圆的综合应用压轴题非常经典非常实用
2020-2021中考数学压轴题专题圆的综合的经典综合题及详细答案.doc
![2020-2021中考数学压轴题专题圆的综合的经典综合题及详细答案.doc](https://img.taocdn.com/s3/m/c555c2510975f46526d3e17b.png)
2020-2021 中考数学压轴题专题圆的综合的经典综合题及详细答案一、圆的综合1.如图 1,以边长为 4 的正方形纸片ABCD的边 AB 为直径作⊙ O,交对角线AC 于点 E.(1)图 1 中,线段AE=;(2)如图 2,在图 1 的基础上,以点 A 为端点作∠ DAM=30°,交 CD 于点 M ,沿 AM 将四边形 ABCM 剪掉,使Rt△ADM 绕点 A 逆时针旋转(如图3),设旋转角为α(0°<α<150 °),在旋转过程中AD 与⊙O 交于点 F.①当α =30时°,请求出线段AF 的长;②当α =60时°,求出线段AF 的长;判断此时DM 与⊙ O 的位置关系,并说明理由;③当α=°时,DM与⊙ O相切.【答案】( 1) 2(2)①2②2,相离③当α=90°时,DM与⊙O相切AEB 是等腰直【解析】( 1)连接 BE,∵ AC是正方形ABCD的对角线,∴ ∠BAC=45°,∴△角三角形,又∵ AB=8,∴ AE=4;(2)①连接 OA、OF,由题意得,∠NAD=30°,∠ DAM=30°,故可得∠ OAM=30°,∠DAM=30 °则,∠ OAF=60 ,°又∵ OA=OF,∴ △ OAF是等边三角形,∵OA=4,∴ AF=OA=4;②连接 B'F,此时∠ NAD=60 °,∵ AB'=8,∠DAM=30 °,∴ AF=AB'cos∠ DAM=8×=4;此时 DM 与⊙ O 的位置关系是相离;③ ∵AD=8,直径的长度相等,∴当 DM 与⊙ O 相切时,点 D 在⊙O 上,故此时可得α=∠ NAD=90 °.点睛:此题属于圆的综合题,主要是仔细观察每一次旋转后的图形,根据含30°角的直角三角形进行计算,另外在解答最后一问时,关键是判断出点 D 的位置,有一定难度.2.已知⊙ O 中,弦 AB=AC,点 P 是∠ BAC所对弧上一动点,连接PA, PB.(1)如图①,把△ ABP 绕点 A 逆时针旋转到△ ACQ,连接PC,求证:∠A CP+∠ ACQ=180 ;°(2)如图②,若∠ BAC=60°,试探究 PA、 PB、 PC 之间的关系.(3)若∠ BAC=120°时,( 2)中的结论是否成立?若是,请证明;若不是,请直接写出它们之间的数量关系,不需证明.【答案】( 1)证明见解析;(2) PA=PB+PC .理由见解析;( 3)若 ∠ BAC=120°时,( 2)中的结论不成立,3 【解析】试题分析:( 1)如图 ① ,连接 PC .根据 “内接四边形的对角互补的性质”即可证得结论;( 2)如图 ② ,通过作辅助线 BC 、 PE 、 CE (连接 BC ,延长 BP 至 E ,使 PE=PC ,连接 CE )构建等边 △ PCE 和全等三角形 △ BEC ≌ △ APC ;然后利用全等三角形的对应边相等和线段间 的和差关系可以求得 PA=PB+PC ;( 3)如图 ③ ,在线段 PC 上截取 PQ ,使 PQ=PB ,过点 A 作 AG ⊥ PC 于点 G .利用全等三角形 △ ABP ≌△ AQP ( SAS )的对应边相等推知 AB=AQ , PB=PG ,将 PA 、 PB 、 PC 的数量关系转化到 △ APC 中来求即可. 试题解析:( 1)如图 ① ,连接 PC .∵△ ACQ 是由 △ABP 绕点 A 逆时针旋转得到的, ∴∠ ABP=∠ ACQ .由图 ① 知,点 A 、 B 、 P 、C 四点共圆,∴∠ ACP+∠ABP=180 (°圆内接四边形的对角互补), ∴∠ ACP+∠ACQ=180 (°等量代换); ( 2) PA=PB+PC .理由如下:如图 ② ,连接 BC BP 至 E PE=PC CE,延长 ,使 ,连接 . ∵弦 AB=弦 AC , ∠ BAC=60 ,° ∴△ ABC 是等边三角形(有一内角为60 °的等腰三角形是等边三角形).∵A 、B 、 P 、C 四点共圆, ∴ ∠ BAC+∠ BPC=180 (°圆内接四边形的对角互补), ∵∠ BPC+∠ EPC=180,°∴ ∠BAC=∠ CPE=60,°∵ PE=PC ,∴ △ PCE 是等边三角形, ∴ CE=PC ,∠ E=∠ ECP=∠ EPC=60;°又∵ ∠ BCE=60°+∠BCP ,∠ ACP=60°+∠ BCP , ∴ ∠ BCE=∠ ACP (等量代换) ,在△ BEC 和△ APC 中,CE PCBCEACPAC BC, ∴ △ BEC ≌ △ APC ( SAS ), ∴ BE=PA ,∴ P A=BE=PB+PC ;(3)若 ∠ BAC=120°时,( 2)中的结论不成立, 3 PA=PB+PC .理由如下:如图 ③ ,在线段 PC 上截取 PQ ,使 PQ=PB ,过点 A 作 AG ⊥ PC 于点 G . ∵∠ BAC=120 ,°∠ BAC+∠ BPC=180 ,°∴ ∠BPC=60 .°(PA=PB+PC .∵弦 AB=弦 AC,∴ ∠ APB=∠ APQ=30 .°PB PQ在△ ABP 和△ AQP中,APB APQ ,∴ △ABP≌ △AQP(SAS),AP AP∴AB=AQ, PB=PQ(全等三角形的对应边相等),∴ AQ=AC(等量代换).在等腰△ AQC中, QG=CG.在Rt△ APG中,∠ APG=30°,则 AP=2AG, PG= 3 AG,∴PB+PC=PG﹣ QG+PG+CG=PG﹣ QG+PG+QG=2PG=2 3 AG,∴ 3 PA=2 3 AG,即 3 PA=PB+PC.【点睛】本题考查了圆的综合题,解题的关键要能掌握和灵活运用圆心角、弧、弦间的关系,全等三角形的判定与性质,圆内接四边形的性质等.3.如图,已知 BC 是⊙ O 的弦, A 是⊙ O 外一点,△ ABC 为正三角形, D 为 BC的中点, M 为⊙ O 上一点,并且∠ BMC=60°.(1)求证: AB 是⊙ O 的切线;(2)若 E, F 分别是边 AB, AC 上的两个动点,且∠EDF=120°,⊙ O 的半径为 2,试问BE+CF的值是否为定值?若是,求出这个定值;若不是,请说明理由.【答案】( 1)证明见试题解析;(2) BE+CF的值是定值,为等边△ ABC边长的一半.【解析】试题分析:( 1)连结 OB、 OD,如图 1,由于 D 为 BC的中点,由垂径定理的推理得OD⊥ BC,∠ BOD=∠ COD,即可得到∠ BOD=∠ M=60°,则∠ OBD=30°,所以∠ABO=90°,于是得到 AB 是⊙ O 的切线;(2)作 DM⊥ AB 于 M , DN⊥ AC 于 N,连结 AD,如图 2,由△ ABC为正三角形, D 为 BC的中点,得到AD 平分∠ BAC,∠BAC=60°,利用角平分线性质得DM=DN,得∠MDN=120 °,由∠ EDF=120 ,°得到∠ MDE=∠NDF,于是有△ DME≌ △ DNF,得到 ME=NF,1 1 1 B C,即可判断 BE+CF的值是得到 BE+CF=BM+CN,由 BM= BD, CN= OC,得到 BE+CF=2 2 2定值,为等边△ ABC 边长的一半.试题解析:( 1)连结 OB、 OD,如图 1,∵ D 为 BC 的中点,∴ OD⊥ BC,∠ BOD=∠ COD,1∴∠ ODB=90 ,°∵∠ BMC=∠BOC,∴∠ BOD=∠ M=60°,∴∠ OBD=30,°∵△ABC为正三2角形,∴ ∠ABC=60°,∴ ∠ ABO=60°+30°=90°,∴ AB⊥OB,∴ AB 是⊙O 的切线;(2) BE+CF的值是为定值.作DM ⊥ AB 于 M, DN⊥ AC 于 N,连结 AD,如图 2,∵ △ABC 为正三角形, D 为 BC 的中点,∴ AD 平分∠ BAC,∠BAC=60°,∴ DM=DN,∠ MDN=120°,∵ ∠ EDF=120°,∴∠ MDE=∠ NDF,在△ DME 和△DNF 中,∵ ∠ DME=∠ DNF. DM=DN,∠MDE=∠ NDF,∴△ DME≌ △DNF,∴ ME=NF,∴ BE+CF=BM﹣EM+CN+NF=BM+CN,在 Rt△ DMB 中,∵∠ DBM=60 ° ∴ BM= 1 1 1 1 1,BD,同理可得 CN=2 2 22 OC,∴ BE+CF= OB+ 2 OC= BC,∴BE+CF 的值是定值,为等边△ ABC边长的一半.考点: 1.切线的判定;2.等边三角形的性质;3.定值问题; 4.探究型; 5.综合题;6.压轴题.4.已知: BD 为⊙O 的直径, O 为圆心,点 A 为圆上一点,过点 B 作⊙ O 的切线交 DA 的延长线于点 F,点 C 为⊙ O 上一点,且 AB= AC,连接 BC 交 AD 于点 E,连接 AC.(1)如图 1,求证:∠ABF=∠ ABC;(2)如图 2,点 H 为⊙ O 内部一点,连接OH, CH若∠ OHC=∠ HCA=90°时,求证: CH=1DA;2(3)在 (2)的条件下,若OH= 6,⊙ O 的半径为10,求 CE 的长.【答案】 (1)见解析;( 2)见解析;( 3)21.5【解析】【分析】1 由BD为 e O 的直径,得到D ABD 90o,根据切线的性质得到FBA ABD 90o,根据等腰三角形的性质得到 C ABC ,等量代换即可得到结论;2 如图2,连接OC,根据平行线的判定和性质得到ACO COH ,根据等腰三角形的性质得到OBC OCB ,ABC CBO ACB OCB ,根据相似三角形的性质即可得到结论;AB BD2 ,根据勾股定理得到3 根据相似三角形的性质得到OCOHAD BD 2 AB 2 16 ,根据全等三角形的性质得到BF BE ,AF AE,根据射影定理得到AF 1229 ,根据相交弦定理即可得到结论.16【详解】1 Q BD 为 e O 的直径,BAD 90o,D ABD90o,Q FB 是 e O 的切线,FBD 90o,FBA ABD 90o,FBA D ,Q AB AC ,C ABC ,Q C D ,ABF ABC ;2 如图2,连接OC,Q OHCHCA 90o ,AC / / OH ,ACOCOH , Q OB OC ,OBC OCB , ABCCBOACBOCB ,即ABD ACO ,ABCCOH ,Q HBAD 90o ,VABD ∽ VHOC ,AD BD2 ,CHOCCH1DA ;23 由 2 知, VABC ∽ VHOC ,AB BD 2,OHOCQ OH 6 , e O 的半径为 10,AB 2OH 12 , BD 20,AD BD 2 AB 2 16,在 VABF 与 VABE 中,ABF ABEAB AB,BAFBAE 90oVABF ≌ VABE ,BF BE , AFAE ,Q FBDBAD90o ,AB 2AF AD,1229 ,AF16AE AF 9 ,DE 7 , BEAB 2AE215,Q AD ,BC 交于 E ,AE DE BE CE ,AE DE 9 7 21 CE15.BE5【点睛】本题考查了切线的性质,圆周角定理,全等三角形的判定和性质,相似三角形的判定和性质,平行线的性质,勾股定理,射影定理,相交弦定理,正确的识别图形是解题的关键.5.如图 1,已知 AB 是 ⊙O 的直径, AC 是 ⊙O 的弦,过 O 点作 OF ⊥ AB 交⊙ O 于点 D ,交AC 于点 E ,交 BC 的延长线于点 F ,点 G 是 EF 的中点,连接 CG (1)判断 CG 与⊙ O 的位置关系,并说明理由; (2)求证: 2OB 2=BC?BF ;(3)如图 2,当 ∠ DCE = 2∠ F , CE = 3,DG = 2.5 时,求 DE 的长.【答案】( 1) CG 与 ⊙ O 相切,理由见解析;( 2)见解析;( 3) DE = 2【解析】【分析】(1)连接 CE ,由 AB 是直径知 △ ECF 是直角三角形,结合 G 为 EF 中点知 ∠ AEO = ∠GEC =∠GCE ,再由 OA = OC 知 ∠ OCA = ∠OAC ,根据 OF ⊥ AB 可得 ∠ OCA+∠ GCE = 90 °,即OC ⊥ GC ,据此即可得证;( 2)证 △ ABC ∽△ FBO 得BC AB ,结合 AB =2BO 即可得;BOBF(3)证 ECD ∽ △ EGC 得EC ED,根据 CE = 3, DG = 2.5 知3 DE,解之可EGECDE 2.53得.【详解】解:( 1) CG 与⊙ O 相切,理由如下:如图 1,连接 CE ,∵AB 是⊙ O 的直径,∴∠ ACB=∠ ACF= 90 °,∵点 G 是 EF 的中点,∴GF= GE= GC,∴∠ AEO=∠GEC=∠ GCE,∵OA=OC,∴∠ OCA=∠ OAC,∵OF⊥ AB,∴∠ OAC+∠ AEO=90 °,∴∠ OCA+∠ GCE= 90 °,即 OC⊥ GC,∴CG 与⊙ O 相切;(2)∵ ∠ AOE=∠ FCE= 90°,∠AEO=∠ FEC,∴∠ OAE=∠ F,又∵∠ B=∠ B,∴△ ABC∽ △ FBO,BC AB∴,即 BO?AB= BC?BF,BO BF∵AB= 2BO,∴2OB2=BC?BF;(3)由( 1)知 GC= GE= GF,∴∠ F=∠ GCF,∴∠ EGC= 2∠F,又∵∠ DCE= 2∠ F,∴∠ EGC=∠DCE,∵∠ DEC=∠ CEG,∴△ ECD∽ △ EGC,∴EC ED ,EG EC∵CE= 3, DG= 2.5,∴3DE ,DE 2.5 3整理,得: DE2+2.5DE﹣ 9= 0,解得: DE= 2 或 DE=﹣ 4.5(舍),故DE=2.【点睛】本题是圆的综合问题,解题的关键是掌握圆周角定理、切线的判定、相似三角形的判定与性质及直角三角形的性质等知识点.6.如图,□ ABCD的边 AD 是△ ABC外接圆⊙ O 的切线,切点为 A,连接 AO 并延长交 BC于点 E,交⊙O 于点 F,过点 C 作直线 CP 交 AO 的延长线于点 P,且∠ BCP=∠ ACD.(1)求证: PC是⊙O 的切线;(2)若∠ B= 67.5 °, BC=2,求线段PC, PF与弧 CF所围成的阴影部分的面积S.【答案】( 1)见解析;(2)14【解析】【分析】( 1)过 C 点作直径 CM,连接 MB,根据 CM 为直径,可得∠ M+ ∠ BCM=90°,再根据 AB∥ DC 可得∠ ACD=∠ BAC,由圆周角定理可得∠ BAC=∠ M,∠ BCP=∠ACD,从而可推导得出∠ PCM= 90°,根据切线的判定即可得;(2)连接 OB,由 AD 是⊙O 的切线,可得∠ PAD= 90°,再由 BC∥ AD,可得 AP⊥ BC,从而得 BE=CE=1BC=1 ,继而可得到∠ ABC=∠ACB= 67.5 ,°从而得到∠ BAC= 45°,由圆周2角定理可得∠ BOC=90°,从而可得∠ BOE=∠ COE=∠ OCE= 45 °,根据已知条件可推导得出OE= CE=1, PC=OC=OE2 CE2 2 ,根据三角形面积以及扇形面积即可求得阴影部分的面积 .【详解】( 1)过 C 点作直径CM,连接 MB,∵CM 为直径,∴∠ MBC=90 °,即∠ M+∠ BCM= 90 °,∵四边形 ABCD是平行四边形,∴AB∥ DC, AD∥ BC,∴∠ ACD=∠ BAC,∵∠ BAC=∠M ,∠BCP=∠ ACD,∴∠ M =∠ BCP,∴∠ BCP+∠ BCM= 90 °,即∠ PCM=90 °,∴CM⊥ PC,∴PC 与⊙ O 相切;(2)连接 OB,∵AD 是⊙ O 的切线,切点为A,∴OA⊥AD,即∠ PAD= 90 °,∵BC∥ AD,∠AEB=∠PAD= 90 °,∴AP⊥ BC.∴ BE= CE=1BC= 1,2∴AB= AC,∴ ∠ ABC=∠ ACB= 67.5 ,°∴∠ BAC= 180 -°∠ABC-∠ ACB= 45 °,∴∠ BOC= 2∠ BAC=90 °,∵OB= OC,AP⊥BC,∴ ∠ BOE=∠ COE=∠ OCE= 45 ,°∵∠ PCM= 90 °,∴ ∠ CPO=∠ COE=∠ OCE= 45 ,°∴OE=CE= 1, PC= OC=OE2 CE2 2 ,2∴S=S△POC- S 扇形OFC=1245π 2π.2 12 360 4【点睛】本题考查了切线的判定与性质、圆周角定理、垂径定理、扇形面积等,综合性较强,准确添加辅助线是解题的关键.7.如图所示,AB 是半圆O 的直径,AC是弦,点P 沿BA 方向,从点 B 运动到点A,速度为 1cm/s ,若AB 10cm,点O 到AC 的距离为4cm .(1)求弦 AC的长;(2)问经过多长时间后,△ APC是等腰三角形.【答案】( 1) AC=6;( 2) t=4 或 5 或14s 时,△APC 是等腰三角形;5【解析】【分析】(1)过O 作OD⊥ AC于D,根据勾股定理求得AD 的长,再利用垂径定理即可求得AC 的长;( 2)分 AC=PC、 AP=AC、 AP=CP三种情况求t值即可 .【详解】(1)如图 1,过 O 作 OD⊥ AC 于 D,易知 AO=5, OD=4,从而 AD= =3,∴A C=2AD=6;(2)设经过t 秒△ APC是等腰三角形,则AP=10﹣ t ①如图 2,若 AC=PC,过点 C 作 CH⊥ AB 于 H,∵∠ A=∠ A,∠AHC=∠ODA=90 ,°∴△ AHC∽ △ ADO,∴AC:AH=OA:AD,即 AC:=5: 3,解得 t= s,∴经过s 后△APC 是等腰三角形;②如图 3,若 AP=AC,由PB=x,AB=10,得到 AP=10﹣ x,又∵ AC=6,则 10﹣ t=6 ,解得 t=4s,∴经过 4s 后△ APC是等腰三角形;③如图 4,若 AP=CP, P 与 O 重合,则AP=BP=5,∴经过 5s 后△ APC是等腰三角形.综上可知当t=4 或 5 或s 时,△ APC是等腰三角形.【点睛】本题是圆的综合题,解决问题利用了垂径定理,勾股定理等知识点,解题时要注意当△BPC 是等腰三角形时,点P 的位置有三种情况.8.如图 1,是用量角器一个角的操作示意图,量角器的读数从M 点开始(即M 点的读数为 0),如图2,把这个量角器与一块30°(∠ CAB=30°)角的三角板拼在一起,三角板的斜边AB 与量角器所在圆的直径MN 重合,现有射线 C 绕点 C 从CA 开始沿顺时针方向以每秒 2°的速度旋转到与CB,在旋转过程中,射线CP 与量角器的半圆弧交于E.连接(1)当射线CP经过 AB 的中点时,点 E 处的读数是,此时△BCE的形状是BE.;(2)设旋转 x 秒后,点 E 处的读数为 y,求 y 与 x 的函数关系式;(3)当 CP旋转多少秒时,△BCE是等腰三角形?【答案】( 1) 60°,直角三角形;(2) y= 4x(0≤x≤45);( 3) 7.5 秒或 30 秒【解析】【分析】(1)根据圆周角定理即可解决问题;(2)如图 2﹣2 中,由题意∠ ACE=2x,∠ AOE= y,根据圆周角定理可知∠AOE= 2∠ ACE,可得 y= 2x(0≤x≤45);(3)分两种情形分别讨论求解即可;【详解】解:( 1)如图 2﹣ 1 中,∵∠ ACB= 90 °, OA=OB,∴OA=OB= OC,∴∠ OCA=∠ OAC= 30 °,∴∠ AOE= 60 °,∴点 E 处的读数是60 °,∵∠ E=∠BAC=30 °,OE= OB,∴∠ OBE=∠E= 30 °,∴∠ EBC=∠ OBE+∠ABC= 90 °,∴△ EBC是直角三角形;故答案为 60°,直角三角形;(2)如图 2﹣2 中,∵∠ ACE= 2x,∠ AOE= y,∵∠ AOE= 2∠ACE,∴y= 4x( 0 ≤x≤ 45).(3)①如图 2﹣ 3 中,当 EB=EC时, EO垂直平分线段BC,∵AC⊥ BC,∵EO∥ AC,∴∠ AOE=∠BAC=30 °,1∴∠ ECA=∠ AOE=15°,2∴x= 7.5.②若 2﹣ 4 中,当 BE=BC时,易知∠ BEC=∠ BAC=∠ BCE= 30°,∴∠ OBE=∠OBC= 60 °,∵OE= OB,∴△ OBE是等边三角形,∴∠ BOE=60 °,∴∠ AOB=120 °,1∴∠ ACE=∠ACB=60°,2∴x= 30,综上所述,当CP 旋转 7.5 秒或 30 秒时,△ BCE是等腰三角形;【点睛】本题考查几何变换综合题、创新题目、圆周角定理、等腰三角形的判定和性质等知识,解题的关键是理解题意,学会用分类讨论的思想思考问题,属于中考压轴题.9.在直角坐标系中, O 为坐标原点,点 A 坐标为( 2, 0),以 OA 为边在第一象限内作等边△OAB, C 为 x 轴正半轴上的一个动点( OC> 2),连接 BC,以 BC 为边在第一象限内作等边△ BCD,直线 DA 交 y 轴于 E 点.(1)求证:△ OBC≌ △ ABD(2)随着 C 点的变化,直线 AE 的位置变化吗?若变化,请说明理由;若不变,请求出直线AE 的解析式.(3)以线段BC为直径作圆,圆心为点F,当 C 点运动到何处时,直线EF∥直线 BO;这时⊙F 和直线 BO 的位置关系如何?请给予说明.【答案】(1)见解析;(2 AE的位置不变,AE的解析式为: y 3x 2 3 ;)直线(3) C 点运动到(4,0)处时,直线EF∥直线 BO;此时直线BO 与⊙F 相切,理由见解析. 【解析】【分析】(1)由等边三角形的性质可得到 OB=AB, BC=BD,∠ OBA=∠ DBC,等号两边都加上∠ABC,得到∠OBC=∠ABD,根据“ SAS得”到△ OBC≌ △ ABD.(2)先由三角形全等,得到∠BAD=∠ BOC=60 ,°由等边△BCD,得到∠ BAO=60 ,°根据平角定义及对顶角相等得到∠OAE=60 ,°在直角三角形 OAE中,由 OA 的长,根据 tan60 的°定义求出 OE的长,确定出点 E 的坐标,设出直线AE 的方程,把点 A 和 E 的坐标代入即可确定出解析式.( 3)由EA∥ OB, EF∥OB,根据过直线外一点作已知直线的平行线有且只有一条,得到EF与 EA重合,所以 F 为 BC 与 AE 的交点,又 F 为 BC 的中点,得到 A 为 OC 中点,由 A 的坐标即可求出 C 的坐标;相切理由是由 F 为等边三角形BC边的中点,根据“三线合一”得到DF与BC 垂直,由EF 与 OB 平行得到BF 与 OB 垂直,得证 .【详解】(1)证明:∵ △ OAB 和△ BCD都为等边三角形,∴OB=AB, BC=BD,∠OBA=∠DBC=60 ,°∴∠ OBA+∠ ABC=∠DBC+∠ ABC,即∠ OBC=∠ ABD,在△ OBC和△ ABD 中,OB ABOBC ABD ,BC BD∴△ OBC≌△ ABD.(2)随着 C 点的变化,直线 AE 的位置不变,∵△ OBC≌△ ABD,∴∠ BAD=∠ BOC=60 ,°又∵ ∠ BAO=60°,∴∠ DAC=60 ,°∴∠ OAE=60 ,°又 OA=2,在Rt△ AOE中, tan60 °= OE,OA则OE=2 3,∴点 E 坐标为( 0, -2 3 ),设直线 AE 解析式为 y=kx+b,把 E 和 A 的坐标代入得:0 2k b,2 3 bk 3解得,,b2 3∴直线 AE 的解析式为:y3x 2 3 .(3) C 点运动到(4,0)处时,直线EF∥直线 BO;此时直线BO 与⊙F 相切,理由如下:∵∠ BOA=∠ DAC=60 ,°EA∥ OB,又 EF∥ OB,则 EF与 EA 所在的直线重合,∴点 F 为 DE 与 BC 的交点,又 F 为 BC中点,∴A 为 OC中点,又AO=2,则 OC=4,∴当 C 的坐标为( 4, 0)时, EF∥ OB,这时直线BO 与⊙ F 相切,理由如下:∵△ BCD为等边三角形, F 为 BC 中点,∴D F⊥ BC,又 EF∥ OB,∴F B⊥ OB,∴直线 BO 与⊙ F 相切,【点睛】本题考查了一次函数;三角形全等的判定与性质;等边三角形的性质和直线与圆的位置关系.熟练掌握相关性质定理是解题关键.10. 如图,在 △ ABC 中, AB = AC ,以 AB 为直径的 ⊙ O 与边 BC 交于点 D , DE ⊥ AC ,垂足为E ,交 AB 的延长线于点 F .(1)求证: EF 是 ⊙ O 的切线;(2)若 ∠ C = 60°, AC =12,求 BD ? 的长. (3)若 tan C = 2, AE = 8,求 BF 的长.【答案】 (1)见解析 ;(2) 2 ;π(3)10.3【解析】分析:( 1)连接 OD ,根据等腰三角形的性质:等边对等角,得∠ABC=∠ C ,∠ABC=∠ ODB ,从而得到 ∠ C=∠ ODB ,根据同位角相等,两直线平行,得到 OD ∥ AC ,从而得证 OD ⊥ EF ,即 EF 是⊙ O 的切线;(2) 根据中点的性质,由AB=AC=12 ,求得 OB=OD=1AB =6,进而根据等边三角形的判2定得到 △ OBD 是等边三角形,即 ∠ BOD=600,从而根据弧长公式七届即可;(3)连接 AD ,根据直角三角形的性质,由在Rt △ DEC 中 , tanCDE 2 设 CE=x,则CEAE 2 ,求得 DE 、 CE 的长,然后根据相似三DE=2x ,然后由 Rt △ ADE 中 , tan ADEDE角形的判定与性质求解即可.详解:( 1)连接 OD ∵ AB=AC ∴ ∠ ABC=∠ C∵OD=OB ∴∠ ABC=∠ ODB∴∠ C=∠ ODB ∴ OD ∥ AC又∵ DE ⊥ AC ∴ OD ⊥ DE ,即 OD ⊥ EF ∴EF 是 ⊙ O 的切线1( 2) ∵ AB=AC=12 ∴ OB=OD= AB =62由( 1)得: ∠ C=∠ ODB=600∴△ OBD 是等边三角形∴∠ BOD=600∴ ?606? 的长22BD =180即BD( 3)连接 AD ∵DE ⊥AC ∠ DEC=∠ DEA=900在 Rt △ DEC 中, tanCDE 2 设 CE=x,则 DE=2x CE∵AB 是直径 ∴∠ ADB=∠ ADC=900∴∠ ADE+∠ CDE=90 在 Rt △ DEC 中 ,∠ C+∠ CDE=90AE 2∴∠ C=∠ ADE 在 Rt △ ADE 中 , tan ADE DE∵ AE=8,∴ DE=4 则 CE=2∴ A C=AE+CE=10即直径 AB=AC=10 则 OD=OB=5∵ O D//AE ∴ △ ODF ∽ △AEF∴OF OD 即: BF 5 5AF AEBF 10 8解得: BF=10即 BF 的长为 10 .33点睛:此题考查了切线的性质与判定、圆周角定理、等腰三角形的性质、直角三角形以及相似三角形的判定与性质.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.11. 如图,等边 △ ABC 内接于 ⊙ O , P 是弧 AB 上任一点(点 P 不与 A 、B 重合),连 AP ,BP ,过 C 作 CM ∥BP 交 PA 的延长线于点 M ,( 1)求证: △ PCM 为等边三角形;( 2)若 PA = 1, PB = 2,求梯形 PBCM 的面积.【答案】( 1)见解析;( 2)1534【解析】【分析】(1)利用同弧所对的圆周角相等即可求得题目中的未知角,进而判定△ PCM为等边三角形;(2)利用上题中得到的相等的角和等边三角形中相等的线段证得两三角形全等,进而利用△PCM 为等边三角形,进而求得PH 的长,利用梯形的面积公式计算梯形的面积即可.【详解】(1)证明:作PH⊥ CM 于 H,∵△ ABC是等边三角形,∴∠ APC=∠ABC=60 ,°∠BAC=∠ BPC=60 ,°∵CM∥ BP,∴∠ BPC=∠ PCM=60 ,°∴△ PCM 为等边三角形;(2)解:∵ △ ABC是等边三角形,△ PCM 为等边三角形,∴∠ PCA+∠ ACM=∠ BCP+∠ PCA,∴∠ BCP=∠ ACM,在△ BCP和△ ACM 中,BC ACBCP ACM ,CP CM∴△ BCP≌ △ ACM(SAS),∴PB=AM,∴CM=CP=PM=PA+AM=PA+PB=1+2=3,在 Rt△ PMH 中,∠ MPH=30°,∴PH= 3 3 ,2梯形 PBCM =1 13 315∴S (PB+CM ×PH= 3 .)×( 2+3)×=2 2 2 4【点睛】本题考查圆周角定理、等边三角形的判定、全等三角形的性质及梯形的面积计算方法,是一道比较复杂的几何综合题.12.在中,,,,分别是边,的中点,若等腰绕点逆时针旋转,得到等腰,设旋转角为,记直线与的交点为.(1)问题发现如图1,当时,线段的长等于 _________,线段的长等于 _________.(2)探究证明如图2,当时,求证:,且.(3)问题解决求点到所在直线的距离的最大值.(直接写出结果)【答案】( 1);;(2)详见解析;(3)【解析】【分析】(1)利用等腰直角三角形的性质结合勾股定理分别得出BD1的长和 CE1的长;(2)根据旋转的性质得出,∠ D1AB=∠ E1 AC=135°,进而求出△ D1 AB≌ △ E1AC( SAS),即可得出答案;(3)首先作 PG⊥ AB,交 AB 所在直线于点 G,则 D1, E1在以 A 为圆心, AD 为半径的圆上,当 BD1所在直线与⊙ A 相切时,直线 BD1与 CE1的交点 P 到直线 AB 的距离最大,此时四边形 AD1PE1是正方形,进而求出PG 的长.【详解】(1)解:∵ ∠ A=90°, AC=AB=4, D, E 分别是边 AB,AC 的中点,∴A E=AD=2,∵等腰 Rt△ADE 绕点 A 逆时针旋转,得到等腰Rt△ AD1E1,设旋转角为α(0<α≤ 180)°,∴当α =90时°, AE1=2,∠ E1AE=90°,∴BD1=;故答案为:;;(2)证明:由题意可知,,,∵是由绕点逆时针旋转得到,∴,,在和中,,∴,∴,.∵,∴,∴,∴,且.(3)点的运动轨迹是在的上半圆周,点的运动轨迹是在的弧段.即当与相切时,有最大值.点到所在直线的距离的最大值为.【点睛】此题主要考查了几何变换以及等腰腰直角三角形的性质和勾股定理以及切线的性质等知识,根据题意得出PG的最长时P 点的位置是解题关键.13.如图 , Rt △ABC 中,∠ B=90°,它的内切圆分别与边BC、 CA、AB 相切于点D、 E、 F, (1)设AB=c, BC=a, AC=b,求证 : 内切圆半径 r=1(a+b-c). 2(2)若 AD 交圆于 P, PC交圆于 H, FH//BC, 求∠ CPD;(3)若 r=3 10 , PD= 18, PC=27 2 . 求△ ABC各边长 .【答案】( 1)证明见解析( 2)45°(3)9 10,12 10,15 10【解析】【分析】(1)根据切线长定理,有AE=AF,BD=BF, CD=CE.易证四边形B DOF为正方形,BD=BF=r,用 r 表示 AF、 AE、 CD、 CE,利用 AE+CE=AC为等量关系列式.(2)∠ CPD为弧 DH 所对的圆周角,连接OD,易得弧DH 所对的圆心角∠ DOH=90°,所以∠C PD=45 .°(3)由 PD=18 和 r=310, 联想到垂径定理基本图形,故过圆心O 作 PD 的垂线 OM,求得弦心距 OM=3 ,进而得到∠ MOD 的正切值.延长 DO 得直径 DG,易证 PG∥ OM ,得到同位角∠ G=∠ MOD.又利用圆周角定理可证∠ADB=∠ G,即得到∠ ADB 的正切值,进而求得AB.再设 CE=CD=x,用 x 表示 BC、 AC,利用勾股定理列方程即求出 x.【详解】解:( 1)证明:设圆心为O,连接 OD、OE、 OF,∵⊙ O 分别与 BC、CA、 AB 相切于点D、 E、 F∴OD⊥BC, OE⊥ AC, OF⊥AB, AE=AF, BD=BF,CD=CE ∴∠ B=∠ODB=∠ OFB=90 °∴四边形 BDOF是矩形∵O D=OF=r∴矩形 BDOF是正方形∴B D=BF=r∴A E=AF=AB-BF=c-,r CE=CD=BC-BD=a-r∵A E+CE=AC∴c-r+a-r=b整理得: r= 1( a+b-c)2(2)取 FH 中点 O,连接 OD ∵F H∥ BC∴∠ AFH=∠ B=90 °∵AB 与圆相切于点F,∴F H 为圆的直径,即 O 为圆心∵FH∥ BC∴∠ DOH=∠ ODB=90 °1∴∠ CPD=∠ DOH=45°2(3)设圆心为 O,连接 DO 并延长交⊙ O 于点 G,连接 PG,过 O 作 OM⊥PD 于 M ∴∠ OMD=90 °∵P D=181∴DM= PD=92∵B F=BD=OD=r=3 10,∴OM= OD2 DM 2=(3 10) 2 92=90 81 =3∴t an ∠ MOD= DM= 3OM∵DG 为直径∴∠ DPG=90 °∴OM ∥ PG,∠G+∠ ODM=90 °∴∠ G=∠ MOD∵∠ ODB=∠ADB+∠ ODM=90 °∴∠ ADB=∠ G∴∠ ADB=∠ MODAB∴tan ∠ ADB==tan∠ MOD=3BD∴A B=3BD=3r=9 10∴A E=AF=AB-BF=9 10 - 3 10= 6 10设CE=CD=x,则 BC=3 10 +x, AC=6 10 +x∵AB2+BC2=AC2∴(910 )2.+(310+x)2=(610+x)2解得: x=910∴B C=12 10, AC=15 10∴△ ABC各边长 AB=910 ,AC=15 10 ,BC=12 10【点睛】本题考查切线的性质,切线长定理,正方形的判定,圆周角定理,垂径定理,勾股定理.切线长定理的运用是解决本题的关键,而在不能直接求得线段长的情况下,利用勾股定理作为等量关系列方程解决是常用做法.14.如图, AB 是⊙ O 的直径, AD 是⊙ O 的弦,点 F 是 DA 延长线上的一点,过⊙O上一点C 作⊙O 的切线交 DF 于点 E, CE⊥ DF.(1)求证: AC 平分∠ FAB;(2)若 AE=1, CE= 2,求⊙ O 的半径.【答案】( 1 )证明见解析;(2)52【解析】试题分析:(1)连接 OC,根据切线的性质和圆周角定理,得出∠ OCA=∠ OAC 与∠CAE=∠ OCA,然后根据角平分线的定义可证明;(2)由圆周角定理得到∠ BCA=90°,由垂直的定义,可求出∠CEA=90°,从而根据两角对应相等的两三角形相似可证明△ ACB∽△ AEC,再根据相似三角形的对应边成比例求得 AB 的长,从而得到圆的半径 .试题解析: (1)证明:连接OC.∵CE是⊙ O 的切线,∴ ∠ OCE=90°∵CE⊥ DF,∴∠ CEA=90 °,∴∠ ACE+∠CAE=∠ ACE+∠OCA=90 ,°∴ ∠CAE=∠ OCA∵OC= OA,∴ ∠ OCA=∠ OAC.∴∠ CAE=∠ OAC,即 AC 平分∠ FAB(2)连接 BC.∵AB 是⊙ O 的直径,∴ ∠ ACB =∠AEC =90 . °又∵∠ CAE=∠ OAC,∴△ ACB∽△ AEC,∴AB AC.AC AE∵AE = 1, CE =2, ∠ AEC =90 ,°∴ ACAE 2 CE 212 22525AC 255 , ∴⊙ O 的半径为.∴AB2AE115. 对于平面内的 ⊙ C 和 ⊙ C 外一点 Q ,给出如下定义:若过点 Q 的直线与 ⊙ C 存在公共 点,记为点 A ,B ,设 kAQBQ,则称点 A (或点 B )是 ⊙C 的 “K 相关依附点 ”,特别CQ地,当点 A 和点 B 重合时,规定 2 AQ (或2BQ).AQ=BQ , kCQCQ已知在平面直角坐标系 xoy 中, Q(-1,0), C(1,0), ⊙C 的半径为 r . (1)如图 1,当 r2 时,① 若 A 1(0,1)是 ⊙ C 的 “k 相关依附点 ”,求 k 的值.②A 2(1+2 , 0)是否为 ⊙ C 的 “2相关依附点 ”.(2)若 ⊙ C 上存在 “k 相关依附点 ”点 M ,① 当 r=1 ,直线 QM 与 ⊙C 相切时,求 k 的值. ② 当 k3 时,求 r 的取值范围.(3)若存在 r 的值使得直线 y 3x b 与⊙ C 有公共点,且公共点时⊙ C 的 “ 3 相关依附点 ”,直接写出 b 的取值范围.【答案】( 1) ①2 . ② 是;( 2) ① k3 ; ② r 的取值范围是 1≤ r 2 ;( 3)3 b 3 3 . 【解析】【分析】(1 ) ① 如图 1 中,连接 AC 、 QA 1 .首先证明 QA 1 是切线,根据 k2AQ计算即可解决CQ问题;② 根据定义求出 k 的值即可判断;(2 ) ① 如图,当 r 1时,不妨设直线QM 与 e C 相切的切点 M 在 x 轴上方(切点 M 在x 轴下方时同理),连接CM,则QM CM ,根据定义计算即可;②如图 3 中,若直线 QM 与e C不相切,设直线QM 与e C的另一个交点为N (不妨设QN QM ,点N,M在x轴下方时同理),作CD QM 于点D,则MD ND ,可得MQ NQ ( MN NQ) NQ 2ND 2NQ 2DQ ,CQ = 2,推出k MQ NQ 2 DQ3 时,DQ 3 ,此时 CD CQ2 DQ2 1,CQDQ ,可得当kCQ假设 e C 经过点 Q ,此时r = 2,因为点Q早e C外,推出 r 的取值范围是1, r 2 ;(3)如图 4 中,由( 2)可知:当k 3时,1, r 2 .当 r = 2 时, e C 经过点Q( 1,0) 或E(3,0),当直线y 3x b 经过点Q时, b 3 ,当直线 y 3x b 经过点E时, b 3 3 ,即可推出满足条件的b的取值范围为 3 b 3 3 .【详解】(1)①如图 1 中,连接AC、QA1.由题意: OC OQ OA1,△ QA1C是直角三角形,CA1Q 90 ,即CA1 QA1,QA1是e C的切线,k 2QA1 2 22 .QC 2② Q A2(1 2,0) 在e C2 2 1 2 1,A2是e C的“2相关依附上, k 2 2点”.故答案为:2 ,是;(2)①如图2,当r 1 时,不妨设直线QM 与e C相切的切点M在x轴上方(切点M 在 x 轴下方时同理),连接CM ,则QM CM .Q Q ( 1,0) , C (1,0) ,r 1 , CQ2 ,CM,MQ 3 ,此时12MQk 3 ;CQ②如图 3 中,若直线 QM 与e C不相切,设直线QM 与e C的另一个交点为N (不妨设QN QM ,点N,M在x轴下方时同理),作CD QM 于点D,则MD ND ,MQ NQ (MN NQ ) NQ 2ND 2NQ2DQ ,Q CQ 2 ,MQ NQ 2DQ 当k 3时,DQ 3 ,此时 CDCQ2 DQ 2 1 ,k DQ ,CQ CQ假设 e C 经过点 Q ,此时r = 2,Q点 Q 早 e C 外,r 的取值范围是1, r 2.(3)如图 4 中,由( 2)可知:当k 3时, 1, r 2 .当 r = 2 时,e C经过点Q( 1,0) 或E (3,0),当直线y 3x b 经过点Q时,b 3 ,当直线 y3x b 经过点 E 时, b 3 3 ,满足条件的 b 的取值范围为3 b 3 3 .【点睛】本题考查了一次函数综合题、圆的有关知识、勾股定理、切线的判定和性质、点 A (或点B)是 e C 的“k 相关依附点”的定义等知识,解题的关键是理解题意,灵活运用所学知识解决问题,学会考虑特殊位置解决问题,属于中考压轴题.。
中考数学压轴题专题圆的综合的经典综合题附详细答案
![中考数学压轴题专题圆的综合的经典综合题附详细答案](https://img.taocdn.com/s3/m/15dcc797b1717fd5360cba1aa8114431b90d8e08.png)
中考数学压轴题专题圆的综合的经典综合题附详细答案中考数学压轴题专题:圆的综合一、圆的综合1.如图,⊙O的半径为6cm,经过⊙O上一点C作⊙O的切线交半径OA的延长于点B,作∠ACO的平分线交⊙O于点D,交OA于点F,延长DA交BC于点E。
1) 求证:AC∥OD;2) 如果DE⊥BC,求AC的长度。
答案】(1) 证明见解析;(2) 2π。
解析】试题分析:(1) 由OC=OD,CD平分∠ACO,易证得∠ACD=∠ODC,即可证得AC∥OD;(2) BC切⊙O于点C,DE⊥BC,易证得平行四边形ADOC是菱形,继而可证得△AOC是等边三角形,则可得:∠AOC=60°,继而求得弧AC的长度。
试题解析:1) 证明:因为OC=OD,所以∠OCD=∠XXX。
因为CD平分∠ACO,所以∠XXX∠ACD。
因此,∠ACD=∠ODC,即可证得AC∥OD。
2) 因为BC切⊙XXXC,所以XXX。
因为DE⊥BC,所以OC∥DE。
因为AC∥OD,所以四边形ADOC是平行四边形。
因为OC=OD,所以平行四边形ADOC是菱形,所以OC=AC=OA。
因为△AOC是等边三角形,所以∠AOC=60°,因此弧AC的长度为2π。
点睛:本题考查了切线的性质、等腰三角形的判定与性质、菱形的判定与性质以及弧长公式。
此题难度适中,注意掌握数形结合思想的应用。
2.(类比概念) 三角形的内切圆是以三个内角的平分线的交点为圆心,以这点到三边的距离为半径的圆,则三角形可以称为圆的外切三角形,可以得出三角形的三边与该圆相切。
以此类推,如图1,各边都和圆相切的四边形称为圆外切四边形。
性质探究) 如图1,试探究圆外切四边形的ABCD两组对边AB,CD与BC,AD之间的数量关系。
猜想结论:(要求用文字语言叙述)写出证明过程(利用图1,写出已知、求证、证明)性质应用)①初中学过的下列四边形中哪些是圆外切四边形(填序号):A:平行四边形;B:菱形;C:矩形;D:正方形。
中考数学圆的综合-经典压轴题及详细答案
![中考数学圆的综合-经典压轴题及详细答案](https://img.taocdn.com/s3/m/7a65dc27be23482fb5da4c3f.png)
中考数学圆的综合-经典压轴题及详细答案一、圆的综合1.如图,⊙O是△ABC的外接圆,点E为△ABC内切圆的圆心,连接AE的延长线交BC于点F,交⊙O于点D;连接BD,过点D作直线DM,使∠BDM=∠DAC.(1)求证:直线DM是⊙O的切线;(2)若DF=2,且AF=4,求BD和DE的长.【答案】(1)证明见解析(2)23【解析】【分析】(1)根据垂径定理的推论即可得到OD⊥BC,再根据∠BDM=∠DBC,即可判定BC∥DM,进而得到OD⊥DM,据此可得直线DM是⊙O的切线;(2)根据三角形内心的定义以及圆周角定理,得到∠BED=∠EBD,即可得出DB=DE,再判定△DBF∽△DAB,即可得到DB2=DF•DA,据此解答即可.【详解】(1)如图所示,连接OD.∵点E是△ABC的内心,∴∠BAD=∠CAD,∴¶¶BD CD=,∴OD⊥BC.又∵∠BDM=∠DAC,∠DAC=∠DBC,∴∠BDM=∠DBC,∴BC∥DM,∴OD⊥DM.又∵OD为⊙O半径,∴直线DM是⊙O的切线.(2)连接BE.∵E为内心,∴∠ABE=∠CBE.∵∠BAD=∠CAD,∠DBC=∠CAD,∴∠BAD=∠DBC,∴∠BAE+∠ABE=∠CBE+∠DBC,即∠BED=∠DBE,∴BD=DE.又∵∠BDF=∠ADB(公共角),∴△DBF∽△DAB,∴DF DBDB DA=,即DB2=DF•DA.∵DF=2,AF=4,∴DA=DF+AF=6,∴DB2=DF•DA=12,∴DB=DE=23.【点睛】本题主要考查了三角形的内心与外心,圆周角定理以及垂径定理的综合应用,解题时注意:平分弦所对一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧;三角形的内心到三角形三边的距离相等;三角形的内心与三角形顶点的连线平分这个内角.2.如图,已知△ABC内接于⊙O,BC交直径AD于点E,过点C作AD的垂线交AB的延长线于点G,垂足为F.连接OC.(1)若∠G=48°,求∠ACB的度数;(2)若AB=AE,求证:∠BAD=∠COF;(3)在(2)的条件下,连接OB,设△AOB的面积为S1,△ACF的面积为S2.若tan∠CAF=12,求12SS的值.【答案】(1)48°(2)证明见解析(3)3 4【解析】【分析】(1)连接CD,根据圆周角定理和垂直的定义可得结论;(2)先根据等腰三角形的性质得:∠ABE=∠AEB,再证明∠BCG=∠DAC,可得»»»CD PB PD==,则所对的圆周角相等,根据同弧所对的圆周角和圆心角的关系可得结论;(3)过O作OG⊥AB于G,证明△COF≌△OAG,则OG=CF=x,AG=OF,设OF=a,则OA=OC=2x-a,根据勾股定理列方程得:(2x-a)2=x2+a2,则a=34x,代入面积公式可得结论.【详解】(1)连接CD,∵AD是⊙O的直径,∴∠ACD=90°,∴∠ACB+∠BCD=90°,∵AD⊥CG,∴∠AFG=∠G+∠BAD=90°,∵∠BAD=∠BCD,∴∠ACB=∠G=48°;(2)∵AB=AE,∴∠ABE=∠AEB,∵∠ABC=∠G+∠BCG,∠AEB=∠ACB+∠DAC,由(1)得:∠G=∠ACB,∴∠BCG=∠DAC,∴»»CD PB=,∵AD是⊙O的直径,AD⊥PC,∴»»CD PD=,∴»»»CD PB PD==,∴∠BAD=2∠DAC,∵∠COF=2∠DAC,∴∠BAD=∠COF;(3)过O作OG⊥AB于G,设CF=x,∵tan∠CAF=12=CF AF,∴AF=2x,∵OC=OA,由(2)得:∠COF=∠OAG,∵∠OFC=∠AGO=90°,∴△COF≌△OAG,∴OG=CF=x,AG=OF,设OF=a,则OA=OC=2x﹣a,Rt△COF中,CO2=CF2+OF2,∴(2x﹣a)2=x2+a2,a=34 x,∴OF=AG=34 x,∵OA=OB,OG⊥AB,∴AB=2AG=32x,∴1213··3 22 1·24·2AB OG x xSS x xCF AF===.【点睛】圆的综合题,考查了三角形的面积、垂径定理、角平分线的性质、三角形全等的性质和判定以及解直角三角形,解题的关键是:(1)根据圆周角定理找出∠ACB+∠BCD=90°;(2)根据外角的性质和圆的性质得:»»»==;(3)利用三角函数设未知数,根CD PB PD据勾股定理列方程解决问题.3.如图,在平面直角坐标系xoy中,E(8,0),F(0 , 6).(1)当G(4,8)时,则∠FGE= °(2)在图中的网格区域内找一点P,使∠FPE=90°且四边形OEPF被过P点的一条直线分割成两部分后,可以拼成一个正方形.要求:写出点P点坐标,画出过P点的分割线并指出分割线(不必说明理由,不写画法).【答案】(1)90;(2)作图见解析,P(7,7),PH是分割线.【解析】试题分析:(1)根据勾股定理求出△FEG的三边长,根据勾股定理逆定理可判定△FEG是直角三角形,且∠FGE="90" °.(2)一方面,由于∠FPE=90°,从而根据直径所对圆周角直角的性质,点P在以EF为直径的圆上;另一方面,由于四边形OEPF被过P点的一条直线分割成两部分后,可以拼成一个正方形,从而OP是正方形的对角线,即点P在∠FOE的角平分线上,因此可得P(7,7),PH是分割线.试题解析:(1)连接FE,∵E(8,0),F(0 , 6),G(4,8),∴根据勾股定理,得FG=,EG=,FE=10.∵,即.∴△FEG是直角三角形,且∠FGE=90 °.(2)作图如下:P(7,7),PH是分割线.考点:1.网格问题;2.勾股定理和逆定理;3.作图(设计);4.圆周角定理.4.如图,已知在△ABC中,AB=15,AC=20,tanA=12,点P在AB边上,⊙P的半径为定长.当点P与点B重合时,⊙P恰好与AC边相切;当点P与点B不重合时,⊙P与AC边相交于点M和点N.(1)求⊙P的半径;(2)当AP=5△APM与△PCN是否相似,并说明理由.【答案】(1)半径为52)相似,理由见解析.【解析】【分析】(1)如图,作BD⊥AC,垂足为点D,⊙P与边AC相切,则BD就是⊙P的半径,利用解直角三角形得出BD与AD的关系,再利用勾股定理可求得BD的长;(2)如图,过点P作PH⊥AC于点H,作BD⊥AC,垂足为点D,根据垂径定理得出MN=2MH,PM=PN,再利用勾股定理求出PH、AH、MH、MN的长,从而求出AM、NC的长,然后求出AMMP、PNNC的值,得出AMMP=PNNC,利用两边对应成比例且夹角相等的两三角形相似即可证明.【详解】(1)如图,作BD ⊥AC ,垂足为点D ,∵⊙P 与边AC 相切,∴BD 就是⊙P 的半径,在Rt △ABD 中,tanA=1BD 2AD =, 设BD=x ,则AD=2x ,∴x 2+(2x)2=152,解得:5∴半径为5(2)相似,理由见解析,如图,过点P 作PH ⊥AC 于点H ,作BD ⊥AC ,垂足为点D ,∴PH 垂直平分MN ,∴PM=PN ,在Rt △AHP 中,tanA=12PH AH =, 设PH=y ,AH=2y ,y 2+(2y )2=(52解得:y=6(取正数),∴PH=6,AH=12,在Rt △MPH 中, ()22356-,∴MN=2MH=6,∴AM=AH-MH=12-3=9,NC=AC-MN-AM=20-6-9=5, ∴3535AM MP ==,35PN NC =, ∴AM MP =PN NC, 又∵PM=PN ,∴∠PMN=∠PNM ,∴∠AMP=∠PNC ,∴△AMP ∽△PNC.【点睛】本题考查了解直角三角形、垂径定理、相似三角形的判定与性质等,综合性较强,有一定的难度,正确添加辅助线、灵活应用相关的性质与定理是解题的关键. 5.在⊙O 中,点C 是AB u u u r 上的一个动点(不与点A ,B 重合),∠ACB=120°,点I 是∠ABC 的内心,CI 的延长线交⊙O 于点D ,连结AD,BD .(1)求证:AD=BD .(2)猜想线段AB 与DI 的数量关系,并说明理由.(3)若⊙O 的半径为2,点E ,F 是»AB 的三等分点,当点C 从点E 运动到点F 时,求点I 随之运动形成的路径长.【答案】(1)证明见解析;(2)AB=DI ,理由见解析(323 【解析】分析:(1)根据内心的定义可得CI 平分∠ACB ,可得出角相等,再根据圆周角定理,可证得结论;(2)根据∠ACB=120°,∠ACD=∠BCD ,可求出∠BAD 的度数,再根据AD=BD ,可证得△ABD 是等边三角形,再根据内心的定义及三角形的外角性质,证明∠BID=∠IBD ,得出ID=BD ,再根据AB=BD ,即可证得结论;(3)连接DO ,延长DO 根据题意可知点I 随之运动形成的图形式以D 为圆心,DI 1为半径的弧,根据已知及圆周角定理、解直角三角形,可求出AD 的长,再根据点E ,F 是 弧AB ⌢的三等分点,△ABD 是等边三角形,可证得∠DAI 1=∠AI 1D ,然后利用弧长的公式可求出点I 随之运动形成的路径长.详解:(1)证明:∵点I 是∠ABC 的内心∴CI 平分∠ACB∴∠ACD=∠BCD∴弧AD=弧BD∴AD=BD(2)AB=DI理由:∵∠ACB=120°,∠ACD=∠BCD∴∠BCD=×120°=60°∵弧BD=弧BD∴∠DAB=∠BCD=60°∵AD=BD∴△ABD是等边三角形,∴AB=BD,∠ABD=∠C∵I是△ABC的内心∴BI平分∠ABC∴∠CBI=∠ABI∵∠BID=∠C+∠CBI,∠IBD=∠ABI+∠ABD∴∠BID=∠IBD∴ID=BD∵AB=BD∴AB=DI(3)解:如图,连接DO,延长DO根据题意可知点I随之运动形成的图形式以D为圆心,DI1为半径的弧∵∠ACB=120°,弧AD=弧BD∴∠AED=∠ACB=×120°=60°∵圆的半径为2,DE是直径∴DE=4,∠EAD=90°∴AD=sin∠AED×DE=×4=2∵点E,F是弧AB ⌢的三等分点,△ABD是等边三角形,∴∠ADB=60°∴弧AB的度数为120°,∴弧AM、弧BF的度数都为为40°∴∠ADM=20°=∠FAB∴∠DAI1=∠FAB+∠DAB=80°∴∠AI1D=180°-∠ADM-∠DAI1=180°-20°-80°=80°∴∠DAI1=∠AI1D∴AD=I1D=2∴弧I1I2的长为:点睛:此题是一道圆的综合题,有一定的难度,熟记圆的相关性质与定理,并对圆中的弦、弧、圆心角、圆周角等进行灵活转化是解题关键,注意数形结合思想的渗透.6.如图1,在Rt△ABC中,AC=8cm,BC=6cm,D、E分别为边AB、BC的中点,连结DE,点P从点A出发,沿折线AD﹣DE运动,到点E停止,点P在AD上以5cm/s的速度运动,在DE上以1cm/s的速度运动,过点P作PQ⊥AC于点Q,以PQ为边作正方形PQMN.设点P的运动时间为t(s).(1)当点P在线段DE上运动时,线段DP的长为_____cm.(用含t的代数式表示)(2)当正方形PQMN与△ABC重叠部分图形为五边形时,设五边形的面积为S(cm2),求S与t的函数关系式,并写出t的取值范围.(3)如图2,若点O在线段BC上,且CO=1,以点O为圆心,1cm长为半径作圆,当点P 开始运动时,⊙O的半径以0.2cm/s的速度开始不断增大,当⊙O与正方形PQMN的边所在直线相切时,求此时的t值.【答案】(1)t﹣1;(2)S=﹣38t2+3t+3(1<t<4);(3)t=103s.【解析】分析:(1)根据勾股定理求出AB,根据D为AB中点,求出AD,根据点P在AD上的速度,即可求出点P在AD段的运动时间,再求出点P在DP段的运动时间,最后根据DE段运动速度为1c m/s ,即可求出DP ;(2)由正方形PQMN 与△ABC 重叠部分图形为五边形,可知点P 在DE 上,求出DP =t ﹣1,PQ =3,根据MN ∥BC ,求出FN 的长,从而得到FM 的长,再根据S =S 梯形FMHD +S 矩形DHQP ,列出S 与t 的函数关系式即可;(3)当圆与边PQ 相切时,可求得r =PE =5﹣t ,然后由r 以0.2c m/s 的速度不断增大,r =1+0.2t ,然后列方程求解即可;当圆与MN 相切时,r =CM =8﹣t =1+0.2t ,从而可求得t 的值.详解:(1)由勾股定理可知:AB =22AC BC +=10. ∵D 、E 分别为AB 和BC 的中点,∴DE =12AC =4,AD =12AB =5, ∴点P 在AD 上的运动时间=55=1s ,当点P 在线段DE 上运动时,DP 段的运动时间为(t ﹣1)s . ∵DE 段运动速度为1c m/s ,∴DP =(t ﹣1)cm .故答案为t ﹣1.(2)当正方形PQMN 与△ABC 重叠部分图形为五边形时,有一种情况,如下图所示.当正方形的边长大于DP 时,重叠部分为五边形,∴3>t ﹣1,t <4,DP >0,∴t ﹣1>0,解得:t >1,∴1<t <4.∵△DFN ∽△ABC ,∴DN FN =AC BC =86=43. ∵DN =PN ﹣PD ,∴DN =3﹣(t ﹣1)=4﹣t , ∴4t FN -=43,∴FN =344t -(), ∴FM =3﹣344t -()=34t , S =S 梯形FMHD +S 矩形DHQP , ∴S =12×(34t +3)×(4﹣t )+3(t ﹣1)=﹣38t 2+3t +3(1<t <4). (3)①当圆与边PQ 相切时,如图:当圆与PQ相切时,r=PE,由(1)可知,PD=(t﹣1)cm,∴PE=DE﹣DP=4﹣(t﹣1)=(5﹣t)cm.∵r以0.2c m/s的速度不断增大,∴r=1+0.2t,∴1+0.2t=5﹣t,解得:t=103s.②当圆与MN相切时,r=CM.由(1)可知,DP=(t﹣1)cm,则PE=CQ=(5﹣t)cm,MQ=3cm,∴MC=MQ+CQ=5﹣t+3=(8﹣t)cm,∴1+0.2t=8﹣t,解得:t=356s.∵P到E点停止,∴t﹣1≤4,即t≤5,∴t=356s(舍).综上所述:当t=103s时,⊙O与正方形PQMN的边所在直线相切.点睛:本题主要考查的是圆的综合应用,解答本题主要应用了勾股定理、相似三角形的性质和判定、正方形的性质,直线和圆的位置关系,依据题意列出方程是解题的关键.7.如图,AB是⊙O的直径,弦BC=OB,点D是»AC上一动点,点E是CD中点,连接BD 分别交OC,OE于点F,G.(1)求∠DGE的度数;(2)若CFOF=12,求BFGF的值;(3)记△CFB ,△DGO 的面积分别为S 1,S 2,若CFOF =k ,求12S S 的值.(用含k 的式子表示)【答案】(1)∠DGE =60°;(2)72;(3)12S S =211k k k +++. 【解析】【分析】(1)根据等边三角形的性质,同弧所对的圆心角和圆周角的关系,可以求得∠DGE 的度数;(2)过点F 作FH ⊥AB 于点H 设CF =1,则OF =2,OC =OB =3,根据勾股定理求出BF 的长度,再证得△FGO ∽△FCB ,进而求得BF GF的值; (3)根据题意,作出合适的辅助线,然后根据三角形相似、勾股定理可以用含k 的式子表示出12S S 的值. 【详解】解:(1)∵BC =OB =OC ,∴∠COB =60°,∴∠CDB =12∠COB =30°, ∵OC =OD ,点E 为CD 中点,∴OE ⊥CD ,∴∠GED =90°,∴∠DGE =60°;(2)过点F 作FH ⊥AB 于点H设CF =1,则OF =2,OC =OB =3∵∠COB =60°∴OH =12OF =1, ∴HF 33HB =OB ﹣OH =2,在Rt △BHF 中,BF 22HB HF 7=+=由OC =OB ,∠COB =60°得:∠OCB =60°,又∵∠OGB =∠DGE =60°,∴∠OGB =∠OCB ,∵∠OFG =∠CFB ,∴△FGO ∽△FCB , ∴OF GF BF CF=, ∴, ∴BF GF =72. (3)过点F 作FH ⊥AB 于点H ,设OF =1,则CF =k ,OB =OC =k+1,∵∠COB =60°,∴OH =12OF=12, ∴HF=,HB =OB ﹣OH =k+12, 在Rt △BHF 中, BF=由(2)得:△FGO ∽△FCB , ∴GO OF CB BF =,即1GO k =+,∴GO =过点C 作CP ⊥BD 于点P∵∠CDB =30°∴PC =12CD , ∵点E 是CD 中点,∴DE =12CD , ∴PC =DE ,∵DE ⊥OE , ∴12S S =BF GO=1k +=211k k k +++【点睛】圆的综合题,解答本题的关键是明确题意,找出所求问题需要的条件,利用三角形相似和勾股定理、数形结合的思想解答.8.如图1,等边△ABC的边长为3,分别以顶点B、A、C为圆心,BA长为半径作¶AC、¶CB、¶BA,我们把这三条弧所组成的图形称作莱洛三角形,显然莱洛三角形仍然是轴对称图形,设点l为对称轴的交点.(1)如图2,将这个图形的顶点A与线段MN作无滑动的滚动,当它滚动一周后点A与端点N重合,则线段MN的长为;(2)如图3,将这个图形的顶点A与等边△DEF的顶点D重合,且AB⊥DE,DE=2π,将它沿等边△DEF的边作无滑动的滚动当它第一次回到起始位置时,求这个图形在运动过程中所扫过的区域的面积;(3)如图4,将这个图形的顶点B与⊙O的圆心O重合,⊙O的半径为3,将它沿⊙O的圆周作无滑动的滚动,当它第n次回到起始位置时,点I所经过的路径长为(请用含n的式子表示)【答案】(1)3π;(2)27π;(3)3.【解析】试题分析:(1)先求出¶AC的弧长,继而得出莱洛三角形的周长为3π,即可得出结论;(2)先判断出莱洛三角形等边△DEF绕一周扫过的面积如图所示,利用矩形的面积和扇形的面积之和即可;(3)先判断出莱洛三角形的一个顶点和O重合旋转一周点I的路径,再用圆的周长公式即可得出.试题解析:解:(1)∵等边△ABC 的边长为3,∴∠ABC =∠ACB =∠BAC =60°,¶¶¶AC BC AB ==,∴¶¶AC BC l l ==¶AB l =603180π⨯=π,∴线段MN 的长为¶¶¶AC BC ABl l l ++=3π.故答案为3π; (2)如图1.∵等边△DEF 的边长为2π,等边△ABC 的边长为3,∴S 矩形AGHF =2π×3=6π,由题意知,AB ⊥DE ,AG ⊥AF ,∴∠BAG =120°,∴S 扇形BAG =21203360π⨯=3π,∴图形在运动过程中所扫过的区域的面积为3(S 矩形AGHF +S 扇形BAG )=3(6π+3π)=27π;(3)如图2,连接BI 并延长交AC 于D .∵I 是△ABC 的重心也是内心,∴∠DAI =30°,AD =12AC =32,∴OI =AI =3230AD cos DAI cos ∠=︒=3,∴当它第1次回到起始位置时,点I 所经过的路径是以O 为圆心,OI 为半径的圆周,∴当它第n 次回到起始位置时,点I 所经过的路径长为n •2π•3=23n π.故答案为23n π.点睛:本题是圆的综合题,主要考查了弧长公式,莱洛三角形的周长,矩形,扇形面积公式,解(1)的关键是求出¶AC 的弧长,解(2)的关键是判断出莱洛三角形绕等边△DEF 扫过的图形,解(3)的关键是得出点I 第一次回到起点时,I 的路径,是一道中等难度的题目.9.如图,在直角坐标系中,⊙M 经过原点O(0,0),点A(6,0)与点B(0,-2),点D在劣弧»OA上,连结BD 交x 轴于点C ,且∠COD =∠CBO. (1)求⊙M 的半径;(2)求证:BD 平分∠ABO ;(3)在线段BD 的延长线上找一点E ,使得直线AE 恰为⊙M 的切线,求此时点E 的坐标.【答案】(1)M 的半径r 2;(2)证明见解析;(3)点E 的坐标为262).【解析】试题分析:根据点A 和点B 的坐标得出OA 和OB 的长度,根据Rt △AOB 的勾股定理得出AB 的长度,然后得出半径;根据同弧所对的圆周角得出∠ABD=∠COD ,然后结合已知条件得出角平分线;根据角平分线得出△ABE ≌△HBE ,从而得出BH=BA=22,从而求出OH 的长度,即点E 的纵坐标,根据Rt △AOB 的三角函数得出∠ABO 的度数,从而得出∠CBO 的度数,然后根据Rt △HBE 得出HE 的长度,即点E 的横坐标.试题解析:(1)∵点A 为(6,0),点B 为(0,-2) ∴OA=6OB=2 ∴根据Rt △AOB 的勾股定理可得:AB=22∴e M 的半径r=12AB=2. (2)根据同弧所对的圆周角相等可得:∠ABD=∠COD ∵∠COD=∠CBO ∴∠ABD=∠CBO ∴BD 平分∠ABO(3)如图,由(2)中的角平分线可得△ABE ≌△HBE ∴BH=BA=22∴OH=22-2=2在Rt △AOB 中,3OA OB=∴∠ABO=60° ∴∠CBO=30° 在Rt △HBE 中,HE=263=∴点E 的坐标为(26,2)考点:勾股定理、角平分线的性质、圆的基本性质、三角函数.10.如图1,是用量角器一个角的操作示意图,量角器的读数从M 点开始(即M 点的读数为0),如图2,把这个量角器与一块30°(∠CAB =30°)角的三角板拼在一起,三角板的斜边AB 与量角器所在圆的直径MN 重合,现有射线C 绕点C 从CA 开始沿顺时针方向以每秒2°的速度旋转到与CB ,在旋转过程中,射线CP 与量角器的半圆弧交于E .连接BE . (1)当射线CP 经过AB 的中点时,点E 处的读数是 ,此时△BCE 的形状是 ; (2)设旋转x 秒后,点E 处的读数为y ,求y 与x 的函数关系式;(3)当CP 旋转多少秒时,△BCE 是等腰三角形?【答案】(1)60°,直角三角形;(2)y=4x(0≤x≤45);(3)7.5秒或30秒【解析】【分析】(1)根据圆周角定理即可解决问题;(2)如图2﹣2中,由题意∠ACE=2x,∠AOE=y,根据圆周角定理可知∠AOE=2∠ACE,可得y=2x(0≤x≤45);(3)分两种情形分别讨论求解即可;【详解】解:(1)如图2﹣1中,∵∠ACB=90°,OA=OB,∴OA=OB=OC,∴∠OCA=∠OAC=30°,∴∠AOE=60°,∴点E处的读数是60°,∵∠E=∠BAC=30°,OE=OB,∴∠OBE=∠E=30°,∴∠EBC=∠OBE+∠ABC=90°,∴△EBC是直角三角形;故答案为60°,直角三角形;(2)如图2﹣2中,∵∠ACE=2x,∠AOE=y,∵∠AOE=2∠ACE,∴y=4x(0≤x≤45).(3)①如图2﹣3中,当EB=EC时,EO垂直平分线段BC,∵AC⊥BC,∵EO∥AC,∴∠AOE=∠BAC=30°,∠AOE=15°,∴∠ECA=12∴x=7.5.②若2﹣4中,当BE=BC时,易知∠BEC=∠BAC=∠BCE=30°,∴∠OBE=∠OBC=60°,∵OE=OB,∴△OBE是等边三角形,∴∠BOE=60°,∴∠AOB=120°,∠ACB=60°,∴∠ACE=12∴x=30,综上所述,当CP旋转7.5秒或30秒时,△BCE是等腰三角形;【点睛】本题考查几何变换综合题、创新题目、圆周角定理、等腰三角形的判定和性质等知识,解题的关键是理解题意,学会用分类讨论的思想思考问题,属于中考压轴题.11.如图,已知:AB是⊙O的直径,点C在⊙O上,CD是⊙O的切线,AD⊥CD于点D,E是AB延长线上一点,CE交⊙O于点F,连接OC、AC.(1)求证:AC平分∠DAO.(2)若∠DAO=105°,∠E=30°①求∠OCE的度数;②若⊙O的半径为22,求线段EF的长.【答案】(1)证明见解析;(2)①∠OCE=45°;②EF =23【解析】【试题分析】(1)根据直线与⊙O相切的性质,得OC⊥CD.又因为AD⊥CD,根据同一平面内,垂直于同一条直线的两条直线也平行,得:AD//OC. ∠DAC=∠OCA.又因为OC=OA,根据等边对等角,得∠OAC=∠OCA.等量代换得:∠DAC=∠OAC.根据角平分线的定义得:AC平分∠DAO.(2)①因为 AD//OC,∠DAO=105°,根据两直线平行,同位角相等得,中,∠E=30°,利用内角和定理,得:∠OCE=45°.∠EOC=∠DAO=105°,在OCE②作OG⊥CE于点G,根据垂径定理可得FG=CG,因为OC=2,∠OCE=45°.等腰直角三2倍,得CG=OG=2. FG=2.在Rt△OGE中,∠E=30°,得GE=23则EF=GE-FG=23【试题解析】(1)∵直线与⊙O相切,∴OC⊥CD.又∵AD⊥CD,∴AD//OC.∴∠DAC=∠OCA.又∵OC=OA,∴∠OAC=∠OCA.∴∠DAC=∠OAC.∴AC平分∠DAO.(2)解:①∵AD//OC,∠DAO=105°,∴∠EOC=∠DAO=105°∵∠E=30°,∴∠OCE=45°.②作OG⊥CE于点G,可得FG=CG∵OC=22,∠OCE=45°.∴CG=OG=2.∴FG=2.∵在Rt△OGE中,∠E=30°,∴GE=23.∴EF=GE-FG=23-2.【方法点睛】本题目是一道圆的综合题目,涉及到圆的切线的性质,平行线的性质及判定,三角形内角和,垂径定理,难度为中等.12.如图,已知AB为⊙O的直径,AB=8,点C和点D是⊙O上关于直线AB对称的两个点,连接OC、AC,且∠BOC<90°,直线BC和直线AD相交于点E,过点C作直线CG与线段AB的延长线相交于点F,与直线AD相交于点G,且∠GAF=∠GCE(1)求证:直线CG为⊙O的切线;(2)若点H为线段OB上一点,连接CH,满足CB=CH,①△CBH∽△OBC②求OH+HC的最大值【答案】(1)证明见解析;(2)①证明见解析;②5.【解析】分析:(1)由题意可知:∠CAB=∠GAF,由圆的性质可知:∠CAB=∠OCA,所以∠OCA=∠GCE,从而可证明直线CG是⊙O的切线;(2)①由于CB=CH,所以∠CBH=∠CHB,易证∠CBH=∠OCB,从而可证明△CBH∽△OBC;②由△CBH∽△OBC可知:BC HBOC BC=,所以HB=24BC,由于BC=HC,所以OH+HC=4−24BC+BC,利用二次函数的性质即可求出OH+HC的最大值.详解:(1)由题意可知:∠CAB=∠GAF,∵AB是⊙O的直径,∴∠ACB=90°∵OA=OC,∴∠CAB=∠OCA,∴∠OCA+∠OCB=90°,∵∠GAF=∠GCE,∴∠GCE+∠OCB=∠OCA+∠OCB=90°,∵OC是⊙O的半径,∴直线CG是⊙O的切线;(2)①∵CB=CH,∴∠CBH=∠CHB,∵OB=OC,∴∠CBH=∠OCB,∴△CBH∽△OBC②由△CBH∽△OBC可知:BC HB OC BC=∵AB=8,∴BC2=HB•OC=4HB,∴HB=24 BC,∴OH=OB-HB=4-2 4 BC∵CB=CH,∴OH+HC=4−24BC+BC,当∠BOC=90°,此时∵∠BOC<90°,∴0<BC<,令BC=x 则CH=x ,BH=24x ()221142544OH HC x x x ∴+=-++=--+ 当x=2时,∴OH+HC 可取得最大值,最大值为5点睛:本题考查圆的综合问题,涉及二次函数的性质,相似三角形的性质与判定,切线的判定等知识,综合程度较高,需要学生灵活运用所知识.13.在中,,,,分别是边,的中点,若等腰绕点逆时针旋转,得到等腰,设旋转角为,记直线与的交点为. (1)问题发现 如图1,当时,线段的长等于_________,线段的长等于_________. (2)探究证明 如图2,当时,求证:,且. (3)问题解决求点到所在直线的距离的最大值.(直接写出结果)【答案】(1);;(2)详见解析;(3)【解析】【分析】 (1)利用等腰直角三角形的性质结合勾股定理分别得出BD 1的长和CE 1的长; (2)根据旋转的性质得出,∠D 1AB=∠E 1AC=135°,进而求出△D 1AB ≌△E 1AC (SAS ),即可得出答案;(3)首先作PG ⊥AB ,交AB 所在直线于点G ,则D 1,E 1在以A 为圆心,AD 为半径的圆上,当BD 1所在直线与⊙A 相切时,直线BD 1与CE 1的交点P 到直线AB 的距离最大,此时四边形AD 1PE 1是正方形,进而求出PG 的长.【详解】(1)解:∵∠A=90°,AC=AB=4,D ,E 分别是边AB ,AC 的中点,∴AE=AD=2,∵等腰Rt △ADE 绕点A 逆时针旋转,得到等腰Rt △AD 1E 1,设旋转角为α(0<α≤180°),∴当α=90°时,AE1=2,∠E1AE=90°,∴BD1=;故答案为:;;(2)证明:由题意可知,,,∵是由绕点逆时针旋转得到,∴,,在和中,,∴,∴,.∵,∴,∴,∴,且.(3)点的运动轨迹是在的上半圆周,点的运动轨迹是在的弧段.即当与相切时,有最大值.点到所在直线的距离的最大值为.【点睛】此题主要考查了几何变换以及等腰腰直角三角形的性质和勾股定理以及切线的性质等知识,根据题意得出PG的最长时P点的位置是解题关键.14.设C为线段AB的中点,四边形BCDE是以BC为一边的正方形,以B为圆心,BD长为半径的⊙B与AB相交于F点,延长EB交⊙B于G点,连接DG交于AB于Q点,连接AD.求证:(1)AD是⊙B的切线;(2)AD=AQ;(3)BC2=CF×EG.【答案】(1)证明见解析;(2)证明见解析;(3)证明见解析.【解析】【分析】()1连接BD ,由DC AB ⊥,C 为AB 的中点,由线段垂直平分线的性质,可得AD BD =,再根据正方形的性质,可得90ADB ∠=o ;()2由BD BG =与//CD BE ,利用等边对等角与平行线的性质,即可求得122.52G CDG BDG BCD ∠=∠=∠=∠=o ,继而求得67.5ADQ AQD ∠=∠=o ,由等角对等边,可证得AD AQ =; ()3易求得67.5GDE GDB BDE DFE ∠=∠+∠==∠o ,90DCF E ∠=∠=o ,即可证得Rt DCF V ∽Rt GED V ,根据相似三角形的对应边成比例,即可证得结论.【详解】证明:()1连接BD ,Q 四边形BCDE 是正方形,45DBA ∴∠=o ,90DCB ∠=o ,即DC AB ⊥,C Q 为AB 的中点,CD ∴是线段AB 的垂直平分线,AD BD ∴=,45DAB DBA ∴∠=∠=o ,90ADB ∴∠=o ,即BD AD ⊥,BD Q 为半径,AD ∴是B e 的切线;()2BD BG =Q ,BDG G ∴∠=∠,//CD BE Q ,CDG G ∴∠=∠, 122.52G CDG BDG BCD ∴∠=∠=∠=∠=o , 9067.5ADQ BDG ∴∠=-∠=o o ,9067.5AQB BQG G ∠=∠=-∠=o o , ADQ AQD ∴∠=∠,AD AQ ∴=;()3连接DF ,在BDF V 中,BD BF =,BFD BDF ∴∠=∠,又45DBF ∠=o Q ,67.5BFD BDF ∴∠=∠=o ,22.5GDB ∠=o Q ,在Rt DEF V 与Rt GCD V 中,67.5GDE GDB BDE DFE ∠=∠+∠==∠o Q ,90DCF E ∠=∠=o ,Rt DCF ∴V ∽Rt GED V ,CF CD ED EG∴=, 又CD DE BC ==Q ,2BC CF EG ∴=⋅.【点睛】本题考查了相似三角形的判定与性质、切线的判定与性质、正方形的性质以及等腰三角形的判定与性质.解题的关键是注意掌握数形结合思想的应用,注意辅助线的作法.15.已知AB 是半圆O 的直径,点C 在半圆O 上.(1)如图1,若AC =3,∠CAB =30°,求半圆O 的半径;(2)如图2,M 是»BC的中点,E 是直径AB 上一点,AM 分别交CE ,BC 于点F ,D . 过点F 作FG ∥AB 交边BC 于点G ,若△ACE 与△CEB 相似,请探究以点D 为圆心,GB 长为半径的⊙D 与直线AC 的位置关系,并说明理由.【答案】(1)半圆O的半径为3;(2)⊙D与直线AC相切,理由见解析【解析】试题分析:(1)依据直径所对的圆周角是直角可得∠C=90°,2再依据三角函数即可求解;(2) 依据△ACE与△CEB相似证出∠AEC=∠CEB=90°, 再依据M是»BC的中点,证明CF=CD, 过点F作FP∥GB交于AB于点P, 证出△ACF≌△APF,得出CF=FP,再证四边形FPBG是平行四边形,得到 FP=GB从而CD=GB,点D到直线AC的距离为线段CD的长.试题解析:(1)∵ AB是半圆O的直径,∴∠C=90°.在Rt△ACB中,AB=cos AC CAB ∠=3 cos30︒=23.∴ OA=3(2)⊙D与直线AC相切.理由如下:由(1)得∠ACB=90°.∵∠AEC=∠ECB+∠6,∴∠AEC>∠ECB,∠AEC>∠6.∵△ACE与△CEB相似,∴∠AEC=∠CEB=90°.在Rt△ACD,Rt△AEF中分别有∠1+∠3=90°,∠2+∠4=90°.∵ M是»BC的中点,∴∠COM=∠BOM.∴∠1=∠2,∴∠3=∠4.∵∠4=∠5,∴∠3=∠5.∴ CF=CD.过点F作FP∥GB交于AB于点P,则∠FPE=∠6.在Rt△AEC,Rt△ACB中分别有∠CAE+∠ACE=90°,∠CAE+∠6=90°.∴∠ACE=∠6=∠FPE.又∵∠1=∠2,AF=AF,∴△ACF≌△APF.∴ CF=FP.∵ FP∥GB,FG∥AB,∴四边形FPBG是平行四边形.∴ FP=GB.∴ CD=GB.∵ CD⊥AC,∴点D到直线AC的距离为线段CD的长∴⊙D与直线AC相切.。
中考数学圆的综合-经典压轴题附详细答案
![中考数学圆的综合-经典压轴题附详细答案](https://img.taocdn.com/s3/m/aef175b5964bcf84b8d57b6f.png)
一、圆的综合真题与模拟题分类汇编(难题易错题)1.如图,⊙O是△ABC的外接圆,点E为△ABC内切圆的圆心,连接AE的延长线交BC于点F,交⊙O于点D;连接BD,过点D作直线DM,使∠BDM=∠DAC.(1)求证:直线DM是⊙O的切线;(2)若DF=2,且AF=4,求BD和DE的长.【答案】(1)证明见解析(2)23【解析】【分析】(1)根据垂径定理的推论即可得到OD⊥BC,再根据∠BDM=∠DBC,即可判定BC∥DM,进而得到OD⊥DM,据此可得直线DM是⊙O的切线;(2)根据三角形内心的定义以及圆周角定理,得到∠BED=∠EBD,即可得出DB=DE,再判定△DBF∽△DAB,即可得到DB2=DF•DA,据此解答即可.【详解】(1)如图所示,连接OD.∵点E是△ABC的内心,∴∠BAD=∠CAD,∴BD CD=,∴OD⊥BC.又∵∠BDM=∠DAC,∠DAC=∠DBC,∴∠BDM=∠DBC,∴BC∥DM,∴OD⊥DM.又∵OD为⊙O半径,∴直线DM是⊙O的切线.(2)连接BE.∵E为内心,∴∠ABE=∠CBE.∵∠BAD=∠CAD,∠DBC=∠CAD,∴∠BAD=∠DBC,∴∠BAE+∠ABE=∠CBE+∠DBC,即∠BED=∠DBE,∴BD=DE.又∵∠BDF=∠ADB(公共角),∴△DBF∽△DAB,∴DF DBDB DA=,即DB2=DF•DA.∵DF=2,AF=4,∴DA=DF+AF=6,∴DB2=DF•DA=12,∴DB=DE=23.【点睛】本题主要考查了三角形的内心与外心,圆周角定理以及垂径定理的综合应用,解题时注意:平分弦所对一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧;三角形的内心到三角形三边的距离相等;三角形的内心与三角形顶点的连线平分这个内角.2.如图,AB 是半圆的直径,过圆心O 作AB 的垂线,与弦AC 的延长线交于点D ,点E 在OD 上DCE B ∠=∠.(1)求证:CE 是半圆的切线;(2)若CD=10,2tan 3B =,求半圆的半径.【答案】(1)见解析;(2)413【解析】分析: (1)连接CO ,由DCE B ∠=∠且OC=OB,得DCE OCB ∠=∠,利用同角的余角相等判断出∠BCO+∠BCE=90°,即可得出结论;(2)设AC=2x ,由根据题目条件用x 分别表示出OA 、AD 、AB ,通过证明△AOD ∽△ACB ,列出等式即可.详解:(1)证明:如图,连接CO .∵AB 是半圆的直径,∴∠ACB =90°.∴∠DCB =180°-∠ACB =90°.∴∠DCE+∠BCE=90°.∵OC =OB ,∴∠OCB =∠B.∵=DCE B ∠∠,∴∠OCB =∠DCE .∴∠OCE =∠DCB =90°.∴OC ⊥CE .∵OC 是半径,∴CE 是半圆的切线.(2)解:设AC =2x ,∵在Rt △ACB 中,2tan 3AC B BC ==, ∴BC =3x .∴AB ==. ∵OD ⊥AB ,∴∠AOD =∠A CB=90°.∵∠A =∠A ,∴△AOD ∽△ACB .∴AC AO AB AD=. ∵12OA AB ==,AD =2x+10, ∴2210x =+. 解得x =8.∴8OA == 则半圆的半径为点睛:本题考查了切线的判定与性质,圆周角定理,相似三角形.3.(类比概念)三角形的内切圆是以三个内角的平分线的交点为圆心,以这点到三边的距离为半径的圆,则三角形可以称为圆的外切三角形,可以得出三角形的三边与该圆相切.以此类推,如图1,各边都和圆相切的四边形称为圆外切四边形(性质探究)如图1,试探究圆外切四边形的ABCD 两组对边AB ,CD 与BC ,AD 之间的数量关系猜想结论: (要求用文字语言叙述)写出证明过程(利用图1,写出已知、求证、证明)(性质应用)①初中学过的下列四边形中哪些是圆外切四边形 (填序号)A :平行四边形:B :菱形:C :矩形;D :正方形②如图2,圆外切四边形ABCD ,且AB=12,CD=8,则四边形的周长是 . ③圆外切四边形的周长为48cm ,相邻的三条边的比为5:4:7,求四边形各边的长.【答案】见解析.【解析】【分析】(1)根据切线长定理即可得出结论;(2)①圆外切四边形是内心到四边的距离相等,即可得出结论;②根据圆外切四边形的对边和相等,即可求出结论;③根据圆外切四边形的性质求出第四边,利用周长建立方程求解即可得出结论.【详解】性质探讨:圆外切四边形的对边和相等,理由:如图1,已知:四边形ABCD的四边AB,BC,CD,DA都于⊙O相切于G,F,E,H.求证:AD+BC=AB+CD.证明:∵AB,AD和⊙O相切,∴AG=AH,同理:BG=BF,CE=CF,DE=DH,∴AD+BC=AH+DH+BF+CF=AG+BG+CE+DE=AB+CD,即:圆外切四边形的对边和相等.故答案为:圆外切四边形的对边和相等;性质应用:①∵根据圆外切四边形的定义得:圆心到四边的距离相等.∵平行四边形和矩形不存在一点到四边的距离相等,而菱形和正方形对角线的交点到四边的距离相等.故答案为:B,D;②∵圆外切四边形ABCD,∴AB+CD=AD+BC.∵AB=12,CD=8,∴AD+BC=12+8=20,∴四边形的周长是AB+CD+AD+BC=20+20=40.故答案为:40;③∵相邻的三条边的比为5:4:7,∴设此三边为5x,4x,7x,根据圆外切四边形的性质得:第四边为5x+7x﹣4x=8x.∵圆外切四边形的周长为48cm,∴4x+5x+7x+8x=24x=48,∴x=2,∴此四边形的四边为4x=8cm,5x=10cm,7x=14cm,8x=16cm.【点睛】本题是圆的综合题,主要考查了新定义圆的外切的性质,四边形的周长,平行四边形,矩形,菱形,正方形的性质,切线长定理,理解和掌握圆外切四边形的定义是解答本题的关键.4.如图,已知Rt△ABC中,C=90°,O在AC上,以OC为半径作⊙O,切AB于D点,且BC=BD.(1)求证:AB为⊙O的切线;(2)若BC=6,sinA=35,求⊙O的半径;(3)在(2)的条件下,P点在⊙O上为一动点,求BP的最大值与最小值.【答案】(1)连OD,证明略;(2)半径为3;(3)最大值35+3 ,35-3.【解析】分析:(1)连接OD,OB,证明△ODB≌△OCB即可.(2)由sinA=35且BC=6可知,AB=10且cosA=45,然后求出OD的长度即可.(3)由三角形的三边关系,可知当连接OB交⊙O于点E、F,当点P分别于点E、F重合时,BP分别取最小值和最大值.详解:(1)如图:连接OD、OB.在△ODB和△OCB中:OD=OC,OB=OB,BC=BD;∴△ODB≌△OCB(SSS).∴∠ODB=∠C=90°.∴AB为⊙O的切线.(2)如图:∵sinA=35,∴CB3AB5=,∵BC=6,∴AB=10,∵BD=BC=6,∴AD=AB-BD=4,∵sinA=35,∴cosA=45,∴OA=5,∴OD=3,即⊙O的半径为:3.(3)如图:连接OB,交⊙O为点E、F,由三角形的三边关系可知:当P点与E点重合时,PB取最小值.由(2)可知:OD=3,DB=6,∴223635+=∴PB=OB-OE=353.当P点与F点重合时,PB去最大值,PB=OP+OB=3+35点睛:本题属于综合类型题,主要考查了圆的综合知识.关键是对三角函数值、勾股定理、全等三角形判定与性质的理解.5.如图,AB是⊙O的直径,PA是⊙O的切线,点C在⊙O上,CB∥PO.(1)判断PC与⊙O的位置关系,并说明理由;(2)若AB=6,CB=4,求PC的长.【答案】(1)PC是⊙O的切线,理由见解析;(2)35 2【解析】试题分析:(1)要证PC是⊙O的切线,只要连接OC,再证∠PCO=90°即可.(2)可以连接AC,根据已知先证明△ACB∽△PCO,再根据勾股定理和相似三角形的性质求出PC的长.试题解析:(1)结论:PC是⊙O的切线.证明:连接OC∵CB∥PO∴∠POA=∠B,∠POC=∠OCB∵OC=OB∴∠OCB=∠B∴∠POA=∠POC又∵OA=OC,OP=OP∴△APO≌△CPO∴∠OAP=∠OCP∵PA是⊙O的切线∴∠OAP=90°∴∠OCP=90°∴PC是⊙O的切线.(2)连接AC∵AB是⊙O的直径∴∠ACB=90°(6分)由(1)知∠PCO=90°,∠B=∠OCB=∠POC∵∠ACB=∠PCO∴△ACB∽△PCO∴∴.点睛:本题考查了切线的判定.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.同时考查了勾股定理和相似三角形的性质.6.在平面直角坐标系xOy中,点M的坐标为(x1,y1),点N的坐标为(x2,y2),且x1≠x2,y1≠y2,以MN为边构造菱形,若该菱形的两条对角线分别平行于x轴,y轴,则称该菱形为边的“坐标菱形”.(1)已知点A(2,0),B(0,23),则以AB为边的“坐标菱形”的最小内角为;(2)若点C(1,2),点D在直线y=5上,以CD为边的“坐标菱形”为正方形,求直线CD 表达式;(3)⊙O的半径为2,点P的坐标为(3,m).若在⊙O上存在一点Q,使得以QP为边的“坐标菱形”为正方形,求m的取值范围.【答案】(1)60°;(2)y=x+1或y=﹣x+3;(3)1≤m≤5或﹣5≤m≤﹣1【解析】分析:(1)根据定义建立以AB为边的“坐标菱形”,由勾股定理求边长AB=4,可得30度角,从而得最小内角为60°;(2)先确定直线CD与直线y=5的夹角是45°,得D(4,5)或(﹣2,5),易得直线CD的表达式为:y=x+1或y=﹣x+3;(3)分两种情况:①先作直线y=x,再作圆的两条切线,且平行于直线y=x,如图3,根据等腰直角三角形的性质分别求P'B=BD=1,PB=5,写出对应P的坐标;②先作直线y=﹣x,再作圆的两条切线,且平行于直线y=﹣x,如图4,同理可得结论.详解:(1)∵点A(2,0),B(0,3∴OA=2,OB3.在Rt△AOB中,由勾股定理得:AB22223(),∴∠ABO=30°.∵四边形ABCD是菱形,∴∠ABC=2∠ABO=60°.∵AB∥CD,∴∠DCB=180°﹣60°=120°,∴以AB为边的“坐标菱形”的最小内角为60°.故答案为:60°;(2)如图2.∵以CD为边的“坐标菱形”为正方形,∴直线CD与直线y=5的夹角是45°.过点C作CE⊥DE于E,∴D(4,5)或(﹣2,5),∴直线CD的表达式为:y=x+1或y=﹣x+3;(3)分两种情况:①先作直线y=x,再作圆的两条切线,且平行于直线y=x,如图3.∵⊙O的半径为2,且△OQ'D是等腰直角三角形,∴OD=2OQ'=2,∴P'D=3﹣2=1.∵△P'DB是等腰直角三角形,∴P'B=BD=1,∴P'(0,1),同理可得:OA=2,∴AB=3+2=5.∵△ABP是等腰直角三角形,∴PB=5,∴P(0,5),∴当1≤m≤5时,以QP为边的“坐标菱形”为正方形;②先作直线y=﹣x,再作圆的两条切线,且平行于直线y=﹣x,如图4.∵⊙O的半径为2,且△OQ'D是等腰直角三角形,∴OD=2OQ'=2,∴BD=3﹣2=1.∵△P'DB是等腰直角三角形,∴P'B=BD=1,∴P'(0,﹣1),同理可得:OA=2,∴AB=3+2=5.∵△ABP是等腰直角三角形,∴PB=5,∴P(0,﹣5),∴当﹣5≤m≤﹣1时,以QP为边的“坐标菱形”为正方形;综上所述:m的取值范围是1≤m≤5或﹣5≤m≤﹣1.点睛:本题是一次函数和圆的综合题,考查了菱形的性质、正方形的性质、点P,Q的“坐标菱形”的定义等知识,解题的关键是理解题意,学会利用图象解决问题,学会用分类讨论的思想思考问题,注意一题多解,属于中考创新题目.7.如图,AB是⊙O的直径,D、D为⊙O上两点,CF⊥AB于点F,CE⊥AD交AD的延长线于点E,且CE=CF.(1)求证:CE是⊙O的切线;(2)连接CD、CB,若AD=CD=a,求四边形ABCD面积.【答案】(1)证明见解析;(2)【解析】【分析】(1)连接OC,AC,可先证明AC平分∠BAE,结合圆的性质可证明OC∥AE,可得∠OCB=90°,可证得结论;(2)可先证得四边形AOCD为平行四边形,再证明△OCB为等边三角形,可求得CF、AB,利用梯形的面积公式可求得答案.【详解】(1)证明:连接OC,AC.∵CF⊥AB,CE⊥AD,且CE=CF.∴∠CAE=∠CAB.∵OC=OA,∴∠CAB=∠OCA.∴∠CAE =∠OCA . ∴OC ∥AE .∴∠OCE +∠AEC =180°, ∵∠AEC =90°, ∴∠OCE =90°即OC ⊥CE ,∵OC 是⊙O 的半径,点C 为半径外端, ∴CE 是⊙O 的切线.(2)解:∵AD =CD , ∴∠DAC =∠DCA =∠CAB , ∴DC ∥AB , ∵∠CAE =∠OCA , ∴OC ∥AD ,∴四边形AOCD 是平行四边形, ∴OC =AD =a ,AB =2a , ∵∠CAE =∠CAB , ∴CD =CB =a , ∴CB =OC =OB , ∴△OCB 是等边三角形, 在Rt △CFB 中,CF =,∴S 四边形ABCD = (DC +AB )•CF =【点睛】本题主要考查切线的判定,掌握切线的两种判定方法是解题的关键,即有切点时连接圆心和切点,然后证明垂直,没有切点时,过圆心作垂直,证明圆心到直线的距离等于半径.8.已知P 是O 的直径BA 延长线上的一个动点,∠P 的另一边交O 于点C 、D ,两点位于AB 的上方,AB =6,OP=m ,1sin 3P =,如图所示.另一个半径为6的1O 经过点C 、D ,圆心距1OO n =. (1)当m=6时,求线段CD 的长;(2)设圆心O 1在直线AB 上方,试用n 的代数式表示m ;(3)△POO 1在点P 的运动过程中,是否能成为以OO 1为腰的等腰三角形,如果能,试求出此时n 的值;如果不能,请说明理由.【答案】(1)CD=25;(2)m=23812n n- ;(3) n 的值为955或9155 【解析】分析:(1)过点O 作OH ⊥CD ,垂足为点H ,连接OC .解Rt △POH ,得到OH 的长.由勾股定理得CH 的长,再由垂径定理即可得到结论; (2)解Rt △POH ,得到Rt 3mOH OCH =.在和Rt △1O CH 中,由勾股定理即可得到结论;(3)△1POO 成为等腰三角形可分以下几种情况讨论:① 当圆心1O 、O 在弦CD 异侧时,分1OP OO =和11O P OO =.②当圆心1O 、O 在弦CD 同侧时,同理可得结论. 详解:(1)过点O 作OH ⊥CD ,垂足为点H ,连接OC .在Rt △1sin 63POH P PO =中,=,,∴2OH =. ∵AB =6,∴3OC =. 由勾股定理得: 5CH = ∵OH ⊥DC ,∴225CD CH ==.(2)在Rt △1sin 3POH P PO m 中,=,=,∴3m OH =. 在Rt △OCH 中,2293m CH ⎛⎫- ⎪⎝⎭=. 在Rt △1O CH 中,22363m CH n ⎛⎫-- ⎪⎝⎭=. 可得: 2236933m m n ⎛⎫⎛⎫--- ⎪ ⎪⎝⎭⎝⎭=,解得23812n m n -:=.(3)△1POO 成为等腰三角形可分以下几种情况: ① 当圆心1O 、O 在弦CD 异侧时i )1OP OO =,即m n =,由23812n n n-=,解得9n :=.即圆心距等于O 、1O 的半径的和,就有O 、1O 外切不合题意舍去.ii )11O P OO =,由22233m m n m -+-()() n =, 解得:23m n =,即23n 23812n n-=,解得9155n :=. ②当圆心1O 、O 在弦CD 同侧时,同理可得: 28132n m n-=.∵1POO ∠是钝角,∴只能是m n =,即28132nn n-=,解得955n :=. 综上所述:n 的值为955或9155. 点睛:本题是圆的综合题.考查了圆的有关性质和两圆的位置关系以及解直径三角形.解答(3)的关键是要分类讨论.9.如图,已知△ABC ,AB=2,3BC =,∠B=45°,点D 在边BC 上,联结AD , 以点A 为圆心,AD 为半径画圆,与边AC 交于点E ,点F 在圆A 上,且AF ⊥AD .(1)设BD 为x ,点D 、F 之间的距离为y ,求y 关于x 的函数解析式,并写出定义域; (2)如果E 是DF 的中点,求:BD CD 的值; (3)联结CF ,如果四边形ADCF 是梯形,求BD 的长 .【答案】(1) 2442y xx (0≤x≤3); (2)45; (3) BD 的长是11+5. 【解析】 【分析】(1)过点A 作AH ⊥BC ,垂足为点H .构造直角三角形,利用解直角三角形和勾股定理求得AD 的长度.联结DF ,点D 、F 之间的距离y 即为DF 的长度,在Rt △ADF 中,利用锐角三角形函数的定义求得DF 的长度,易得函数关系式.(2)由勾股定理求得:AC=22AH DH +.设DF 与AE 相交于点Q ,通过解Rt △DCQ 和Rt △AHC 推知12DQ CQ =.故设DQ=k ,CQ=2k ,AQ=DQ=k ,所以再次利用勾股定理推知DC 的长度,结合图形求得线段BD 的长度,易得答案.(3)如果四边形ADCF 是梯形,则需要分类讨论:①当AF ∥DC 、②当AD ∥FC .根据相似三角形的判定与性质,结合图形解答. 【详解】(1)过点A 作AH ⊥BC ,垂足为点H .∵∠B =45°,AB 2∴·cos 1BH AH AB B ===. ∵BD 为x ,∴1DH x =-.在Rt △ADH 中,90AHD ∠=︒,∴22222AD AH DH x x =+=-+.联结DF ,点D 、F 之间的距离y 即为DF 的长度.∵点F 在圆A 上,且AF ⊥AD ,∴AD AF =,45ADF ∠=︒. 在Rt △ADF 中,90DAF ∠=︒,∴2442cos ADDF x x ADF==-+∠∴2442y x x =-+.()03x ≤≤ ;(2)∵E 是DF 的中点,∴AE DF ⊥,AE 平分DF . ∵BC=3,∴312HC =-=.∴225AC AH HC +=.设DF 与AE 相交于点Q ,在Rt △DCQ 中,90DQC ∠=︒,tan DQDCQ CQ∠=. 在Rt △AHC 中,90AHC ∠=︒,1tan 2AH ACH HC ∠==. ∵DCQ ACH ∠=∠,∴12DQ CQ =. 设,2DQ k CQ k ==,AQ DQ k ==, ∵35k =53k =,∴2253DC DQ CQ =+=.∵43BD BC DC =-=,∴4:5BD CD =. (3)如果四边形ADCF 是梯形则①当AF ∥DC 时,45AFD FDC ∠=∠=︒.∵45ADF ∠=︒,∴AD BC ⊥,即点D 与点H 重合. ∴1BD =. ②当AD ∥FC 时,45ADF CFD ∠=∠=︒. ∵45B ∠=︒,∴B CFD ∠=∠.∵B BAD ADF FDC ∠+∠=∠+∠,∴BAD FDC ∠=∠. ∴ABD ∆∽DFC ∆.∴AB ADDF DC=. ∵2DF AD =,DC BC BD =-.∴2AD BC BD =-.即()222-23x xx +=-,整理得 210x x --=,解得 15x ±=(负数舍去). 综上所述,如果四边形ADCF 是梯形,BD 的长是1或1+5. 【点睛】此题属于圆的综合题,涉及了平行四边形的性质、相似三角形的判定与性质、三角函数值以及勾股定理等知识,综合性较强,解答本题需要我们熟练各部分的内容,对学生的综合能力要求较高,一定要注意将所学知识贯穿起来.10.如图①,已知Rt ABC ∆中,90ACB ∠=,8AC =,10AB =,点D 是AC 边上一点(不与C 重合),以AD 为直径作O ,过C 作CE 切O 于E ,交AB 于F .(1)若O 的半径为2,求线段CE 的长;(2)若AF BF =,求O 的半径;(3)如图②,若CE CB =,点B 关于AC 的对称点为点G ,试求G 、E 两点之间的距离.【答案】(1)42CE =(2)O 的半径为3;(3)G 、E 两点之间的距离为9.6.【解析】 【分析】(1)根据切线的性质得出∠OEC=90°,然后根据勾股定理即可求得;(2)由勾股定理求得BC ,然后通过证得△OEC ∽△BCA ,得到OE BC =OC BA ,即r 8-r=610,解得即可;(3)证得D 和M 重合,E 和F 重合后,通过证得△GBE ∽△ABC ,GB GEAB AC=,即12108GE =,解得即可. 【详解】(1)如图,连结OE . ∵CE 切O 于E ,∴90OEC ∠=︒. ∵8AC =,O 半径为2,∴6OC =,2OE =.∴2242CE OC OE =-=; (2)设O 半径为r .在Rt ABC ∆中,90ACB ∠=︒,10AB =,8AC =, ∴226BC AB AC -=.∵AF BF =, ∴AF CF BF ==. ∴ACF CAF ∠=∠. ∵CE 切O 于E ,∴90OEC ∠=︒. ∴OEC ACB ∠=∠, ∴OEC BCA ∆~∆. ∴OE OCBC BA=, ∴8610r r -=, 解得3r =. ∴O 的半径为3;(3)连结EG 、OE ,设EG 交AC 于点M ,由对称性可知,CB CG =. 又CE CB =, ∴CE CG =. ∴EGC GEC ∠=∠. ∵CE 切O 于E ,∴90GEC OEG ∠+∠=︒. 又90EGC GMC ∠+∠=︒,∴OEG GMC ∠=∠.又GMC OME ∠=∠, ∴OEG OME ∠=∠. ∴OE OM =. ∴点M 与点D 重合.∴G 、D 、E 三点在同一条直线上. 连结AE 、BE , ∵AD 是直径,∴90AED ∠=︒,即90AEG ∠=︒. 又CE CB CG ==, ∴90BEG ∠=︒.∴180AEB AEG BEG ∠=∠+∠=︒, ∴A 、E 、B 三点在同一条直线上.∴E 、F 两点重合.∵90GEB ACB ∠=∠=︒,B B ∠=∠, ∴GBE ABC ∆~∆. ∴GB GE AB AC =,即12108GE=. ∴9.6GE =.故G 、E 两点之间的距离为9.6. 【点睛】本题考查了切线的判定,轴的性质,勾股定理的应用以及三角形相似的判定和性质,证得G 、D 、E 三点共线以及A 、E 、B 三点在同一条直线上是解题的关键.。
中考数学圆的综合-经典压轴题附答案解析
![中考数学圆的综合-经典压轴题附答案解析](https://img.taocdn.com/s3/m/7ee7b35e482fb4daa48d4b3f.png)
【点睛】 本题考查了切线的判定与性质:经过半径的外端且垂直于这条半径的直线是圆的切线;圆
的切线垂直于经过切点的半径 .判定切线时“连圆心和直线与圆的公共点”或“过圆心作这条
直线的垂线”;也考查了圆周角定理和解直角三角形.
5.如图,AB 为⊙O 的直径,点 D 为 AB 下方⊙O 上一点,点 C 为弧 ABD 的中点,连接 CD,CA. (1)求证:∠ ABD=2∠ BDC; (2)过点 C 作 CH⊥AB 于 H,交 AD 于 E,求证:EA=EC; (3)在(2)的条件下,若 OH=5,AD=24,求线段 DE 的长度.
CF=CG=AC=CE=CD,证△ BEF∽ △ BGA 得 BE BG ,即 BF•BG=BE•AB,将 BF=BC-CF=BCBF BA
AC、BG=BC+CG=BC+AC 代入可得;
(3)①设 AB=5k、AC=3k,由 BC2-AC2=AB•AC 知 BC=2 6 k,连接 ED 交 BC 于点 M,
4
4
4
∴ DC2= 27 , 2
∴ AC=DC= 3 6 , 2
∴ AB= 9 6 ,此时 AB 3 .
4
AC 2
点睛:本题主要考查圆的综合问题,解题的关键是掌握圆的有关性质、圆内接四边形的性
质及菱形的性质、相似三角形的判定与性质、二次函数的性质等知识点.
3.如图,以 O 为圆心,4 为半径的圆与 x 轴交于点 A,C 在⊙O 上,∠ OAC=60°. (1)求∠ AOC 的度数;
∵ ∠ ADC=∠ B,∠ B=60°, ∴ ∠ ADC=60°, ∵ CD 是直径, ∴ ∠ DAC=90°, ∴ ∠ ACO=180°-90°-60°=30°, ∵ AP=AC,OA=OC, ∴ ∠ OAC=∠ ACD=30°,∠ P=∠ ACD=30°, ∴ ∠ OAP=180°-30°-30°-30°=90°, 即 OA⊥AP, ∵ OA 为半径, ∴ AP 是⊙O 切线. (2)连接 AD,BD,
人教中考数学圆的综合-经典压轴题附详细答案
![人教中考数学圆的综合-经典压轴题附详细答案](https://img.taocdn.com/s3/m/95d2a9e2f7ec4afe04a1dfc1.png)
一、圆的综合 真题与模拟题分类汇编(难题易错题)1.如图,在⊙O 中,直径AB ⊥弦CD 于点E ,连接AC ,BC ,点F 是BA 延长线上的一点,且∠FCA =∠B .(1)求证:CF 是⊙O 的切线; (2)若AE =4,tan ∠ACD = 12,求AB 和FC 的长.【答案】(1)见解析;(2) ⑵AB=20 , 403CF =【解析】 分析:(1)连接OC ,根据圆周角定理证明OC ⊥CF 即可;(2)通过正切值和圆周角定理,以及∠FCA =∠B 求出CE 、BE 的长,即可得到AB 长,然后根据直径和半径的关系求出OE 的长,再根据两角对应相等的两三角形相似(或射影定理)证明△OCE ∽△CFE ,即可根据相似三角形的对应线段成比例求解.详解:⑴证明:连结OC∵AB 是⊙O 的直径∴∠ACB=90°∴∠B+∠BAC=90°∵OA=OC∴∠BAC=∠OCA∵∠B=∠FCA∴∠FCA+∠OCA=90°即∠OCF=90°∵C 在⊙O 上∴CF 是⊙O 的切线⑵∵AE=4,tan ∠ACD12AE EC = ∴CE=8∵直径AB ⊥弦CD 于点E∴AD AC =∵∠FCA =∠B∴∠B=∠ACD=∠FCA∴∠EOC=∠ECA∴tan ∠B=tan ∠ACD=1=2CE BE ∴BE=16∴AB=20∴OE=AB÷2-AE=6∵CE ⊥AB ∴∠CEO=∠FCE=90°∴△OCE ∽△CFE ∴OC OE CF CE= 即106=8CF ∴40CF 3= 点睛:此题主要考查了圆的综合知识,关键是熟知圆周角定理和切线的判定与性质,结合相似三角形的判定与性质和解直角三角形的知识求解,利用数形结合和方程思想是解题的突破点,有一定的难度,是一道综合性的题目.2.函数是描述客观世界运动变化的重要模型,理解函数的本质是重要的任务。
(1)如图1,在平面直角坐标系中,已知点A 、B 的坐标分别为A (6,0)、B (0,2),点C (x ,y )在线段AB 上,计算(x+y )的最大值。
2020-2021中考数学圆的综合-经典压轴题及答案
![2020-2021中考数学圆的综合-经典压轴题及答案](https://img.taocdn.com/s3/m/6521379233d4b14e852468ef.png)
2020-2021中考数学圆的综合-经典压轴题及答案一、圆的综合1.如图,已知四边形ABCD是矩形,点P在BC边的延长线上,且PD=BC,⊙A经过点B,与AD边交于点E,连接CE .(1)求证:直线PD是⊙A的切线;(2)若PC=25,sin∠P=23,求图中阴影部份的面积(结果保留无理数).【答案】(1)见解析;(2)20-4π.【解析】分析:(1)过点A作AH⊥PD,垂足为H,只要证明AH为半径即可.(2)分别算出Rt△CED的面积,扇形ABE的面积,矩形ABCD的面积即可.详解:(1)证明:如图,过A作AH⊥PD,垂足为H,∵四边形ABCD是矩形,∴AD=BC,AD∥BC,∠PCD=∠BCD=90°,∴∠ADH=∠P,∠AHD=∠PCD=90°,又PD=BC,∴AD=PD,∴△ADH≌△DPC,∴AH=CD,∵CD=AB,且AB是⊙A的半径,∴AH=AB,即AH是⊙A的半径,∴PD是⊙A的切线.(2)如图,在Rt△PDC中,∵sin∠P=23CDPD,5,令CD=2x,PD=3x,由由勾股定理得:(3x)2-(2x)252,解得:x=2,∴CD=4,PD=6,∴AB=AE=CD=4,AD=BC=PD=6,DE=2,∵矩形ABCD的面积为6×4=24,Rt△CED的面积为12×4×2=4,扇形ABE的面积为12π×42=4π,∴图中阴影部份的面积为24-4-4π=20-4π.点睛:本题考查了全等三角形的判定,圆的切线证明,三角形的面积,扇形的面积,矩形的面积.2.如图,AB是⊙O的直径,点C,D是半圆O的三等分点,过点C作⊙O的切线交AD的延长线于点E,过点D作DF⊥AB于点F,交⊙O于点H,连接DC,AC.(1)求证:∠AEC=90°;(2)试判断以点A,O,C,D为顶点的四边形的形状,并说明理由;(3)若DC=2,求DH的长.【答案】(1)证明见解析;(2)四边形AOCD为菱形;(3)DH=2.【解析】试题分析:(1)连接OC,根据EC与⊙O切点C,则∠OCE=90°,由题意得,∠DAC=∠CAB,即可证明AE∥OC,则∠AEC+∠OCE=180°,从而得出∠AEC=90°;(2)四边形AOCD为菱形.由(1)得,则∠DCA=∠CAB可证明四边形AOCD是平行四边形,再由OA=OC,即可证明平行四边形AOCD是菱形(一组邻边相等的平行四边形是菱形);(3)连接OD.根据四边形AOCD为菱形,得△OAD是等边三角形,则∠AOD=60°,再由DH⊥AB于点F,AB为直径,在Rt△OFD中,根据sin∠AOD=,求得DH的长.试题解析:(1)连接OC,∵EC与⊙O切点C,∴OC⊥EC,∴∠OCE=90°,∵点CD是半圆O的三等分点,∴,∴∠DAC=∠CAB,∵OA=OC,∴∠CAB=∠OCA,∴∠DAC=∠OCA,∴AE∥OC(内错角相等,两直线平行)∴∠AEC+∠OCE=180°,∴∠AEC=90°;(2)四边形AOCD为菱形.理由是:∵,∴∠DCA=∠CAB,∴CD∥OA,又∵AE∥OC,∴四边形AOCD是平行四边形,∵OA=OC,∴平行四边形AOCD是菱形(一组邻边相等的平行四边形是菱形);(3)连接OD.∵四边形AOCD为菱形,∴OA=AD=DC=2,∵OA=OD,∴OA=OD=AD=2,∴△OAD 是等边三角形,∴∠AOD=60°,∵DH ⊥AB 于点F ,AB 为直径,∴DH=2DF ,在Rt △OFD 中,sin ∠AOD=, ∴DF=ODsin ∠AOD=2sin60°=,∴DH=2DF=2. 考点:1.切线的性质2.等边三角形的判定与性质3.菱形的判定与性质4.解直角三角形.3.如图,已知平行四边形OABC 的三个顶点A 、B 、C 在以O 为圆心的半圆上,过点C 作CD ⊥AB ,分别交AB 、AO 的延长线于点D 、E ,AE 交半圆O 于点F ,连接CF .(1)判断直线DE 与半圆O 的位置关系,并说明理由;(2)若半圆O 的半径为6,求¶AC 的长.【答案】(1)直线CE 与半圆O 相切(2)4π【解析】试题分析:(1)结论:DE 是⊙O 的切线.首先证明△ABO ,△BCO 都是等边三角形,再证明四边形BDCG 是矩形,即可解决问题;(2)只要证明△OCF 是等边三角形即可解决问题,求AC 即可解决问题.试题解析:(1)直线CE 与半圆O 相切,理由如下:∵四边形OABC 是平行四边形,∴AB ∥OC.∵∠D=90°,∴∠OCE=∠D=90°,即OC ⊥DE ,∴直线CE 与半圆O 相切.(2)由(1)可知:∠COF=60°,OC=OF ,∴△OCF 是等边三角形,∴∠AOC=120°∴¶AC 的长为1206180π⨯⨯=4π.4.如图1O e ,的直径12AB P =,是弦BC 上一动点(与点B C ,不重合)30ABC o ,∠=,过点P 作PD OP ⊥交O e 于点D .()1如图2,当//PD AB 时,求PD 的长;()2如图3,当»»DC AC =时,延长AB 至点E ,使12BE AB =,连接DE . ①求证:DE 是O e 的切线;②求PC 的长.【答案】(1)26;(2)333-①见解析,②.【解析】 分析:()1根据题意首先得出半径长,再利用锐角三角函数关系得出OP PD ,的长; ()2①首先得出OBD V 是等边三角形,进而得出ODE OFB 90∠∠==o ,求出答案即可;②首先求出CF 的长,进而利用直角三角形的性质得出PF 的长,进而得出答案. 详解:()1如图2,连接OD ,//OP PD PD AB ⊥Q ,,90POB ∴∠=o ,O Q e 的直径12AB =,6OB OD ∴==,在Rt POB V 中,30ABC o ∠=,3tan306233OP OB ∴=⋅=⨯=o 在Rt POD V 中, 22226(23)26PD OD OP =-=-=;()2①证明:如图3,连接OD ,交CB 于点F ,连接BD ,»»DC AC =Q ,30DBC ABC ∴∠=∠=o ,60ABD o ∴∠=,OB OD =Q ,OBD ∴V 是等边三角形,OD FB ∴⊥,12BE AB =Q , OB BE ∴=,//BF ED ∴,90ODE OFB o ∴∠=∠=,DE ∴是O e 的切线;②由①知,OD BC ⊥,3cos306332CF FB OB ∴==⋅=⨯=o 在Rt POD V 中,OF DF =, 13(2PF DO ∴==直角三角形斜边上的中线,等于斜边的一半), 333CP CF PF ∴=-=.点睛:此题主要考查了圆的综合以及直角三角形的性质和锐角三角函数关系,正确得出OBD V 是等边三角形是解题关键.5.已知⊙O 中,弦AB=AC ,点P 是∠BAC 所对弧上一动点,连接PA ,PB .(1)如图①,把△ABP 绕点A 逆时针旋转到△ACQ ,连接PC ,求证:∠ACP+∠ACQ=180°;(2)如图②,若∠BAC=60°,试探究PA 、PB 、PC 之间的关系.(3)若∠BAC=120°时,(2)中的结论是否成立?若是,请证明;若不是,请直接写出它们之间的数量关系,不需证明.【答案】(1)证明见解析;(2)PA=PB+PC.理由见解析;(3)若∠BAC=120°时,(2)3 PA=PB+PC.【解析】试题分析:(1)如图①,连接PC.根据“内接四边形的对角互补的性质”即可证得结论;(2)如图②,通过作辅助线BC、PE、CE(连接BC,延长BP至E,使PE=PC,连接CE)构建等边△PCE和全等三角形△BEC≌△APC;然后利用全等三角形的对应边相等和线段间的和差关系可以求得PA=PB+PC;(3)如图③,在线段PC上截取PQ,使PQ=PB,过点A作AG⊥PC于点G.利用全等三角形△ABP≌△AQP(SAS)的对应边相等推知AB=AQ,PB=PG,将PA、PB、PC的数量关系转化到△APC中来求即可.试题解析:(1)如图①,连接PC.∵△ACQ是由△ABP绕点A逆时针旋转得到的,∴∠ABP=∠ACQ.由图①知,点A、B、P、C四点共圆,∴∠ACP+∠ABP=180°(圆内接四边形的对角互补),∴∠ACP+∠ACQ=180°(等量代换);(2)PA=PB+PC.理由如下:如图②,连接BC,延长BP至E,使PE=PC,连接CE.∵弦AB=弦AC,∠BAC=60°,∴△ABC是等边三角形(有一内角为60°的等腰三角形是等边三角形).∵A、B、P、C四点共圆,∴∠BAC+∠BPC=180°(圆内接四边形的对角互补),∵∠BPC+∠EPC=180°,∴∠BAC=∠CPE=60°,∵PE=PC,∴△PCE是等边三角形,∴CE=PC,∠E=∠ECP=∠EPC=60°;又∵∠BCE=60°+∠BCP,∠ACP=60°+∠BCP,∴∠BCE=∠ACP(等量代换),在△BEC和△APC中,CE PCBCE ACPAC BC=⎧⎪∠=∠⎨⎪=⎩,∴△BEC≌△APC(SAS),∴BE=PA,∴PA=BE=PB+PC;(3)若∠BAC=120°时,(23.理由如下:如图③,在线段PC上截取PQ,使PQ=PB,过点A作AG⊥PC于点G.∵∠BAC=120°,∠BAC+∠BPC=180°,∴∠BPC=60°.∵弦AB=弦AC,∴∠APB=∠APQ=30°.在△ABP和△AQP中,PB PQAPB APQAP AP=⎧⎪∠=∠⎨⎪=⎩,∴△ABP≌△AQP(SAS),∴AB=AQ,PB=PQ(全等三角形的对应边相等),∴AQ=AC(等量代换).在等腰△AQC中,QG=CG.在Rt△APG中,∠APG=30°,则AP=2AG,PG=3AG,∴PB+PC=PG﹣QG+PG+CG=PG﹣QG+PG+QG=2PG=23AG,∴3PA=23AG,即3PA=PB+PC.【点睛】本题考查了圆的综合题,解题的关键要能掌握和灵活运用圆心角、弧、弦间的关系,全等三角形的判定与性质,圆内接四边形的性质等.6.如图,已知BC是⊙O的弦,A是⊙O外一点,△ABC为正三角形,D为BC的中点,M 为⊙O上一点,并且∠BMC=60°.(1)求证:AB是⊙O的切线;(2)若E,F分别是边AB,AC上的两个动点,且∠EDF=120°,⊙O的半径为2,试问BE+CF的值是否为定值?若是,求出这个定值;若不是,请说明理由.【答案】(1)证明见试题解析;(2)BE+CF的值是定值,为等边△ABC边长的一半.【解析】试题分析:(1)连结OB、OD,如图1,由于D为BC的中点,由垂径定理的推理得OD⊥BC,∠BOD=∠COD,即可得到∠BOD=∠M=60°,则∠OBD=30°,所以∠ABO=90°,于是得到AB是⊙O的切线;(2)作DM⊥AB于M,DN⊥AC于N,连结AD,如图2,由△ABC为正三角形,D为BC的中点,得到AD平分∠BAC,∠BAC=60°,利用角平分线性质得DM=DN,得∠MDN=120°,由∠EDF=120°,得到∠MDE=∠NDF,于是有△DME≌△DNF,得到ME=NF,得到BE+CF=BM+CN,由BM=12BD,CN=12OC,得到BE+CF=12BC,即可判断BE+CF的值是定值,为等边△ABC边长的一半.试题解析:(1)连结OB、OD,如图1,∵D为BC的中点,∴OD⊥BC,∠BOD=∠COD,∴∠ODB=90°,∵∠BMC=12∠BOC,∴∠BOD=∠M=60°,∴∠OBD=30°,∵△ABC为正三角形,∴∠ABC=60°,∴∠ABO=60°+30°=90°,∴AB⊥OB,∴AB是⊙O的切线;(2)BE+CF的值是为定值.作DM⊥AB于M,DN⊥AC于N,连结AD,如图2,∵△ABC为正三角形,D为BC的中点,∴AD平分∠BAC,∠BAC=60°,∴DM=DN,∠MDN=120°,∵∠EDF=120°,∴∠MDE=∠NDF,在△DME和△DNF中,∵∠DME=∠DNF.DM=DN,∠MDE=∠NDF,∴△DME≌△DNF,∴ME=NF,∴BE+CF=BM﹣EM+CN+NF=BM+CN,在Rt△DMB中,∵∠DBM=60°,∴BM=12BD,同理可得CN=12OC,∴BE+CF=12OB+12OC=12BC,∴BE+CF的值是定值,为等边△ABC边长的一半.考点:1.切线的判定;2.等边三角形的性质;3.定值问题;4.探究型;5.综合题;6.压轴题.7.如图,AB是⊙O的直径,弦CD⊥AB于点G,点F是CD上一点,且满足若13 CFDF,连接AF并延长交⊙O于点E,连接AD、DE,若CF=2,AF=3.(1)求证:△ADF∽△AED;(2)求FG的长;(3)求tan∠E的值.【答案】(1)证明见解析;(2)FG =2;(3)5 .【解析】分析:(1)由AB是 O的直径,弦CD⊥AB,根据垂径定理可得:弧AD=弧AC,DG=CG,继而证得△ADF∽△AED;(2)由13CFFD= ,CF=2,可求得DF的长,继而求得CG=DG=4,则可求得FG=2;(3)由勾股定理可求得AG的长,即可求得tan∠ADF的值,继而求得tan∠E=5 .本题解析:①∵AB是⊙O的直径,弦CD⊥AB,∴DG=CG,∴»»AD AC=,∠ADF=∠AED,∵∠FAD=∠DAE(公共角),∴△ADF∽△AED;②∵13CFFD=,CF=2,∴FD=6,∴CD=DF+CF=8,∴CG=DG=4,∴FG=CG-CF=2;③∵AF=3,FG=2,∴AG=225AF FG-=,点睛:本题考查了相似三角形的判定与性质、圆周角定理、垂径定理、勾股定理以及三角函数等知识点,考查内容较多,综合性较强,难度适中,注意掌握数形结合的思想.8.如图1,已知AB是⊙O的直径,AC是⊙O的弦,过O点作OF⊥AB交⊙O于点D,交AC于点E,交BC的延长线于点F,点G是EF的中点,连接CG(1)判断CG与⊙O的位置关系,并说明理由;(2)求证:2OB2=BC•BF;(3)如图2,当∠DCE=2∠F,CE=3,DG=2.5时,求DE的长.【答案】(1)CG与⊙O相切,理由见解析;(2)见解析;(3)DE=2【解析】【分析】(1)连接CE,由AB是直径知△ECF是直角三角形,结合G为EF中点知∠AEO=∠GEC=∠GCE,再由OA=OC知∠OCA=∠OAC,根据OF⊥AB可得∠OCA+∠GCE=90°,即OC⊥GC,据此即可得证;(2)证△ABC∽△FBO得BC ABBO BF=,结合AB=2BO即可得;(3)证ECD∽△EGC得EC EDEG EC=,根据CE=3,DG=2.5知32.53DEDE=+,解之可得.【详解】解:(1)CG与⊙O相切,理由如下:如图1,连接CE,∵AB是⊙O的直径,∴∠ACB=∠ACF=90°,∵点G是EF的中点,∴GF=GE=GC,∴∠AEO=∠GEC=∠GCE,∵OA=OC,∴∠OCA=∠OAC,∵OF⊥AB,∴∠OAC+∠AEO=90°,∴∠OCA+∠GCE=90°,即OC⊥GC,∴CG与⊙O相切;(2)∵∠AOE=∠FCE=90°,∠AEO=∠FEC,∴∠OAE=∠F,又∵∠B=∠B,∴△ABC∽△FBO,∴BC ABBO BF=,即BO•AB=BC•BF,∵AB=2BO,∴2OB 2=BC •BF ;(3)由(1)知GC =GE =GF ,∴∠F =∠GCF ,∴∠EGC =2∠F ,又∵∠DCE =2∠F ,∴∠EGC =∠DCE ,∵∠DEC =∠CEG ,∴△ECD ∽△EGC , ∴EC ED EG EC=, ∵CE =3,DG =2.5,∴32.53DE DE =+, 整理,得:DE 2+2.5DE ﹣9=0,解得:DE =2或DE =﹣4.5(舍),故DE =2.【点睛】本题是圆的综合问题,解题的关键是掌握圆周角定理、切线的判定、相似三角形的判定与性质及直角三角形的性质等知识点.9.如图,线段BC 所在的直线 是以AB 为直径的圆的切线,点D 为圆上一点,满足BD =BC ,且点C 、D 位于直径AB 的两侧,连接CD 交圆于点E . 点F 是BD 上一点,连接EF ,分别交AB 、BD 于点G 、H ,且EF =BD .(1)求证:EF ∥BC ;(2)若EH =4,HF =2,求»BE的长.【答案】(1)见解析;(2)233π【解析】【分析】 (1)根据EF =BD 可得»EF=»BD ,进而得到»»BE DF =,根据“在同圆或等圆中,同弧或等弧所对的圆周角相等”即可得出角相等进而可证.(2)连接DF,根据切线的性质及垂径定理求出GF、GE的长,根据“在同圆或等圆中,同弧或等弧所对的圆周角相等”及平行线求出相等的角,利用锐角三角函数求出∠BHG,进而求出∠BDE的度数,确定»BE所对的圆心角的度数,根据∠DFH=90°确定DE为直径,代入弧长公式即可求解.【详解】(1)∵EF=BD,∴»EF=»BD∴»»BE DF=∴∠D=∠DEF又BD=BC,∴∠D=∠C,∴∠DEF=∠CEF∥BC(2)∵AB是直径,BC为切线,∴AB⊥BC又EF∥BC,∴AB⊥EF,弧BF=弧BE,GF=GE=12(HF+EH)=3,HG=1DB平分∠EDF,又BF∥CD,∴∠FBD=∠FDB=∠BDE=∠BFH ∴HB=HF=2∴cos∠BHG=HGHB =12,∠BHG=60°.∴∠FDB=∠BDE=30°∴∠DFH=90°,DE为直径,DE=3BE所对圆心角=60°.∴弧BE=163π=233π【点睛】本题是圆的综合题,主要考查圆周角、切线、垂径定理、弧长公式等相关知识,掌握圆周角的有关定理,切线的性质,垂径定理及弧长公式是解题关键.10.AB 是⊙O 直径,在AB 的异侧分别有定点C 和动点P ,如图所示,点P 在半圆弧AB 上运动(不与A 、B 重合),过C 作CP 的垂线CD ,交PB 的延长线于D ,已知5AB =,BC ∶CA =4∶3.(1)求证:AC ·CD =PC ·BC ;(2)当点P 运动到AB 弧的中点时,求CD 的长;(3)当点P 运动到什么位置时,PCD ∆的面积最大?请直接写出这个最大面积.【答案】(1)证明见解析;(2)CD =142;(3)当PC 为⊙O 直径时,△PCD 的最大面积=503. 【解析】【分析】(1)由圆周角定理可得∠PCD=∠ACB=90°,可证△ABC ∽△PCD ,可得AC BC CP CD =,即可得证.(2)由题意可求BC=4,AC=3,由勾股定理可求CE 的长,由锐角三角函数可求PE 的长,即可得PC 的长,由AC•CD=PC•BC 可求CD 的值;(3)当点P 在¶AB 上运动时,12PCD S PC CD =⨯⨯V ,由(1)可得:43CD PC =,可得2142233PCD S PC PC PC V =⨯⨯=,当PC 最大时,△PCD 的面积最大,而PC 为直径时最大,故可求解.【详解】证明:(1)∵AB 为直径,∴∠ACB =90°∵PC ⊥CD ,∴∠PCD =90°∴∠PCD =∠ACB ,且∠CAB =∠CPB∴△ABC ∽△PCD ∴AC BC CP CD= ∴AC •CD =PC •BC(2)∵AB =5,BC :CA =4:3,∠ACB =90°∴BC =4,AC =3,当点P 运动到¶AB 的中点时,过点B 作BE ⊥PC 于点E∵点P 是¶AB 的中点, ∴∠PCB =45°,且BC =4∴CE =BE =22BC 2 ∵∠CAB =∠CPB∴tan ∠CAB =43=BC AC =tan ∠CAB =BE PE ∴PE =322∴PC =PE +CE =3222=22 ∵AC •CD =PC •BC ∴3×CD =22×4 ∴CD 142 (3)当点P 在¶AB 上运动时,S △PCD =12×PC ×CD , 由(1)可得:CD =43PC ∴S △PCD =1423PC PC ⨯⨯=23PC 2, ∴当PC 最大时,△PCD 的面积最大,∴当PC 为⊙O 直径时,△PCD 的最大面积=23×52=503【点睛】 本题是圆的综合题,考查了相似三角形的判定和性质,圆的有关知识,锐角三角函数,求出PC 的长是本题的关键.11.如图1,AB 为半圆O 的直径,半径OP ⊥AB ,过劣弧AP 上一点D 作DC ⊥AB 于点C .连接DB ,交OP 于点E ,∠DBA =22.5°.⑴ 若OC =2,则AC 的长为 ;⑵ 试写出AC 与PE 之间的数量关系,并说明理由;⑶ 连接AD 并延长,交OP 的延长线于点G ,设DC =x ,GP =y ,请求出x 与y 之间的等量关系式. (请先补全图形,再解答)【答案】⑴ 222;⑵ 见解析;⑶ y =2x【解析】【分析】(1)如图,连接OD ,则有∠AOD=45°,所以△DOC 为等腰直角三角形,又OC=2,所以2,故可求出AC 的长;(2)连接AD ,DP ,过点D 作DF ⊥OP ,垂足为点F . 证AC=PF 或AC=EF ,证DP=DE证PF=EF=12PE ,故可证出PE =2AC ; (3)首先求出22OD CD x ==,再求AB=22x ,再证△DGE ≌△DBA,得GE =AB =2x ,由PE=2AC 得PE =2(2)x x -,再根据GP =GE -PE 可求结论.【详解】(1)连接OD ,如图,∵∠B=22.5°,∴∠DOC=45°,∵DC⊥AB∴△DOC为等腰直角三角形,∵OC=2,∴2∴2,∴AC=AO-OC=222.⑵连接AD,DP,过点D作DF⊥OP,垂足为点F.∵OP⊥AB,∴∠POD=∠DOC=45°,∴AD=PD,∵△DOC为等腰直角三角形,∴DC=CO,易证DF=CO,∴DC=DF,∴Rt△DAC≌Rt△DPF,∴PF=AC,∵DO=AO,∠DOA=45°∴∠DAC=67.5°∴∠DPE=67.5°,∵OD=OB,∠B=22.5°,∴∠ODE=22.5°∴∠DEP=22.5°+45°=67.5°∴∠DEP=∠DPE∴PF=EF=12PE ∴PE =2AC(3)如图2,由∠DCO =90°,∠DOC =45°得22OD CD x == ∴ AB =2OD=22x∵AB 是直径,∴∠ADB=∠EDG=90°,由(2)得AD=ED,∠DEG=∠DAC∴△DGE ≌△DBA∴ GE =AB =22x∵ PE =2AC∴ PE =2(2)x x -∴ GP =GE -PE =222(2-)x x x -即:y =2x【点睛】本题是一道圆的综合题,涵盖的知识点较多,难度较大,主要考查了圆周角定理,等腰三角形的性质,三角形全等的判定与性质等知识,熟练掌握并运用这些知识是解题的关键.12.如图,AB 为⊙O 的直径,BC 为⊙O 的弦,过O 点作OD ⊥BC ,交⊙O 的切线CD 于点D ,交⊙O 于点E ,连接AC 、AE ,且AE 与BC 交于点F .(1)连接BD ,求证:BD 是⊙O 的切线;(2)若AF :EF=2:1,求tan ∠CAF 的值.【答案】(1)证明见解析;(23. 【解析】【分析】 (1)根据全等三角形的性质得到∠OBD=∠OCD=90°,根据切线的判定定理即可得到结论; (2)根据已知条件得到AC ∥DE ,设OD 与BC 交于G ,根据平行线分线段成比例定理得到AC :EG=2:1,EG=12AC ,根据三角形的中位线的性质得到OG=12AC 于是得到AC=OE ,求得∠ABC=30°,即可得到结论.【详解】证明:(1)∵OC=OB ,OD ⊥BC ,∴∠COD=∠BOD ,在△COD 与△BOD 中,OC OB COD BOD OD OD ===⎧⎪∠∠⎨⎪⎩,∴△COD ≌△BOD ,∴∠OBD=∠OCD=90°,∴BD 是⊙O 的切线;(2)解:∵AB 为⊙O 的直径,AC ⊥BC ,∵OD ⊥CB ,∴AC ∥DE ,设OD 与BC 交于G ,∵OE ∥AC ,AF :EF=2:1,∴AC :EG=2:1,即EG=12AC , ∵OG ∥AC ,OA=OB ,∴OG=12AC , ∵OG+GE=12AC+12AC=AC , ∴AC=OE , ∴AC=12AB , ∴∠ABC=30°,∴∠CAB=60°,∵¼¼CE BE=,∴∠CAF=∠EAB=12∠CAB=30°, ∴tan ∠CAF=tan30°=33. 【点睛】本题考查了切线的判定和性质,垂径定理,全等三角形的判定与性质,三角形的中位线的性质,三角函数的定义,正确的识别图形是解题的关键.13.如图,四边形ABCD 是⊙O 的内接四边形,AC 为直径,»»BD AD =,DE ⊥BC ,垂足为E .(1)判断直线ED 与⊙O 的位置关系,并说明理由;(2)若CE =1,AC =4,求阴影部分的面积.【答案】(1)ED 与O e 相切.理由见解析;(2)2=33S π-阴影 【解析】【分析】 (1)连结OD ,如图,根据圆周角定理,由»»BD AD =得到∠BAD =∠ACD ,再根据圆内接四边形的性质得∠DCE =∠BAD ,所以∠ACD =∠DCE ;利用内错角相等证明OD ∥BC ,而DE ⊥BC ,则OD ⊥DE ,于是根据切线的判定定理可得DE 为⊙O 的切线;(2)作OH ⊥BC 于H ,易得四边形ODEH 为矩形,所以OD =EH =2,则CH =HE ﹣CE =1,于是有∠HOC =30°,得到∠COD =60°,然后根据扇形面积公式、等边三角形的面积公式和阴影部分的面积=S 扇形OCD ﹣S △OCD 进行计算即可.【详解】(1)直线ED 与⊙O 相切.理由如下:连结OD ,如图,∵»»BD AD =,∴∠BAD =∠ACD .∵∠DCE =∠BAD ,∴∠ACD =∠DCE .∵OC =OD ,∴∠OCD =∠ODC ,而∠OCD =∠DCE ,∴∠DCE =∠ODC ,∴OD ∥BC . ∵DE ⊥BC ,∴OD ⊥DE ,∴DE 为⊙O 的切线;(2)作OH ⊥BC 于H ,则四边形ODEH 为矩形,∴OD =EH .∵CE =1,AC =4,∴OC =OD =2,∴CH =HE ﹣CE =2﹣1=1.在Rt △OHC 中,∵OC =2,CH =1,∠OHC =90°,∠HOC =30°,∴∠COD =60°,∴阴影部分的面积=S 扇形OCD ﹣S △OCD260233604π⋅⋅=-•22 23=π3-.【点睛】本题考查了切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.也考查了扇形面积的计算.14.我们知道,如图1,AB 是⊙O 的弦,点F 是¼AFB 的中点,过点F 作EF ⊥AB 于点E ,易得点E 是AB 的中点,即AE =EB .⊙O 上一点C (AC >BC ),则折线ACB 称为⊙O 的一条“折弦”.(1)当点C 在弦AB 的上方时(如图2),过点F 作EF ⊥AC 于点E ,求证:点E 是“折弦ACB”的中点,即AE =EC+CB .(2)当点C 在弦AB 的下方时(如图3),其他条件不变,则上述结论是否仍然成立?若成立说明理由;若不成立,那么AE 、EC 、CB 满足怎样的数量关系?直接写出,不必证明.(3)如图4,已知Rt △ABC 中,∠C =90°,∠BAC =30°,Rt △ABC 的外接圆⊙O 的半径为2,过⊙O 上一点P 作PH ⊥AC 于点H ,交AB 于点M ,当∠PAB =45°时,求AH 的长.【答案】(1)见解析;(2)结论AE=EC+CB不成立,新结论为:CE=BC+AE,见解析;(3)AH的长为3﹣1或3+1.【解析】【分析】(1)在AC上截取AG=BC,连接FA,FG,FB,FC,证明△FAG≌△FBC,根据全等三角形的性质得到FG=FC,根据等腰三角形的性质得到EG=EC,即可证明.(2)在CA上截取CG=CB,连接FA,FB,FC,证明△FCG≌△FCB,根据全等三角形的性质得到FG=FB,得到FA=FG,根据等腰三角形的性质得到AE=GE,即可证明.(3)分点P在弦AB上方和点P在弦AB下方两种情况进行讨论.【详解】解:(1)如图2,在AC上截取AG=BC,连接FA,FG,FB,FC,∵点F是¼AFB的中点,FA=FB,在△FAG和△FBC中,,FA FB FAG FBC AG BC =⎧⎪∠=∠⎨⎪=⎩∴△FAG ≌△FBC (SAS ),∴FG =FC ,∵FE ⊥AC ,∴EG =EC ,∴AE =AG+EG =BC+CE ;(2)结论AE =EC+CB 不成立,新结论为:CE =BC+AE ,理由:如图3,在CA 上截取CG =CB ,连接FA ,FB ,FC ,∵点F 是¼AFB 的中点,∴FA =FB ,¶¶ FAFB =, ∴∠FCG =∠FCB ,在△FCG 和△FCB 中,,CG CB FCG FCB FC FC =⎧⎪∠=∠⎨⎪=⎩∴△FCG ≌△FCB (SAS ),∴FG =FB ,∴FA =FG ,∵FE ⊥AC ,∴AE =GE ,∴CE =CG+GE =BC+AE ;(3)在Rt △ABC 中,AB =2OA =4,∠BAC =30°, ∴12232BC AB AC ===,, 当点P 在弦AB 上方时,如图4,在CA 上截取CG =CB ,连接PA ,PB ,PG ,∵∠ACB =90°,∴AB 为⊙O 的直径,∴∠APB =90°,∵∠PAB =45°,∴∠PBA =45°=∠PAB ,∴PA =PB ,∠PCG =∠PCB ,在△PCG 和△PCB 中, ,CG CB PCG PCB PC PC =⎧⎪∠=∠⎨⎪=⎩∴△PCG ≌△PCB (SAS ),∴PG =PB ,∴PA =PG ,∵PH ⊥AC ,∴AH =GH ,∴AC =AH+GH+CG =2AH+BC , ∴2322AH =+, ∴31AH =,当点P 在弦AB 下方时,如图5, 在AC 上截取AG =BC ,连接PA ,PB ,PC ,PG∵∠ACB =90°,∴AB 为⊙O 的直径,∴∠APB =90°,∵∠PAB =45°,∴∠PBA =45°=∠PAB ,∴PA =PB ,在△PAG 和△PBC 中,,AG BC PAG PBC PA PB =⎧⎪∠=∠⎨⎪=⎩∴△PAG ≌△PBC (SAS ),∴PG =PC ,∵PH ⊥AC ,∴CH =GH ,∴AC =AG+GH+CH =BC+2CH , ∴2322CH ,=+∴31CH =-,∴()233131AH AC CH =-=--=+, 即:当∠PAB =45°时,AH 的长为31- 或3 1.+【点睛】考查弧,弦的关系,全等三角形的判定与性质,等腰三角形的判定与性质等,综合性比较强,注意分类讨论思想方法在解题中的应用.15.如图,已知等边△ABC ,AB=16,以AB 为直径的半圆与BC 边交于点D ,过点D 作DF ⊥AC ,垂足为F ,过点F 作FG ⊥AB ,垂足为G ,连结GD .(1)求证:DF 是⊙O 的切线;(2)求FG 的长;(3)求tan ∠FGD 的值.【答案】(1)证明见解析;(2)6;(3).【解析】试题分析:(1)连接OD ,根据等边三角形得出∠A=∠B=∠C=60°,根据OD=OB 得到∠ODB=60°,得到OD ∥AC ,根据垂直得出切线;(2)根据中位线得出BD=CD=6,根据Rt △CDF 的三角函数得出CF 的长度,从而得到AF 的长度,最后根据Rt △AFG 的三角函数求出FG的长度;(3)过点D作DH⊥AB,根据垂直得出FG∥DH,根据Rt△BDH求出BH、DH的长度,然后得出∠GDH的正切值,从而得到∠FGD的正切值.试题解析:(1)如图①,连结OD,∵△ABC为等边三角形,∴∠C=∠A=∠B=60°,而OD=OB,∴△ODB是等边三角形,∠ODB=60°,∴∠ODB=∠C,∴OD∥AC,∵DF⊥AC,∴OD⊥DF,∴DF是⊙O的切线(2)∵OD∥AC,点O为AB的中点,∴OD为△ABC的中位线,∴BD=CD=6.在Rt△CDF中,∠C=60°,∴∠CDF=30°,∴CF=CD=3,∴AF=AC-CF=12-3=9 在Rt△AFG中,∵∠A=60°,∴FG=AF·sinA=9×=(3)如图②,过D作DH⊥AB于H.∵FG⊥AB,DH⊥AB,∴FG∥DH,∴∠FGD=∠GDH.在Rt△BDH中,∠B=60°,∴∠BDH=30°,∴BH=BD=3,DH=BH=3.∴tan∠GDH===,∴tan∠FGD=tan∠GDH=考点:(1)圆的基本性质;(2)三角函数.。
2020年九年级数学典型中考压轴题综合专项训练:《圆的综合》(含答案)
![2020年九年级数学典型中考压轴题综合专项训练:《圆的综合》(含答案)](https://img.taocdn.com/s3/m/db3113c1b307e87101f69690.png)
2020年九年级数学典型中考压轴题综合专项训练:《圆的综合》1.如图1,CD是⊙O的直径,且CD过弦AB的中点H,连接BC,过弧AD上一点E作EF∥BC,交BA的延长线于点F,连接CE,其中CE交AB于点G,且FE=FG.(1)求证:EF是⊙O的切线;(2)如图2,连接BE,求证:BE2=BG•BF;(3)如图3,若CD的延长线与FE的延长线交于点M,tan F=,BC=5,求DM 的值.2.如图,四边形ABCD内接于⊙O,AB是⊙O的直径,AC平分∠BAD,过C点作CE⊥AD 延长线于E点.(1)求证:CE是⊙O的切线;(2)若AB=10,AC=8,求AD的长.3.已知,如图1,AB为⊙O直径,△ACD内接于⊙O,∠D+∠ACE=90°,点E在线段AD上,连接CE.(1)若CE⊥AD,求证:CA=CD;(2)如图2,连接BD,若AE=DE,求证:BD平行CE;(3)如图,在(2)的条件下,过点C作AB的垂线交AB于点K,交AD于点L,4AK =9BK,若OL=,求BD的值.4.如图,在Rt△ABC中,∠ACB=90°,以AC为直径作⊙O,点D在⊙O上,BD=BC,DE⊥AC,垂足为点E,DE与⊙O和AB分别交于点M、F.连接BO、DO、AM.(1)证明:BD是⊙O的切线;(2)若tan∠AMD=,AD=2,求⊙O的半径长;(3)在(2)的条件下,求DF的长.5.如图,在Rt△ABC中,AB⊥BC,以AB为直径的圆交AC于点D,E是BC的中点,连接DE.(1)求证:DE是⊙O的切线;(2)设⊙O的半径为r,证明r2=AD•OE;(3)若DE=4,sin C=,求AD之长.6.如图,在△ABC中,I是内心,AB=AC,O是AB边上一点,以点O为圆心,OB为半径的⊙O经过点I.(1)求证:AI是⊙O的切线;(2)已知⊙O的半径是5.①若E是BI的中点,OE=,则BI=;②若BC=16,求AI的长.7.[教材呈现]图是华师版九年级上册数学教材第103页的部分内容.已知:如图,在Rt△ABC中,∠ACB=90°,CD是斜边AB上的中线.求证:CD=AB.通过该问题的证明,得出了直角三角形的一条性质:直角三角形斜边上的中线等于斜边的一半.请根据教材内容,结合图①,写出完整的解题过程.[结论应用](1)如图②,在Rt△ABC中,F是AD中点,∠ACB=90°,∠BAC=60°,点D在BC上(点D不与B、C重合),DE⊥AB于点E,连结CE、CF、EF.当AD=4时,S=.△CEF(2)如图③,AD是⊙O直径,点C、E在⊙O上(点C、E位于直径AD两侧),在⊙O 上,且sin∠DAC=,CD=2.当四边形OCDE有一组对边平行时,直接写出AE的长.8.已知正方形ABCD内接于⊙O,点E为上一点,连接BE、CE、DE.(1)如图1,求证:∠DEC+∠BEC=180°;(2)如图2,过点C作CF⊥CE交BE于点F,连接AF,M为AE的中点,连接DM并延长交AF于点N,求证:DN⊥AF;(3)如图3,在(2)的条件下,连接OM,若AB=10,tan∠DCE=,求OM的长.9.如图,AB为⊙O的直径,点C、D在⊙O上,且点C是的中点,过点C作AD的垂线EF交直线AD于点E.(1)求证:EF是⊙O的切线.(2)若∠CAB=36°,⊙O的半径为12,求的长.10.如图,在△ABC中,AB=AC,以AB为直径作⊙O,分别交BC于点D,交CA的延长线于点E,过点D作DH⊥AC于点H,连接DE交线段OA于点F.(1)求证:DH是⊙O的切线;(2)若EA=EF=2,求⊙O的半径;11.已知AB是⊙O的直径,C为⊙O上一点,∠OAC=58°.(Ⅰ)如图①,过点C作⊙O的切线,与BA的延长线交于点P,求∠P的大小;(Ⅱ)如图②,P为AB上一点,CP延长线与⊙O交于点Q.若AQ=CQ,求∠APC的大小.12.已知:在⊙O中,弦AC⊥弦BD,垂足为H,连接BC,过点D作DE⊥BC于点E,DE交AC于点F.(1)如图1,求证:BD平分∠ADF;(2)如图2,连接OC,若AC=BC,求证:OC平分∠ACB;(3)如图3,在(2)的条件下,连接AB,过点D作DN∥AC交⊙O于点N,若AB=3,DN=9.求sin∠ADB的值.13.如图,已知AB为⊙O的直径,AD、BD是⊙O的弦,BC是⊙O的切线,切点为B,OC∥AD,BA、CD的延长线相交于点E.(1)求证:DC是⊙O的切线;(2)若AE=1,ED=3,求⊙O的半径.(3)在(2)中的条件下,∠ABD=30°,将△ABD以点A为中心逆时针旋转120°,求BD扫过的图形的面积(结果用π表示).14.如图,△AOB中,A(﹣8,0),B(0,),AC平分∠OAB,交y轴于点C,点P 是x轴上一点,⊙P经过点A、C,与x轴交于点D,过点C作CE⊥AB,垂足为E,EC 的延长线交x轴于点F.(1)求证:EF为⊙P的切线;(2)求⊙P的半径.15.已知,AB为⊙O的直径,弦BC、AF相交于点E,过点E作ED⊥AB,∠AEC=∠BED.(1)如图1,求证:=;(2)如图2,当∠BAF=45°时,OC交AF于点H,作FG⊥BH于点Q,交AB于点G,连接GH,求证:∠AGH=∠BGF;(3)如图3,在(2)的条件下,射线BG与⊙O交于点P,过点P作PK⊥BH交AB于点M,垂足为点K,点N为B的中点,MN=,求⊙O的半径.参考答案1.解:(1)连接OE,则∠OCB=∠OBC=α,∵FE=FG,∴∠FGE=∠FEG=β,∵H是AB的中点,∴CH⊥AB,∴∠GCH+∠CGH=α+β=90°,∴∠FEO=∠FEG+∠CEO=α+β=90°,∴EF是⊙O的切线;(2)∵CH⊥AB,∴=∴∠CBA=∠CEB,∵EF∥BC,∴∠CBA=∠F,故∠F=∠CEB,∴∠FBE=∠GBE,∴△FEB∽△EGB,∴BE2=BG•BF;(3)如图2,过点F作FR⊥CE于点R,设∠CBA=∠CEB=∠GFE=γ,则tanγ=,∵EF∥BC,∴∠FEC=∠BCG=β,故△BCG为等腰三角形,则BG=BC=5,在Rt△BCH中,BC=5,tan∠CBH=tanγ=,则sinγ=,cosγ=,CH=BC sinγ=5×=3,同理HB=4;设圆的半径为r,则OB2=OH2+BH2,即r2=(r﹣3)2+(4)2,解得:r=;GH=BG﹣BH=5﹣4=,tan∠GCH===,则cos∠GCH=,则tan∠CGH=3=tanβ,则cosβ=,连接DE,则∠CED=90°,在Rt△CDE中cos∠GCH===,解得:CE=,在△FEG中,cosβ===,解得:FG=;∵FH=FG+GH=,∴HM=FH tan∠F=×=;∵CM=HM+CH=,∴MD=CM﹣CD=CM﹣2r=.2.解:(1)连接OC,∵OC=OA,∴∠OAC=∠OCA,又∵AC平分∠BAD,∴∠CAD=∠CAO=∠OCA,∴OC∥AE,∵CE⊥AD,即可得OC⊥CE,∴CE是⊙O的切线;(2)∵AB是⊙O的直径,∴∠ACB=90°,∴BC===6,∵∠BAC=∠DAC,∴=,∴BC=CD=6,延长BC交AE的延长线于F,∵∠BAC=∠FAC,AC=AC,∠ACB=∠ACF=90°,∴△ACB≌△ACF(ASA),∴FC=BC=6,AF=AB=10,∵∠CDF=180°﹣∠ADC,∠ABF=180°﹣∠ADC,∴∠CDF=∠ABF,∵∠CFD=∠AFB,∴△CFD∽△AFB,∴=,∴=,∴AD=.3.解:(1)∵CE⊥AD,∴∠D+∠ECD=90°,∠AEC=∠DEC=90°,∵∠D+∠ACE=90°,∴∠ACE=∠DCE,在△ACE和△DCE中,,∴△ACE≌△DCE(ASA),∴CA=CD;(2)∵AB是⊙O的直径,∴∠ADB=90°,即∠ADC+∠BDC=90°,∵∠ADC+∠ACE=90°,∴∠BDC=∠ACE,∵∠BDC=∠BAC,∴∠BAC=∠ACE,设AB与CE的交点为M,则MA=MC,∴M在AC的垂直平分线上,∵弦的垂直平分线过圆心O,即弦的垂直平分线与直径的交点是圆心,∴M与点O重合,即CE过圆心O,∵AE=DE,∴CE⊥AD,∴∠AEC=∠ADB=90°,∴CE∥BD;(3)∵4AK=9BK,∴AK:BK=9:4,设BK=4m,则AK=9m,∴AB=13m,∴OA=OB=6.5m,∴OK=OB﹣BK=2.5m,∵AK⊥CL,∴∠AKC=90°=∠AEO,在△OAE和△OCK中,,∴△OAE≌△OCK(AAS),∴OE=OK=2.5m,∵OA=OB,AE=DE,∴BD=2OE=5m,∴AD=,∵∠AKL=∠ADB=90°,∠LAK=∠BAD,∴△AKL∽△ADB,∴,即,∴LK=,∵OK2+LK2=OL2,∴,解得,m=0.8,∴BD=5m=4.4.解:(1)在△BDO和△BCO中,BD=BC,OD=OC,BO=BO,故△BDO≌△BCO(SSS),∴∠BDO=∠ABC=90°,BD是⊙O的切线;(2)连接CD,则∠AMD=∠ACD,AB是直径,故∠ADC=90°,在Rt△ADC中,tan∠ACD=tan∠AMD==,∵AD=2,∴CD=4,故圆的半径为5;(3)在Rt△ADC中,DE⊥AC,则DE==4,则AE=2,由(1)知△BDO≌△BCO,∴∠BOC=∠BOD=∠DOC,∵∠DAE=∠DOC,∴∠DAE=∠BOC,∵ED⊥AC,∴∠AED=∠OCB=90°,∴△DAE∽△BOC,∴,即,解得:BC=10,∴∠BAC=∠ABC=45°,∴∠FAE=∠AFE=45°,∴FE=AE=2,DF=DE﹣EF=2.5.(1)证明:连接OD、BD,∵AB为圆O的直径,∴∠BDA=90°,∴∠BDC=180°﹣90°=90°,∵E为BC的中点,∴DE=BC=BE,∴∠EBD=∠EDB,∵OD=OB,∴∠OBD=∠ODB,∵∠EBD+∠DBO=90°,∴∠EDB+∠ODB=90°,∴∠ODE=90°,∴DE是圆O的切线.(2)证明:如图,连接BD.由(1)知,∠ODE=∠ADB=90°,BD⊥AC.∵E是BC的中点,O是AB的中点,∴OE是△ABC的中位线,∴OE∥AC,∴OE⊥BD.∴OE∥AC,∴∠1=∠2.又∵∠1=∠A,∴∠A=∠2.即在△ADB与△ODE中,∠ADB=∠ODE,∠A=∠2,∴△ADB∽△ODE.∴=,即=.∴r2=AD•OE;(3)∵AB为⊙O的直径,∴∠ADB=∠BDC=90°,∵点E为BC的中点,∴BC=2DE=8,∵sin C=,∴设AB=3x,AC=5x,根据勾股定理得:(3x)2+82=(5x)2,解得x=2.则AC=10.由切割线定理可知:82=(10﹣AD)×10,解得,AD=3.6.6.(1)证明:延长AI交BC于D,连接OI.∵I是△ABC的内心,∴BI平分∠ABC,AI平分∠BAC.∴∠1=∠3.∵AB=AC,∴AD⊥BC.又∵OB=OI,∴∠3=∠2.∴∠1=∠2.∴OI∥BD.∴OI⊥AI.∴AI为⊙O的切线.(2)①解:∵E是BI的中点,∴OE⊥BI.在直角△OBE中,OB=5,OE=,则由勾股定理知:BE===2.∴BI=2BE=.故答案是:;②解:由(1)知OI∥BC,∴△AOI~△ABD.∴,∴=.∴.∴.∴AI=•AD=×=.7.解:[教材呈现]已知:△ABC中,∠ACB=90°,CD是中线,求证:CD=AB.证明:作DE⊥BC于E,DF⊥AC于F,则DF∥BC,DE∥AC,∵CD是中线,∴AF=FC,BE=EC,∴直线DE是线段AC的垂直平分线,直线DE是线段BC的垂直平分线,∴DA=DC,DB=DC,∴CD=DA=DB=AB;[结论应用](1)CF、FE分别是Rt△ACD、Rt△ADE的中线,则CF=EF=AD=2,设:∠CAF=α=∠ACF,∠FAE=β=∠AEF,∠CAB=α+β=60°,∠CFE=∠FCA+∠FAC+∠FEA+∠FAE=2α+2β=120°,故△CEF为腰长为2,顶角为120°的等腰三角形,过点F作FH⊥CE,则S=×CE×FH=2×1=,△CEF故答案为:;(2)设sin∠DAC==sinα,CD=2,则AD=6,OC=OE=AD=3,①当CD∥OE时,如图③(左侧图),则∠ADC=∠DOE=∠β,sin=cosβ,过点D作DH⊥OE交OE于点H,OH=OD cosβ=3×=1,则HE=3﹣1=2,同理DH=2,DE==2,AE===2;②当OC∥DE时,如图③(右侧图),则∠COD=∠ODE=2α,过点O作ON⊥DE于点N,则DN=EN,DE=2DN=2×OD cos2α=2×3×=(注:cos2α的求法见备注),AE===;综上,AE=2或;备注:等腰三角形ABC,AB=AC,作AD⊥BC于点D,过点C作CE⊥AB于点E,设∠BAD=∠CAD=α,设sin,设BD=CD=a,则AB=AC=3a,则AD=2a,S=AD×BC=AB×CE,△ABC即2a×2a=3a×CE,则CE=,sin2α==,则cos2α=.8.(1)证明:连接BD,OC,∵四边形ABCD为正方形,∴∠A=90°,BC=CD,∴BD为⊙O的直径,∵OB=OD,∴OC⊥BD,∴∠BOC=90°,∴∠BEC=∠BOC=45°,∵正方形ABED是圆O的内接四边形,∴∠A+∠DEB=180°,∴∠DEB=90°,∴∠DEC+∠BEC=∠DEB+∠BEC+∠BEC=180°;(2)证明:如图2,延长ED至G,使ED=DG,连接AG,∵CE⊥CF,∴∠ECF=90°,∵∠CEF=45°,∴∠CEF=∠CFE=45°,∴CE=CF,∵∠BCD=∠ECF=90°,∴∠BCF=∠DCF,∵BC=CD,∴△BFC≌△DEC(SAS),∴BF=DE,∵DE=DG,∴BF=DG,∵四边形ABED为圆O的内接四边形,∴∠ABE+∠ADE=180°,∵∠ADE+∠ADG=180°,∴∠ABE=∠ADG,∵AB=AD,∴△ABF≌△ADG(SAS),∴∠BAF=∠DAC,∵∠BAF+∠FAD=∠BAD=90°,∴∠DAG+∠FAD=90°,∴∠FAG=90°,∵M为AE的中点,∴DM为△AEG的中位线,∴DM∥AG,∴∠DNF=∠FAG=90°,∴DN⊥AF,(3)解:如图3,连接BD,OC,过点B作BK⊥CF交CF的延长线于点K,过点B作BT⊥AE于点T,由(1)知∠BOC=90°,∴OB=OC=,由(1)知BD为⊙O的直径,在Rt△ABD中,BD=AB=10,∵,∴∠DBE=∠DCE,∴tan∠DCE=tan∠DBE=,∴,设DE=x,则BE=7x,在Rt△BDE中,BD==5x,∴,∴x=2,∴DE=2,∴BF=2,∵∠EFC=45°,∴∠BFK=∠EFC=45°,∴∠KBF=∠BFK=45°,∴,由(2)知∠BCF=∠DCE,∴tan∠BCF=tan∠DCE=,∴,∴,∴,在Rt△ECF中,EF=CF=12,∴BE=EF+BF=14,∵∠AEB=∠AEC﹣∠BEC=90°﹣45°=45°,∴∠TBE=∠TEB,∴TB=TE=,∴=,∴,∴,∵M为AE的中点,∴OM⊥AE,在Rt△OME中,OM==3.9.(1)证明:连接OC,∵OA=OC,∴∠OCA=∠BAC,∵点C是的中点,∴∠EAC=∠BAC,∴∠EAC=∠OCA,∴OC∥AE,∵AE⊥EF,∴OC⊥EF,即EF是⊙O的切线;(2)连接OD,∵∠BOC=2∠CAB=2×36°=72°,∵,∴∠BOD=2∠BOC=144°,∴的长==π.10.解:(1)连接OD,∵OB=OD,∴∠OBD=∠ODB,∵AB=AC,∴∠ABC=∠ACB,∴∠ODB=∠ACB,∴OD∥AC,∵DH⊥AC,∴DH⊥OD,∴DH是⊙O的切线;(2)设⊙O的半径为r,即OD=OB=r,∵EF=EA,∴∠EFA=∠EAF,∵OD∥EC,∴∠FOD=∠EAF,则∠FOD=∠EAF=∠EFA=∠OFD,∴DF=OD=r,∴DE=DF+EF=r+2,∴BD=CD=DE=r+2,在⊙O中,∵∠BDE=∠EAB,∴∠BFD=∠EFA=∠EAB=∠BDE,∴BF=BD,△BDF是等腰三角形,∴BF=BD=r+2,∴AF=AB﹣BF=2OB﹣BF=2r﹣(2+r)=r﹣2,∵∠BFD=∠EFA,∠B=∠E,∴△BFD∽△EFA,∴,即=解得:r1=1+,r2=1﹣(舍),综上所述,⊙O的半径为1+.11.解:(I)如图①,∵OA=OC,∠OAC=58°,∴∠OCA=58°∴∠COA=180°﹣2×58°=64°∵PC是⊙O的切线,∴∠OCP=90°,∴∠P=90°﹣64°=26°;(II)∵∠AOC=64°,∴∠Q=∠AOC=32°,∵AQ=CQ,∴∠QAC=∠QCA=74°,∵∠OCA=58°,∴∠PCO=74°﹣58°=16°,∵∠AOC=∠QCO+∠APC,∴∠APC=64°﹣16°=48°.12.(1)证明:如图1,∵AC⊥BD,DE⊥BC,∴∠AHD=∠BED=90°,∴∠DAH+∠ADH=90°,∠DBE+∠BDE=90°,∵∠DAC=∠DBC,∴∠ADH=∠BDE,∴BD平分∠ADF.(2)证明:连接OA、OB.∵OB=OC=OA,AC=BC∴△OCB≌△OCA(SSS),∴OBC=∠OCA,∴OC平分∠ACB;(3)如图3中,连接BN,过点O作OP⊥BD于点P,过点O作OQ⊥AC于点Q.则四边形OPHQ是矩形,∵DN∥AC,∴∠BDN=∠BHC=90°,∴BN是直径,则OP=DN=,∴HQ=OP=,设AH=x,则AQ=x+,AC=2AQ=2x+9,BC=AC=2x+9,∴CH=AC﹣AH=2x+9﹣x=x+9在Rt△AHB中,BH2=AB2﹣AH2=()2﹣x2.在Rt△BCH中,BC2=BH2+CH2,即(2x+9)2=()2﹣x2+(x+9)2,整理得2x2+9x﹣45=0,(x﹣3)(2x+15)=0解得x=3(负值舍去),BC=2x+9=15,CH=x+9=12∵∠ADB=∠BCH,∴sin∠ADB=sin∠BCH===.即sin∠ADB的值为.13.证明:(1)连接DO,如图,∵AD∥OC,∴∠DAO=∠COB,∠ADO=∠COD,又∵OA=OD,∴∠DAO=∠ADO,∴∠COD=∠COB.在△COD和△COB中∴△COD≌△COB(SAS),∴∠CDO=∠CBO.∵BC是⊙O的切线,∴∠CDO=90°,∴OD⊥CE,又∵点D在⊙O上,∴CD是⊙O的切线;(2)设圆O的半径为R,则OD=R,OE=R+1,∵CD是圆O的切线,∴∠EDO=90°,∴ED2+OD2=OE2,∴9+R2=(R+1)2,∴R=4,∴圆O的半径为4;(3)∵∠ABD=30°,AB=2R=8,∴AD=4,∴BD扫过的图形的面积==16π.14.(1)证明:连接CP,∵AP=CP,∴∠PAC=∠PCA,∵AC平分∠OAB,∴∠PAC=∠EAC,∴∠PCA=∠EAC,∴PC∥AE,∵CE⊥AB,∴CP⊥EF,即EF是⊙P的切线;(2)∵AC平分∠OAB,∴∠BAC=∠OAC,∵PA=PC,∴∠BAC=∠ACP,∴PC∥AB,∴△OPC∽△OAB,∴=,∵A(﹣8,0),B(0,),∴OA=8,OB=,∴AB=,∴=,∴PC=5,∴⊙P的半径为5.15.(1)证明:如图1,连接AC、BF、CF,∵AB为⊙O的直径,∴∠AFB=90°,∵∠AEC=∠BED,∠AEC=∠BEF,∴∠BEF=∠BED,∵ED⊥AB,∴∠BDE=∠AFB=90°,又∵BE=BE,∴△BDE≌△BFE(AAS),∴∠ABC=∠FBC,∵,∴∠ABC=∠AFC,∵,∴∠CAF=∠FBC,∴∠CAF=∠AFC,∴AC=CF,∴;(2)证明:如图2,连接OF、BF,作AS⊥AF于点A,交FG的延长线于点S,∵,∴AOC=∠FOC,∵AO=OF,∴OC⊥AF,∴AH=HF=AF,∵∠BAF=45°,∴AF=BF,∵FG⊥BH,AS⊥AF,∴∠S=∠BHF,又∵∠SAF=∠HFB=90°,∴△FSA≌△BHF(AAS),∴AS=HF=AH,∵∠SAG=∠GAH=45°,AG=AG,∴△SAG≌△HAG(SAS),∴∠SGA=∠AGH,∴∠AGH=∠BGF;(3)解:如图3,过点O作OR⊥HP于点R,OT⊥BH于点T,∵△SAG≌△HAG,∴∠AHG=∠S=∠BHF,∵OH⊥AF,∴∠OHG=∠OHB,∵∠ORH=∠OTH=90°,OH=OH,∴△ORH≌△OTH(AAS),∴RH=TH,OR=OT,又∵OP=OB,∠ORP=∠OTB=90°,∴Rt△ORP≌Rt△OTB(HL),∴PR=BT,∴PR+RH=BT+TH,即PH=BH,∴∠HPB=∠HBP,设∠OPR=∠OBT=α,∵∠AOH=∠A=45°,∴∠PHO=∠BHO=∠AOH﹣∠OBH=45°﹣α,∴∠PHB=90°﹣2α,∴∠HPB=∠HBP=45°+α,∴∠PBO=45°,∵PO=BO,∴∠OPB=∠OBP=45°,∴PO⊥AB,∵PK⊥BH,GF⊥BH,∴PK∥GF,∴∠PMG=∠BGF,∵∠PGM=∠AGH,∴∠PGM=∠PMG,∴PG=PM,∴OG=OM,过点M作ML⊥BP于点L,∵∠PBH=∠BHF=45°+α,∴tan∠PBH=tan∠BHF==2,∵∠MPL=∠BPK,∴∠PML=∠PBH,∴tan∠PML=tan∠PBH=2,设BM=4a,则BL=ML=2a,∴PL=4a,∴PB=6a,∴PO=BO=6a,∴OM=OG=2a,∴GM=4a,∴GM=BM,∵N为BH的中点,∴MN为中位线,∴GH=2MN=,过点G作GU⊥OH于点U,则tan∠GHO=tan∠OHB=tan∠FBH=,在Rt△GUH中,设GU=b,则UH=2b,GH=b,∴GU=,∴GO=2=2a,∴a=1,∴OB=6a=6,即⊙O的半径为6.。
备战中考数学圆的综合-经典压轴题含答案解析
![备战中考数学圆的综合-经典压轴题含答案解析](https://img.taocdn.com/s3/m/c1c3988fdd36a32d7275812f.png)
一、圆的综合 真题与模拟题分类汇编(难题易错题)1.如图,已知AB 是⊙O 的直径,点C ,D 在⊙O 上,BC=6cm,AC=8cm,∠BAD=45°.点E 在⊙O 外,做直线AE ,且∠EAC=∠D .(1)求证:直线AE 是⊙O 的切线.(2)求图中阴影部分的面积.【答案】(1)见解析;(2)25-504π. 【解析】 分析:(1)根据圆周角定理及推论证得∠BAE=90°,即可得到AE 是⊙O 的切线; (2)连接OD ,用扇形ODA 的面积减去△AOD 的面积即可.详解:证明:(1) ∵AB 是⊙O 的直径,∴∠ACB=90°,即∠BAC+∠ABC=90°,∵∠EAC=∠ADC ,∠ADC=∠ABC ,∴∠EAC=∠ABC∴∠BAC+∠EAC =90°,即∠BAE= 90°∴直线AE 是⊙O 的切线;(2)连接OD∵ BC=6 AC=8∴ 226810AB =+=∴ OA = 5又∵ OD = OA∴∠ADO =∠BAD = 45°∴∠AOD = 90°∴AOD ODA S S S ∆-阴影扇形= =90155553602π⨯⨯-⨯⨯ 25504π-= (2cm )点睛:此题主要考查了圆周角定理和圆的切线的判定与性质,关键是利用圆周角定理和切线的判定与性质,结合勾股定理的和弓形的面积的求法求解,注意数形结合思想的应用.2.已知,如图:O1为x轴上一点,以O1为圆心作⊙O1交x轴于C、D两点,交y轴于M、N两点,∠CMD的外角平分线交⊙O1于点E,AB是弦,且AB∥CD,直线DM的解析式为y=3x+3.(1)如图1,求⊙O1半径及点E的坐标.(2)如图2,过E作EF⊥BC于F,若A、B为弧CND上两动点且弦AB∥CD,试问:BF+CF 与AC之间是否存在某种等量关系?请写出你的结论,并证明.(3)在(2)的条件下,EF交⊙O1于点G,问弦BG的长度是否变化?若不变直接写出BG 的长(不写过程),若变化自画图说明理由.【答案】(1)r=5 E(4,5)(2)BF+CF=AC (3)弦BG的长度不变,等于2【解析】分析:(1)连接ED、EC、EO1、MO1,如图1,可以证到∠ECD=∠SME=∠EMC=∠EDC,从而可以证到∠EO1D=∠EO1C=90°.由直线DM的解析式为y=3x+3可得OD=1,OM=3.设⊙O1的半径为r.在Rt△MOO1中利用勾股定理就可解决问题.(2)过点O1作O1P⊥EG于P,过点O1作O1Q⊥BC于Q,连接EO1、DB,如图2.由AB∥DC可证到BD=AC,易证四边形O1PFQ是矩形,从而有O1P=FQ,∠PO1Q=90°,进而有∠EO1P=∠CO1Q,从而可以证到△EPO1≌△CQO1,则有PO1=QO1.根据三角形中位线定理可得FQ=12BD.从而可以得到BF+CF=2FQ=AC.(3)连接EO1,ED,EB,BG,如图3.易证EF∥BD,则有∠GEB=∠EBD,从而有BG=ED,也就有BG=DE.在Rt△EO1D中运用勾股定理求出ED,就可解决问题.详解:(1)连接ED、EC、EO1、MO1,如图1.∵ME平分∠SMC,∴∠SME=∠EMC.∵∠SME=∠ECD,∠EMC=∠EDC,∴∠ECD=∠EDC,∴∠EO1D=∠EO1C.∵∠EO1D+∠EO1C=180°,∴∠EO1D=∠EO1C=90°.∵直线DM的解析式为y=3x+3,∴点M的坐标为(0,3),点D的坐标为(﹣1,0),∴OD=1,OM=3.设⊙O1的半径为r,则MO1=DO1=r.在Rt△MOO1中,(r﹣1)2+32=r2.解得:r=5,∴OO1=4,EO1=5,∴⊙O1半径为5,点E的坐标为(4,5).(2)BF+CF=AC.理由如下:过点O1作O1P⊥EG于P,过点O1作O1Q⊥BC于Q,连接EO1、DB,如图2.∵AB∥DC,∴∠DCA=∠BAC,∴AD=BC BD∴,=AC,∴BD=AC.∵O1P⊥EG,O1Q⊥BC,EF⊥BF,∴∠O1PF=∠PFQ=∠O1QF=90°,∴四边形O1PFQ是矩形,∴O1P=FQ,∠PO1Q=90°,∴∠EO1P=90°﹣∠PO1C=∠CO1Q.在△EPO1和△CQO1中,111111EO P CO QEPO CQOO E O C∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△EPO1≌△CQO1,∴PO1=QO1,∴FQ=QO1.∵QO1⊥BC,∴BQ=CQ.∵CO1=DO1,∴O1Q=12 BD,∴FQ=12BD.∵BF+CF=FQ+BQ+CF=FQ+CQ+CF=2FQ,∴BF+CF=BD=AC.(3)连接EO1,ED,EB,BG,如图3.∵DC是⊙O1的直径,∴∠DBC=90°,∴∠DBC+∠EFB=180°,∴EF∥BD,∴∠GEB=∠EBD,∴BG=ED,∴BG=DE.∵DO1=EO1=5,EO1⊥DO1,∴DE=52,∴BG=52,∴弦BG的长度不变,等于52.点睛:本题考查了圆周角定理、圆内接四边形的性质、弧与弦的关系、垂径定理、全等三角形的判定与性质、矩形的判定与性质、三角形中位线定理、平行线的判定与性质、勾股定理等知识,综合性比较强,有一定的难度.而由AB∥DC证到AC=BD是解决第(2)小题的关键,由EG ∥DB 证到BG =DE 是解决第(3)小题的关键.3.如图,⊙M 与菱形ABCD 在平面直角坐标系中,点M 的坐标为(3,﹣1),点A 的坐标为(﹣2,3),点B 的坐标为(﹣3,0),点C 在x 轴上,且点D 在点A 的左侧. (1)求菱形ABCD 的周长;(2)若⊙M 沿x 轴向右以每秒2个单位长度的速度平移,同时菱形ABCD 沿x 轴向右以每秒3个单位长度的速度平移,设菱形移动的时间为t (秒),当⊙M 与BC 相切,且切点为BC 的中点时,连接BD ,求:①t 的值;②∠MBD 的度数;(3)在(2)的条件下,当点M 与BD 所在的直线的距离为1时,求t 的值.【答案】(1)8;(2)①7;②105°;(3)t=633 【解析】 分析:(1)根据勾股定理求菱形的边长为2,所以可得周长为8;(2)①如图2,先根据坐标求EF 的长,由EE '﹣FE '=EF =7,列式得:3t ﹣2t =7,可得t 的值;②先求∠EBA =60°,则∠FBA =120°,再得∠MBF =45°,相加可得:∠MBD =∠MBF +∠FBD =45°+60°=105°;(3)分两种情况讨论:作出距离MN 和ME ,第一种情况:如图5由距离为1可知:BD 为⊙M 的切线,由BC 是⊙M 的切线,得∠MBE =30°,列式为3t 3=2t +6,解出即可; 第二种情况:如图6,同理可得t 的值.详解:(1)如图1,过A 作AE ⊥BC 于E .∵点A 的坐标为(﹣23),点B 的坐标为(﹣3,0),∴AE 3,BE =3﹣2=1,∴AB 22AE BE +2231+()=2. ∵四边形ABCD 是菱形,∴AB =BC =CD =AD =2,∴菱形ABCD 的周长=2×4=8;(2)①如图2,⊙M 与x 轴的切点为F ,BC 的中点为E .∵M (3,﹣1),∴F (3,0).∵BC =2,且E 为BC 的中点,∴E (﹣4,0),∴EF =7,即EE '﹣FE '=EF ,∴3t ﹣2t =7,t =7;②由(1)可知:BE =1,AE 3∴tan∠EBA=AEBE =31=3,∴∠EBA=60°,如图4,∴∠FBA=120°.∵四边形ABCD是菱形,∴∠FBD=12∠FBA=11202⨯︒=60°.∵BC是⊙M的切线,∴MF⊥BC.∵F是BC的中点,∴BF=MF=1,∴△BFM是等腰直角三角形,∴∠MBF=45°,∴∠MBD=∠MBF+∠FBD=45°+60°=105°;(3)连接BM,过M作MN⊥BD,垂足为N,作ME⊥BC于E,分两种情况:第一种情况:如图5.∵四边形ABCD是菱形,∠ABC=120°,∴∠CBD=60°,∴∠NBE=60°.∵点M与BD所在的直线的距离为1,∴MN=1,∴BD为⊙M的切线.∵BC是⊙M的切线,∴∠MBE=30°.∵ME=1,∴EB=3,∴3t+3=2t+6,t=6﹣3;第二种情况:如图6.∵四边形ABCD是菱形,∠ABC=120°,∴∠DBC=60°,∴∠NBE=120°.∵点M与BD所在的直线的距离为1,∴MN=1,∴BD为⊙M的切线.∵BC是⊙M的切线,∴∠MBE=60°.∵ME=MN=1,∴Rt△BEM中,tan60°=MEBE,EB=160tan︒=3,∴3t=2t+6+3,t=6+3;综上所述:当点M与BD所在的直线的距离为1时,t=6﹣3或6+33.点睛:本题是四边形和圆的综合题,考查了菱形的性质、圆的切线的性质和判定、特殊的三角函数值、等腰直角三角形的性质、动点运动问题,此类问题比较复杂,弄清动点运动方向、速度、时间和路程的关系,并与方程相结合,找等量关系,求出时间t的值.4.在平面直角坐标系xOy中,点M的坐标为(x1,y1),点N的坐标为(x2,y2),且x1≠x2,y1≠y2,以MN为边构造菱形,若该菱形的两条对角线分别平行于x轴,y轴,则称该菱形为边的“坐标菱形”.(1)已知点A(2,0),B(0,23),则以AB为边的“坐标菱形”的最小内角为;(2)若点C(1,2),点D在直线y=5上,以CD为边的“坐标菱形”为正方形,求直线CD 表达式;(3)⊙O的半径为2,点P的坐标为(3,m).若在⊙O上存在一点Q,使得以QP为边的“坐标菱形”为正方形,求m的取值范围.【答案】(1)60°;(2)y=x+1或y=﹣x+3;(3)1≤m≤5或﹣5≤m≤﹣1【解析】分析:(1)根据定义建立以AB为边的“坐标菱形”,由勾股定理求边长AB=4,可得30度角,从而得最小内角为60°;(2)先确定直线CD与直线y=5的夹角是45°,得D(4,5)或(﹣2,5),易得直线CD的表达式为:y=x+1或y=﹣x+3;(3)分两种情况:①先作直线y=x,再作圆的两条切线,且平行于直线y=x,如图3,根据等腰直角三角形的性质分别求P'B=BD=1,PB=5,写出对应P的坐标;②先作直线y=﹣x,再作圆的两条切线,且平行于直线y=﹣x,如图4,同理可得结论.详解:(1)∵点A(2,0),B(0,23),∴OA=2,OB=23.在Rt△AOB中,由勾股定理得:AB=22()=4,∴∠ABO=30°.223∵四边形ABCD是菱形,∴∠ABC=2∠ABO=60°.∵AB∥CD,∴∠DCB=180°﹣60°=120°,∴以AB为边的“坐标菱形”的最小内角为60°.故答案为:60°;(2)如图2.∵以CD为边的“坐标菱形”为正方形,∴直线CD与直线y=5的夹角是45°.过点C作CE⊥DE于E,∴D(4,5)或(﹣2,5),∴直线CD的表达式为:y=x+1或y=﹣x+3;(3)分两种情况:①先作直线y=x,再作圆的两条切线,且平行于直线y=x,如图3.∵⊙O的半径为2,且△OQ'D是等腰直角三角形,∴OD=2OQ'=2,∴P'D=3﹣2=1.∵△P'DB是等腰直角三角形,∴P'B=BD=1,∴P'(0,1),同理可得:OA=2,∴AB=3+2=5.∵△ABP是等腰直角三角形,∴PB=5,∴P(0,5),∴当1≤m≤5时,以QP为边的“坐标菱形”为正方形;②先作直线y=﹣x,再作圆的两条切线,且平行于直线y=﹣x,如图4.∵⊙O的半径为2,且△OQ'D是等腰直角三角形,∴OD=2OQ'=2,∴BD=3﹣2=1.∵△P'DB是等腰直角三角形,∴P'B=BD=1,∴P'(0,﹣1),同理可得:OA=2,∴AB=3+2=5.∵△ABP是等腰直角三角形,∴PB=5,∴P(0,﹣5),∴当﹣5≤m≤﹣1时,以QP为边的“坐标菱形”为正方形;综上所述:m的取值范围是1≤m≤5或﹣5≤m≤﹣1.点睛:本题是一次函数和圆的综合题,考查了菱形的性质、正方形的性质、点P,Q的“坐标菱形”的定义等知识,解题的关键是理解题意,学会利用图象解决问题,学会用分类讨论的思想思考问题,注意一题多解,属于中考创新题目.5.如图,AB是⊙O的直径,D、D为⊙O上两点,CF⊥AB于点F,CE⊥AD交AD的延长线于点E,且CE=CF.(1)求证:CE是⊙O的切线;(2)连接CD、CB,若AD=CD=a,求四边形ABCD面积.【答案】(1)证明见解析;(2)【解析】【分析】(1)连接OC,AC,可先证明AC平分∠BAE,结合圆的性质可证明OC∥AE,可得∠OCB=90°,可证得结论;(2)可先证得四边形AOCD为平行四边形,再证明△OCB为等边三角形,可求得CF、AB,利用梯形的面积公式可求得答案.【详解】(1)证明:连接OC,AC.∵CF⊥AB,CE⊥AD,且CE=CF.∴∠CAE=∠CAB.∵OC=OA,∴∠CAB=∠OCA.∴∠CAE=∠OCA.∴OC∥AE.∴∠OCE+∠AEC=180°,∵∠AEC=90°,∴∠OCE=90°即OC⊥CE,∵OC是⊙O的半径,点C为半径外端,∴CE是⊙O的切线.(2)解:∵AD=CD,∴∠DAC=∠DCA=∠CAB,∴DC∥AB,∵∠CAE=∠OCA,∴OC∥AD,∴四边形AOCD是平行四边形,∴OC=AD=a,AB=2a,∵∠CAE=∠CAB,∴CD=CB=a,∴CB=OC=OB,∴△OCB是等边三角形,在Rt△CFB中,CF=,∴S四边形ABCD=(DC+AB)•CF=【点睛】本题主要考查切线的判定,掌握切线的两种判定方法是解题的关键,即有切点时连接圆心和切点,然后证明垂直,没有切点时,过圆心作垂直,证明圆心到直线的距离等于半径.6.如图,在直角坐标系中,⊙M经过原点O(0,0),点A(6,0)与点B(0,-2),点D 在劣弧OA上,连结BD交x轴于点C,且∠COD=∠CBO.(1)求⊙M的半径;(2)求证:BD平分∠ABO;(3)在线段BD的延长线上找一点E,使得直线AE恰为⊙M的切线,求此时点E的坐标.【答案】(1)M的半径r2;(2)证明见解析;(3)点E的坐标为262).【解析】试题分析:根据点A 和点B 的坐标得出OA 和OB 的长度,根据Rt △AOB 的勾股定理得出AB 的长度,然后得出半径;根据同弧所对的圆周角得出∠ABD=∠COD ,然后结合已知条件得出角平分线;根据角平分线得出△ABE ≌△HBE ,从而得出BH=BA=22,从而求出OH 的长度,即点E 的纵坐标,根据Rt △AOB 的三角函数得出∠ABO 的度数,从而得出∠CBO 的度数,然后根据Rt △HBE 得出HE 的长度,即点E 的横坐标.试题解析:(1)∵点A 为(6,0),点B 为(0,-2) ∴OA=6OB=2 ∴根据Rt △AOB 的勾股定理可得:AB=22∴M 的半径r=12AB=2. (2)根据同弧所对的圆周角相等可得:∠ABD=∠COD ∵∠COD=∠CBO ∴∠ABD=∠CBO ∴BD 平分∠ABO(3)如图,由(2)中的角平分线可得△ABE ≌△HBE ∴BH=BA=22∴OH=22-2=2在Rt △AOB 中,3OA OB=∴∠ABO=60° ∴∠CBO=30° 在Rt △HBE 中,HE=2633BH =∴点E 的坐标为(263,2)考点:勾股定理、角平分线的性质、圆的基本性质、三角函数.7.如图, Rt △ABC 中,∠B=90°,它的内切圆分别与边BC 、CA 、AB 相切于点D 、E 、F , (1)设AB=c, BC=a, AC=b, 求证: 内切圆半径r =12(a+b-c). (2) 若AD 交圆于P , PC 交圆于H, FH//BC, 求∠CPD; (3)若r=310, PD =18, PC=272. 求△ABC 各边长.【答案】(1)证明见解析(2)45°(3)1010,1510,12【解析】【分析】(1)根据切线长定理,有AE=AF,BD=BF,CD=CE.易证四边形BDOF为正方形,BD=BF=r,用r表示AF、AE、CD、CE,利用AE+CE=AC为等量关系列式.(2)∠CPD为弧DH所对的圆周角,连接OD,易得弧DH所对的圆心角∠DOH=90°,所以∠CPD=45°.(3)由PD=18和r=310,联想到垂径定理基本图形,故过圆心O作PD的垂线OM,求得弦心距OM=3,进而得到∠MOD的正切值.延长DO得直径DG,易证PG∥OM,得到同位角∠G=∠MOD.又利用圆周角定理可证∠ADB=∠G,即得到∠ADB的正切值,进而求得AB.再设CE=CD=x,用x表示BC、AC,利用勾股定理列方程即求出x.【详解】解:(1)证明:设圆心为O,连接OD、OE、OF,∵⊙O分别与BC、CA、AB相切于点D、E、F∴OD⊥BC,OE⊥AC,OF⊥AB,AE=AF,BD=BF,CD=CE∴∠B=∠ODB=∠OFB=90°∴四边形BDOF是矩形∵OD=OF=r∴矩形BDOF是正方形∴BD=BF=r∴AE=AF=AB-BF=c-r,CE=CD=BC-BD=a-r∵AE+CE=AC∴c-r+a-r=b整理得:r=12(a+b-c)(2)取FH中点O,连接OD ∵FH∥BC∴∠AFH=∠B=90°∵AB与圆相切于点F,∴FH为圆的直径,即O为圆心∵FH∥BC∴∠DOH=∠ODB=90°∴∠CPD=12∠DOH=45°(3)设圆心为O ,连接DO 并延长交⊙O 于点G ,连接PG ,过O 作OM ⊥PD 于M ∴∠OMD=90°∵PD=18∴DM=12PD=9 ∵10∴22OD DM -22(310)9-9081-3∴tan ∠MOD=DM OM =3 ∵DG 为直径∴∠DPG=90°∴OM ∥PG ,∠G+∠ODM=90°∴∠G=∠MOD∵∠ODB=∠ADB+∠ODM=90°∴∠ADB=∠G∴∠ADB=∠MOD∴tan ∠ADB=AB BD=tan ∠MOD=3 ∴10∴10−10=10设CE=CD=x ,则10+x ,10+x∵AB 2+BC 2=AC 2∴10)2.10+x)2=10+x)2解得:10∴10,10∴△ABC 各边长10,10,10【点睛】本题考查切线的性质,切线长定理,正方形的判定,圆周角定理,垂径定理,勾股定理.切线长定理的运用是解决本题的关键,而在不能直接求得线段长的情况下,利用勾股定理作为等量关系列方程解决是常用做法.8.已知:如图,四边形ABCD为菱形,△ABD的外接圆⊙O与CD相切于点D,交AC于点E.(1)判断⊙O与BC的位置关系,并说明理由;(2)若CE=2,求⊙O的半径r.【答案】(1)相切,理由见解析;(2)2.【解析】试题分析:(1)根据切线的性质,可得∠ODC的度数,根据菱形的性质,可得CD与BC 的关系,根据SSS,可得三角形全等,根据全等三角形的性质,可得∠OBC的度数,根据切线的判定,可得答案;(2)根据等腰三角形的性质,可得∠ACD=∠CAD,根据三角形外角的性质,∠COD=∠OAD+∠AOD,根据直角三角形的性质,可得OC与OD的关系,根据等量代换,可得答案.(1)⊙O与BC相切,理由如下连接OD、OB,如图所示:∵⊙O与CD相切于点D,∴OD⊥CD,∠ODC=90°.∵四边形ABCD为菱形,∴AC垂直平分BD,AD=CD=CB.∴△ABD的外接圆⊙O的圆心O在AC上,∵OD=OB,OC=OC,CB=CD,∴△OBC≌△ODC.∴∠OBC=∠ODC=90°,又∵OB为半径,∴⊙O与BC相切;(2)∵AD=CD,∴∠ACD=∠CAD.∵AO=OD,∴∠OAD=∠ODA.∵∠COD=∠OAD+∠AOD,∠COD=2∠CAD.∴∠COD=2∠ACD又∵∠COD+∠ACD=90°,∴∠ACD=30°.∴OD=12OC,即r=12(r+2).∴r=2.【点睛】运用了切线的判定与性质,利用了切线的判定与性质,菱形的性质,直角三角形的性质.9.如图,AB是⊙O的直径,∠ACB的平分线交AB于点D,交⊙O于点E,过点C作⊙O 的切线CP交BA的延长线于点P,连接AE.(1)求证:PC=PD;(2)若AC=5cm,BC=12cm,求线段AE,CE的长.【答案】(1)见解析172132【解析】试题分析:(1)如图1中,连接OC 、OE .利用等角的余角相等,证明∠PCD =∠PDC 即可;(2)如图2中.作EH ⊥BC 于H ,EF ⊥CA 于F .首先证明Rt △AEF ≌Rt △BEH ,推出AF =BH ,设AF =BH =x ,再证明四边形CFEH 是正方形,推出CF =CH ,可得5+x =12﹣x ,推出x =72,延长即可解决问题; 试题解析:(1)证明:如图1中,连接OC 、OE .∵AB 直径,∴∠ACB =90°,∴CE 平分∠ACB ,∴∠ECA =∠ECB =45°,∴AE =BE ,∴OE ⊥AB ,∴∠DOE =90°.∵PC 是切线,∴OC ⊥PC ,∴∠PCO =90°.∵OC =OE ,∴∠OCE =∠OEC .∵∠PCD +∠OCE =90°,∠ODE +∠OEC =90°,∠PDC =∠ODE ,∴∠PCD =∠PDC ,∴PC =PD .(2)如图2中.作EH ⊥BC 于H ,EF ⊥CA 于F .∵CE 平分∠ACB ,EH ⊥BC 于H ,EF ⊥CA 于F ,∴EH =EF ,∠EFA =∠EHB =90°.∵AE =BE ,∴AE =BE ,∴Rt △AEF ≌Rt △BEH ,∴AF =BH ,设AF =BH =x .∵∠F =∠FCH =∠CHE =90°,∴四边形CFEH 是矩形.∵EH =EF ,∴四边形CFEH 是正方形,∴CF =CH ,∴5+x =12﹣x ,∴x =72,∴CF =FE =172,∴EC 2CF 172,AE 22EF AF +2217722()()+132 点睛:本题考查了切线的性质、圆周角定理、勾股定理、垂径定理、正方形的判定和性质、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.10.如图,AB 为⊙O 的直径,DA 、DC 分别切⊙O 于点A ,C ,且AB =AD .(1)求tan ∠AOD 的值.(2)AC,OD交于点E,连结BE.①求∠AEB的度数;②连结BD交⊙O于点H,若BC=1,求CH的长.【答案】(1)2;(2)①∠AEB=135°;②2 CH=【解析】【分析】(1)根据切线的性质可得∠BAD=90°,由题意可得AD=2AO,即可求tan∠AOD的值;(2)①根据切线长定理可得AD=CD,OD平分∠ADC,根据等腰三角形的性质可得DO⊥AC,AE=CE,根据圆周角定理可求∠ACB=90°,即可证∠ABC=∠CAD,根据“AAS”可证△ABC≌△DAE,可得AE=BC=EC,可求∠BEC=45°,即可求∠AEB的度数;②由BC=1,可求AE=EC=1,BE2=,根据等腰直角三角形的性质可求∠ABE=∠HBC,可证△ABE∽△HBC,可求CH的长.【详解】(1)∵DA是⊙O切线,∴∠BAD=90°.∵AB=AD,AB=2AO,∴AD=2AO,∴tan∠AODADAO==2;(2)①∵DA、DC分别切⊙O于点A,C,∴AD=CD,OD平分∠ADC,∴DO⊥AC,AE=CE.∵AB是直径,∴∠ACB=90°,∴∠BAC+∠ABC=90°,且∠BAC+∠CAD=90°,∴∠ABC=∠CAD,且AB=AD,∠ACB=∠AED=90°,∴△ABC≌△DAE(AAS),∴CB=AE,∴CE=CB,且∠ACB=90°,∴∠BEC=45°=∠EBC,∴∠AEB=135°.②如图,∵BC=1,且BC=AE=CE,∴AE=EC=BC=1,∴BE2=.∵AD=AB,∠BAD=90°,∴∠ABD=45°,且∠EBC=45°,∴∠ABE=∠HBC,且∠BAC=∠CHB,∴△ABE∽△HBC,∴BC CHEB AE=,即12CH=,∴CH22=.【点睛】本题考查了切线的性质,圆周角定理,锐角三角函数,全等三角形的判定和性质,相似三角形的判定和性质,等腰三角形的性质等知识,灵活运用相关的性质定理、综合运用知识是解题的关键.。
中考数学圆的综合-经典压轴题附答案解析
![中考数学圆的综合-经典压轴题附答案解析](https://img.taocdn.com/s3/m/8acbc73751e79b896902266e.png)
(3)解:由相似可得:当点P在P1(2,0)时,Q1(4,9)则M1(3,4.5)
当点P在P2(3,0)时,Q2(6,9),则M2(4.5,4.5)
∴M1M2= -3= ,Q1Q2=6-4=2
线段QM扫过的图形为梯形M1M2Q2Q1
其面积为: ×( +2)×4.5= .
【点睛】
(3)由于△BDE的直角不确定,故需分情况讨论,可分三种情况(①∠BDE=90°,②∠BED=90°,③∠DBE=90°)讨论,然后运用相似三角形的性质及三角函数等知识建立关于t的方程就可解决问题.
详解:(1)过点B作BH⊥OA于H,如图1(1),则有∠BHA=90°=∠COA,∴OC∥BH.
∵BC∥OA,∴四边形OCBH是矩形,∴OC=BH,BC=OH.
【答案】(1)4;(2) ;(3)点E的坐标为(1,2)、( , )、(4,2).
【解析】
分析:(1)过点B作BH⊥OA于H,如图1(1),易证四边形OCBH是矩形,从而有OC=BH,只需在△AHB中运用三角函数求出BH即可.
(2)过点B作BH⊥OA于H,过点G作GF⊥OA于F,过点B作BR⊥OG于R,连接MN、DG,如图1(2),则有OH=2,BH=4,MN⊥OC.设圆的半径为r,则MN=MB=MD=r.在Rt△BHD中运用勾股定理可求出r=2,从而得到点D与点H重合.易证△AFG∽△ADB,从而可求出AF、GF、OF、OG、OB、AB、BG.设OR=x,利用BR2=OB2﹣OR2=BG2﹣RG2可求出x,进而可求出BR.在Rt△ORB中运用三角函数就可解决问题.
∵AM=BM
∴G是AB的中点,由A(0,6),B(0,3)可得MC=OG=4.5
∴在点P运动的过程中,点M到x轴的距离始终为4.5
中考数学压轴题之圆的综合(中考题型整理,突破提升)及答案
![中考数学压轴题之圆的综合(中考题型整理,突破提升)及答案](https://img.taocdn.com/s3/m/7abfea74581b6bd97f19ead7.png)
中考数学压轴题之圆的综合(中考题型整理,突破提升)及答案一、圆的综合1.如图,⊙O是△ABC的外接圆,点E为△ABC内切圆的圆心,连接AE的延长线交BC于点F,交⊙O于点D;连接BD,过点D作直线DM,使∠BDM=∠DAC.(1)求证:直线DM是⊙O的切线;(2)若DF=2,且AF=4,求BD和DE的长.【答案】(1)证明见解析(2)23【解析】【分析】(1)根据垂径定理的推论即可得到OD⊥BC,再根据∠BDM=∠DBC,即可判定BC∥DM,进而得到OD⊥DM,据此可得直线DM是⊙O的切线;(2)根据三角形内心的定义以及圆周角定理,得到∠BED=∠EBD,即可得出DB=DE,再判定△DBF∽△DAB,即可得到DB2=DF•DA,据此解答即可.【详解】(1)如图所示,连接OD.∵点E是△ABC的内心,∴∠BAD=∠CAD,∴¶¶BD CD=,∴OD⊥BC.又∵∠BDM=∠DAC,∠DAC=∠DBC,∴∠BDM=∠DBC,∴BC∥DM,∴OD⊥DM.又∵OD为⊙O半径,∴直线DM是⊙O的切线.(2)连接BE.∵E为内心,∴∠ABE=∠CBE.∵∠BAD=∠CAD,∠DBC=∠CAD,∴∠BAD=∠DBC,∴∠BAE+∠ABE=∠CBE+∠DBC,即∠BED=∠DBE,∴BD=DE.又∵∠BDF=∠ADB(公共角),∴△DBF∽△DAB,∴DF DBDB DA=,即DB2=DF•DA.∵DF=2,AF=4,∴DA=DF+AF=6,∴DB2=DF•DA=12,∴DB=DE=23.【点睛】本题主要考查了三角形的内心与外心,圆周角定理以及垂径定理的综合应用,解题时注意:平分弦所对一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧;三角形的内心到三角形三边的距离相等;三角形的内心与三角形顶点的连线平分这个内角.2.如图,AB是⊙O的直径,弦CD⊥AB,垂足为H,连结AC,过»BD上一点E作EG∥AC 交CD的延长线于点G,连结AE交CD于点F,且EG=FG,连结CE.(1)求证:∠G=∠CEF;(2)求证:EG是⊙O的切线;(3)延长AB交GE的延长线于点M,若tanG =34,AH=33,求EM的值.【答案】(1)证明见解析;(2)证明见解析;(3)253.【解析】试题分析:(1)由AC∥EG,推出∠G=∠ACG,由AB⊥CD推出»»AD AC=,推出∠CEF=∠ACD,推出∠G=∠CEF,由此即可证明;(2)欲证明EG是⊙O的切线只要证明EG⊥OE即可;(3)连接OC.设⊙O的半径为r.在Rt△OCH中,利用勾股定理求出r,证明△AHC∽△MEO,可得AH HCEM OE=,由此即可解决问题;试题解析:(1)证明:如图1.∵AC∥EG,∴∠G=∠ACG,∵AB⊥CD,∴»»AD AC=,∴∠CEF=∠ACD,∴∠G=∠CEF,∵∠ECF=∠ECG,∴△ECF∽△GCE.(2)证明:如图2中,连接OE.∵GF=GE,∴∠GFE=∠GEF=∠AFH,∵OA=OE,∴∠OAE=∠OEA,∵∠AFH+∠FAH=90°,∴∠GEF+∠AEO=90°,∴∠GEO=90°,∴GE⊥OE,∴EG是⊙O的切线.(3)解:如图3中,连接OC.设⊙O的半径为r.在Rt△AHC中,tan∠ACH=tan∠G=AHHC=34,∵AH=33,∴HC=43,在Rt△HOC中,∵OC=r,OH=r﹣33,HC=43,∴222(33)(43)r r-+=,∴r=2536,∵GM∥AC,∴∠CAH=∠M,∵∠OEM=∠AHC,∴△AHC∽△MEO,∴AH HCEM OE=,∴33432536=,∴EM=253.点睛:本题考查圆综合题、垂径定理、相似三角形的判定和性质、锐角三角函数、勾股定理等知识,解题的关键是学会添加常用辅助线,灵活运用所学知识解决问题,正确寻找相似三角形,构建方程解决问题吗,属于中考压轴题.3.如图,在锐角△ABC中,AC是最短边.以AC为直径的⊙O,交BC于D,过O作OE∥BC,交OD于E,连接AD、AE、CE.(1)求证:∠ACE=∠DCE;(2)若∠B=45°,∠BAE=15°,求∠EAO的度数;(3)若AC=4,23CDFCOESS∆∆=,求CF的长.【答案】(1)证明见解析,(2)60°;(3)433 【解析】 【分析】 (1)易证∠OEC =∠OCE ,∠OEC =∠ECD ,从而可知∠OCE =∠ECD ,即∠ACE =∠DCE ; (2)延长AE 交BC 于点G ,易证∠AGC =∠B +∠BAG =60°,由于OE ∥BC ,所以∠AEO =∠AGC =60°,所以∠EAO =∠AEO =60°;(3)易证12COE CAE S S =V V ,由于23CDF COE S S =V V ,所以CDF CAE S S V V =13,由圆周角定理可知∠AEC =∠FDC =90°,从而可证明△CDF ∽△CEA ,利用三角形相似的性质即可求出答案.【详解】(1)∵OC =OE ,∴∠OEC =∠OCE .∵OE ∥BC ,∴∠OEC =∠ECD ,∴∠OCE =∠ECD ,即∠ACE =∠DCE ;(2)延长AE 交BC 于点G .∵∠AGC 是△ABG 的外角,∴∠AGC =∠B +∠BAG =60°.∵OE ∥BC ,∴∠AEO =∠AGC =60°.∵OA =OE ,∴∠EAO =∠AEO =60°.(3)∵O 是AC 中点,∴12COE CAE S S =V V . 23CDF COE S S =V V Q ,∴CDF CAE S S V V =13. ∵AC 是直径,∴∠AEC =∠FDC =90°.∵∠ACE =∠FCD ,∴△CDF ∽△CEA ,∴CF CA =3,∴CF =3CA =43.【点睛】本题考查了圆的综合问题,涉及平行线的性质,三角形的外角的性质,三角形中线的性质,圆周角定理,相似三角形的判定与性质等知识,需要学生灵活运用所学知识.4.在⊙O 中,点C 是AB u u u r上的一个动点(不与点A ,B 重合),∠ACB=120°,点I 是∠ABC 的内心,CI 的延长线交⊙O 于点D ,连结AD,BD .(1)求证:AD=BD.(2)猜想线段AB与DI的数量关系,并说明理由.(3)若⊙O的半径为2,点E,F是»AB的三等分点,当点C从点E运动到点F时,求点I 随之运动形成的路径长.【答案】(1)证明见解析;(2)AB=DI,理由见解析(3)23【解析】分析:(1)根据内心的定义可得CI平分∠ACB,可得出角相等,再根据圆周角定理,可证得结论;(2)根据∠ACB=120°,∠ACD=∠BCD,可求出∠BAD的度数,再根据AD=BD,可证得△ABD是等边三角形,再根据内心的定义及三角形的外角性质,证明∠BID=∠IBD,得出ID=BD,再根据AB=BD,即可证得结论;(3)连接DO,延长DO根据题意可知点I随之运动形成的图形式以D为圆心,DI1为半径的弧,根据已知及圆周角定理、解直角三角形,可求出AD的长,再根据点E,F是弧AB ⌢的三等分点,△ABD是等边三角形,可证得∠DAI1=∠AI1D,然后利用弧长的公式可求出点I 随之运动形成的路径长.详解:(1)证明:∵点I是∠ABC的内心∴CI平分∠ACB∴∠ACD=∠BCD∴弧AD=弧BD∴AD=BD(2)AB=DI理由:∵∠ACB=120°,∠ACD=∠BCD∴∠BCD=×120°=60°∵弧BD=弧BD∴∠DAB=∠BCD=60°∵AD=BD∴△ABD是等边三角形,∴AB=BD,∠ABD=∠C∵I是△ABC的内心∴BI平分∠ABC∴∠CBI=∠ABI∵∠BID=∠C+∠CBI,∠IBD=∠ABI+∠ABD∴∠BID=∠IBD∴ID=BD∵AB=BD∴AB=DI(3)解:如图,连接DO,延长DO根据题意可知点I随之运动形成的图形式以D为圆心,DI1为半径的弧∵∠ACB=120°,弧AD=弧BD∴∠AED=∠ACB=×120°=60°∵圆的半径为2,DE是直径∴DE=4,∠EAD=90°∴AD=sin∠AED×DE=×4=2∵点E,F是弧AB ⌢的三等分点,△ABD是等边三角形,∴∠ADB=60°∴弧AB的度数为120°,∴弧AM、弧BF的度数都为为40°∴∠ADM=20°=∠FAB∴∠DAI1=∠FAB+∠DAB=80°∴∠AI1D=180°-∠ADM-∠DAI1=180°-20°-80°=80°∴∠DAI1=∠AI1D∴AD=I1D=2∴弧I1I2的长为:点睛:此题是一道圆的综合题,有一定的难度,熟记圆的相关性质与定理,并对圆中的弦、弧、圆心角、圆周角等进行灵活转化是解题关键,注意数形结合思想的渗透.5.已知,如图:O1为x轴上一点,以O1为圆心作⊙O1交x轴于C、D两点,交y轴于M、N两点,∠CMD的外角平分线交⊙O1于点E,AB是弦,且AB∥CD,直线DM的解析式为y=3x+3.(1)如图1,求⊙O1半径及点E的坐标.(2)如图2,过E作EF⊥BC于F,若A、B为弧CND上两动点且弦AB∥CD,试问:BF+CF 与AC之间是否存在某种等量关系?请写出你的结论,并证明.(3)在(2)的条件下,EF交⊙O1于点G,问弦BG的长度是否变化?若不变直接写出BG 的长(不写过程),若变化自画图说明理由.【答案】(1)r=5 E(4,5)(2)BF+CF=AC (3)弦BG的长度不变,等于2【解析】分析:(1)连接ED、EC、EO1、MO1,如图1,可以证到∠ECD=∠SME=∠EMC=∠EDC,从而可以证到∠EO1D=∠EO1C=90°.由直线DM的解析式为y=3x+3可得OD=1,OM=3.设⊙O1的半径为r.在Rt△MOO1中利用勾股定理就可解决问题.(2)过点O1作O1P⊥EG于P,过点O1作O1Q⊥BC于Q,连接EO1、DB,如图2.由AB∥DC可证到BD=AC,易证四边形O1PFQ是矩形,从而有O1P=FQ,∠PO1Q=90°,进而有∠EO1P=∠CO1Q,从而可以证到△EPO1≌△CQO1,则有PO1=QO1.根据三角形中位线定理可得FQ=12BD.从而可以得到BF+CF=2FQ=AC.(3)连接EO1,ED,EB,BG,如图3.易证EF∥BD,则有∠GEB=∠EBD,从而有¶BG=¶ED,也就有BG=DE.在Rt△EO1D中运用勾股定理求出ED,就可解决问题.详解:(1)连接ED、EC、EO1、MO1,如图1.∵ME平分∠SMC,∴∠SME=∠EMC.∵∠SME=∠ECD,∠EMC=∠EDC,∴∠ECD=∠EDC,∴∠EO1D=∠EO1C.∵∠EO1D+∠EO1C=180°,∴∠EO1D=∠EO1C=90°.∵直线DM的解析式为y=3x+3,∴点M的坐标为(0,3),点D的坐标为(﹣1,0),∴OD=1,OM=3.设⊙O1的半径为r,则MO1=DO1=r.在Rt△MOO1中,(r﹣1)2+32=r2.解得:r=5,∴OO1=4,EO1=5,∴⊙O1半径为5,点E的坐标为(4,5).(2)BF+CF=AC.理由如下:过点O1作O1P⊥EG于P,过点O1作O1Q⊥BC于Q,连接EO1、DB,如图2.∵AB∥DC,∴∠DCA=∠BAC,∴¶AD=¶¶BC BD∴,=¶AC,∴BD=AC.∵O1P⊥EG,O1Q⊥BC,EF⊥BF,∴∠O1PF=∠PFQ=∠O1QF=90°,∴四边形O1PFQ是矩形,∴O1P=FQ,∠PO1Q=90°,∴∠EO1P=90°﹣∠PO1C=∠CO1Q.在△EPO1和△CQO1中,111111EO P CO QEPO CQOO E O C∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△EPO1≌△CQO1,∴PO1=QO1,∴FQ=QO1.∵QO1⊥BC,∴BQ=CQ.∵CO1=DO1,∴O1Q=12 BD,∴FQ=12BD.∵BF+CF=FQ+BQ+CF=FQ+CQ+CF=2FQ,∴BF+CF=BD=AC.(3)连接EO1,ED,EB,BG,如图3.∵DC是⊙O1的直径,∴∠DBC=90°,∴∠DBC+∠EFB=180°,∴EF∥BD,∴∠GEB=∠EBD,∴¶BG=¶ED,∴BG=DE.∵DO1=EO1=5,EO1⊥DO1,∴DE=52,∴BG=52,∴弦BG的长度不变,等于52.点睛:本题考查了圆周角定理、圆内接四边形的性质、弧与弦的关系、垂径定理、全等三角形的判定与性质、矩形的判定与性质、三角形中位线定理、平行线的判定与性质、勾股定理等知识,综合性比较强,有一定的难度.而由AB∥DC证到AC=BD是解决第(2)小题的关键,由EG∥DB证到BG=DE是解决第(3)小题的关键.6.等腰Rt△ABC和⊙O如图放置,已知AB=BC=1,∠ABC=90°,⊙O的半径为1,圆心O 与直线AB的距离为5.(1)若△ABC以每秒2个单位的速度向右移动,⊙O不动,则经过多少时间△ABC的边与圆第一次相切?(2)若两个图形同时向右移动,△ABC的速度为每秒2个单位,⊙O的速度为每秒1个单位,则经过多少时间△ABC的边与圆第一次相切?(3)若两个图形同时向右移动,△ABC的速度为每秒2个单位,⊙O的速度为每秒1个单位,同时△ABC的边长AB、BC都以每秒0.5个单位沿BA、BC方向增大.△ABC的边与圆第一次相切时,点B运动了多少距离?【答案】(1)522-;(2)52-;(3)20423-【解析】分析:(1)分析易得,第一次相切时,与斜边相切,假设此时,△ABC移至△A′B′C′处,A′C′与⊙O切于点E,连OE并延长,交B′C′于F.由切线长定理易得CC′的长,进而由三角形运动的速度可得答案;(2)设运动的时间为t秒,根据题意得:CC′=2t,DD′=t,则C′D′=CD+DD′-CC′=4+t-2t=4-t,由第(1)的结论列式得出结果;(3)求出相切的时间,进而得出B点移动的距离.详解:(1)假设第一次相切时,△ABC移至△A′B′C′处,如图1,A′C′与⊙O切于点E,连接OE并延长,交B′C′于F,设⊙O与直线l切于点D,连接OD,则OE⊥A′C′,OD⊥直线l,由切线长定理可知C′E=C′D,设C′D=x,则C′E=x,∵△ABC是等腰直角三角形,∴∠A=∠ACB=45°,∴∠A′C′B′=∠ACB=45°,∴△EFC′是等腰直角三角形,∴2x,∠OFD=45°,∴△OFD也是等腰直角三角形,∴OD=DF , ∴2x+x=1,则x=2-1, ∴CC′=BD -BC-C′D=5-1-(2-1)=5-2,∴点C 运动的时间为522-; 则经过522-秒,△ABC 的边与圆第一次相切; (2)如图2,设经过t 秒△ABC 的边与圆第一次相切,△ABC 移至△A′B′C′处,⊙O 与BC 所在直线的切点D 移至D′处,A′C′与⊙O 切于点E ,连OE 并延长,交B′C′于F ,∵CC′=2t ,DD′=t ,∴C′D′=CD+DD′-CC′=4+t -2t=4-t ,由切线长定理得C′E=C′D′=4-t ,由(1)得:4-t=2-1,解得:t=5-2,答:经过5-2秒△ABC 的边与圆第一次相切;(3)由(2)得CC′=(2+0.5)t=2.5t ,DD′=t ,则C′D′=CD+DD′-CC′=4+t -2.5t=4-1.5t ,由切线长定理得C′E=C′D′=4-1.5t ,由(1)得:4-1.5t=2-1,解得:t=10223-, ∴点B 运动的距离为2×10223-=20423-.点睛:本题要求学生熟练掌握圆与直线的位置关系,并结合动点问题进行综合分析,比较复杂,难度较大,考查了学生数形结合的分析能力.7.函数是描述客观世界运动变化的重要模型,理解函数的本质是重要的任务。
2020-2021中考数学压轴题专题圆的综合的经典综合题及详细答案.doc
![2020-2021中考数学压轴题专题圆的综合的经典综合题及详细答案.doc](https://img.taocdn.com/s3/m/c555c2510975f46526d3e17b.png)
2020-2021 中考数学压轴题专题圆的综合的经典综合题及详细答案一、圆的综合1.如图 1,以边长为 4 的正方形纸片ABCD的边 AB 为直径作⊙ O,交对角线AC 于点 E.(1)图 1 中,线段AE=;(2)如图 2,在图 1 的基础上,以点 A 为端点作∠ DAM=30°,交 CD 于点 M ,沿 AM 将四边形 ABCM 剪掉,使Rt△ADM 绕点 A 逆时针旋转(如图3),设旋转角为α(0°<α<150 °),在旋转过程中AD 与⊙O 交于点 F.①当α =30时°,请求出线段AF 的长;②当α =60时°,求出线段AF 的长;判断此时DM 与⊙ O 的位置关系,并说明理由;③当α=°时,DM与⊙ O相切.【答案】( 1) 2(2)①2②2,相离③当α=90°时,DM与⊙O相切AEB 是等腰直【解析】( 1)连接 BE,∵ AC是正方形ABCD的对角线,∴ ∠BAC=45°,∴△角三角形,又∵ AB=8,∴ AE=4;(2)①连接 OA、OF,由题意得,∠NAD=30°,∠ DAM=30°,故可得∠ OAM=30°,∠DAM=30 °则,∠ OAF=60 ,°又∵ OA=OF,∴ △ OAF是等边三角形,∵OA=4,∴ AF=OA=4;②连接 B'F,此时∠ NAD=60 °,∵ AB'=8,∠DAM=30 °,∴ AF=AB'cos∠ DAM=8×=4;此时 DM 与⊙ O 的位置关系是相离;③ ∵AD=8,直径的长度相等,∴当 DM 与⊙ O 相切时,点 D 在⊙O 上,故此时可得α=∠ NAD=90 °.点睛:此题属于圆的综合题,主要是仔细观察每一次旋转后的图形,根据含30°角的直角三角形进行计算,另外在解答最后一问时,关键是判断出点 D 的位置,有一定难度.2.已知⊙ O 中,弦 AB=AC,点 P 是∠ BAC所对弧上一动点,连接PA, PB.(1)如图①,把△ ABP 绕点 A 逆时针旋转到△ ACQ,连接PC,求证:∠A CP+∠ ACQ=180 ;°(2)如图②,若∠ BAC=60°,试探究 PA、 PB、 PC 之间的关系.(3)若∠ BAC=120°时,( 2)中的结论是否成立?若是,请证明;若不是,请直接写出它们之间的数量关系,不需证明.【答案】( 1)证明见解析;(2) PA=PB+PC .理由见解析;( 3)若 ∠ BAC=120°时,( 2)中的结论不成立,3 【解析】试题分析:( 1)如图 ① ,连接 PC .根据 “内接四边形的对角互补的性质”即可证得结论;( 2)如图 ② ,通过作辅助线 BC 、 PE 、 CE (连接 BC ,延长 BP 至 E ,使 PE=PC ,连接 CE )构建等边 △ PCE 和全等三角形 △ BEC ≌ △ APC ;然后利用全等三角形的对应边相等和线段间 的和差关系可以求得 PA=PB+PC ;( 3)如图 ③ ,在线段 PC 上截取 PQ ,使 PQ=PB ,过点 A 作 AG ⊥ PC 于点 G .利用全等三角形 △ ABP ≌△ AQP ( SAS )的对应边相等推知 AB=AQ , PB=PG ,将 PA 、 PB 、 PC 的数量关系转化到 △ APC 中来求即可. 试题解析:( 1)如图 ① ,连接 PC .∵△ ACQ 是由 △ABP 绕点 A 逆时针旋转得到的, ∴∠ ABP=∠ ACQ .由图 ① 知,点 A 、 B 、 P 、C 四点共圆,∴∠ ACP+∠ABP=180 (°圆内接四边形的对角互补), ∴∠ ACP+∠ACQ=180 (°等量代换); ( 2) PA=PB+PC .理由如下:如图 ② ,连接 BC BP 至 E PE=PC CE,延长 ,使 ,连接 . ∵弦 AB=弦 AC , ∠ BAC=60 ,° ∴△ ABC 是等边三角形(有一内角为60 °的等腰三角形是等边三角形).∵A 、B 、 P 、C 四点共圆, ∴ ∠ BAC+∠ BPC=180 (°圆内接四边形的对角互补), ∵∠ BPC+∠ EPC=180,°∴ ∠BAC=∠ CPE=60,°∵ PE=PC ,∴ △ PCE 是等边三角形, ∴ CE=PC ,∠ E=∠ ECP=∠ EPC=60;°又∵ ∠ BCE=60°+∠BCP ,∠ ACP=60°+∠ BCP , ∴ ∠ BCE=∠ ACP (等量代换) ,在△ BEC 和△ APC 中,CE PCBCEACPAC BC, ∴ △ BEC ≌ △ APC ( SAS ), ∴ BE=PA ,∴ P A=BE=PB+PC ;(3)若 ∠ BAC=120°时,( 2)中的结论不成立, 3 PA=PB+PC .理由如下:如图 ③ ,在线段 PC 上截取 PQ ,使 PQ=PB ,过点 A 作 AG ⊥ PC 于点 G . ∵∠ BAC=120 ,°∠ BAC+∠ BPC=180 ,°∴ ∠BPC=60 .°(PA=PB+PC .∵弦 AB=弦 AC,∴ ∠ APB=∠ APQ=30 .°PB PQ在△ ABP 和△ AQP中,APB APQ ,∴ △ABP≌ △AQP(SAS),AP AP∴AB=AQ, PB=PQ(全等三角形的对应边相等),∴ AQ=AC(等量代换).在等腰△ AQC中, QG=CG.在Rt△ APG中,∠ APG=30°,则 AP=2AG, PG= 3 AG,∴PB+PC=PG﹣ QG+PG+CG=PG﹣ QG+PG+QG=2PG=2 3 AG,∴ 3 PA=2 3 AG,即 3 PA=PB+PC.【点睛】本题考查了圆的综合题,解题的关键要能掌握和灵活运用圆心角、弧、弦间的关系,全等三角形的判定与性质,圆内接四边形的性质等.3.如图,已知 BC 是⊙ O 的弦, A 是⊙ O 外一点,△ ABC 为正三角形, D 为 BC的中点, M 为⊙ O 上一点,并且∠ BMC=60°.(1)求证: AB 是⊙ O 的切线;(2)若 E, F 分别是边 AB, AC 上的两个动点,且∠EDF=120°,⊙ O 的半径为 2,试问BE+CF的值是否为定值?若是,求出这个定值;若不是,请说明理由.【答案】( 1)证明见试题解析;(2) BE+CF的值是定值,为等边△ ABC边长的一半.【解析】试题分析:( 1)连结 OB、 OD,如图 1,由于 D 为 BC的中点,由垂径定理的推理得OD⊥ BC,∠ BOD=∠ COD,即可得到∠ BOD=∠ M=60°,则∠ OBD=30°,所以∠ABO=90°,于是得到 AB 是⊙ O 的切线;(2)作 DM⊥ AB 于 M , DN⊥ AC 于 N,连结 AD,如图 2,由△ ABC为正三角形, D 为 BC的中点,得到AD 平分∠ BAC,∠BAC=60°,利用角平分线性质得DM=DN,得∠MDN=120 °,由∠ EDF=120 ,°得到∠ MDE=∠NDF,于是有△ DME≌ △ DNF,得到 ME=NF,1 1 1 B C,即可判断 BE+CF的值是得到 BE+CF=BM+CN,由 BM= BD, CN= OC,得到 BE+CF=2 2 2定值,为等边△ ABC 边长的一半.试题解析:( 1)连结 OB、 OD,如图 1,∵ D 为 BC 的中点,∴ OD⊥ BC,∠ BOD=∠ COD,1∴∠ ODB=90 ,°∵∠ BMC=∠BOC,∴∠ BOD=∠ M=60°,∴∠ OBD=30,°∵△ABC为正三2角形,∴ ∠ABC=60°,∴ ∠ ABO=60°+30°=90°,∴ AB⊥OB,∴ AB 是⊙O 的切线;(2) BE+CF的值是为定值.作DM ⊥ AB 于 M, DN⊥ AC 于 N,连结 AD,如图 2,∵ △ABC 为正三角形, D 为 BC 的中点,∴ AD 平分∠ BAC,∠BAC=60°,∴ DM=DN,∠ MDN=120°,∵ ∠ EDF=120°,∴∠ MDE=∠ NDF,在△ DME 和△DNF 中,∵ ∠ DME=∠ DNF. DM=DN,∠MDE=∠ NDF,∴△ DME≌ △DNF,∴ ME=NF,∴ BE+CF=BM﹣EM+CN+NF=BM+CN,在 Rt△ DMB 中,∵∠ DBM=60 ° ∴ BM= 1 1 1 1 1,BD,同理可得 CN=2 2 22 OC,∴ BE+CF= OB+ 2 OC= BC,∴BE+CF 的值是定值,为等边△ ABC边长的一半.考点: 1.切线的判定;2.等边三角形的性质;3.定值问题; 4.探究型; 5.综合题;6.压轴题.4.已知: BD 为⊙O 的直径, O 为圆心,点 A 为圆上一点,过点 B 作⊙ O 的切线交 DA 的延长线于点 F,点 C 为⊙ O 上一点,且 AB= AC,连接 BC 交 AD 于点 E,连接 AC.(1)如图 1,求证:∠ABF=∠ ABC;(2)如图 2,点 H 为⊙ O 内部一点,连接OH, CH若∠ OHC=∠ HCA=90°时,求证: CH=1DA;2(3)在 (2)的条件下,若OH= 6,⊙ O 的半径为10,求 CE 的长.【答案】 (1)见解析;( 2)见解析;( 3)21.5【解析】【分析】1 由BD为 e O 的直径,得到D ABD 90o,根据切线的性质得到FBA ABD 90o,根据等腰三角形的性质得到 C ABC ,等量代换即可得到结论;2 如图2,连接OC,根据平行线的判定和性质得到ACO COH ,根据等腰三角形的性质得到OBC OCB ,ABC CBO ACB OCB ,根据相似三角形的性质即可得到结论;AB BD2 ,根据勾股定理得到3 根据相似三角形的性质得到OCOHAD BD 2 AB 2 16 ,根据全等三角形的性质得到BF BE ,AF AE,根据射影定理得到AF 1229 ,根据相交弦定理即可得到结论.16【详解】1 Q BD 为 e O 的直径,BAD 90o,D ABD90o,Q FB 是 e O 的切线,FBD 90o,FBA ABD 90o,FBA D ,Q AB AC ,C ABC ,Q C D ,ABF ABC ;2 如图2,连接OC,Q OHCHCA 90o ,AC / / OH ,ACOCOH , Q OB OC ,OBC OCB , ABCCBOACBOCB ,即ABD ACO ,ABCCOH ,Q HBAD 90o ,VABD ∽ VHOC ,AD BD2 ,CHOCCH1DA ;23 由 2 知, VABC ∽ VHOC ,AB BD 2,OHOCQ OH 6 , e O 的半径为 10,AB 2OH 12 , BD 20,AD BD 2 AB 2 16,在 VABF 与 VABE 中,ABF ABEAB AB,BAFBAE 90oVABF ≌ VABE ,BF BE , AFAE ,Q FBDBAD90o ,AB 2AF AD,1229 ,AF16AE AF 9 ,DE 7 , BEAB 2AE215,Q AD ,BC 交于 E ,AE DE BE CE ,AE DE 9 7 21 CE15.BE5【点睛】本题考查了切线的性质,圆周角定理,全等三角形的判定和性质,相似三角形的判定和性质,平行线的性质,勾股定理,射影定理,相交弦定理,正确的识别图形是解题的关键.5.如图 1,已知 AB 是 ⊙O 的直径, AC 是 ⊙O 的弦,过 O 点作 OF ⊥ AB 交⊙ O 于点 D ,交AC 于点 E ,交 BC 的延长线于点 F ,点 G 是 EF 的中点,连接 CG (1)判断 CG 与⊙ O 的位置关系,并说明理由; (2)求证: 2OB 2=BC?BF ;(3)如图 2,当 ∠ DCE = 2∠ F , CE = 3,DG = 2.5 时,求 DE 的长.【答案】( 1) CG 与 ⊙ O 相切,理由见解析;( 2)见解析;( 3) DE = 2【解析】【分析】(1)连接 CE ,由 AB 是直径知 △ ECF 是直角三角形,结合 G 为 EF 中点知 ∠ AEO = ∠GEC =∠GCE ,再由 OA = OC 知 ∠ OCA = ∠OAC ,根据 OF ⊥ AB 可得 ∠ OCA+∠ GCE = 90 °,即OC ⊥ GC ,据此即可得证;( 2)证 △ ABC ∽△ FBO 得BC AB ,结合 AB =2BO 即可得;BOBF(3)证 ECD ∽ △ EGC 得EC ED,根据 CE = 3, DG = 2.5 知3 DE,解之可EGECDE 2.53得.【详解】解:( 1) CG 与⊙ O 相切,理由如下:如图 1,连接 CE ,∵AB 是⊙ O 的直径,∴∠ ACB=∠ ACF= 90 °,∵点 G 是 EF 的中点,∴GF= GE= GC,∴∠ AEO=∠GEC=∠ GCE,∵OA=OC,∴∠ OCA=∠ OAC,∵OF⊥ AB,∴∠ OAC+∠ AEO=90 °,∴∠ OCA+∠ GCE= 90 °,即 OC⊥ GC,∴CG 与⊙ O 相切;(2)∵ ∠ AOE=∠ FCE= 90°,∠AEO=∠ FEC,∴∠ OAE=∠ F,又∵∠ B=∠ B,∴△ ABC∽ △ FBO,BC AB∴,即 BO?AB= BC?BF,BO BF∵AB= 2BO,∴2OB2=BC?BF;(3)由( 1)知 GC= GE= GF,∴∠ F=∠ GCF,∴∠ EGC= 2∠F,又∵∠ DCE= 2∠ F,∴∠ EGC=∠DCE,∵∠ DEC=∠ CEG,∴△ ECD∽ △ EGC,∴EC ED ,EG EC∵CE= 3, DG= 2.5,∴3DE ,DE 2.5 3整理,得: DE2+2.5DE﹣ 9= 0,解得: DE= 2 或 DE=﹣ 4.5(舍),故DE=2.【点睛】本题是圆的综合问题,解题的关键是掌握圆周角定理、切线的判定、相似三角形的判定与性质及直角三角形的性质等知识点.6.如图,□ ABCD的边 AD 是△ ABC外接圆⊙ O 的切线,切点为 A,连接 AO 并延长交 BC于点 E,交⊙O 于点 F,过点 C 作直线 CP 交 AO 的延长线于点 P,且∠ BCP=∠ ACD.(1)求证: PC是⊙O 的切线;(2)若∠ B= 67.5 °, BC=2,求线段PC, PF与弧 CF所围成的阴影部分的面积S.【答案】( 1)见解析;(2)14【解析】【分析】( 1)过 C 点作直径 CM,连接 MB,根据 CM 为直径,可得∠ M+ ∠ BCM=90°,再根据 AB∥ DC 可得∠ ACD=∠ BAC,由圆周角定理可得∠ BAC=∠ M,∠ BCP=∠ACD,从而可推导得出∠ PCM= 90°,根据切线的判定即可得;(2)连接 OB,由 AD 是⊙O 的切线,可得∠ PAD= 90°,再由 BC∥ AD,可得 AP⊥ BC,从而得 BE=CE=1BC=1 ,继而可得到∠ ABC=∠ACB= 67.5 ,°从而得到∠ BAC= 45°,由圆周2角定理可得∠ BOC=90°,从而可得∠ BOE=∠ COE=∠ OCE= 45 °,根据已知条件可推导得出OE= CE=1, PC=OC=OE2 CE2 2 ,根据三角形面积以及扇形面积即可求得阴影部分的面积 .【详解】( 1)过 C 点作直径CM,连接 MB,∵CM 为直径,∴∠ MBC=90 °,即∠ M+∠ BCM= 90 °,∵四边形 ABCD是平行四边形,∴AB∥ DC, AD∥ BC,∴∠ ACD=∠ BAC,∵∠ BAC=∠M ,∠BCP=∠ ACD,∴∠ M =∠ BCP,∴∠ BCP+∠ BCM= 90 °,即∠ PCM=90 °,∴CM⊥ PC,∴PC 与⊙ O 相切;(2)连接 OB,∵AD 是⊙ O 的切线,切点为A,∴OA⊥AD,即∠ PAD= 90 °,∵BC∥ AD,∠AEB=∠PAD= 90 °,∴AP⊥ BC.∴ BE= CE=1BC= 1,2∴AB= AC,∴ ∠ ABC=∠ ACB= 67.5 ,°∴∠ BAC= 180 -°∠ABC-∠ ACB= 45 °,∴∠ BOC= 2∠ BAC=90 °,∵OB= OC,AP⊥BC,∴ ∠ BOE=∠ COE=∠ OCE= 45 ,°∵∠ PCM= 90 °,∴ ∠ CPO=∠ COE=∠ OCE= 45 ,°∴OE=CE= 1, PC= OC=OE2 CE2 2 ,2∴S=S△POC- S 扇形OFC=1245π 2π.2 12 360 4【点睛】本题考查了切线的判定与性质、圆周角定理、垂径定理、扇形面积等,综合性较强,准确添加辅助线是解题的关键.7.如图所示,AB 是半圆O 的直径,AC是弦,点P 沿BA 方向,从点 B 运动到点A,速度为 1cm/s ,若AB 10cm,点O 到AC 的距离为4cm .(1)求弦 AC的长;(2)问经过多长时间后,△ APC是等腰三角形.【答案】( 1) AC=6;( 2) t=4 或 5 或14s 时,△APC 是等腰三角形;5【解析】【分析】(1)过O 作OD⊥ AC于D,根据勾股定理求得AD 的长,再利用垂径定理即可求得AC 的长;( 2)分 AC=PC、 AP=AC、 AP=CP三种情况求t值即可 .【详解】(1)如图 1,过 O 作 OD⊥ AC 于 D,易知 AO=5, OD=4,从而 AD= =3,∴A C=2AD=6;(2)设经过t 秒△ APC是等腰三角形,则AP=10﹣ t ①如图 2,若 AC=PC,过点 C 作 CH⊥ AB 于 H,∵∠ A=∠ A,∠AHC=∠ODA=90 ,°∴△ AHC∽ △ ADO,∴AC:AH=OA:AD,即 AC:=5: 3,解得 t= s,∴经过s 后△APC 是等腰三角形;②如图 3,若 AP=AC,由PB=x,AB=10,得到 AP=10﹣ x,又∵ AC=6,则 10﹣ t=6 ,解得 t=4s,∴经过 4s 后△ APC是等腰三角形;③如图 4,若 AP=CP, P 与 O 重合,则AP=BP=5,∴经过 5s 后△ APC是等腰三角形.综上可知当t=4 或 5 或s 时,△ APC是等腰三角形.【点睛】本题是圆的综合题,解决问题利用了垂径定理,勾股定理等知识点,解题时要注意当△BPC 是等腰三角形时,点P 的位置有三种情况.8.如图 1,是用量角器一个角的操作示意图,量角器的读数从M 点开始(即M 点的读数为 0),如图2,把这个量角器与一块30°(∠ CAB=30°)角的三角板拼在一起,三角板的斜边AB 与量角器所在圆的直径MN 重合,现有射线 C 绕点 C 从CA 开始沿顺时针方向以每秒 2°的速度旋转到与CB,在旋转过程中,射线CP 与量角器的半圆弧交于E.连接(1)当射线CP经过 AB 的中点时,点 E 处的读数是,此时△BCE的形状是BE.;(2)设旋转 x 秒后,点 E 处的读数为 y,求 y 与 x 的函数关系式;(3)当 CP旋转多少秒时,△BCE是等腰三角形?【答案】( 1) 60°,直角三角形;(2) y= 4x(0≤x≤45);( 3) 7.5 秒或 30 秒【解析】【分析】(1)根据圆周角定理即可解决问题;(2)如图 2﹣2 中,由题意∠ ACE=2x,∠ AOE= y,根据圆周角定理可知∠AOE= 2∠ ACE,可得 y= 2x(0≤x≤45);(3)分两种情形分别讨论求解即可;【详解】解:( 1)如图 2﹣ 1 中,∵∠ ACB= 90 °, OA=OB,∴OA=OB= OC,∴∠ OCA=∠ OAC= 30 °,∴∠ AOE= 60 °,∴点 E 处的读数是60 °,∵∠ E=∠BAC=30 °,OE= OB,∴∠ OBE=∠E= 30 °,∴∠ EBC=∠ OBE+∠ABC= 90 °,∴△ EBC是直角三角形;故答案为 60°,直角三角形;(2)如图 2﹣2 中,∵∠ ACE= 2x,∠ AOE= y,∵∠ AOE= 2∠ACE,∴y= 4x( 0 ≤x≤ 45).(3)①如图 2﹣ 3 中,当 EB=EC时, EO垂直平分线段BC,∵AC⊥ BC,∵EO∥ AC,∴∠ AOE=∠BAC=30 °,1∴∠ ECA=∠ AOE=15°,2∴x= 7.5.②若 2﹣ 4 中,当 BE=BC时,易知∠ BEC=∠ BAC=∠ BCE= 30°,∴∠ OBE=∠OBC= 60 °,∵OE= OB,∴△ OBE是等边三角形,∴∠ BOE=60 °,∴∠ AOB=120 °,1∴∠ ACE=∠ACB=60°,2∴x= 30,综上所述,当CP 旋转 7.5 秒或 30 秒时,△ BCE是等腰三角形;【点睛】本题考查几何变换综合题、创新题目、圆周角定理、等腰三角形的判定和性质等知识,解题的关键是理解题意,学会用分类讨论的思想思考问题,属于中考压轴题.9.在直角坐标系中, O 为坐标原点,点 A 坐标为( 2, 0),以 OA 为边在第一象限内作等边△OAB, C 为 x 轴正半轴上的一个动点( OC> 2),连接 BC,以 BC 为边在第一象限内作等边△ BCD,直线 DA 交 y 轴于 E 点.(1)求证:△ OBC≌ △ ABD(2)随着 C 点的变化,直线 AE 的位置变化吗?若变化,请说明理由;若不变,请求出直线AE 的解析式.(3)以线段BC为直径作圆,圆心为点F,当 C 点运动到何处时,直线EF∥直线 BO;这时⊙F 和直线 BO 的位置关系如何?请给予说明.【答案】(1)见解析;(2 AE的位置不变,AE的解析式为: y 3x 2 3 ;)直线(3) C 点运动到(4,0)处时,直线EF∥直线 BO;此时直线BO 与⊙F 相切,理由见解析. 【解析】【分析】(1)由等边三角形的性质可得到 OB=AB, BC=BD,∠ OBA=∠ DBC,等号两边都加上∠ABC,得到∠OBC=∠ABD,根据“ SAS得”到△ OBC≌ △ ABD.(2)先由三角形全等,得到∠BAD=∠ BOC=60 ,°由等边△BCD,得到∠ BAO=60 ,°根据平角定义及对顶角相等得到∠OAE=60 ,°在直角三角形 OAE中,由 OA 的长,根据 tan60 的°定义求出 OE的长,确定出点 E 的坐标,设出直线AE 的方程,把点 A 和 E 的坐标代入即可确定出解析式.( 3)由EA∥ OB, EF∥OB,根据过直线外一点作已知直线的平行线有且只有一条,得到EF与 EA重合,所以 F 为 BC 与 AE 的交点,又 F 为 BC 的中点,得到 A 为 OC 中点,由 A 的坐标即可求出 C 的坐标;相切理由是由 F 为等边三角形BC边的中点,根据“三线合一”得到DF与BC 垂直,由EF 与 OB 平行得到BF 与 OB 垂直,得证 .【详解】(1)证明:∵ △ OAB 和△ BCD都为等边三角形,∴OB=AB, BC=BD,∠OBA=∠DBC=60 ,°∴∠ OBA+∠ ABC=∠DBC+∠ ABC,即∠ OBC=∠ ABD,在△ OBC和△ ABD 中,OB ABOBC ABD ,BC BD∴△ OBC≌△ ABD.(2)随着 C 点的变化,直线 AE 的位置不变,∵△ OBC≌△ ABD,∴∠ BAD=∠ BOC=60 ,°又∵ ∠ BAO=60°,∴∠ DAC=60 ,°∴∠ OAE=60 ,°又 OA=2,在Rt△ AOE中, tan60 °= OE,OA则OE=2 3,∴点 E 坐标为( 0, -2 3 ),设直线 AE 解析式为 y=kx+b,把 E 和 A 的坐标代入得:0 2k b,2 3 bk 3解得,,b2 3∴直线 AE 的解析式为:y3x 2 3 .(3) C 点运动到(4,0)处时,直线EF∥直线 BO;此时直线BO 与⊙F 相切,理由如下:∵∠ BOA=∠ DAC=60 ,°EA∥ OB,又 EF∥ OB,则 EF与 EA 所在的直线重合,∴点 F 为 DE 与 BC 的交点,又 F 为 BC中点,∴A 为 OC中点,又AO=2,则 OC=4,∴当 C 的坐标为( 4, 0)时, EF∥ OB,这时直线BO 与⊙ F 相切,理由如下:∵△ BCD为等边三角形, F 为 BC 中点,∴D F⊥ BC,又 EF∥ OB,∴F B⊥ OB,∴直线 BO 与⊙ F 相切,【点睛】本题考查了一次函数;三角形全等的判定与性质;等边三角形的性质和直线与圆的位置关系.熟练掌握相关性质定理是解题关键.10. 如图,在 △ ABC 中, AB = AC ,以 AB 为直径的 ⊙ O 与边 BC 交于点 D , DE ⊥ AC ,垂足为E ,交 AB 的延长线于点 F .(1)求证: EF 是 ⊙ O 的切线;(2)若 ∠ C = 60°, AC =12,求 BD ? 的长. (3)若 tan C = 2, AE = 8,求 BF 的长.【答案】 (1)见解析 ;(2) 2 ;π(3)10.3【解析】分析:( 1)连接 OD ,根据等腰三角形的性质:等边对等角,得∠ABC=∠ C ,∠ABC=∠ ODB ,从而得到 ∠ C=∠ ODB ,根据同位角相等,两直线平行,得到 OD ∥ AC ,从而得证 OD ⊥ EF ,即 EF 是⊙ O 的切线;(2) 根据中点的性质,由AB=AC=12 ,求得 OB=OD=1AB =6,进而根据等边三角形的判2定得到 △ OBD 是等边三角形,即 ∠ BOD=600,从而根据弧长公式七届即可;(3)连接 AD ,根据直角三角形的性质,由在Rt △ DEC 中 , tanCDE 2 设 CE=x,则CEAE 2 ,求得 DE 、 CE 的长,然后根据相似三DE=2x ,然后由 Rt △ ADE 中 , tan ADEDE角形的判定与性质求解即可.详解:( 1)连接 OD ∵ AB=AC ∴ ∠ ABC=∠ C∵OD=OB ∴∠ ABC=∠ ODB∴∠ C=∠ ODB ∴ OD ∥ AC又∵ DE ⊥ AC ∴ OD ⊥ DE ,即 OD ⊥ EF ∴EF 是 ⊙ O 的切线1( 2) ∵ AB=AC=12 ∴ OB=OD= AB =62由( 1)得: ∠ C=∠ ODB=600∴△ OBD 是等边三角形∴∠ BOD=600∴ ?606? 的长22BD =180即BD( 3)连接 AD ∵DE ⊥AC ∠ DEC=∠ DEA=900在 Rt △ DEC 中, tanCDE 2 设 CE=x,则 DE=2x CE∵AB 是直径 ∴∠ ADB=∠ ADC=900∴∠ ADE+∠ CDE=90 在 Rt △ DEC 中 ,∠ C+∠ CDE=90AE 2∴∠ C=∠ ADE 在 Rt △ ADE 中 , tan ADE DE∵ AE=8,∴ DE=4 则 CE=2∴ A C=AE+CE=10即直径 AB=AC=10 则 OD=OB=5∵ O D//AE ∴ △ ODF ∽ △AEF∴OF OD 即: BF 5 5AF AEBF 10 8解得: BF=10即 BF 的长为 10 .33点睛:此题考查了切线的性质与判定、圆周角定理、等腰三角形的性质、直角三角形以及相似三角形的判定与性质.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.11. 如图,等边 △ ABC 内接于 ⊙ O , P 是弧 AB 上任一点(点 P 不与 A 、B 重合),连 AP ,BP ,过 C 作 CM ∥BP 交 PA 的延长线于点 M ,( 1)求证: △ PCM 为等边三角形;( 2)若 PA = 1, PB = 2,求梯形 PBCM 的面积.【答案】( 1)见解析;( 2)1534【解析】【分析】(1)利用同弧所对的圆周角相等即可求得题目中的未知角,进而判定△ PCM为等边三角形;(2)利用上题中得到的相等的角和等边三角形中相等的线段证得两三角形全等,进而利用△PCM 为等边三角形,进而求得PH 的长,利用梯形的面积公式计算梯形的面积即可.【详解】(1)证明:作PH⊥ CM 于 H,∵△ ABC是等边三角形,∴∠ APC=∠ABC=60 ,°∠BAC=∠ BPC=60 ,°∵CM∥ BP,∴∠ BPC=∠ PCM=60 ,°∴△ PCM 为等边三角形;(2)解:∵ △ ABC是等边三角形,△ PCM 为等边三角形,∴∠ PCA+∠ ACM=∠ BCP+∠ PCA,∴∠ BCP=∠ ACM,在△ BCP和△ ACM 中,BC ACBCP ACM ,CP CM∴△ BCP≌ △ ACM(SAS),∴PB=AM,∴CM=CP=PM=PA+AM=PA+PB=1+2=3,在 Rt△ PMH 中,∠ MPH=30°,∴PH= 3 3 ,2梯形 PBCM =1 13 315∴S (PB+CM ×PH= 3 .)×( 2+3)×=2 2 2 4【点睛】本题考查圆周角定理、等边三角形的判定、全等三角形的性质及梯形的面积计算方法,是一道比较复杂的几何综合题.12.在中,,,,分别是边,的中点,若等腰绕点逆时针旋转,得到等腰,设旋转角为,记直线与的交点为.(1)问题发现如图1,当时,线段的长等于 _________,线段的长等于 _________.(2)探究证明如图2,当时,求证:,且.(3)问题解决求点到所在直线的距离的最大值.(直接写出结果)【答案】( 1);;(2)详见解析;(3)【解析】【分析】(1)利用等腰直角三角形的性质结合勾股定理分别得出BD1的长和 CE1的长;(2)根据旋转的性质得出,∠ D1AB=∠ E1 AC=135°,进而求出△ D1 AB≌ △ E1AC( SAS),即可得出答案;(3)首先作 PG⊥ AB,交 AB 所在直线于点 G,则 D1, E1在以 A 为圆心, AD 为半径的圆上,当 BD1所在直线与⊙ A 相切时,直线 BD1与 CE1的交点 P 到直线 AB 的距离最大,此时四边形 AD1PE1是正方形,进而求出PG 的长.【详解】(1)解:∵ ∠ A=90°, AC=AB=4, D, E 分别是边 AB,AC 的中点,∴A E=AD=2,∵等腰 Rt△ADE 绕点 A 逆时针旋转,得到等腰Rt△ AD1E1,设旋转角为α(0<α≤ 180)°,∴当α =90时°, AE1=2,∠ E1AE=90°,∴BD1=;故答案为:;;(2)证明:由题意可知,,,∵是由绕点逆时针旋转得到,∴,,在和中,,∴,∴,.∵,∴,∴,∴,且.(3)点的运动轨迹是在的上半圆周,点的运动轨迹是在的弧段.即当与相切时,有最大值.点到所在直线的距离的最大值为.【点睛】此题主要考查了几何变换以及等腰腰直角三角形的性质和勾股定理以及切线的性质等知识,根据题意得出PG的最长时P 点的位置是解题关键.13.如图 , Rt △ABC 中,∠ B=90°,它的内切圆分别与边BC、 CA、AB 相切于点D、 E、 F, (1)设AB=c, BC=a, AC=b,求证 : 内切圆半径 r=1(a+b-c). 2(2)若 AD 交圆于 P, PC交圆于 H, FH//BC, 求∠ CPD;(3)若 r=3 10 , PD= 18, PC=27 2 . 求△ ABC各边长 .【答案】( 1)证明见解析( 2)45°(3)9 10,12 10,15 10【解析】【分析】(1)根据切线长定理,有AE=AF,BD=BF, CD=CE.易证四边形B DOF为正方形,BD=BF=r,用 r 表示 AF、 AE、 CD、 CE,利用 AE+CE=AC为等量关系列式.(2)∠ CPD为弧 DH 所对的圆周角,连接OD,易得弧DH 所对的圆心角∠ DOH=90°,所以∠C PD=45 .°(3)由 PD=18 和 r=310, 联想到垂径定理基本图形,故过圆心O 作 PD 的垂线 OM,求得弦心距 OM=3 ,进而得到∠ MOD 的正切值.延长 DO 得直径 DG,易证 PG∥ OM ,得到同位角∠ G=∠ MOD.又利用圆周角定理可证∠ADB=∠ G,即得到∠ ADB 的正切值,进而求得AB.再设 CE=CD=x,用 x 表示 BC、 AC,利用勾股定理列方程即求出 x.【详解】解:( 1)证明:设圆心为O,连接 OD、OE、 OF,∵⊙ O 分别与 BC、CA、 AB 相切于点D、 E、 F∴OD⊥BC, OE⊥ AC, OF⊥AB, AE=AF, BD=BF,CD=CE ∴∠ B=∠ODB=∠ OFB=90 °∴四边形 BDOF是矩形∵O D=OF=r∴矩形 BDOF是正方形∴B D=BF=r∴A E=AF=AB-BF=c-,r CE=CD=BC-BD=a-r∵A E+CE=AC∴c-r+a-r=b整理得: r= 1( a+b-c)2(2)取 FH 中点 O,连接 OD ∵F H∥ BC∴∠ AFH=∠ B=90 °∵AB 与圆相切于点F,∴F H 为圆的直径,即 O 为圆心∵FH∥ BC∴∠ DOH=∠ ODB=90 °1∴∠ CPD=∠ DOH=45°2(3)设圆心为 O,连接 DO 并延长交⊙ O 于点 G,连接 PG,过 O 作 OM⊥PD 于 M ∴∠ OMD=90 °∵P D=181∴DM= PD=92∵B F=BD=OD=r=3 10,∴OM= OD2 DM 2=(3 10) 2 92=90 81 =3∴t an ∠ MOD= DM= 3OM∵DG 为直径∴∠ DPG=90 °∴OM ∥ PG,∠G+∠ ODM=90 °∴∠ G=∠ MOD∵∠ ODB=∠ADB+∠ ODM=90 °∴∠ ADB=∠ G∴∠ ADB=∠ MODAB∴tan ∠ ADB==tan∠ MOD=3BD∴A B=3BD=3r=9 10∴A E=AF=AB-BF=9 10 - 3 10= 6 10设CE=CD=x,则 BC=3 10 +x, AC=6 10 +x∵AB2+BC2=AC2∴(910 )2.+(310+x)2=(610+x)2解得: x=910∴B C=12 10, AC=15 10∴△ ABC各边长 AB=910 ,AC=15 10 ,BC=12 10【点睛】本题考查切线的性质,切线长定理,正方形的判定,圆周角定理,垂径定理,勾股定理.切线长定理的运用是解决本题的关键,而在不能直接求得线段长的情况下,利用勾股定理作为等量关系列方程解决是常用做法.14.如图, AB 是⊙ O 的直径, AD 是⊙ O 的弦,点 F 是 DA 延长线上的一点,过⊙O上一点C 作⊙O 的切线交 DF 于点 E, CE⊥ DF.(1)求证: AC 平分∠ FAB;(2)若 AE=1, CE= 2,求⊙ O 的半径.【答案】( 1 )证明见解析;(2)52【解析】试题分析:(1)连接 OC,根据切线的性质和圆周角定理,得出∠ OCA=∠ OAC 与∠CAE=∠ OCA,然后根据角平分线的定义可证明;(2)由圆周角定理得到∠ BCA=90°,由垂直的定义,可求出∠CEA=90°,从而根据两角对应相等的两三角形相似可证明△ ACB∽△ AEC,再根据相似三角形的对应边成比例求得 AB 的长,从而得到圆的半径 .试题解析: (1)证明:连接OC.∵CE是⊙ O 的切线,∴ ∠ OCE=90°∵CE⊥ DF,∴∠ CEA=90 °,∴∠ ACE+∠CAE=∠ ACE+∠OCA=90 ,°∴ ∠CAE=∠ OCA∵OC= OA,∴ ∠ OCA=∠ OAC.∴∠ CAE=∠ OAC,即 AC 平分∠ FAB(2)连接 BC.∵AB 是⊙ O 的直径,∴ ∠ ACB =∠AEC =90 . °又∵∠ CAE=∠ OAC,∴△ ACB∽△ AEC,∴AB AC.AC AE∵AE = 1, CE =2, ∠ AEC =90 ,°∴ ACAE 2 CE 212 22525AC 255 , ∴⊙ O 的半径为.∴AB2AE115. 对于平面内的 ⊙ C 和 ⊙ C 外一点 Q ,给出如下定义:若过点 Q 的直线与 ⊙ C 存在公共 点,记为点 A ,B ,设 kAQBQ,则称点 A (或点 B )是 ⊙C 的 “K 相关依附点 ”,特别CQ地,当点 A 和点 B 重合时,规定 2 AQ (或2BQ).AQ=BQ , kCQCQ已知在平面直角坐标系 xoy 中, Q(-1,0), C(1,0), ⊙C 的半径为 r . (1)如图 1,当 r2 时,① 若 A 1(0,1)是 ⊙ C 的 “k 相关依附点 ”,求 k 的值.②A 2(1+2 , 0)是否为 ⊙ C 的 “2相关依附点 ”.(2)若 ⊙ C 上存在 “k 相关依附点 ”点 M ,① 当 r=1 ,直线 QM 与 ⊙C 相切时,求 k 的值. ② 当 k3 时,求 r 的取值范围.(3)若存在 r 的值使得直线 y 3x b 与⊙ C 有公共点,且公共点时⊙ C 的 “ 3 相关依附点 ”,直接写出 b 的取值范围.【答案】( 1) ①2 . ② 是;( 2) ① k3 ; ② r 的取值范围是 1≤ r 2 ;( 3)3 b 3 3 . 【解析】【分析】(1 ) ① 如图 1 中,连接 AC 、 QA 1 .首先证明 QA 1 是切线,根据 k2AQ计算即可解决CQ问题;② 根据定义求出 k 的值即可判断;(2 ) ① 如图,当 r 1时,不妨设直线QM 与 e C 相切的切点 M 在 x 轴上方(切点 M 在x 轴下方时同理),连接CM,则QM CM ,根据定义计算即可;②如图 3 中,若直线 QM 与e C不相切,设直线QM 与e C的另一个交点为N (不妨设QN QM ,点N,M在x轴下方时同理),作CD QM 于点D,则MD ND ,可得MQ NQ ( MN NQ) NQ 2ND 2NQ 2DQ ,CQ = 2,推出k MQ NQ 2 DQ3 时,DQ 3 ,此时 CD CQ2 DQ2 1,CQDQ ,可得当kCQ假设 e C 经过点 Q ,此时r = 2,因为点Q早e C外,推出 r 的取值范围是1, r 2 ;(3)如图 4 中,由( 2)可知:当k 3时,1, r 2 .当 r = 2 时, e C 经过点Q( 1,0) 或E(3,0),当直线y 3x b 经过点Q时, b 3 ,当直线 y 3x b 经过点E时, b 3 3 ,即可推出满足条件的b的取值范围为 3 b 3 3 .【详解】(1)①如图 1 中,连接AC、QA1.由题意: OC OQ OA1,△ QA1C是直角三角形,CA1Q 90 ,即CA1 QA1,QA1是e C的切线,k 2QA1 2 22 .QC 2② Q A2(1 2,0) 在e C2 2 1 2 1,A2是e C的“2相关依附上, k 2 2点”.故答案为:2 ,是;(2)①如图2,当r 1 时,不妨设直线QM 与e C相切的切点M在x轴上方(切点M 在 x 轴下方时同理),连接CM ,则QM CM .Q Q ( 1,0) , C (1,0) ,r 1 , CQ2 ,CM,MQ 3 ,此时12MQk 3 ;CQ②如图 3 中,若直线 QM 与e C不相切,设直线QM 与e C的另一个交点为N (不妨设QN QM ,点N,M在x轴下方时同理),作CD QM 于点D,则MD ND ,MQ NQ (MN NQ ) NQ 2ND 2NQ2DQ ,Q CQ 2 ,MQ NQ 2DQ 当k 3时,DQ 3 ,此时 CDCQ2 DQ 2 1 ,k DQ ,CQ CQ假设 e C 经过点 Q ,此时r = 2,Q点 Q 早 e C 外,r 的取值范围是1, r 2.(3)如图 4 中,由( 2)可知:当k 3时, 1, r 2 .当 r = 2 时,e C经过点Q( 1,0) 或E (3,0),当直线y 3x b 经过点Q时,b 3 ,当直线 y3x b 经过点 E 时, b 3 3 ,满足条件的 b 的取值范围为3 b 3 3 .【点睛】本题考查了一次函数综合题、圆的有关知识、勾股定理、切线的判定和性质、点 A (或点B)是 e C 的“k 相关依附点”的定义等知识,解题的关键是理解题意,灵活运用所学知识解决问题,学会考虑特殊位置解决问题,属于中考压轴题.。
中考数学与圆的综合有关的压轴题及详细答案
![中考数学与圆的综合有关的压轴题及详细答案](https://img.taocdn.com/s3/m/9d74d76989eb172dec63b709.png)
一、圆的综合真题与模拟题分类汇编(难题易错题)1.已知▱ABCD的周长为26,∠ABC=120°,BD为一条对角线,⊙O内切于△ABD,E,F,G 为切点,已知⊙O的半径为3.求▱ABCD的面积.【答案】203【解析】【分析】首先利用三边及⊙O的半径表示出平行四边形的面积,再根据题意求出AB+AD=13,然后利用切线的性质求出BD的长即可解答.【详解】设⊙O分别切△ABD的边AD、AB、BD于点G、E、F;平行四边形ABCD的面积为S;则S=2S△ABD=2×12(AB·OE+BD·OF+AD·OG)=3(AB+AD+BD);∵平行四边形ABCD的周长为26,∴AB+AD=13,∴S=3(13+BD);连接OA;由题意得:∠OAE=30°,∴AG=AE=3;同理可证DF=DG,BF=BE;∴DF+BF=DG+BE=13﹣3﹣3=7,即BD=7,∴S=3(13+7)=203.即平行四边形ABCD的面积为203.2.如图,在⊙O中,直径AB⊥弦CD于点E,连接AC,BC,点F是BA延长线上的一点,且∠FCA=∠B.(1)求证:CF是⊙O的切线; (2)若AE=4,tan∠ACD=12,求AB和FC的长.【答案】(1)见解析;(2) ⑵AB=20 ,403 CF【解析】分析:(1)连接OC,根据圆周角定理证明OC⊥CF即可;(2)通过正切值和圆周角定理,以及∠FCA =∠B 求出CE 、BE 的长,即可得到AB 长,然后根据直径和半径的关系求出OE 的长,再根据两角对应相等的两三角形相似(或射影定理)证明△OCE ∽△CFE ,即可根据相似三角形的对应线段成比例求解. 详解:⑴证明:连结OC ∵AB 是⊙O 的直径 ∴∠ACB=90° ∴∠B+∠BAC=90° ∵OA=OC ∴∠BAC=∠OCA ∵∠B=∠FCA ∴∠FCA+∠OCA=90° 即∠OCF=90° ∵C 在⊙O 上 ∴CF 是⊙O 的切线⑵∵AE=4,tan ∠ACD 12AE EC = ∴CE=8∵直径AB ⊥弦CD 于点E ∴AD AC = ∵∠FCA =∠B ∴∠B=∠ACD=∠FCA ∴∠EOC=∠ECA ∴tan ∠B=tan ∠ACD=1=2CE BE ∴BE=16 ∴AB=20 ∴OE=AB÷2-AE=6 ∵CE ⊥AB ∴∠CEO=∠FCE=90° ∴△OCE ∽△CFE ∴OC OECF CE= 即106=8CF∴40CF 3=点睛:此题主要考查了圆的综合知识,关键是熟知圆周角定理和切线的判定与性质,结合相似三角形的判定与性质和解直角三角形的知识求解,利用数形结合和方程思想是解题的突破点,有一定的难度,是一道综合性的题目.3.如图,⊙M 与菱形ABCD 在平面直角坐标系中,点M 的坐标为(3,﹣1),点A 的坐标为(﹣2,3),点B 的坐标为(﹣3,0),点C 在x 轴上,且点D 在点A 的左侧. (1)求菱形ABCD 的周长;(2)若⊙M 沿x 轴向右以每秒2个单位长度的速度平移,同时菱形ABCD 沿x 轴向右以每秒3个单位长度的速度平移,设菱形移动的时间为t (秒),当⊙M 与BC 相切,且切点为BC 的中点时,连接BD ,求: ①t 的值; ②∠MBD 的度数;(3)在(2)的条件下,当点M 与BD 所在的直线的距离为1时,求t 的值.【答案】(1)8;(2)①7;②105°;(3)t=633 【解析】分析:(1)根据勾股定理求菱形的边长为2,所以可得周长为8;(2)①如图2,先根据坐标求EF 的长,由EE '﹣FE '=EF =7,列式得:3t ﹣2t =7,可得t 的值;②先求∠EBA =60°,则∠FBA =120°,再得∠MBF =45°,相加可得:∠MBD =∠MBF +∠FBD =45°+60°=105°;(3)分两种情况讨论:作出距离MN 和ME ,第一种情况:如图5由距离为1可知:BD 为⊙M 的切线,由BC 是⊙M 的切线,得∠MBE =30°,列式为3t 3=2t +6,解出即可; 第二种情况:如图6,同理可得t 的值. 详解:(1)如图1,过A 作AE ⊥BC 于E .∵点A 的坐标为(﹣23),点B 的坐标为(﹣3,0),∴AE 3,BE =3﹣2=1,∴AB 22AE BE +2231+()=2. ∵四边形ABCD 是菱形,∴AB =BC =CD =AD =2,∴菱形ABCD 的周长=2×4=8; (2)①如图2,⊙M 与x 轴的切点为F ,BC 的中点为E . ∵M (3,﹣1),∴F (3,0).∵BC =2,且E 为BC 的中点,∴E (﹣4,0),∴EF =7,即EE '﹣FE '=EF ,∴3t ﹣2t =7,t=7;②由(1)可知:BE=1,AE=3,∴tan∠EBA=AEBE =3=3,∴∠EBA=60°,如图4,∴∠FBA=120°.∵四边形ABCD是菱形,∴∠FBD=12∠FBA=11202⨯︒=60°.∵BC是⊙M的切线,∴MF⊥BC.∵F是BC的中点,∴BF=MF=1,∴△BFM是等腰直角三角形,∴∠MBF=45°,∴∠MBD=∠MBF+∠FBD=45°+60°=105°;(3)连接BM,过M作MN⊥BD,垂足为N,作ME⊥BC于E,分两种情况:第一种情况:如图5.∵四边形ABCD是菱形,∠ABC=120°,∴∠CBD=60°,∴∠NBE=60°.∵点M与BD所在的直线的距离为1,∴MN=1,∴BD为⊙M的切线.∵BC是⊙M的切线,∴∠MBE=30°.∵ME=1,∴EB=3,∴3t+3=2t+6,t=6﹣3;第二种情况:如图6.∵四边形ABCD是菱形,∠ABC=120°,∴∠DBC=60°,∴∠NBE=120°.∵点M与BD所在的直线的距离为1,∴MN=1,∴BD为⊙M的切线.∵BC是⊙M的切线,∴∠MBE=60°.∵ME=MN=1,∴Rt△BEM中,tan60°=MEBE,EB=160tan︒=3,∴3t=2t+6+3,t=6+3;综上所述:当点M与BD所在的直线的距离为1时,t=6﹣3或6+33.点睛:本题是四边形和圆的综合题,考查了菱形的性质、圆的切线的性质和判定、特殊的三角函数值、等腰直角三角形的性质、动点运动问题,此类问题比较复杂,弄清动点运动方向、速度、时间和路程的关系,并与方程相结合,找等量关系,求出时间t的值.4.如图,在⊙O中,直径AB⊥弦CD于点E,连接AC,BC,点F是BA延长线上的一点,且∠FCA=∠B.(1)求证:CF是⊙O的切线;(2)若AE=4,tan∠ACD=3,求FC的长.【答案】(1)见解析【解析】分析:(1)利用圆周角定理以及等腰三角形的性质得出∠OCF=90°,进而得出答案;(2)根据正切的性质求出EC的长,然后利用垂径定理求出圆的半径,再根据等边三角形的性质,利用勾股定理求出即可.详解:(1)证明:连接OC.∵AB是⊙O的直径,∴∠ACB=90°,∴∠OCB+∠ACO=90°.∵OB=OC,∴∠B=∠OCB.又∵∠FCA=∠B,∴∠FCA=∠OCB,∴∠FCA+∠ACO=90°,即∠FCO=90°,∴FC⊥OC,∴FC是⊙O切线.(2)解:∵AB⊥CD,∴∠AEC=90°,∴EC=AE43 tan ACE3∠==设OA=OC=r,则OE=OA-AE=r-4.在Rt△OEC中,OC2=OE2+CE2,即r2=(r-4)2+32,解得r=8.∴OE=r-4=4=AE.∵CE ⊥OA ,∴CA =CO =8, ∴△AOC 是等边三角形, ∴∠FOC =60°,∴∠F =30°. 在Rt △FOC 中,∵∠OCF =90°,OC =8,∠F =30°, ∴OF =2OC =16,∴FC =22OF OC 83-=.点睛:此题主要考查了切线的判定、垂径定理的推论以及勾股定理等知识,得出BC 的长是解题关键.5.已知:AB 是⊙0直径,C 是⊙0外一点,连接BC 交⊙0于点D ,BD=CD,连接AD 、AC . (1)如图1,求证:∠BAD=∠CAD(2)如图2,过点C 作CF ⊥AB 于点F,交⊙0于点E,延长CF 交⊙0于点G.过点作EH ⊥AG 于点H ,交AB 于点K,求证AK=2OF ;(3)如图3,在(2)的条件下,EH 交AD 于点L,若0K=1,AC=CG,求线段AL 的长.图1 图2 图3 【答案】(1)见解析(2)见解析(3)12105【解析】试题分析:(1)由直径所对的圆周角等于90°,得到∠ADB =90°,再证明△ABD ≌△ACD 即可得到结论;(2)连接BE .由同弧所对的圆周角相等,得到∠GAB =∠BEG .再证△KFE ≌△BFE ,得到BF =KF =BK .由OF =OB -BF ,AK =AB -BK ,即可得到结论.(3)连接CO 并延长交AG 于点M ,连接BG .设∠GAB =α.先证CM 垂直平分AG ,得到AM =GM ,∠AGC +∠GCM =90°.再证∠GAF =∠GCM =α.通过证明△AGB ≌△CMG ,得到BG =GM =12AG .再证明∠BGC =∠MCG =α.设BF =KF =a , 可得GF =2a ,AF =4a . 由OK =1,得到OF =a +1,AK =2(a +1),AF = 3a +2,得到3a +2=4a ,解出a 的值,得到AF ,AB ,GF ,FC 的值.由tanα=tan ∠HAK =12HK AH =, AK =6,可以求出 AH 的长.再由1tan tan 3BAD BCF ∠=∠=,利用公式tan ∠GAD =tan tan 1tan tan GAF BAD GAF BAD∠+∠-∠⋅∠,得到∠GAD=45°,则AL=2AH,即可得到结论.试题解析:解:(1)∵AB为⊙O的直径,∴∠ADB=90°,∴∠ADC=90°.∵BD=CD,∠BDA=∠CDA,AD=AD,∴△ABD≌△ACD,∴∠BAD=∠CAD.(2)连接BE.∵BG=BG,∴∠GAB=∠BEG.∵CF⊥AB,∴∠KFE=90°.∵EH⊥AG,∴∠AHE=∠KFE=90°,∠AKH=∠EKF,∴∠HAK=∠KEF=∠BEF.∵FE=FE,∠KFE=∠BFE=90°,∴△KFE≌△BFE,∴BF=KF=BK.∵OF=OB-BF,AK=AB-BK,∴AK=2OF.(3)连接CO并延长交AG于点M,连接BG.设∠GAB=α.∵AC=CG,∴点C在AG的垂直平分线上.∵OA=OG,∴点O在AG的垂直平分线上,∴CM垂直平分AG,∴AM=GM,∠AGC+∠GCM=90°.∵AF⊥CG,∴∠AGC +∠GAF =90°,∴∠GAF=∠GCM =α.∵AB为⊙O的直径,∴∠AGB= 90°,∴∠AGB=∠CMG=90°.∵AB=AC=CG,∴△AGB≌△CMG,∴BG=GM=12AG.在Rt△AGB中,1 tan tan2GBGABAGα∠===.∵∠AMC=∠AGB= 90°,∴BG∥CM,∴∠BGC=∠MCG=α.设BF=KF=a,1tan tan2BFBGFGFα∠===,∴GF=2a,1tan tan2GFGAFAFα∠===,AF=4a.∵OK=1,∴OF=a+1,AK=2OF=2(a+1),∴AF=AK+KF=a+2(a+1)=3a+2,∴3a+2=4a,∴a=2,AK=6,∴AF=4a=8,AB=AC=CG=10,GF=2a=4,FC=CG-GF=6.∵tanα=tan ∠HAK =12HK AH =,设KH =m ,则AH =2m ,∴AK=22(2)m m +=6,解得:m =655,∴AH =2m =1255.在Rt △BFC 中,1tan 3BF BCF FC ∠== .∵∠BAD +∠ABD =90°, ∠FBC +∠BCF =90°,∴∠BCF=∠BAD ,1tan tan 3BAD BCF ∠=∠= ,∴tan ∠GAD =tan tan 1tan tan GAF BADGAF BAD ∠+∠-∠⋅∠=1123111123+=-⨯,∴∠GAD =45°,∴HL=AH ,AL =2AH =1210.6.阅读:圆是最完美的图形,它具有一些特殊的性质:同弧或等弧所对的圆周角相等,一条弧所对的圆周角等于这条弧所对的圆心角的一半……先构造“辅助圆”,再利用圆的性质将问题进行转化,往往能化隐为显、化难为易。
2020-2021中考数学圆的综合-经典压轴题及答案解析
![2020-2021中考数学圆的综合-经典压轴题及答案解析](https://img.taocdn.com/s3/m/438e8ea9b9f3f90f77c61b0f.png)
一、圆的综合 1.如图 1,已知扇形 MON 的半径为 2 ,∠ MON=90°,点 B 在弧 MN 上移动,联结 BM,
作 OD⊥BM,垂足为点 D,C 为线段 OD 上一点,且 OC=BM,联结 BC 并延长交半径 OM 于 点 A,设 OA=x,∠ COM 的正切值为 y. (1)如图 2,当 AB⊥OM 时,求证:AM=AC; (2)求 y 关于 x 的函数关系式,并写出定义域; (3)当△ OAC 为等腰三角形时,求 x 的值.
(3)连接 BG,过点 A 作 AH⊥BC,由(2)知∠ AEB=∠ ANC,四边形 ABED 是平行四边 形,∴ AB=DE.
∵ DF∥ CN,∴ ∠ ADF=∠ ANC,∴ ∠ AEB=∠ ADF,∴ tan∠ AEB= tan∠ ADF= 4 3 ,DG 平分
∠ ADC,∴ ∠ ADG=∠ CDG.∵ AD∥ BC,∴ ∠ ADG=∠ CED, ∠ NDC=∠ DCE.∵ ∠ ABC=∠ NDC,∴ ∠ ABC=∠ DCE.∵ AB∥ DG,∴ ∠ ABC=∠ DEC, ∴ ∠ DEC=∠ ECD=∠ EDC,∴ ΔCDE 是等边三角形,∴ AB=DE=CE.∵ ∠ GBC=∠ GDC=60°,
2 ,或 x 14 2
2 (舍).
4
(ii)当 AO=AC 时,则∠ AOC=∠ ACO.∵ ∠ ACO>∠ COB,∠ COB=∠ AOC,∴ ∠ ACO>
∠ AOC,∴ 此种情况不存在.
(ⅲ)当 CO=CA 时,则∠ COA=∠ CAO=α.∵ ∠ CAO>∠ M,∠ M=90°﹣α,∴ α>90°﹣α,
即 O 到折痕 PQ 的距离为 30 . 点睛:本题考查了折叠问题和圆的切线的性质、矩形的性质和判定,熟练掌握弧长公式
备战中考数学圆的综合-经典压轴题含详细答案
![备战中考数学圆的综合-经典压轴题含详细答案](https://img.taocdn.com/s3/m/9df967884b35eefdc8d333d3.png)
一、圆的综合真题与模拟题分类汇编(难题易错题)1.如图,在⊙O中,直径AB⊥弦CD于点E,连接AC,BC,点F是BA延长线上的一点,且∠FCA=∠B.(1)求证:CF是⊙O的切线;(2)若AE=4,tan∠ACD=3,求FC的长.【答案】(1)见解析【解析】分析:(1)利用圆周角定理以及等腰三角形的性质得出∠OCF=90°,进而得出答案;(2)根据正切的性质求出EC的长,然后利用垂径定理求出圆的半径,再根据等边三角形的性质,利用勾股定理求出即可.详解:(1)证明:连接OC.∵AB是⊙O的直径,∴∠ACB=90°,∴∠OCB+∠ACO=90°.∵OB=OC,∴∠B=∠OCB.又∵∠FCA=∠B,∴∠FCA=∠OCB,∴∠FCA+∠ACO=90°,即∠FCO=90°,∴FC⊥OC,∴FC是⊙O切线.(2)解:∵AB⊥CD,∴∠AEC=90°,∴EC=AE43 tan ACE3∠==设OA=OC=r,则OE=OA-AE=r-4.在Rt△OEC中,OC2=OE2+CE2,即r2=(r-4)2+32,解得r=8.∴OE=r-4=4=AE.∵CE⊥OA,∴CA=CO=8,∴△AOC是等边三角形,∴∠FOC=60°,∴∠F=30°.在Rt△FOC中,∵∠OCF=90°,OC=8,∠F=30°,∴OF=2OC=16,∴FC22OF OC83-=.点睛:此题主要考查了切线的判定、垂径定理的推论以及勾股定理等知识,得出BC的长是解题关键.2.如图,AB,BC分别是⊙O的直径和弦,点D为BC上一点,弦DE交⊙O于点E,交AB于点F,交BC于点G,过点C的切线交ED的延长线于H,且HC=HG,连接BH,交⊙O 于点M,连接MD,ME.求证:(1)DE⊥AB;(2)∠HMD=∠MHE+∠MEH.【答案】(1)证明见解析;(2)证明见解析.【解析】分析:(1)连接OC,根据等边对等角和切线的性质,证明∠BFG=∠OCH=90°即可;(2)连接BE,根据垂径定理和圆内接四边形的性质,得出∠HMD=∠BME,再根据三角形的外角的性质证明∠HMD=∠DEB=∠EMB即可.详解:证明:(1)连接OC,∵HC=HG,∴∠HCG=∠HGC;∵HC切⊙O于C点,∴∠OCB+∠HCG=90°;∵OB=OC,∴∠OCB=∠OBC,∵∠HGC=∠BGF,∴∠OBC+∠BGF=90°,∴∠BFG=90°,即DE⊥AB;(2)连接BE,由(1)知DE⊥AB,∵AB是⊙O的直径,∴,∴∠BED=∠BME;∵四边形BMDE内接于⊙O,∴∠HMD=∠BED,∴∠HMD=∠BME;∵∠BME是△HEM的外角,∴∠BME=∠MHE+∠MEH ,∴∠HMD=∠MHE+∠MEH .点睛:此题综合性较强,主要考查了切线的性质、三角形的内角和外角的性质、等腰三角形的性质、内接四边形的性质.3.如图,Rt ABC ∆内接于⊙O ,AC BC =,BAC ∠的平分线AD 与⊙O 交于点D ,与BC 交于点E ,延长BD ,与AC 的延长线交于点F ,连接CD ,G 是CD 的中点,连接OG .(1)判断OG 与CD 的位置关系,写出你的结论并证明;(2)求证:AE BF =;(3)若3(22)OG DE =-,求⊙O 的面积.【答案】(1)OG ⊥CD (2)证明见解析(3)6π【解析】试题分析:(1)根据G 是CD 的中点,利用垂径定理证明即可;(2)先证明△ACE 与△BCF 全等,再利用全等三角形的性质即可证明;(3)构造等弦的弦心距,运用相似三角形以及勾股定理进行求解.试题解析:(1)解:猜想OG ⊥CD .证明如下:如图1,连接OC 、OD .∵OC =OD ,G 是CD 的中点,∴由等腰三角形的性质,有OG ⊥CD .(2)证明:∵AB 是⊙O 的直径,∴∠ACB =90°,而∠CAE =∠CBF (同弧所对的圆周角相等).在Rt △ACE 和Rt △BCF 中,∵∠ACE =∠BCF =90°,AC =BC ,∠CAE =∠CBF ,∴Rt △ACE ≌Rt △BCF (ASA ),∴AE =BF .(3)解:如图2,过点O 作BD 的垂线,垂足为H ,则H 为BD 的中点,∴OH =12AD ,即AD =2OH ,又∠CAD =∠BAD ⇒CD =BD ,∴OH =OG .在Rt △BDE 和Rt △ADB 中,∵∠DBE =∠DAC =∠BAD ,∴Rt △BDE ∽Rt △ADB ,∴BD DE AD DB =,即BD 2=AD •DE ,∴22622BD AD DE OG DE =⋅=⋅=-().又BD =FD ,∴BF =2BD ,∴2242422BF BD ==-()①,设AC =x ,则BC =x ,AB =2x .∵AD 是∠BAC 的平分线,∴∠FAD =∠BAD .在Rt △ABD 和Rt △AFD 中,∵∠ADB =∠ADF =90°,AD =AD ,∠FAD =∠BAD ,∴Rt △ABD ≌Rt △AFD (ASA ),∴AF =AB =2x ,BD =FD ,∴CF =AF ﹣AC =221x x x -=-().在Rt △BCF 中,由勾股定理,得:222222[21]222BF BC CF x x x =+=+-=-()()②,由①、②,得22222422x -=-()(),∴x 2=12,解得:23x =或23-(舍去),∴222326AB x ==⋅=,∴⊙O 的半径长为6,∴S ⊙O =π•(6)2=6π.点睛:本题是圆的综合题.解题的关键是熟练运用垂径定理、勾股定理、相似三角形的判定与性质.4.阅读:圆是最完美的图形,它具有一些特殊的性质:同弧或等弧所对的圆周角相等,一条弧所对的圆周角等于这条弧所对的圆心角的一半……先构造“辅助圆”,再利用圆的性质将问题进行转化,往往能化隐为显、化难为易。
中考数学圆的综合-经典压轴题附答案
![中考数学圆的综合-经典压轴题附答案](https://img.taocdn.com/s3/m/3ddb45aac1c708a1294a443f.png)
中考数学圆的综合-经典压轴题附答案一、圆的综合1.如图1,已知扇形MON 的半径为2,∠MON=90°,点B 在弧MN 上移动,联结BM ,作OD ⊥BM ,垂足为点D ,C 为线段OD 上一点,且OC=BM ,联结BC 并延长交半径OM 于点A ,设OA=x ,∠COM 的正切值为y.(1)如图2,当AB ⊥OM 时,求证:AM=AC ;(2)求y 关于x 的函数关系式,并写出定义域;(3)当△OAC 为等腰三角形时,求x 的值.【答案】 (1)证明见解析;(2) 2=+y x 02<≤x 1422=x . 【解析】 分析:(1)先判断出∠ABM =∠DOM ,进而判断出△OAC ≌△BAM ,即可得出结论; (2)先判断出BD =DM ,进而得出DM ME BD AE =,进而得出AE =122x (),再判断出2OA OC DM OE OD OD==,即可得出结论; (3)分三种情况利用勾股定理或判断出不存在,即可得出结论.详解:(1)∵OD ⊥BM ,AB ⊥OM ,∴∠ODM =∠BAM =90°.∵∠ABM +∠M =∠DOM +∠M ,∴∠ABM =∠DOM .∵∠OAC =∠BAM ,OC =BM ,∴△OAC ≌△BAM , ∴AC =AM .(2)如图2,过点D 作DE ∥AB ,交OM 于点E . ∵OB =OM ,OD ⊥BM ,∴BD =DM . ∵DE ∥AB ,∴DM ME BD AE =,∴AE =EM .∵OM 2,∴AE =122x (). ∵DE ∥AB ,∴2OA OC DM OE OD OD ==, ∴22DM OA y OD OE x =∴=+,02x ≤<(3)(i ) 当OA =OC 时.∵111222DM BM OC x ===.在Rt △ODM 中,222124OD OM DM x =-=-. ∵2121224x DM x y OD x x =∴=+-,.解得1422x -=,或1422x --=(舍). (ii )当AO =AC 时,则∠AOC =∠ACO .∵∠ACO >∠COB ,∠COB =∠AOC ,∴∠ACO >∠AOC ,∴此种情况不存在.(ⅲ)当CO =CA 时,则∠COA =∠CAO =α.∵∠CAO >∠M ,∠M =90°﹣α,∴α>90°﹣α,∴α>45°,∴∠BOA =2α>90°.∵∠BOA ≤90°,∴此种情况不存在.即:当△OAC 为等腰三角形时,x 的值为1422-.点睛:本题是圆的综合题,主要考查了相似三角形的判定和性质,圆的有关性质,勾股定理,等腰三角形的性质,建立y 关于x 的函数关系式是解答本题的关键.2.如图,已知在△ABC 中,AB=15,AC=20,tanA=12,点P 在AB 边上,⊙P 的半径为定长.当点P 与点B 重合时,⊙P 恰好与AC 边相切;当点P 与点B 不重合时,⊙P 与AC 边相交于点M 和点N .(1)求⊙P 的半径;(2)当AP=5△APM 与△PCN 是否相似,并说明理由.【答案】(1)半径为52)相似,理由见解析.【解析】【分析】(1)如图,作BD ⊥AC ,垂足为点D ,⊙P 与边AC 相切,则BD 就是⊙P 的半径,利用解直角三角形得出BD 与AD 的关系,再利用勾股定理可求得BD 的长; (2)如图,过点P 作PH ⊥AC 于点H ,作BD ⊥AC ,垂足为点D ,根据垂径定理得出MN=2MH ,PM=PN ,再利用勾股定理求出PH 、AH 、MH 、MN 的长,从而求出AM 、NC 的长,然后求出AM MP 、PN NC 的值,得出AM MP =PN NC,利用两边对应成比例且夹角相等的两三角形相似即可证明.【详解】(1)如图,作BD ⊥AC ,垂足为点D ,∵⊙P 与边AC 相切,∴BD 就是⊙P 的半径,在Rt △ABD 中,tanA= 1BD 2AD =, 设BD=x ,则AD=2x ,∴x 2+(2x)2=152,解得:5∴半径为5(2)相似,理由见解析,如图,过点P 作PH ⊥AC 于点H ,作BD ⊥AC ,垂足为点D ,∴PH 垂直平分MN ,∴PM=PN ,在Rt △AHP 中,tanA=12PH AH =, 设PH=y ,AH=2y ,y 2+(2y )2=(52解得:y=6(取正数),∴PH=6,AH=12,在Rt △MPH 中, ()22356-,∴MN=2MH=6,∴AM=AH-MH=12-3=9,NC=AC-MN-AM=20-6-9=5, ∴3535AM MP ==,35PN NC =,∴AMMP =PN NC,又∵PM=PN,∴∠PMN=∠PNM,∴∠AMP=∠PNC,∴△AMP∽△PNC.【点睛】本题考查了解直角三角形、垂径定理、相似三角形的判定与性质等,综合性较强,有一定的难度,正确添加辅助线、灵活应用相关的性质与定理是解题的关键.3.在⊙O 中,点C是AB上的一个动点(不与点A,B重合),∠ACB=120°,点I是∠ABC的内心,CI的延长线交⊙O于点D,连结AD,BD.(1)求证:AD=BD.(2)猜想线段AB与DI的数量关系,并说明理由.(3)若⊙O的半径为2,点E,F是AB的三等分点,当点C从点E运动到点F时,求点I 随之运动形成的路径长.【答案】(1)证明见解析;(2)AB=DI,理由见解析(323【解析】分析:(1)根据内心的定义可得CI平分∠ACB,可得出角相等,再根据圆周角定理,可证得结论;(2)根据∠ACB=120°,∠ACD=∠BCD,可求出∠BAD的度数,再根据AD=BD,可证得△ABD是等边三角形,再根据内心的定义及三角形的外角性质,证明∠BID=∠IBD,得出ID=BD,再根据AB=BD,即可证得结论;(3)连接DO,延长DO根据题意可知点I随之运动形成的图形式以D为圆心,DI1为半径的弧,根据已知及圆周角定理、解直角三角形,可求出AD的长,再根据点E,F是弧AB ⌢的三等分点,△ABD是等边三角形,可证得∠DAI1=∠AI1D,然后利用弧长的公式可求出点I随之运动形成的路径长.详解:(1)证明:∵点I是∠ABC的内心∴CI平分∠ACB∴∠ACD=∠BCD∴弧AD=弧BD∴AD=BD(2)AB=DI理由:∵∠ACB=120°,∠ACD=∠BCD∴∠BCD=×120°=60°∵弧BD=弧BD∴∠DAB=∠BCD=60°∵AD=BD∴△ABD是等边三角形,∴AB=BD,∠ABD=∠C∵I是△ABC的内心∴BI平分∠ABC∴∠CBI=∠ABI∵∠BID=∠C+∠CBI,∠IBD=∠ABI+∠ABD∴∠BID=∠IBD∴ID=BD∵AB=BD∴AB=DI(3)解:如图,连接DO,延长DO根据题意可知点I随之运动形成的图形式以D为圆心,DI1为半径的弧∵∠ACB=120°,弧AD=弧BD∴∠AED=∠ACB=×120°=60°∵圆的半径为2,DE是直径∴DE=4,∠EAD=90°∴AD=sin∠AED×DE=×4=2∵点E,F是弧AB ⌢的三等分点,△ABD是等边三角形,∴∠ADB=60°∴弧AB的度数为120°,∴弧AM、弧BF的度数都为为40°∴∠ADM=20°=∠FAB∴∠DAI1=∠FAB+∠DAB=80°∴∠AI1D=180°-∠ADM-∠DAI1=180°-20°-80°=80°∴∠DAI1=∠AI1D∴AD=I1D=2∴弧I1I2的长为:点睛:此题是一道圆的综合题,有一定的难度,熟记圆的相关性质与定理,并对圆中的弦、弧、圆心角、圆周角等进行灵活转化是解题关键,注意数形结合思想的渗透.4.如图,⊙M与菱形ABCD在平面直角坐标系中,点M的坐标为(3,﹣1),点A的坐标为(﹣23B的坐标为(﹣3,0),点C在x轴上,且点D在点A的左侧.(1)求菱形ABCD的周长;(2)若⊙M沿x轴向右以每秒2个单位长度的速度平移,同时菱形ABCD沿x轴向右以每秒3个单位长度的速度平移,设菱形移动的时间为t(秒),当⊙M与BC相切,且切点为BC的中点时,连接BD,求:①t的值;②∠MBD的度数;(3)在(2)的条件下,当点M 与BD 所在的直线的距离为1时,求t 的值.【答案】(1)8;(2)①7;②105°;(3)t=636+33. 【解析】 分析:(1)根据勾股定理求菱形的边长为2,所以可得周长为8;(2)①如图2,先根据坐标求EF 的长,由EE '﹣FE '=EF =7,列式得:3t ﹣2t =7,可得t 的值;②先求∠EBA =60°,则∠FBA =120°,再得∠MBF =45°,相加可得:∠MBD =∠MBF +∠FBD =45°+60°=105°;(3)分两种情况讨论:作出距离MN 和ME ,第一种情况:如图5由距离为1可知:BD 为⊙M 的切线,由BC 是⊙M 的切线,得∠MBE =30°,列式为3t 3=2t +6,解出即可; 第二种情况:如图6,同理可得t 的值.详解:(1)如图1,过A 作AE ⊥BC 于E .∵点A 的坐标为(﹣23),点B 的坐标为(﹣3,0),∴AE 3,BE =3﹣2=1,∴AB 22AE BE +2231+()=2. ∵四边形ABCD 是菱形,∴AB =BC =CD =AD =2,∴菱形ABCD 的周长=2×4=8;(2)①如图2,⊙M 与x 轴的切点为F ,BC 的中点为E .∵M (3,﹣1),∴F (3,0).∵BC =2,且E 为BC 的中点,∴E (﹣4,0),∴EF =7,即EE '﹣FE '=EF ,∴3t ﹣2t =7,t =7;②由(1)可知:BE =1,AE 3∴tan ∠EBA =AE BE =33,∴∠EBA =60°,如图4,∴∠FBA =120°. ∵四边形ABCD 是菱形,∴∠FBD =12∠FBA =11202⨯︒=60°. ∵BC 是⊙M 的切线,∴MF ⊥BC .∵F 是BC 的中点,∴BF =MF =1,∴△BFM 是等腰直角三角形,∴∠MBF =45°,∴∠MBD =∠MBF +∠FBD =45°+60°=105°;(3)连接BM ,过M 作MN ⊥BD ,垂足为N ,作ME ⊥BC 于E ,分两种情况: 第一种情况:如图5.∵四边形ABCD 是菱形,∠ABC =120°,∴∠CBD =60°,∴∠NBE =60°.∵点M 与BD 所在的直线的距离为1,∴MN =1,∴BD 为⊙M 的切线.∵BC 是⊙M 的切线,∴∠MBE =30°.∵ME=1,∴EB=3,∴3t+3=2t+6,t=6﹣3;第二种情况:如图6.∵四边形ABCD是菱形,∠ABC=120°,∴∠DBC=60°,∴∠NBE=120°.∵点M与BD所在的直线的距离为1,∴MN=1,∴BD为⊙M的切线.∵BC是⊙M的切线,∴∠MBE=60°.∵ME=MN=1,∴Rt△BEM中,tan60°=MEBE,EB=160tan=33,∴3t=2t+6+33,t=6+33;综上所述:当点M与BD所在的直线的距离为1时,t=6﹣3或6+33.点睛:本题是四边形和圆的综合题,考查了菱形的性质、圆的切线的性质和判定、特殊的三角函数值、等腰直角三角形的性质、动点运动问题,此类问题比较复杂,弄清动点运动方向、速度、时间和路程的关系,并与方程相结合,找等量关系,求出时间t的值.5.函数是描述客观世界运动变化的重要模型,理解函数的本质是重要的任务。
中考数学与圆的综合有关的压轴题含答案解析
![中考数学与圆的综合有关的压轴题含答案解析](https://img.taocdn.com/s3/m/9c5229b82cc58bd63186bdbd.png)
中考数学与圆的综合有关的压轴题含答案解析一、圆的综合1.如图,点A、B、C分别是⊙O上的点, CD是⊙O的直径,P是CD延长线上的一点,AP=AC.(1)若∠B=60°,求证:AP是⊙O的切线;(2)若点B是弧CD的中点,AB交CD于点E,CD=4,求BE·AB的值.【答案】(1)证明见解析;(2)8.【解析】(1)求出∠ADC的度数,求出∠P、∠ACO、∠OAC度数,求出∠OAP=90°,根据切线判定推出即可;(2)求出BD长,求出△DBE和△ABD相似,得出比例式,代入即可求出答案.试题解析:连接AD,OA,∵∠ADC=∠B,∠B=60°,∴∠ADC=60°,∵CD是直径,∴∠DAC=90°,∴∠ACO=180°-90°-60°=30°,∵AP=AC,OA=OC,∴∠OAC=∠ACD=30°,∠P=∠ACD=30°,∴∠OAP=180°-30°-30°-30°=90°,即OA⊥AP,∵OA为半径,∴AP是⊙O切线.(2)连接AD,BD,∵CD 是直径,∴∠DBC=90°,∵CD=4,B 为弧CD 中点,∴BD=BC=,∴∠BDC=∠BCD=45°,∴∠DAB=∠DCB=45°,即∠BDE=∠DAB ,∵∠DBE=∠DBA ,∴△DBE ∽△ABD , ∴,∴BE•AB=BD•BD=. 考点:1.切线的判定;2.相似三角形的判定与性质.2.如图,AB 是半圆的直径,过圆心O 作AB 的垂线,与弦AC 的延长线交于点D ,点E 在OD 上DCE B ∠=∠.(1)求证:CE 是半圆的切线;(2)若CD=10,2tan 3B =,求半圆的半径.【答案】(1)见解析;(2)13【解析】分析: (1)连接CO ,由DCE B ∠=∠且OC=OB,得DCE OCB ∠=∠,利用同角的余角相等判断出∠BCO+∠BCE=90°,即可得出结论;(2)设AC=2x ,由根据题目条件用x 分别表示出OA 、AD 、AB ,通过证明△AOD ∽△ACB ,列出等式即可.详解:(1)证明:如图,连接CO .∵AB 是半圆的直径,∴∠ACB =90°.∴∠DCB =180°-∠ACB =90°.∴∠DCE+∠BCE=90°.∵OC =OB ,∴∠OCB =∠B.∵=DCE B ∠∠,∴∠OCB =∠DCE .∴∠OCE =∠DCB =90°.∴OC ⊥CE .∵OC 是半径,∴CE 是半圆的切线.(2)解:设AC =2x ,∵在Rt △ACB 中,2tan 3AC B BC ==, ∴BC =3x .∴()()222313AB x x x =+=. ∵OD ⊥AB ,∴∠AOD =∠A CB=90°.∵∠A =∠A ,∴△AOD ∽△ACB .∴AC AO AB AD=. ∵1132OA AB ==,AD =2x +10, ∴113221013x x x =+. 解得 x =8. ∴138413OA == 则半圆的半径为413点睛:本题考查了切线的判定与性质,圆周角定理,相似三角形.3.如图,AB 为⊙O 的直径,AC 为⊙O 的弦,AD 平分∠BAC ,交⊙O 于点D ,DE ⊥AC ,交AC 的延长线于点E .(1)判断直线DE 与⊙O 的位置关系,并说明理由;(2)若AE =8,⊙O 的半径为5,求DE 的长.【答案】(1)直线DE 与⊙O 相切(2)4【解析】试题分析:(1)连接OD ,∵AD 平分∠BAC ,∴EAD OAD ∠∠=,∵OA OD =,∴ODA OAD ∠∠=,∴ODA EAD ∠∠=,∴EA ∥OD ,∵DE ⊥EA ,∴DE ⊥OD ,又∵点D 在⊙O 上,∴直线DE 与⊙O 相切(2)如图1,作DF ⊥AB ,垂足为F ,∴DFA DEA 90∠∠︒==,∵EAD FAD ∠∠=,AD AD =,∴△EAD ≌△FAD ,∴AF AE 8==,DF DE =,∵OA OD 5==,∴OF 3=,在Rt △DOF 中,22DF 4OD OF -==,∴AF AE 8== 考点:切线的证明,弦心距和半径、弦长的关系点评:本题难度不大,第一小题通过内错角相等相等证明两直线平行,再由两直线平行推出同旁内角相等.第二小题通过求出两个三角形全等,从而推出对应边相等,接着用弦心距和弦长、半径的计算公式,求出半弦长.4.如图,已知△ABC 中,AB=AC ,∠A=30°,AB=16,以AB 为直径的⊙O 与BC 边相交于点D ,与AC 交于点F ,过点D 作DE ⊥AC 于点E .(1)求证:DE 是⊙O 的切线;(2)求CE 的长;(3)过点B 作BG ∥DF ,交⊙O 于点G ,求弧BG 的长.【答案】(1)证明见解析(2)33)4π【解析】【分析】(1)如图1,连接AD,OD,由AB为⊙O的直径,可得AD⊥BC,再根据AB=AC,可得BD=DC,再根据OA=OB,则可得OD∥AC,继而可得DE⊥OD,问题得证;(2)如图2,连接BF,根据已知可推导得出DE=12BF,CE=EF,根据∠A=30°,AB=16,可得BF=8,继而得DE=4,由DE为⊙O的切线,可得ED2=EF•AE,即42=CE•(16﹣CE),继而可求得CE长;(3)如图3,连接OG,连接AD,由BG∥DF,可得∠CBG=∠CDF=30°,再根据AB=AC,可推导得出∠OBG=45°,由OG=OB,可得∠OGB=45°,从而可得∠BOG=90°,根据弧长公式即可求得BG的长度.【详解】(1)如图1,连接AD,OD;∵AB为⊙O的直径,∴∠ADB=90°,即AD⊥BC,∵AB=AC,∴BD=DC,∵OA=OB,∴OD∥AC,∵DE⊥AC,∴DE⊥OD,∴∠ODE=∠DEA=90°,∴DE为⊙O的切线;(2)如图2,连接BF,∵AB为⊙O的直径,∴∠AFB=90°,∴BF∥DE,∵CD=BD,∴DE=12BF,CE=EF,∵∠A=30°,AB=16,∴BF=8,∴DE=4,∵DE 为⊙O 的切线,∴ED 2=EF•AE ,∴42=CE•(16﹣CE ),∴CE=8﹣43,CE=8+43(不合题意舍去);(3)如图3,连接OG ,连接AD ,∵BG ∥DF ,∴∠CBG=∠CDF=30°,∵AB=AC ,∴∠ABC=∠C=75°,∴∠OBG=75°﹣30°=45°,∵OG=OB ,∴∠OGB=∠OBG=45°,∴∠BOG=90°,∴BG 的长度=908180π⨯⨯=4π.【点睛】本题考查了圆的综合题,涉及了切线的判定、三角形中位线定理、圆周角定理、弧长公式等,正确添加辅助线、熟练掌握相关的性质与定理是解题的关键.5.定义:有一个角是其邻角一半的圆内接四边形叫做圆内倍角四边形.(1)如图1,四边形ABCD 内接于⊙O ,∠DCB ﹣∠ADC=∠A ,求证:四边形ABCD 为圆内接倍角四边形;(2)在(1)的条件下,⊙O 半径为5.①若AD 为直径,且sinA=45,求BC 的长; ②若四边形ABCD 中有一个角为60°,且BC=CD ,则四边形ABCD 的面积是 ; (3)在(1)的条件下,记AB=a ,BC=b ,CD=c ,AD=d ,求证:d 2﹣b 2=ab+cd .【答案】(1)见解析;(2)①BC=6,②7534或754;(3)见解析【解析】【分析】(1)先判断出∠ADC=180°﹣2∠A.进而判断出∠ABC=2∠A,即可得出结论;(2)①先用锐角三角函数求出BD,进而得出AB,由(1)得出∠ADB=∠BDC,即可得出结论;②分两种情况:利用面积和差即可得出结论;(3)先得出BE=BC=b,DE=DA=b,进而得出CE=d﹣c,再判断出△EBC∽△EDA,即可得出结论.【详解】(1)设∠A=α,则∠DCB=180°﹣α.∵∠DCB﹣∠ADC=∠A,∴∠ADC=∠DCB﹣∠A=180°﹣α﹣α=180°﹣2α,∴∠ABC=180°﹣∠ADC=2α=2∠A,∴四边形ABCD是⊙O内接倍角四边形;(2)①连接BD.∵AD是⊙O的直径,∴∠ABD=90°.在Rt△ABD中,AD=2×5=10,sin∠A=45,∴BD=8,根据勾股定理得:AB=6,设∠A=α,∴∠ADB=90°﹣α.由(1)知,∠ADC=180°﹣2α,∴∠BDC=90°﹣α,∴∠ADB=∠BDC,∴BC=AB=6;②若∠ADC=60°时.∵四边形ABCD是圆内接倍角四边形,∴∠BCD=120°或∠BAD=30°.Ⅰ、当∠BCD=120°时,如图3,连接OA,OB,OC,OD.∵BC=CD,∴∠BOC=∠COD,∴∠OCD=∠OCB=12∠BCD=60°,∴∠CDO=60°,∴AD是⊙O 的直径,(为了说明AD是直径,点O没有画在AD上)∴∠ADC+∠BCD=180°,∴BC∥AD,∴AB=CD.∵BC=CD,∴AB=BC=CD,∴△OAB,△BOC,△COD是全等的等边三角形,∴S四边形ABCD=3S△AOB 32753.Ⅱ、当∠BAD=30°时,如图4,连接OA,OB,OC,OD.∵四边形ABCD是圆内接四边形,∴∠BCD=180°﹣∠BAD=150°.∵BC =CD ,∴∠BOC =∠COD ,∴∠BCO =∠DCO =12∠BCD =75°,∴∠BOC =∠DOC =30°,∴∠OBA =45°,∴∠AOB =90°.连接AC ,∴∠DAC =12∠BAD =15°. ∵∠ADO =∠OAB ﹣∠BAD =15°,∴∠DAC =∠ADO ,∴OD ∥AC ,∴S △OAD =S △OCD . 过点C 作CH ⊥OB 于H .在Rt △OCH 中,CH =12OC =52,∴S 四边形ABCD =S △COD +S △BOC +S △AOB ﹣S △AOD =S △BOC +S △AOB =1522⨯×5+12×5×5=754. 故答案为:7534或754;(3)延长DC ,AB 交于点E .∵四边形ABCD 是⊙O 的内接四边形,∴∠BCE =∠A =12∠ABC . ∵∠ABC =∠BCE +∠A ,∴∠E =∠BCE =∠A ,∴BE =BC =b ,DE =DA =b ,∴CE =d ﹣c . ∵∠BCE =∠A ,∠E =∠E ,∴△EBC ∽△EDA ,∴CE BC AE AD =,∴d c b a b d-=+,∴d 2﹣b 2=ab +cd .【点睛】本题是圆的综合题,主要考查了圆的内接四边形的性质,新定义,相似三角形的判定和性质,等边三角形的判定和性质,正确作出辅助线是解答本题的关键.6.已知AB ,CD 都是O 的直径,连接DB ,过点C 的切线交DB 的延长线于点E .()1如图1,求证:AOD 2E 180∠∠+=;()2如图2,过点A 作AF EC ⊥交EC 的延长线于点F ,过点D 作DG AB ⊥,垂足为点G ,求证:DG CF =;()3如图3,在()2的条件下,当DG 3CE 4=时,在O 外取一点H ,连接CH 、DH 分别交O 于点M 、N ,且HDE HCE ∠∠=,点P 在HD 的延长线上,连接PO 并延长交CM 于点Q ,若PD 11=,DN 14=,MQ OB =,求线段HM 的长.【答案】(1)证明见解析(2)证明见解析(3)837+【解析】【分析】(1)由∠D +∠E =90°,可得2∠D +2∠E =180°,只要证明∠AOD =2∠D 即可; (2)如图2中,作OR ⊥AF 于R .只要证明△AOR ≌△ODG 即可;(3)如图3中,连接BC 、OM 、ON 、CN ,作BT ⊥CL 于T ,作NK ⊥CH 于K ,设CH 交DE 于W .解直角三角形分别求出KM ,KH 即可;【详解】()1证明:如图1中,O 与CE 相切于点C ,OC CE ∴⊥,OCE 90∠∴=,D E 90∠∠∴+=,2D 2E 180∠∠∴+=,AOD COB ∠∠=,BOC 2D ∠∠=,AOD 2D ∠∠=,AOD 2E 180∠∠∴+=.()2证明:如图2中,作OR AF ⊥于R .OCF F ORF 90∠∠∠===,∴四边形OCFR 是矩形,AF//CD ∴,CF OR =,A AOD ∠∠∴=,在AOR 和ODG 中,A AOD ∠∠=,ARO OGD 90∠∠==,OA DO =,AOR ∴≌ODG ,OR DG ∴=,DG CF ∴=,()3解:如图3中,连接BC 、OM 、ON 、CN ,作BT CL ⊥于T ,作NK CH ⊥于K ,设CH 交DE 于W .设DG 3m =,则CF 3m =,CE 4m =,OCF F BTE 90∠∠∠===,AF//OC//BT ∴,OA OB =,CT CF 3m ∴==,ET m ∴=, CD 为直径,CBD CND 90CBE ∠∠∠∴===,E 90EBT CBT ∠∠∠∴=-=,tan E tan CBT ∠∠∴=,BT CT ET BT ∴=,BT 3mm BT∴=,BT ∴=负根已经舍弃),tan E ∠∴== E 60∠∴=,CWD HDE H ∠∠∠=+,HDE HCE ∠∠=,H E 60∠∠∴==, MON 2HCN 60∠∠∴==,OM ON =,OMN ∴是等边三角形, MN ON ∴=,QM OB OM ==, MOQ MQO ∠∠∴=,MOQ PON 180MON 120∠∠∠+=-=,MQO P 180H 120∠∠∠+=-=, PON P ∠∠∴=,ON NP 141125∴==+=,CD 2ON 50∴==,MN ON 25==,在Rt CDN 中,CN 48==,在Rt CHN 中,CN 48tan H HN HN∠===HN ∴=在Rt KNH 中,1KH HN 2==NK 24==,在Rt NMK 中,MK 7===,HM HK MK 7∴=+=.【点睛】本题考查圆综合题、全等三角形的判定和性质、平行线的性质、勾股定理、等边三角形的判定和性质、锐角三角函数等知识,添加常用辅助线,构造全等三角形或直角三角形解题的关键.7.已知O 的半径为5,弦AB 的长度为m ,点C 是弦AB 所对优弧上的一动点.()1如图①,若m 5=,则C ∠的度数为______;()2如图②,若m 6=.①求C ∠的正切值;②若ABC 为等腰三角形,求ABC 面积.【答案】()130;()2C ∠①的正切值为34;ABCS 27=②或43225. 【解析】 【分析】()1连接OA ,OB ,判断出AOB 是等边三角形,即可得出结论;()2①先求出10AD =,再用勾股定理求出8BD =,进而求出tan ADB ∠,即可得出结论;②分三种情况,利用等腰三角形的性质和垂径定理以及勾股定理即可得出结论.【详解】()1如图1,连接OB ,OA ,OB OC 5∴==, AB m 5==, OB OC AB ∴==, AOB ∴是等边三角形,AOB 60∠∴=,1ACB AOB 302∠∠∴==,故答案为30;()2①如图2,连接AO 并延长交O 于D ,连接BD ,AD 为O 的直径,AD 10∴=,ABD 90∠=,在Rt ABD 中,AB m 6==,根据勾股定理得,BD 8=,AB 3tan ADB BD 4∠∴==, C ADB ∠∠=,C ∠∴的正切值为34;②Ⅰ、当AC BC =时,如图3,连接CO 并延长交AB 于E ,AC BC =,AO BO =, CE ∴为AB 的垂直平分线, AE BE 3∴==,在Rt AEO 中,OA 5=,根据勾股定理得,OE 4=, CE OE OC 9∴=+=,ABC 11S AB CE 692722∴=⨯=⨯⨯=;Ⅱ、当AC AB 6==时,如图4,连接OA 交BC 于F ,AC AB =,OC OB =, AO ∴是BC 的垂直平分线, 过点O 作OG AB ⊥于G ,1AOG AOB 2∠∠∴=,1AG AB 32==,AOB 2ACB ∠∠=, ACF AOG ∠∠∴=,在Rt AOG 中,AG 3sin AOG AC 5∠==, 3sin ACF 5∠∴=,在Rt ACF 中,3sin ACF 5∠=,318AF AC 55∴==,24CF 5∴=,ABC 111824432S AF BC 225525∴=⨯=⨯⨯=;Ⅲ、当BA BC 6==时,如图5,由对称性知,ABC432S25=.【点睛】圆的综合题,主要圆的性质,圆周角定理,垂径定理,等腰三角形的性质,三角形的面积公式,用分类讨论的思想解决问题是解本题的关键.8.如图,已知平行四边形OABC 的三个顶点A 、B 、C 在以O 为圆心的半圆上,过点C 作CD ⊥AB ,分别交AB 、AO 的延长线于点D 、E ,AE 交半圆O 于点F ,连接CF . (1)判断直线DE 与半圆O 的位置关系,并说明理由; (2)若半圆O 的半径为6,求AC 的长.【答案】(1)直线CE 与半圆O 相切(2)4π 【解析】试题分析:(1)结论:DE 是⊙O 的切线.首先证明△ABO ,△BCO 都是等边三角形,再证明四边形BDCG 是矩形,即可解决问题;(2)只要证明△OCF 是等边三角形即可解决问题,求AC 即可解决问题. 试题解析:(1)直线CE 与半圆O 相切,理由如下: ∵四边形OABC 是平行四边形,∴AB ∥OC. ∵∠D=90°,∴∠OCE=∠D=90°,即OC ⊥DE , ∴直线CE 与半圆O 相切.(2)由(1)可知:∠COF=60°,OC=OF , ∴△OCF 是等边三角形, ∴∠AOC=120° ∴AC 的长为1206180π⨯⨯=4π.9.如图.在△ABC 中,∠C =90°,AC =BC ,AB =30cm ,点P 在AB 上,AP =10cm ,点E 从点P 出发沿线段PA 以2c m/s 的速度向点A 运动,同时点F 从点P 出发沿线段PB 以1c m/s 的速度向点B 运动,点E 到达点A 后立刻以原速度沿线段AB 向点B 运动,在点E 、F 运动过程中,以EF 为边作正方形EFGH ,使它与△ABC 在线段AB 的同侧,设点E 、F 运动的时间为t (s )(0<t <20).(1)当点H 落在AC 边上时,求t 的值;(2)设正方形EFGH 与△ABC 重叠部分的面积为S .①试求S 关于t 的函数表达式;②以点C 为圆心,12t 为半径作⊙C ,当⊙C 与GH 所在的直线相切时,求此时S 的值.【答案】(1)t=2s或10s;(2)①S=2229?(02)75050(210)240400?(1020)t tt t tt t t⎧<≤⎪⎪-+-<≤⎨⎪-+<<⎪⎩;②100cm2.【解析】试题分析:(1)如图1中,当0<t≤5时,由题意AE=EH=EF,即10﹣2t=3t,t=2;如图2中,当5<t<20时,AE=HE,2t﹣10=10﹣(2t﹣10)+t,t=10;(2)分四种切线讨论a、如图3中,当0<t≤2时,重叠部分是正方形EFGH,S=(3t)2=9t2.b、如图4中,当2<t≤5时,重叠部分是五边形EFGMN.c、如图5中,当5<t<10时,重叠部分是五边形EFGMN.d、如图6中,当10<t<20时,重叠部分是正方形EFGH.分别计算即可;②分两种情形分别列出方程即可解决问题.试题解析:解:(1)如图1中,当0<t≤5时,由题意得:AE=EH=EF,即10﹣2t=3t,t=2如图2中,当5<t<20时,AE=HE,2t﹣10=10﹣(2t﹣10)+t,t=10.综上所述:t=2s或10s时,点H落在AC边上.(2)①如图3中,当0<t≤2时,重叠部分是正方形EFGH,S=(3t)2=9t2如图4中,当2<t≤5时,重叠部分是五边形EFGMN,S=(3t)2﹣12(5t﹣10)2=﹣72t2+50t﹣50.如图5中,当5<t<10时,重叠部分是五边形EFGMN,S=(20﹣t)2﹣12(30﹣3t)2=﹣72t2+50t﹣50.如图6中,当10<t<20时,重叠部分是正方形EFGH,S=(20﹣t)2=t2﹣40t+400.综上所述:S=2229?(02)75050(210) 240400?(1020)t tt t tt t t⎧<≤⎪⎪-+-<≤⎨⎪-+<<⎪⎩.②如图7中,当0<t≤5时,12t+3t=15,解得:t=307,此时S=100cm2,当5<t<20时,12t+20﹣t=15,解得:t=10,此时S=100.综上所述:当⊙C与GH所在的直线相切时,求此时S的值为100cm2点睛:本题考查了圆综合题、正方形的性质、等腰直角三角形的性质、切线的性质等知识,解题的关键是灵活运用所学知识解决问题,学会用分类讨论的思想思考问题,注意不能漏解,属于中考压轴题.10.已知:AB是⊙0直径,C是⊙0外一点,连接BC交⊙0于点D,BD=CD,连接AD、AC.(1)如图1,求证:∠BAD=∠CAD(2)如图2,过点C作CF⊥AB于点F,交⊙0于点E,延长CF交⊙0于点G.过点作EH⊥AG于点H,交AB于点K,求证AK=2OF;(3)如图3,在(2)的条件下,EH交AD于点L,若0K=1,AC=CG,求线段AL的长.图1 图2 图3 【答案】(1)见解析(2)见解析(3)12105【解析】试题分析:(1)由直径所对的圆周角等于90°,得到∠ADB =90°,再证明△ABD ≌△ACD 即可得到结论;(2)连接BE .由同弧所对的圆周角相等,得到∠GAB =∠BEG .再证△KFE ≌△BFE ,得到BF =KF =BK .由OF =OB -BF ,AK =AB -BK ,即可得到结论.(3)连接CO 并延长交AG 于点M ,连接BG .设∠GAB =α.先证CM 垂直平分AG ,得到AM =GM ,∠AGC +∠GCM =90°.再证∠GAF =∠GCM =α.通过证明△AGB ≌△CMG ,得到BG =GM =12AG .再证明∠BGC =∠MCG =α.设BF =KF =a , 可得GF =2a ,AF =4a . 由OK =1,得到OF =a +1,AK =2(a +1),AF = 3a +2,得到3a +2=4a ,解出a 的值,得到AF ,AB ,GF ,FC 的值.由tanα=tan ∠HAK =12HK AH =, AK =6,可以求出 AH 的长.再由1tan tan 3BAD BCF ∠=∠=,利用公式tan ∠GAD =tan tan 1tan tan GAF BAD GAF BAD∠+∠-∠⋅∠,得到∠GAD =45°,则AL =2AH ,即可得到结论.试题解析:解:(1)∵AB 为⊙O 的直径,∴∠ADB =90°,∴∠ADC =90°. ∵BD =CD ,∠BDA =∠CDA ,AD =AD ,∴△ABD ≌△ACD ,∴∠BAD =∠CAD . (2)连接BE .∵BG =BG ,∴∠GAB =∠BEG . ∵CF ⊥AB ,∴∠KFE =90°.∵EH ⊥AG ,∴∠AHE =∠KFE =90°,∠AKH =∠EKF ,∴∠HAK =∠KEF =∠BEF . ∵FE =FE ,∠KFE =∠BFE =90°,∴△KFE ≌△BFE ,∴BF =KF =BK .∵ OF =OB -BF ,AK =AB -BK ,∴AK =2OF .(3)连接CO 并延长交AG 于点M ,连接BG .设∠GAB =α.∵AC =CG , ∴点C 在AG 的垂直平分线上.∵ OA =OG ,∴点O 在AG 的垂直平分线上, ∴CM 垂直平分AG ,∴AM =GM ,∠AGC +∠GCM =90°. ∵AF ⊥CG ,∴∠AGC +∠GAF =90°,∴∠GAF =∠GCM =α. ∵AB 为⊙O 的直径,∴∠AGB = 90°,∴∠AGB =∠CMG =90°. ∵AB =AC =CG ,∴△AGB ≌△CMG ,∴BG =GM =12AG .在Rt △AGB 中, 1tan tan 2GB GAB AG α∠=== . ∵∠AMC =∠AGB = 90°,∴BG ∥CM , ∴∠BGC =∠MCG =α. 设BF =KF =a , 1tan tan 2BF BGF GF α∠===,∴GF =2a ,1tan tan 2GF GAF AF α∠=== ,AF =4a .∵OK =1,∴OF =a +1,AK =2OF =2(a +1),∴AF =AK +KF =a +2(a +1)=3a +2,∴3a +2=4a ,∴a =2, AK =6,∴AF =4a =8,AB =AC =CG =10,GF =2a =4,FC =CG -GF =6. ∵tanα=tan ∠HAK =12HK AH =,设KH =m ,则AH =2m ,∴AK 22(2)m m +=6,解得:m =655,∴AH =2m 125.在Rt △BFC 中,1tan 3BF BCF FC ∠== .∵∠BAD +∠ABD =90°, ∠FBC +∠BCF =90°,∴∠BCF =∠BAD ,1tan tan 3BAD BCF ∠=∠= ,∴tan ∠GAD =tan tan 1tan tan GAF BADGAF BAD ∠+∠-∠⋅∠=1123111123+=-⨯,∴∠GAD =45°,∴HL=AH ,AL 2AH 121011.如图,AB是圆O的直径,射线AM⊥AB,点D在AM上,连接OD交圆O于点E,过点D作DC=DA交圆O于点C(A、C不重合),连接O C、BC、CE.(1)求证:CD是⊙O的切线;(2)若圆O的直径等于2,填空:①当AD=时,四边形OADC是正方形;②当AD=时,四边形OECB是菱形.【答案】(1)见解析;(2)①1;②3.【解析】试题分析:(1)依据SSS证明△OAD≌△OCD,从而得到∠OCD=∠OAD=90°;(2)①依据正方形的四条边都相等可知AD=OA;②依据菱形的性质得到OE=CE,则△EOC为等边三角形,则∠CEO=60°,依据平行线的性质可知∠DOA=60°,利用特殊锐角三角函数可求得AD的长.试题解析:解:∵AM⊥AB,∴∠OAD=90°.∵OA=OC,OD=OD,AD=DC,∴△OAD≌△OCD,∴∠OCD=∠OAD=90°.∴OC⊥CD,∴CD是⊙O的切线.(2)①∵当四边形OADC是正方形,∴AO=AD=1.故答案为:1.②∵四边形OECB是菱形,∴OE=CE.又∵OC=OE,∴OC=OE=CE.∴∠CEO=60°.∵CE∥AB,∴∠AOD=60°.在Rt△OAD中,∠AOD=60°,AO=1,∴AD=.故答案为:.点睛:本题主要考查的是切线的性质和判定、全等三角形的性质和判定、菱形的性质、等边三角形的性质和判定,特殊锐角三角函数值的应用,熟练掌握相关知识是解题的关键.12.如图,AD是△ABC的角平分线,以AD为弦的⊙O交AB、AC于E、F,已知EF∥BC.(1)求证:BC是⊙O的切线;(2)若已知AE=9,CF=4,求DE长;(3)在(2)的条件下,若∠BAC=60°,求tan∠AFE的值及GD长.【答案】(1)证明见解析(2)DE=6(318367-【解析】试题分析:(1)连接OD,由角平分线的定义得到∠1=∠2,得到DE DF=,根据垂径定理得到OD⊥EF,根据平行线的性质得到OD⊥BC,于是得到结论;(2)连接DE,由DE DF=,得到DE=DF,根据平行线的性质得到∠3=∠4,等量代换得到∠1=∠4,根据相似三角形的性质即可得到结论;(3)过F作FH⊥BC于H,由已知条件得到∠1=∠2=∠3=∠4=30°,解直角三角形得到FH=12DF=12×6=3,3227CF HF-=,根据三角函数的定义得到tan∠AFE=tan∠C=37HFCH=;根据相似三角形到现在即可得到结论.试题解析:(1)连接OD,∵AD是△ABC的角平分线,∴∠1=∠2,∴DE DF=,∴OD⊥EF,∵EF∥BC,∴OD⊥BC,∴BC 是⊙O 的切线; (2)连接DE , ∵DE DF =, ∴DE=DF , ∵EF ∥BC , ∴∠3=∠4, ∵∠1=∠3, ∴∠1=∠4, ∵∠DFC=∠AED , ∴△AED ∽△DFC ,∴AE DE DF CF =,即94DEDE =, ∴DE 2=36, ∴DE=6;(3)过F 作FH ⊥BC 于H , ∵∠BAC=60°,∴∠1=∠2=∠3=∠4=30°,∴FH=12DF=162⨯=3,∴=, ∵EF ∥BC , ∴∠C=∠AFE ,∴tan ∠AFE=tan ∠C=7HF CH =; ∵∠4=∠2.∠C=∠C , ∴△ADC ∽△DFC , ∴AD CDDF CF=, ∵∠5=∠5,∠3=∠2, ∴△ADF ∽△FDG , ∴AD DFDF DG=,∴CD DF CF DG =6DG =,∴DG=5.点睛:本题考查了切线的判定、圆周角定理、相似三角形的判定与性质、解直角三角形、平行线的性质,正确作出辅助线是解题的关键.13.(1)问题背景如图①,BC是⊙O的直径,点A在⊙O上,AB=AC,P为BmC上一动点(不与B,C重合),求证:2PA=PB+PC.小明同学观察到图中自点A出发有三条线段AB,AP,AC,且AB=AC,这就为旋转作了铺垫.于是,小明同学有如下思考过程:第一步:将△PAC绕着点A顺时针旋转90°至△QAB(如图①);第二步:证明Q,B,P三点共线,进而原题得证.请你根据小明同学的思考过程完成证明过程.(2)类比迁移如图②,⊙O的半径为3,点A,B在⊙O上,C为⊙O内一点,AB=AC,AB⊥AC,垂足为A,求OC的最小值.(3)拓展延伸如图③,⊙O的半径为3,点A,B在⊙O上,C为⊙O内一点,AB=43AC,AB⊥AC,垂足为A,则OC的最小值为.【答案】(1)证明见解析;(2)OC最小值是2﹣3;(3)32.【解析】试题分析:(1)将△PAC绕着点A顺时针旋转90°至△QAB(如图①),只要证明△APQ 是等腰直角三角形即可解决问题;(2)如图②中,连接OA,将△OAC绕点O顺时针旋转90°至△QAB,连接OB,OQ,在△BOQ中,利用三边关系定理即可解决问题;(3)如图③构造相似三角形即可解决问题.作AQ ⊥OA ,使得AQ=43OA ,连接OQ ,BQ ,OB .由△QAB ∽OAC ,推出BQ=43OC ,当BQ 最小时,OC 最小; 试题解析:(1)将△PAC 绕着点A 顺时针旋转90°至△QAB (如图①);∵BC 是直径,∴∠BAC=90°, ∵AB=AC ,∴∠ACB=∠ABC=45°,由旋转可得∠QBA=∠PCA ,∠ACB=∠APB=45°,PC=QB ,∵∠PCA+∠PBA=180°,∴∠QBA+∠PBA=180°,∴Q ,B ,P 三点共线, ∴∠QAB+∠BAP=∠BAP+∠PAC=90°,∴QP 2=AP 2+AQ 2=2AP 2, ∴QP=2AP=QB+BP=PC+PB ,∴2AP=PC+PB .(2)如图②中,连接OA ,将△OAC 绕点A 顺时针旋转90°至△QAB ,连接OB ,OQ ,∵AB ⊥AC,∴∠BAC=90°,由旋转可得 QB=OC ,AQ=OA ,∠QAB=∠OAC ,∴∠QAB+∠BAO=∠BAO+∠OAC=90°, ∴在Rt △OAQ 中,OQ=32,AO=3 ,∴在△OQB 中,BQ≥OQ ﹣OB=32﹣3 , 即OC 最小值是32﹣3;(3)如图③中,作AQ ⊥OA ,使得AQ=43OA ,连接OQ ,BQ ,OB .∵∠QAO=∠BAC=90°,∠QAB=∠OAC ,∵QA AB OA AC =43,∴△QAB∽OAC,∴BQ=43OC,当BQ最小时,OC最小,易知OA=3,AQ=4,OQ=5,BQ≥OQ﹣OB,∴OQ≥2,]∴BQ的最小值为2,∴OC的最小值为34×2=32,故答案为32.【点睛】本题主要考查的圆、旋转、相似等知识,能根据题意正确的添加辅助线是解题的关键.14.如图,AB为⊙O的直径,DA、DC分别切⊙O于点A,C,且AB=AD.(1)求tan∠AOD的值.(2)AC,OD交于点E,连结BE.①求∠AEB的度数;②连结BD交⊙O于点H,若BC=1,求CH的长.【答案】(1)2;(2)①∠AEB=135°;②2 CH=【解析】【分析】(1)根据切线的性质可得∠BAD=90°,由题意可得AD=2AO,即可求tan∠AOD的值;(2)①根据切线长定理可得AD=CD,OD平分∠ADC,根据等腰三角形的性质可得DO⊥AC,AE=CE,根据圆周角定理可求∠ACB=90°,即可证∠ABC=∠CAD,根据“AAS”可证△ABC≌△DAE,可得AE=BC=EC,可求∠BEC=45°,即可求∠AEB的度数;②由BC=1,可求AE=EC=1,BE2=∠ABE=∠HBC,可证△ABE∽△HBC,可求CH的长.【详解】(1)∵DA是⊙O切线,∴∠BAD=90°.∵AB=AD,AB=2AO,∴AD=2AO,∴tan∠AODADAO==2;(2)①∵DA、DC分别切⊙O于点A,C,∴AD=CD,OD平分∠ADC,∴DO⊥AC,AE=CE.∵AB是直径,∴∠ACB=90°,∴∠BAC+∠ABC=90°,且∠BAC+∠CAD=90°,∴∠ABC=∠CAD,且AB=AD,∠ACB=∠AED=90°,∴△ABC≌△DAE(AAS),∴CB=AE,∴CE=CB,且∠ACB=90°,∴∠BEC=45°=∠EBC,∴∠AEB=135°.②如图,∵BC=1,且BC=AE=CE,∴AE=EC=BC=1,∴BE2=.∵AD=AB,∠BAD=90°,∴∠ABD=45°,且∠EBC=45°,∴∠ABE=∠HBC,且∠BAC=∠CHB,∴△ABE∽△HBC,∴BC CHEB AE=,即112CH=,∴CH22=.【点睛】本题考查了切线的性质,圆周角定理,锐角三角函数,全等三角形的判定和性质,相似三角形的判定和性质,等腰三角形的性质等知识,灵活运用相关的性质定理、综合运用知识是解题的关键.15.在中,,,,分别是边,的中点,若等腰绕点逆时针旋转,得到等腰,设旋转角为,记直线与的交点为.(1)问题发现如图1,当时,线段的长等于_________,线段的长等于_________.(2)探究证明如图2,当时,求证:,且.(3)问题解决求点到所在直线的距离的最大值.(直接写出结果)【答案】(1);;(2)详见解析;(3)【解析】【分析】(1)利用等腰直角三角形的性质结合勾股定理分别得出BD1的长和CE1的长;(2)根据旋转的性质得出,∠D1AB=∠E1AC=135°,进而求出△D1AB≌△E1AC(SAS),即可得出答案;(3)首先作PG⊥AB,交AB所在直线于点G,则D1,E1在以A为圆心,AD为半径的圆上,当BD1所在直线与⊙A相切时,直线BD1与CE1的交点P到直线AB的距离最大,此时四边形AD1PE1是正方形,进而求出PG的长.【详解】(1)解:∵∠A=90°,AC=AB=4,D,E分别是边AB,AC的中点,∴AE=AD=2,∵等腰Rt△ADE绕点A逆时针旋转,得到等腰Rt△AD1E1,设旋转角为α(0<α≤180°),∴当α=90°时,AE1=2,∠E1AE=90°,∴BD1=;故答案为:;;(2)证明:由题意可知,,,∵是由绕点逆时针旋转得到,∴,,在和中,,∴,∴,.∵,∴,∴,∴,且.(3)点的运动轨迹是在的上半圆周,点的运动轨迹是在的弧段.即当与相切时,有最大值.点到所在直线的距离的最大值为.【点睛】此题主要考查了几何变换以及等腰腰直角三角形的性质和勾股定理以及切线的性质等知识,根据题意得出PG的最长时P点的位置是解题关键.。