2020-2021中考数学压轴题专题复习—圆的综合的综合及详细答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020-2021中考数学压轴题专题复习—圆的综合的综合及详细答案
一、圆的综合
1.如图,AB是⊙O的直径,弦CD⊥AB,垂足为H,连结AC,过BD上一点E作EG∥AC 交CD的延长线于点G,连结AE交CD于点F,且EG=FG,连结CE.
(1)求证:∠G=∠CEF;
(2)求证:EG是⊙O的切线;
(3)延长AB交GE的延长线于点M,若tanG =3
4
,AH=33,求EM的值.
【答案】(1)证明见解析;(2)证明见解析;(3)253 8
.
【解析】
试题分析:(1)由AC∥EG,推出∠G=∠ACG,由AB⊥CD推出AD AC
=,推出∠CEF=∠ACD,推出∠G=∠CEF,由此即可证明;
(2)欲证明EG是⊙O的切线只要证明EG⊥OE即可;
(3)连接OC.设⊙O的半径为r.在Rt△OCH中,利用勾股定理求出r,证明
△AHC∽△MEO,可得AH HC
EM OE
=,由此即可解决问题;
试题解析:(1)证明:如图1.∵AC∥EG,∴∠G=∠ACG,∵AB⊥CD,∴AD AC
=,∴∠CEF=∠ACD,∴∠G=∠CEF,∵∠ECF=∠ECG,∴△ECF∽△GCE.
(2)证明:如图2中,连接OE.∵GF=GE,∴∠GFE=∠GEF=∠AFH,∵OA=OE,
∴∠OAE=∠OEA,∵∠AFH+∠FAH=90°,∴∠GEF+∠AEO=90°,∴∠GEO=90°,∴GE⊥OE,∴EG是⊙O的切线.
(3)解:如图3中,连接OC.设⊙O的半径为r.
在Rt△AHC中,tan∠ACH=tan∠G=AH
HC
=
3
4
,∵AH=33,∴HC=43,在Rt△HOC中,
∵OC=r,OH=r﹣33,HC=43,∴222
(33)(43)
r r
-+=,∴r=253
6
,
∵GM∥AC,∴∠CAH=∠M,∵∠OEM=∠AHC,∴△AHC∽△MEO,∴AH HC
EM OE
=,
∴3343
253
6
EM
=
,∴EM=
253
8
.
点睛:本题考查圆综合题、垂径定理、相似三角形的判定和性质、锐角三角函数、勾股定理等知识,解题的关键是学会添加常用辅助线,灵活运用所学知识解决问题,正确寻找相似三角形,构建方程解决问题吗,属于中考压轴题.
2.如图,A、B两点的坐标分别为(0,6),(0,3),点P为x轴正半轴上一动点,过点A作AP的垂线,过点B作BP的垂线,两垂线交于点Q,连接PQ,M为线段PQ的中点.
(1)求证:A、B、P、Q四点在以M为圆心的同一个圆上;
(2)当⊙M与x轴相切时,求点Q的坐标;
(3)当点P从点(2,0)运动到点(3,0)时,请直接写出线段QM扫过图形的面积.
【答案】(1)见解析;(2) Q的坐标为(32,9);(3)63 8
.
【解析】(1)解:连接AM、BM,
∵AQ⊥AP,BQ⊥BP∵△APQ和△BPQ都是直角三角形,M是斜边PQ的中点
∴AM=BM=PM=QM= 1
2 PQ,
∴A、B、P、Q四点在以M为圆心的同一个圆上。
(2)解:作MG⊥y轴于G,MC⊥x轴于C,
∵AM=BM
∴G是AB的中点,由A(0,6),B(0,3)可得MC=OG=4.5∴在点P运动的过程中,点M到x轴的距离始终为4.5
则点Q到x轴的距离始终为9,即点Q的纵坐标始终为9,
当⊙M与x轴相切时则PQ⊥x轴,作QH⊥y轴于H,
HB=9-3=6,设OP=HQ=x
由△BOP∽△QHB,得x2=3×6=8,x=3 2
∴点Q的坐标为(32,9)
(3)解:由相似可得:当点P在P1(2,0)时,Q1(4,9)则M1(3,4.5)当点P在P2(3,0)时,Q2(6,9),则M2(4.5,4.5)
∴M1M2=9
2
-3=
3
2
, Q1Q2=6-4=2
线段QM扫过的图形为梯形M1M2Q2Q1
其面积为:1
2
×(
3
2
+2)×4.5=
63
8
.
【解析】
【分析】
根据已知可得出三角形APQ和三角形BPQ都是直角三角形,再根据这个条件结合题意直接解答此题.
【详解】
(1)解:连接AM、BM,
∵AQ⊥AP,BQ⊥BP∵△APQ和△BPQ都是直角三角形,M是斜边PQ的中点∴AM=BM=PM=QM= PQ,
∴A、B、P、Q四点在以M为圆心的同一个圆上。
(2)解:作MG⊥y轴于G,MC⊥x轴于C,
∵AM=BM
∴G是AB的中点,由A(0,6),B(0,3)可得MC=OG=4.5
∴在点P运动的过程中,点M到x轴的距离始终为4.5
则点Q到x轴的距离始终为9,即点Q的纵坐标始终为9,
当⊙M与x轴相切时则PQ⊥x轴,作QH⊥y轴于H,
HB=9-3=6,设OP=HQ=x
由△BOP∽△QHB,得x2=3×6=8,x=3
∴点Q的坐标为(3 ,9)
(3)解:由相似可得:当点P在P1(2,0)时,Q1(4,9)则M1(3,4.5)
当点P在P2(3,0)时,Q2(6,9),则M2(4.5,4.5)
∴M1M2=-3=, Q1Q2=6-4=2
线段QM扫过的图形为梯形M1M2Q2Q1
其面积为:×( +2)×4.5=.
【点睛】
本题主要考查学生根据题意能找到三角形APQ和三角形BPQ都是直角三角形,而且考验学生对相似三角形性质的运用,掌握探索题目隐含条件是解决此题的关键.
3.如图,点P是正方形ABCD内的一点,连接PA,PB,PC.将△PAB绕点B顺时针旋转90°到△P'CB的位置.