小波信号分解与重构的Matlab程序

合集下载

小波信号分解与重构的Matlab程序

小波信号分解与重构的Matlab程序
i=1:M;
y(i)=x(2*i);
而重构则是分解的逆过程,对低频系数、高频系数分别进行上抽样和低通、高通滤波处理。要注意重构时同一级的低频、高频系数的个数必须相等。
functiony=myidwt(cA,cD,lpr,hpr);
%函数MYIDWT()对输入的小波分解系数进行逆离散小波变换,重构出信号序列y
end
LL=x(1:row/2,1:col/2);?????????????????%LL是矩阵x的左上角部分
LH=x(row/2+1:row,1:col/2);?????????????%LH是矩阵x的左下角部分
HL=x(1:row/2,col/2+1:col);?????????????%HL是矩阵x的右上角部分
???????????????????????????%若lcd小于lca,则重构停止,这时的cA即为重构信号序列y。
???upl=upspl(cA);?????????%对平均部分系数进行上抽样
???cvl=conv(upl,lpr);?????%低通卷积
??
???cD_up=cD(lcd-lca+1:lcd);???%取出本层重构所需的细节部分系数,长度与本层平均部分系数的长度相等
%函数[cA,cD]=MYDWT(X,LPD,HPD,DIM)对输入序列x进行一维离散小波分解,输出分解序列[cA,cD]
%输入参数:x——输入序列;
%?????????lpd——低通滤波器;
%?????????hpd——高通滤波器;
%?????????dim——小波分解级数。
%输出参数:cA——平均部分的小波分解系数;
%??????????????LL:低频部分分解系数;???HL:垂直方向分解系数;

关于小波分析的matlab程序

关于小波分析的matlab程序

关于小波分析的matlab程序(个人收集关于小波分析的matlab程序)小波滤波器构造和消噪程序 (2)小波谱分析mallat算法经典程序 (16)小波包变换分析信号的MATLAB程序 (20)利用小波变换实现对电能质量检测的算法实现 (31)基于小波变换的图象去噪Normalshrink算法 (35)小波滤波器构造和消噪程序1.重构% mallet_wavelet.m% 此函数用于研究Mallet算法及滤波器设计% 此函数仅用于消噪a=pi/8; %角度赋初值b=pi/8;%低通重构FIR滤波器h0(n)冲激响应赋值h0=cos(a)*cos(b);h1=sin(a)*cos(b);h2=-sin(a)*sin(b);h3=cos(a)*sin(b);low_construct=[h0,h1,h2,h3];L_fre=4; %滤波器长度low_decompose=low_construct(end:-1:1); %确定h0(-n),低通分解滤波器for i_high=1:L_fre; %确定h1(n)=(-1)^n,高通重建滤波器if(mod(i_high,2)==0);coefficient=-1;elsecoefficient=1;endhigh_construct(1,i_high)=low_decompose(1,i_hi gh)*coefficient;endhigh_decompose=high_construct(end:-1:1); %高通分解滤波器h1(-n)L_signal=100; %信号长度n=1:L_signal; %信号赋值f=10;t=0.001;y=10*cos(2*pi*50*n*t).*exp(-20*n*t);figure(1);plot(y);title('原信号');check1=sum(high_decompose); %h0(n)性质校验check2=sum(low_decompose);check3=norm(high_decompose);check4=norm(low_decompose);l_fre=conv(y,low_decompose); %卷积l_fre_down=dyaddown(l_fre); %抽取,得低频细节h_fre=conv(y,high_decompose);h_fre_down=dyaddown(h_fre); %信号高频细节figure(2);subplot(2,1,1)plot(l_fre_down);title('小波分解的低频系数');subplot(2,1,2);plot(h_fre_down);title('小波分解的高频系数');l_fre_pull=dyadup(l_fre_down); %0差值h_fre_pull=dyadup(h_fre_down);l_fre_denoise=conv(low_construct,l_fre_pull); h_fre_denoise=conv(high_construct,h_fre_pull);l_fre_keep=wkeep(l_fre_denoise,L_signal); %取结果的中心部分,消除卷积影响h_fre_keep=wkeep(h_fre_denoise,L_signal);sig_denoise=l_fre_keep+h_fre_keep; %信号重构compare=sig_denoise-y; %与原信号比较figure(3);subplot(3,1,1)plot(y);ylabel('y'); %原信号subplot(3,1,2);plot(sig_denoise);ylabel('sig\_denoise'); %重构信号subplot(3,1,3);plot(compare);ylabel('compare'); %原信号与消噪后信号的比较2.消噪、% 此函数用于研究Mallet算法及滤波器设计% 此函数用于消噪处理%角度赋值%此处赋值使滤波器系数恰为db9%分解的高频系数采用db9较好,即它的消失矩较大%分解的有用信号小波高频系数基本趋于零%对于噪声信号高频分解系数很大,便于阈值消噪处理[l,h]=wfilters('db10','d');low_construct=l;L_fre=20; %滤波器长度low_decompose=low_construct(end:-1:1); %确定h0(-n),低通分解滤波器for i_high=1:L_fre; %确定h1(n)=(-1)^n,高通重建滤波器if(mod(i_high,2)==0);coefficient=-1;elsecoefficient=1;endhigh_construct(1,i_high)=low_decompose(1,i_hi gh)*coefficient;endhigh_decompose=high_construct(end:-1:1); %高通分解滤波器h1(-n)L_signal=100; %信号长度n=1:L_signal; %原始信号赋值f=10;t=0.001;y=10*cos(2*pi*50*n*t).*exp(-30*n*t); zero1=zeros(1,60); %信号加噪声信号产生zero2=zeros(1,30);noise=[zero1,3*(randn(1,10)-0.5),zero2]; y_noise=y+noise;figure(1);subplot(2,1,1);plot(y);title('原信号');subplot(2,1,2);plot(y_noise);title('受噪声污染的信号');check1=sum(high_decompose); %h0(n),性质校验check2=sum(low_decompose);check3=norm(high_decompose);check4=norm(low_decompose);l_fre=conv(y_noise,low_decompose); %卷积l_fre_down=dyaddown(l_fre); %抽取,得低频细节h_fre=conv(y_noise,high_decompose);h_fre_down=dyaddown(h_fre); %信号高频细节figure(2);subplot(2,1,1)plot(l_fre_down);title('小波分解的低频系数');subplot(2,1,2);plot(h_fre_down);title('小波分解的高频系数');% 消噪处理for i_decrease=31:44;if abs(h_fre_down(1,i_decrease))>=0.000001 h_fre_down(1,i_decrease)=(10^-7);endendl_fre_pull=dyadup(l_fre_down); %0差值h_fre_pull=dyadup(h_fre_down);l_fre_denoise=conv(low_construct,l_fre_pull); h_fre_denoise=conv(high_construct,h_fre_pull);l_fre_keep=wkeep(l_fre_denoise,L_signal); %取结果的中心部分,消除卷积影响h_fre_keep=wkeep(h_fre_denoise,L_signal);sig_denoise=l_fre_keep+h_fre_keep; %消噪后信号重构%平滑处理for j=1:2for i=60:70;sig_denoise(i)=sig_denoise(i-2)+sig_denoise(i+2)/ 2;end;end;compare=sig_denoise-y; %与原信号比较figure(3);subplot(3,1,1)plot(y);ylabel('y'); %原信号subplot(3,1,2);plot(sig_denoise);ylabel('sig\_denoise'); %消噪后信号subplot(3,1,3);plot(compare);ylabel('compare'); %原信号与消噪后信号的比较小波谱分析mallat算法经典程序clc;clear;%% 1.正弦波定义f1=50; % 频率1f2=100; % 频率2fs=2*(f1+f2); % 采样频率Ts=1/fs; % 采样间隔N=120; % 采样点数n=1:N;y=sin(2*pi*f1*n*Ts)+sin(2*pi*f2*n*Ts); % 正弦波混合figure(1)plot(y);title('两个正弦信号')figure(2)stem(abs(fft(y)));title('两信号频谱')%% 2.小波滤波器谱分析h=wfilters('db30','l'); % 低通g=wfilters('db30','h'); % 高通h=[h,zeros(1,N-length(h))]; % 补零(圆周卷积,且增大分辨率变于观察)g=[g,zeros(1,N-length(g))]; % 补零(圆周卷积,且增大分辨率变于观察)figure(3);stem(abs(fft(h)));title('低通滤波器图')figure(4);stem(abs(fft(g)));title('高通滤波器图')%% 3.MALLET分解算法(圆周卷积的快速傅里叶变换实现)sig1=ifft(fft(y).*fft(h)); % 低通(低频分量) sig2=ifft(fft(y).*fft(g)); % 高通(高频分量) figure(5); % 信号图subplot(2,1,1)plot(real(sig1));title('分解信号1')subplot(2,1,2)plot(real(sig2));title('分解信号2')figure(6); % 频谱图subplot(2,1,1)stem(abs(fft(sig1)));title('分解信号1频谱')subplot(2,1,2)stem(abs(fft(sig2)));title('分解信号2频谱')%% 4.MALLET重构算法sig1=dyaddown(sig1); % 2抽取sig2=dyaddown(sig2); % 2抽取sig1=dyadup(sig1); % 2插值sig2=dyadup(sig2); % 2插值sig1=sig1(1,[1:N]); % 去掉最后一个零sig2=sig2(1,[1:N]); % 去掉最后一个零hr=h(end:-1:1); % 重构低通gr=g(end:-1:1); % 重构高通hr=circshift(hr',1)'; % 位置调整圆周右移一位gr=circshift(gr',1)'; % 位置调整圆周右移一位sig1=ifft(fft(hr).*fft(sig1)); % 低频sig2=ifft(fft(gr).*fft(sig2)); % 高频sig=sig1+sig2; % 源信号%% 5.比较figure(7);subplot(2,1,1)plot(real(sig1));title('重构低频信号');subplot(2,1,2)plot(real(sig2));title('重构高频信号');figure(8);subplot(2,1,1)stem(abs(fft(sig1)));title('重构低频信号频谱');subplot(2,1,2)stem(abs(fft(sig2)));title('重构高频信号频谱');figure(9)plot(real(sig),'r','linewidth',2);hold on;plot(y);legend('重构信号','原始信号')title('重构信号与原始信号比较')小波包变换分析信号的MATLAB程序%t=0.001:0.001:1;t=1:1000;s1=sin(2*pi*50*t*0.001)+sin(2*pi*120*t*0.001)+ rand(1,length(t));for t=1:500;s2(t)=sin(2*pi*50*t*0.001)+sin(2*pi*120*t*0.00 1)+rand(1,length(t));endfor t=501:1000;s2(t)=sin(2*pi*200*t*0.001)+sin(2*pi*120*t*0.001)+rand(1,length(t));endsubplot(9,2,1)plot(s1)title('原始信号')ylabel('S1')subplot(9,2,2)plot(s2)title('故障信号')ylabel('S2')wpt=wpdec(s1,3,'db1','shannon');%plot(wpt);s130=wprcoef(wpt,[3,0]);s131=wprcoef(wpt,[3,1]);s132=wprcoef(wpt,[3,2]);s133=wprcoef(wpt,[3,3]);s134=wprcoef(wpt,[3,4]);s135=wprcoef(wpt,[3,5]);s136=wprcoef(wpt,[3,6]);s137=wprcoef(wpt,[3,7]);s10=norm(s130);s11=norm(s131);s12=norm(s132);s13=norm(s133);s14=norm(s134);s15=norm(s135);s16=norm(s136);s17=norm(s137);st10=std(s130);st11=std(s131);st12=std(s132);st13=std(s133);st14=std(s134);st15=std(s135);st16=std(s136);st17=std(s137);disp('正常信号的特征向量');snorm1=[s10,s11,s12,s13,s14,s15,s16,s17] std1=[st10,st11,st12,st13,st14,st15,st16,st17]subplot(9,2,3);plot(s130);ylabel('S130');subplot(9,2,5);plot(s131);ylabel('S131');subplot(9,2,7);plot(s132);ylabel('S132');subplot(9,2,9);plot(s133);ylabel('S133');subplot(9,2,11);plot(s134);ylabel('S134');subplot(9,2,13);plot(s135);ylabel('S135');subplot(9,2,15);plot(s136);ylabel('S136');subplot(9,2,17);plot(s137);ylabel('S137');wpt=wpdec(s2,3,'db1','shannon');%plot(wpt);s230=wprcoef(wpt,[3,0]); s231=wprcoef(wpt,[3,1]); s232=wprcoef(wpt,[3,2]); s233=wprcoef(wpt,[3,3]); s234=wprcoef(wpt,[3,4]); s235=wprcoef(wpt,[3,5]); s236=wprcoef(wpt,[3,6]); s237=wprcoef(wpt,[3,7]);s20=norm(s230);s21=norm(s231);s22=norm(s232);s23=norm(s233);s24=norm(s234);s25=norm(s235);s26=norm(s236);s27=norm(s237);st20=std(s230);st21=std(s231);st22=std(s232);st23=std(s233);st24=std(s234);st25=std(s235);st26=std(s236);st27=std(s237);disp('故障信号的特征向量');snorm2=[s20,s21,s22,s23,s24,s25,s26,s27] std2=[st20,st21,st22,st23,st24,st25,st26,st27]subplot(9,2,4);plot(s230);ylabel('S230');subplot(9,2,6);plot(s231);ylabel('S231');subplot(9,2,8);plot(s232);ylabel('S232');subplot(9,2,10);plot(s233);ylabel('S233');subplot(9,2,12);plot(s234);ylabel('S234');subplot(9,2,14);plot(s235); ylabel('S235');subplot(9,2,16);plot(s236); ylabel('S236');subplot(9,2,18);plot(s237); ylabel('S237');%fftfigurey1=fft(s1,1024);py1=y1.*conj(y1)/1024;y2=fft(s2,1024);py2=y2.*conj(y2)/1024;y130=fft(s130,1024);py130=y130.*conj(y130)/1024; y131=fft(s131,1024);py131=y131.*conj(y131)/1024; y132=fft(s132,1024);py132=y132.*conj(y132)/1024; y133=fft(s133,1024);py133=y133.*conj(y133)/1024; y134=fft(s134,1024);py134=y134.*conj(y134)/1024; y135=fft(s135,1024);py135=y135.*conj(y135)/1024; y136=fft(s136,1024);py136=y136.*conj(y136)/1024; y137=fft(s137,1024);py137=y137.*conj(y137)/1024;y230=fft(s230,1024);py230=y230.*conj(y230)/1024; y231=fft(s231,1024);py231=y231.*conj(y231)/1024; y232=fft(s232,1024);py232=y232.*conj(y232)/1024; y233=fft(s233,1024);py233=y233.*conj(y233)/1024; y234=fft(s234,1024);py234=y234.*conj(y234)/1024; y235=fft(s235,1024);py235=y235.*conj(y235)/1024;y236=fft(s236,1024);py236=y236.*conj(y236)/1024; y237=fft(s237,1024);py237=y237.*conj(y237)/1024;f=1000*(0:511)/1024;subplot(1,2,1);plot(f,py1(1:512));ylabel('P1');title('原始信号的功率谱') subplot(1,2,2);plot(f,py2(1:512));ylabel('P2');title('故障信号的功率谱') figuresubplot(4,2,1);plot(f,py130(1:512));ylabel('P130');title('S130的功率谱') subplot(4,2,2);plot(f,py131(1:512)); ylabel('P131');title('S131的功率谱') subplot(4,2,3);plot(f,py132(1:512)); ylabel('P132'); subplot(4,2,4);plot(f,py133(1:512)); ylabel('P133'); subplot(4,2,5);plot(f,py134(1:512)); ylabel('P134'); subplot(4,2,6);plot(f,py135(1:512)); ylabel('P135'); subplot(4,2,7);plot(f,py136(1:512)); ylabel('P136'); subplot(4,2,8);plot(f,py137(1:512)); ylabel('P137'); figuresubplot(4,2,1);plot(f,py230(1:512)); ylabel('P230');title('S230的功率谱') subplot(4,2,2);plot(f,py231(1:512)); ylabel('P231');title('S231的功率谱') subplot(4,2,3);plot(f,py232(1:512)); ylabel('P232'); subplot(4,2,4);plot(f,py233(1:512)); ylabel('P233'); subplot(4,2,5);plot(f,py234(1:512)); ylabel('P234'); subplot(4,2,6);plot(f,py235(1:512)); ylabel('P235'); subplot(4,2,7);plot(f,py236(1:512));ylabel('P236');subplot(4,2,8);plot(f,py237(1:512));ylabel('P237');figure%plottree(wpt)利用小波变换实现对电能质量检测的算法实现N=10000;s=zeros(1,N);for n=1:Nif n<0.4*N||n>0.8*Ns(n)=31.1*sin(2*pi*50/10000*n);elses(n)=22.5*sin(2*pi*50/10000*n);endendl=length(s);[c,l]=wavedec(s,6,'db5'); %用db5小波分解信号到第六层subplot(8,1,1);plot(s);title('用db5小波分解六层:s=a6+d6+d5+d4+d3+d2+d1');Ylabel('s');%对分解结构【c,l】中第六层低频部分进行重构a6=wrcoef('a',c,l,'db5',6);subplot(8,1,2);plot(a6);Ylabel('a6');%对分解结构【c,l】中各层高频部分进行重构for i=1:6decmp=wrcoef('d',c,l,'db5',7-i);subplot(8,1,i+2);plot(decmp);Ylabel(['d',num2str(7-i)]);end%----------------------------------------------------------- rec=zeros(1,300);rect=zeros(1,300);ke=1;u=0;d1=wrcoef('d',c,l,'db5',1);figure(2);plot(d1);si=0;N1=0;N0=0;sce=0;for n=20:N-30rect(ke)=s(n);ke=ke+1;if(ke>=301)if(si==2)rec=rect;u=2;end;si=0;ke=1;end;if(d1(n)>0.01) % the condition of abnormal append.N1=n;if(N0==0)N0=n;si=si+1;end;if(N1>N0+30)Nlen=N1-N0;Tab=Nlen/10000;end;end;if(si==1)fork=N0:N0+99 %testin g of 1/4 period signals tosce=sce+s(k)*s(k)/10000;end;re=sqrt(sce*200) %re indicate the pike value of .sce=0;si=si+1;end;end;NlenN0n=1:300;figure(3)plot(n,rec);基于小波变换的图象去噪Normalshrink算法function[T_img,Sub_T]=threshold_2_N(img,levels)% reference :image denoising using wavelet thresholding[xx,yy]=size(img);HH=img((xx/2+1):xx,(yy/2+1):yy);delt_2=(std(HH(:)))^2;%(median(abs(HH(:)))/0. 6745)^2;%T_img=img;for i=1:levelstemp_x=xx/2^i;temp_y=yy/2^i;% belt=1.0*(log(temp_x/(2*levels)))^0.5;belt=1.0*(log(temp_x/(2*levels)))^0.5; %2.5 0.8%HLHL=img(1:temp_x,(temp_y+1):2*temp_y);delt_y=std(HL(:));T_1=belt*delt_2/delt_y;%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%% %%%%%%%%%%T_HL=sign(HL).*max(0,abs(HL)-T_1);%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%% %%%%%%%%%T_img(1:temp_x,(temp_y+1):2*temp_y)=T_HL;Sub_T(3*(i-1)+1)=T_1;%LHLH=img((temp_x+1):2*temp_x,1:temp_y);delt_y=std(LH(:));T_2=belt*delt_2/delt_y;%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%% %%%%%%%%%T_LH=sign(LH).*max(0,abs(LH)-T_2);%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%T_img((temp_x+1):2*temp_x,1:temp_y)=T_LH;Sub_T(3*(i-1)+2)=T_2;%HHHH=img((temp_x+1):2*temp_x,(temp_y+1):2*te mp_y);delt_y=std(HH(:));T_3=belt*delt_2/delt_y;%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%T_HH=sign(HH).*max(0,abs(HH)-T_3);%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%T_img((temp_x+1):2*temp_x,(temp_y+1):2*tem p_y)=T_HH;Sub_T(3*(i-1)+3)=T_3;end。

matlab离散小波变换dwt(小波分解)

matlab离散小波变换dwt(小波分解)

小波变换是一种在信号处理领域广泛应用的数学工具,它可以将信号分解成不同尺度和频率成分,具有良好的局部化特性。

在Matlab中,离散小波变换(Discrete Wavelet Transform, DWT)是其中一种常用的小波变换方法,它广泛应用于图像处理、语音处理、数据压缩等领域。

本文将对Matlab中离散小波变换的原理、应用及实现方法进行详细介绍。

1. 离散小波变换的原理离散小波变换是通过将信号经过多级高通和低通滤波器的卷积运算,然后下采样,最终得到近似系数和细节系数的过程。

具体来说,设输入信号为x[n],高通滤波器为h[n],低通滤波器为g[n],则小波变换的原理可以表述为:\[a_{\text{scale},n} = x[n]*h_{\text{scale},n} \]\[d_{\text{scale},n} = x[n]*g_{\text{scale},n} \]其中,a为近似系数,d为细节系数,scale表示尺度,n表示离散时间序列。

2. Matlab中离散小波变换的应用离散小波变换在Matlab中有着广泛的应用,包括但不限于图像处理、语音处理、数据压缩等领域。

其中,图像处理是离散小波变换最为常见的应用之一。

通过对图像进行小波变换,可以将图像分解成不同尺度和频率的分量,实现图像的分析和处理。

在语音处理领域,离散小波变换可以用于信号降噪、语音特征提取等方面。

在数据压缩领域,离散小波变换可以实现对数据的降维和提取主要信息,从而实现数据的压缩存储。

3. Matlab中离散小波变换的实现方法在Matlab中,可以通过调用相关函数来实现离散小波变换。

其中,dwt函数是Matlab中常用的离散小波变换函数之一。

其调用格式为:\[cA = dwt(X,'wname','mode')\]\[cA, cD = dwt(X,'wname','mode')\]其中,X为输入信号,'wname'为小波基函数的名称,'mode'为信号的扩展模式。

matlab小波分解程序

matlab小波分解程序

matlab小波分解程序小波分解是一种信号处理的方法,可以用于信号的分析和压缩。

在MATLAB中,可以使用内置的`wavedec`函数来进行小波分解。

下面是一个简单的MATLAB小波分解程序示例:matlab.% 创建一个示例信号。

x = randn(1,1024);% 选择小波基和分解级别。

wname = 'db4'; % 选择小波基,这里使用db4小波。

level = 3; % 选择分解级别。

% 进行小波分解。

[c, l] = wavedec(x, level, wname);% 从分解系数和长度信息中重构近似和细节系数。

appx = wrcoef('a',c,l,wname,level); % 近似系数。

det1 = wrcoef('d',c,l,wname,1); % 第一层细节系数。

det2 = wrcoef('d',c,l,wname,2); % 第二层细节系数。

det3 = wrcoef('d',c,l,wname,3); % 第三层细节系数。

% 绘制原始信号和重构的近似信号。

t = 1:1024;subplot(2,1,1);plot(t, x);title('Original Signal');subplot(2,1,2);plot(t, appx);title('Approximation Coefficients'); % 显示细节系数。

figure;subplot(3,1,1);plot(t, det1);title('Detail Coefficients Level 1'); subplot(3,1,2);plot(t, det2);title('Detail Coefficients Level 2'); subplot(3,1,3);plot(t, det3);title('Detail Coefficients Level 3');在这个示例中,我们首先生成了一个长度为1024的随机信号。

matlab小波分解重构

matlab小波分解重构

matlab小波分解重构
在MATLAB中,小波分解和重构的实现主要依赖于几个关键的函数,包括dwt2,idwt2和wavedec2。

首先,使用dwt2函数进行二维离散小波变换。

基本语法是:[CA,CH,CV,CD] = dwt2(X,'wname')。

其中,X是输入图像,'wname'是你选择的小波名字,例如'haar','db2'等。

输出CA,CH,CV和CD分别代表近似系数、水平细节系数、垂直细节系数和对角线细节系数。

然后,你可以使用idwt2函数进行小波重构。

基本语法是:X = idwt2(CA,CH,CV,CD,'wname')。

这将使用相同的小波名字和分解系数来重构原始图像。

另一种更复杂的多层小波分解与重构可以通过wavedec2函数实现。

基本语法是:[C,S] = wavedec2(X,N,'wname')。

其中,X是输入图像,N 是你想要的分解层数,'wname'是你选择的小波名字。

输出C是一个包含所有分解信息的向量,S则包含了分解后各个频段图像的尺寸大小。

matlab小波分解与重构 -回复

matlab小波分解与重构 -回复

matlab小波分解与重构-回复什么是小波分解与重构?小波分解与重构是一种在信号处理领域广泛应用的技术。

它是基于小波函数的变换方法,能够将信号分解成多个频率和时域上局部化的子信号,以及通过这些子信号重构原始信号。

小波分解与重构广泛应用于图像处理、语音识别、数据压缩等领域。

小波分解过程中,信号被分解为多个低频和高频子带信号。

低频子带信号描述了信号的缓慢变化,而高频子带信号描述了信号的快速变化。

分解后的子带信号包含了原始信号的不同频率成分和时域局部特征。

小波重构是将这些子带信号进行逆变换来重构原始信号。

小波分解与重构的步骤如下:1. 选择适当的小波函数:小波函数是用来描述信号的形状和特征的数学函数。

常用的小波函数有Haar小波、Daubechies小波、Symlet小波等。

选择适当的小波函数能够更好地适应信号的特征。

2. 进行分解:使用选择的小波函数进行信号分解。

分解过程中,信号被分解为多个尺度和频率上的子带信号。

通常使用多级分解来获取信号的不同细节和近似信息。

3. 选择分解层数:确定分解的层数是一个重要的步骤。

分解层数的选择取决于信号的特征和应用的要求。

通常,随着分解层数的增加,信号的细节和频率成分会更加详细。

4. 单位归一化:对分解得到的子带信号进行单位归一化处理。

这是为了避免各个子带信号幅值的差异影响分析和重构。

5. 进行重构:使用逆小波变换将分解得到的子带信号重构成原始信号。

逆小波变换使用的是与分解所用小波函数相对应的小波函数。

需要注意的是,小波分解与重构是一种无损的信号处理方法,可以保留原始信号的细节信息。

相比傅里叶变换,小波分解在时域和频域上都具有局部特征,因此能够更好地描述信号的局部特性和时变性。

在MATLAB中,可以使用Wavelet Toolbox进行小波分解与重构。

该工具箱包含了多种小波函数和相关的分析和重构函数,可以方便地进行信号处理和分析。

使用MATLAB进行小波分解与重构的一般步骤如下:1. 导入信号数据:使用MATLAB的数据导入函数将原始信号导入到工作空间。

matlab haar小波四层分解生成四层信号

matlab haar小波四层分解生成四层信号

1. 引言Matlab是一种常用的科学计算软件,其中包含了丰富的工具箱,能够帮助工程师和科学家们进行数据处理、模拟和分析。

其中,小波变换是一种强大的信号处理工具,能够将信号按照不同频率进行分解和重构。

本文将介绍如何使用Matlab对信号进行Haar小波四层分解,并生成相应的四层信号。

2. Haar小波变换的原理Haar小波变换是一种基于矩阵运算的离散小波变换方法。

通过对信号进行分解和重构,可以将信号分解成不同尺度和频率的成分,从而更好地理解和处理信号。

Haar小波变换的核心是通过一组基函数对信号进行分解和重构,这组基函数包括平均函数和差分函数。

通过对信号进行多层分解,可以得到不同尺度和频率的信号序列。

3. Matlab中Haar小波变换的使用在Matlab中,可以使用wavefun函数生成Haar小波函数。

通过指定'haar'作为第一个参数,可以获取Haar小波函数的基本信息,包括基本函数和尺度。

在进行小波分解时,可以使用wavedec函数对信号进行指定层数的小波分解。

在生成四层信号时,需要指定分解的层数为4,即进行四次分解得到四层信号。

4. 代码示例```matlab生成信号t = 0:0.01:1;x = sin(2*pi*3*t) + sin(2*pi*5*t) + sin(2*pi*7*t);进行四层Haar小波分解[c, l] = wavedec(x, 4, 'haar');生成四层信号a4 = appcoef(c, l, 'haar', 4);d4 = detcoef(c, l, 4);a3 = appcoef(c, l, 'haar', 3);d3 = detcoef(c, l, 3);a2 = appcoef(c, l, 'haar', 2);d2 = detcoef(c, l, 2);a1 = appcoef(c, l, 'haar', 1);d1 = detcoef(c, l, 1);```5. 结果分析通过以上代码,我们成功生成了原始信号和四层Haar小波分解得到的四层信号。

小波分析MATLAB工具箱简介

小波分析MATLAB工具箱简介

小波分析MATLAB工具箱简介MATLAB的小波分析一、小波分析用于降噪的基本过程1、分解过程:选定一种小波,对信号进行N层分解;2、作用阈值过程:对分解得到的各层系数选择一个阈值,并对细节系数进行软阈值处理;3、重建过程:降处理后的系数通过小波重建恢复原始信号;二、基本降噪模型函数一维离散小波分解命令Dwt [cA cD] = dwt(X,’wname’)使用小波’wname’对型号X 进行单层分解,求得的近似系数存放于数组cA中,细节系数存放在数组cD 中;[cA cD] = dwt(X,’wname’,’mode’,MODE) 利用MODE方式进行扩展[cA cD] = dwt(X,Lo_D,Hi_D) 利用指定滤波器进行小波分解Wanedec [C, L] = wavedec(X,N,’wname’) 使用wname的小波进行N层分解,C为层数,L为各层系数Idwt X= idwt(cA,cD,’wname’) 利用小波wname把近似系数CA和CD重建为上一层近似系数XX= idwt(cA,cD,’wname’,L) 重建至L层Waverec X= waverec(C,L,‘wname‘)重建为原始信号Wrcoef X = wrcoef(‘type’,C,L,’wname’,N) 通过分解系数重构指定的数,type为a 或者dX= wrcoef(‘type’,C,L,’wname’) 把分解系数重建至最高层Upcoef Y= upcoef(O,X,’wname’,N)用适当的滤波器作用在X上N次,求得重建系数Y,O为a表示低通滤波器,d表示高通滤波器Detcofe D= detcoef(C,L,N)从分解系数中提取第N层近似系数D= detcoef(C,L,N)提取至最后一层Appcoef A= appcoef(C,L,’wname’,N) 用小波从分解系数中提取第N层系数Wnoisest stdc = woisest(c,l,s)根据传入的小波分解系数[c,l]对s中标识的小波层数求得其标准差,作为对噪声强度的估计;Ddencmp [THR,SORH,KEEPAPP,CRIT] = ddencmp(IN1,IN2,X) 根据传入的参数IN1 和IN2所指定的方式,对输入信号X求得其降噪或压缩的各级阈值。

分数小波变换 matlab

分数小波变换 matlab

分数小波变换 matlab
分数小波变换是一种在信号处理和图像处理中广泛应用的数学工具。

它通过将信号或图像分解成不同频率的子信号或子图像来提取出其特征。

在Matlab中,我们可以使用Wavelet Toolbox来实现分数小波变换。

我们需要加载Wavelet Toolbox,并将信号或图像导入到Matlab中。

然后,我们可以使用`wavedec`函数对信号或图像进行分解。

该函数接受两个参数:待分解的信号或图像以及所使用的小波基。

在分解过程中,信号或图像会被分解成不同尺度的近似系数和细节系数。

一旦分解完成,我们可以使用`waverec`函数对分解后的系数进行重构。

重构过程中,我们可以选择保留哪些系数,从而改变信号或图像的特征。

此外,我们还可以使用`appcoef`和`detcoef`函数来提取近似系数和细节系数。

除了分解和重构外,分数小波变换还可以应用于信号或图像的去噪、压缩和特征提取等领域。

在去噪方面,我们可以使用`wdenoise`函数来去除信号或图像中的噪声。

该函数接受三个参数:待去噪的信号或图像、小波基以及噪声估计方法。

分数小波变换是一种强大的信号处理和图像处理工具,在Matlab中可以方便地实现。

通过合理选择小波基和使用相应的函数,我们可以提取出信号或图像的特征,并进行去噪、压缩和特征提取等操作。

希望这篇文章可以帮助读者更好地了解和应用分数小波变换。

仿真信号小波分解与重构程序

仿真信号小波分解与重构程序

3仿真信号小波分解与重构程序本实验采用的初始信号为f=sin(0.03*t),其图像如图figure(1)所示,在原信号的基础上加上噪音noissin,添加噪音后的信号的图像如figure(2)所示,然后分别对加了噪声的信号进行db3 小波降噪和sym8小波降噪,并画出了信号降噪后的图像,图像如figure(3)、figure(4)所示。

(1)仿真信号处理程序:N=1000;t=1:1000;f=sin(0.03*t);load noissin;e=noissin;figure(1);plot(t,f);xlabel('y样本序列');ylabel('原始信号幅值');grid;figure(2);plot(e);xlabel('样本序列n');ylabel('含有噪声的信号幅值');grid;s1=wden(e,'minimaxi','s','one',5,'db3');figure(3);plot(s1);xlabel('样本序列n');ylabel('db3 小波降噪后的信号幅');s2=wden(e,'heursure','s','one',5,'sym8');figure(4);plot(s2);xlabel('样本序列n');ylabel('sym8小波降噪后的信号幅');grid;%db10小波进行4层分解%一维小波分解[c,l]=wavedec(f,4,'db10');%重构第1~4层细节信号d4=wrcoef('d',c,l,'db10',4);d3=wrcoef('d',c,l,'db10',3);d2=wrcoef('d',c,l,'db10',2);d1=wrcoef('d',c,l,'db10',1);%显示细节信号figure(5);subplot(4,1,1);plot(d4, 'LineWidth',1);ylabel('d4');subplot(4,1,2);plot(d3, 'LineWidth',1);ylabel('d3');subplot(4,1,3);plot(d2,'LineWidth',1);ylabel('d2');subplot(4,1,4);plot(d1, 'LineWidth',1);ylabel('d1'); xlabel('时间t/s'); grid;(2)信号图像:Figure(1)初始信号的时域图像Figure(3)db3小波降噪后的信号幅。

基于Matlab的小波分解、去噪与重构

基于Matlab的小波分解、去噪与重构

《现代信号处理》大作业基于Matlab的小波分解、去噪与重构目录一作业内容及要求 (3)1.1 作业内容 (3)1.2 作业要求 (3)二系统原理 (3)2.1 小波变换原理 (3)2.2 阈值去噪原理 (3)三系统分析及设计 (5)3.1 图像分解 (5)3.2 高频去噪 (5)3.3 图像重构 (6)四程序编写 (7)4.1 main函数 (7)4.2 分解函数 (9)4.2.1 二维分解函数 (9)4.2.2 一维分解函数 (10)4.3 卷积函数 (10)4.4 采样函数 (11)4.4.1 下采样函数 (11)4.4.2 上采样函数 (11)4.5 重构函数 (12)4.5.1 二维重构函数 (12)4.5.2 一维重构函数 (13)五结果分析及检验 (14)5.1 结果分析 (14)5.2 结果检验 (16)六心得体会 (18)参考文献 (19)一作业内容及要求1.1 作业内容用小波对图像进行滤波分解、去噪,然后重构。

1.2 作业要求用小波对图像进行滤波分解、去噪,然后重构。

具体要求:(1) 被处理图像可选择:woman, wbarb, wgatlin, detfingr, tire.;(2) 可以选择db等正交小波、或双正交小波(或用几种小波);(3) 用选用小波的分解滤波器通过定义的卷积函数conv_my( )对图像二维数组进行小波分解,并进行下采样,获取CA、CV、CD、CH等分解子图;(4) 对高频信号子图进行去噪处理,可以采用软阈值、硬阈值等方法;(5) 用选用小波的综合滤波器对去噪的子图进行图像重构。

二系统原理2.1 小波变换原理小波变换的一级分解过程是,先将信号与低通滤波器卷积再下采样可以得到低频部分的小波分解系数再将信号与高通滤波器卷积后下采样得到高频部分的小波分解系数;而多级分解则是对上一级分解得到的低频系数再进行小波分解,是一个递归过程。

二维小波分解重构可以用一系列的一维小波分解重构来实现。

小波变换代码matlab

小波变换代码matlab

小波变换代码matlab小波变换(Wavelet Transform)是一种对信号进行时频局部分析的数学方法。

它在信号处理、图像处理等领域被广泛应用,能够提供更丰富的信息以描述信号的动态特性,同时具有精度高、计算速度快等优点。

在Matlab中,实现小波变换的方法有很多,例如使用内置函数“cwt”(continuous wavelet transform)或自定义函数等。

下面,我将详细介绍一种常用的小波变换方法的代码实现过程,帮助大家了解小波变换的原理和应用。

首先,我们需要准备一个用于进行小波变换的信号。

假设我们有一个长度为N的信号x,代码如下所示:matlabN = 1024; 信号长度t = linspace(0, 1, N); 时间序列x = sin(2*pi*50*t) + sin(2*pi*120*t); 信号频率为50Hz和120Hz的叠加以上代码生成了一个包含两个频率分量(50Hz和120Hz)的信号x。

接下来,我们使用小波变换函数进行信号的小波分析。

matlabwaveletName = 'db4'; 小波基函数选择Daubechies 4[C, L] = wavedec(x, 5, waveletName); 对信号进行小波分解在上述代码中,我们选择了小波基函数“db4”来进行小波变换,并使用了“wavedec”函数对信号x进行小波分解。

该函数的第一个参数为待分解的信号,第二个参数表示小波分解的层数,第三个参数为小波基函数的名称。

小波分解后的结果包括近似系数C和细节系数D,其中C是近似部分的系数,D是细节部分的系数。

L是一个向量,包含了每个分解层的系数长度。

在上述代码中,我们将信号进行了5层的小波分解,得到了5层的近似系数C和细节系数D。

接下来,我们可以根据需要对小波分解结果进行进一步分析。

例如,我们可以绘制信号的频谱图以观察频率分量的变化。

matlabf = 0:1/(N-1):1; 频率序列power = abs(C).^2; 信号频谱plot(f, power);title('Wavelet Power Spectrum');xlabel('Frequency');ylabel('Power');以上代码计算了信号的频谱,使用“plot”函数将频谱图绘制出来。

matlab wsst 实现方法

matlab wsst 实现方法

matlab wsst 实现方法使用MATLAB实现WSST方法引言:小波分析是一种在时间和频率域上进行信号分析的有效工具。

小波分析可以将信号分解成不同频率的成分,使得对信号的分析更加全面和准确。

其中,WSST(Wavelet Synchrosqueezed Transform)方法是一种基于小波分析的信号处理方法,可以用于时频分析、频谱估计和信号特征提取等领域。

本文将介绍如何使用MATLAB实现WSST方法,并通过一个示例来展示其应用。

一、MATLAB中的小波分析工具MATLAB提供了丰富的小波分析工具箱,可以方便地进行小波变换、小波重构和小波分析等操作。

在实现WSST方法之前,我们首先需要了解MATLAB中的小波分析工具。

1. 小波变换小波变换是一种将信号分解成不同频率的成分的方法。

MATLAB中的小波变换函数为“wavetrans”。

通过选择不同的小波基函数和尺度参数,可以得到不同频率的小波系数。

2. 小波重构小波重构是一种将小波系数合成为原始信号的方法。

MATLAB中的小波重构函数为“iwavetrans”。

通过将不同频率的小波系数进行合成,可以得到原始信号的近似重构。

3. 小波分析工具箱MATLAB提供了丰富的小波分析工具箱,包括小波变换、小波重构、小波包分析、小波阈值去噪等功能。

通过使用这些工具,可以方便地进行小波分析和信号处理。

二、WSST方法的原理WSST方法是一种基于小波分析的信号处理方法,可以将信号在时频域上进行分析。

其原理是通过对信号进行小波变换,然后对小波系数进行重构,得到信号在时频域上的表示。

WSST方法可以提取信号的时频特征,从而实现对信号的分析和处理。

1. 小波变换我们需要对信号进行小波变换。

通过选择合适的小波基函数和尺度参数,可以将信号分解成不同频率的小波系数。

MATLAB中的小波变换函数为“wavetrans”。

2. 小波重构然后,我们需要对小波系数进行重构,得到信号在时频域上的表示。

matlab-小波分解与重构-滤波

matlab-小波分解与重构-滤波

m=load('A.txt');N=length(m);for i=1:N-1 ;q(i,1)=m(i,1);end;d=q';s1=d;change=1000;[c,l] = wavedec(d,3,'db4');%提取小波分解后的低频系数ca3=appcoef(c,l,'db4',3);%提取各层小波分解后的高频系数cd3=detcoef(c,l,3);cd2=detcoef(c,l,2);cd1=detcoef(c,l,1);%对信号强制消噪cdd3=zeros(1,length(cd3));%第三层高频系数cd3全置0 cdd2=zeros(1,length(cd2));%第二层高频系数cd2全置0 cdd1=zeros(1,length(cd1));%第一层高频系数cd1全置0c1=[ca3,cdd3,cdd2,cdd1];%构建新的系数矩阵s2=waverec(c1,l,'db4')%分解新的结构%[thr,sorh,keepapp]=ddencmp('den','wv',d);%s2=wdencmp('gbl',c,l,'db4',4,thr,sorh,keepapp);%subplot(413)%plot(1:change,s2(1:change));%title('默认软阈值消噪后信号')figure(1)subplot(9,2,1)plot(1:change,s1(1:change))title('原始信号')ylabel('S1')subplot(9,2,2)plot(1:change,s2(1:change))title('强制消噪后信号')ylabel('S2')wpt=wpdec(s1,3,'db1','shannon');%plot(wpt);%重构第三层8个节点小波系数s130=wprcoef(wpt,[3,0]);s131=wprcoef(wpt,[3,1]);s132=wprcoef(wpt,[3,2]);s133=wprcoef(wpt,[3,3]);s134=wprcoef(wpt,[3,4]);s135=wprcoef(wpt,[3,5]);s136=wprcoef(wpt,[3,6]);s137=wprcoef(wpt,[3,7]);%计算第三层8个节点小波能量s10=norm(s130);s11=norm(s131);s12=norm(s132);s13=norm(s133);s14=norm(s134);s15=norm(s135);s16=norm(s136);s17=norm(s137);%计算方差st10=std(s130);st11=std(s131);st12=std(s132);st13=std(s133);st14=std(s134);st15=std(s135);st16=std(s136);st17=std(s137);disp('正常信号的特征向量');snorm1=[s10,s11,s12,s13,s14,s15,s16,s17];std1=[st10,st11,st12,st13,st14,st15,st16,st17];%显示三层个节点小波系数subplot(9,2,3);plot(1:change,s130(1:change));ylabel('S130'); subplot(9,2,5);plot(1:change,s131(1:change));ylabel('S131'); subplot(9,2,7);plot(1:change,s132(1:change));ylabel('S132'); subplot(9,2,9);plot(1:change,s133(1:change));ylabel('S133'); subplot(9,2,11);plot(1:change,s134(1:change));ylabel('S134');subplot(9,2,13);plot(1:change,s135(1:change));ylabel('S135'); subplot(9,2,15);plot(1:change,s136(1:change));ylabel('S136'); subplot(9,2,17);plot(1:change,s137(1:change));ylabel('S137');。

小波变换matlab程序

小波变换matlab程序

小波变换matlab程序小波变换是一种信号处理技术,它可以将信号分解成不同频率的成分,并且可以在不同时间尺度上进行分析。

在Matlab中,可以使用内置的小波变换函数来实现这一技术。

下面是一个简单的小波变换Matlab程序示例:matlab.% 生成一个示例信号。

t = 0:0.001:1; % 时间范围。

f1 = 10; % 信号频率。

f2 = 50; % 信号频率。

y = sin(2pif1t) + sin(2pif2t); % 信号。

% 进行小波变换。

[c, l] = wavedec(y, 3, 'db1'); % 进行3层小波分解,使用db1小波基函数。

% 重构信号。

yrec = waverec(c, l, 'db1'); % 使用小波系数和长度进行信号重构。

% 绘制原始信号和重构信号。

subplot(2,1,1);plot(t, y);title('原始信号');subplot(2,1,2);plot(t, yrec);title('重构信号');这个程序首先生成了一个包含两个频率成分的示例信号,然后使用`wavedec`函数对信号进行小波分解,得到小波系数和长度。

接着使用`waverec`函数对小波系数和长度进行信号重构,最后绘制了原始信号和重构信号的对比图。

小波变换在信号处理、图像处理等领域有着广泛的应用,可以用于信号去噪、特征提取、压缩等方面。

通过Matlab中的小波变换函数,我们可以方便地进行小波分析和处理,从而更好地理解和利用信号的特性。

自己动手编写小波信号分解与重构的Matlab程序

自己动手编写小波信号分解与重构的Matlab程序

去年11月发布了一系列有关小波变换和图像处理的文章,把学习小波过程中的心得体会和编写的程序放在网上和大家共享交流。

半年来,感谢大家的关注和帮助,在相互的讨论交流中,我不断地从大家提出的问题中拓展自己的知识面,对小波的理论及其应用有了更深入的了解和掌握。

根据和大家讨论交流中发现的问题,对博客中的程序进行修正。

有关小波图像分解和重构的两篇文章中分享的程序,存在下列问题:(1)程序所用的小波函数只有非标准的Haar小波,其滤波器组为Lo_D=[1/2 1/2], Hi_D=[-1/2 1/2],是固化在mydwt2.m 的程序中的,不能选择其他的小波函数;(2)非标准的Haar小波,其分解出来的系数矩阵中,高频系数的细节内容(轮廓、边缘等特征)不明显;(3)函数mydwt2 中列变换的矩阵对象为输入矩阵,这是错误的,其矩阵对象应该是行变换后的缓存矩阵;(4)函数mydwt2 的输出用[LL,HL,LH,HH]表示,不是很规范,应改为[cA,cV,cH,cD]来表示,即一级小波变换输出的系数矩阵有4个部分:平均部分、垂直细节部分、水平细节部分和对角线细节部分。

(5)函数mywavedec2 的输出y 是与输入矩阵x 相同大小的矩阵,并且已将N级分解后所有的平均、细节系数组合成一体的。

实际上,这种定义只对Haar小波有效。

(6)原程序中要调用modmat 函数对图像矩阵进行修剪,使之能被2 的N 次方整除,主要是为了生成塔式结构图像而设的,对上述问题修正后,这个modmat 函数已不需使用了。

针对上述问题,我对程序作了修正,发布在今天的3篇文章里,请大家点击查看。

新修正的程序更为简洁易懂,功能也有所增强,可以用任意的小波函数进行小波分解,可根据小波分解系数矩阵重构出指定分解级的低频系数和原始图像.Matlab小波分析工具箱丰富的函数和强大的仿真功能为我们学习小波、用好小波提供了方便、快捷的途径,但是,如果我们要深入掌握小波分析的原理,真正学好、用好小波,就应该尽量用自己编写的程序去实现小波变换和信号分析,尽量在自己的程序中少调用Matlab提供的函数,多用自己的理解去编写相关的小波函数,这样的过程是一个探索、求知的过程,更能让我们体会到小波的强大和学习的乐趣。

小波分析Matlab程序

小波分析Matlab程序

1 绪论1.1概述小波分析是近15年来发展起来的一种新的时频分析方法。

其典型应用包括齿轮变速控制,起重机的非正常噪声,自动目标所顶,物理中的间断现象等。

而频域分析的着眼点在于区分突发信号和稳定信号以及定量分析其能量,典型应用包括细胞膜的识别,金属表面的探伤,金融学中快变量的检测,INTERNET 的流量控制等。

从以上的信号分析的典型应用可以看出,时频分析应用非常广泛,涵盖了物理学,工程技术,生物科学,经济学等众多领域,而且在很多情况下单单分析其时域或频域的性质是不够的,比如在电力监测系统中,即要监控稳定信号的成分,又要准确定位故障信号。

这就需要引入新的时频分析方法,小波分析正是由于这类需求发展起来的。

在传统的傅立叶分析中,信号完全是在频域展开的,不包含任何时频的信息,这对于某些应用来说是很恰当的,因为信号的频率的信息对其是非常重要的。

但其丢弃的时域信息可能对某些应用同样非常重要,所以人们对傅立叶分析进行了推广,提出了很多能表征时域和频域信息的信号分析方法,如短时傅立叶变换,Gabor 变换,时频分析,小波变换等。

其中短时傅立叶变换是在傅立叶分析基础上引入时域信息的最初尝试,其基本假定在于在一定的时间窗内信号是平稳的,那么通过分割时间窗,在每个时间窗内把信号展开到频域就可以获得局部的频域信息,但是它的时域区分度只能依赖于大小不变的时间窗,对某些瞬态信号来说还是粒度太大。

换言之,短时傅立叶分析只能在一个分辨率上进行。

所以对很多应用来说不够精确,存在很大的缺陷。

而小波分析则克服了短时傅立叶变换在单分辨率上的缺陷,具有多分辨率分析的特点,在时域和频域都有表征信号局部信息的能力,时间窗和频率窗都可以根据信号的具体形态动态调整,在一般情况下,在低频部分(信号较平稳)可以采用较低的时间分辨率,而提高频率的分辨率,在高频情况下(频率变化不大)可以用较低的频率分辨率来换取精确的时间定位。

因为这些特定,小波分析可以探测正常信号中的瞬态,并展示其频率成分,被称为数学显微镜,广泛应用于各个时频分析领域。

关于小波分析的matlab程序

关于小波分析的matlab程序

关于小波分析的matlab程序小波分析是一种在信号处理和数据分析领域中广泛应用的方法。

它可以匡助我们更好地理解信号的时域和频域特性,并提供一种有效的信号处理工具。

在本文中,我将介绍小波分析的基本原理和如何使用MATLAB编写小波分析程序。

一、小波分析的基本原理小波分析是一种基于窗口函数的信号分析方法。

它使用一组称为小波函数的基函数,将信号分解成不同频率和不同时间尺度的成份。

与傅里叶分析相比,小波分析具有更好的时频局部化性质,可以更好地捕捉信号的瞬时特征。

小波函数是一种具有局部化特性的函数,它在时域上具有有限长度,并且在频域上具有有限带宽。

常用的小波函数有Morlet小波、Haar小波、Daubechies小波等。

这些小波函数可以通过数学运算得到,也可以通过MATLAB的小波函数库直接调用。

小波分析的基本步骤如下:1. 选择合适的小波函数作为基函数。

2. 将信号与小波函数进行卷积运算,得到小波系数。

3. 根据小波系数的大小和位置,可以分析信号的时频特性。

4. 根据需要,可以对小波系数进行阈值处理,实现信号的去噪和压缩。

二、MATLAB中的小波分析工具MATLAB提供了丰富的小波分析工具箱,可以方便地进行小波分析的计算和可视化。

下面介绍几个常用的MATLAB函数和工具箱:1. `waveinfo`函数:用于查看和了解MATLAB中可用的小波函数的信息,如小波函数的名称、支持的尺度范围等。

2. `wavedec`函数:用于对信号进行小波分解,得到小波系数。

3. `waverec`函数:用于根据小波系数重构原始信号。

4. `wdenoise`函数:用于对小波系数进行阈值处理,实现信号的去噪。

5. 小波分析工具箱(Wavelet Toolbox):提供了更多的小波分析函数和工具,如小波变换、小波包分析、小波阈值处理等。

可以通过`help wavelet`命令查看工具箱中的函数列表。

三、编写小波分析程序在MATLAB中编写小波分析程序可以按照以下步骤进行:1. 导入信号数据:首先需要导入待分析的信号数据。

matlab小波分解与重构 -回复

matlab小波分解与重构 -回复

matlab小波分解与重构-回复Matlab小波分解与重构小波分解与重构是一种在信号处理领域广泛应用的技术,通过对信号进行小波分解可以提取信号中的不同频率成分,并对这些成分进行重构,从而实现信号的压缩、降噪、特征提取等一系列应用。

在Matlab中,小波分解与重构可以通过Wavelet Toolbox实现。

本文将详细介绍Matlab中的小波分解与重构的步骤和应用。

一、准备工作在进行小波分解与重构之前,首先需要导入Wavelet Toolbox。

在MATLAB命令窗口中输入"wavelet"命令,或者直接点击MATLAB工具栏的"Apps"选项卡,然后在"Wavelet Toolbox"中选择Wavelet Analyzer 来打开Wavelet Toolbox工具箱。

二、小波分解1. 导入信号在开始之前,需要先导入需要进行小波分解与重构的信号。

可以通过MATLAB的文件读取函数来读取信号数据。

例如,可以使用`audioread`函数来导入音频信号:matlab[x, fs] = audioread('your_audio_file.wav');其中,`x`为读取到的音频信号,`fs`为采样率。

2. 选择小波函数和参数在进行小波分解之前,需要选择合适的小波函数和分解层数。

在Wavelet Analyzer工具箱中,可以通过"Wavelet"选项卡来选择小波函数。

常用的小波函数有haar、db、sym等。

选择小波函数后,需要指定小波的分解层数。

3. 进行小波分解在选择好小波函数和参数后,可以使用`wavedec`函数进行小波分解。

语法如下:matlab[c, l] = wavedec(x, n, wavelet)其中,`x`为输入信号,`n`为小波的分解层数,`wavelet`为选择的小波函数。

`c`为分解系数向量,`l`为各个分解层级的长度向量。

几种常用小波函数对一维信号进行分解与重构MATLAB程序部分

几种常用小波函数对一维信号进行分解与重构MATLAB程序部分

几种常用小波函数对一维信号进行分解与重构MATLAB程序部分具体MATLAB程序如下%将十六进制转换为十进制(读入的数据为高八位第八位)function ndata=CommonToDec2(filename)s = filename;cdata = textread(s,'%2c','delimiter',' ');% for i = 1:m ;% k = 1 ;% for j = 1:n ;% if(text(i,j) ~= ' ')% cdata(i,k) = text(i,j) ;% k = k + 1 ;% end% end% end[m,n] = size (cdata) ;ndata=zeros(1,m/3);for i=0:m/3-1;k = 3*i + 1 ; %转换高八位if(cdata(k,1)>='0')&&(cdata(k,1)<='9')mdata=cdata(k,1)-48;ndata(i+1)=ndata(i+1)+mdata*16^5;elsemdata=cdata(k,1)-55;ndata(i+1)=ndata(i+1)+mdata*16^5;endif(cdata(k,2)>='0')&&(cdata(k,2)<='9')mdata=cdata(k,2)-48;ndata(i+1)=ndata(i+1)+mdata*16^4;elsemdata=cdata(k,2)-55;ndata(i+1)=ndata(i+1)+mdata*16^4;endk = 3*i + 2 ; %转换低八位if(cdata(k,1)>='0')&&(cdata(k,1)<='9')mdata=cdata(k,1)-48;ndata(i+1)=ndata(i+1)+mdata*16^3;elsemdata=cdata(k,1)-55;ndata(i+1)=ndata(i+1)+mdata*16^3;endmdata1=CommonToDec24('93.txt');[n1,m1]=size (mdata1);for i=1:m1;ldata(i)=mdata1(i)*3.3/4096;endfor i=0:m1/2-1;pdata(i+1)=(ldata(2*i+1)-ldata(2*i+2))/64;endN=m1/2;t=1:N;x=pdata;subplot(211);plot(x);[c,l]=wavedec(x,11,'haar');a2=wrcoef('a',c,l,'haar',2);subplot(212);plot(a2);title('第二层低频重构信号'); figure(2);[c,l]=wavedec(x,11,'db3');a2=wrcoef('a',c,l,'db3',2);subplot(211);plot(a2);title('第二层低频重构信号'); figure(3);[c,l]=wavedec(x,11,'sym2');a2=wrcoef('a',c,l,'sym2',2);subplot(211);plot(a2);title('第二层低频重构信号'); figure(4);[c,l]=wavedec(x,11,'Bior1.3');a2=wrcoef('a',c,l,'Bior1.3',2);subplot(211);plot(a2);title('第二层低频重构信号'); figure(5);[c,l]=wavedec(x,11,'coif2');a2=wrcoef('a',c,l,'coif2',2);subplot(211);plot(a2);title('第二层低频重构信号');结果与分析MATLAB程序运行结果如下图所示:从上到下依次为Haar小波,db小波,sym小波,CoiN小波,biorNr.Nd小波去噪结果:因为心电信号频率较低,频谱能量大都集中在低频部分,在对提取的心电信号的第二层低频信号进行重构后发现选择不同的函数,重构的信号具有不同的效果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Matlab小波分析工具箱丰富的函数和强大的仿真功能为我们学习小波、用好小波提供了方便、快捷的途径,但是,如果我们要深入掌握小波分析的原理,真正学好、用好小波,就应该尽量用自己编写的程序去实现小波变换和信号分析,尽量在自己的程序中少调用Matlab提供的函数,多用自己的理解去编写相关的小波函数,这样的过程是一个探索、求知的过程,更能让我们体会到小波的强大和学习的乐趣。

下面,我把自己编写的小波一维、二维信号分解和重构Matlab 程序共享出来,也希望有朋友共享自编的程序,共同学习,提高程序的效率和简洁性。

首先要说明的一点是,虽然是自己编写Matlab程序,但并不是说一点也不用Matlab的自带函数。

我们要编写的是实现小波变换的主要功能函数,而绘图等基本功能还是要用到Matlab函数的。

而且,根据小波变换的滤波器组原理,原始信号要通过低通、高通滤波器处理,这里就涉及到卷积这一运算步骤。

卷积——FFT算法的实现,相信很多朋友都能用Matlab、C语言等来实现,不过与Matlab自带的用机器语言编写的FFT程序相比,运算速度一般会慢几倍、几十倍。

所以,我的程序里边涉及卷积的就直接调用Matlab的conv()函数了。

我们知道,小波变换的一级分解过程是,原始信号分别进行低通、高通滤波,再分别进行二元下抽样,就得到低频、高频(也称为平均、细节)两部分系数;而多级分解则是对上一级分解得到的低频系数再进行小波分解,是一个递归过程。

以下是一维小波分解的程序:
function [cA,cD] = mydwt(x,lpd,hpd,dim);
% 函数[cA,cD]=MYDWT(X,LPD,HPD,DIM) 对输入序列x进行一维离散小波分解,输出分解序列[cA,cD]
% 输入参数:x——输入序列;
% lpd——低通滤波器;
% hpd——高通滤波器;
% dim——小波分解级数。

% 输出参数:cA——平均部分的小波分解系数;
% cD——细节部分的小波分解系数。

cA=x; % 初始化cA,cD
cD=[];
for i=1:dim
cvl=conv(cA,lpd); % 低通滤波,为了提高运行速度,调用MATLAB提供的卷积函数conv()
dnl=downspl(cvl); % 通过下抽样求出平均部分的分解系数
cvh=conv(cA,hpd); % 高通滤波
dnh=downspl(cvh); % 通过下抽样求出本层分解后的细节部分系数
cA=dnl; % 下抽样后的平均部分系数进入下一层分解
cD=[cD,dnh]; % 将本层分解所得的细节部分系数存入序列cD
end
function y=downspl(x);
% 函数Y=DOWMSPL(X) 对输入序列进行下抽样,输出序列Y。

% 下抽样是对输入序列取其偶数位,舍弃奇数位。

例如x=[x1,x2,x3,x4,x5],则
y=[x2,x4].
N=length(x); % 读取输入序列长度
M=floor(N/2); % 输出序列的长度是输入序列长度的一半(带小数时取整数部分)
i=1:M;
y(i)=x(2*i);
而重构则是分解的逆过程,对低频系数、高频系数分别进行上抽样和低通、高通滤波处理。

要注意重构时同一级的低频、高频系数的个数必须相等。

function y = myidwt(cA,cD,lpr,hpr);
% 函数MYIDWT() 对输入的小波分解系数进行逆离散小波变换,重构出信号序列y
% 输入参数:cA ——平均部分的小波分解系数;
% cD ——细节部分的小波分解系数;
% lpr、hpr ——重构所用的低通、高通滤波器。

lca=length(cA); % 求出平均、细节部分分解系数的长度
lcd=length(cD);
while (lcd)>=(lca) % 每一层重构中,cA 和cD 的长度要相等,故每层重构后,
% 若lcd小于lca,则重构停止,这时的cA 即为重构信号序列y 。

upl=upspl(cA); % 对平均部分系数进行上抽样
cvl=conv(upl,lpr); % 低通卷积
cD_up=cD(lcd-lca+1:lcd); % 取出本层重构所需的细节部分系数,长度与本层平均部分系数的长度相等
uph=upspl(cD_up); % 对细节部分系数进行上抽样
cvh=conv(uph,hpr); % 高通卷积
cA=cvl+cvh; % 用本层重构的序列更新cA,以进行下一层重构
cD=cD(1:lcd-lca); % 舍弃本层重构用到的细节部分系数,更新cD
lca=length(cA); % 求出下一层重构所用的平均、细节部分系数的长度lcd=length(cD);
end % lcd < lca,重构完成,结束循环
y=cA; % 输出的重构序列y 等于重构完成后的平均部分系数序列cA
function y=upspl(x);
% 函数Y = UPSPL(X) 对输入的一维序列x进行上抽样,即对序列x每个元素之间
% 插零,例如x=[x1,x2,x3,x4],上抽样后为y=[x1,0,x2,0,x3,0,x4];
N=length(x); % 读取输入序列长度
M=2*N-1; % 输出序列的长度是输入序列长度的2倍再减一
for i=1:M % 输出序列的偶数位为0,奇数位按次序等于相应位置的输入序列元素
if mod(i,2)
y(i)=x((i+1)/2);
else
y(i)=0;
end
end
我们知道,二维小波分解重构可以用一系列的一维小波分解重构来实现。

以下程序是基于Haar小波的二维小波分解和重构过程:
function [LL,HL,LH,HH]=mydwt2(x);
% 函数MYDWT2() 对输入的r*c维矩阵x 进行二维小波分解,输出四个分解系数子矩阵[LL,HL,LH,HH]
% 输入参数:x ——输入矩阵,为r*c维矩阵。

% 输出参数:LL,HL,LH,HH ——是分解系数矩阵的四个相等大小的子矩阵,大小均为r/2 * c/2 维
% LL:低频部分分解系数;HL:垂直方向分解系数;
% LH:水平方向分解系数;HH:对角线方向分解系数。

lpd=[1/2 1/2];hpd=[-1/2 1/2]; % 默认的低通、高通滤波器
[row,col]=size(x); % 读取输入矩阵的大小
for j=1:row % 首先对输入矩阵的每一行序列进行一维离散小波分解
tmp1=x(j,:);
[ca1,cd1]=mydwt(tmp1,lpd,hpd,1);
x(j,:)=[ca1,cd1]; % 将分解系数序列再存入矩阵x中,得到[L|H] end
for k=1:col % 再对输入矩阵的每一列序列进行一维离散小波分解
tmp2=x(:,k);
[ca2,cd2]=mydwt(tmp2,lpd,hpd,1);
x(:,k)=[ca2,cd2]; % 将分解所得系数存入矩阵x中,得到[LL,Hl;LH,HH]
end
LL=x(1:row/2,1:col/2); % LL是矩阵x的左上角部分
LH=x(row/2+1:row,1:col/2); % LH是矩阵x的左下角部分
HL=x(1:row/2,col/2+1:col); % HL是矩阵x的右上角部分
HH=x(row/2+1:row,col/2+1:col); % HH是矩阵x的右下角部分
function y=myidwt2(LL,HL,LH,HH);
% 函数MYIDWT2() 对输入的子矩阵序列进行逆小波变换,重构出矩阵y
% 输入参数:LL,HL,LH,HH ——是四个大小均为r*c 维的矩阵
% 输出参数:y ——是一个大小为2r*2c 维的矩阵
lpr=[1 1];hpr=[1 -1]; % 默认的低通、高通滤波器
tmp_mat=[LL,HL;LH,HH]; % 将输入的四个矩阵组合为一个矩阵[row,col]=size(tmp_mat); % 求出组合矩阵的行列数
for k=1:col % 首先对组合矩阵tmp_mat的每一列,分开成上下两半
ca1=tmp_mat(1:row/2,k); % 分开的两部分分别作为平均系数序列ca1、细节系数序列cd1
cd1=tmp_mat(row/2+1:row,k);
tmp1=myidwt(ca1,cd1,lpr,hpr); % 重构序列
yt(:,k)=tmp1; % 将重构序列存入待输出矩阵yt 的相应列,此时y=[L|H]
end
for j=1:row % 将输出矩阵y 的每一行,分开成左右两半ca2=yt(j,1:col/2); % 分开的两部分分别作为平均系数序列ca2、细节系数序列cd2
cd2=yt(j,col/2+1:col);
tmp2=myidwt(ca2,cd2,lpr,hpr); % 重构序列
yt(j,:)=tmp2; % 将重构序列存入待输出矩阵yt 的相应行,得到最终的输出矩阵y=yt
end
y=yt;。

相关文档
最新文档