正四棱柱, ∴CC1⊥平面ABCD,又∵AC⊂平面ABCD, ∴CC1⊥AC, ∴NP⊥AC,∴NP=12cm, 且AM2=AC2+MC2, 解得MC=30cm,∵NP∥MC, ∴△ANP∽△AMC,∴=, , 得AN=16cm.∴玻璃棒l没入水中部分的长度为16cm.(2)设玻璃棒在GG1上的点为M, 玻璃棒与水面的交点为N,在平面E1EGG1中, 过点N作NP⊥EG, 交EG于点P,过点E作EQ⊥E1G1, 交E1G1于点Q,∵EFGH﹣E1F1G1H1为正四棱台, ∴EE1=GG1, EG∥E1G1,EG≠E1G1,∴EE1G1G为等腰梯形, 画出平面E1EGG1的平面图,∵E1G1=62cm, EG=14cm, EQ=32cm, NP=12cm,∴E1Q=24cm,由勾股定理得:E1E=40cm,∴sin∠EE1G1=, sin∠EGM=sin∠EE1G1=, cos,根据正弦定理得:=, ∴sin, cos,∴sin∠GEM=sin(∠EGM+∠EMG)=sin∠EGMcos∠EMG+cos∠EGMsin∠EMG=, ∴EN===20cm.∴玻璃棒l没入水中部分的长度为20cm.【点评】本题考查玻璃棒l 没入水中部分的长度的求法, 考查空间中线线、线面、面面间的位置关系等基础知识, 考查推理论证能力、运算求解能力、空间想象能力, 考查数形结合思想、化归与转化思想, 是中档题.19.(16分)(2020•江苏)对于给定的正整数k, 若数列{a n }满足:a n ﹣k +a n ﹣k +1+…+a n ﹣1+a n +1+…+a n +k ﹣1+a n +k =2ka n 对任意正整数n (n >k )总成立, 则称数列{a n }是“P (k )数列”.(1)证明:等差数列{a n }是“P (3)数列”;(2)若数列{a n }既是“P (2)数列”, 又是“P (3)数列”, 证明:{a n }是等差数列.【分析】(1)由题意可知根据等差数列的性质, a n ﹣3+a n ﹣2+a n ﹣1+a n +1+a n +2+a n +3=(a n ﹣3+a n +3)+(a n ﹣2+a n +2)+(a n ﹣1+a n +1)═2×3a n , 根据“P (k )数列”的定义, 可得数列{a n }是“P (3)数列”;(2)由“P (k )数列”的定义, 则a n ﹣2+a n ﹣1+a n +1+a n +2=4a n , a n ﹣3+a n ﹣2+a n ﹣1+a n +1+a n +2+a n +3=6a n , 变形整理即可求得2a n =a n ﹣1+a n +1, 即可证明数列{a n }是等差数列.【解答】解:(1)证明:设等差数列{a n }首项为a 1, 公差为d, 则a n =a 1+(n ﹣1)d,则a n ﹣3+a n ﹣2+a n ﹣1+a n +1+a n +2+a n +3,=(a n﹣3+a n+3)+(a n﹣2+a n+2)+(a n﹣1+a n+1),=2a n+2a n+2a n,=2×3a n,∴等差数列{a n}是“P(3)数列”;(2)证明:由数列{a n}是“P(2)数列”则a n﹣2+a n﹣1+a n+1+a n+2=4a n, ①数列{a n}是“P(3)数列”a n﹣3+a n﹣2+a n﹣1+a n+1+a n+2+a n+3=6a n, ②+a n﹣2+a n+a n+1=4a n﹣1, ③由①可知:a n﹣3a n﹣1+a n+a n+2+a n+3=4a n+1, ④由②﹣(③+④):﹣2a n=6a n﹣4a n﹣1﹣4a n+1,整理得:2a n=a n﹣1+a n+1,∴数列{a n}是等差数列.【点评】本题考查等差数列的性质, 考查数列的新定义的性质, 考查数列的运算, 考查转化思想, 属于中档题.20.(16分)(2020•江苏)已知函数f(x)=x3+ax2+bx+1(a>0, b∈R)有极值, 且导函数f′(x)的极值点是f(x)的零点.(极值点是指函数取极值时对应的自变量的值)(1)求b关于a的函数关系式, 并写出定义域;(2)证明:b2>3a;(3)若f(x), f′(x)这两个函数的所有极值之和不小于﹣, 求a的取值范围.【分析】(1)通过对f(x)=x3+ax2+bx+1求导可知g(x)=f′(x)=3x2+2ax+b, 进而再求导可知g′(x)=6x+2a, 通过令g′(x)=0进而可知f′(x)的极小值点为x=﹣, 从而f(﹣)=0, 整理可知b=+(a>0), 结合f(x)=x3+ax2+bx+1(a>0, b∈R)有极值可知f′(x)=0有两个不等的实根, 进而可知a>3.(2)通过(1)构造函数h(a)=b2﹣3a=﹣+=(4a3﹣27)(a3﹣27), 结合a>3可知h(a)>0, 从而可得结论;(3)通过(1)可知f′(x)的极小值为f′(﹣)=b﹣, 利用韦达定理及完全平方关系可知y=f(x)的两个极值之和为﹣+2, 进而问题转化为解不等式b﹣+﹣+2=﹣≥﹣, 因式分解即得结论.【解答】(1)解:因为f(x)=x3+ax2+bx+1,所以g(x)=f′(x)=3x2+2ax+b, g′(x)=6x+2a,令g′(x)=0, 解得x=﹣.由于当x>﹣时g′(x)>0, g(x)=f′(x)单调递增;当x<﹣时g′(x)<0, g(x)=f′(x)单调递减;所以f′(x)的极小值点为x=﹣,由于导函数f′(x)的极值点是原函数f(x)的零点,所以f(﹣)=0, 即﹣+﹣+1=0,所以b=+(a>0).因为f(x)=x3+ax2+bx+1(a>0, b∈R)有极值,所以f′(x)=3x2+2ax+b=0有两个不等的实根,所以4a2﹣12b>0, 即a2﹣+>0, 解得a>3,所以b=+(a>3).(2)证明:由(1)可知h(a)=b2﹣3a=﹣+=(4a3﹣27)(a3﹣27),由于a>3, 所以h(a)>0, 即b2>3a;(3)解:由(1)可知f′(x)的极小值为f′(﹣)=b﹣,设x1, x2是y=f(x)的两个极值点, 则x1+x2=, x1x2=,所以f(x1)+f(x2)=++a(+)+b(x1+x2)+2=(x1+x2)[(x1+x2)2﹣3x1x2]+a[(x1+x2)2﹣2x1x2]+b(x1+x2)+2=﹣+2,又因为f(x), f′(x)这两个函数的所有极值之和不小于﹣,所以b﹣+﹣+2=﹣≥﹣,因为a>3, 所以2a3﹣63a﹣54≤0,所以2a(a2﹣36)+9(a﹣6)≤0,所以(a﹣6)(2a2+12a+9)≤0,由于a>3时2a2+12a+9>0,所以a﹣6≤0, 解得a≤6,所以a的取值范围是(3, 6].【点评】本题考查利用导数研究函数的单调性、极值, 考查运算求解能力, 考查转化思想, 注意解题方法的积累, 属于难题.二.非选择题, 附加题(21-24选做题)【选修4-1:几何证明选讲】(本小题满分0分)21.(2020•江苏)如图, AB为半圆O的直径, 直线PC切半圆O于点C, AP ⊥PC, P为垂足.求证:(1)∠PAC=∠CAB;(2)AC2 =AP•AB.【分析】(1)利用弦切角定理可得:∠ACP=∠ABC.利用圆的性质可得∠ACB=90°.再利用三角形内角和定理即可证明.(2)由(1)可得:△APC∽△ACB, 即可证明.【解答】证明:(1)∵直线PC切半圆O于点C, ∴∠ACP=∠ABC.∵AB为半圆O的直径, ∴∠ACB=90°.∵AP⊥PC, ∴∠APC=90°.∴∠PAC=90°﹣∠ACP, ∠CAB=90°﹣∠ABC,∴∠PAC=∠CAB.(2)由(1)可得:△APC∽△ACB,∴=.∴AC2 =AP•AB.【点评】本题考查了弦切角定理、圆的性质、三角形内角和定理、三角形相似的判定与性质定理, 考查了推理能力与计算能力, 属于中档题.[选修4-2:矩阵与变换]22.(2020•江苏)已知矩阵A=, B=.(1)求AB;(2)若曲线C1:=1在矩阵AB对应的变换作用下得到另一曲线C2, 求C2的方程.【分析】(1)按矩阵乘法规律计算;(2)求出变换前后的坐标变换规律, 代入曲线C1的方程化简即可.【解答】解:(1)AB==,(2)设点P(x, y)为曲线C1的任意一点,点P在矩阵AB的变换下得到点P′(x0, y0),则=, 即x0=2y, y0=x,∴x=y0, y=,∴, 即x02+y02=8,∴曲线C2的方程为x2+y2=8.【点评】本题考查了矩阵乘法与矩阵变换, 属于中档题.[选修4-4:坐标系与参数方程]23.(2020•江苏)在平面直角坐标系xOy中, 已知直线l的参数方程为(t为参数), 曲线C的参数方程为(s为参数).设P为曲线C上的动点, 求点P到直线l的距离的最小值.【分析】求出直线l的直角坐标方程, 代入距离公式化简得出距离d关于参数s 的函数, 从而得出最短距离.【解答】解:直线l的直角坐标方程为x﹣2y+8=0,∴P到直线l的距离d==,∴当s=时, d取得最小值=.【点评】本题考查了参数方程的应用, 属于基础题.[选修4-5:不等式选讲]24.(2020•江苏)已知a, b, c, d为实数, 且a2+b2=4, c2+d2=16, 证明ac+bd ≤8.【分析】a2+b2=4, c2+d2=16, 令a=2cosα, b=2sinα, c=4cosβ, d=4sinβ.代入ac+bd化简, 利用三角函数的单调性即可证明.另解:由柯西不等式可得:(ac+bd)2≤(a2+b2)(c2+d2), 即可得出.【解答】证明:∵a2+b2=4, c2+d2=16,令a=2cosα, b=2sinα, c=4cosβ, d=4sinβ.∴ac+bd=8(cosαcosβ+sinαsinβ)=8cos(α﹣β)≤8.当且仅当cos(α﹣β)=1时取等号.因此ac+bd≤8.另解:由柯西不等式可得:(ac+bd)2≤(a2+b2)(c2+d2)=4×16=64, 当且仅当时取等号.∴﹣8≤ac+bd≤8.【点评】本题考查了对和差公式、三角函数的单调性、不等式的性质, 考查了推理能力与计算能力, 属于中档题.【必做题】26.(2020•江苏)已知一个口袋有m个白球, n个黑球(m, n∈N*, n≥2), 这些球除颜色外全部相同.现将口袋中的球随机的逐个取出, 并放入如图所示的编号为1, 2, 3, …, m+n的抽屉内, 其中第k次取出的球放入编号为k的抽屉(k=1, 2, 3, …, m+n).123…m+n(1)试求编号为2的抽屉内放的是黑球的概率p;(2)随机变量x表示最后一个取出的黑球所在抽屉编号的倒数, E(X)是X的数学期望, 证明E(X)<.【分析】(1)设事件A i表示编号为i的抽屉里放的是黑球, 则p=p(A2)=P(A2|A1)P(A1)+P(A2|)P(), 由此能求出编号为2的抽屉内放的是黑球的概率.(2)X的所有可能取值为, …, , P(x=)=, k=n, n+1, n+2, …, n+m, 从而E(X)=()=, 由此能证明E (X)<.【解答】解:(1)设事件A i表示编号为i的抽屉里放的是黑球,则p=p(A2)=P(A2|A1)P(A1)+P(A2|)P()===.证明:(2)∵X的所有可能取值为, …, ,P(x=)=, k=n, n+1, n+2, …, n+m,∴E(X)=()==<==•()==,∴E(X)<.【点评】本题考查概率的求法, 考查离散型随机变量的分布列、数学期望等基础知识, 考查推理论证能力、运算求解能力、空间想象能力, 考查数形结合思想、化归与转化思想, 是中档题.25.(2020•江苏)如图, 在平行六面体ABCD﹣A1B1C1D1中, AA1⊥平面ABCD, 且AB=AD=2, AA1=, ∠BAD=120°.(1)求异面直线A1B与AC1所成角的余弦值;(2)求二面角B﹣A1D﹣A的正弦值.【分析】在平面ABCD内, 过A作Ax⊥AD, 由AA1⊥平面ABCD, 可得AA1⊥Ax, AA1⊥AD, 以A为坐标原点, 分别以Ax、AD、AA1所在直线为x、y、z轴建立空间直角坐标系.结合已知求出A, B, C, D, A1, C1的坐标, 进一步求出, , , 的坐标.(1)直接利用两法向量所成角的余弦值可得异面直线A1B与AC1所成角的余弦值;(2)求出平面BA1D与平面A1AD的一个法向量, 再由两法向量所成角的余弦值求得二面角B﹣A1D﹣A的余弦值, 进一步得到正弦值.【解答】解:在平面ABCD内, 过A作Ax⊥AD,∵AA1⊥平面ABCD, AD、Ax⊂平面ABCD,∴AA1⊥Ax, AA1⊥AD,以A为坐标原点, 分别以Ax、AD、AA1所在直线为x、y、z轴建立空间直角坐标系.∵AB=AD=2, AA1=, ∠BAD=120°,∴A(0, 0, 0), B(), C(, 1, 0),D(0, 2, 0),A1(0, 0, ), C1().=(), =(), , .(1)∵cos<>==.∴异面直线A1B与AC1所成角的余弦值为;(2)设平面BA1D的一个法向量为,由, 得, 取x=, 得;取平面A1AD的一个法向量为.∴cos<>==.∴二面角B﹣A1D﹣A的正弦值为, 则二面角B﹣A1D﹣A的正弦值为.【点评】本题考查异面直线所成的角与二面角, 训练了利用空间向量求空间角, 是中档题.。
2020年江苏省高考数学试卷(含答案详解)
36 上的两个动点,满足 PA
PB ,
则△PAB 面积的最大值是__________.
二、解答题:本大题共 6 小题,共计 90 分,请在答.题.卡.指.定.区.域.内作答,解答时应写出文字
说明、证明过程或演算步骤.
15.在三棱柱 ABC-A1B1C1 中,AB⊥AC,B1C⊥平面 ABC,E,F 分别是 AC,B1C 的中点.
40
米.
(1)求桥 AB 的长度;
(2)计划在谷底两侧建造平行于 OO 的桥墩 CD 和 EF,且 CE 为 80 米,其中 C,E 在 AB 上(不包括端点).
桥墩 EF 每米造价 k(万元)、桥墩 CD 每米造价 3 k (万元)(k>0).问 OE 为多少米时,桥墩 CD 与 EF 的总造价 2
8.已知 sin2 ( ) = 2 ,则 sin 2 的值是____.
4
3
9.如图,六角螺帽毛坯是由一个正六棱柱挖去一个圆柱所构成的.已知螺帽的底面正六边形边长为 2 cm,
高为 2 cm,内孔半轻为 0.5 cm,则此六角螺帽毛坯的体积是____cm.
10.将函数
y=
3sin(2
x﹢π 4
)
的图象向右平移
13.在△ABC 中, AB 4,AC 3,∠BAC=90,D 在边 BC 上,延长 AD 到 P,使得 AP=9,若
PA
mPB
(
3 2
m)PC
(m
为常数),则
CD
的长度是________.
14.在平面直角坐标系 xOy 中,已知 P(
3 ,0) ,A,B 是圆 C:x2 2
(y 1)2 2
A(1,
π) 3
在直线 l
2020年江苏省高考数学试卷(文科)
2020年江苏省高考数学试卷(文科)试题数:20.满分:1501.(填空题.5分)已知集合A={-1.0.1.2}.B={0.2.3}.则A∩B=___ .2.(填空题.5分)已知i是虚数单位.则复数z=(1+i)(2-i)的实部是___ .3.(填空题.5分)已知一组数据4.2a.3-a.5.6的平均数为4.则a的值是___ .4.(填空题.5分)将一颗质地均匀的正方体骰子先后抛掷2次.观察向上的点数.则点数和为5的概率是___ .5.(填空题.5分)如图是一个算法流程图.若输出y的值为-2.则输入x的值是___ .6.(填空题.5分)在平面直角坐标系xOy中.若双曲线x2a2 - y25=1(a>0)的一条渐近线方程为y= √52x.则该双曲线的离心率是___ .7.(填空题.5分)已知y=f(x)是奇函数.当x≥0时.f(x)=x 23 .则f(-8)的值是___ .8.(填空题.5分)已知sin2(π4+α)= 23.则sin2α的值是___ .9.(填空题.5分)如图.六角螺帽毛坯是由一个正六棱柱挖去一个圆柱所构成的.已知螺帽的底面正六边形边长为2cm.高为2cm.内孔半径为0.5cm.则此六角螺帽毛坯的体积是___ cm3.10.(填空题.5分)将函数y=3sin (2x+ π4 )的图象向右平移 π6 个单位长度.则平移后的图象中与y 轴最近的对称轴的方程是___ .11.(填空题.5分)设{a n }是公差为d 的等差数列.{b n }是公比为q 的等比数列.已知数列{a n +b n }的前n 项和S n =n 2-n+2n -1(n∈N*).则d+q 的值是___ .12.(填空题.5分)已知5x 2y 2+y 4=1(x.y∈R ).则x 2+y 2的最小值是___ .13.(填空题.5分)在△ABC 中.AB=4.AC=3.∠BAC=90°.D 在边BC 上.延长AD 到P.使得AP=9.若 PA ⃗⃗⃗⃗⃗ =m PB ⃗⃗⃗⃗⃗ +( 32 -m ) PC⃗⃗⃗⃗⃗ (m 为常数).则CD 的长度是 ___ .14.(填空题.5分)在平面直角坐标系xOy 中.已知P ( √32 .0).A 、B 是圆C :x 2+(y- 12 )2=36上的两个动点.满足PA=PB.则△PAB 面积的最大值是___ .15.(问答题.14分)在三棱柱ABC-A 1B 1C 1中.AB⊥AC .B 1C⊥平面ABC.E.F 分别是AC.B 1C 的中点. (1)求证:EF || 平面AB 1C 1; (2)求证:平面AB 1C⊥平面ABB 1.16.(问答题.14分)在△ABC中.角A、B、C的对边分别为a、b、c.已知a=3.c= √2 .B=45°.(1)求sinC的值;(2)在边BC上取一点D.使得cos∠ADC=- 45.求tan∠DAC的值.17.(问答题.4分)某地准备在山谷中建一座桥梁.桥址位置的竖直截面图如图所示:谷底O在水平线MN上.桥AB与MN平行.OO′为铅垂线(O′在AB 上).经测量.左侧曲线AO上任一点D到MN的距离h1(米)与D到OO′的距离a(米)之间满足关系式h1= 140a2;右侧曲线BO上任一点F到MN的距离h2(米)与F到OO′的距离b(米)之间满足关系式h2=- 1800b3+6b.已知点B到OO′的距离为40米.(1)求桥AB的长度;(2)计划在谷底两侧建造平行于OO′的桥墩CD和EF.且CE为80米.其中C.E在AB上(不包括端点).桥墩EF每米造价k(万元).桥墩CD每米造价32k(万元)(k>0).问O′E为多少米时.桥墩CD与EF的总造价最低?18.(问答题.16分)在平面直角坐标系xOy中.已知椭圆E:x24 + y23=1的左、右焦点分别为F1、F2.点A在椭圆E上且在第一象限内.AF2⊥F1F2.直线AF1与椭圆E相交于另一点B.(1)求△AF 1F 2的周长;(2)在x 轴上任取一点P.直线AP 与椭圆E 的右准线相交于点Q.求 OP ⃗⃗⃗⃗⃗ • QP ⃗⃗⃗⃗⃗ 的最小值; (3)设点M 在椭圆E 上.记△OAB 与△MAB 的面积分别为S 1.S 2.若S 2=3S 1.求点M 的坐标.19.(问答题.16分)已知关于x 的函数y=f (x ).y=g (x )与h (x )=kx+b (k.b∈R )在区间D 上恒有f (x )≥h (x )≥g (x ).(1)若f (x )=x 2+2x.g (x )=-x 2+2x.D=(-∞.+∞).求h (x )的表达式; (2)若f (x )=x 2-x+1.g (x )=klnx.h (x )=kx-k.D=(0.+∞).求k 的取值范围;(3)若f (x )=x 4-2x 2.g (x )=4x 2-8.h (x )=4(t 3-t )x-3t 4+2t 2(0<|t |≤ √2 ).D=[m.n]⊂[- √2 . √2 ].求证:n-m≤ √7 .20.(问答题.16分)已知数列{a n }(n∈N*)的首项a 1=1.前n 项和为S n .设λ和k 为常数.若对一切正整数n.均有Sn+1 1k-S n 1k =λan+1 1k成立.则称此数列为“λ-k”数列.(1)若等差数列{a n }是“λ-1”数列.求λ的值;(2)若数列{a n }是“ √33 -2”数列.且a n >0.求数列{a n }的通项公式;(3)对于给定的λ.是否存在三个不同的数列{a n }为“λ-3”数列.且a n ≥0?若存在.求出λ的取值范围;若不存在.说明理由.2020年江苏省高考数学试卷(文科)参考答案与试题解析试题数:20.满分:1501.(填空题.5分)已知集合A={-1.0.1.2}.B={0.2.3}.则A∩B=___ .【正确答案】:[1]{0.2}【解析】:运用集合的交集运算.可得所求集合.【解答】:解:集合B={0.2.3}.A={-1.0.1.2}.则A∩B={0.2}.故答案为:{0.2}.【点评】:本题考查集合的交集运算.考查运算能力.属于基础题.2.(填空题.5分)已知i是虚数单位.则复数z=(1+i)(2-i)的实部是___ .【正确答案】:[1]3【解析】:利用复数的乘法的运算法则.化简求解即可.【解答】:解:复数z=(1+i)(2-i)=3+i.所以复数z=(1+i)(2-i)的实部是:3.故答案为:3.【点评】:本题考查复数的乘法的运算法则以及复数的基本概念的应用.是基本知识的考查.3.(填空题.5分)已知一组数据4.2a.3-a.5.6的平均数为4.则a的值是___ .【正确答案】:[1]2【解析】:运用平均数的定义.解方程可得a的值.【解答】:解:一组数据4.2a.3-a.5.6的平均数为4.则4+2a+(3-a)+5+6=4×5.解得a=2.故答案为:2.【点评】:本题考查平均数的定义的运用.考查方程思想和运算能力.属于基础题.4.(填空题.5分)将一颗质地均匀的正方体骰子先后抛掷2次.观察向上的点数.则点数和为5的概率是___ . 【正确答案】:[1] 19【解析】:分别求得基本事件的总数和点数和为5的事件数.由古典概率的计算公式可得所求值.【解答】:解:一颗质地均匀的正方体骰子先后抛掷2次.可得基本事件的总数为6×6=36种. 而点数和为5的事件为(1.4).(2.3).(3.2).(4.1).共4种. 则点数和为5的概率为P= 436= 19. 故答案为: 19.【点评】:本题考查古典概率的求法.考查运算能力.属于基础题.5.(填空题.5分)如图是一个算法流程图.若输出y 的值为-2.则输入x 的值是___ .【正确答案】:[1]-3【解析】:由已知中的程序语句可知:该程序的功能是利用程序框图表达式为分段函数计算并输出变量y 的值.模拟程序的运行过程.分析循环中各变量值的变化情况.可得答案.【解答】:解:由题意可得程序框图表达式为分段函数y= {2x ,x >0x +1,x ≤0 .若输出y 值为-2时.由于2x >0. 所以解x+1=-2.即x=-3. 故答案为:-3.【点评】:本题考查了程序框图的应用问题.解题时应模拟程序框图的运行过程.以便得出正确的结论.是基础题.6.(填空题.5分)在平面直角坐标系xOy 中.若双曲线 x 2a 2 - y 25 =1(a >0)的一条渐近线方程为y= √52x.则该双曲线的离心率是___ . 【正确答案】:[1] 32【解析】:利用双曲线的渐近线方程.求出a.然后求解双曲线的离心率即可.【解答】:解:双曲线 x 2a 2 - y 25=1(a >0)的一条渐近线方程为y= √52 x.可得√5a=√52.所以a=2.所以双曲线的离心率为:e= c a =√4+52 = 32. 故答案为: 32.【点评】:本题考查双曲线的简单性质的应用.是基本知识的考查.7.(填空题.5分)已知y=f (x )是奇函数.当x≥0时.f (x )=x 23.则f (-8)的值是___ . 【正确答案】:[1]-4【解析】:由奇函数的定义可得f (-x )=-f (x ).由已知可得f (8).进而得到f (-8).【解答】:解:y=f (x )是奇函数.可得f (-x )=-f (x ). 当x≥0时.f (x )=x 23.可得f (8)=8 23=4. 则f (-8)=-f (8)=-4. 故答案为:-4.【点评】:本题考查函数的奇偶性的定义和运用:求函数值.考查转化思想和运算能力.属于基础题.8.(填空题.5分)已知sin 2( π4 +α)= 23 .则sin2α的值是___ . 【正确答案】:[1] 13【解析】:根据二倍角公式即可求出.【解答】:解:因为sin 2( π4 +α)= 23.则sin 2( π4 +α)= 1−cos(π2+2α)2 = 1+sin2α2 = 23.解得sin2α= 13 . 故答案为: 13【点评】:本题考查了二倍角公式.属于基础题.9.(填空题.5分)如图.六角螺帽毛坯是由一个正六棱柱挖去一个圆柱所构成的.已知螺帽的底面正六边形边长为2cm.高为2cm.内孔半径为0.5cm.则此六角螺帽毛坯的体积是___ cm 3.【正确答案】:[1]12 √3−π2【解析】:通过棱柱的体积减去圆柱的体积.即可推出结果.【解答】:解:六棱柱的体积为: 6×12×2×2×sin60°×2=12√3 . 圆柱的体积为:π×(0.5)2×2= π2 .所以此六角螺帽毛坯的体积是:(12 √3− π2 )cm 3. 故答案为:12 √3− π2.【点评】:本题考查柱体体积公式.考查了推理能力与计算能力.属于基本知识的考查. 10.(填空题.5分)将函数y=3sin (2x+ π4 )的图象向右平移 π6 个单位长度.则平移后的图象中与y 轴最近的对称轴的方程是___ . 【正确答案】:[1]x=- 5π24【解析】:利用三角函数的平移可得新函数g (x )=f (x- π6).求g (x )的所有对称轴x= 7π24+ kπ2 .k∈Z .从而可判断平移后的图象中与y 轴最近的对称轴的方程.【解答】:解:因为函数y=3sin (2x+ π4)的图象向右平移 π6个单位长度可得 g (x )=f (x- π6 )=3sin (2x- π3 + π4 )=3sin (2x- π12 ). 则y=g (x )的对称轴为2x- π12= π2+kπ.k∈Z .即x= 7π24 + kπ2.k∈Z . 当k=0时.x= 7π24 . 当k=-1时.x= −5π24. 所以平移后的图象中与y 轴最近的对称轴的方程是x= −5π24 . 故答案为:x= −5π24.【点评】:本题考查三角函数的平移变换.对称轴方程.属于中档题.11.(填空题.5分)设{a n }是公差为d 的等差数列.{b n }是公比为q 的等比数列.已知数列{a n +b n }的前n 项和S n =n 2-n+2n -1(n∈N*).则d+q 的值是___ . 【正确答案】:[1]4【解析】:由{a n +b n }的前n 项和S n =n 2-n+2n -1(n∈N*).由{a n }是公差为d 的等差数列.设首项为a 1;求出等差数列的前n 项和的表达式;{b n }是公比为q 的等比数列.设首项为b 1.讨论当q 为1和不为1时的前n 项和的表达式.由题意可得q≠1.由对应项的系数相等可得d.q 的值.进而求出d+q 的值.【解答】:解:因为{a n +b n }的前n 项和S n =n 2-n+2n -1(n∈N*).因为{a n }是公差为d 的等差数列.设首项为a 1;{b n }是公比为q 的等比数列.设首项为b 1. 所以{a n }的通项公式a n =a 1+(n-1)d.所以其前n 项和S a n = n [a 1+a 1+(n−1)d ]2 = d 2 n 2+(a 1- d2)n.当{b n }中.当公比q=1时.其前n 项和S b n =nb 1.所以{a n +b n }的前n 项和S n =S a n +S b n = d2n 2+(a 1- d 2)n+nb 1=n 2-n+2n -1(n∈N*).显然没有出现2n .所以q≠1. 则{b n }的前n 项和为S b n =b 1(q n −1)q−1 = b 1q n q−1 - b1q−1. 所以S n =S a n +S b n = d2 n 2+(a 1- d2 )n+ b 1q nq−1 - b1q−1 =n 2-n+2n -1(n∈N*).由两边对应项相等可得: {d 2=1a 1−d 2=−1q =2b 1q−1=1解得:d=2.a 1=0.q=2.b 1=1. 所以d+q=4. 故答案为:4【点评】:本题考查等差数列及等比数列的综合及由前n 项和求通项的性质.属于中档题.12.(填空题.5分)已知5x 2y 2+y 4=1(x.y∈R ).则x 2+y 2的最小值是___ . 【正确答案】:[1] 45【解析】:方法一、由已知求得x 2.代入所求式子.整理后.运用基本不等式可得所求最小值; 方法二、由4=(5x 2+y 2)•4y 2.运用基本不等式.计算可得所求最小值.【解答】:解:方法一、由5x 2y 2+y 4=1.可得x 2= 1−y 45y 2. 由x 2≥0.可得y 2∈(0.1]. 则x 2+y 2=1−y 45y 2 +y 2= 1+4y 45y 2 = 15 (4y 2+ 1y 2) ≥ 15•2 √4y 2•1y 2 = 45.当且仅当y 2= 12 .x 2= 310.可得x 2+y 2的最小值为 45 ; 方法二、4=(5x 2+y 2)•4y 2≤( 5x 2+y 2+4y 22 )2= 254(x 2+y 2)2. 故x 2+y 2≥ 45 .当且仅当5x 2+y 2=4y 2=2.即y 2= 12.x 2= 310时取得等号. 可得x 2+y 2的最小值为 45 . 故答案为: 45 .【点评】:本题考查基本不等式的运用:求最值.考查转化思想和化简运算能力.属于中档题. 13.(填空题.5分)在△ABC 中.AB=4.AC=3.∠BAC=90°.D 在边BC 上.延长AD 到P.使得AP=9.若 PA ⃗⃗⃗⃗⃗ =m PB ⃗⃗⃗⃗⃗ +( 32-m ) PC⃗⃗⃗⃗⃗ (m 为常数).则CD 的长度是 ___ .【正确答案】:[1]0或 185【解析】:以A 为坐标原点.分别以AB.AC 所在直线为x.y 轴建立平面直角坐标系.求得B 与C 的坐标.再把 PA ⃗⃗⃗⃗⃗ 的坐标用m 表示.由AP=9列式求得m 值.然后分类求得D 的坐标.则CD 的长度可求.【解答】:解:如图.以A 为坐标原点.分别以AB.AC 所在直线为x.y 轴建立平面直角坐标系. 则B (4.0).C (0.3).由 PA ⃗⃗⃗⃗⃗ =m PB ⃗⃗⃗⃗⃗ +( 32 -m ) PC ⃗⃗⃗⃗⃗ .得 PA ⃗⃗⃗⃗⃗ =m(PA ⃗⃗⃗⃗⃗ +AB ⃗⃗⃗⃗⃗ )+(32−m)(PA ⃗⃗⃗⃗⃗ +AC⃗⃗⃗⃗⃗ ) . 整理得: PA⃗⃗⃗⃗⃗ =−2mAB ⃗⃗⃗⃗⃗ +(2m −3)AC ⃗⃗⃗⃗⃗ =-2m (4.0)+(2m-3)(0.3)=(-8m.6m-9). 由AP=9.得64m 2+(6m-9)2=81.解得m= 2725 或m=0. 当m=0时. PA ⃗⃗⃗⃗⃗ =(0,−9) .此时C 与D 重合.|CD|=0; 当m= 2725 时.直线PA 的方程为y= 9−6m8mx. 直线BC 的方程为 x4+y3=1 .联立两直线方程可得x= 83 m.y=3-2m . 即D ( 7225 . 2125 ).∴|CD|= √(7225)2+(2125−3)2=185.∴CD 的长度是0或 185. 故答案为:0或 185.【点评】:本题考查向量的概念与向量的模.考查运算求解能力.利用坐标法求解是关键.是中档题.14.(填空题.5分)在平面直角坐标系xOy 中.已知P ( √32 .0).A 、B 是圆C :x 2+(y- 12 )2=36上的两个动点.满足PA=PB.则△PAB 面积的最大值是___ . 【正确答案】:[1]10 √5【解析】:求得圆的圆心C 和半径.作PC 所在直径EF.交AB 于点D.运用垂径定理和勾股定理.以及三角形的面积公式.由三角换元.结合函数的导数.求得单调区间.计算可得所求最大值.【解答】:解:圆C :x 2+(y- 12 )2=36的圆心C (0. 12 ).半径为6. 如图.作PC 所在直径EF.交AB 于点D.因为PA=PB.CA=CB=R=6.所以PC⊥AB .EF 为垂径. 要使面积S △PAB 最大.则P.D 位于C 的两侧. 并设CD=x.可得PC= √14+34 =1. 故PD=1+x.AB=2BD=2 √36−x 2 .S △PAB = 12 |AB|•|PD|=(1+x ) √36−x 2 .0<x <6. 方法一、可令x=6cosθ.S △PAB =(1+6cosθ)•6sinθ=6sinθ+18sin2θ.0<θ≤ π2 . 设函数f (θ)=6sinθ+18sin2θ.0<θ≤ π2 . f′(θ)=6cosθ+36cos2θ=6(12cos 2θ+cosθ-6).由f′(θ)=6(12cos 2θ+cosθ-6)=0.解得cosθ= 23 (cosθ=- 34 <0舍去).显然.当0≤cosθ< 23 .f′(θ)<0.f (θ)递减;当 23 <cosθ<1时.f′(θ)>0.f (θ)递增. 结合cosθ在(0. π2 )递减.故cosθ= 23 时.f (θ)最大.此时sinθ= √1−cos 2θ = √53 . 故f (θ)max =6× √53 +36× √53 × 23 =10 √5 .则△PAB 面积的最大值为10 √5 .方法二、S △PAB = 12 |AB|•|PD|=(1+x ) √36−x 2 .0<x <6.设u=(x+1)2(36-x 2).0<x <6.可得u′=-2(x+1)(2x+9)(x-4). 当4<x <6时.u′>0.函数u 递减;当0<x <4时.u′>0.函数u 递增. 所以函数u 在x=4处取得最大值500. 即有△PAB 面积的最大值为10 √5 . 故答案为:10 √5 .【点评】:本题考查圆的方程和运用.以及圆的弦长公式和三角形的面积公式的运用.考查换元法和导数的运用:求单调性和最值.属于中档题.15.(问答题.14分)在三棱柱ABC-A1B1C1中.AB⊥AC.B1C⊥平面ABC.E.F分别是AC.B1C的中点.(1)求证:EF || 平面AB1C1;(2)求证:平面AB1C⊥平面ABB1.【正确答案】:【解析】:(1)证明EF || AB1.然后利用直线与平面平行的判断定理证明EF || 平面AB1C1;(2)证明B1C⊥AB.结合AB⊥AC.证明AB⊥平面AB1C.然后证明平面AB1C⊥平面ABB1.【解答】:证明:(1)E.F分别是AC.B1C的中点.所以EF || AB1.因为EF⊄平面AB1C1.AB1⊂平面AB1C1.所以EF || 平面AB1C1;(2)因为B1C⊥平面ABC.AB⊂平面ABC.所以B1C⊥AB.又因为AB⊥AC.AC∩B1C=C.AC⊂平面AB1C.B1C⊂平面AB1C.所以AB⊥平面AB1C.因为AB⊂平面ABB1.所以平面AB1C⊥平面ABB1.【点评】:本题考查直线与平面垂直的判断定理以及平面与平面垂直的判断定理的应用.直线与平面平行的判断定理的应用.是中档题.16.(问答题.14分)在△ABC中.角A、B、C的对边分别为a、b、c.已知a=3.c= √2 .B=45°.(1)求sinC的值;(2)在边BC上取一点D.使得cos∠ADC=- 45.求tan∠DAC的值.【正确答案】:【解析】:(1)由题意及余弦定理求出b边.再由正弦定理求出sinC的值;(2)三角形的内角和为180°.cos∠ADC=- 45.可得∠ADC为钝角.可得∠DAC与∠ADC+∠C互为补角.所以sin∠DAC=sin(∠ADC+∠C)展开可得sin∠DAC及cos∠DAC.进而求出tan∠DAC的值.【解答】:解:(1)因为a=3.c= √2 .B=45°..由余弦定理可得:b= √a2+c2−2accosB =√9+2−2×3×√2×√22= √5 .由正弦定理可得csinC = bsinB.所以sinC= cb•sin45°= √2√5•√22= √55.所以sinC= √55;(2)因为cos∠ADC=- 45 .所以sin∠ADC= √1−cos2∠ADC = 35.在三角形ADC 中.易知C为锐角.由(1)可得cosC= √1−sin2C = 2√55.所以在三角形ADC中.sin∠DAC=sin(∠ADC+∠C)=sin∠ADCcos∠C+cos∠ADCsin∠C= 2√525.因为∠DAC ∈(0,π2) .所以cos∠DAC= √1−sin2∠DAC = 11√525.所以tan∠DAC= sin∠DACcos∠DAC = 211.【点评】:本题考查三角形的正弦定理及余弦定理的应用.及两角和的正弦公式的应用.属于中档题.17.(问答题.4分)某地准备在山谷中建一座桥梁.桥址位置的竖直截面图如图所示:谷底O在水平线MN上.桥AB与MN平行.OO′为铅垂线(O′在AB 上).经测量.左侧曲线AO上任一点D到MN的距离h1(米)与D到OO′的距离a(米)之间满足关系式h1= 140a2;右侧曲线BO上任一点F到MN的距离h2(米)与F到OO′的距离b(米)之间满足关系式h2=- 1800b3+6b.已知点B到OO′的距离为40米.(1)求桥AB的长度;(2)计划在谷底两侧建造平行于OO′的桥墩CD和EF.且CE为80米.其中C.E在AB上(不包括端点).桥墩EF每米造价k(万元).桥墩CD每米造价32k(万元)(k>0).问O′E为多少米时.桥墩CD与EF的总造价最低?【正确答案】:无【解析】:(1)由题意可令b=40.求得h2.即O'O的长.再令h1=|OO'|.求得a.可得|AB|=a+b;(2)可设O′E=x.则CO'=80-x.0<x<40.求得总造价y= 32 k[160- 140(80-x)2]+k[160-(6x-1800x3)].化简整理.应用导数.求得单调区间.可得最小值.【解答】解:(1)h2=- 1800b3+6b.点B到OO′的距离为40米.可令b=40.可得h2=- 1800×403+6×40=160.即为|O'O|=160.由题意可设h1=160.由140a2=160.解得a=80.则|AB|=80+40=120米; (2)可设O′E=x .则CO'=80-x.由 {0<x <400<80−x <80.可得0<x <40.总造价为y= 32 k[160- 140 (80-x )2]+k[160-(6x- 1800 x 3)] = k800 (x 3-30x 2+160×800).y′= k800 (3x 2-60x )= 3k800 x (x-20).由k >0.当0<x <20时.y′<0.函数y 递减; 当20<x <40时.y′>0.函数y 递增.所以当x=20时.y 取得最小值.即总造价最低. 答:(1)桥|AB|长为120米;(2)O′E 为20米时.桥墩CD 与EF 的总造价最低. 【点评】本题考查函数在实际问题中的应用.考查导数的应用:求最值.考查运算能力和分析问题与解决问题的能力.属于中档题.18.(问答题.16分)在平面直角坐标系xOy 中.已知椭圆E : x 24 + y 23 =1的左、右焦点分别为F 1、F 2.点A 在椭圆E 上且在第一象限内.AF 2⊥F 1F 2.直线AF 1与椭圆E 相交于另一点B . (1)求△AF 1F 2的周长;(2)在x 轴上任取一点P.直线AP 与椭圆E 的右准线相交于点Q.求 OP ⃗⃗⃗⃗⃗ • QP ⃗⃗⃗⃗⃗ 的最小值; (3)设点M 在椭圆E 上.记△OAB 与△MAB 的面积分别为S 1.S 2.若S 2=3S 1.求点M 的坐标.【正确答案】:【解析】:(1)由椭圆标准方程可知a.b.c 的值.根据椭圆的定义可得△AF 1F 2的周长=2a+2c.代入计算即可.(2)由椭圆方程得A (1. 32 ).设P (t.0).进而由点斜式写出直线AP 方程.再结合椭圆的右准线为:x=4.得点Q 为(4. 32 • 4−t 1−t ).再由向量数量积计算最小值即可.(3)在计算△OAB 与△MAB 的面积时.AB 可以最为同底.所以若S 2=3S 1.则O 到直线AB 距离d 1与M 到直线AB 距离d 2.之间的关系为d 2=3d 1.根据点到直线距离公式可得d 1= 35 .d 2= 95 .所以题意可以转化为M 点应为与直线AB 平行且距离为 95 的直线与椭圆的交点.设平行于AB 的直线l 为3x-4y+m=0.与直线AB 的距离为 95 .根据两平行直线距离公式可得.m=-6或12.然后在分两种情况算出M 点的坐标即可.【解答】:解:(1)由椭圆的标准方程可知.a 2=4.b 2=3.c 2=a 2-b 2=1. 所以△AF 1F 2的周长=2a+2c=6. (2)由椭圆方程得A (1. 32 ).设P (t.0).则直线AP 方程为y=321−t(x −t ) .椭圆的右准线为:x= a 2c =4.所以直线AP 与右准线的交点为Q (4. 32 • 4−t1−t ).OP ⃗⃗⃗⃗⃗ • QP ⃗⃗⃗⃗⃗ =(t.0)•(t-4.0- 32 • 4−t 1−t )=t 2-4t=(t-2)2-4≥-4. 当t=2时.( OP ⃗⃗⃗⃗⃗ •QP ⃗⃗⃗⃗⃗ )min =-4.(3)若S 2=3S 1.设O 到直线AB 距离d 1.M 到直线AB 距离d 2.则 12 ×|AB|×d 2= 12 ×|AB|×d 1.即d 2=3d 1.A (1. 32 ).F 1(-1.0).可得直线AB 方程为y= 34 (x+1).即3x-4y+3=0.所以d 1= 35 .d 2= 95 . 由题意得.M 点应为与直线AB 平行且距离为 95的直线与椭圆的交点. 设平行于AB 的直线l 为3x-4y+m=0.与直线AB 的距离为 95.√9+16= 95 .即m=-6或12. 当m=-6时.直线l 为3x-4y-6=0.即y= 34 (x-2).联立 {y =34(x −2)x 24+y 23=1 .可得(x-2)(7x+2)=0.即 {x M =2y N =0 或 {x M =−27y M =−127. 所以M (2.0)或(- 27 .- 127 ).当m=12时.直线l 为3x-4y+12=0.即y= 34(x+4).联立 {y =34(x +4)x 24+y 23=1 .可得 214x 2 +18x+24=0.△=9×(36-56)<0.所以无解.综上所述.M 点坐标为(2.0)或(- 27 .- 127 ).【点评】:本题考查椭圆的定义.向量的数量积.直线与椭圆相交问题.解题过程中注意转化思想的应用.属于中档题.19.(问答题.16分)已知关于x的函数y=f(x).y=g(x)与h(x)=kx+b(k.b∈R)在区间D上恒有f(x)≥h(x)≥g(x).(1)若f(x)=x2+2x.g(x)=-x2+2x.D=(-∞.+∞).求h(x)的表达式;(2)若f(x)=x2-x+1.g(x)=klnx.h(x)=kx-k.D=(0.+∞).求k的取值范围;(3)若f(x)=x4-2x2.g(x)=4x2-8.h(x)=4(t3-t)x-3t4+2t2(0<|t|≤ √2).D=[m.n]⊂[-√2 . √2 ].求证:n-m≤ √7.【正确答案】:【解析】:(1)由f(x)=g(x)得x=0.求导可得f′(0)=g′(0)=2.能推出函数h(x)的图象为过原点.斜率为2的直线.进而可得h(x)=2x.再进行检验即可.(2)由题可知h(x)-g(x)=k(x-1-lnx).设φ(x)=x-1-lnx.求导分析单调性可得.φ(x)≥φ(1)=0.那么要使的h(x)-g(x)≥0.则k≥0;令p(x)=f(x)-h(x)为二次函数.则要使得p(x)≥0.分两种情况.当x=k+1≤0时.当k+1>0时进行讨论.进而得出答案.(3)分三种情况① 当1≤t≤ √2时. ② 当0<t<1时. ③ 当- √2≤t<0时.讨论f(x)≥h(x)≥g(x).进而得出结论.【解答】:解:(1)由f(x)=g(x)得x=0.又f′(x)=2x+2.g′(x)=-2x+2.所以f′(0)=g′(0)=2.所以.函数h(x)的图象为过原点.斜率为2的直线.所以h(x)=2x.经检验:h(x)=2x.符合任意.(2)h(x)-g(x)=k(x-1-lnx).设φ(x)=x-1-lnx.设φ′(x)=1- 1x = x−1x.在(1.+∞)上.φ′(x)>0.φ(x)单调递增. 在(0.1)上.φ′(x)<0.φ(x)单调递减. 所以φ(x)≥φ(1)=0.所以当h(x)-g(x)≥0时.k≥0.令p(x)=f(x)-h(x)所以p(x)=x2-x+1-(kx-k)=x2-(k+1)x+(1+k)≥0.得.当x=k+1≤0时.即k≤-1时.f(x)在(0.+∞)上单调递增.所以p(x)>p(0)=1+k≥0.k≥-1.所以k=-1.当k+1>0时.即k>-1时.△≤0.即(k+1)2-4(k+1)≤0.解得-1<k≤3.综上.k∈[0.3].(3)① 当1≤t≤ √2时.由g(x)≤h(x).得4x2-8≤4(t3-t)x-3t4+2t2.≤0.(*)整理得x2-(t3-t)x+ 3t4−2t2−84令△=(t3-t)2-(3t4-2t2-8).则△=t6-5t4+3t2+8.记φ(t)=t6-5t4+3t2+8(1≤t≤ √2).则φ′(t)=6t5-20t3+6t=2t(3t2-1)(t2-3)<0.恒成立.所以φ(t)在[1. √2 ]上是减函数.则φ(√2)≤φ(t)≤φ(1).即2≤φ(t)≤7. 所以不等式(*)有解.设解为x1≤x≤x2.因此n-m≤x2-x1= √△≤ √7.② 当0<t<1时.f(-1)-h(-1)=3t4+4t3-2t2-4t-1.设v(t)=3t4+4t3-2t2-4t-1.则v′(t)=12t3+12t2-4t-4=4(t+1)(3t2-1)..令v′(t)=0.得t= √33)时.v′(t)<0.v(t)是减函数.当t∈(0. √33.1)时.v′(t)>0.v(t)是增函数.当t∈(√33v(0)=-1.v(1)=0.则当0<t<1时.v(t)<0.则f(-1)-h(-1)<0.因此-1∉(m.n).因为[m.n]⊆[- √2 . √2 ].所以n-m≤ √2 +1<√7 .③ 当- √2≤t<0时.因为f(x).g(x)为偶函数.因此n-m≤ √7也成立.综上所述.n-m≤ √7 .【点评】:本题考查恒成立问题.参数的取值范围.导数的综合应用.解题过程中注意数形结合思想的应用.属于难题.20.(问答题.16分)已知数列{a n }(n∈N*)的首项a 1=1.前n 项和为S n .设λ和k 为常数.若对一切正整数n.均有Sn+1 1k-S n 1k =λan+1 1k成立.则称此数列为“λ-k”数列.(1)若等差数列{a n }是“λ-1”数列.求λ的值;(2)若数列{a n }是“ √33-2”数列.且a n >0.求数列{a n }的通项公式;(3)对于给定的λ.是否存在三个不同的数列{a n }为“λ-3”数列.且a n ≥0?若存在.求出λ的取值范围;若不存在.说明理由.【正确答案】:【解析】:(1)由“λ-1”数列可得k=1.结合数列的递推式.以及等差数列的定义.可得λ的值; (2)运用“ √33-2”数列的定义.结合数列的递推式和等比数列的通项公式.可得所求通项公式; (3)若存在三个不同的数列{a n }为“λ-3”数列.则S n+1 13 -S n 13 =λa n+1 13 .由两边立方.结合数列的递推式.以及t 的讨论.二次方程的实根分布和韦达定理.即可判断是否存在λ.并可得取值范围.【解答】:解:(1)k=1时.a n+1=S n+1-S n =λa n+1.由n 为任意正整数.且a 1=1.a n ≠0.可得λ=1; (2) √S n+1 - √S n = √33 √a n+1 .则a n+1=S n+1-S n =( √S n+1 - √S n )•( √S n+1 + √S n )= √33 • √a n+1 ( √S n+1 + √S n ).因此 √S n+1 + √S n = √3 • √a n+1 .即 √S n+1 = 23 √3a n+1 .S n+1= 43 a n+1= 43 (S n+1-S n ). 从而S n+1=4S n .又S 1=a 1=1.可得S n =4n-1. a n =S n -S n-1=3•4n-2.n≥2.综上可得a n = {1,n =13•4n−2,n ≥2 .n∈N*;(3)若存在三个不同的数列{a n }为“λ-3”数列. 则Sn+1 13-S n 13 =λan+1 13.则S n+1-3S n+1 23S n 13+3Sn+1 13S n 23-S n =λ3a n+1=λ3(S n+1-S n ).由a1=1.a n≥0.且S n>0.令p n=(S n+1S n)13>0.则(1-λ3)p n3-3p n2+3p n-(1-λ3)=0.λ=1时.p n=p n2.由p n>0.可得p n=1.则S n+1=S n.即a n+1=0.此时{a n}唯一.不存在三个不同的数列{a n}.λ≠1时.令t= 31−λ3.则p n3-tp n2+tp n-1=0.则(p n-1)[p n2+(1-t)p n+1]=0.① t≤1时.p n2+(1-t)p n+1>0.则p n=1.同上分析不存在三个不同的数列{a n};② 1<t<3时.△=(1-t)2-4<0.p n2+(1-t)p n+1=0无解.则p n=1.同上分析不存在三个不同的数列{a n};③ t=3时.(p n-1)3=0.则p n=1.同上分析不存在三个不同的数列{a n}.④ t>3时.即0<λ<1时.△=(1-t)2-4>0.p n2+(1-t)p n+1=0有两解α.β. 设α<β.α+β=t-1>2.αβ=1>0.则0<α<1<β.则对任意n∈N*. S n+1S n =1或S n+1S n=α3(舍去)或S n+1S n=β3.由于数列{S n}从任何一项求其后一项均有两种不同的结果.所以这样的数列{S n}有无数多个.则对应的数列{a n}有无数多个.则存在三个不同的数列{a n}为“λ-3”数列.且a n≥0.综上可得0<λ<1.【点评】:本题考查数列的新定义的理解和运用.考查等差数列和等比数列的通项公式的运用.以及数列的递推式的运用.考查分类讨论思想.以及运算能力和推理论证能力.是一道难题.。
江苏高考数学真题及答案
江苏高考数学真题及答案
每年的高考数学试题都备受关注,尤其是江苏地区的高考数学试题
更是备受瞩目。
通过研究江苏高考数学真题及答案,考生可以更好地
了解考试内容和考点,为备战高考做好充分准备。
下面我们就一起来
看看江苏高考数学真题及答案。
首先,我们来看一道选择题:
1.设函数y=2x^3 -3x^2 +6x+1, 则y的单调递增区间是()。
A. ( -∞, 0)
B. ( -∞, -1)
C. ( -1,∞)
D. (0,+∞)
答案:C
接下来是一道解答题:
2.若集合A = {1, x, 2, y},集合B = {1, 2, 3, 4},且8个元素只取一
次,试问x和y可能的取值。
解:由于8个元素只取一次,且集合A中只有1个大于2的数,故
集合A中只能取1和2,又集合B中有1和2,所以$x=2$,同理,由
于集合A中只有1个大于1的数,故$y=3$。
最后一道综合题:
3.已知二次函数$y=ax^2+bx+c$的对称轴为x=2,且y轴截距为3,求
a,b,c的值。
解:由于对称轴为x=2,可得二次项的系数a = 1,由于y轴截距为3,代入得到c = 3,再由a = 1,结合对称轴为x=2,可得b = -4。
以上就是江苏高考数学真题及答案的部分内容,希望考生们能够认真学习、备考,取得优异的成绩。
祝各位考生考试顺利!。
2022年江苏省高考数学试卷(新高考I)(含答案)
2022年江苏省高考数学试卷(新高考I)(含答案)一、选择题(每小题5分,共60分)1. 若函数f(x) = x² 4x + 3的图像开口向上,则f(x)的对称轴为( )A. x = 2B. x = 2C. x = 1D. x = 12. 已知等差数列{an}的前n项和为Sn,若S4 = 20,则a3的值为( )A. 5B. 6C. 7D. 83. 若点A(2, 3)关于直线y = x的对称点为B,则点B的坐标为( )A. (2, 3)B. (3, 2)C. (3, 2)D. (2, 3)4. 已知函数f(x) = log₂(x 1),则f(2)的值为( )A. 0B. 1C. 2D. 35. 若三角形ABC的边长分别为a, b, c,且满足a² + b² = c²,则三角形ABC是( )A. 等腰三角形B. 等边三角形C. 直角三角形D. 钝角三角形6. 已知复数z = 2 + 3i,则|z|的值为( )A. 1B. 2C. 3D. 47. 若函数f(x) = ax² + bx + c在x = 1时取得最小值,则a的值为( )A. 正数B. 负数C. 零D. 无法确定8. 已知集合A = {x | x > 2},B = {x | x < 5},则A∩B表示( )A. x > 2 且 x < 5B. x > 2 或 x < 5C. x ≤ 2 且x ≥ 5D. x ≤ 2 或x ≥ 59. 若直线y = mx + b与x轴的交点为(1, 0),则m的值为( )A. 1B. 1C. 0D. 无法确定10. 已知等比数列{an}的首项为1,公比为2,则a5的值为( )A. 16B. 8C. 4D. 2二、填空题(每空5分,共20分)1. 若函数f(x) = x³ 3x² + 2x 1的图像在x = 1时取得极值,则f(1)的值为______。
2022年江苏省高考数学试卷(新高考Ⅰ)及答案解析
2022年江苏省高考数学试卷(新高考Ⅰ)一、选择题(共10小题,每小题5分,满分50分)A .{2}B .{1,2}C .{2,3}D .{1,2,3}1.(5分)已知集合P ={x ∈N |1≤x ≤10},集合Q ={x ∈R |x 2+x -6=0},则P ∩Q 等于( )A .48个B .36个C .24个D .18个2.(5分)用数字1,2,3,4,5可以组成没有重复数字,并且比20000大的五位偶数共有( )A .第一象限B .第二象限C .第三象限D .第四象限3.(5分)若cosθ>0,且sin 2θ<0,则角θ的终边所在象限是( )A .y ′=x 2+1x 2B .y ′=x 2−1x C .y ′=x 2−1x 2D .y ′=1−x2x 24.(5分)函数y =x 2−1x的导数是( )A.B.C.D.5.(5分)已知二次函数f (x )的图象如图所示,则其导函数f ′(x )的图象大致形状是( )A .3B .4C .6D .96.(5分)设F 为抛物线y 2=4x 的焦点,A ,B ,C 为该抛物线上三点,若FA +FB +FC =0,则|FA |+|FB |+|FC |的值为( )→→→→→→→7.(5分)已知-9,a 1,a 2,-1四个实数成等差数列,-9,b 1,b 2,b 3,-1五个实数成等比数列,则b 2(a 2-a 1)=( )二、填空题(本大题共5小题,每小题5分,满分25分)三、解答题:(本大题共6小题,共75分)A .8B .-8C .±8D .98A .3B .6C .9D .128.(5分)若对于任意实数x ,有x 3=a 0+a 1(x -2)+a 2(x -2)2+a 3(x -2)3,则a 2的值为( )A .h 2>h 1>h 4B .h 1>h 2>h 3C .h 3>h 2>h 4D .h 2>h 4>h 19.(5分)四位好朋友在一次聚会上,他们按照各自的爱好选择了形状不同、内空高度相等、杯口半径相等的圆口酒杯,如图所示,盛满酒后他们约定:先各自饮杯中酒的一半.设剩余酒的高度从左到右依次为h 1,h 2,h 3,h 4,则它们的大小关系正确的是( )A .7,6,1,4B .6,4,1,7C .4,6,1,7D .1,6,4,710.(5分)为确保信息安全,信息需加密传输,发送方由明文→密文(加密),接受方由密文→明文(解密),已知加密规则为:明文a ,b ,c ,d 对应密文a +2b ,2b +c ,2c +3d ,4d .例如明文1,2,3,4对应加密文5,7,18,16,当接受方收到密文14,9,23,28时,则解密得明文为( )11.(5分)已知0≤x ≤2,则函数y =4x -3×2x -4的最小值.12.(5分)若数列{a n }(n ∈N +)为等差数列,则数列b n =a 1+a 2+a 3+…+a n n (n ∈N +)也为等差数列,类比上述性质,相应地,若数列{c n }是等比数列且c n >0(n ∈N +),则有数列d n =(n ∈N +)也是等比数列.13.(5分)在(x +1x )5展开式中,含x 项的系数为 .14.(5分)从5张100元,3张200元,2张300元的奥运预赛门票中任取3张,则所取3张中至少有2张价格相同的概率为 .15.(5分)求圆ρ=cosθ+23sinθ圆心的极坐标.√16.(12分)已知sinθ+cosθ=22,求sin 4θ+cos 4θ和sin 3θ+cos 3θ的值.√17.(12分)甲、乙、丙3人投篮,投进的概率分别是13,25,12.(Ⅰ)现3人各投篮1次,求3人都没有投进的概率;(Ⅱ)用ξ表示乙投篮3次的进球数,求随机变量ξ的概率分布及数学期望Eξ.18.(12分)在正方体ABCD-A1B1C1D1中,O为正方形ABCD的中心,M 为D1D的中点.(Ⅰ)求证:异面直线B1O与AM垂直;(Ⅱ)求二面角B1-AM-B的大小;(Ⅲ)若正方体的棱长为a,求三棱锥B1-AMC的体积.19.(14分)已知数列{log2(a n-1)}(n∈N*)为等差数列,且a1=3,a3=9.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)证明1a2−a1+1a3−a2+…+1a n+1−a n<1.20.(12分)已知直角三角形ABC的顶点A(-2,0),直角顶点B(0,-22),顶点C在x轴上.(1)求BC所在直线方程的一般式;(2)求△ABC外接圆M的标准方程.√21.(13分)设函数f(x)=lnx+x2+ax时,f(x)取得极值,求a的值;(1)若x=12(2)若f(x)在其定义域内为增函数,求a的取值范围.。
2020年江苏省高考数学试卷(含详细解析)
保密★启用前2020年江苏省高考数学试卷—.■总分得分注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上评卷人得分1.已知集合A=(—l,0,l,2},g=(0,2,3},则AC\B=.2.己知i是虚数单位,则复数Z=(l+i)(2-i)的实部.3.己知一组数据4.2劣3—",5,6的平均数为4,则。
的值是______.4.将一颗质地均匀的正方体骰子先后抛掷2次,观察向上的点数,则点数和为5的概率是______.5.如图是一个算法流程图.若输出)'的值为-2,则输入.1的值是•6.在平而直角坐标系X。
),中,若双曲线竺-22=l(a>0)的一条渐近线方程为y=2^/52 x,则该双曲线的离心率是—・7.己知.汽心)是奇函数,当官时,门刁=指,则直罚的值是8.已知sin'U+a)=二.则sin2tz的值是____.439.如图,六角螺帽毛坯是由一个正六棱柱挖去一个圆柱所构成的.己知螺帽的底面正六边形边长为2cm.高为2cm.内孔半轻为0.5cm.则此六角螺帽右坯的体枳是—cm.10,将函数y=3sin(2wf)的图象向右平移兰个单位长度,则平移后的图象中与y轴最46近的对称轴的方程是—.11.设{叫}是公差为,的等差数列,(加J是公比为g的等比数列.已知数列{”〃+“}的前〃项和/一〃+2〃一1(〃£FT),则d+q的值是12.已知5亍八寸=1(矽苗),则J2的最小值是________.13.在△ABC中,仙=4AC=3,ZBAC=90°,D在边8C上,延长AO到F,使得AP=9.14.在平而直角坐标系xOy中.己知,0),1△是圆G”+。
-或)・=36上的两个动点,满足PA=PB,则△用8而积的最大值是二、解答题评卷人得分15.在三棱柱ABC-A\B\C}中,AB1AC.&C1平而ABC,E,F分别是AC,3C的中点......O...........O.....I-.....O.....滨......O............O ※※寒※※即※※田※※s?I※※II※※堞※※I※※群※※点※※军浓※(1)求证:段〃平而/IF i C i:(2)求证:平面AB.CL平而ABB,.16.在△ABC中,角A. B.C的对边分别为〃,b,c,己知”=3.c=JI b=45Q.1)⑴求sinC的值:4(2)在边8C上取一点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2011江苏高考数学试卷 注意事项:
考生在答题前请认真阅读本注意事项及各题答题要求
1.本试卷共4页,均为非选择题(第1题-第20题,共20题)。
本卷满分为160分。
考试时间为120分钟。
考试结束后,请将本试卷和答题卡一并交回。
2.答题前请务必将自己的姓名、准考证号用0.5毫米黑色墨水签字笔填写在试卷及答题卡的规定位置。
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与您本人是否相符。
4.作答试题,必须用0.5毫米黑色墨水签字笔在答题卡上的指定位置作答,在其他位置作答一律无效。
5.如需作图,须用2B 铅笔绘,写清楚,线条,符号等须加黑加粗。
参考公式:
(1)样本数据x 1 ,x 2 ,…,x n 的方差s 2=n i=11n ∑(x i -x )2,其中n
i i=11x n ∑. (2)(2)直棱柱的侧面积S=ch ,其中c 为底面积,h 为高.
(3)棱柱的体积V= Sh ,其中S 为底面积,h 为高.
一.填空题:本大题共14小题,每小题5分,共计70分,请把答案填写在答题卡的相应位置上。
..........
1、已知集合},2,0,1{},4,2,2,1{-=-=B A 则_______,=⋂B A
2、函数)12(log )(5+=x x f 的单调增区间是__________
3、设复数i 满足i z i 23)1(+-=+(i 是虚数单位),则z 的实部是_________
4、根据如图所示的伪代码,当输入b a ,分别为2,3时,最后输出的m 的值是________ Read a ,b
If a >b Then
m ←a
Else
m ←b
End If
Print m
5、从1,2,3,4这四个数中一次随机取两个数,则其中一个数是另一个的两倍的概率是______
6、某老师从星期一到星期五收到信件数分别是10,6,8,5,6,则该组数据的方差___2=s
7、已知,2)4tan(=+π
x 则x
x 2tan tan 的值为__________ 8、在平面直角坐标系xOy 中,过坐标原点的一条直线与函数x x f 2)(=
的图象交于P 、Q 两点,则线段PQ 长的最小值是________
9、函数ϕϕ,,(),sin()(w A wx A x f +=是常数,)0,0>>w A 的部分图象如图所示,则
____)0(=f
3ππ12
7
10、已知→
→21,e e 是夹角为π32的两个单位向量,,,22121→→→→→→+=-=e e k b e e a 若0=⋅→→b a ,则k 的值为
11、已知实数0≠a ,函数⎩
⎨⎧≥--<+=1,21,2)(x a x x a x x f ,若)1()1(a f a f +=-,则a 的值为________ 12、在平面直角坐标系xOy 中,已知点P 是函数)0()(>=x e x f x 的图象上的动点,该图象在P
处的切线l 交y 轴于点M ,过点P 作l 的垂线交y 轴于点N ,设线段MN 的中点的纵坐标为t ,则t 的最大值是_____________
13、设7211a a a ≤≤≤≤Λ,其中7531,,,a a a a 成公比为q 的等比数列,642,,a a a 成公差为1的等差数列,则q 的最小值是________
14、设集合},,)2(2
|),{(222R y x m y x m y x A ∈≤+-≤=, },,122|),{(R y x m y x m y x B ∈+≤+≤=, 若,φ≠⋂B A 则实数m 的取值范围是______________
二、解答题:本大题共6小题,共计90分,请在答题卡指定区域内作答,解答时应写出文字说明、证明过程活盐酸步骤。
15、在△ABC 中,角A 、B 、C 所对应的边为c b a ,,
(1)若,cos 2)6
sin(A A =+π
求A 的值; (2)若c b A 3,31cos ==,求C sin 的值.
16、如图,在四棱锥ABCD P -中,平面PAD ⊥平面ABCD ,
AB=AD ,∠BAD=60°,E 、F 分别是AP 、AD 的中点
求证:(1)直线EF ‖平面PCD ;
2-F
E A D
(2)平面BEF ⊥平面PAD
17、请你设计一个包装盒,如图所示,ABCD 是边长为60cm 的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得ABCD 四个点重合于图中的点P ,正好形成一个正四棱柱形状的包装盒,E 、F 在AB 上是被切去的等腰直角三角形斜边的两个端点,设AE=FB=xcm
(1)若广告商要求包装盒侧面积S (cm 2
)最大,试问x 应取何值?
(2)若广告商要求包装盒容积V (cm 3)最大,试问x 应取何值?并求出此时包装盒的高与底面边长的比值。
18、如图,在平面直角坐标系xOy 中,M 、N 分别是椭圆12
42
2=+y x 的顶点,过坐标原点的直线交椭圆于P 、A 两点,其中P 在第一象限,过P 作x 轴的垂线,垂足为C ,连接AC ,并延长交椭圆于点B ,设直线PA 的斜率为k (1)当直线PA 平分线段MN ,求k 的值;
(2)当k=2时,求点P 到直线AB 的距离d ;
(3)对任意k>0,求证:PA ⊥PB
19、已知a ,b 是实数,函数,)(,)(2
3bx x x g ax x x f +=+= )(x f '和)(x g '是)(),(x g x f 的导函数,若0)()(≥''x g x f 在区间I 上恒成立,则称)(x f 和)(x g 在区间I 上单调性一致
(1)设0>a ,若函数)(x f 和)(x g 在区间),1[+∞-上单调性一致,求实数b 的取值范围;
(2)设,0<a 且b a ≠,若函数)(x f 和)(x g 在以a ,b 为端点的开区间上单调性一致,求|a -b |的最大值
20、设M 为部分正整数组成的集合,数列}{n a 的首项11=a ,前n 项和为n S ,已知对任意整数k 属于M ,当n>k 时,)(2k n k n k n S S S S +=+-+都成立
(1)设M={1},22=a ,求5a 的值;(2)设M={3,4},求数列}{n a 的通项公式。