第7章统计热力学基础
热力学统计 第七章玻尔兹曼统计
al !
al lal ln ln N ! N ln N al ln al ! l l l x 1 ln x ! x ln x x S k ln S
0
设=1时,S=0 S0=0
ln Z S Nk (ln Z )
2.内能U与广义力Y的统计表达式
2.1 内能U的统计表达式
N N l U al l ll e Z Z l l N Z ln Z N Z
e l l
N al l e l Z Z l e l
配分函数Z :
l
Z l e l
l
分布在能级l 的粒子数:
N al l e l Z
已知(l, l),可求Z——并不容易!
经典粒子: 配分函数Z :
Z l e l
l
Z e
( q . p )
dqdp e D( )d r h
积分因子:
如果 X ( x, y )dx Y ( x, y )dy 不是全微分,但存在函数 ( x, y ) ,使得
( x, y ) X ( x, y )dx ( x, y )Y ( x, y )dy 为全微分, 即
( x, y ) X ( x, y )dx ( x, y )Y ( x, y )dy ds ( x, y )
S k ln
满足经典极限的非定域系统:
ln
l
la
l
al !
al S k N ln N al ln l l
S0
lal al ln ln N ln N al ln ln N ! l l al ! l
第七章统计热力学基础
第七章统计热⼒学基础第七章统计热⼒学基础⼀、选择题1、统计热⼒学主要研究()。
(A) 平衡体系(B)单个粒⼦的⾏为案(C) ⾮平衡体系(D) 耗散结构2、能量零点的不同选择,在下⾯诸结论中哪⼀种说法是错误的:( )(A) 影响配分函数的计算数值(B) 影响U,H,F,G 的数值(C) 影响Boltzmann分布数N 的数值(D) 影响能级能量εi的计算数值3、最低能量零点选择不同,对哪些热⼒学函数值⽆影响:( )(A) U (B) S (C) G (D) H4、统计热⼒学研究的主要对象是:()(A) 微观粒⼦的各种变化规律(B) 宏观体系的各种性质(C) 微观粒⼦的运动规律(D) 宏观系统的平衡性质5、对于⼀个U,N,V确定的体系,其微观状态数最⼤的分布就是最可⼏分布,得出这⼀结论的理论依据是:()(A) 玻兹曼分布定律(B) 等⼏率假设(C) 分⼦运动论(D) 统计学原理6、以0到9这⼗个数字组成不重复的三位数共有()(A) 648个(B) 720个(C) 504个(D) 495个7、各种不同运动状态的能级间隔是不同的,对于同⼀种⽓体分⼦,其平动、转动、振动和电⼦运动的能级间隔的⼤⼩顺序是:()(A) t > r > v > e(B) t < r < v < e(C) e > v > t > r(D) v > e > t > r8、在统计热⼒学中,对物系的分类按其组成的粒⼦能否被分辨来进⾏,按此原则:()(A) ⽓体和晶体皆属定域⼦体系(B) ⽓体和晶体皆属离域⼦体系(C) ⽓体属离域⼦体系⽽晶体属定域⼦体系(D) ⽓体属定域⼦体系⽽晶体属离域⼦体系9、对于定域⼦体系分布X所拥有的微观状态t x为:()(A) (B)(C) (D)10、当体系的U,N,V确定后,则:()(A) 每个粒⼦的能级 1, 2, ....., i⼀定,但简并度g1, g2, ....., g i及总微观状态数不确定。
07_统计热力学基础小结
核的总配分函数等于各原子的核配分函数的乘积。 q n ,total = (2s n + 1)(2 s n '+1)(2 s n "+1)... = ∏ (2 s n + 1) i
i
仅在此种近似下,核配分函数才与温度 T 无关,此时有: H n = U n = CV (n) = 0 p = -(∂An/∂V)T,n=0 An = − NkT ln qn ∂A S n = − n = Nk ln q n ∂T V , N Gn = − NkT ln qn = An 分子全配分函数 q = q t ⋅ q r ⋅ qV ⋅ qe ⋅ q n 化学反应体系的公共能量标度 按公共能量标度, q ' = ∑ g i e −(ε 0 +εi ) / kT =e −ε 0 / kT ∑ g i e −ε i / kT = e −ε 0 / kT ⋅ q 能量标度的改变只对具能量单位的量 U、H、F、G 有影响,即多一项 U0 例如:对非定位系 A = − kT ln qN + U0 N!
1
二.波尔兹曼能量分布式 N i* = N gi e − εi / kT ∑ gi e−εi /kT
i
最可几分布时 i 能级上的粒子数 e −ε i / kT 称波尔兹曼因子
Ni g e − ε i / kT = i − ε i / kT N ∑ gie
i
i 能级上的粒子数占总粒子数之比,也称能级分布数
同左
同左
CV =
∂ ln q p = NkT ∂V T , N
同左
对来自第一定律的函数(H、U、CV、p)表达式相同 对来自第二定律的函数(S、A、G)表达式不同
热力学基础
第七章 热力学基础基 本 要 求一、理解功和热量的概念以及准静态过程。
二、掌握热力学第一定律;能熟练地分析、计算理想气体各等值过程和绝热过程中的功、热量、内能改变量及卡诺循环等简单循环过程的效率。
三、理解摩尔热容量的定义,并会用它来计算等压、等容过程中的热量。
四、了解热力学第二定律及其统计意义。
内 容 提 要一、准静态过程平衡态 不受外界影响时,系统的宏观性质不随时间改变的状态。
准静态过程 由无数个平衡态组成的过程,即系统的每个中间态都是平衡态。
准静态过程是一个理想化的过程,是实际过程的近似。
实际过程仅当进行得无限缓慢时才可看作是准静态过程 。
二、热力学第一定律W E E Q +-=12对于一元过程:dW dE dQ +=符号规定:Q > 0系统吸热;W > 0系统对外界做正功; ∆E >0系统内能增加。
热力学第一定律适用于任何系统(固、液、气)的任何过程(非准静态过程亦成立)。
三、功、内能、热量的数学表达式和意义功 通过做功可以改变系统的状态。
功是过程量,是分子的有规则运动能量和分子的无规则运动能量的转化和传递。
⎰=21V V PdV W内能 内能是状态的函数。
对于一定质量的某种气体,内能一般是T 、V 或P 的函数;对于刚性分子的理想气体,内能只是T 的函数,即T C RT iE V νν==2)(12T T C E V -=∆ν热量 传热也可改变系统的状态,其条件是系统和外界的温度不同。
Q=νC (T 2 –T 1) 其中C 为摩尔热容量。
四、气体的摩尔热容量摩尔热容量 一摩尔物质温度升高一度所吸收的热量,即⎪⎭⎫ ⎝⎛=dT dQ C ν1 理想气体等容摩尔热容量 R i C V 2=理想气体等压摩尔热容量 R C R R iC V P +=+=2泊松比 12>+==ii C C V P γ 对刚性理想气体单原子分子,i = 3,γ = 1.67; 对刚性理想气体双原子分子,i = 5,γ = 1.40; 对刚性理想气体多原子分子,i = 6,γ = 1.33。
第七章 统计热力学基础自测题
第七章 统计热力学基础自测题I.选择题1、下列各系统中属于独立子系统的是(d )。
(a )绝对零度的晶体 (b )理想液体混合物 (c )纯气体 (d )理想气体混合物2、有6个独立的定位粒子,分布在3个能级能量为 ε0,ε1,ε2上,能级非简并,各能级上的分布数一次为N 0=3,N 1=2,N 2=1。
则此种分布的微观状态数在下列表达式中错误的是(a )。
(a )321631P P P (b)321631C C C(c )6(321)!!!!(d )6313(63)2(32)1(11)!!!!-!!-!!-!3、在分子配分函数的表达式中与压力有关的是(b )。
(a )电子运动的配分函数 (b )平动配分函数 (c )转动配分函数 (d )振动配分函数4、某双原子分子AB 取振动基态能量为零,在温度T 时的振动配分函数为2.0,则粒子分布在基态上的分布分数N 0/N 应为(d )。
(a )2.0 (b )0 (c )1 (d )1/25、NH 3分子的平动、转动、振动自由度分别为(d )。
(a )3, 2, 7 (b )3, 2, 6 (c )3, 3, 7 (d )3, 3, 66、双原子分子在温度很低时且选取振动基态能量为零,则振动配分函数值为(b )。
(a )0 (b )1 (c )<0 (d )>07、忽略CO 和N 2振动运动对熵的贡献差别。
N 2和CO 的摩尔熵的大小关系为(a )。
(a )m m 2(CO)(N )S S > (b )m m 2(CO)(N )S S < (c )m m 2(CO)(N )S S = (d )不确定 8、一个体积为V ,粒子质量为m 的离域子系统,其最低平动能级和其相邻能级间隔为(b )。
(a )2238h mV(b )22338h mV(c )22348h mV(d )22398h mVⅡ.填空题1、 已知CO 的转动惯量I =1.45⨯10-26,k =1.38⨯10-23J ⋅K -1, ,h =6.626⨯10-34J ⋅s,,则CO 的转动特征温度r Θ为_2.78K _。
华中科技大学物理化学-121-145 第七章 统计热力学基础
第柒章 统计热力学根底根本公式1. N 个定位粒子〔可别粒子〕壹种分布的微观状态数 !!iN i i i g t N N =∏总微观状态数 (),,!!iN i j i ig U V N N N Ω=∑∏2. N 个非定位粒子〔等同粒子〕壹种分布的微观状态数 !iN i i i g t N =∏总微观状态数 (),,!iN i j i i g U V N N Ω=∑∏3. Boltzman 分布在i,j 两个能级上粒子数之比 ()()exp /exp /j j i j i i g kT n n g kT εε⎡⎤-⎣⎦=-⎡⎤⎣⎦4. 能级公式平动 2222t 2228y xz n n n h m a b c ε⎛⎫=++ ⎪ ⎪⎝⎭转动 ()2r 218h J J Iεπ=+振动 v 12h ευυ⎛⎫=+ ⎪⎝⎭5.配分函数配分函数的别离 n t e r v q q q q q q =平动配分函数线型分子转动配分函数 2r 2r 8IkT Tq hπσσ==Θ 同核双原子分子σ=2,异核双原子分子σ=1.转动特征温度 2r 28h TkπΘ=非线性分子转动配分函数 ()()3/221/2r 382x y zkT q I I I h ππσ=双原子分子振动配分函数 ()()()()v v v exp /2exp /21exp /1exp /h kT T q T h kT υυ--Θ⎡⎤⎡⎤⎣⎦⎣⎦==--Θ--⎡⎤⎣⎦基态能量为零时振动特征温度 v /h k υΘ=电子配分函数假设只考虑基态,且将电子基态能量规定为零,则()v e,021q g J ==+,J 为电子总角动量量子数.核配分函数假设只考虑基态,且将核基态能量规定为零,则,S 为核自旋量量子数.单原子理想气体的热容 ,m 32V C R = 双原子理想气体的热容 ()(),m v ,m v 57=22V V C R T C RT=ΘΘ,单原子理想气体的内能 m 0,m 32U RT U =+ 双原子理想气体的内能 ()()m 0,m v m 0,mv 57=22U R U TU R U T=+Θ+Θ,平动熵〔Sackur -Tetrode 公式〕 转动熵 r,m r r =lnln T T S Nk Nk R R σσ+=+ΘΘ 振动熵 ()()v,m /ln 1exp exp /1h kT h S Nk RT h kT υυυ⎧⎫⎡-⎤⎪⎪⎛⎫=--+⎨⎬ ⎪⎢⎥-⎡⎤⎝⎭⎣⎦⎪⎪⎣⎦⎩⎭()()v v v /ln 1exp /exp /1T R T T ⎧⎫Θ⎪⎪=---Θ+⎡⎤⎨⎬⎣⎦Θ-⎪⎪⎩⎭电子运动熵 e,m e,0e,0ln ln S Nk g R g == Gibbs 自由能 m 0,m lnqG RT U L=-+8.自由能函数 9.热函函数 10.平衡常数对于D+E =G 的反响式中,f 为提出V 以后的配分函数,0ε∆为反响前后分子最低能级的差值.习题讲解1. 设有壹个由叁个定位的单维简谐振子组成的系统,这叁个振子分别在各自的位置上振动,系统的总能量为112h ν.试求系统全部可能的微观状态数. 解 振子的能量为 1ε(1,2,3,...)2h ννν⎛⎫=+= ⎪⎝⎭设系统中叁个单维简谐振子按以下能量方式分配至各能级:满足以上条件的分布有以下几种:(1) N 0=1, N 1=2微观状态数(2) N 0=1, N 1=1,N 3=1 微观状态数 236111t ==⨯⨯!!!!〔3〕N 0=2,N 4=1微观状态数 33321t ==⨯!!! 〔4〕N 1=2,N 2=1微观状态数 43321t ==⨯!!! 系统总的微观状态数2.假设有壹个热力学系统,当其熵值增加·K -1时,试求系统的微观状态的增加数占原有微观状态数的比值〔用1∆ΩΩ表示〕. 解 系统始态的熵 11ln S k =Ω 式中,k 就是Boltzmann 常数,2311.3810 J K k --=⨯⋅.系统终态的熵 22ln S k =Ω所以 21 ln ln 21S = S - S k k ∆=Ω-Ω代入数据 2320.4181.3810ln 1-Ω=⨯Ω 解得3102e 1⨯Ω=Ω系统微观状态数增加倍数为3102e 11⨯∆ΩΩ≈=ΩΩ 3.在海平面上大气的组成用体积分数可表示为:N 2(g)为0.78,O 2(g)为0.21,其他其他为0.01.设大气中各气体都符合Boltzmann 分布,假设大气柱在整个高度内的平均温度为220K.试求这叁类气体分别在海拔10 km 、60 km 和500 km 处的分压.已知道重力加速度为29.8 m s -⋅. 解 设大气再海平面的压力为p 0,在高度为h 处的压力为p ,则 式中,M 为气体的摩尔质量,g 为重力加速度.由气体的体积分数可得到各气体在海平面上的分压各气体的摩尔质量 ()()3131222810 kg mol ,O 3210 kg mol M N M ----=⨯⋅=⨯⋅ 假定其他气体全部为Ar,则()31Ar 39.94810 kg mol M --=⨯⋅在海拔10km 处可见,在海拔10 km 处,各气体的分压和摩尔分数和在海平面上的不相同.同理可得到在60 km 处,各气体的分压和摩尔分数 在500km 处,各气体的分压和摩尔分数4.对于双原子气体分子,设基态的振动能量为零,1x e x ≈+.试证明:〔1〕r U NkT =;〔2〕v U NkT =.证 双原子分子转动配分函数2r 28IkT q h πσ=双原子气体分子基态的振动能量为零时,振动配分函数5.设某分子的壹个能级的能量和简并度分别为-2111=6.110 J, 3g ε⨯=;另壹个能级的能量和简并度分别为-2122=8.410 J, 5g ε⨯=.请分别计算在300 K 和3 000 K 时,这两个能级上分布的粒子数之比12/N N .解 300 K 时[][]-21-21111112-232222exp /()36.1108.410exp exp 1.046exp /()5 1.3810300g kT N g N g kT g kT εεεε-⎛⎫-⨯-⨯⎛⎫==-=-= ⎪ ⎪-⨯⨯⎝⎭⎝⎭3 000K 时6.设有壹个由极大数目的叁维平动子组成的粒子系统,运动于边长为a 的立方容器内,系统的体积、粒子质量和温度的关系为220.108h kT ma =.现有两个能级的能量分别为221222927 , 48h h ma maεε==,试求处于这两个能级上粒子数的比值12N N . 解 叁维平动子的能级公式为只要满足222 18xy z n n n ++=,1ε值都相同,1ε能级的简并态 =1=14x y z n n n +=,,;=1=41x y z n n n +=,,;=4=11x y z n n n +=,,.简并度1=3g .只要满足222 27xy z n n n ++=,2ε值都相同,2ε能级的简并态 =1=15x y z n n n +=,,;=1=51x y z n n n +=,,;=5=11x y z n n n +=,,.简并度2=4g .根据Boltzmann 分布,粒子在两能级上的比值为7.将2(g)N 在电弧中加热,从光谱中观察到,处于振动量子数=1υ的第壹激发态上的分子数(=1)N υ,和处于振动量子数=0υ的基态上的分子数(=0)N υ之比为(=1)0.26(=0)N N υυ=.已知道2(g)N 的振动频率为1316.9910s -⨯.试计算:〔1〕2(g)N 的温度;〔2〕2(g)N 分子的平动、转动和振动能量;〔3〕振动能量在总能量中所占的分数.解 〔1〕量子数为υ的振子能量12h ευν⎛⎫=+ ⎪⎝⎭=0ν时 012h ευ==1υ时 032h ευ=即 3413236.62610 6.99100.26exp 1.3810/K T --⎛⎫⨯⨯⨯=- ⎪⨯⎝⎭2(g)N 的温度 2491.5 K T =〔2〕平动能 转动能 震动能将11342311318.3145 J mol K , 6.62610 J s , 1.3810 J K , 6.9910 s ,R h k v ------=⋅⋅=⨯⋅=⨯⋅=⨯ 2491.5 K T =,代入上式,得〔3〕振动能量在总能量中所占的分数8.设有壹个极大数目叁维平动子组成的粒子系统,运动于边长为a 的立方容器中,系统的体积,例子质量和温度的关系为试计算平动量子数为1,2,3和1,1,1两个状态上粒子分布数的比值.解 平动量子数为1,2,3时,其对应量子态有1,2,31,3,22,1,32,3,13,1,23,2,1,,,,,,ψψψψψψ即此能级的简并度16g =.此状态的能量为平动量子数为1,1,1时,其对应量子态只有1,1,1ψ,简并度为01g =,能量为所以,两个能级上的分布数之比为9.设某理想气体A,其分子的最低能级就是非兼并的,取分子的基态作为能量零点,相邻能级的能量为ε,其简并度为2,忽略更高能级.〔1〕写出A 分子的总配分函数的表达式;〔2〕设kT ε=,求出相邻两能级上最概然分子数之比10/N N 的值;〔3〕设kT ε=,试计算在298K 时,1molA 分子气体的平均能量.解 〔1〕分子的基态能量00ε=,相邻的能级的能量1εε=,只考虑基态和相邻能级,忽略更高能级,分子的配分函数为 〔2〕()()()()1111000exp /2exp /20.73581exp 0exp /g kT kT kT N e N g kT εε---⎡⎤⎡⎤⎣⎦⎣⎦====⨯-⎡⎤⎣⎦〔3〕1mol 气体分子数为1010.7358,,10.7358L N N L N L +==+10.〔1〕某单原子理想气体的配位函数q 具有的函数形式为()q Vf T =,试导出理想气体的状态方程;〔2〕假设该单原子气体的配位函数q 的函数形式为3/222mkT q V h π⎛⎫= ⎪⎝⎭,试导出压力p 和热力学能U 的表达式,以及理想气体的状态方程.解 〔1〕()()(),,ln ln N T N TVf T f T q NkT q NkT NkT NkT V V Vf T V ⎧⎫∂⎡⎤∂⎪⎪⎛⎫⎣⎦====⎨⎬⎪∂∂⎝⎭⎪⎪⎩⎭ 上式即为理想气体的状态方程对1mol 理想气体,,N L Lk R ==则.m pV RT =〔2〕配分函数3/222mkT q V h π⎛⎫= ⎪⎝⎭,令()3/222mkT f T h π⎛⎫= ⎪⎝⎭,即()q Vf T =.所以即理想气体的状态方程.11.某气体的第壹电子激发态比基态能量高1400 kJ mol -⋅,试计算:〔1〕在300 K 时,第壹电子激发态所占的分数;〔2〕假设要使激发态分子所占的分数为10%,则这时的温度为多少. 解 〔1〕设基态能量为零,并忽略更高激发态,则 (2) 依题意,有由上式解出 42.1910 K T =⨯12.在300K 时,已知道F 原子的电子配分函数 4.288e q =,试求 〔1〕标准压力下的总配分函数〔忽略核配分函数的奉献〕;〔2〕标准压力下的摩尔熵值.已知道F 原子的摩尔质量为118.998 g mol M -=⋅. 解 〔1〕n e t q q q q =,忽略核配分函数n q ,电子配分函数 4.288e q =,平均配分函数 式中,m 为F 原子的质量,V 为体积.将231341.3810 J K , 6.62610 J S k h ---=⨯⋅=⨯⋅及m 、T 、m V 等数据代入平动配分函数表达式即得 总配分函数 〔2〕m t,m e,m S S S =+ 根据Sack -Tetrode 公式()3/2325ln 2mkT S Nk V Nh π⎧⎫⎡⎤⎪⎪=+⎢⎥⎨⎬⎢⎥⎪⎪⎣⎦⎩⎭23123134/,/, 6.02210 mol , 1.3810 J K , 6.62610 J S,m m M L V RT p N L k h ----====⨯=⨯⋅=⨯⋅18.3145 J K ,R -=⋅代入上式化简得摩尔平动熵表达式将53110 Pa,18.99810 kg mol ,300 K p p M T --===⨯⋅=代入上式得电子运动熵标准摩尔熵 13. 零族元素氩〔Ar 〕可看做理想气体,相对分子质量为40,取分子的基态〔设其简并度为1〕作为能量零点,第壹激发态和基态的能量差为∈,忽略其他高能级.〔1〕写出Ar 分子的总配分函数表达式;〔2〕设5kT ∈=,求在第壹激发态上最概然分布的分子数占总分子数的分数;〔3〕计算1mol Ar(g)在标准状态下的统计熵值.设Ar 分子的核和电子的简并度均等于1. 解 〔1〕[]()()0011exp /()exp /exp /i i iq g kT g kT g kT =-∈=-∈+-∈⎡⎤⎡⎤⎣⎦⎣⎦∑(2)()()()111exp /2exp 5 1.3312exp 5g kT N N q -∈⎡⎤-⎣⎦===+-% (3)Sack -Tetrode 公式对于1 mol 理想气体,粒子数,/,/,m N L m M L V RT p ===代入上式得将23123134116.02210 mol , 1.3810 J K , 6.62610 J s,8.3145 J mol K L k h R ------=⨯=⨯⋅=⨯⋅=⋅⋅等有关常数代入上述表达式,化简得()3/2m n,o e,o 15/32352ln ln ln ln ln ln 20.72322K Pa kg mol M T p k S R g g R L h π-⎡⎤⎛⎫⎛⎫=++-+++⎢⎥ ⎪ ⎪⋅⎝⎭⎢⎝⎭⎥⎣⎦将531n,o e,o 10 Pa,4010 kg mol ,300 K,1,1p p M T g g --===⨯⋅===代入上式,得14.设Na 原子气体〔设为理想气体〕凝聚成壹外表膜.(1)假设Na 原子可以在膜内自由运动〔即贰维平动〕,试写出此凝聚过程的摩尔平动熵变的统计表达式;〔2〕假设Na 原子在膜内不能运动,其凝聚过程的摩尔平动熵变的统计表达式又将如何" 解 (1)Na 原子气体凝聚成外表膜,由叁维运动变为贰维运动.壹个平动自由度的配分函数叁维平动配分函数 3/2t,322mkT q V h π⎛⎫= ⎪⎝⎭ 叁维平动熵 t,3t,m,35ln 2q S R L ⎛⎫=+ ⎪⎝⎭贰维平动配分函数 t,222mkT q A h π⎛⎫= ⎪⎝⎭贰维平动熵 t,2t,m,2ln2q S R L ⎛⎫=+ ⎪⎝⎭(2) 假设Na 原子在膜内不能运动,其摩尔平动熵为零,则15.试分别计算转动、振动和电子能级间隔的Boltzmann 因子exp kT ⎛⎫- ⎪⎝⎭£各为多少.已知道各能级间隔的值为:电子能级间隔约为100 kT,振动能级间隔约为10 kT,转动能级间隔约为 kT. 解 电子能级间隔的Boltzmann 因子 振动能级间隔的Boltzmann 因子 转动能级间隔的Boltzmann 因子16.设J 为转动量子数,取整数,转动简并度为〔2J +1〕.在240K 时,CO 〔g 〕最可能出现的量子态的转动量子数J 的值为多少"已知道CO(g)的转动特征温度t 2.8K Θ= 解 转动特征温度 2t 28h IkπΘ=转动能级公式 ()()2r 2ε118h J J J J kIπΘ=+=+ 根据Boltzmann 分布0j dN dJ=时的J 值就是CO 最可能出现的J 值,则17. H B r 分子的核间平衡距离 nm,试计算: ⑴ H B r 的转动特征温度;⑴ 在298 K 时,H B r 分子占据转动量子数J =1的能级上的分数; ⑴ 298 K 时,H B r 理想气体的摩尔转动熵. 解 ⑴ H B r 的折合质量 转动惯量⑵ HB r 转动配分函数 2r 2r8Ik q T hTπ=Θ= 转动能级 ()r r 1/J J k ε=+Θ转动简并度 21J +HB r 分子占据转动量子数J=1的能级上的分数 ⑶HBr 转动熵和I 的摩尔质量、转动特征温度和振动特征温度分别为)1mol - 3- 310-石球在298K 时:⑴H 2和I 2分子的平动摩尔热力学能、转动摩尔热力学能和振动摩尔热力学能; ⑵H 2和I 2分子的平动摩尔定容热容、转动摩尔定容和振动摩尔定容热容和总的摩尔定容热容〔忽略电子的核运动对热容的奉献〕. 解 ⑴r ,2ln V Nq NkT U T ∂⎛⎫=⎪∂⎝⎭H 2和I 2分子的平动摩尔热力学能 H 2和I 2分子的转动摩尔热力学能 振动摩尔热力学能⑵H 2和I 2分子的平动摩尔定容热容 H 2和I 2的转动摩尔定容r,m 11r ,m 2(H )8.3145 J mol K ,V U C R T--∂==⋅⋅∂振动摩尔定容热容 总的摩尔定容热容19.在298 K 和100 kPa 时,1 mol O 2〔g 〕(设为理想气体)放在体积为V 的容积中,试计算: ⑴O 2〔g 〕的平均配分函数q t ;⑵O 2〔g 〕的转动配分函数q r ,已知道其核间距为1207 nm;⑶O 2〔g 〕的电子配分函数q e ,已知道电子基态的简并度为3,忽略电子激发态的奉献; ⑷O 2〔g 〕的标准摩尔熵值.解⑴O 2〔g 〕的平均配分函数 3/2t 22mkT q V h π⎛⎫= ⎪⎝⎭O 2分子的质量将231341.3810 J K , 6.62610 J s,=298 K k h T ---=⨯⋅=⨯⋅及m 、V m 等数平动配分函数表达式即得3/230t 22 4.3410mkT q V h π⎛⎫==⨯ ⎪⎝⎭⑵O 2〔g 〕的折合质量71.7= (同核双原子分子,对称数σ=2) ⑶q e =g e,0=3⑷忽略振动激发态时,常温下,双原子分子的振动熵数值非常小,可以忽略,即 根据Sackur -Tetrode 公式 将232334m /,/, 6.02210mol , 1.3810 J K , 6.62610 J s,R=8.3145 J mol K m M L V RT p N L k h -1--1--1-1====⨯=⨯⋅=⨯⋅⋅⋅代入上式化简得 t,m 135ln ln ln 20.72322K Pa kg mol M T pS R -⎡⎤⎛⎫=+-+⎢⎥⎪⋅⎝⎭⎣⎦ 将5-3-110 Pa,=3110 kg mol p p M ==⨯⋅代入上式得转动熵 ,ln ln ln r r r r V Nq S Nk q NkT Nk q Nk T ∂⎛⎫=+=+⎪∂⎝⎭电子运动熵〔忽略电子激发态〕 标准摩尔熵K 和100 K P a 时,求1 molNO(g)(设为理想气体)的标准摩尔熵值.已知道NO(g)的转动特征温度为2.42K,振动特征温度为2690K,电子基态和第壹激发态的简并度均为2,两能级间的能量差21ε 2.47310 J -∆=⨯ 解 平动熵 转动熵 振动熵 电动运动熵NO(g)在298K 及100kPa 时的摩尔熵K 和100 kPa 时,求1 molNO(g)(设为理想气体)的标准摩尔剩余熵值和标准摩尔量热熵值.由题20算出的统计熵值.已知道NO(s)晶体就是由N 2O 2贰聚分子组成,在晶体中有两种排列方式.解 量热熵就是以为在T→0K 时,分子只有壹种取向,对应S 0=0,然而N 2O 2分子有两种不同取向,1 molNO(即12 molN 2O 2)晶体就有2L/2种取向,所以热力学概率Ω=2L/2, 即标准摩尔剩余熵值为 向,1 mol NO,〔即12molN 2O 2〕,晶体中就有2L/2 种取向,所以热力学概率Ω=2L/2, 即标准摩尔剩余熵值为由20题算出NO 〔g 〕的统计熵值 所以NO 得标准摩尔量热熵值22.在298 K 和100 kPa 时,求1mol SO 2 (g)(设为理想气体)的标准摩尔热力学能,焓,Gibbs 自由能,Helmhotls 自由能、熵、定压摩尔热能和定容摩尔热能等热力学函数.已知道SO 2的摩尔质量M 〔SO 2〕=3×10- 3 kg·mol - 1,σ1 =1151.4 cm - 1, σ2 =517.7 cm - 1 , σ3 =1361.8 cm - 1; 叁个转动惯量分别为I X ×10- 46 kg∙ m 2, I y ×10- 46 kg∙ m 2, I z ×10- 46 kg∙ m 2 SO 2 (g)分子的对称数为2,忽略电子和核的奉献. 解: SO 2 分子的质量 平动配分函数SO 2分子就是非线性分子,其转动配分函数 T =298 K 时 q r 振动局部利用c νσ=〔c =3×108 m •s -1〕将波数转换成频率,131 3.4510ν=⨯ s -1,132 1.5510ν=⨯s -1,133 4.0810ν=⨯ s -1.令112233/(),/(),/()x h kT x h kT x h kT ννν===.[]3112311111.004 1.090 1.001 1.0951exp /()1exp()1exp()1exp()v i i q h kT x x x ν====⨯⨯=--------∏[]3v,m 1ln 1exp() 2.875 J mol K exp()1i i i i x S R x x -1-1=⎧⎫=---+=⋅⋅⎨⎬-⎩⎭∑=v,m V,m,0631.01 J mol K U U -1-1-=⋅⋅ 总的热力学函数11mt,m r,m v,m 248.2 J mol K SS S S --=++=⋅⋅311v,m v,m,0t,m r,m v,m v,m,08.06410 J mol K U U U U U U ---=++-=⨯⋅⋅=411v,m v,m,0t,m r,m v,m v,m,0 1.05410 J mol K H U H H H U ---=++-=⨯⋅⋅K 时HI , H 2, I 2的标准Gibbs 自由能函数.已知道HI 的转动特征温度为9. 0 K,振动特征温度为3200 K ,摩尔质量M (HI)=127.9 X 10-3 kg·mol -1. I 2在零点时的总配分函数为q 0(I 2)=q t,0q r,0q v,0=4.143 X 1035, H 2在零点时的总配分函数为q 0(H 2)= q t,0q r,0q v,0=1.185 X 1029. 解HI 分子的质量平动配分函数 3/231t 22 3.4610mkT q h π⎛⎫==⨯ ⎪⎝⎭HI 分子就是线性分子,其转动配分函数振动局部()()()2V ν8111.000021exp /1exp /1exp 3200/298IkT q h kT T πν====----Θ--⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦HI 的总配分函数 ()0t,0r,0ν,03133HI 3.461033.111 1.14610q q q q ==⨯⨯⨯=⨯HI 的标准Gibbs 自由能函数()()33m m 1111230 1.14610ln 8.3145ln J mol K 177.65 J mol K ?6.02210G T H q R TL ----⎡⎤-⎛⎫⨯=-=-⨯⋅⋅=-⋅⋅⎢⎥ ⎪⨯⎝⎭⎣⎦I 2在零点时的总配分函数为 ()2t,0r,0ν,03535I =10=4.14310q q q q ⨯⨯I 2的标准Gibbs 自由能函数H 2在零点时的总配分函数为()2t ,0r,0ν,029H 1.18510q q q q ==⨯H 2的标准Gibbs 自由能函数24. 计算298K 时HI , H 2, I 2的标准热焓函数.已知道HI , H 2, I 2的振动特征温度分别为3200K 、6100K 和610K.解()(),mm 0ln N VH T U q RT R TT -∂⎛⎫=+ ⎪∂⎝⎭ 平动局部3/2t 22mkT q V h π⎛⎫= ⎪⎝⎭,t ,ln 32N V q T T ∂⎛⎫= ⎪∂⎝⎭,()()t,m t,m 052H T U R T -= 转动局部振动局部HI:()()()()()mm 03200/298exp 3200/298521exp 3200/298H T U R RR T-⨯-=++-- H 2:()()()()()m m 06100/298exp 6100/298521exp 6100/298H T U R RR T-⨯-=++-- I 2:()()()()()m m 0610/298exp 610/298521exp 610/298H T U R RR T-⨯-=++--25.计算298K 时,如下反响的标准摩尔Gibbs 自由能变化值和标准平衡常数. H 2(g)+I 2(g)2HI(g)已知道298K 时,HI , H 2, I 2的有关数据如下:m,T m,0 K 11)/ J mol K G H T ---⋅⋅m,T m,0 K 11)/ J mol K H T ---⋅⋅m,T 1mol - 0解26. 计算300K 时,如下反响的标准平衡常数. H 2(g)+D 2(g)2HD(g)已知道298K 时,1656.9 J mol r m U -∆=⋅,HD 、H 2、D 2的有关数据如下:解 对于反响前后分子数不变的反响,则式中,f 就是提出V 以后的分子总配分函数,()t r v n e f q q q q q ='.提出V 以后的平动配分函数其间只有摩尔质量M 和物质种类有关,和其他的量对各物质都相同,可以在平衡常数表达式中消去,所以平动局部为转动配分函数 2r 28IkTq h πσ=只有I 和σ和物质种类有关,所以转动局部成为 振动配分函数根据v c σ=,将题给的波数σ转换成频率291H 1.3110s v -=⨯,91HD 1.1410s v -=⨯,281D 9.2810s v -=⨯将数据代入振动配分函数,计算得核配分函数在化学反响中可不考虑,大多数电子处于基态,配分函数1e q =.H 2(g) + D 2(g)2HD(g)的1r m656.9J mol U -∆=⋅.所以27.计算298K 时,如下两个反响的标准平衡常数.已知道自由能函数和0 K 时的焓变如下:)m,m,0K 11/J mol KTH T---⋅(m,0K /KJ mol ⋅解 (1) CH 4(g) + H 2O(g)CO(g) + 3H 2(g)28.计算298 K 时,如下反响的标准平衡常数.已知道热力学数据如下:(m,0K /)m,m,0K 11/J mol K TU T---⋅⋅)m,m,0K 11/J mol K TH T---⋅⋅解 ()m m,0K 1102.19182.23168.82155.53J mol G H T -⎛⎫-∆=-+--⋅ ⎪⎪⎝⎭29.用配分函数计算298 K 时,如下反响的标准平衡常数.已知道反响的()1r m 08.03kJ mol U -∆=-⋅,在298 K 时的参数如下表所示,忽略电子和核的奉献.解对于反响前后分子数不变的反响,则式中,f 就是提出V 以后的分子的总配分函数,()t r v n e f q q q q q ='.忽略核和电子的奉献,则 提出V 以后的平动配分函数其间只有摩尔质量M 和物质种类有关,其他的量对各物质都相同,所以平动局部成为 转动配分函数σ就是分子对称数,所以转动局部成为 振动配分函数H 2 (g) + I 2 (g)2HI(g)的()1r m 08.03kJ mol U -∆=-⋅.所以30. 计算5000 K 时,反响 N2(g)2N(g) 的标准平衡常数.已知道 N2(g) 分子的转动特征温度r 2.84K Θ=,振动特征温度v 3350K Θ=,解离能1708.35kJ mol D -=⋅,N2(g)的电子基态就是非简并的,而N 原子基态的简并度为4.解 ()()()()2m m 2N N 2m m m N N 2N N 2ln ln U U q q G G G RT L RT L RT ⎧⎫⎡⎤⎪⎪∆=-=---+⎢⎥⎨⎬⎢⎥⎪⎪⎣⎦⎩⎭所以 ()2222N N m m p N N /1exp exp /q L q U U K q L RT q RT L⎛⎫⎛⎫∆∆=-=- ⎪ ⎪⎝⎭⎝⎭ N 就是单原子,只需考虑电子和平动配分函数.2N 分子为双原子分子,所以要考虑电子、平动和振动配分函数,2N 的对称数2σ=. 将510,5000p Pa T K ==及其他常数代入,计算得自 测 题1. 在N 个NO 分子组成的晶体中,每个分子都有两种可能的排列方式,即NO 和ON,在 0 K 时该体系的熵值为 ( )A. 00S =B. 0ln 2S k =C. 0ln 2S Nk =D. 02ln S k N =2. 分子的平动、转动和振动的能级间隔的大小顺序就是 〔 〕A .振动能>转动能>平动能 B. 振动能>平动能>转动能 C. 平动能>振动能>转动能 D. 转动能>平动能>振动能3. 在以下热力学函数的单粒子配分函数q 统计表达式中,和系统的定位或非定位无关的就是 ( )A. G 、F 、SB. U 、H 、SC. U 、H 、v CD. H 、G 、v C4. 能量零点的不同选择对热力学量不产生影响的就是 〔 〕A. U 、H 、GB. U 、H 、S 、v CC. S 、v CD. S 、F 、v C5. 在298 K 和100kPa 时,摩尔平动熵最大的气体就是 〔 〕 A. H 2 B. CH 4 C. NO D. CO 26. 叁维平动子的平动能就是2t 2/368h E mV =,能级的简并度为 〔 〕A. 1B. 2C. 3D. 67. 双原子分子以平衡位置为能量零点,其振动的零点能等于 〔 〕 A. kT B.12kT C. h υ D. 12h υ 8. 当两能级差21kT εε-=,且简并度121,3g g ==,两能级上最概然分布时分子数之比21/N N 为 〔 〕 A .3kT e B. 3kT e - C. 13e - D. 13e9. 300 K 时,分布在J =1转动能级上的分子数就是J =0能级上的0.1e -倍,则分子的转动特征温度就是 〔 〕 A . 10 K B. 15 K C. 30 K D. 300 K10. CO 和2N 分子的质量m 及转动特征温度r Θ根本相同,振动特征温度v Θ均大于298 K,电子又都处于非简并的基态,298 K 时这两种气体的标准摩尔统计熵的差()()m m 2CO N S S -约为 〔 〕 A .0 B. ln2R C. ()ln 1/2R D. ()v r ln /R ΘΘ11. 1 mol 纯物质的理想气体,设分子的某内部运动形式只有叁个可及的能级,它们的能量和简并度分别为1122330,0;/100K,g 3;/300K,g 5g k k εεε======.其间k 为Boltzmann 常数. 〔1〕 计算200 K 时的分子配分函数;〔2〕 计算200 K 时能级2ε上的最概然分子数;〔3〕 当T →∞,求出叁个能级上的最概然分子数的比.12. 系统中假设有2%的2Cl 分子有振动基态跃迁到第壹振动激发态,分子的振动波数115569cm υ-=,试估算系统的温度.13.设某独立定域子系统的分子只有两个能级0和ε,请计算当T →∞时 1 mol 该物质的平均能量和熵 14.用统计力学方法求 1 mol 氦气由1T 、1V 变化到2T 、2V 的S ∆和U ∆〔设电子不激发〕. 15. 某混合理想气体系统由x N 个X 分子和Y N 个Y 分子组成,X 、Y 分子的配分函数各为X q 和Y q .〔1〕 试导出该混合系统的Helmholtz 自由能〔2〕用统计热力学方法导出该混合理想气体的状态方程和Dalton 分压定律. 16. 证明对双原子分子,在p=101.25 KPa 时()v,m ln 11x x x S R e e -⎛⎫=-- ⎪-⎝⎭〔式中 h x kT υ=〕自 测 题 参 考 答 案1. C.2. A.在通常温度下,平动、转动、振动的能级间隔分别约为1910kT -、210kT -、10kT .3. C.在热力学函数中,凡和S 无关的函数,其值均和体系的定位或非定位关系,H 、S 、v C 和 S 无关,G 和S 有关.4. C.能量零点的不同选择,对U 及和U 有关的函数都有影响.选择不同的能量零点,每摩尔有影响的状态函数相差0U L ε=.5. D.根据Sackur -Tetrode 公式可知,平动熵()3/2325ln 2mkT S Nk V Nh π⎧⎫⎡⎤⎪⎪=+⎢⎥⎨⎬⎢⎥⎪⎪⎣⎦⎩⎭,m 越大,平动熵越大. 6. C. ()2222222t2/3,68xy z x y z nn n h E n n n mV++=++=,叁种简并态分别为1,1,2;x y z n n n ===1,2,1;x y z n n n === 2,1,1;x y z n n n ===.7. D. 8. C.1222111exp 3N g e N g kT εε--⎛⎫=-= ⎪⎝⎭ 9. B. ()()2r r 2118h J J J J k Iεπ=+=+Θ10. B.CO 和2N 分子的质量m 大体相同,平动熵大体相同,振动熵非常小,也大体相同,两物质的转动特征温度也根本相同,但不同的就是转动特征数σ,因此两物质的统计熵差值为 11. 〔1〕 ()()()112233exp /exp /exp /q g kT g kT g kT εεε=-+-+-⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦ 〔2〕 ()()2223232exp /3exp 100/2006.02210 2.785103.935g kT N Nqε-⎡⎤-⎣⎦==⨯⨯=⨯〔3〕 T →∞时 ,()()exp /exp 01kT ε-→=⎡⎤⎣⎦ 所以 123123::::1:3:5N N N g g g == 12. 由Boltzmann 分布定律得()()1100exp /0.020.98exp /kT N N kT εε-⎡⎤⎣⎦==-⎡⎤⎣⎦,由振动能级公式知12h ευυ⎛⎫=+ ⎪⎝⎭,基态到第壹振动激发态的能级间隔为h υ,所以将有关数据代入上式,解出 2062K T =13. ()()()12exp /exp /1exp /q kT kT kT εεε=-+-=+-⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦当T →∞时当T →∞时14. He 就是单原子气体,当电子不激发时,其内部运动只有平动运动. 平动熵 热力学能15. 〔1〕理想气体就是非定位子系统,()ln /!N A kT q N =-,混合体系的Helmholtz 自由能()()()()X Y X X Y Y X X Y Y ln /!ln /!ln /!/!N N N NA A A kT q N kT q N kT q N q N ⎡⎤=+=--=-⎣⎦〔2〕转动、振动配分函数和体积无关,只有平动配分函数对压力有奉献,则 因为 X Y N N N =+ 所以 X Y X Y N kT N kTNkT p p p V V V==+=+ 即Dalton 分压定律.16. 平动配分函数 3/2t 22mkT q V h π⎛⎫= ⎪⎝⎭将231231346.02210mol , 1.3810J K , 6.62610J s,L k h ----=⨯=⨯⋅=⨯⋅11R 8.3145J mol K --=⋅⋅,101.25kPa p =代入上式得当100kPa p =时 t,m 135ln ln 1.15422K kg mol MT S R -⎡⎤⎛⎫=+-⎢⎥⎪⋅⎝⎭⎣⎦ 转动配分函数 2t 28IkTq h πσ=振动配分函数 ()v 1111exp /xq e h kT υ-==---⎡⎤⎣⎦ 电子配分函数 0e e,0exp q g kT ε-⎛⎫=⎪⎝⎭。
傅献彩《物理化学》(第5版)笔记和课后习题(含考研真题)详解-第7~9章【圣才出品】
1 / 161
圣才电子书 十万种考研考证电子书、题库视频学习平台
对一切可能的微观运动状态所求的平均值。该假设表明可以通过对微观量的统计计算得到宏 观量。
说明:对于一个粒子数 N、体积 V 和内能 U 确定的系统,根据等概率假定,其微观状 态数最多的那种分布称为最概然分布。
2.配分函数的分离
粒子(全)配分函数可分解为各独立运动配分函数之乘积,即
q qt qr qv qe qn ,称为配分函数析因子性质。
q = q q q 定域子系统:
v
e
n (若不考虑电子运动和核运动,定域子的全配
分函数即等于振动配分函数。)
3.配分函数与热力学函数的关系
表 7-1
4 / 161
圣才电子书 十万种考研考证电子书、题库视频学习平台
四、各配分函数的求法及其对热力学函数的贡献
1.原子核配分函数
q g en,0 / kT
n
n,0
或
(核基态的能量选为零时)
q0 n
gn,0
q n 与 T,V 无关,对热力学能、焓和热容没有贡献,对熵、Helmholtz 自由能和
圣题库视频学习平台
第 7 章 统计热力学基础
物理化学第七章统计热力学基础
热力学第二定律的实质是揭示了热量 传递和机械能转化之间的方向性。
VS
它指出,热量传递和机械能转化的过 程是有方向的,即热量只能自发地从 高温物体传向低温物体,而机械能只 能通过消耗其他形式的能量才能转化 为内能。
热力学第二定律的应用
在能源利用领域,热力学第二定律指导我们合理利用能源,提高能源利用效率。
优势
统计热力学从微观角度出发,通过统计方法描述微观粒子的运动状态和相互作用,能够 更深入地揭示热现象的本质和内在规律。
局限性
统计热力学涉及到大量的微观粒子,计算较为复杂,需要借助计算机模拟等技术手段。
统计热力学与宏观热力学的关系
统计热力学和宏观热力学是相互补充的 关系,宏观热力学提供整体的、宏观的 视角,而统计热力学提供更微观、更具 体的视角。
03
热力学第一定律
热力学第一定律的表述
热力学第一定律的表述为
能量不能无中生出,也不能消失,只能从一种形式转化为另一种 形式。
也可以表述为
封闭系统中,热和功的总和是守恒的,即Q+W=ΔU。其中Q表示传 给系统的热量,W表示系统对外做的功,ΔU表示系统内能的变化。
热力学第一定律的实质
热力学第一定律实质是能量守恒定律在封闭系统中的具体表现。 它表明了在能量转化和传递过程中,能量的总量保持不变,即能 量守恒。
掌握理想气体和实际气 体的统计描述,理解气 体定律的微观解释。
了解相变和化学反应的 统计热力学基础,理解 热力学第二定律和熵的 概念。
02
统计热力学基础概念
统计热力学简介
统计热力学是研究热力学系统 在平衡态和近平衡态时微观粒 子运动状态和宏观性质之间关 系的学科。
它基于微观粒子的运动状态和 相互作用,通过统计方法来描 述系统的宏观性质,揭示了微 观结构和宏观性质之间的联系 。
江苏师范大学《物理化学》作业指导第7章 统计热力学
第七章:统计热力学基础2. 若一个热力学系统,当其熵值增加0.418 J.K -1时,试求系统微观状态的增加占原有微观状态数的比值(用ΔΩ/Ω1)分析:根据公式S=klnΩ,计算熵值变化时系统微观状态的变化。
解:S 1=klnΩ1, S 2=klnΩ2, S 2-S 1=kln(Ω2/Ω1)ln(Ω2/Ω1)=(S 2-S 1)/k=(0.418J·K -1)/(1.38×10-23J·K -1)=3.03×1022 ΔΩ/Ω1=(Ω2-Ω1)/Ω1=(Ω2/Ω1)-1≈Ω2/Ω1= exp(3.03×1022)5. 设某分子的一个能级的能量和简并度分别为ε1=6.1×10-21 J,g 1=3,另一个能级的能量和简并度分别为ε2 = 8.4×10-21 J,g 2=5。
请分别计算在300 K 和3000 K 时,这两个能级上分布的离子数之比N 1/N 2。
分析:根据玻尔兹曼分布公式求算 解:300K 时=3/5exp(-!.#×#%&'()*.+×#%&'(#.,*×#%&'-×,%%)=1.0463000K 时=3/5exp(-!.#×#%&'()*.+×#%&'(#.,*×#%&'-×,%%%)=0.6346. 设有一个由极大数目的三维平动子组成的粒子系统,运动于边长为a 的立方容器中,系统的体积、离子质量和温度的关系为:h 2/8ma 2 = 0.10kT. 现在两个能级的能量分别是ε1 = 9h 2/4ma 2,ε2 = 27h 2/8ma 2,试求处于这两个能级上粒子数的比值N 1/N 2。
分析:首先根据三维平动子的能级公式ε=h 2/8ma 2(n x 2+n y 2+n z 2)得到各个能级的简并度g,在根据玻尔兹曼分布公式计算离子在两个能级上分部数的比值。
第七章统计热力学基础
练习7.7一个U,N,V确定的系统,任何一种分布均不能随意的,而必须满足①与②两个条件。
练习7.8对于一定量的某气态、液态、固态物质,其微观状态数的排序是。
练习7.9最概然分布的微观状态数随粒子增加而①,该分布出现的概率随粒子数增加而②。
自测7.15转动特征温度定义为( )。
(A) (B) (C) (D)
自测7.16双原子分子在温度很低时且选取振动基态能量为零,则振动配分函数值为()。
(A)0(B)1(C)<0(D)>0
自测7.17对于N个粒子构成的定位独立可辨粒子系统熵的表达式为( )。
(A) (B)
(C) (D)
自测7.18对理想气体分子的平动,下面的结果中正确的是( )。
自测7.23已知CO与N2的质量、转动特征温度基本相同,若电子运动与振动能级均未开放,则()。
(A) (B) (C) 与 无法比较(D)
自测7.241mol双原子分子理想气体,当其温度由T1升到2T1时,若其转动惯量不变,则其转动熵变将是()。
(A) 5.763J·mol1K1(B)RlnT1
(C)RlnT2(D) 11.526J·mol1K1
练习7.22一个体积为V,粒子质量为m的离域子系统,其最低平动能级和其相邻能级间隔为①。若平动能级的 ,该能级的统计权重 是②。
练习7.23NH3分子的对称数是3,BF3分子的对称数是。
练习7.24已知HI的转动惯量I为4.31×1045kg·m2,h=6.626×1034J·s,k=1.38×1023J·K1,则其转动特征温度是。
(C)它的定义是 (D)它不是状态函数
自测7.32用J代表分子具有的各独立运动项目,分子在能级i的统计权重gi为下式中的()
第七章 热力学基础
p1 m RT ln 由 Q =W = T T M p2
得
QT = WT = 246J
mi R(T2 − T1 ) 得 由 QV = E2 − E1 = M2 mi QV = Ed − Ec = R(Td − Tc ) M2 i = ( pdVd − pcVc ) 2 3 2 = (1× 3 − 2 × 3) ×1.013 ×10 J = −456J 2
dW = pdV,W = p(V2 −V1 )
■ 热力学第一定律的形式
(dQ ) p = dE + pdV m RdT = dE + M
热源
■ 有限等压过程 对等压过程,气体从状态Ⅰ(p、V1、T1) 对等压过程, 变到状态Ⅱ (p、V2、T2)时:
m R(T2 − T1 ) Wp = ∫ pdV = p(V2 −V1 ) = V1 M
pbVb 3.039 ×105 Pa × 2 5 pc = = = 2.026 ×10 Pa 3 Vc
在状态d 压强为p 1.013× Pa,体积为V 在状态d,压强为pd=1.013×105Pa,体积为Vd= 3L
在全过程中内能的变化△E 为末状态内能减去 初状态内能,有理想气体内能公式及理想气体状态 初状态内能,有理想气体内能公式及理想气体状态 方程得: 方程得: ∆E = Ed − Ea
E = E(T,V )
二、热与功的等效性 如图: 如图:温度都由 T1→ T2 状态发生了相同的变化。 状态发生了相同的变化。 等效 传热 —— 作功 加热 搅拌作功
因为功是能量传递的一种形式, 因为功是能量传递的一种形式,是系统能量变 化的一种量度。 所以热量也是能量传递的一种形式, 化的一种量度。 所以热量也是能量传递的一种形式, 是系统能量变化的一种量度。 是系统能量变化的一种量度。
高中物理竞赛课件 第七章 热力学基础 (共67张PPT)
E i RT dE i RdT
2
2
CP
dQP dT
dQP
dE
PdV
i 2
RdT
RdT
PV RT d(PV) PdV VdP PdV RdT
14
单原子:i 3 双原子:i 5 多原子:i 6 二、三种等值过程
5
3
7
5
8
6
1.等容过程 特征:dV 0 dA 0
p
过程方程:
(1)状态d的体积Vd; (2)整个过程对外所做的功;
(3)整个过程吸收的热量.
p
2p1
c
解: (1)由绝热过程方程:
TcVc 1 TdVd 1
p1
ab
d
1
得:Vd
Tc Td
1
Vc
根据题意:
Td
Ta
p1V1 R
o v1 2v1
v
Vc 2V1
Tc
pcVc R
4 p1V1 R
4Ta
5
3
27
(2)整个过程对外所做的功;
真空
T
T0
2V0
∵绝热过程
(E E0) A 0
而 A=0
V0 1T0 (2V0) 1T T P0V0 P(2V0) P
E E0 (T T0)
始末两态满足 P0V0 P(2V0)
状态方程
T0
T
P
1 2
P0
26
例7-4 1mol单原子理想气体,由状态a(p1,V1)先等压加热至体积增大1倍,再等体加热至压 力增大1倍,最后再经绝热膨胀,使其温度降至初始温度,如图所示,试求:
i 2 1
1
i
西大,物化,考研 第七章统计热力学初步
第五章 统计热力学初步一、基本概念1. 定位与非定位系统:定位系统中,构成系统的粒子数是可以分辨的。
非定位系统中,构成系统的粒子数是不可分辨的。
2. 近独立粒子系统与相依粒子系统近独立粒子系统:构成系统的粒子之间的互相作用很微弱,可忽略不计。
系统的能量是系统粒子能量的总和。
相依粒子系统:构成系统的粒子之间的互相作用不能忽略。
系统的能量是系统粒子能量的总和加上粒子之间相互作用的势能的总和。
3. 热力学概率数Ωx :在含N 个粒子的系统中,实现某种宏观态的微观状态数。
4. 数学概率:系统中一种宏观态的数学概率P x 为:xx P Ω=Ω5. 配分函数:系统中一个粒子所有可能状态的Boltzmann 因子的求和。
/i kT i iq g e ε-=∑6. 简并度:具有相同能量的不同微观状态的数目。
7. 转动特征温度:22212212()8r m m h I r r Ikm m μπΘ===+;8. 振动特征温度:v hv kΘ=二、重要公式1. Boltzmann 公式:S = kln Ω2. 一种分布的微观状态数定位系统:!!iN i i i g t N N =∏ 非定位系统:!iN i i i g t N =∏ 3. 由N 个粒子组成的系统的最慨然分布的Boltzmann 分布公式://*/i i i kT kT i i i kTiiN g e g e Ng e q εεε---==∑//i j kTi i kTj j N g e N g eεε--=4. Stirling 公式当N 很大时:ln !ln N N N N =- 5.当x 很小时:2311ln(1)()23x x x x x -=-+++≈- 6.能级能量公式222222222()8(1)81()2y y xt r v n n n h m a b c h J J I hvεεπευ=++=+=+7. 配分函数的分离与计算n e t r v t t t n e r vq q q q q q q q Z Z Z Z Z Z Z Z ===+=++++内内单原子分子理想气体的全配分函数:n e t t t t n eq q q q q q Z Z Z Z Z Z ===+=++内内原子核运动:,0,1,0,0,0/()/,1,0,0//,0[1](21)n n n n n kTkTn n n n kTkTn n g q g e eg g es eεεεεε-----=++⋅⋅⋅≈=+取εn,0 = 0,有:,0(21)n n n q g s ==+ 电子运动:,0,1,0/()/,1,0,0[1]e e e kTkTe e e e g q g eeg εεε---=++⋅⋅⋅取εn,0 = 0且当(∆ε/kT)> 5时,有:,0(21)e e q g j ≈=+ 平动:3/222()t mkT q V h π=线型分子的转动:22(1)315r r r r Tq T TσΘΘ=+++⋅⋅⋅Θ 若Θr /T ≤ 0.01,有:228r IkT q h πσ=若Θr /T ≤ 0. 3,有:22(1)315r rr rT q T TσΘΘ=++Θ 若Θr /T ≥ 0. 3,有:(1)/0(21)r J J Tr J q J e∞-+Θ==+∑双原子分子的振动:/2//11()1hv kTv hv kTv hv kTe q e q e ---=-=-取基态能量为零低温(高频率)时,ΘV /T >> 1,q v = 1 高温(低频率)时,ΘV /T << 1v vT q =Θ 6.非定位系统的A 、S 和Uln!N q A kT N =-非定位,2,()ln !ln ()N V N V NA q US k T N T qU U NkT T∂=-=+∂∂==∂非定位定位非定位* 当Θv /T << 1时,表格中的结果才成立。
化学工业出版社物理化学答案第7章 统计热力学基础
第七章 统计热力学基础习题详解1. (1) 10个可分辨粒子分布于 n 0=4,n 1=5,n 2=1 而简并度 g 0=1,g 1=2,g 2=3 的 3 个能极上的微观状态数为多少?(2) 若能级为非简并的,则微观状态数为多少?。
解: (1)451D g 123W =N =10=120960451i n i i n ⋅⋅Π⋅⋅!!!!!!(2)D 110W =N ==1260451i n Π⋅⋅!!!!!!2. 某一分子集合在100 K 温度下处于平衡时,最低的3个能级能量分别为 0、2.05×10-22J 和 4.10×-22J ,简并度分别为1、3、5。
计算3个能级的相对分布数 n 0:n 1:n 2。
解:-22-2202.051011.38101001==1:2.593N N e⎛⎞−×⎜⎟⎜⎟××⎝⎠⋅()-22-222.05 4.10101.3810100123==0.6965N e N ⎡⎤−×−⎢⎥××⎢⎥⎣⎦⋅123=1:2.59:3.72N N N ::3. I 2分子的振动能级间隔是0.42×10-20 J ,计算在25℃时,某一能级和其较低一能级上分子数的比值。
已知玻尔兹曼常数k =1.3806×10-23 J·cm -1。
解:根据Boltzmann 分布对于一维谐振子,能级为非简并的,即+1==1i i g g ,因此 I 2分子-201+1-230.4210=exp =exp =0.360T1.380610298i+i i i N g N g k ε⎛⎞−∆−×⎛⎞⎜⎟⎜⎟××⎝⎠⎝⎠4. 一个含有N 个粒子的系统只有两个能级,其能级间隔为ε,试求其配分函数q 的最大可能值是多少?最小值是多少?在什么条件下可能达到最大值和最小值?设ε=0.1 k T 。
物理化学 07章_统计热力学基础
四.定位体系和非定位体系
1.定位体系(localized system) 定位体系又称为定域子体系,这种体系中的 粒子彼此可以分辨。例如,在晶体中,粒子在固 定的晶格位置上作振动,每个位置可以想象给予 编号而加以区分,所以定位体系的微观状态数是 很大的。
四.定位体系和非定位体系
2.非定位体系(non-localized system) 非定位体系又称为离域子体系,基本粒子之
i
所以最概然分布公式为:
i
- 1 kT
max
N! * N i!
i
i
Ni* N
e
i
e
i / kT i / kT
三.简并度(degeneration)
能量是量子化的,但每一个能级上可能有若 干个不同的量子状态存在,反映在光谱上就是代 表某一能级的谱线常常是由好几条非常接近的精
当转动和振动量子数都等于零时公共能量标度化学平衡系统中有多种物质而各物质的能量零点又各不相同所以要定义一个公共零点通常选取0k作为最低能级从粒子的能量零点到公共零点的能量差为粒子的能量零点和公共能量零点的关系按公共的能量零点计算的分子能量为按公共能量标度计算的配分函数为ktkt按公共能量零点用非定位系统的配分函数计算的热力学函数的表示式为lnlnnknklnlnpvnkt非定位采用公共零点后aghu的配分函数表达式中多了在统计热力学中常选择0k作为最低能级因此就是n个分子在0k时的能量当分子混合并且发生了化学变化时必须使用公共的能量表度
与不考虑简并度时的最概然分布公式相比, 只多了 g i 项。
五.非定位体系的最概然分布(Boltzmann公式)
非定位体系由于粒子不能区分,它在能级上 分布的微态数一定少于定位体系,所以对定位体 系微态数的计算式进行等同粒子的修正,即将计 算公式除以 N ! 。 则非定位体系在U、V、N一定的条件下,所 有的总微态数为:
第七章_统计热力学基础-考点分析
第七章 统计热力学基础7.1概述统计热力学是宏观热力学与量子化学相关联的桥梁。
通过系统粒子的微观性质(分子质量、分子几何构型、分子内及分子间作用力等),利用分子的配分函数计算系统的宏观性质。
由于热力学是对大量粒子组成的宏观系统而言,这决定统计热力学也是研究大量粒子组成的宏观系统,对这种大样本系统,最合适的研究方法就是统计平均方法。
微观运动状态有多种描述方法:经典力学方法是用粒子的空间位置(三维坐标)和表示能量的动量(三维动量)描述;量子力学用代表能量的能级和波函数描述。
由于统计热力学研究的是热力学平衡系统,不考虑粒子在空间的速率分布,只考虑粒子的能量分布。
这样,宏观状态和微观状态的关联就转化为一种能级分布(宏观状态)与多少微观状态相对应的问题,即几率问题。
Boltzmann 给出了宏观性质—熵(S)与微观性质—热力学几率(Ω)之间的定量关系:ln S k =Ω。
热力学平衡系统熵值最大,但是通过概率理论计算一个平衡系统的Ω无法做到,也没有必要。
因为在一个热力学平衡系统中,存在一个微观状态数最大的分布(最概然分布),摘取最大项法及其原理可以证明,最概然分布即是平衡分布,可以用最概然分布代替一切分布。
因此,有了数学上完全容许的ln Ω ≈ ln W D,max ,所以,S = k ln W D,max 。
这样,求所有分布的微观状态数—热力学几率的问题转化为求一种分布—最概然分布的微观状态数的问题。
波尔兹曼分布就是一种最概然分布,该分布公式中包含重要概念—配分函数。
用波尔兹曼分布求任何宏观状态函数时,最后都转化为宏观状态函数与配分函数之间的定量关系。
配分函数与分子的能量有关,而分子的能量又与分子运动形式有关。
因此,必须讨论分子运动形式及能量公式,各种运动形式的配分函数及分子的全配分函数的计算。
确定配分函数的计算方法后,最终建立各个宏观性质与配分函数之间的定量关系。
本章7.2主要考点7.2.1统计系统的分类:独立子系统与相依子系统:粒子间无相互作用或相互作用可忽略的系统,称为独立子系统,如理想气体;粒子间相互作用不可忽略的系统,称为相依子系统。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第 0-6 章
绪论
第1章:第零定律与物态方程第2章:热力学第一定律
第3章:热力学第二定律
第4章:多组份体系的热力学第5章:相平衡及相图
第6章:化学平衡热力学
第 7-13 章
第7章:统计热力学基础
第8章:反应速率与机理
第9章:动力学统计理论
第10章:特殊性质反应动力学
第11章:电化学
第12章:界面现象
第13章:胶体各章导航
1 第零定律与物态方程
1 第零定律与物态方程
2 热力学第一定律
2 热力学第一定律
3 热力学第二定律
3 热力学第二定律
4 多组份体系的热力学
4 多组份体系的热力学
5 相平衡及相图
5 相平衡及相图
6 化学平衡热力学
6 化学平衡热力学
7 统计热力学基础
7 统计热力学基础
8 化学动力学
8 化学动力学
9 化学动力学的统计理论
9 化学动力学的统计理论
10 特殊性质反应动力学
10 特殊性质反应动力学
11 电化学
11 电化学
12 界面现象
12 界面现象
13 胶体
13 胶体
学习向导章节内容相关资源知识点检索课程介绍使用帮助当前位置: 10 特殊性质反应动力学
练习
1.实验表明 C2H6→C2H4+H2为一级反应。
有人认为此反应是一链反应,并提出可能的机理如下:
链引发
链传递
链中止
试用稳态法原理,证明此链反应速率的最后结果是与 C2H6浓度的一次方成正比。
并表明一级反应速率常数k与上述五个基元步骤的速率常数之间的关系。
提示
解
2.如果由过氧化物 A 分解为两个自由基引发某个聚合反应,该聚合反应又由链转移到溶剂 B 而中止,假定对自由基
作稳态处理,试导出体系内单体消耗的速率公式。
提示
答案:
3.甲醇蒸气在空气中的爆炸低限和高限分别是 7.3% 和 36%(体积百分数),已知甲醇饱和蒸气压p/Pa 与温度T/K的
关系为:
工业上以甲醇和空气为原料制备甲醛。
(1)当用银作催化剂时,混合气总压力为 107600Pa,反应器在甲醇过量的条件下操作,即在爆炸高限以上工作,试问反应开始点火时,甲醇蒸发器的温度不得低于多少度?(2)当用铁钼催化剂时,混合气总压力为 760mm Hg,是在甲醇不足而空气过量的条件下操作,即在爆炸低限以下工作,试问点火时,甲醇蒸发器的温度不得高于多少度?提示
答案:〔(1) 42.5℃、(2) 10.4℃〕
4.试估算室温下,碘原子在已烷中进行原子复合反应的速率常数。
已知 298K 时己烷的粘度为
3.26×10-4kg·m-1·s-1。
提示
答案:(2.0×107mol-1·m3·s-1)
5.已知溶剂水的粘度。
请计算以水为溶剂时的扩
散控制反应的活化能。
提示
答案:(16kJ·mol-1〕
6.用温度突跃法研究反应,25℃ 时驰豫时间τ=40μS,,计
算此反应的正逆向反应的速率常数k1和k2。
提示
答案:(k1=2.30×10-5s-1,k2=1.25×1011dm3·mol-1·s-1)
7.反应,298K 平衡常数K=0.37,k-2=6.3×106s-1,求
(1)在低离子强度介质中正向反应速率常数k2;
(2)在0.1mol·dm-3 NaClO4溶液中正向反应的速率常数k′2。
提示
答案:〔k2=2.3×10-6dm3·mol-1·s-1,k′2=2.5×10-7dm3·mol-1·s-1〕
8.络离子[Co(NH3)5Br]2+的碱解反应速率常数与溶液离子强度Ⅰ有关,实验上得到如下数据:(表中k0为无限稀释溶
液中的反应速率常数)
Ⅰ0.005 0.010 0.015 0.020 0.025 0.030
k/k00.718 0.631 0.562 0.515 0.475 0.447
9.请根据以上实验事实,分析此反应过渡态应具有什么性质?提示
10.答案:(,由与组成该过渡态)
11.反应 CH3COOH3(aq)+H2O(l)→CH3COOH(aq)+CH3OH 被 H+催化,实验测得下列数据
k表/10-4s-10.108 1.000 3.469
0.1005 0.8275 2.429
12.求k0(非催化)及对 H+之反应级数 n。
提示
13.答案:(k0=1.24×10-4mol·dm-3·s-1,)
14.在某些生物体中存在着一种超氧物歧化酶(E),它可将有害的 O-2变为 O2 ,从而使人体内不致因积存过多 O-2而毒
害细胞:
今在 pH=9.1,酶的初始浓度 [E]0=4.0×10-7mol·dm-3条件下,测得以下实验数据:
3.85×10-3 1.67×10-20.1
7.69×10-6 3.33×10-5 2.00×10-4
r0为以产物 O2表示的初始反应速率。
设此反应的机理为:
其中 E-为中间物,可看作为自由基。
已知k=2k1,试计算k1和k2提示
答案:(k1=1.88×109mol-1·dm3·s-1)
15.当有两个底物 A,B 的酶催化反应,H·Theorell 和B·Chance 提出如下反应历程:
在时,对 EA、EZ 可应用稳态近似,请导出反应速率的表达式。
提示
答案:
16.当单底物 S 体系加入阻化剂Ⅰ,则 S 及Ⅰ将竞争酶的活性中心,其反应历程可表示为:
(1)当时,应用稳态近似导出酶催化反应速率方程;
(2)定义阻化度为,其中r0为C l=0 时之速率,求ε之具体表达式。
提示
答案:
17.从下列实验事实可得到关于催化表面反应的哪些信息?
(1)HI 在铂表面上分解速率与 HI 浓度成正比;
(2)HI 在金表面分解速率与 HI 的压力无关;
(3)有铂上之反应速率反比于 SO3之压力;
(4)在铂上之反应速率,在低 CO2压力下正比于 CO2之压力;当为高压力时,反比于 CO2之
分压;
(5)乙烯与氢在铜催化剂表面上反应,低温时反应对 H2为一级,对 C2H4为负一级;在高温时,反应速率对 H2及 C2H4
均为一级。
提示
解
18.定容下,1400K 时氨在钨丝上分解,有如下数据:
35.3 17.3 7.70
7.6 3.7 1.7
19.
(a)求反应级数n和速率常数k。
(b)当P0(NH3)=19998Pa 时,6 分种后总压是多少?
(c)如何解释此反应的级数?提示
20.答案:〔(1) n=0,k=2.3kPa·min-1、 (2) P总=33.9kPa〕
21.在一定温度下,N2在某催化剂上的吸附服从朗格谬尔方程,已知催化剂的比表面为 21.77m2·g-1,N2分子的截面积
为16×10-20m2。
当平衡压力为 101325Pa 时,每克催化剂吸附 N2的量为 2cm3(已换算成标准状态),问要使 N2的吸附量增加一倍,则平衡压力为多大?提示
答案:(P=585kPa)
22.人眼能看清景物所需最低的能量为1×10-17J ,这相当于多少个波长为 590nm(黄光)的光子所具有的能量?提
示
答案:(30个)
23.在 H2(g)+Cl2(g) 的光化反应中,用 480nm 的光照射,量子效率约为1×106,试估算每吸收 4.184J 辐射能产生
HCl(g)若干摩尔?提示
答案:(33.7mol)
24.在室温下,2,3-丁二酮的磷光量子产率为Фp,三重态寿命τ为2×10-3s,在扩散控制速率下(k Q=
1010mol-1·dm3·s-1),淬灭剂需要多大浓度才能使它的磷光量子产率减少 99%。
提示
答案:(5×10-6mol·dm-3)。