2020-2021中考数学压轴题专题复习—圆的综合的综合及详细答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020-2021中考数学压轴题专题复习—圆的综合的综合及详细答案

一、圆的综合

1.如图,AB是⊙O的直径,弦CD⊥AB,垂足为H,连结AC,过BD上一点E作EG∥AC 交CD的延长线于点G,连结AE交CD于点F,且EG=FG,连结CE.

(1)求证:∠G=∠CEF;

(2)求证:EG是⊙O的切线;

(3)延长AB交GE的延长线于点M,若tanG =3

4

,AH=33,求EM的值.

【答案】(1)证明见解析;(2)证明见解析;(3)253 8

.

【解析】

试题分析:(1)由AC∥EG,推出∠G=∠ACG,由AB⊥CD推出AD AC

=,推出∠CEF=∠ACD,推出∠G=∠CEF,由此即可证明;

(2)欲证明EG是⊙O的切线只要证明EG⊥OE即可;

(3)连接OC.设⊙O的半径为r.在Rt△OCH中,利用勾股定理求出r,证明

△AHC∽△MEO,可得AH HC

EM OE

=,由此即可解决问题;

试题解析:(1)证明:如图1.∵AC∥EG,∴∠G=∠ACG,∵AB⊥CD,∴AD AC

=,∴∠CEF=∠ACD,∴∠G=∠CEF,∵∠ECF=∠ECG,∴△ECF∽△GCE.

(2)证明:如图2中,连接OE.∵GF=GE,∴∠GFE=∠GEF=∠AFH,∵OA=OE,

∴∠OAE=∠OEA,∵∠AFH+∠FAH=90°,∴∠GEF+∠AEO=90°,∴∠GEO=90°,∴GE⊥OE,∴EG是⊙O的切线.

(3)解:如图3中,连接OC.设⊙O的半径为r.

在Rt△AHC中,tan∠ACH=tan∠G=AH

HC

=

3

4

,∵AH=33,∴HC=43,在Rt△HOC中,

∵OC=r,OH=r﹣33,HC=43,∴222

(33)(43)

r r

-+=,∴r=253

6

∵GM∥AC,∴∠CAH=∠M,∵∠OEM=∠AHC,∴△AHC∽△MEO,∴AH HC

EM OE

=,

∴3343

253

6

EM

=

,∴EM=

253

8

点睛:本题考查圆综合题、垂径定理、相似三角形的判定和性质、锐角三角函数、勾股定理等知识,解题的关键是学会添加常用辅助线,灵活运用所学知识解决问题,正确寻找相似三角形,构建方程解决问题吗,属于中考压轴题.

2.如图,A、B两点的坐标分别为(0,6),(0,3),点P为x轴正半轴上一动点,过点A作AP的垂线,过点B作BP的垂线,两垂线交于点Q,连接PQ,M为线段PQ的中点.

(1)求证:A、B、P、Q四点在以M为圆心的同一个圆上;

(2)当⊙M与x轴相切时,求点Q的坐标;

(3)当点P从点(2,0)运动到点(3,0)时,请直接写出线段QM扫过图形的面积.

【答案】(1)见解析;(2) Q的坐标为(32,9);(3)63 8

.

【解析】(1)解:连接AM、BM,

∵AQ⊥AP,BQ⊥BP∵△APQ和△BPQ都是直角三角形,M是斜边PQ的中点

∴AM=BM=PM=QM= 1

2 PQ,

∴A、B、P、Q四点在以M为圆心的同一个圆上。

(2)解:作MG⊥y轴于G,MC⊥x轴于C,

∵AM=BM

∴G是AB的中点,由A(0,6),B(0,3)可得MC=OG=4.5∴在点P运动的过程中,点M到x轴的距离始终为4.5

则点Q到x轴的距离始终为9,即点Q的纵坐标始终为9,

当⊙M与x轴相切时则PQ⊥x轴,作QH⊥y轴于H,

HB=9-3=6,设OP=HQ=x

由△BOP∽△QHB,得x2=3×6=8,x=3 2

∴点Q的坐标为(32,9)

(3)解:由相似可得:当点P在P1(2,0)时,Q1(4,9)则M1(3,4.5)当点P在P2(3,0)时,Q2(6,9),则M2(4.5,4.5)

∴M1M2=9

2

-3=

3

2

, Q1Q2=6-4=2

线段QM扫过的图形为梯形M1M2Q2Q1

其面积为:1

2

×(

3

2

+2)×4.5=

63

8

.

【解析】

【分析】

根据已知可得出三角形APQ和三角形BPQ都是直角三角形,再根据这个条件结合题意直接解答此题.

【详解】

(1)解:连接AM、BM,

∵AQ⊥AP,BQ⊥BP∵△APQ和△BPQ都是直角三角形,M是斜边PQ的中点∴AM=BM=PM=QM= PQ,

∴A、B、P、Q四点在以M为圆心的同一个圆上。

(2)解:作MG⊥y轴于G,MC⊥x轴于C,

∵AM=BM

∴G是AB的中点,由A(0,6),B(0,3)可得MC=OG=4.5

∴在点P运动的过程中,点M到x轴的距离始终为4.5

则点Q到x轴的距离始终为9,即点Q的纵坐标始终为9,

当⊙M与x轴相切时则PQ⊥x轴,作QH⊥y轴于H,

HB=9-3=6,设OP=HQ=x

由△BOP∽△QHB,得x2=3×6=8,x=3

∴点Q的坐标为(3 ,9)

(3)解:由相似可得:当点P在P1(2,0)时,Q1(4,9)则M1(3,4.5)

当点P在P2(3,0)时,Q2(6,9),则M2(4.5,4.5)

∴M1M2=-3=, Q1Q2=6-4=2

线段QM扫过的图形为梯形M1M2Q2Q1

其面积为:×( +2)×4.5=.

【点睛】

本题主要考查学生根据题意能找到三角形APQ和三角形BPQ都是直角三角形,而且考验学生对相似三角形性质的运用,掌握探索题目隐含条件是解决此题的关键.

3.如图,点P是正方形ABCD内的一点,连接PA,PB,PC.将△PAB绕点B顺时针旋转90°到△P'CB的位置.

(1)设AB的长为a,PB的长为b(b

(2)若PA=2,PB=4,∠APB=135°,求PC的长.

【答案】(1) S阴影=(a2-b2);(2)PC=6.

【解析】

试题分析:(1)依题意,将△P′CB逆时针旋转90°可与△PAB重合,此时阴影部分面积=扇形BAC的面积-扇形BPP'的面积,根据旋转的性质可知,两个扇形的中心角都是90°,可据此求出阴影部分的面积.

(2)连接PP',根据旋转的性质可知:BP=BP',旋转角∠PBP'=90°,则△PBP'是等腰直角三角形,∠BP'C=∠BPA=135°,∠PP'C=∠BP'C-∠BP'P=135°-45°=90°,可推出△PP'C是直角三角

相关文档
最新文档