2017年全国高中数学联赛江苏赛区初赛试题及答案
全国高中数学联赛江苏赛区初赛试题001
![全国高中数学联赛江苏赛区初赛试题001](https://img.taocdn.com/s3/m/cd207eda7cd184254a35350e.png)
全国高中数学联赛江苏赛区初赛试题(时间:4月20日上午8:00—10:00)一、选择题(本题满分30分,每小题6分)1. 如果实数m ,n ,x ,y 满足a n m =+22,b y x =+22,其中a ,b 为常数,那么mx+ny 的最大值为 []A. 2b a +B. abC. 222ba + D. 222b a +2. 设)(x f y =为指数函数xa y =. 在P(1,1),Q(1,2),M(2,3),⎪⎭⎫ ⎝⎛41,21N 四点中,函数)(x f y =与其反函数)(1x f y -=的图像的公共点只可能是点 []A. PB. QC. MD. N3. 在如图的表格中,如果每格填上一个数后,每一横行成等差数列,每一纵列成等比数列,那么z y x ++的值为答:[] A. 1 B. 2C. 3D. 44. 如果111C B A ∆的三个内角的余弦值分别是222C B A ∆的三个内角的正弦值,那么 []A. 111C B A ∆与222C B A ∆都是锐角三角形B. 111C B A ∆是锐角三角形,222C B A ∆是钝角三角形C. 111C B A ∆是钝角三角形,222C B A ∆是锐角三角形D. 111C B A ∆与222C B A ∆都是钝角三角形5. 设a ,b 是夹角为30°的异面直线,则满足条件“α⊆a ,β⊆b ,且βα⊥”的平面α,β[] A. 不存在 B. 有且只有一对 C. 有且只有两对 D. 有无数对二、填空题(本题满分50分,每小题10分)6. 设集合[]{}{}222<==-=x x B x x x A 和,其中符号[]x 表示不大于x 的最大整数,则A B =___________________.7. 同时投掷三颗骰子,于少有一颗骰子掷出6点的概率是P =__________(结果要求写成既约分数).8. 已知点O 在ABC ∆内部,022=++OC OB OA .OCB ABC ∆∆与的面积之比为____________. 9. 与圆0422=-+x y x 外切,且与y 轴相切的动圆圆心的轨迹方程为________________________.10. 在ABC ∆中,若tanAtanB=tanAtanC+tanctanB ,则 222c b a +=______________.三、解答题(本题满分70分,各小题分别为15分、15分、20分、20分)11. 已知函数c bx x x f ++-=22)(在1=x 时有最大值1,n m <<0,并且[]n m x ,∈时,)(x f 的取值范围为⎥⎦⎤⎢⎣⎡m n 1,1. 试求m ,n 的值.1 2 0.5 1 xyz12. A 、B 为双曲线19422=-y x 上的两个动点,满足0=⋅OB OA 。
(完整版)2017年高考数学江苏卷试题解析
![(完整版)2017年高考数学江苏卷试题解析](https://img.taocdn.com/s3/m/53a751300a4c2e3f5727a5e9856a561252d321ee.png)
绝密★启用前2017 年一般高等学校招生全国一致考试(江苏卷)数学 I参照公式:柱体的体积 V Sh ,此中 S 是柱体的底面积,h 是柱体的高.球的体积 V4πR3,此中 R 是球的半径.3一、填空题:本大题共14 小题,每题 5 分,合计 70 分.请把答案填写在答题卡相应地点上.........1.已知会合 A {1,2} , B { a, a23},若 AI B {1} ,则实数a的值为▲.【答案】1【分析】由题意 1 B ,明显a2 3 3,所以a 1 ,此时a234,知足题意,故答案为1.2.已知复数 z (1i)(12i) ,此中 i 是虚数单位,则z 的模是▲.【答案】10【分析】z(1i)(1 2i)1i 1 2i2510 ,故答案为10 .3.某工厂生产甲、乙、丙、丁四种不一样型号的产品,产量分别为200,400,300,100 件.为查验产品的质量,现用分层抽样的方法从以上所有的产品中抽取60 件进行查验,则应从丙种型号的产品中抽取▲件.【答案】 18【分析】应从丙种型号的产品中抽取6030018.18 件,故答案为10004.右图是一个算法流程图,若输入x的值为1 ,则输出y的值是▲.16【答案】2【分析】由题意得 y 2 log 212 ,故答案为 2 .16π1, 则tan▲.5.若 tan()64【答案】75tan()tan 1 177【分析】 tan tan[()]4461.故答案为.441tan()tan5514466.如图,在圆柱O1O2内有一个球 O ,该球与圆柱的上、下底面及母线均相切.记圆柱O1O2的体积为 V1,球 O 的体积为 V2,则 V1的值是▲.V2【答案】32V1r 22r3【分析】设球半径为r ,则V24r 3 2 .故答案为3.327.记函数f (x)6 x x2的定义域为 D .在区间[4,5] 上随机取一个数x ,则x D的概率是▲.【答案】5 98.在平面直角坐标系 xOy 中,双曲线x2y21的右准线与它的两条渐近线分别交于点P ,Q,其焦点是3F1 , F2,则四边形 F1 PF2Q 的面积是▲.【答案】 2 3【分析】右准线方程为33103x ,设 P( 3 10,30),则Q(3 10,30),x10,渐近线方程为 y10310101010F 1 ( 10,0) , F 2 ( 10,0) ,则 S 21030 .2 3109.等比数列 { a n } 的各项均为实数,其前n7 63 项和为 S n ,已知 S 3, S 6,则 a 8 = ▲ .44【答案】 3210.某企业一年购置某种货物 600 吨,每次购置 x 吨,运费为 6 万元 /次,一年的总储存花费为4x 万元.要使一年的总运费与总储存花费之和最小,则x 的值是▲ .【答案】 30【分析】 总花费为 4x600 6900 4 2 900240 ,当且仅当 x900 ,即 x 30 时等号成立.x4( x) xx11.已知函数 f ( x)32 x x1 ,此中 e 是自然对数的底数.若f ( a 1)2) 0 ,则实数 a 的取值xee xf (2 a范围是 ▲ .【答案】 [1,1]2【分析】因为f ( x)x 3 2x1e xf ( x) ,所以函数 f ( x) 是奇函数,e x因为f '( x)3x 22 e x e x 3x 2 2 2 e x e x 0 ,所以数 f ( x) 在 R 上单一递加,又 f (a 1) f (2a 2 ) 0 ,即 f (2a 2 )f (1 a) ,所以 2a 2 1 a ,即 2a 2a 10,解得 1a 1 ,故实数 a 的取值范围为 [ 1,1] .2 uuur uuur uuur 21 1 uuur uuur,且 tan=712.如图, 在同一个平面内, 向量 OA ,OB ,OC 的模分别为 , , 2 ,OA 与 OC 的夹角为,uuur uuur 45° uuur uuur uuur (m, n R ) ,则 m nOB 与OC 的夹角为 .若 OC mOA nOB ▲ .【答案】 3【分析】由 tan7 可得 sin7 2, cos2 ,依据向量的分解, 101022 2n cos 45 m cos 2nm5n m 10 5 7 ,即210,即易得m sin5n 7m,即得 m, n,n sin 452 n 7 2 m 0442 10所以 m n 3 .uuur uuur13.在平面直角坐标系xOy 中, A( 12,0), B(0,6), 点 P 在圆 O : x 2y 250 上,若 PA PB ≤ 20, 则点 P 的横坐标的取值范围是▲.【答案】 [ 5 2,1]14 .设 f ( x) 是定义在 R 上且周期为x 2 , x D , n1 1 的函数,在区间 [0,1) 上, f ( x)D , 此中会合 D { x x,x, xnn N*} ,则方程 f (x)lg x0 的解的个数是▲.【答案】 8【分析】因为 f ( x) [0,1) ,则需考虑 1 x 10 的状况,在此范围内,x Q 且 xD 时,设 xq, p, q N * , p 2 ,且 p, q 互质,p若 lg xQ ,则由 lg x(0,1) ,可设 lg xn, m, n N * , m 2 ,且 m, n 互质,mnqnq m所以 10m,则 10 )lg xQ ,p( ,此时左侧为整数,右侧为非整数,矛盾,所以p所以 lg x 不行能与每个周期内x D 对应的部分相等,只要考虑 lg x 与每个周期 x D 的部分的交点,画出函数图象,图中交点除外(1,0) 其余交点横坐标均为无理数,属于每个周期 x D 的部分,且 x 1 处(lg x)111 邻近仅有一个交点,xln101 ,则在xln10所以方程 f ( x) lg x0 的解的个数为 8.二、解答题:本大题共 6 小题,合计90 分.请在答题卡指定地区内作答,解答时应写出文字说明、证明过........程或演算步骤.15.(本小题满分14 分)如图,在三棱锥A-BCD 中, AB ⊥AD, BC⊥ BD,平面 ABD ⊥平面 BCD ,点 E, F(E 与 A, D 不重合 )分别在棱AD, BD 上,且 EF⊥ AD .求证:( 1) EF∥平面 ABC;(2) AD⊥ AC.16.(本小题满分14 分)已知向量 a (cos x, sin x), b (3,3), x[0, π].( 1)若 a∥ b,求 x 的值;( 2)记 f ( x) a b ,求 f (x) 的最大值和最小值以及对应的x 的值.( 2)f (x)a b (cos x,sin x)(3,3)3cos x 3 sin x2π3 cos(x) .6因为,所以 x ππ 7π,进而1cos(xπ3.6[ ,])2 666于是,当 x π π0 时,3;6,即 x取到最大值6当 x π,即 x5π取到最小值 2 3 .6时,617.(本小题满分14 分)如图,在平面直角坐标系xOy 中,椭圆x2y21(a b0) 的左、右焦点分别为F1, F2,离心率为E :2b2a1,两准线之间的距离为8F1作直线 PF1的垂线 l1,过点 F22.点 P 在椭圆 E 上,且位于第一象限,过点作直线 PF2的垂线 l2.(1)求椭圆E的标准方程;(2)若直线 l1, l2的交点 Q 在椭圆E上,求点P的坐标.【分析】( 1)设椭圆的半焦距为c.因为椭圆 E 的离心率为1,两准线之间的距离为8c12a28 ,2,所以2,a c解得 a 2, c 1 ,于是b a2c23,所以椭圆 E 的标准方程是x2y21.43( 2)由( 1)知,F1(1,0) , F2 (1,0).设 P(x0 , y0 ) ,因为 P 为第一象限的点,故x00, y00 .当 x01时, l2与 l1订交于 F1,与题设不符.由①②,解得xx0 , y x021,所以 Q(x0,x21).y0y0因为点 Q 在椭圆上,由对称性,得x021221221 .y0y0,即x0y0或 x0y0又P在椭圆 E 上,故x02y02 1 .43x02y02147, y0 3 7x02y021由x02y02,解得x0;x02y021,无解.4317743所以点 P的坐标为(47,3 7).7718.(本小题满分16 分)如图,水平搁置的正四棱柱形玻璃容器Ⅰ和正四棱台形玻璃容器Ⅱ的高均为32cm,容器Ⅰ的底面对角线 AC 的长为10 7 cm,容器Ⅱ的两底面对角线EG , E1G1的长分别为14cm 和 62cm.分别在容器Ⅰ和容器Ⅱ中注入水,水深均为12cm.现有一根玻璃棒l ,其长度为40cm.(容器厚度、玻璃棒粗细均忽视不计)( 1)将 l 放在容器Ⅰ中,l 的一端置于点 A 处,另一端置于侧棱CC1上,求l没入水中部分的长度;( 2)将 l 放在容器Ⅱ中,l 的一端置于点 E 处,另一端置于侧棱GG1上,求 l 没入水中部分的长度.【分析】( 1)由正棱柱的定义,CC1⊥平面ABCD,所以平面 A1 ACC1⊥平面ABCD, CC1⊥ AC .记玻璃棒的另一端落在CC1上点M处.因为 AC 10 7, AM40 ,所以MC402(10 7) 230,进而 sin ∠MAC 3,4记AM 与水面的交点为P ,过P 作P1Q1⊥AC,Q1为垂足,11则 P1Q1⊥平面 ABCD ,故 P1Q1=12,进而 AP1=P1Q116 .sin∠ MAC答:玻璃棒 l 没入水中部分的长度为 16cm.(假如将“没入水中部分”理解为“水面以上部分”,则结果为24cm)过 G 作 GK⊥ E1G1, K 为垂足,则 GK =OO1=32.因为 EG = 14, E1G1= 62,所以 KG 1=62 1424 ,进而GG1KG12GK 224232240 .2设 ∠EGG 1,∠ENG, 则 sinsin(∠ KGG 1 ) cos ∠ KGG 14 .25因为,所以 cos 3 .52在 △ENG 中,由正弦定理可得40 14 ,解得 sin7 .sin sin25因为 0,所以 cos 24 .252于是 sin ∠ NEG sin()sin() sincoscos sin4 24 ( 3) 7 3 .525 5 255记 EN 与水面的交点为 P 22222为垂足,则 2 2,过P 作PQ ⊥EG ,Q P Q ⊥平面 EFGH ,故 P 2Q 2=12,进而 EP 2=P 2Q 2 20 .sin ∠ NEG答:玻璃棒 l 没入水中部分的长度为 20cm .(假如将“没入水中部分”理解为“水面以上部分”,则结果为 20cm)19.(本小题满分16 分)对于给定的正整数 k ,若数列 { a n } 知足: a n k a n k 1Lan 1an 1Lan k 1an k2ka n 对随意正整数 n(n k) 总成立,则称数列{ a n } 是“ P(k ) 数列”. ( 1 )证明:等差数列 { a n } 是“ P(3) 数列”;( 2 )若数列 { a n } 既是“ P(2) 数列”,又是“ P(3) 数列”,证明: { a n } 是等差数列.【分析】( 1)因为 { a}是等差数列,设其公差为d ,则 ana( n1)d ,n1进而,当 n4 时, a n ka nk a 1(n k 1)d a 1 (n k 1)d2a 1 2( n 1)d 2a n , k 1,2,3,所以 a n 3 a n 2 +a n 1 +a n 1 a n 2 +a n 3 6a n ,所以等差数列 { a n } 是“ P(3) 数列”.a n2 a n34a n1 ( a n 1 a n ) ,④将③④代入②,得a n 1 a n 12a n,此中n 4 ,所以 a3, a4 , a5 ,L是等差数列,设其公差为 d' .在①中,取在①中,取n4,则 a2a3a5a64a4,所以 a2a3d' ,n3,则 a1a2a4a54a3,所以 a1a32d' ,所以数列 { a n}是等差数列.20.(本小题满分16 分)已知函数 f ( x)32f (x) 的极值点是 f (x) 的零点.(极值点x ax bx 1(a 0,b R ) 有极值,且导函数是指函数取极值时对应的自变量的值)( 1)求 b 对于a的函数关系式,并写出定义域;( 2)证明: b 23a;( 3)若 f (x) , f ( x) 这两个函数的所有极值之和不小于7,求a的取值范围.2当 a3时, f (x)>0(x1),故 f (x) 在R上是增函数, f (x)没有极值;当 a3时, f (x)=0 有两个相异的实根x1=aa23b,x2= aa23b .33列表以下:x(, x1)x1( x1 , x2 )x2(x2 , )f (x)+0–0+f (x)Z极大值]极小值Z故 f (x) 的极值点是 x 1 , x 2 .进而 a 3 .所以 b2a 23(3,) .9,定义域为a( 2)由( 1)知,b = 2a a 3 .设 g (t )= 2t3 ,则 g (t )=2 32t 2 27 .a 9 a a 9t9 t 2 9t 2当t ( 3 6, ) 时, g (t) 0 ,进而 g(t ) 在 ( 3 6 ,) 上单一递加.22因为 a3 ,所以 a a3 3 ,故 g (a a )>g (3 3)= 3 ,即 b > 3 .所以 b 2 >3a .a记 f (x) , f (x) 所有极值之和为 h(a) ,因为 f (x) 的极值为 b a21 a2 3,所以 h(a)=1 a23 , a 3 .39a9 a因为 h (a)=2 a3 0 ,于是 h(a) 在 (3, ) 上单一递减.9 a 2因为 h(6)=7h(6) ,故 a 6 .所以 a 的取值范围为 (3,6] . ,于是 h(a)2数学Ⅱ(附带题)21.【选做题】此题包含A 、B 、C 、D 四小题,请选定此中两题 ,并在相应的答题地区内作答,若多做,....... ............ 则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤.A . [ 选修 4-1:几何证明选讲 ]( 本小题满分 10 分)如图, AB 为半圆 O 的直径,直线 PC 切半圆 O 于点 C , AP ⊥ PC , P 为垂足.求证:( 1) PACCAB ;( 2) AC 2AP AB .【分析】( 1)因为 PC 切半圆 O 于点 C ,所以 ∠ PCA ∠ CBA , 因为 AB 为半圆 O 的直径,所以 ∠ACB 90 .因为 AP ⊥ PC ,所以 ∠APC90 ,所以 PACCAB .( 2)由( 1)知, △APC ∽△ ACB ,故APAC,即 AC 2AP ·AB .AC ABB . [ 选修 4-2:矩阵与变换 ](本小题满分 10 分 )0 1 1 0 已知矩阵 A, B.121()求 AB ;x 2 y 2 C C21 在矩阵 AB 对应的变换作用下获得另一曲线2 ,求 2 的方程.( )若曲线 C 1 :82C . [ 选修 4-4:坐标系与参数方程](本小题满分 10 分)x 8t在平面直角坐标系 xOy 中,已知直线 l 的参照方程为t( t 为参数 ),曲线 C 的参数方程为y2x 2s 2P 到直线 l 的距离的最小值.y( s 为参数 ).设 P 为曲线 C 上的动点,求点2 2s【分析】直线 l 的一般方程为x 2 y 8 0.因为点 P 在曲线 C 上,设 P(2 s 2 , 22s) ,进而点 P 到直线 l 的的距离d | 2s242s 8 | 2( s2) 242时,d min 4 5 .2(2)25,当s15所以当点 P 的坐标为 (4, 4)时,曲线 C 上点P到直线 l 的距离取到最小值45 .5D .[选修 4-5:不等式选讲](本小题满分10 分)已知 a,b,c,d 为实数,且a2b24,c2 d 216, 证明: ac bd ≤ 8.【必做题】第22 题、第 23 题,每题10 分,合计20 分.请在答题卡指定地区内作答,解答时应写出文字.......说明、证明过程或演算步骤.22.(本小题满分10 分)如图,在平行六面体ABCD-A 1B1C1D1中, AA1⊥平面 ABCD ,且 AB=AD =2, AA1 = 3 ,BAD 120 .(1)求异面直线 A1B 与 AC1所成角的余弦值;(2)求二面角 B-A1D-A 的正弦值.【分析】在平面ABCD 内,过点 A 作 AE AD ,交 BC 于点 E.因为 AA1平面ABCD,所以AA1AE,AA 1AD .uuur uuur uuur如图,以 { AE , AD , AA1} 为正交基底,成立空间直角坐标系A-xyz.因为 AB=AD =2,AA 1=3,BAD 120.则A(0,0,0), B( 3, 1,0), D(0,2,0), E( 3,0,0), A1(0,0,3), C1 ( 3,1, 3) .uuur (1)A1B ( 3, uuur uuuur 则cos A1 B, AC1uuuur1, 3), AC1(3,1,3),uuur uuuur(3,1, 3) ( 3,1, 3)1 A1B AC1uuur uuuur.| A1B || AC1 |77所以异面直线A1B 与 AC1所成角的余弦值为 1 .7设二面角 B-A1D-A 的大小为,则 | cos|3.4因为[0,] ,所以sin1cos2717 ..所以二面角B-A D-A 的正弦值为4423.(本小题满分10 分)已知一个口袋中有 m 个白球, n 个黑球(m,n N*,n ≥ 2 ),这些球除颜色外所有同样.现将口袋中的球随机地逐一拿出,并放入以下图的编号为1,2, 3,L , m n 的抽屉内,此中第 k 次拿出的球放入编号为 k 的抽屉 (k 1, 2, 3,L , m n) .123L m n( 1)试求编号为 2 的抽屉内放的是黑球的概率p ;( 2 )随机变量X 表示最后一个拿出的黑球所在抽屉编号的倒数, E ( X ) 是X的数学希望,证明:E(X )n.n)( n(m1)【分析】( 1)编号为2 的抽屉内放的是黑球的概率C m n 1n 1n p 为: p.C m n nm n( 2)随机变量 X 的概率散布为1 1 111 Xn 1n 2nkm nC n n 11PCnm n随机变量 X 的希望为C n n1 C n n11C m nnC m nnmn1C k n11E(X)k n kC m nnC k n11C n n 1m 1C m nnC m n n1m n1(k 1)!.C m n n k n k (n 1)!(kn)!1m n(k 2)!1m n(k 2)!所以 E(X)C m nn ( n1)!( k n)! (n1)C mnn k n(n2)!( kn)!n k1n 2n 2 n 2 1n 1 n 2n 2 n 2(n 1)C m n (1 C n 1C nL C m n 2 )(C n 1Cn 1C n L C m n 2 )n( n 1)C m n n1n 1 n 2 Ln 2L1n 1n 2(n 1)C m n (C nC nCm n 2)(Cm n 2Cm n 2)n( n 1)C m nnC m n 1n 1n ,(n 1)C mn( m n)( n 1)n即E(X)n.n)(n 1)(m。
2017年全国高中数学联赛一试(B卷)答案
![2017年全国高中数学联赛一试(B卷)答案](https://img.taocdn.com/s3/m/8fa2ec8edd88d0d233d46a66.png)
成立,求实 成立.由于
解:设 t 2 x ,则 t [2, 4] ,于是
对所有
t a 5 t (t a ) 2 (5 t ) 2 (2t a 5)(5 a ) 0 . ………………8 分 对给定实数 a ,设 f (t ) (2t a 5)(5 a ) ,则 f (t ) 是关于 t 的一次函数或常 值函数.注意 t [2, 4] ,因此 f (t ) < 0 等价于 f (2) (1 a )(5 a ) 0, ………………12 分 f (4) (3 a )(5 a ) 0, 解得 3 a 5 . 所以实数 a 的取值范围是 3 a 5 . ………………16 分 10. ( 本 题 满 分 20 分 ) 设 数 列 {an } 是 等 差 数 列 , 数 列 {bn } 满 足 2 , n 1, 2, . bn an1an2 an (1)证明:数列 {bn } 也是等差数列; (2) 设数列 {an } 、 并且存在正整数 s, t , 使得 as bt {bn } 的公差均是 d 0 , 是整数,求 a1 的最小值. 解: (1)设等差数列 {an } 的公差是 d ,则 2 2 bn1 bn ( an2an3 an 1 ) ( an1an2 an ) an2 ( an3 an1 ) ( an1 an )( an1 an ) an2 2d ( an1 an ) d
2017 年全国高中数学联合竞赛一试(B 卷) 参考答案及评分标准
说明: 1. 评阅试卷时,请依据本评分标准. 填空题只设 8 分和 0 分两档;其他各题的 评阅,请严格按照本评分标准的评分档次给分,不得增加其他中间档次. 2. 如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可 参考本评分标准适当划分档次评分, 解答题中第 9 小题 4 分为一个档次, 第 10、 11 小题 5 分为一个档次,不得增加其他中间档次. 一、填空题:本大题共 8 小题,每小题 8 分,共 64 分. 1. 在等比数列 {an } 中, a2 2, a3 3 ,则
2017年全国高中数学联赛江苏赛区复赛参考答案
![2017年全国高中数学联赛江苏赛区复赛参考答案](https://img.taocdn.com/s3/m/fcbd9200a5e9856a561260af.png)
36t2(t2+12) 1 , 不妨设 k>0, 令 t=k+ ,则 t≥2,可化得 PQ2= k (3t2+4)2 6t t2+12 . 即 PQ= 3t2+4 设 B(x0,y0),则切点弦 PQ 的方程是 x0x+3y0y=3. k2-1 1 x- 上,所以 y0=-2. 又 P,Q 在 l:y= 2 4k 3(k2-1) . 从而 x0= 2k k2-1 2 3( ) +12 k 3t2 所以 B 到 PQ 的距离 d= = . 2 k -1 2 2 t2+12 2 ( ) +16 k 6t t2+12 1 9t3 1 3t2 因此△BPQ 的面积 S= ×d×PQ= × × = . 2 2 2 t2+12 2(3t2+4) 3t2+4 ……………………………… 16 分 1 1 9 令 u= ,则 0<u≤ ,化得 S= . t 2 2(4u3+3u) 1 当 0<u≤ 时,4u3+3u 递增. 2 9 1 所以 0<4u3+3u≤2,即 S≥ ,当且仅当 u= ,即 t=2,k=1 时,等号成立. 4 2 9 . 故△BPQ 的面积 S 的取值范围是 [ ,+∞) 4 四、解答题(本题满分 20 分) 1 1 设函数 fn(x)=1+x+ x2+…+ xn. 2! n! (1)求证:当 x∈(0,+∞) ,n∈N* 时,ex > fn(x); (2)设 x>0,n∈N*.若存在 y∈R 使得 ex = fn(x)+ 解: (1)用数学归纳法证明如下: (i) 当 n=1 时,令 f(x)=ex-f1(x)=ex-x-1,则 f ′(x)=ex-1>0,x∈(0,+∞)恒成立, 所以 f(x)在区间(0,+∞)为增函数. 又因为 f(0)=0,所以 f(x)>0,即 ex>f1(x). ……………………………… 5 分 1 xn+1ey,求证:0<y<x. (n+1)! ………………………… 20 分
2017年普通高等学校招生全国统一考试数学试题(江苏卷,含解析)
![2017年普通高等学校招生全国统一考试数学试题(江苏卷,含解析)](https://img.taocdn.com/s3/m/ab7356c0b7360b4c2f3f6463.png)
2x
ex
1 ex ,其中 e 是自然对数的底数. 若 f ( a 1)
f (2a2) ≤ 0 ,则实数 a 的取值
范围是 ▲ .
1 【答案】 [ 1, ]
2
【考点】利用函数性质解不等式
【名师点睛】 解函数不等式时, 首先根据函数的性质把不等式转化为 f ( g( x)) f (h(x)) 的形式, 然后
( 是点集、数集或其他
情形 ) 和化简集合是正确求解的两个先决条件.
( 2)注意元素的互异性.在解决含参数的集合问题时,要注意检验集合中元素的互异性,否则很可能
会因为不满足“互异性”而导致错误.
( 3)防范空集.在解决有关 A B , A B 等集合问题时,往往容易忽略空集的情况, 一定要先考
虑 时是否成立,以防漏解.
【考点】线面平行判定定理、线面垂直判定与性质定理、面面垂直性质定理 【名师点睛】垂直、平行关系证明中应用转化与化归思想的常见类型:( 转化为证明线线平行;( 2)证明线面垂直,需转化为证明线线垂直;( 证明线面垂直. 16.(本小题满分 14 分) 已知向量 a (cos x, sin x), b (3, 3), x [0, π].
5
【答案】
9
▲.
【考点】几何概型 【名师点睛】( 1)当试验的结果构成的区域为长度、面积或体积等时,应考虑使用几何概型求解. ( 2)利用几何概型求概率时,关键是试验的全部结果构成的区域和事件发生的区域的寻找,有时需要 设出变量,在坐标系中表示所需要的区域.
( 3)几何概型有两个特点:①无限性,②等可能性.基本事件可以抽象为点,尽管这些点是无限的,
p
p
lg x Q ,
因此 lg x 不可能与每个周期内 x D 对应的部分相等,
2017年全国高中数学联赛江苏赛区复赛参考答案
![2017年全国高中数学联赛江苏赛区复赛参考答案](https://img.taocdn.com/s3/m/fcbd9200a5e9856a561260af.png)
1 1 + 的最小值. (x+y)2 (x-y)2 ………………………… 4 分
1 1 1 1 1 )((x+y)2+(x-y)2) 2 + 2 = ( 2 + 4 (x+y) (x-y) (x+y) (x-y)2
E E E E E
1 ≥ (1+1)2 4
A A E
6k 6 ,y =1- 2 . k2+3 Q k +3
y-yP x-xP (1+3k2)(y+1)-2 (1+3k2)x+6k 所以 直线 l: = ,即 l: = . yQ-yP xQ-xP (1+3k2)(yQ+1)-2 (1+3k2)xQ+6k k2-1 1 化简得 l:y= x- . 2 4k 1 1 直线 l 纵截距是常数- ,故直线 l 过定点(0,- ). 2 2 ……………………… 8 分
(ii) 假设 n=k 时,命题成立,即当 x∈(0,+∞)时,ex>fk(x), 1 1 1 k+1 x ), 则 n=k+1 时,令 g(x)=ex-fk+1(x)=ex-(1+x+ x2+…+ xk+ 2! k! (k+1)! 1 1 所以 g(x)在区间(0, +∞)为增函数. 则 g′(x)=ex-(1+x+ x2+…+ xk)=ex-fk(x)>0, 2! k! 又因为 g(0)=0,所以 g(x)>0,x∈(0,+∞)恒成立,即 ex>fk+1(x),x∈(0,+∞). 所以 n=k+1 时,命题成立. 由(i)(ii)及归纳假设可知,∀n∈N*,当 x∈(0,+∞)时,ex > fn(x). ……………………………… 10 分 1 n+1 y 1 n+1 x e > fn(x)+ x , (2)由(1)可知 ex >fn+1(x),即 fn(x)+ (n+1)! (n+1)! 所以 ey>1,即 y>0.下证:y<x. 1 1 1 - 下面先用数学归纳法证明:当 x>0,ex<1+x+ x2+…+ xn 1+ xnex,n∈N*. 2! n! (n-1)! (i) 当 n=1 时,令 F(x)=1+xex-ex,则 F′(x)=xex>0,x∈(0,+∞), 所以 F(x)在区间(0,+∞)单调增. 又 F(0)=0,故 F(x)>0,即 ex<1+xex. (ii) 假设 n=k 时,命题成立, 1 1 1 - 即当 x∈(0,+∞)时,ex<1+x+ x2+…+ xk 1+ xkex. 2! k ! (k-1)! 1 1 1 k+1 x x 则当 n=k+1 时,令 G(x)=1+x+ x2+…+ xk+ x e -e , 2! k! (k+1)! 1 1 k+1 x x 1 k+1 x 1 x e -e > x e >0, G′(x)=1+x+ x2+…+ xkex+ k! (k+1)! (k+1)! 2! 所以 G(x)在区间(0,+∞)上为增函数,又 G(0)=0,故 G(x)>0,即 1 1 1 k+1 x ex<1+x+ x2+…+ xk+ x e ,x∈(0,+∞). 2! k! (k+1)! 由(i)(ii)及归纳假设, 1 1 1 n+1 x 可知当 x∈(0,+∞)时,ex<1+x+ x2+…+ xn+ x e ,对 n∈N*成立. 2! n! (n+1)! 1 1 1 n+1 y 1 1 1 n+1 x x e <1+x+ x2+…+ xn+ x e, 所以 ex=1+x+ x2+…+ xn+ 2! n! (n+1)! 2! n! (n+1)! 从而 ey<ex,即 y<x.证毕. ……………………………… 20 分
(数学)2017年全国高中数学联赛江苏复赛试题+Word版含答案
![(数学)2017年全国高中数学联赛江苏复赛试题+Word版含答案](https://img.taocdn.com/s3/m/476fe23bf46527d3240ce0d7.png)
(数学)2017年全国高中数学联赛江苏复赛试题+Word版含答案2017年全国高中数学联赛江苏赛区复赛一、填空题(每题8分,满分64分,将答案填在答题纸上)1.若数列{}na 满足*+∈+==N n a a a an n n ,232,2111,则2017a 的值为 . 2.若函数()()()bax x xx f ++-=221对于任意R x ∈都满足()()x f x f -=4,则()x f 的最小值是 .3.在正三棱柱111C B A ABC -中,E D ,分别是侧棱11,CC BB 上的点,BD BC EC 2==,则截面ADE 与底面ABC 所成的二面角的大小是 .4.若13cos 2cos cos 3sin 2sin sin =+x x x x x x ,则=x .5. 设y x ,是实数,则9422244+++y x y x 的最大值是 . 6. 设ΛΛΛ,3,2,1,,,2121=+++=∈+++=*m a a a S N n n a m m n ,则201721,,,S S S Λ中能被2整除但不能被4整除的数的个数是 .7. 在直角平面坐标系xOy 中,21,F F 分别是双曲线()01222>=-b by x 的左、右焦点,过点1F 作圆122=+y x的切线,与双曲线左、右两支分别交于点B A ,,若ABB F =2,则b 的值是 .8. 从正1680边形的顶点中任取若干个,顺次相连成多边形,其中正多边形的个数为 . 二、解答题 9.已知R y x ∈,,且yx y x ≠=+,222,求()()2211y x y x -++的最小值.10.在平面直角坐标系xOy 中,椭圆13:22=+y x C 的上顶点为A ,不经过点A 的直线l 与椭圆C 交于Q P ,两点,且.0=⋅(1)直线l 是否过定点?若是,求出定点坐标;若不是,说明理由.(2)过Q P ,两点分别作椭圆的切线,两条切线交于点B ,求BPQ ∆面积的取值范围.11.设函数().!1!2112n nx n xx x f ++++=Λ(1)求证:当()*∈+∞∈N n x ,,0时,()x f en x>;(2)设*∈>N n x ,0,若存在R y ∈使得()()yn n xe x n xf e1!11+++=,求证:.0x y <<2017年全国高中数学联赛江苏赛区复赛参考答案与评分标准加试1. 已知圆O 的内接五边形ABCDE 中AD 与BE 相交于点CF F ,的延长线交圆O 于点P ,且.ED BC CD AB ⋅=⋅ 求证:.AE OP ⊥2.设y x ,是非负实数,22,+++=+=y x b y x a ,若b a ,是两个不相邻的整数,求b a ,的值,3.平面上n 2个点()N n n ∈>,1,无三点共线,任意两点间连线段,将其中任意12+n条线段染成红色.求证:三边都为红色的三角形至少有n 个.4.设n 为正整数,nn ban =++++131211Λ, 其中nnb a ,为互素的正整数,对素数p ,令集合{}np a p N n n S ,*∈=,证明:对每一个素数5≥p ,集合pS 中至少有三个元素.试卷答案1.302612. 16-3. 0454.Z k k ∈,π5.146.2527.1+8.3432二、解答题9.解:因为222=+y x ,所以()()422=-++y x y x ,所以()()()()()()()222222114111y x y x y x y x y x y x -++⎪⎪⎭⎫ ⎝⎛-++=-++().111412=+≥当0,2==y x 时,()().11122=-++y x y x所以()()2211y x y x -++的最小值为.110.解:(1) 因为0=⋅,所以.⊥ 直线AQ AP ,与x 轴平行时,P 或Q 与A 重合,不合题意.设1:+=kx y PA ,则.11:+-=x k y QA 将1+=kx y 代入3322=+y x ,得().063122=++kx xk所以2262, 1.1313PPk xy k k =-=-++同理.361,3622+-=+=k y k k xQQ所以,直线:P PQPQ Py y x x l y yx x --=--,即()()()()()()kx k k x k y k y k l QQ63163121312131:2222++++=-++-++, 化简得.2141:2--=x k k y l直线l 纵截距是常数21-,故直线l 过定点.21,0⎪⎭⎫ ⎝⎛- (2)由 (1) ,223116kk k AP ++=,同理,.31622++=k k AQ 所以()()()()()()()()222222222222222223313131363131136+++++⋅+=⎥⎥⎦⎤⎢⎢⎣⎡+++⋅+=k k k k k k k k k k PQ()()().3103115151362242462++++++=k kk k k k不妨设0>k ,令kk t 1+=,则2≥t ,可化得()()22222431236++=tt t PQ,即.4312622++=t t t PQ设()0,y x B ,则切点弦PQ 的方程是330=+y y x x , 又Q P ,在2141:2--=x k k y l 上,所以2-=y,从而().21320kk x -=所以B 到PQ 的距离.122316121213222222+=+⎪⎪⎭⎫⎝⎛-+⎪⎪⎭⎫ ⎝⎛-=t t k k k k d因此的面积().43294312612232121232222+=++⨯+⨯=⨯⨯=t t t t t t t PQ d S令t u 1=,则210≤<u ,化得().34293u u S +=当210≤<u 时,uu343+递增,所以23403≤+<u u,即49≥S ,当且仅当21=u ,即1,2==k t 时,等号成立,故BPQ ∆的面积S 的取值范围是.,49⎪⎭⎫⎢⎣⎡+∞ 11.解: (1) 用数学归纳法证明如下: (ⅰ)当1=n 时,令()()11--=-=x e x f ex f x x,则()()+∞∈>-=',0,01x e x f x 恒成立,所以()x f 在区间()+∞,0为增函数, 又因为()00=f ,所以()0>x f ,即().1x f ex>(ⅱ)假设k n =时,命题成立,即当()+∞∈,0x 时,()x f e k x >,则1+=k n 时,令()()()⎪⎪⎭⎫ ⎝⎛++++++-=-=++121!11!1!211k k x k x x k x k x x e x f e x g Λ,则()()0!1!2112>-=⎪⎭⎫ ⎝⎛++++-='x f e x k x x ex g k x k xΛ,所以()x g 在区间()+∞,0为增函数,又因为()00=g ,所以()()+∞∈>,0,0x x g 恒成立,即()()+∞∈>+,0,1x x f e k x ,所以1+=k n 时,命题成立.由(ⅰ)(ⅱ)及归纳假设可知,*∈∀N n ,当()+∞∈,0x 时,().x f en x>(2)由(1)可知()x f en x1+>,即()()()()11!11!11++++>++n n y n n x n x f e x n x f ,所以1>ye,即0>y ,下证:.x y <下面先用数学归纳法证明:当().,!1!11!211,012*-∈+-++++<>N n e x n x n x x e x x n n x Λ(ⅰ)当1=n 时,令()xxe xe x F -+=1,则()()+∞∈>=',0,0x xe x F x,所以()x F 在区间()+∞,0单调增,又()00=F ,故()0>x F ,即.1x xxe e +<(ⅱ)假设k n =时,命题成立,即当()+∞∈,0x 时,().!1!11!21112k k k xe x k x k x x e+-++++<-Λ则当1+=k n 时,令()()xx k k e e x k x k x x x G -++++++=+12!11!1!211Λ,()()()0!11!11!1!211112>+>-++++++='++x k x x k x k e x k e e x k e x k x x x G Λ,所以()x G 在区间()+∞,0上为增函数,又()00=G ,故()0>x G ,即()()+∞∈++++++<+,0,!11!1!21112x e x k x k x x e x k k x Λ.由(ⅰ)(ⅱ)及归纳假设, 可知当()+∞∈,0x 时,(),!11!1!21112x n n xe x n x n x x e +++++++<Λ对*∈Nn 成立, 所以()()xn n y n n x e x n x n x x e x n x n x x e 1212!11!1!211!11!1!211++++++++<++++++=ΛΛ,从而xye e<即x y <,证毕.复赛加试答案1.证明:连接.,PE PA因为五边形ABCDE 内接于圆O , 所以EDF ABF DEF BAF ∠=∠∠=∠,, 所以EDF ABF ∆∆~,所以.FD FBED AB = ① 同理,BF PF BC PE =, ② .PFDFPA DC = ③由①⨯②⨯③得.1=⋅⋅PA DCBC PE ED AB 因为ED BC CD AB ⋅=⋅,所以.1=⋅EDDC BC AB 所以PA PE =,即点P 是弧AE 的中点,所以.AE OP ⊥2.解:因为b a ,是不相邻的整数, 所以()()()yy x x y x y x a b -++-+=+-+++=-≤22222.32222222222<=+≤+++++=y y xx由于a b -是整数,所以.2=-a b 设Z n n b n a ∈+=-=,1,1,即122,1+=+++-=+n y x n y x ,则122,1+=+-+--=--n y x y x n y x y x , 则122,1+-=+-+--=-n yx y x n y x y x , 于是1122,112+-++=+--+-=n yx n x n y x n x ,从而()()()()()()y x n x n y x n x n -++=++-+-=-221212,112,故()().2121++=+-x n n x n又因为()().2222=-+x x ①令xt =,得()1212++-=+n n t n x ,代入①得()()01212222=-----n n t n n nt ,于是()()()()()()n n n n n n n n n n n n n n t x 221141281412222-+±-=--+-±-==,()()()nn n n n n x n y 22111-+±-=--=,因此,2≥n ,并且()()()211-+≥-n n n n n , 即0122≤--n n,解之得2121+≤≤-n ,从而212+≤≤n ,且Z n ∈,故.2=n所以.3,1==b a3. 证明:首先证明一定存在红色三角形(三边均为红色的三角形为红色三角形,下同). 设从顶点A 出发的红色线段最多,由A 引出的红色线段为kAB AB AB ,,,21Λ,则.1+≥n k 若k B B B ,,21Λ中存在两点,不妨设为21,B B 使线段21B B 为红色线段,则21B AB ∆为红色三角形, 若kB B B ,,,21Λ相互之间没有红色线段相连, 则从()k i B i,,2,1Λ=出发的红色线段最多有k n -2条, 所以这n 2个点红色线段最多有()()[]()().142212221222+<=-+≤-=--+-+n n k n k k n k k n k n k k与题设矛盾,所以存在以A 为顶点的红色三角形,下面用数学归纳法证明,(1)当2=n 时,平面上有四个点D C B A ,,,中两两连线共有6条,其中有5条为红色,只有一条非红色,设为,AB 则ACD ∆与BCD 均为红色三角形,命题成立,(2)假设k n =时,命题成立,即至少存在k 个红色三角形,当1+=k n 时,有22+k 个点,且有()112++k 条红色线段, 一定存在一个红色三角形,设为.ABC ∆ 考察从C B A ,,引出的红色线段分别记为()()()C d B d A d ,,条,不妨设()()().C d B d A d ≤≤若()()22+≤+k B d A d ,则除去点B A ,余下的k 2个点之间至少有()()11211222+=+-++k k k ,由归纳假设可知存在至少k 个红色三角形,再加上ABC ∆至少有1+k 个红色三角形, 若()()32+≥+k B d A d ,则()()()53+≥++k C d B d A d , 故从C B A ,,出发向其它12-k 个点引出红色线段至少有13-k 条,因为()().1213k k k =---这()13-k 线段至少有k 对线段有公共点(不包括C B A ,,)故至少存在k 个红色三角形,再加上ABC ∆,则至少有1+k 个红色三角形,所以1+=k n 时命题也成立,由(1)(2)可知,当N n n ∈>,1时,n 2点之间的12+n 条红色线段至少可组成n 个红色三角形.4.证明:引理:设5≥p 为素数,k 为非负整数,令kks t p kp kp kp =-++++++112111Λ, 其中k k s t ,为互素的正整数,那么.2k t p引理的证明: 因为()()()∑∑∑-=-=-=-++⋅+=⎪⎪⎭⎫ ⎝⎛-+++=+=111111*********p i p i p i k k i p kp i kp p k i p kp i kp i kp S t ,令()()∑-=-++=111p i i p kp i kp A , 因为素数5≥p ,由Fermat 小定理,以及 ()()p p k k k mod 0121≡-+++Λ,其中 21-≤≤p k ,有()()()()A p kp kp kp p 1121--+++Λ ()()()()()()()∑∑-=---=--≡-++-+++=1122111121p i p p p i p i p i i p kp i kp p kp kp kp Λ ().mod 01131142p i i p i p p i p ≡-≡-≡∑∑-=--=-所以()()()()().1211*-∈=-+++N M pM A p kp kp kp p Λ 即()()()()().12121212--++++=p k k p kp kp kp M p k S t Λ 因为()()()()()11212,1=-+++-p p kp kp kp p Λ, 所以kt p 2,引理证毕, 由引理得,12-p a p ,所以1-p a p , 从而()p S p p ∈-1, 又∑∑∑∑∑-=---=-=-=-=--+⋅=++==1011101111112121111112p k k k p p p k p i p i p i p p s t b a p i kp i p i ba ,因为k p t p a p 212,-,所以12-p a p 从而.12p S p ∈- 因为()1112-<-<-p p p p ,所以集合p S 中元素至少有3个.。
2017年全国高中数学联赛A卷和B卷试题和答案(word版)
![2017年全国高中数学联赛A卷和B卷试题和答案(word版)](https://img.taocdn.com/s3/m/5794958c941ea76e58fa04e4.png)
2017年全国高中数学联赛A 卷一试一、填空题1.设)(x f 是定义在R 上的函数,对任意实数x 有1)4()3(-=-⋅+x f x f .又当70<≤x 时,)9(log )(2x x f -=,则)100(-f 的值为__________.2.若实数y x ,满足1cos 22=+y x ,则y x cos -的取值范围是__________.3.在平面直角坐标系xOy 中,椭圆C 的方程为1109:22=+y x ,F 为C 的上焦点,A 为C 的右顶点,P 是C 上位于第一象限内的动点,则四边形OAPF 的面积的最大值为__________.4.若一个三位数中任意两个相邻数码的差不超过1,则称其为“平稳数”.平稳数的个数是 。
5.正三棱锥P-ABC 中,AB=1,AP=2,过AB 的平面α将其体积平分,则棱PC 与平面α所成角的余弦值为________.6.在平面直角坐标系xOy 中,点集}{1,0,1,),(-==y x y x K .在K 中随机取出三个点,则这三点中存在两点之间距离为5的概率为__________.7.在ABC ∆中,M 是边BC 的中点,N 是线段BM 的中点.若3π=∠A ,ABC ∆的面积为3,则AN AM ⋅的最小值为__________.8.设两个严格递增的正整数数列{}{}n n b a ,满足:20171010<=b a ,对任意正整数n ,有n n n a a a +=++12,n n b b 21=+,则11b a +的所有可能值为__________.二、解答题9.设m k ,为实数,不等式12≤--m kx x 对所有[]b a x ,∈成立.证明:22≤-a b .10.设321,,x x x 是非负实数,满足1321=++x x x ,求)53)(53(321321x x x x x x ++++的最小值和最大值.11.设复数21,z z 满足0)Re(1>z ,0)Re(2>z ,且2)Re()Re(2221==z z (其中)Re(z 表示复数z 的实部).(1)求)Re(21z z 的最小值; (2)求212122z z z z --+++的最小值.2017年全国高中数学联赛A 卷二试一.如图,在ABC ∆中,AC AB =,I 为ABC ∆的内心,以A 为圆心,AB 为半径作圆1Γ,以I 为圆心,IB 为半径作圆2Γ,过点I B ,的圆3Γ与1Γ,2Γ分别交于点Q P ,(不同于点B ).设IP 与BQ 交于点R .证明:CR BR ⊥二.设数列{}n a 定义为11=a , ,2,1,,,,1=⎩⎨⎧>-≤+=+n n a n a n a n a a n n n n n .求满足20173≤<r a r 的正整数r 的个数.三.将3333⨯方格纸中每个小方格染三种颜色之一,使得每种颜色的小方格的个数相等.若相邻连个小方格的颜色不同,则称它们的公共边为“分隔边”.试求分隔边条数的最小值.四.设n m ,均是大于1的整数,n m ≥,n a a a ,,,21 是n 个不超过m 的互不相同的正整数,且n a a a ,,,21 互素.证明:对任意实数x ,均存在一个)1(n i i ≤≤,使得x m m x a i )1(2+≥,这里y 表示实数y 到与它最近的整数的距离.2017年全国高中数学联赛A 卷一试答案1.2.3.4.5.6.7.8.9.10.11.2017年全国高中数学联赛A卷二试答案一.二.三.四.2017年全国高中数学联合竞赛一试(B 卷)一、填空题:本大题共8个小题,每小题8分,共64分.1.在等比数列{}n a 中,2a,3a =则1201172017a a a a ++的值为 .2.设复数z 满足91022z z i +=+,则||z 的值为 .3.设()f x 是定义在R 上的函数,若2()f x x +是奇函数,()2xf x +是偶函数,则(1)f 的值为 .4.在ABC ∆中,若sin 2sin A C =,且三条边,,a b c 成等比数列,则cos A 的值为 .5.在正四面体ABCD 中,,E F 分别在棱,AB AC 上,满足3BE =,4EF =,且EF 与平面BCD 平行,则DEF ∆的面积为 .6.在平面直角坐标系xOy 中,点集{(,)|,1,0,1}K x y x y ==-,在K 中随机取出三个点,则这三个点两两之间距离均不超过2的概率为 .7.设a 为非零实数,在平面直角坐标系xOy 中,二次曲线2220x ay a ++=的焦距为4,则a 的值为 .8.若正整数,,a b c 满足2017101001000a b c ≥≥≥,则数组(,,)a b c 的个数为 .二、解答题 (本大题共3小题,共56分.解答应写出文字说明、证明过程或演算步骤.)9.设不等式|2||52|xxa -<-对所有[1,2]x ∈成立,求实数a 的取值范围.10.设数列{}n a 是等差数列,数列{}n b 满足212n n n n b a a a ++=-,1,2,n =.(1)证明:数列{}n b 也是等差数列;(2)设数列{}n a 、{}n b 的公差均是0d ≠,并且存在正整数,s t ,使得s t a b +是整数,求1||a 的最小值.11.在平面直角坐标系xOy 中,曲线21:4C y x =,曲线222:(4)8C x y -+=,经过1C 上一点P 作一条倾斜角为45的直线l ,与2C 交于两个不同的点,Q R ,求||||PQ PR ⋅的取值范围.2017年全国高中数学联合竞赛加试(B 卷)一、(本题满分40分)设实数,,a b c 满足0a b c ++=,令max{,,}d a b c =,证明:2(1)(1)(1)1a b c d +++≥-二、(本题满分40分)给定正整数m ,证明:存在正整数k ,使得可将正整数集N +分拆为k 个互不相交的子集12,,,k A A A ,每个子集i A 中均不存在4个数,,,a b c d (可以相同),满足ab cd m -=.三、(本题满分50分)如图,点D 是锐角ABC ∆的外接圆ω上弧BC 的中点,直线DA 与圆ω过点,B C 的切线分别相交于点,P Q ,BQ 与AC 的交点为X ,CP 与AB 的交点为Y ,BQ 与CP 的交点为T ,求证:AT 平分线段XY.四、(本题满分50分)设1220,,,{1,2,,5}a a a ∈,1220,,,{1,2,,10}b b b ∈,集合{(,)120,()()0}i j i j X i j i j a a b b =≤<≤--<,求X 的元素个数的最大值.一试试卷答案1.答案:89 解:数列{}n a的公比为32a q a ==,故120111201166720171201118()9a a a a a a q a a q ++===++. 2.答案解:设,,z a bi a b R =+∈,由条件得(9)10(1022)a bi a b i ++=+-+,比较两边实虚部可得9101022a a b b +=⎧⎨=-+⎩,解得:1,2a b ==,故12z i =+,进而||z =3.答案:74-。
(完整版)2017年全国高中数学联赛A卷试题和答案
![(完整版)2017年全国高中数学联赛A卷试题和答案](https://img.taocdn.com/s3/m/5f3a4cdd77232f60ddcca1e5.png)
2017年全国高中数学联赛A 卷一试一、填空题1.设)(x f 是定义在R 上的函数,对任意实数x 有1)4()3(-=-⋅+x f x f .又当70<≤x 时,)9(log )(2x x f -=,则)100(-f 的值为__________.2.若实数y x ,满足1cos 22=+y x ,则y x cos -的取值范围是__________. 3.在平面直角坐标系xOy 中,椭圆C 的方程为1109:22=+y x ,F 为C 的上焦点,A 为C 的右顶点,P 是C 上位于第一象限内的动点,则四边形OAPF 的面积的最大值为__________.4.若一个三位数中任意两个相邻数码的差不超过1,则称其为“平稳数”.平稳数的个数是5.正三棱锥ABC P -中,1=AB ,2=AP ,过AB 的平面α将其体积平分,则棱PC 与平面α所成角的余弦值为__________.6.在平面直角坐标系xOy 中,点集}{1,0,1,),(-==y x y x K .在K 中随机取出三个点,则这三点中存在两点之间距离为5的概率为__________.7.在ABC ∆中,M 是边BC 的中点,N 是线段BM 的中点.若3π=∠A ,ABC ∆的面积为3,则AN AM ⋅的最小值为__________.8.设两个严格递增的正整数数列{}{}n n b a ,满足:20171010<=b a ,对任意正整数n ,有n n n a a a +=++12,n n b b 21=+,则11b a +的所有可能值为__________.二、解答题9.设m k ,为实数,不等式12≤--m kx x 对所有[]b a x ,∈成立.证明:22≤-a b .10.设321,,x x x 是非负实数,满足1321=++x x x ,求)53)(53(321321x x x x x x ++++的最小值和最大值.11.设复数21,z z 满足0)Re(1>z ,0)Re(2>z ,且2)Re()Re(2221==z z (其中)Re(z 表示复数z 的实部).(1)求)Re(21z z 的最小值;(2)求212122z z z z --+++的最小值. 2017年全国高中数学联赛A 卷二试一.如图,在ABC ∆中,AC AB =,I 为ABC ∆的内心,以A为圆心,AB 为半径作圆1Γ,以I 为圆心,IB 为半径作圆2Γ,过点I B ,的圆3Γ与1Γ,2Γ分别交于点Q P ,(不同于点B ).设IP 与BQ 交于点R .证明:CR BR ⊥二.设数列{}n a 定义为11=a , ,2,1,,,,1=⎩⎨⎧>-≤+=+n n a n a n a n a a n n n n n .求满足20173≤<r a r 的正整数r 的个数.三.将3333⨯方格纸中每个小方格染三种颜色之一,使得每种颜色的小方格的个数相等.若相邻连个小方格的颜色不同,则称它们的公共边为“分隔边”.试求分隔边条数的最小值.四.设n m ,均是大于1的整数,n m ≥,n a a a ,,,21 是n 个不超过m 的互不相同的正整数,且n a a a ,,,21 互素.证明:对任意实数x ,均存在一个)1(n i i ≤≤,使得x m m x a i )1(2+≥,这里y 表示实数y 到与它最近的整数的距离.2017年全国高中数学联赛A 卷一试答案1.2.3.4.5.6.7.8.9.10.11.2017年全国高中数学联赛A卷二试答案一.二.三.四.。
2017年全国高中数学联赛A卷和B卷试题和答案(word版)
![2017年全国高中数学联赛A卷和B卷试题和答案(word版)](https://img.taocdn.com/s3/m/39715c275022aaea988f0fb9.png)
2017年全国高中数学联赛A 卷一试一、填空题1.设)(x f 是定义在R 上的函数,对任意实数x 有1)4()3(-=-⋅+x f x f 。
又当70<≤x 时,)9(log )(2x x f -=,则)100(-f 的值为__________.2。
若实数y x ,满足1cos 22=+y x ,则y x cos -的取值范围是__________。
3.在平面直角坐标系xOy 中,椭圆C 的方程为1109:22=+y x ,F 为C 的上焦点,A 为C 的右顶点,P 是C 上位于第一象限内的动点,则四边形OAPF 的面积的最大值为__________。
4.若一个三位数中任意两个相邻数码的差不超过1,则称其为“平稳数".平稳数的个数是 。
5。
正三棱锥P —ABC 中,AB=1,AP=2,过AB 的平面α将其体积平分,则棱PC 与平面α所成角的余弦值为________.6.在平面直角坐标系xOy 中,点集}{1,0,1,),(-==y x y x K .在K 中随机取出三个点,则这三点中存在两点之间距离为5的概率为__________。
7。
在ABC ∆中,M 是边BC 的中点,N 是线段BM 的中点。
若3π=∠A ,ABC ∆的面积为3,则AN AM ⋅的最小值为__________.8。
设两个严格递增的正整数数列{}{}n n b a ,满足:20171010<=b a ,对任意正整数n ,有n n n a a a +=++12,n n b b 21=+,则11b a +的所有可能值为__________.二、解答题9.设m k ,为实数,不等式12≤--m kx x 对所有[]b a x ,∈成立.证明:22≤-a b 。
10.设321,,x x x 是非负实数,满足1321=++x x x ,求)53)(53(321321x x x x x x ++++的最小值和最大值。
2017年全国高中数学联赛A卷和B卷试题和答案(word版)全文
![2017年全国高中数学联赛A卷和B卷试题和答案(word版)全文](https://img.taocdn.com/s3/m/f67e511ea36925c52cc58bd63186bceb18e8ed74.png)
可编辑修改精选全文完整版2017年全国高中数学联赛A 卷一试一、填空题1.设)(x f 是定义在R 上的函数.对任意实数x 有1)4()3(-=-⋅+x f x f .又当70<≤x 时.)9(log )(2x x f -=.则)100(-f 的值为__________.2.若实数y x ,满足1cos 22=+y x .则y x cos -的取值范围是__________.3.在平面直角坐标系xOy 中.椭圆C 的方程为1109:22=+y x .F 为C 的上焦点.A 为C 的右顶点.P 是C 上位于第一象限内的动点.则四边形OAPF 的面积的最大值为__________.4.若一个三位数中任意两个相邻数码的差不超过1.则称其为“平稳数”.平稳数的个数是 。
5.正三棱锥P-ABC 中.AB=1.AP=2.过AB 的平面α将其体积平分.则棱PC 与平面α所成角的余弦值为________.6.在平面直角坐标系xOy 中.点集}{1,0,1,),(-==y x y x K .在K 中随机取出三个点.则这三点中存在两点之间距离为5的概率为__________.7.在ABC ∆中.M 是边BC 的中点.N 是线段BM 的中点.若3π=∠A .ABC ∆的面积为3.则AN AM ⋅的最小值为__________.8.设两个严格递增的正整数数列{}{}n n b a ,满足:20171010<=b a .对任意正整数n .有n n n a a a +=++12.n n b b 21=+.则11b a +的所有可能值为__________.二、解答题9.设m k ,为实数.不等式12≤--m kx x 对所有[]b a x ,∈成立.证明:22≤-a b .10.设321,,x x x 是非负实数.满足1321=++x x x .求)53)(53(321321x x x x x x ++++的最小值和最大值.11.设复数21,z z 满足0)Re(1>z .0)Re(2>z .且2)Re()Re(2221==z z (其中)Re(z 表示复数z 的实部). (1)求)Re(21z z 的最小值; (2)求212122z z z z --+++的最小值.2017年全国高中数学联赛A 卷二试一.如图.在ABC ∆中.AC AB =.I 为ABC ∆的内心.以A 为圆心.AB 为半径作圆1Γ.以I 为圆心.IB 为半径作圆2Γ.过点I B ,的圆3Γ与1Γ,2Γ分别交于点Q P ,(不同于点B ).设IP 与BQ 交于点R .证明:CR BR ⊥二.设数列{}n a 定义为11=a . ,2,1,,,,1=⎩⎨⎧>-≤+=+n n a n a n a n a a n n n n n .求满足20173≤<r a r 的正整数r 的个数.三.将3333⨯方格纸中每个小方格染三种颜色之一.使得每种颜色的小方格的个数相等.若相邻连个小方格的颜色不同.则称它们的公共边为“分隔边”.试求分隔边条数的最小值.四.设n m ,均是大于1的整数.n m ≥.n a a a ,,,21 是n 个不超过m 的互不相同的正整数.且n a a a ,,,21 互素.证明:对任意实数x .均存在一个)1(n i i ≤≤.使得x m m x a i )1(2+≥.这里y 表示实数y 到与它最近的整数的距离.2017年全国高中数学联赛A卷一试答案1.2.3.4.5.7.8.9.10.11.2017年全国高中数学联赛A卷二试答案一.二.三.四.2017年全国高中数学联合竞赛一试(B 卷)一、填空题:本大题共8个小题,每小题8分,共64分.1.在等比数列{}n a 中.2a =.3a =则1201172017a a a a ++的值为 .2.设复数z 满足91022z z i +=+.则||z 的值为 .3.设()f x 是定义在R 上的函数.若2()f x x +是奇函数.()2xf x +是偶函数.则(1)f 的值为 . 4.在ABC ∆中.若sin 2sin A C =.且三条边,,a b c 成等比数列.则cos A 的值为 .5.在正四面体ABCD 中.,E F 分别在棱,AB AC 上.满足3BE =.4EF =.且EF 与平面BCD 平行.则DEF ∆的面积为 .6.在平面直角坐标系xOy 中.点集{(,)|,1,0,1}K x y x y ==-.在K 中随机取出三个点.则这三个点两两之间距离均不超过2的概率为 .7.设a 为非零实数.在平面直角坐标系xOy 中.二次曲线2220x ay a ++=的焦距为4.则a 的值为 .8.若正整数,,a b c 满足2017101001000a b c ≥≥≥.则数组(,,)a b c 的个数为 .二、解答题 (本大题共3小题.共56分.解答应写出文字说明、证明过程或演算步骤.)9.设不等式|2||52|x xa -<-对所有[1,2]x ∈成立.求实数a 的取值范围.10.设数列{}n a 是等差数列.数列{}n b 满足212n n n n b a a a ++=-.1,2,n =.(1)证明:数列{}n b 也是等差数列;(2)设数列{}n a 、{}n b 的公差均是0d ≠.并且存在正整数,s t .使得s t a b +是整数.求1||a 的最小值.11.在平面直角坐标系xOy 中.曲线21:4C y x =.曲线222:(4)8C x y -+=.经过1C 上一点P 作一条倾斜角为45的直线l .与2C 交于两个不同的点,Q R .求||||PQ PR ⋅的取值范围.2017年全国高中数学联合竞赛加试(B 卷)一、(本题满分40分)设实数,,a b c 满足0a b c ++=.令max{,,}d a b c =.证明:2(1)(1)(1)1a b c d +++≥-二、(本题满分40分)给定正整数m .证明:存在正整数k .使得可将正整数集N +分拆为k 个互不相交的子集12,,,k A A A .每个子集i A 中均不存在4个数,,,a b c d (可以相同).满足ab cd m -=.三、(本题满分50分)如图.点D 是锐角ABC ∆的外接圆ω上弧BC 的中点.直线DA 与圆ω过点,B C 的切线分别相交于点,P Q .BQ 与AC 的交点为X .CP 与AB 的交点为Y .BQ 与CP 的交点为T .求证:AT 平分线段XY .四、(本题满分50分)设1220,,,{1,2,,5}a a a ∈.1220,,,{1,2,,10}b b b ∈.集合{(,)120,()()0}i j i j X i j i j a a b b =≤<≤--<.求X 的元素个数的最大值.一试试卷答案1.答案:89 解:数列{}n a 的公比为33232a q a ==.故120111201166720171201118()9a a a a a a q a a q ++===++. 2.答案:5。
2017-2018年全国高中数学联赛江苏赛区初赛试题及答案(20200609100016)
![2017-2018年全国高中数学联赛江苏赛区初赛试题及答案(20200609100016)](https://img.taocdn.com/s3/m/5ef1384a6bd97f192379e94f.png)
2017-2018年全国高中数学联赛江苏赛区初赛试题(4月20日8:00至10:00)一.填空题(本大题共10小题,每小题7分,共70分)1.若2x ≥,则函数1()1f x x x 的最小值是.2.已知函数()e x f x .若()2f a b ,则(3)(3)f a f b 的值是.3.已知数列n a 是各项均不为0的等差数列,公差为d ,n S 为前n 项和,且满足221n n a S ,*n N ,则数列n a 的通项n a .4.若函数2223,0,()2,0x x x f x x ax x ≥是奇函数,则实数a 的值是.5.已知函数10()lg ||3f x x .若关于x 的方程2()5()60f x f x 的实根之和为m ,则()f m 的值是.6.设、都是锐角,且5cos 5,3sin()5,则cos 等于.7.四面体ABCD 中,3AB ,5CD ,异面直线AB 和CD 之间的距离为4,夹角为o 60,则四面体ABCD 的体积为.8.若满足3ABC ,3AC ,BC m 的ABC △恰有一解,则实数m 的取值范围是.9.设集合1,2,,8S ,A ,B 是S 的两个非空子集,且A 中的最大数小于B 中的最小数,则这样的集合对(,)A B 的个数是.10.如果正整数m 可以表示为224x y (x ,y Z ),那么称m 为“好数”.问1,2,3,…,2017-2018中“好数”的个数为.二.解答题(本大题共4小题,每小题20分,共80分)11.已知a ,b ,c 为正实数,x y z a b c ,1110x y z ,求abc 的值.12.已知1F ,2F 分别是双曲线2222:1(0,0)xy C a b a b 的左右焦点,点B 的坐标为(0,)b ,直线1F B 与双曲线C 的两条渐近线分别交于P ,Q 两点,线段PQ 的垂直平分线与x 轴交于点M .若21212MF F F ,求双曲线C 的离心率.13.如图,已知ABC 是锐角三角形,以AB 为直径的圆交边AC 于点D ,交边AB上的高CH 于点E .以AC 为直径的半圆交BD 的延长线于点G .求证:AG AE .14.(1)正六边形被3条互不交叉(端点可以重合)的对角线分割成4个三角形.将每个三角形区域涂上红、蓝两种颜色之一,使得有公共边的三角形涂的颜色不同.怎样分割并涂色可以使红色三角形个数与蓝色三角形个数的差最大?(2)凸2016边形被2013条互不交叉(端点可以重合)的对角线分割成2014个三角形.将每个三角形区域涂上红、栏两种颜色之一,使得有公共边的三角形涂的颜色不同.在上述分割并涂色的所有情形中,红色三角形个数与蓝色三角形个数之差的最大值是多少?证明你的结论.。
2017-2018学年全国高中数学联赛江苏赛区初赛试卷.pdf
![2017-2018学年全国高中数学联赛江苏赛区初赛试卷.pdf](https://img.taocdn.com/s3/m/f8a6ef2db9d528ea80c77993.png)
(2)因为 an 1 an
an 1 nan 1 1
an 1 nan 1
1
,
n
所以当 n 2 时,
an an an 1
an 1 an 2 L
1
1
L
n1 n 2
n1
1
.
k 1k
11 1
21
a2 a1 a1
又 a1 1 1 1 ,
所以对任意正整数 n , an 1
n1
.
k 1k
12.解:( 1)由题设条件得
左、右焦点, P 是双曲线右支上一点, M 是 PF2的中点,且 OM PF2 , 3PF1 4PF2 ,
则双曲线的离心率为
.
5.定义区间 x1, x2 的长度为 x2 x1 . 若函数 y log 2 x 的定义域为 a,b ,值域为 0,2 ,
则区间 a,b 长度的最大值与最小值的差为
.
6.若关于 x 的二次方程 mx2 2m 1 x m 2 0 ( m 0 )的两个互异的根都小于 1,
3a 3 2,
2
c
3,
a 2,
从而
a2
b 1.
b2 c2 a2,
故所求的椭圆 E : x2 y2 1,直线 l : x y 6 0 . 4
2cos sin 6 6 5 sin
(2)设 P 2cos ,sin ,则 d1
2
2
tan 2,
所以 6 2
10
62
d1
10
.
2
2
又 d2
016 2
52 2 , d3
. 最新试卷十
2.已知集合 A x ax 1 a x 0 ,且 2 A , 3 A ,则实数 a 的取值范围
2017年普通高等学校招生全国统一考试数学试题(江苏卷,参考解析)
![2017年普通高等学校招生全国统一考试数学试题(江苏卷,参考解析)](https://img.taocdn.com/s3/m/3e088551c281e53a5802ffa3.png)
绝密★启用前2017年普通高等学校招生全国统一考试(江苏卷)数学I注意事项考生在答题前请认真阅读本注意事项及各题答题要求1. 本试卷共4页,包含非选择题(第1题 ~ 第20题,共20题).本卷满分为160分,考试时间为120分钟。
考试结束后,请将本试卷和答题卡一并交回。
2. 答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置。
3.请认真核对监考员在答题上所粘贴的条形码上的姓名、准考证号与本人是否相符。
4.作答试题,必须用0.5毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效。
5.如需改动,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗一、填空题:本大题共14小题,每小题5分,共计70分,请把答案填写在答题卡相应位置上1.已知集合{}=1,2A ,{}=+2,3B a a ,若A B ={1}则实数a 的值为________2.已知复数z=(1+i )(1+2i ),其中i 是虚数单位,则z 的模是__________3.某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为200,400,300,100件,为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取60件进行检验,则应从丙种型号的产品中抽取 件.4.右图是一个算法流程图,若输入x 的值为116,则输出的y 的值是 .5.若tan 1-=46πα⎛⎫ ⎪⎝⎭,则tan α= .6.如图,在圆柱O 1 O 2 内有一个球O ,该球与圆柱的上、下底面及母线均相切。
记圆柱O 1 O 2 的体积为V 1 ,球O 的体积为V 2 ,则12V V 的值是7.记函数2()6f x x x =+- 的定义域为D.在区间[-4,5]上随机取一个数x ,则x ∈ D 的概率是8.在平面直角坐标系xoy 中 ,双曲线2213x y -= 的右准线与它的两条渐近线分别交于点P,Q ,其焦点是F 1 , F 2 ,则四边形F 1 P F 2 Q 的面积是9.等比数列{}na 的各项均为实数,其前n 项的和为S n,已知36763,44SS ==, 则8a =10.某公司一年购买某种货物600吨,每次购买x 吨,运费为6万元/次,一年的总存储费用为4x 万元,要使一年的总运费与总存储费之和最小,则x 的值是11.已知函数()3xx12x+e -e-f x =x ,其中e 是自然数对数的底数,若()()2a-1+2a ≤f f 0,则实数a 的取值范围是 。
2017年普通高等学校招生全国统一考试数学试题(江苏卷,含答案)
![2017年普通高等学校招生全国统一考试数学试题(江苏卷,含答案)](https://img.taocdn.com/s3/m/092d7599d5bbfd0a78567343.png)
绝密★启用前2017年普通高等学校招生全国统一考试(江苏卷)数学I注意事项考生在答题前请认真阅读本注意事项及各题答题要求1. 本试卷共4页,包含非选择题(第1题 ~ 第20题,共20题).本卷满分为160分,考试时间为120分钟。
考试结束后,请将本试卷和答题卡一并交回。
2. 答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置。
3.请认真核对监考员在答题上所粘贴的条形码上的姓名、准考证号与本人是否相符。
4.作答试题,必须用0.5毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效。
5.如需改动,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗一、填空题:本大题共14小题,每小题5分,共计70分,请把答案填写在答题卡相应位置上 1.已知集合{}=1,2A ,{}=+2,3B a a,若AB ={1}则实数a 的值为________2.已知复数z=(1+i )(1+2i ),其中i 是虚数单位,则z 的模是__________3.某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为200,400,300,100件,为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取60件进行检验,则应从丙种型号的产品中抽取 件.4.右图是一个算法流程图,若输入x 的值为116,则输出的y 的值是 .5.若tan 1-=46πα⎛⎫ ⎪⎝⎭,则tan α= .6.如图,在圆柱O 1 O 2 内有一个球O ,该球与圆柱的上、下底面及母线均相切。
记圆柱O 1 O 2 的体积为V 1 ,球O 的体积为V 2 ,则12V V 的值是7.记函数()f x =的定义域为D.在区间[-4,5]上随机取一个数x ,则x ∈ D 的概率是8.在平面直角坐标系xoy 中 ,双曲线2213x y -= 的右准线与它的两条渐近线分别交于点P,Q ,其焦点是F 1 , F 2 ,则四边形F 1 P F 2 Q 的面积是9.等比数列{}n a 的各项均为实数,其前n 项的和为S n ,已知36763,44S S ==, 则8a =10.某公司一年购买某种货物600吨,每次购买x 吨,运费为6万元/次,一年的总存储费用为4x 万元,要使一年的总运费与总存储费之和最小,则x 的值是11.已知函数()3xx12x+e -e-f x =x ,其中e 是自然数对数的底数,若()()2a-1+2a ≤f f 0,则实数a 的取值范围是 。
2017年全国高中数学联合竞赛一试(A卷) 含答案
![2017年全国高中数学联合竞赛一试(A卷) 含答案](https://img.taocdn.com/s3/m/4c5232f0aeaad1f346933f9a.png)
( x1 + 3x2 + 5 x3 )( x1 +
x2 x3 1 5x + ) = ( x1 + 3x2 + 5 x3 )(5 x1 + 2 + x3 ) 3 5 5 3 2 1 1 5x ≤ ⋅ ( x1 + 3x2 + 5 x3 ) + (5 x1 + 2 + x3 ) 5 4 3
, 进
一步可得
,从而
.
4 2 的最小值为 . 当 AB 4 , AC 2 3 时, 3 8. 设两个严格递增的正整数数列 {an } ,{bn } 满足: a10 b10 2017 ,对任意 正整数 n ,有 an2 an1 an , bn1 2bn ,则 a1 b1 的所有可能值为 .
2017 年全国高中数学联合竞赛一试(A 卷) 参考答案及评分标准
说明: 1. 评阅试卷时,请依据本评分标准. 填空题只设 8 分和 0 分两档;其他各题的 评阅,请严格按照本评分标准的评分档次给分,不得增加其他中间档次. 2. 如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可 参考本评分标准适当划分档次评分, 解答题中第 9 小题 4 分为一个档次, 第 10、 11 小题 5 分为一个档次,不得增加其他中间档次. 一、填空题:本大题共 8 小题,每小题 8 分,共 64 分. 1. 设 f ( x) 是定义在 R 上的函数, 对任意实数 x 有 f ( x 3) f ( x 4) 1 . 又 当 0 x 7 时, f ( x) log 2 (9 x) ,则 f (100) 的值为 . 1 答案: − . 2 1 解:由条件知, f ( x 14) f ( x) ,所以 f ( x 7) 1 1 1 f (100) f (100 14 7) f (2) . f (5) log 2 4 2 2 则 x cos y 的取值范围是 . 2. 若实数 x, y 满足 x 2 cos y 1 , 答案: [1, 解:由于 由 有最小值 可知, (这时 y 可以取 ) ; 当 时,
(完整版)2017年全国高中数学联赛A卷和B卷试题和答案(word版)
![(完整版)2017年全国高中数学联赛A卷和B卷试题和答案(word版)](https://img.taocdn.com/s3/m/7943849b5f0e7cd1842536da.png)
2017年全国高中数学联赛A 卷一试一、填空题1.设)(x f 是定义在R 上的函数,对任意实数x 有1)4()3(-=-⋅+x f x f .又当70<≤x 时,)9(log )(2x x f -=,则)100(-f 的值为__________.2.若实数y x ,满足1cos 22=+y x ,则y x cos -的取值范围是__________.3.在平面直角坐标系xOy 中,椭圆C 的方程为1109:22=+y x ,F 为C 的上焦点,A 为C 的右顶点,P 是C 上位于第一象限内的动点,则四边形OAPF 的面积的最大值为__________.4.若一个三位数中任意两个相邻数码的差不超过1,则称其为“平稳数”.平稳数的个数是 。
5.正三棱锥P-ABC 中,AB=1,AP=2,过AB 的平面α将其体积平分,则棱PC 与平面α所成角的余弦值为________.6.在平面直角坐标系xOy 中,点集}{1,0,1,),(-==y x y x K .在K 中随机取出三个点,则这三点中存在两点之间距离为5的概率为__________.7.在ABC ∆中,M 是边BC 的中点,N 是线段BM 的中点.若3π=∠A ,ABC ∆的面积为3,则AN AM ⋅的最小值为__________.8.设两个严格递增的正整数数列{}{}n n b a ,满足:20171010<=b a ,对任意正整数n ,有n n n a a a +=++12,n n b b 21=+,则11b a +的所有可能值为__________.二、解答题9.设m k ,为实数,不等式12≤--m kx x 对所有[]b a x ,∈成立.证明:22≤-a b .10.设321,,x x x 是非负实数,满足1321=++x x x ,求)53)(53(321321x x x x x x ++++的最小值和最大值.11.设复数21,z z 满足0)Re(1>z ,0)Re(2>z ,且2)Re()Re(2221==z z (其中)Re(z 表示复数z 的实部). (1)求)Re(21z z 的最小值; (2)求212122z z z z --+++的最小值.2017年全国高中数学联赛A 卷二试一.如图,在ABC ∆中,AC AB =,I 为ABC ∆的内心,以A 为圆心,AB 为半径作圆1Γ,以I 为圆心,IB 为半径作圆2Γ,过点I B ,的圆3Γ与1Γ,2Γ分别交于点Q P ,(不同于点B ).设IP 与BQ 交于点R .证明:CR BR ⊥二.设数列{}n a 定义为11=a , ,2,1,,,,1=⎩⎨⎧>-≤+=+n n a n a n a n a a n n n n n .求满足20173≤<r a r 的正整数r 的个数.三.将3333⨯方格纸中每个小方格染三种颜色之一,使得每种颜色的小方格的个数相等.若相邻连个小方格的颜色不同,则称它们的公共边为“分隔边”.试求分隔边条数的最小值.四.设n m ,均是大于1的整数,n m ≥,n a a a ,,,21 是n 个不超过m 的互不相同的正整数,且n a a a ,,,21 互素.证明:对任意实数x ,均存在一个)1(n i i ≤≤,使得x m m x a i )1(2+≥,这里y 表示实数y 到与它最近的整数的距离.2017年全国高中数学联赛A卷一试答案1.2.3.4.5.6.7.8.9.10.11.2017年全国高中数学联赛A卷二试答案一.二.三.四.2017年全国高中数学联合竞赛一试(B 卷)一、填空题:本大题共8个小题,每小题8分,共64分.1.在等比数列{}n a中,2a =,3a 1201172017a a a a ++的值为 .2.设复数z 满足91022z z i +=+,则||z 的值为 .3.设()f x 是定义在R 上的函数,若2()f x x +是奇函数,()2xf x +是偶函数,则(1)f 的值为 . 4.在ABC ∆中,若sin 2sin A C =,且三条边,,a b c 成等比数列,则cos A 的值为 .5.在正四面体ABCD 中,,E F 分别在棱,AB AC 上,满足3BE =,4EF =,且EF 与平面BCD 平行,则DEF ∆的面积为 .6.在平面直角坐标系xOy 中,点集{(,)|,1,0,1}K x y x y ==-,在K 中随机取出三个点,则这三个点两两之间距离均不超过2的概率为 .7.设a 为非零实数,在平面直角坐标系xOy 中,二次曲线2220x ay a ++=的焦距为4,则a 的值为 .8.若正整数,,a b c 满足2017101001000a b c ≥≥≥,则数组(,,)a b c 的个数为 .二、解答题 (本大题共3小题,共56分.解答应写出文字说明、证明过程或演算步骤.)9.设不等式|2||52|x xa -<-对所有[1,2]x ∈成立,求实数a 的取值范围.10.设数列{}n a 是等差数列,数列{}n b 满足212n n n n b a a a ++=-,1,2,n =.(1)证明:数列{}n b 也是等差数列;(2)设数列{}n a 、{}n b 的公差均是0d ≠,并且存在正整数,s t ,使得s t a b +是整数,求1||a 的最小值.11.在平面直角坐标系xOy 中,曲线21:4C y x =,曲线222:(4)8C x y -+=,经过1C 上一点P 作一条倾斜角为45的直线l ,与2C 交于两个不同的点,Q R ,求||||PQ PR ⋅的取值范围.2017年全国高中数学联合竞赛加试(B 卷)一、(本题满分40分)设实数,,a b c 满足0a b c ++=,令max{,,}d a b c =,证明:2(1)(1)(1)1a b c d +++≥-二、(本题满分40分)给定正整数m ,证明:存在正整数k ,使得可将正整数集N +分拆为k 个互不相交的子集12,,,k A A A ,每个子集i A 中均不存在4个数,,,a b c d (可以相同),满足ab cd m -=.三、(本题满分50分)如图,点D 是锐角ABC ∆的外接圆ω上弧BC 的中点,直线DA 与圆ω过点,B C 的切线分别相交于点,P Q ,BQ 与AC 的交点为X ,CP 与AB 的交点为Y ,BQ 与CP 的交点为T ,求证:AT 平分线段XY .四、(本题满分50分)设1220,,,{1,2,,5}a a a ∈,1220,,,{1,2,,10}b b b ∈,集合{(,)120,()()0}i j i j X i j i j a a b b =≤<≤--<,求X 的元素个数的最大值.一试试卷答案1.答案:89 解:数列{}n a 的公比为33232a q a ==,故120111201166720171201118()9a a a a a a q a a q ++===++. 2.答案:5。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017年全国高中数学联赛江苏赛区初赛试题及答案
一、填空题(本题共10小题,每小题7分,共70分)
1.已知向量(()
,AP PB ==u u u r u u u r ,则向量AP u u u r 与AB u u u r
的夹角等于 .
答案:
4
π 2.已知集合()(){}|10A x ax a x =-->,且,3a A A ∈∉,则实数a 的取值范围是 . 答案:(]11,2,3.32⎡⎫
⎪⎢⎣⎭
U
3.已知复数2cos sin
33
z i ππ
2=+,其中i 是虚数单位,则32z z += .
答案:1.2
4.在平面直角坐标系xOy 中,设12,F F 分别是双曲线()22
2210,0x y a b a b
-=>>的左,右焦点,P
是双曲线右支上一点,M 是2PF 的中点,且212,34OM PF PF PF ⊥=,则双曲线的离心率为 .
答案:5.
5.定义区间[]12,x x 的长度为21x x -.若函数2log y x =的定义域为[],a b ,值域为[]0,2,则区间[],a b 的长度的最大值与最小值的差为 . 答案:3.
6.若关于x 的二次方程()()221200mx m x m m +--+=>的两个互异的根都小于1,则实数m 的取值范围是 .
答案:.⎫
+∞⎪⎪
⎝⎭
7.若tan 4x sin 4sin 2sin sin cos8cos4cos4cos2cos2cos cos x x x x
x x x x x x x
+++= .
8.棱长为2的正方体ABCD -1111A B C D 在空间坐标系O -xyz 中运动,其中顶点A 保持在z 轴上,顶点1B 保持在平面xOy 上,则OC 长度的最小值是 .
9.设数列12321,,,,a a a a L 满足:()111,2,3,,20n n a a n +-==L ,1721,,a a a 成等比数列.若1211,9a a ==,则满足条件的不同的数列的个数为 .
答案:15099.
10.对于某些正整数n ,分数
22
37
n n ++不是既约分数,则n 的最小值是 .
答案:17. 二、解答题:(本大题共4小题,每小题20分,共80分) 11.设数列{}n a 满足:①11a =,②0n a >,③2
*11,.1
n n n na a n N na ++=
∈+ 求证:(1)数列{}n a 是递增数列;
(2)对如图任意正整数n ,111.n
n k a k
=<+∑
证明:(1)因为211
1111,11
n n n n n n n na a a a a na na ++++++-=-
=++且0n a >, 所以10n n a a +->.所以*1,.n n a a n N +>∈ 所以数列{}n a 是递增数列. (2)因为111111
,1n n n n n n a a a a na na n
+++++-=<=+
所以当2n ≥时,
()()()1122111111111221
1
1.
n n n n n n
k a a a a a a a a n n k ---==-+-++-+<
+++++--<+∑L L
又1111,a =<+所以对任意正整数n ,11
1.n
n k a k
=<+∑
12.在平面直角坐标系xOy 中,设椭圆()22
22:10x y E a b a b
+=>>,直线:30.l x y a +-=若椭圆
E
,原点O 到直线l
的距离为 (1)求椭圆E 与直线l 的方程;
(2)若椭圆E 上三点()(),0,,,0P A b B a 到直线l 的距离分别为123,,d d d , 求证:123,,d d d 可以是某三角形三条边的边长.
解:(1
)由题设条件得222,c
a b c a =⎪⎪=⎨⎪
⎪+=⎪⎪⎩
,从而2,1.a b =⎧⎨=⎩
故所求的椭圆2
2:14
x E y +=.直线:60.l x y +-=
(2)设()2cos ,sin P θθ
,则
16d θϕ-+=
其中tan 2.ϕ=
1d ≤≤
又23d d =
== 故21.d d
>
因为231,d d d +=+>≥
131.d d d +≥
= 所以123,,d d d 可以是某个三角形的三条边的边长.
13.如图,圆O 是四边形ABCD 的内切圆,切点分别为,,,,P Q R S OA 与PS 交于点1,A OB 与PQ 交于点1B ,OC 与QR 交于点1C ,OD 与SR 交于点1D .
求证:四边形1111A B C D 是平行四边形.
证明:连接,.PR QS
因为圆O 是四边形ABCD 的内切圆,所以OA 是SAP ∠的平分线,且.AP AS = 在△ASP 中,由三线合一,点1A 是线段PS 的中点. 同理点1B 是线段PQ 的中点,所以11//A B SQ .
O
D 1
C 1
B 1
A 1
S
R
Q
P
D
C
B
A
O
D 1
C 1
B 1
A 1
S
R
Q
P
D
C
B
A
同理1111//A D B C .
所以四边形1111A B C D 是平行四边形. 14.求满足373x x y y -=-的所有素数x 和.y 解:满足题设条件的素数只有5, 2.x y == 假设5,y ≥则
()7363653
6543654326
5206706152015611.
y y y y y y y y y y y y y y y y y y -≥-≥+-≥++->++++++=+ 所以,()633731,x x x y y y >-=->+即()2
1.x y >+
又因为()()()
37332|111x x x y y y y y y -=-=-++,且x 为素数, 而()2
21111,y y y y y x -<<+<+<+<从而()()()
32\|111,x y y y y -++ 这与73|x y y -矛盾.
所以 5.y <
因为y 是素数,所以2,y =或 3.y =
当2y =时,3120x x -=,即()()
255240,x x x -++=所以 5.x = 当3y =时,343216023 5.x x -==⋅⋅ 所以2,x =或3x =,或 5.x =
经检验,2x =,或3x =,或5x =时,34323 5.x x -≠⋅⋅ 所以满足条件的素数只有5, 2.x y ==。