计量课后习题答案

合集下载

计量习题答案

计量习题答案

第一章习题解答1.怎样理解产生于西方国家的计量经济学能够在中国的经济理论研究和现代化中发挥重要作用。

答:计量经济学的产生源于对经济问题的定量研究,是社会经济发展到一定阶段的客观需要。

经济学从定性研究向定量分析的发展,是经济学向更加精密更加科学发展的表现,反映了社会化大生产对各种经济问题和经济活动进行精确数量分析的客观要求。

毫无疑问,我国经济的发展需要科学化和现代化,要真正成为一门科学,成为一门能够指导中国社会主义市场经济体制的建立和经济发展的科学,那么重要的内容之一就是要学习代西方经济学先进的研究方法。

这就需要我们多学习多研究计量经济学,把计量经济学的方法原理运用到实际的经济活动中去,从实践中不断探索和发展计量经济学。

2.理论计量经济学和应用计量经济学的区别和联系是什么?P23.怎样理解计量经济学与理论经济学、数理经济学、经济统计学的关系?P3~44.假如你是中国人民银行的顾问,需要你对增加货币供应量促进经济增长提出建议,你将考虑哪些因素?你认为可以怎样运用计量经济学的研究方法?答:可以考虑以下因素:投资规模、通货膨胀、物价总水平、失业率、就业者人数及其受教育程度、资本存量、技术进步,国民生产总值等等;我们从这些所有因素中选择一些因素,比如投资规模、劳动人口数、技术进步速度、通货膨胀率对国民生产总值回归,建立回归方程;收集数据;作回归;然后检验、修正;5.你能分别举出三个时间序列数据、截面数据、混合数据、虚拟变量数据的实际例子吗?答:(1)时间序列数据如:每年的国民生产总值、各年商品的零售总额、各年的年均人口增长数、年出口额、年进口额等等;(2)截面数据如:西南财大2002年各位教师年收入、2002年各省总产值、2002年5月成都市各区罪案发生率等等;(3)混合数据如:1990年~2000年各省的人均收入、消费支出、教育投入等等;(4)虚拟变量数据如:婚否,身高是否大于170厘米,受教育年数是否达到10年等等。

《计量经济学》第三版课后题答案李子奈

《计量经济学》第三版课后题答案李子奈

封面作者:Pan Hongliang仅供个人学习第一章绪论参考重点:计量经济学的一般建模过程第一章课后题(1.4.5)1.什么是计量经济学?计量经济学方法与一般经济数学方法有什么区别?答:计量经济学是经济学的一个分支学科,是以揭示经济活动中客观存在的数量关系为内容的分支学科,是由经济学、统计学和数学三者结合而成的交叉学科。

计量经济学方法揭示经济活动中各个因素之间的定量关系,用随机性的数学方程加以描述;一般经济数学方法揭示经济活动中各个因素之间的理论关系,用确定性的数学方程加以描述。

4.建立与应用计量经济学模型的主要步骤有哪些?答:建立与应用计量经济学模型的主要步骤如下:(1)设定理论模型,包括选择模型所包含的变量,确定变量之间的数学关系和拟定模型中待估参数的数值范围;(2)收集样本数据,要考虑样本数据的完整性、准确性、可比性和—致性;(3)估计模型参数;(4)检验模型,包括经济意义检验、统计检验、计量经济学检验和模型预测检验。

5.模型的检验包括几个方面?其具体含义是什么?答:模型的检验主要包括:经济意义检验、统计检验、计量经济学检验、模型的预测检验。

在经济意义检验中,需要检验模型是否符合经济意义,检验求得的参数估计值的符号与大小是否与根据人们的经验和经济理论所拟订的期望值相符合;在统计检验中,需要检验模型参数估计值的可靠性,即检验模型的统计学性质;在计量经济学检验中,需要检验模型的计量经济学性质,包括随机扰动项的序列相关检验、异方差性检验、解释变量的多重共线性检验等;模型的预测检验主要检验模型参数估计量的稳定性以及对样本容量变化时的灵敏度,以确定所建立的模型是否可以用于样本观测值以外的范围。

第二章经典单方程计量经济学模型:一元线性回归模型参考重点:1.相关分析与回归分析的概念、联系以及区别?2.总体随机项与样本随机项的区别与联系?3.为什么需要进行拟合优度检验?4.如何缩小置信区间?(P46)由上式可以看出(1).增大样本容量。

(完整版)计量经济学(伍德里奇第三版中文版)课后习题答案

(完整版)计量经济学(伍德里奇第三版中文版)课后习题答案

第1章解决问题的办法1.1(一)理想的情况下,我们可以随机分配学生到不同尺寸的类。

也就是说,每个学生被分配一个不同的类的大小,而不考虑任何学生的特点,能力和家庭背景。

对于原因,我们将看到在第2章中,我们想的巨大变化,班级规模(主题,当然,伦理方面的考虑和资源约束)。

(二)呈负相关关系意味着,较大的一类大小是与较低的性能。

因为班级规模较大的性能实际上伤害,我们可能会发现呈负相关。

然而,随着观测数据,还有其他的原因,我们可能会发现负相关关系。

例如,来自较富裕家庭的儿童可能更有可能参加班级规模较小的学校,和富裕的孩子一般在标准化考试中成绩更好。

另一种可能性是,在学校,校长可能分配更好的学生,以小班授课。

或者,有些家长可能会坚持他们的孩子都在较小的类,这些家长往往是更多地参与子女的教育。

(三)鉴于潜在的混杂因素- 其中一些是第(ii)上市- 寻找负相关关系不会是有力的证据,缩小班级规模,实际上带来更好的性能。

在某种方式的混杂因素的控制是必要的,这是多元回归分析的主题。

1.2(一)这里是构成问题的一种方法:如果两家公司,说A和B,相同的在各方面比B公司à用品工作培训之一小时每名工人,坚定除外,多少会坚定的输出从B公司的不同?(二)公司很可能取决于工人的特点选择在职培训。

一些观察到的特点是多年的教育,多年的劳动力,在一个特定的工作经验。

企业甚至可能歧视根据年龄,性别或种族。

也许企业选择提供培训,工人或多或少能力,其中,“能力”可能是难以量化,但其中一个经理的相对能力不同的员工有一些想法。

此外,不同种类的工人可能被吸引到企业,提供更多的就业培训,平均,这可能不是很明显,向雇主。

(iii)该金额的资金和技术工人也将影响输出。

所以,两家公司具有完全相同的各类员工一般都会有不同的输出,如果他们使用不同数额的资金或技术。

管理者的素质也有效果。

(iv)无,除非训练量是随机分配。

许多因素上市部分(二)及(iii)可有助于寻找输出和培训的正相关关系,即使不在职培训提高工人的生产力。

计量经济学(庞浩)第二版课后习题答案

计量经济学(庞浩)第二版课后习题答案

2.7 设销售收入X 为解释变量,销售成本Y 为被解释变量。

现已根据某百货公司某年12个月的有关资料计算出以下数据:(单位:万元) 2()425053.73tXX -=∑ 647.88X = 2()262855.25tY Y -=∑ 549.8Y =()()334229.09tt XX Y Y --=∑(1) 拟合简单线性回归方程,并对方程中回归系数的经济意义作出解释。

(2) 计算可决系数和回归估计的标准误差。

(3) 对2β进行显著水平为5%的显著性检验。

(4) 假定下年1月销售收入为800万元,利用拟合的回归方程预测其销售成本,并给出置信度为95%的预测区间。

练习题2.7参考解答:(1)建立回归模型: i i i u X Y ++=21ββ用OLS 法估计参数: 222()()334229.09ˆ0.7863()425053.73i i i i i iX X Y Y x y X X x β--====-∑∑∑∑ 12ˆˆ549.80.7863647.8866.2872Y X ββ=-=-⨯= 估计结果为: ˆ66.28720.7863i iY X =+ 说明该百货公司销售收入每增加1元,平均说来销售成本将增加0.7863元。

(2)计算可决系数和回归估计的标准误差 可决系数为:22222222222ˆˆˆ()0.7863425053.73262796.990.999778262855.25262855.25i i iiiiy x x Ry yyββ===⨯===∑∑∑∑∑∑由 2221i ie ry=-∑∑ 可得222(1)i i e R y =-∑∑222(1)(10.999778)262855.2558.3539ii eR y =-=-⨯=∑∑回归估计的标准误差: ˆ 2.4157σ===(3) 对2β进行显著水平为5%的显著性检验*222^^22ˆˆ~(2)ˆˆ()()t t n SE SE βββββ-==-^22.4157ˆ()0.0037651.9614SE β====*2^2ˆ0.7863212.51350.0037ˆ()t SE ββ===查表得 0.05α=时,0.025(122) 2.228t -=<*212.5135t = 表明2β显著不为0,销售收入对销售成本有显著影响.(4) 假定下年1月销售收入为800万元,利用拟合的回归方程预测其销售成本,并给出置信度为95%的预测区间。

计量经济学课后习题答案第八章_答案

计量经济学课后习题答案第八章_答案

第八章虚拟变量模型1. 回归模型中引入虚拟变量的作用是什么?答:在模型中引入虚拟变量,主要是为了寻找某(些)定性因素对解释变量的影响。

加法方式与乘法方式是最主要的引入方式,前者主要适用于定性因素对截距项产生影响的情况,后者主要适用于定性因素对斜率项产生影响的情况。

除此外,还可以加法与乘法组合的方式引入虚拟变量,这时可测度定性因素对截距项与斜率项同时产生影响的情况。

2. 虚拟变量有哪几种基本的引入方式? 它们各适用于什么情况?答:在模型中引入虚拟变量的主要方式有加法方式与乘法方式,前者主要适用于定性因素对截距项产生影响的情况,后者主要适用于定性因素对斜率项产生影响的情况。

除此外,还可以加法与乘法组合的方式引入虚拟变量,这时可测度定性因素对截距项与斜率项同时产生影响的情况。

3.什么是虚拟变量陷阱?答:根据虚拟变量的设置原则,一般情况下,如果定性变量有m个类别,则需在模型中引入m-1个变量。

如果引入了m个变量,就会导致模型解释变量出现完全的共线性问题,从而导致模型无法估计。

这种由于引入虚拟变量个数与类别个数相等导致的模型无法估计的问题,称为“虚拟变量陷阱”。

4.在一项对北京某大学学生月消费支出的研究中,认为学生的消费支出除受其家庭的每月收入水平外,还受在学校中是否得到奖学金,来自农村还是城市,是经济发达地区还是欠发达地区,以及性别等因素的影响。

试设定适当的模型,并导出如下情形下学生消费支出的平均水平:(1) 来自欠发达农村地区的女生,未得到奖学金;(2) 来自欠发达城市地区的男生,得到奖学金;(3) 来自发达地区的农村女生,得到奖学金;(4) 来自发达地区的城市男生,未得到奖学金。

解答: 记学生月消费支出为Y,其家庭月收入水平为X,则在不考虑其他因素的影响时,有如下基本回归模型:Y i=β0+β1X i+μi有奖学金1 来自城市无奖学金0 来自农村来自发达地区 1 男性0 来自欠发达地区0 女性Y i=β0+β1X i+α1D1i+α2D2i+α3D3i+α4D4i+μi由此回归模型,可得如下各种情形下学生的平均消费支出:(1) 来自欠发达农村地区的女生,未得到奖学金时的月消费支出:E(Y i|= X i, D1i=D2i=D3i=D4i=0)=β0+β1X i(2) 来自欠发达城市地区的男生,得到奖学金时的月消费支出:E(Y i|= X i, D1i=D4i=1,D2i=D3i=0)=(β0+α1+α4)+β1X i(3) 来自发达地区的农村女生,得到奖学金时的月消费支出:E(Y i |= X i , D 1i =D 3i =1,D 2i =D 4i =0)=(β0+α1+α3)+β1X i (4) 来自发达地区的城市男生,未得到奖学金时的月消费支出: E(Y i |= X i ,D 2i =D 3i =D 4i =1, D 1i =0)= (β0+α2+α3+α4)+β1X i5. 研究进口消费品的数量Y 与国民收入X 的模型关系时,由数据散点图显示1979年前后Y 对X 的回归关系明显不同,进口消费函数发生了结构性变化:基本消费部分下降了,而边际消费倾向变大了。

计量经济学课后习题答案

计量经济学课后习题答案

计量经济学课后习题答案业产值C 某年某地区20个乡镇工业产值的合计数D 某年某地区20个乡镇各镇工业产值⒋同一统计指标按时间顺序记录的数据列称为【 B 】A 横截面数据B 时间序列数据C 修匀数据D原始数据⒌回归分析中定义【 B 】A 解释变量和被解释变量都是随机变量B 解释变量为非随机变量,被解释变量为随机变量C 解释变量和被解释变量都是非随机变量D 解释变量为随机变量,被解释变量为非随机变量二、填空题⒈计量经济学是经济学的一个分支学科,是对经济问题进行定量实证研究的技术、方法和相关理论,可以理解为数学、统计学和_经济学_三者的结合。

⒉现代计量经济学已经形成了包括单方程回归分析,联立方程组模型,时间序列分析三大支柱。

⒊经典计量经济学的最基本方法是回归分析。

计量经济分析的基本步骤是:理论(或假说)陈述、建立计量经济模型、收集数据、计量经济模型参数的估计、检验和模型修正、预测和政策分析。

⒋常用的三类样本数据是截面数据、时间序列数据和面板数据。

⒌经济变量间的关系有不相关关系、相关关系、因果关系、相互影响关系和恒等关系。

三、简答题⒈什么是计量经济学?它与统计学的关系是怎样的?计量经济学就是对经济规律进行数量实证研究,包括预测、检验等多方面的工作。

计量经济学是一种定量分析,是以解释经济活动中客观存在的数量关系为内容的一门经济学学科。

计量经济学与统计学密切联系,如数据收集和处理、参数估计、计量分析方法设计,以及参数估计值、模型和预测结果可靠性和可信程度分析判断等。

可以说,统计学的知识和方法不仅贯穿计量经济分析过程,而且现代统计学本身也与计量经济学有不少相似之处。

例如,统计学也通过对经济数据的处理分析,得出经济问题的数字化特征和结论,也有对经济参数的估计和分析,也进行经济趋势的预测,并利用各种统计量对分析预测的结论进行判断和检验等,统计学的这些内容与计量经济学的内容都很相似。

反过来,计量经济学也经常使用各种统计分析方法,筛选数据、选择变量和检验相关结论,统计分析是计量经济分析的重要内容和主要基础之一。

计量课后习题第七章答案

 计量课后习题第七章答案

习题7.1 解释概念(1)分类变量 (2)定量变量 (3)虚拟变量 ( 4)虚拟变量陷阱 (5)交互项(6)结构不稳定 (7)经季节调整后的时间序列答:(1)分类变量:在回归模型中,我们对具有某种特征或条件的情形赋值1,不具有某种特征或条件的情形赋值0,这样便定义了一个变量D :1,0,D ⎧=⎨⎩具有某种特征不具有某种特征我们称这样的变量为分类变量。

(2)具有数值特征的变量,如工资、工作年数、受教育年数等,这些变量就称为定量变量。

(3)在回归模型中,我们对具有某种特征或条件的情形赋值1,不具有某种特征或条件的情形赋值0,这样便定义了一个变量D :1,0,D ⎧=⎨⎩具有某种特征不具有某种特征 我们称这样的变量为虚拟变量(dummy variable )。

(4)虚拟变量陷阱是指回归方程包含了所有类别(特征)对应的虚拟变量以及截距项,从而导致了完全共线性问题。

(5)交互项是指虚拟变量与定量变量相乘,或者两个定量变量相乘或是两个虚拟变量相乘,甚至更复杂的形式。

比如模型:12345i i i i i i i household lwage female married female married u βββββ=++++⋅+female married ⋅就是交互项。

(6)如果利用不同的样本数据估计同一形式的计量模型,可能会得到1β、2β不同的估计结果。

如果估计的参数之间存在着显著性差异,就称为模型结构不稳定。

(7)一些重要的经济时间序列,如果是受到季节性因素影响的数据,利用季节虚拟变量或者其他方法将其中的季节成分去除,这一过程被称为经季节调整的时间序列。

7.2 如果你有连续几年的月度数据,为检验以下假设,需要引入多少个虚拟变量?如何设定这些虚拟变量?(1)一年中的每一个月份都表现出受季节因素影响;(2)只有2、7、8月表现出受季节因素影响。

答:(1)对于一年中的每个月份都受季节因素影响这一假设,需要引入三个虚拟变量。

计量经济学课后题答案

计量经济学课后题答案

计量经济学课后题答案第⼗三章⾯板数据模型⼀简单题1、简述⾯板数据模型的优点和局限性它能综合利⽤样本信息,同时反映应变量在截⾯和时序两个⽅向上的变化规律及特征。

由于⾯板数据模型在经济定量分析中,起着只⽤截⾯或只⽤时序数据模型不可替代的独特优点,⽽具有很⾼的应⽤价值。

总之:1.增加了样本容量;2. 可多层⾯分析经济问题局限性:模型设定错误与数据⼿机不慎引起较⼤的偏差;研究截⾯或者平⾏数据时,由于样本⾮随机性造成观测值的偏差,从⽽导致模型选择上的偏差。

2、你是如何理解⾯板数据的?在经济领域中,同时具有截⾯与时序特征的数据很多。

如统计年鉴中提供的各地区或各国的若⼲系列的年度(季度或⽉度)经济总量数据;在企业投资分析中,要⽤到多个企业若⼲指标的⽉度或季度时间序列数据;在城镇居民消费分析中,要⽤到不同省市反映居民消费和收⼊的年度时序数据。

我们将上述的企业、或地区等统称为个体,从⾏的⽅向看,是由若⼲个体在某个时期构成的截⾯观察值(截⾯样本),从列的⽅向看,是各时间序列。

这种具有三维(截⾯、时期、变量)信息的数据结构称为⾯板。

这是“⾯板”数据的由来,⾯板数据也称为时序截⾯数据或混合数据(Pooled Data)。

3、简述建⽴⾯板数据模型的过程。

(1)建⽴⾯板数据对象,即建⽴⼯作⽂件;(2)⾯板时序变量平稳性检验;(3)协整检验;(4)模型识别;(5)建⽴模型;(6)结论。

⼆填空题1、GDP界⾯变量是⼀维变量,⾯板变量为三维变量。

2、⾯板数据模型是⽆斜率系数⾮齐性、⽽截距齐性的模型。

3、⾯板数据模型识别包括效应模型识别和具体模型识别。

4、建⽴⾯板数据模型之前,要对⾯板变量进⾏平稳性检验和协整检验。

第⼗⼆章向量⾃回归(VAR)模型和向量误差修正(VEC)模型⼀简答题1、VAR模型的特点VAR模型不以经济理论为指导,它根据样本数据统计特征建模。

VAR模型对参数不施加零约束(如t检验),故称其为⽆约束VAR模型。

VAR模型的解释变量中不含t期变量,所有与线性联利⽅程组模型有关的问题均不存在。

《计量经济学教程(第二版)》习题解答课后习题答案

《计量经济学教程(第二版)》习题解答课后习题答案

《计量经济学(第二版)》习题解答第一章1.1 计量经济学的研究任务是什么?计量经济模型研究的经济关系有哪两个基本特征? 答:(1)利用计量经济模型定量分析经济变量之间的随机因果关系。

(2)随机关系、因果关系。

1.2 试述计量经济学与经济学和统计学的关系。

答:(1)计量经济学与经济学:经济学为计量经济研究提供理论依据,计量经济学是对经济理论的具体应用,同时可以实证和发展经济理论。

(2)统计数据是建立和评价计量经济模型的事实依据,计量经济研究是对统计数据资源的深层开发和利用。

1.3 试分别举出三个时间序列数据和横截面数据。

1.4 试解释单方程模型和联立方程模型的概念,并举例说明两者之间的联系与区别。

1.5 试结合一个具体经济问题说明计量经济研究的步骤。

1.6 计量经济模型主要有哪些用途?试举例说明。

1.7 下列设定的计量经济模型是否合理,为什么?(1)ε++=∑=31i iiGDP b a GDPε++=3bGDP a GDP其中,GDP i (i =1,2,3)是第i 产业的国内生产总值。

答:第1个方程是一个统计定义方程,不是随机方程;第2个方程是一个相关关系,而不是因果关系,因为不能用分量来解释总量的变化。

(2)ε++=21bS a S其中,S 1、S 2分别为农村居民和城镇居民年末储蓄存款余额。

答:是一个相关关系,而不是因果关系。

(3)ε+++=t t t L b I b a Y 21其中,Y 、I 、L 分别是建筑业产值、建筑业固定资产投资和职工人数。

答:解释变量I 不合理,根据生产函数要求,资本变量应该是总资本,而固定资产投资只能反映当年的新增资本。

(4)ε++=t t bP a Y其中,Y 、P 分别是居民耐用消费品支出和耐用消费品物价指数。

答:模型设定中缺失了对居民耐用消费品支出有重要影响的其他解释变量。

按照所设定的模型,实际上假定这些其他变量的影响是一个常量,居民耐用消费品支出主要取决于耐用消费品价格的变化;所以,模型的经济意义不合理,估计参数时可能会夸大价格因素的影响。

高级计量经济学课后习题参考答案

高级计量经济学课后习题参考答案

某市居民家庭人均年收入服从4000X =元,1200σ=元的正态分布,求该市居民家庭人均年收入:1在5000—7000元之间的概率;2超过8000元的概率;3低于3000元的概率; 1根据附表1可知 ()0.830.5935F =,()2.50.9876F = PS :在附表1中,()()F Z P x x z σ=-<2()80001080003X X X X X P X P P σσσ⎛⎫⎛⎫--->=>=> ⎪⎪⎝⎭⎝⎭= 3()3000530006X X X X X P X P P σσσ⎛⎫⎛⎫---<=<=<- ⎪ ⎪⎝⎭⎝⎭= = 据统计70岁的老人在5年内正常死亡概率为,因事故死亡的概率为;保险公司开办老人事故死亡保险,参加者需缴纳保险费100元;若5年内因事故死亡,公司要赔偿a 元;应如何测算出a ,才能使公司可期望获益;若有1000人投保,公司可期望总获益多少设公司从一个投保者得到的收益为X ,则则()1000.02E X a =-故要是公司可期望获益,则有()1000.02E X a =->0,即5000a <PS :赔偿金应大于保险费1000人投保时,公司的期望总收益为()10001000.021*******a a -=-写出过原点的一元、二元线性回归模型,并分别求出回归系数的最小二乘估计; 解答:过原点的一元线性回归模型为Y X βε=+ 约束最小二乘估计:y x αβε=++过原点的二元线性回归模型为1122Y X X ββε=++ 针对多元线性回归模型试证明经典线性回归模型参数OLS 估计量的性质()ˆE ββ=和()()12ˆˆ,Cov X X ββσ-'=,并说明你在证明时用到了哪些基本假定; 解答:为了解某国职业妇女是否受到歧视,可以用该国统计局的“当前人口调查”中的截面数据,研究男女工资有没有差别;这项多元回归分析研究所用到的变量有:对124名雇员的样本进行研究得到的回归结果为括号内为估计的t 值:1求调整后的可决系数2R2AGE 的系数估计值的标准差为多少3检验该国工作妇女是否受到歧视为什么4求以95%的概率,一个30岁受教育16年的该国妇女,平均每小时工作收入的预测区间是多少 解答:1 23因为()0.025120 1.9799 4.61t =<,所以2ˆ 2.76β=-显着,且为负,即意味着妇女受到歧视;40ˆ 6.41 2.7610.99160.123010.27W=--⨯+⨯+⨯= 有公式知0W 的95%置信区间为: 即10.27 1.9799±其中()01,1,16,30X '=设某公司的投资行为可用如下回归模型描述: 其中i I 为当期总投资,1i F -为已发行股票的上期期末价值,1i K -为上期资本存量;数据见课本71页; (1) 对此模型进行估计,并做出经济学和计量经济学的说明;(2) 根据此模型所估计的结果,做计量经济学检验;(3) 计算修正的可决系数;(4) 如果2003年的1i F -和1i K -分别为和,计算iI 在2003年的预测值,并求出置信度为95%的预测区间;解答:equation i c f kexpand 1984 2003smpl 2003 2003f=k=smpl 1984 2003yf sfscalar tc=qtdist,16series yl=yf-tcsfseries yu=yf+tcsfshow yl yf yu1最小二乘回归结果为:经济意义说明:在假定其他变量不变的情况下,已发行股票的上期期末价值增加1单位,当期总投资增加单位;在其他变量不变的情况下,上期资本存量增加1单位,当期总投资增加单位;2模型的拟合优度为20.890687R=,修正可决系数为20.877022R=,可见模型拟合效果不错;F检验:对模型进行显着性检验,F统计量对应的P 值为0,因此在0.05α=的显着性水平上我们拒绝原假设023:0H ββ==,说明回归方程显着,即变量“已发行股票的上期期末价值”和“上期资本”存量联合起来确实对“当期总投资”有显着影响; t 检验:针对()0:01,2,3jH j β==进行显着性检验;给定显着性水平0.05α=,查表知()216 2.12t α=;由回归结果,2ˆβ、3ˆβ对应的t 统计量的绝对值均大于,所以拒绝()0:02,3j H j β==;但1ˆβ对应的t 统计量的绝对值小于,在的显着性水平上不能拒绝01:0H β=的原假设; 320.877022R =4iI 在2003年的预测值为,置信度为95%的预测区间为,设一元线性模型为23.1r i=1,2,…..,n 其回归方程为ˆˆˆY X αβ=+,证明残差满足下式如果把变量2X ,3X 分别对1X 进行一元线性回归,由两者残差定义的2X ,3X 关于1X 的偏相关系数23.1r 满足: 解答:1对一元线性模型,由OLS 可得 所以,2偏相关系数是指在剔除其他解释变量的影响后,一个解释变量对被解释变量的影响;不妨假设2X ,3X 对1X 进行一元线性回归得到的回归方程分别为: 21211ˆˆX X e αα=++,31212ˆˆX X e γγ=++则,12,e e 就分别表示2X ,3X 在剔除1X 影响后的值; 所以2X ,3X 关于1X 的偏相关系数就是指12,e e 的简单相关系数; 所以,因为120,0e e ==,()()()11222211ˆi i i X X X X XX α--=-∑∑,()()()11332211ˆi i i X X X X XX γ--=-∑∑令111222333,,ii i i i iX X x X X x X X x -=-=-=则2ˆr α=2ˆr γ=注意到21213121ˆˆˆˆ,X X X X ααγγ=+=+,所以12212321ˆˆ,i ii i i i e x x e x x αγ=-=-所以23.1e e e e e e r --==其中,()()1222132122322121322122321131ˆˆˆˆˆˆi ii ii i i ii i i i iiii ii iie ex x x x xx x x x x x x x r x x r x x r xr r r αγγααγ=--=--+=--+=∑∑∑∑∑∑∑(2131212131233121r rr r r r r r r r r r r r r ===-同理可得: 所以考虑下面两个模型: Ⅰ:122iillikkiiY X X X ββββε=++++++ Ⅱ:122iliillikkiiY X X X X ββββε''''-=++++++ (1) 证明ˆˆˆˆ1,,1,2,,1,1,l l j jj l l k ββββ''-===-+(2) 证明模型Ⅰ和Ⅱ的最小二乘残差相等(3) 研究两个模型的可决系数之间的大小关系 解答:1设211111112222222221,,,1,,,,,,,,1,,,k l k l ln k k n n kn ln X X X Y Y X X X Y X X Y X X X ββεββεββεββε'⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪⎪ ⎪ ⎪' ⎪ ⎪⎪ ⎪ ⎪ ⎪'====== ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪'⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭则模型Ⅰ的矩阵形式为:Y X βε=+模型Ⅱ的矩阵形式为:lY X X βε'-=+取()0,,0,1,0,,0l e '=,其中1为le 的第l 个分量 则l lX Xe =令l lZ Y X Y Xe =-=-,则模型Ⅱ又可表示为Z X βε'=+ 又OLS 得知,()1ˆX X X Y β-''=,()1ˆX X X Z β-'''= 将l lZ Y X Y Xe =-=-代入可得:即1111ˆˆˆ0ˆˆˆ11ˆˆˆ0l l k k k βββββββββ⎛⎫⎛⎫⎛⎫'⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪'=-=- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪'⎝⎭⎝⎭⎝⎭⎝⎭2由上述计算可得: 3由2可知ESS ESS '=所以要比较2R 和2R ',只需比较TSS 和TSS '所以,当var()2cov(,)l lX Y X ≥时,TSS '大于TSS ,则22R R '≥;反之,22R R '<美国1970-1995年个人可支配收入和个人储蓄的数据见课本102页表格;由于美国1982年遭受了其和平时期最大的衰退,城市失业率达到了自1948年以来的最高水平%;试建立分段回归模型,并通过模型进一步验证美国在1970-1995年间储蓄-收入关系发生了一次结构变动; 解答:建立模型为()1212347.3t t t t tY X D X ββδε=++-+其中t Y 为t 年的个人储蓄,tX 为t 年的个人可支配收入,{1,19820,1982tt D t ≥=<当当 则()121982ttE Y t X ββ<=+ Eviews 代码: series d1=0 smpl 1982 1995 d1=1smpl allls sav c pdi d11δ显着,所以美国在1970-1995年间储蓄-收入关系确实发生了一次结构变动在行风评比中消费者的投诉次数是评价行业服务质量的一个重要指标;一般而言,受到投诉的次数越多就说明服务质量越差;有关部门对电信、电力和铁路三个服务行业各抽取了四家单位,统计出消费者一年来对这12家企业的投诉次数,见课本表格;试采用虚拟解释变量回归方法,分析三个行业的服务质量是否存在显着的差异; 解答:本题中有三个定性变量,所以需要设置两个虚拟变量其中iY 为i 企业在一年汇中受到的投诉次数,{11,0,ii Dotherwise=若为电力企业,{21,0,ii Dotherwise=若为铁路企业则()1iE Y i β=为电信企业在5%的显着性水平上,12,δδ均不显着,所以电信行业和电力行业的服务质量不存在显着性差异,电信行业和铁路行业的服务质量也不存在显着性差异若取{11,0,ii Dotherwise=若为电信企业,{21,0,ii Dotherwise=若为电力企业,则则()11iE Y i βδ=+为电信企业在5%的显着性水平上,1δ不显着,2δ显着,所以电力行业和铁路行业的服务质量存在显着差异,且电力行业的服务质量比铁路行业好;电信和铁路行业服务质量不存在显着差异;虚拟变量的实质原则是什么试以加法形式在家庭对某商品的消费需求函数中引入虚拟变量,用以反映季节因素淡、旺季和家庭收入层次差异高、低对商品消费需求的影响,并写出各类消费函数的具体形式;解答:引入两个虚拟变量其中{10,D=若为淡季1,若为旺季,{20,D=低收入家庭1,高收入家庭所以淡季低收入家庭对商品的消费需求为淡季高收入家庭对商品的消费需求为旺季低收入家庭对商品的消费需求为旺季高收入家庭对商品的消费需求为以加法形式引入虚拟变量:即以相加的形式将虚拟变量引入模型;加法形式引入虚拟变量可以考察截距的不同;斜率的不同则可通过以乘法方式引入虚拟变量来实现;设消费函数的形式为其中,Y是收入,C是消费,,,αβγ是待定参数;观测到某地区总消费和收入的数据见课本表格;(1) 当1γ=时,估计模型并解释其经济意义;(2) 以1γ=时所得到的参数估计量作为初始值,采用高斯-牛顿迭代方法回归模型参数; 解答:(1) 当1γ=时,消费函数形式为C Y αβε=++样本回归方程为ˆ11.150.899CY =+,说明每增加1元收入,消费就会增加元;另外,我们注意到常数项在5%的水平上是不显着的;(2) 以,,1作为初始值,采用高斯-牛顿迭代得到样本回归方程为 Eviews 代码为:ls cons c ycoef3 bparam b1 b2 b3 1在 Eviews 主菜单,Quick/Estimate Equation…,弹出Equation Estimation 窗口,在Specification 中输入方程cons=b1+b2y^b3 对某种商品的销售量Y 进行调查,得到居民可支配收入1X ,其他消费品平均价格指数2X 的数据见课本145页;1若以1X 、2X 为解释变量,问是否存在多重共线性 2你认为比较合适的模型是什么解答:以1X 、2X 为解释变量,回归得到2R =,但自变量1X 的回归系数在5%的水平上并不显着计算1X 、2X 间的相关系数为:120.991796X X r = 做辅助回归得到:辅助回归的2R 大于主回归的2R ;所以,以1X 、2X 为解释变量,会产生多重共线性;2采用逐步回归法,首先用1X 作为自变量对Y 进行回归,得到1ˆ39.017990.521613YX =-+ 2R = 利用2X 作为自变量对Y 进行回归,得到 1ˆ54.365140.670541YX =-+ 2R = 根据我国1985-2001年城镇居民人均可支配收入y 和人均消费性支出x 的数据,按照凯恩斯绝对收入假说建立的消费函数计量经济模型为:(1) 解释模型中的经济意义;(2) 检验该模型是否存在异方差性;(3) 如果模型存在异方差,写出消除模型异方差的方法和步骤;解答:1凯恩斯绝对收入假说:在短期中,消费取决于收入,随着收入的增加消费也将增加,但消费的增长低于收入的增长;表示收入每增加1单位,其中有单位用于消费,即边际消费倾向;2异方差检验方法:Goldfeld-Guandt 检验,Breusch-Pagan 检验,White 检验本题中适用White 检验法;2170.4778.109e nR =⨯=,查表得()0.051 3.841χ=()20.051e nR χ>,所以拒绝原假设,模型存在异方差; 3利用残差与自变量之间的回归方程2451.900.87i i e x =-+,在原模型i i y x αβε=++两边同除以,得到新模型即先对原始数据进行处理,自变量与因变量同除以,然后对处理后的数据进行OLS 估计;注:回归方程2451.900.87i ie x =-+中x 的系数并不显着 设多元线性模型为Y =X β+ε,其中试问此模型存在异方差吗如果存在异方差,怎样把它变成同方差模型,并用广义最小二乘法GLS 求β的估计量;解答:因为()22i ji j σσ≠≠,所以该模型显然存在异方差; 在原模型两边同乘以12-Ω,得到111222---ΩΩΩY =X β+ε 则()111111112222222222cov ,E E I σσ--------⎛⎫⎛⎫''ΩΩ=ΩΩ=ΩΩ=ΩΩΩ= ⎪ ⎪⎝⎭⎝⎭εεεεεε所以新模型是同方差;对新模型采用OLS 进行估计得到:下面给出的数据是美国1988年研究与开发R&D 支出费用Y 与不同部门产品销售量X 和利润Z;数据见课本146页试根据资料建立一个回归模型,运用Glejser 方法和White 方法检验异方差,由此决定异方差的表现形式并选用适当的方法加以修正; 解答:因变量与自变量的选取对模型进行回归,得到:回归系数都不显着White 检验结果显示,存在异方差Glejser 检验结果显示:存在异方差取对数后进行回归,得到:进行White 异方差检验不能拒绝同方差假设;以z 作为因变量,以x,y 作为自变量,回归得到 White 异方差检验:在5%的显着性水平上,拒绝同方差的原假设;取对数,回归得到进行White 异方差检验,得到在5%的显着性水平上,不能拒绝同方差的原假设;即取对数就可以消除异方差;注:1以各自方差的倒数为权数对模型进行修正 1ˆ1690.3090.387979yx =-+ n=19,k=1,在5%显着性水平上, 1.18, 1.401l u d d == 因为0.52l DW d =<,所以拒绝无序列相关的原假设; 2对回归残差序列进行一阶自回归得到()()111ˆ0.920175i i e e -=,即1ˆ0.920175ρ=用估计出来的ρ进行广义差分,再进行回归得到: 得到新残差,再进行回归得到2ˆ0.927088ρ= 迭代终止,得到ˆ0.936895ρ=,进行广义差分,再回归得到:此时0.720623l DW d =<,故一阶差分并不能消除序列相关;进行二阶差分,得到:n=17,k=3,在5%显着性水平上,0.672, 1.432l u d d == 4u ud DW d <<-,故不能拒绝无序列相关的原假设1原模型为60t it i t i Y X αβε-==++∑施加线性算术滞后()61,0,1,,6i i i ββ=+-=⎡⎤⎣⎦则原模型可化为 ()[]6060617t t i ti t i ti Y i X i X αβεαβε-=-==++-+⎡⎤⎣⎦=+-+∑∑ 1施加有远端约束的Almon 一次多项式滞后01i i βαα=+,0,1,,6i =所以()0117i i i βααα=+=-,0,1,,6i =则原模型可化为 ()()61061077t t i ti t i ti Y i X i X ααεααε-=-==+-+=+-+∑∑ 2比较方程1和2,可见两个模型是一致的 2ls lncons c pdllninc,6,2,13 ls lncons c pdllninc,6,2,24ls lncons c pdllninc,6,2,3567关于F 统计量分子自由度的说明;15阶滞后消费收入模型:施加Almon 三次多项式约束230123i i i i βαααα=+++,0,1,,5i = ls lny c pdllnx,5,32所以3施加近终端约束101230βαααα-=-+-=ls lny c pdllnx,5,3,14根据带近终端约束的回归残差平方和以及不带近终端约束的回归残差平方和,构建F 统计量,分子自由度为15如习题5、6、71对011ln ln ln t t t t C C Y ββαε-=+++进行回归利用所得残差计算ˆρ,再结合回归得到的()1ˆvar β构建Durbin h 统计量在原假设下,h 渐近服从()0,1N 若2h Z α>,则拒绝无一阶序列相关的原假设;否则,不能拒绝原假设2Breusch-Godfrey 检验Breusch-Godfrey 检验是将OLS 的残差t e 对于1t e -和包括滞后的因变量行回归;所以对p 阶序列相关进行检验,应构建回归模型: 构建统计量22pTR χ2对于过度识别的模型,可采用2SLS 法进行估计 tsls cons-g c y1 c y1-1 gtsls i c y1 y1-1 c y1-1 g。

计量经济学 课后题答案

计量经济学 课后题答案

第二章练习题参考解答练习题2.1 为了研究深圳市地方预算内财政收入与国内生产总值的关系,得到以下数据:资料来源:《深圳统计年鉴2002》,中国统计出版社(1)建立深圳地方预算内财政收入对GDP 的回归模型;(2)估计所建立模型的参数,解释斜率系数的经济意义;(3)对回归结果进行检验;(4)若是2005 年年的国内生产总值为3600 亿元,确定2005 年财政收入的预测值和预测区间(α= 0.05)。

2.2 某企业研究与发展经费与利润的数据(单位:万元)列于下表:1995 1996 1997 1998 1999 2000 2001 2002 2003 2004研究与发展经费10 10 8 8 8 12 12 12 11 11利润额100 150 200 180 250 300 280 310 320 300 分析企业”研究与发展经费与利润额的相关关系,并作回归分析。

2.3 为研究中国的货币供应量(以货币与准货币M2 表示)与国内生产总值(GDP)的相互依存关系,分析表中1990 年—2001 年中国货币供应量(M2)和国内生产总值(GDP)的有关数据:货币供应量(亿元) 年份M2 国内生产总值(亿元)GDP1990 1529.3 18598.4 1991 19349.9 21662.5199225402.226651.9199334879.834560.5199446923.546670.0199560750.557494.9199676094.966850.5199790995.373142.71998104498.576967.21999119897.980579.42000134610.388228.12001158301.994346.4资料来源:《中国统计年鉴2002》,第51 页、第662 页,中国统计出版社对货币供应量与国内生产总值作相关分析,并说明分析结果的经济意义。

2.4 表中是16 支公益股票某年的每股帐面价值和当年红利:根据上表资料:(1)建立每股帐面价值和当年红利的回归方程;(2)解释回归系数的经济意义;(3)若序号为6 的公司的股票每股帐面价值增加1 元,估计当年红利可能为多少?2.5 美国各航空公司业绩的统计数据公布在《华尔街日报1999 年年鉴》(The Wall Street1。

高级计量经济学课后习题参考答案

高级计量经济学课后习题参考答案

1.3 某市居民家庭人均年收入服从4000X =元,1200σ=元的正态分布,求该市居民家庭人均年收入:(1)在5000—7000元之间的概率;(2)超过8000元的概率;(3)低于3000元的概率。

(1)()()()()()2,0,15000700050007000()2.50.835( 2.5)62X N X X XN XX XXP X P F F X XP σσσσσσ-∴---∴<<=<<--=<<=根据附表1可知()0.830.5935F =,()2.50.9876F =()0.98760.5935500070000.19712P X -∴<<==PS :()()5000700050007000()55( 2.5) 2.5660.99380.79760.1961XX XXP X P X X P σσσσ---<<=<<-⎛⎫=<<=Φ-Φ ⎪⎝⎭=-=在附表1中,()()F Z P x xz σ=-<(2)()80001080003X X X X X P X P P σσσ⎛⎫⎛⎫--->=>=> ⎪⎪⎝⎭⎝⎭=0.0004 (3)()3000530006X X X X X P X P P σσσ⎛⎫⎛⎫---<=<=<- ⎪ ⎪⎝⎭⎝⎭=0.2023=0.2023-0.0004=0.20191.4 据统计70岁的老人在5年内正常死亡概率为0.98,因事故死亡的概率为0.02。

保险公司开办老人事故死亡保险,参加者需缴纳保险费100元。

若5年内因事故死亡,公司要赔偿a 元。

应如何测算出a ,才能使公司可期望获益;若有1000人投保,公司可期望总获益多少?设公司从一个投保者得到的收益为X ,则则()1000.02E X a =-故要是公司可期望获益,则有()1000.02E X a =->0,即5000a <PS :赔偿金应大于保险费?1000人投保时,公司的期望总收益为()10001000.021*******a a -=-2.1 写出过原点的一元、二元线性回归模型,并分别求出回归系数的最小二乘估计。

计量经济学 课后答案

计量经济学 课后答案
1-20.模型参数对模型有什么意义?
习题参考答案
第一章绪论
1-1.答:计量经济学是经济学的一个分支学科,是以揭示经济活动中客观存在的数量关系为内容的分支学科,是由经济学、统计学和数学三者结合而成的交叉学科。
1-2.答:计量经济学自20年代末、30年代初形成以来,无论在技术方法还是在应用方面发展都十分迅速,尤其是经过50年代的发展阶段和60年代的扩张阶段,使其在经济学科占据重要的地位,主要表现在:①在西方大多数大学和学院中,计量经济学的讲授已成为经济学课程表中有权威的一部分;②从1969~2003年诺贝尔经济学奖的XX位获奖者中有XX位是与研究和应用计量经济学有关;著名经济学家、诺贝尔经济学奖获得者萨缪尔森甚至说:“第二次世界大战后的经济学是计量经济学的时代”。③计量经济学方法与其他经济数学方法结合应用得到发展;④计量经济学方法从主要用于经济预测转向经济理论假设和政策假设的检验;⑤计量经济学模型的应用从传统的领域转向新的领域,如货币、工资、就业、福利、国际贸易等;⑥计量经济学模型的规模不再是水平高低的衡量标准,人们更喜欢建立一些简单的模型,从总量上、趋势上说明经济现象。
1-3.答:计量经济学方法揭示经济活动中各个因素之间的定量关系,用随机性的数学方程加以描述;一般经济数学方法揭示经济活动中各个因素之间的理论关系,用确定性的数学方程加以描述。
1-4.答:
1-5.答:从计量经济学的定义看,它是定量化的经济学;其次,从计量经济学在西方国家经济学科中居于最重要的地位看,也是如此,尤其是从诺贝尔经济学奖设立之日起,已有多人因直接或间接对计量经济学的创立和发展作出贡献而获得诺贝尔经济学奖;计量经济学与数理统计学有严格的区别,它仅限于经济领域;从建立与应用计量经济学模型的全过程看,不论是理论模型的设定还是样本数据的收集,都必须以对经济理论、对所研究的经济现象有透彻的认识为基础。综上所述,计量经济学确实是一门经济学科。

本科计量第七版习题参考答案

本科计量第七版习题参考答案

第六章动态经济模型:自回归模型和分布滞后模型6.1 (1)错。

(2)对。

(3)错。

估计量既不是无偏的,又不是一致的。

(4)对。

(5)错。

将产生一致估计量,但是在小样本情况下,得到的估计量是有偏的。

(6)对。

6.2对于科克模型和适应预期模型,应用OLS法不仅得不到无偏估计量,而且也得不到一致估计量。

但是,部分调整模型不同,用OLS法直接估计部分调整模型,将产生一致估计值,虽然估计值通常是有偏的(在小样本情况下)。

6.3科克方法简单地假定解释变量的各滞后值的系数(有时称为权数)按几何级数递减,即:Yt=α+βXt÷β λ Xt-ι ÷β λ2χt.2 +...+ ut其中O<λ<l0这实际上是假设无限滞后分布,由于0<入<1, X的逐次滞后值对Y的影响是逐渐递减的。

而阿尔蒙方法的基本假设是,如果Y依赖于X的现期值和若干期滞后值, 则权数由一个多项式分布给出。

由于这个原因,阿尔蒙滞后也称为多项式分布滞后。

即在分布滞后模型工=α + β0X t + B1X—+∙∙∙ ++ %中,假定:βi =tz0 +tz1z + a2i2 H ------ F a p i p其中P为多项式的阶数。

也就是用一个P阶多项式来拟合分布滞后,该多项式曲线通过滞后分布的所有点。

6.4(1)估计的Y值是非随机变量X1和X2的线性函数,与扰动项v无关。

(2)与利维顿方法相比,本方法造成多重共线性的风险要小一些。

6.5(1)M∣= aγxγ2+ βλγλY t-∕3lχl(l-χ2)Y l.l+ β2γ2R t-β2r2(1 -∕1)R t.l ÷(2 - ∕l—χ2)μt-∖-(1-∕ι )(1-Yι)M t_2÷[u t—(2 —∕1-χ2)〃1 ÷(I -∕ι )(1-Yz )u t-21 其中&)是a、为和72的函数。

(2)第(1)问中得到的模型高度参数非线性,它的参数需采用非线性回归技术来估计。

计量经济学第三版-课后习题答案

计量经济学第三版-课后习题答案

计量经济学第三版-课后习题答案*************************************************************** ******************************************************************* ********************??第一章绪论(一)基本知识类题型1-1.什么是计量经济学?1-3.计量经济学方法与一般经济数学方法有什么区别?它在经济学科体系中的作用和地位是什么?1-6.计量经济学的研究的对象和内容是什么?计量经济学模型研究的经济关系有哪两个基本特征?1-7.试结合一个具体经济问题说明建立与应用计量经济学模型的主要步骤。

1-9.计量经济学模型主要有哪些应用领域?各自的原理是什么?1-12.模型的检验包括几个方面?其具体含义是什么?1-17.下列假想模型是否属于揭示因果关系的计量经济学模型?为什么?⑴ S t=112.0+0.12R t其中S t为第t年农村居民储蓄增加额(亿元)、R t为第t年城镇居民可支配收入总额(亿元)。

⑵ S t-1=4432.0+0.30R t其中S t-1为第(t-1)年底农村居民储蓄余额(亿元)、R t为第t年农村居民纯收入总额(亿元)。

1-18.指出下列假想模型中的错误,并说明理由:(1)RS t=8300.0-0.24RI t+112.IV t其中,RS t为第t年社会消费品零售总额(亿元),RI t为第t年居民收入总额(亿元)(城镇居民可支配收入总额与农村居民纯收入总额之和),IV t为第t年全社会固定资产投资总额1(亿元)。

(2)C t=180+1.2Y t其中,C、Y分别是城镇居民消费支出和可支配收入。

(3)ln Y t=1.15+1.62 ln K t-0.28ln L t其中,Y、K、L分别是工业总产值、工业生产资金和职工人数。

1-19.下列假想的计量经济模型是否合理,为什么?(1)GDP=α+∑βi GDP i+ε其中,GDP i(i=1,2,3)是第i产业的国内生产总值。

计量经济学(数字教材版)课后习题参考答案

计量经济学(数字教材版)课后习题参考答案

课后习题参考答案第二章教材习题与解析1、 判断下列表达式是否正确:y i =β0+β1x i ,i =1,2,⋯ny ̂i =β̂0+β̂1x i ,i =1,2,⋯nE(y i |x i )=β0+β1x i +u i ,i =1,2,⋯n E(y i |x i )=β0+β1x i ,i =1,2,⋯nE(y i |x i )=β̂0+β̂1x i ,i =1,2,⋯ny i =β0+β1x i +u i ,i =1,2,⋯ny ̂i =β̂0+β̂1x i +u i ,i =1,2,⋯n y i =β̂0+β̂1x i +u i ,i =1,2,⋯n y i =β̂0+β̂1x i +u ̂i ,i =1,2,⋯n y ̂i =β̂0+β̂1x i +u ̂i ,i =1,2,⋯n答案:对于计量经济学模型有两种类型,一是总体回归模型,另一是样本回归模型。

两类回归模型都具有确定形式与随机形式两种表达方式:总体回归模型的确定形式:X X Y E 10)|(ββ+= 总体回归模型的随机形式:μββ++=X Y 10样本回归模型的确定形式:X Y 10ˆˆˆββ+= 样本回归模型的随机形式:e X Y ++=10ˆˆββ 除此之外,其他的表达形式均是错误的2、给定一元线性回归模型:y =β0+β1x +u (1)叙述模型的基本假定;(2)写出参数β0和β1的最小二乘估计公式;(3)说明满足基本假定的最小二乘估计量的统计性质; (4)写出随机扰动项方差的无偏估计公式。

答案:(1)线性回归模型的基本假设有两大类,一类是关于随机误差项的,包括零均值、同方差、不序列相关、满足正态分布等假设;另一类是关于解释变量的,主要是解释变量是非随机的,如果是随机变量,则与随机误差项不相关。

(2)12ˆi iix yxβ=∑∑,01ˆˆY X ββ=- (3)考察总体的估计量,可从如下几个方面考察其优劣性:1)线性性,即它是否是另一个随机变量的线性函数; 2)无偏性,即它的均值或期望是否等于总体的真实值;3)有效值,即它是否在所有线性无偏估计量中具有最小方差;4)渐进无偏性,即样本容量趋于无穷大时,它的均值序列是否趋于总体真值; 5)一致性,即样本容量趋于无穷大时,它是否依概率收敛于总体的真值;6)渐进有效性,即样本容量趋于无穷大时,它在所有的一致估计量中是否具有最小的渐进方差。

(完整版)计量经济学第三版课后习题答案解析

(完整版)计量经济学第三版课后习题答案解析

第二章简单线性回归模型2.1(1)①首先分析人均寿命与人均GDP的数量关系,用Eviews分析:Dependent Variable: YMethod: Least SquaresDate: 12/23/15 Time: 14:37Sample: 1 22Included observations: 22Variable Coefficient Std. Error t-Statistic Prob.C 56.64794 1.960820 28.88992 0.0000 X1 0.128360 0.027242 4.711834 0.0001R-squared 0.526082 Mean dependentvar 62.50000Adjusted R-squared 0.502386 S.D. dependentvar 10.08889S.E. of regression 7.116881 Akaike infocriterion 6.849324Sum squared resid 1013.000 Schwarzcriterion 6.948510Log likelihood -73.34257 Hannan-Quinncriter. 6.872689F-statistic 22.20138 Durbin-Watsonstat 0.629074 Prob(F-statistic) 0.000134有上可知,关系式为y=56.64794+0.128360x1②关于人均寿命与成人识字率的关系,用Eviews分析如下:Dependent Variable: YMethod: Least SquaresDate: 12/23/15 Time: 15:01Sample: 1 22Included observations: 22Variable Coefficient Std. Error t-Statistic Prob.C 38.79424 3.532079 10.98340 0.0000 X2 0.331971 0.046656 7.115308 0.0000R-squared 0.716825 Mean dependentvar 62.50000Adjusted R-squared 0.702666 S.D. dependentvar 10.08889S.E. of regression 5.501306 Akaike infocriterion 6.334356Sum squared resid 605.2873 Schwarzcriterion 6.433542Log likelihood -67.67792 Hannan-Quinncriter. 6.357721F-statistic 50.62761 Durbin-Watsonstat 1.846406 Prob(F-statistic) 0.000001由上可知,关系式为y=38.79424+0.331971x2③关于人均寿命与一岁儿童疫苗接种率的关系,用Eviews分析如下:Dependent Variable: YMethod: Least SquaresDate: 12/23/14 Time: 15:20Sample: 1 22Included observations: 22Variable Coefficient Std. Error t-Statistic Prob.C 31.79956 6.536434 4.864971 0.0001 X3 0.387276 0.080260 4.825285 0.0001R-squared 0.537929 Mean dependentvar 62.50000Adjusted R-squared 0.514825 S.D. dependentvar 10.08889S.E. of regression 7.027364 Akaike infocriterion 6.824009Sum squared resid 987.6770 Schwarzcriterion 6.923194Log likelihood -73.06409 Hannan-Quinncriter. 6.847374F-statistic 23.28338 Durbin-Watsonstat 0.952555Prob(F-statistic) 0.000103由上可知,关系式为y=31.79956+0.387276x3(2)①关于人均寿命与人均GDP模型,由上可知,可决系数为0.526082,说明所建模型整体上对样本数据拟合较好。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章课后练习答案1.解: 如果被解释变量(因变量)y 与k 个解释变量(自变量)1x ,2x ,…,k x 之间有线性相关关系,那么它们之间的多元线性总体回归模型可以表示为01122k k y x x x u ββββ=+++++其中, 012,,,,k ββββ是k+1个未知参数,又称为回归系数;u 是随机误差项。

2.解: 多元线性回归模型的基本有:(1)随机误差项i u 的条件期望值为零。

即12[|,,]0i i i ki E u x x x =,(1,2,,i n =). (2)随机误差项i u 的条件方差相同。

即212(|,,...,)i i i ki u Var u x x x σ=,(1,2,,i n =).(3)随机误差项i u 之间无序列相关。

即(,)0i j Cov u u =,(,1,2,,;i j n i j =≠).(4)自变量l x 与随机误差项i u 独立。

即(,)0i l Cov u x =,(1,2,,;1,2,,i n l k ==).(5)随机误差项i u 服从正态分布。

即2~(0,)i u u N σ.(6)各解释变量之间不存在显著的线性相关关系。

即()1rank X k n =+<,也就是说矩阵X 的秩等于参数个数,换句话说就是自变量之间不存在多重共线性.3. 解:2u σ的无偏估计量的计算公式为: 222211ˆ()ˆ11nniiii i u e ey yS n k n k σ==-===----∑∑4. 解:如果一个样本回归方程的样本决定系数为0.98,我们不能判定这个样本回归方程就很理想.因为对于多元模型而言,样本决定系数接近1,只能说明模型的拟合度很高,总体线性性显著,但模型中每个解释变量是否是显著的无法判定,所以还需要进行单个解释变量的显著性检验,即t 检验.5.解:根据例3.1数据,得到OLS 的正规方程组:⎪⎪⎩⎪⎪⎨⎧++=++=++=210210210ˆ37.33090ˆ8.16816ˆ24.62951.11810ˆ8.16816ˆ26.10346ˆ4.31219.7114ˆ24.629ˆ4.312ˆ129.219βββββββββ求解得到:ˆβ=012ˆˆˆβββ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦=29.480.5970.665-⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦ 所以样本回归方程为:12ˆ29.480.4970.665yx x =-++6. 解:(1)利用OLS 对数据进行回归得到回归方程如下:953.57,943.0)021.1()072.0()657.15(223.16206.03.879950ˆ221===++=F R t x x yi(2)由上述检验数据可以看出方程总体线性性显著,单单个解释变量并不显著。

(3)因为方程拟合程度较高,总体线性性显著,所以模型可以用来进行预测: 当工业产量达到130000亿元,农业总产值达到25000亿元时,货运量能达到:131230525000223.16130000206.03.879950ˆ=⨯+⨯+=i y(万吨)7. 解:案例的方差分解结果所缺数据如下:8. 解:从该案例的分析数据来看,结果不满意。

因为但从模型的拟合优度(R 2=0.8528)和总体线性显著性(F=11.5874,F-statistic=0.0066)来看,结果还令人满意,但具体到每个解释变量的显著性时,可以看到x1(t=0.5788,P=0.5838)和x3(t=-1.4236,P=0.1978)甚至都无法通过α=15%的显著性检验,所以这两个解释变量显然不显著。

第四章课后练习答案1. 解:古典线性回归模型的一个很重要的假定是随机项的同方差性,即对于每个i x ,i u 的方差都是同一个常数,当此假定不能满足时,则i u 的方差在不同次的观测中不再是一个常数,而是取得不同的数值,即2(|)i i i Var u x σ=≠常数 (i =1,2,…,)n则称随机项i u 具有异方差性(Heteroscedasticity )。

例如,考虑家庭的可支配收入和储蓄的关系,如建立如下模型01i i i y x u ββ=++其中,i y 为第i 个家庭的储蓄,i x 为第i 个家庭的收入。

从二者的关系不难看出,当收入增加时,储蓄平均也会随之增加。

如果我们对不同收入水平家庭的储蓄进行观察,同样也会发现,低收入的家庭储蓄差异性较小,而高收入的家庭储蓄的差异性较大。

这是因为低收入的家庭,其收入中扣除必要的生活支出以外,用于其他支出和储蓄的部分也较少,因此随机项波动的程度小,即方差小;而高收入家庭,其收入中扣除必要的生活支出以外,剩余的就较多,就有更大的使用选择余地,这样储蓄的差异就较大,因而随机项波动的程度就大,即方差大。

因此,对于家庭储蓄模型,随机项i u 具有异方差性。

2. 解:模型(1)无法使用OLS 进行参数估计,因为随机误差项22i i i u x v β=+,即随机误差项与解释变量的平方之间有着显著地相关关系,这样会造成随机误差项的异方差现象,所以OLS 不可以使用。

3. 解:4. 解:对某沿海地区家庭每年生活开支和每年收入进行抽样研究,调查了20个家庭,其中每五个家庭收家庭生活开支模型设定为 01i i i y x u ββ=++式中:i y 表示家庭生活开支,i x 表示家庭收入⑴利用OLS 求回归方程: i i x y2412.089.0ˆ+=。

⑵做散点图,观察家庭生活开支离差量的变化情况。

由图形可以看出随着收入的增加,家庭生活开支的波动幅度逐渐增大。

⑶把数据分作两个子样本,第一子样本包括收入为5000元与10000元的家庭,即低收入家庭。

第二个子样本包括收入为15000元和20000元的家庭,即高收入的家庭。

进行Goldfeld Quandt -检验。

⑷设22()i i Var u k x =,其中2k 为一非零常数,变换原模型求回归方程。

5. 解:在古典假设下,线性回归模型中参数的最小二乘估计量具有线性、无偏和有效性。

其中,有效性不仅依赖于古典假设中关于随机项的同方差假定,还依赖与随机项不存在序列自相关假定,即(,)0i j Cov u u = (i j ≠ ,1,2,,)i j n =这表明随机项u 在不同观测点下取值不相关。

若这个假定违背,(,)0i j Cov u u ≠,即u 在不同观测点下的取值相关联,则称u 存在序列相关或叫自相关(Autoregression )。

自相关产生的原因很多,主要有:(1)被解释变量的自相关,许多经济变量往往会有自相关,使用时间序列数据更是如此,其本期值往往受滞后值的影响。

(2)模型省略了自相关的解释变量。

在建立回归模型时,总是要略去某些次要的解释变量。

如果略去的解释变量有一些存在自相关,它必然在随机项中反映出来,从而使随机项具有自相关性。

(3)随机项本身存在自相关。

在许多情况下,随机因素(如干旱、暴风雨、战争、地震等)所产生的影响,常常持续好长时间。

(4)回归模型的数学形式不正确。

若回归模型所采用的数学形式与所研究问题的真实关系不一致,随机项就可能存在自相关。

(5)经济变量的惯性作用。

大多数的经济时间序列都有一个明显的特点,就是他们的惯性。

由于经济变量的惯性,使得许多经济变量前后期总是相互关联的。

自相关产生的后果,如果模型中的随机项存在自相关,仍然采用普通最小二乘法,会有以下后果: (1)最小二乘估计量仍然是线性的和无偏的,但不具有最小方差性,即不是最优的。

(2)最小二乘估计量的方差估计是有偏的,用来估计随机项的方差和回归参数的方差公式会严重低估真实的方差和标准差,导致t 值偏大,使得某些参数显著不为零,即高估了部分参数的显著性。

(3)因变量的预测精度降低。

6. 利用以下给定的d 统计量进行序列相关检验。

(k =自变量数目,n =样本容量)(1)d =0.81,k =3,n =21,显著性水平α=5%:D L =1.03, D U =1.67,因为d =0.81< D L , 所以存在一阶正自相关。

(2)d =3.48,k =2,n =15,显著性水平α=5%:D L =0.95, D U =1.54,因为d =3.48>4-D L , 所以存在一阶负自相关。

(3)d =1.56,k =5,n =30,显著性水平α=5%:D L =1.07, D U =1.83,因为D L <d =1.56<D U , 所以无法判断。

(4)d =2.64,k =4,n =35,显著性水平α=5%:D L =1.22, D U =1.73,因为(4-D U )<d =2.64<(4-D L ), 所以无法判断。

(5)d =1.75,k =1,n =45,显著性水平α=5%:D L =1.48, D U =1.57,因为D U <d =1.75<(4-D U ), 所以不存在自相关。

(6)d =0.91,k =2,n =28,显著性水平α=5%:D L =1.26, D U =1.56,因为d =0.91< D L , 所以存在一阶正自相关。

(7)d =1.03,k =5,n =26,显著性水平α=5%:D L =0.98, D U =1.88,因为D L <d =1.03<D U , 所以无法判断。

7. 解: ⑴用OLS 估计t y 关于t x 的回归方程为:t t x y173.0879.0ˆ+-= ⑵用D W -检验分析随机项的一阶自相关性:因为DW=1.662,D L =1.20,D U =1.41,D U <DW<(4-D U ), 所以不存在自相关。

⑶用Durbin 两步法估计回归模型的参数; ⑷直接用差分法估计回归模型参数。

8. 解:古典线性回归模型的假定之一是,模型中包含的解释变量的观测值矩阵X (包括常数项)其秩等于模型中解释变量的个数加1,即()1rk k =+X ,此时就称解释变量j x (j =1,2 ,… ,)n 之间不存在多重共线性。

但如果()1rk X k ≤+,说明观测值矩阵X 是降秩的,即矩阵X 的列向量存在某种线性相关关系,也就是解释变量之间存在某种线性相关,称为存在多重共线性(Multicollinearity )。

多重共线性存在的原因主要是经济活动经济变量之间复杂的相互联系。

另外在计量经济学的研究中,将某些解释变量的滞后值作为单独的新解释变量包含在模型中,已得到广泛的应用。

这样由于解释变量的前后期数值相关使得产生多重共线性。

后果:多元线性回归模型中如果存在完全的多重共线性(Complete Multicollinearity ,或ExactMulticollinearity )则参数的最小二乘估计量是不确定的,其标准差为无穷大;如果存在接近的多重共线性(Near Multicollinearity ),则参数的最小二乘估计量是确定的,而且具有无偏性,但其方差较大,常产生以下结果:(1)参数估计值不精确,也不稳定,样本观测值稍有变动,增加或减少解释变量等都会使参数估计值发生较大变化,甚至出现符号错误,从而不能正确反映解释变量对因变量的影响。

相关文档
最新文档