2019年江苏省苏州市中考数学试卷及答案解析

合集下载

2019年江苏省苏州市中考数学试卷以及解析答案

2019年江苏省苏州市中考数学试卷以及解析答案

2019年江苏省苏州市中考数学试卷一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题要求的.请将选择题的答案用2B铅笔涂在答题卡相应位置上.1.(3分)5的相反数是()A.B.﹣C.5D.﹣52.(3分)有一组数据:2,2,4,5,7,这组数据的中位数为()A.2B.4C.5D.73.(3分)苏州是全国重点旅游城市,2018年实现旅游总收入约为26000000万元,数据26000000用科学记数法可表示为()A.0.26×108B.2.6×108C.26×106D.2.6×1074.(3分)如图,已知直线a∥b,直线c与直线a,b分别交于点A,B.若∠1=54°,则∠2等于()A.126°B.134°C.136°D.144°5.(3分)如图,AB为⊙O的切线,切点为A连接AO、BO,BO与⊙O交于点C,延长BO 与⊙O交于点D,连接AD.若∠ABO=36°,则∠ADC的度数为()A.54°B.36°C.32°D.27°6.(3分)小明用15元买售价相同的软面笔记本,小丽用24元买售价相同的硬面笔记本(两人的钱恰好用完),已知每本硬面笔记本比软面笔记本贵3元,且小明和小丽买到相同数量的笔记本,设软面笔记本每本售价为x元,根据题意可列出的方程为()A.=B.=C.=D.=7.(3分)若一次函数y=kx+b(k,b为常数,且k≠0)的图象经过点A(0,﹣1),B(1,1),则不等式kx+b>1的解为()A.x<0B.x>0C.x<1D.x>18.(3分)如图,小亮为了测量校园里教学楼AB的高度,将测角仪CD竖直放置在与教学楼水平距离为18m的地面上,若测角仪的高度是1.5m.测得教学楼的顶部A处的仰角为30°.则教学楼的高度是()A.55.5m B.54m C.19.5m D.18m9.(3分)如图,菱形ABCD的对角线AC,BD交于点O,AC=4,BD=16,将△ABO沿点A到点C的方向平移,得到△A'B'O'.当点A'与点C重合时,点A与点B'之间的距离为()A.6B.8C.10D.1210.(3分)如图,在△ABC中,点D为BC边上的一点,且AD=AB=2,AD⊥AB.过点D作DE⊥AD,DE交AC于点E.若DE=1,则△ABC的面积为()A.4B.4C.2D.8二、填空题:本大题共8小题,每小题3分,共24分.把答案直接填在答题卡相应位置上.11.(3分)计算:a2•a3=.12.(3分)因式分解:x2﹣xy=.13.(3分)若在实数范围内有意义,则x的取值范围为.14.(3分)若a+2b=8,3a+4b=18,则a+b的值为.15.(3分)“七巧板”是我们祖先的一项卓越创造,可以拼出许多有趣的图形,被誉为“东方魔板”.图①是由边长为10cm的正方形薄板分为7块制作成的“七巧板”,图②是用该“七巧板”拼成的一个“家”的图形.该“七巧板”中7块图形之一的正方形边长为cm(结果保留根号).16.(3分)如图,将一个棱长为3的正方体的表面涂上红色,再把它分割成棱长为1的小正方体,从中任取一个小正方体,则取得的小正方体恰有三个面涂有红色的概率为.17.(3分)如图,扇形OAB中,∠AOB=90°.P为弧AB上的一点,过点P作PC⊥OA,垂足为C,PC与AB交于点D.若PD=2,CD=1,则该扇形的半径长为.18.(3分)如图,一块含有45°角的直角三角板,外框的一条直角边长为8cm,三角板的外框线和与其平行的内框线之间的距离均为cm,则图中阴影部分的面积为cm2(结果保留根号).三、解答题;本大题共10小题,共76分.把解答过程写答题卡相应位置上,解答时应写出必要的计算过程、推演步骤或文字说明,作图时用2B铅笔或黑色墨水签宇笔.19.(5分)计算:()2+|﹣2|﹣(π﹣2)020.(5分)解不等式组:21.(6分)先化简,再求值:÷(1﹣),其中,x=﹣3.22.(6分)在一个不透明的盒子中装有4张卡片,4张卡片的正面分别标有数字1,2,3,4,这些卡片除数字外都相同,将卡片搅匀.(1)从盒子中任意抽取一张卡片,恰好抽到标有奇数卡片的概率是;(2)先从盒了中任意抽取一张卡片,再从余下的3张卡片中任意抽取一张卡片,求抽取的2张卡片标有数字之和大于4的概率.(请用画树状图或列表等方法求解).23.(8分)某校计划组织学生参加“书法”、“摄影”、“航模、“围棋”四个课外兴趣小组,要求每人必须参加,并且只能选择其中一个小组,为了解学生对四个课外兴趣小组的选择情况,学校从全体学生中随机抽取部分学生进行问卷调查,并把调查结果制成如图所示的扇形统计图和条形统计图(部分信息未给出),请你根据给出的信息解答下列问题:(1)求参加这次问卷调查的学生人数,并补全条形统计图(画图后请标注相应的数据);(2)m=,n=;(3)若该校共有1200名学生,试估计该校选择“围棋”课外兴趣小组的学生有多少人?24.(8分)如图,△ABC中,点E在BC边上,AE=AB,将线段AC绕A点旋转到AF的位置,使得∠CAF=∠BAE,连接EF,EF与AC交于点G.(1)求证:EF=BC;(2)若∠ABC=65°,∠ACB=28°,求∠FGC的度数.25.(8分)如图,A为反比例函数y=(其中x>0)图象上的一点,在x轴正半轴上有一点B,OB=4.连接OA,AB,且OA=AB=2.(1)求k的值;(2)过点B作BC⊥OB,交反比例函数y=(其中x>0)的图象于点C,连接OC交AB于点D,求的值.26.(10分)如图,AB为⊙O的直径,C为⊙O上一点,D是弧BC的中点,BC与AD、OD分别交于点E、F.(1)求证:DO∥AC;(2)求证:DE•DA=DC2;(3)若tan∠CAD=,求sin∠CDA的值.27.(10分)已知矩形ABCD中,AB=5cm,点P为对角线AC上的一点,且AP=2cm.如图①,动点M从点A出发,在矩形边上沿着A→B→C的方向匀速运动(不包含点C).设动点M的运动时间为t(s),△APM的面积为S(cm2),S与t的函数关系如图②所示.(1)直接写出动点M的运动速度为cm/s,BC的长度为cm;(2)如图③,动点M重新从点A出发,在矩形边上按原来的速度和方向匀速运动,同时,另一个动点N从点D出发,在矩形边上沿着D→C→B的方向匀速运动,设动点N 的运动速度为v(cm/s).已知两动点M,N经过时间x(s)在线段BC上相遇(不包含点C),动点M,N相遇后立即同时停止运动,记此时△APM与△DPN的面积分别为S1(cm2),S2(cm2)①求动点N运动速度v(cm/s)的取值范围;②试探究S1•S2是否存在最大值,若存在,求出S1•S2的最大值并确定运动时间x的值;若不存在,请说明理由.28.(10分)如图①,抛物线y=﹣x2+(a+1)x﹣a与x轴交于A,B两点(点A位于点B 的左侧),与y轴交于点C.已知△ABC的面积是6.(1)求a的值;(2)求△ABC外接圆圆心的坐标;(3)如图②,P是抛物线上一点,Q为射线CA上一点,且P、Q两点均在第三象限内,Q、A是位于直线BP同侧的不同两点,若点P到x轴的距离为d,△QPB的面积为2d,且∠P AQ=∠AQB,求点Q的坐标.2019年江苏省苏州市中考数学试卷答案与解析一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题要求的.请将选择题的答案用2B铅笔涂在答题卡相应位置上.1.【分析】根据只有符号不同的两数叫做互为相反数解答.【解答】解:5的相反数是﹣5.故选:D.【点评】本题考查了相反数的定义,是基础题,熟记概念是解题的关键.2.【分析】将数据从小到大重新排列后根据中位数的定义求解可得.【解答】解:这组数据排列顺序为:2,2,4,5,7,∴这组数据的中位数为4,故选:B.【点评】本题主要考查中位数,熟练掌握中位数的定义是解题的关键.3.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将26000000用科学记数法表示为:2.6×107.故选:D.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.【分析】直接利用平行线的性质得出∠3的度数,再利用邻补角的性质得出答案.【解答】解:如图所示:∵a∥b,∠1=54°,∴∠1=∠3=54°,∴∠2=180°﹣54°=126°.故选:A.【点评】此题主要考查了邻补角的性质以及平行线的性质,正确得出∠3的度数是解题关键.5.【分析】由切线的性质得出∠OAB=90°,由直角三角形的性质得出∠AOB=90°﹣∠ABO =54°,由等腰三角形的性质得出∠ADC=∠OAD,再由三角形的外角性质即可得出答案.【解答】解:∵AB为⊙O的切线,∴∠OAB=90°,∵∠ABO=36°,∴∠AOB=90°﹣∠ABO=54°,∵OA=OD,∴∠ADC=∠OAD,∵∠AOB=∠ADC+∠OAD,∴∠ADC=∠AOB=27°;故选:D.【点评】本题考查了切线的性质、直角三角形的性质、等腰三角形的性质以及三角形的外角性质;熟练掌握切线的性质和等腰三角形的性质是解题的关键.6.【分析】直接利用用15元买售价相同的软面笔记本,小丽用24元买售价相同的硬面笔记本,得出等式求出答案.【解答】解:设软面笔记本每本售价为x元,根据题意可列出的方程为:=.故选:A.【点评】此题主要考查了由实际问题抽象出分式方程,正确找出等量关系是解题关键.7.【分析】直接利用已知点画出函数图象,利用图象得出答案.【解答】解:如图所示:不等式kx+b>1的解为:x>1.故选:D.【点评】此题主要考查了一次函数与一元一次不等式,正确数形结合分析是解题关键.8.【分析】根据三角函数和直角三角形的性质解答即可.【解答】解:过D作DE⊥AB,∵在D处测得教学楼的顶部A的仰角为30°,∴∠ADE=30°,∵BC=DE=18m,∴AE=DE•tan30°=18m,∴AB=AE+BE=AE+CD=18+1.5=19.5m,故选:C.【点评】此题考查了仰角的定义.注意能借助仰角构造直角三角形并解直角三角形是解此题的关键.9.【分析】由菱形的性质得出AC⊥BD,AO=OC=AC=2,OB=OD=BD=8,由平移的性质得出O'C=OA=2,O'B'=OB=8,∠CO'B'=90°,得出AO'=AC+O'C=6,由勾股定理即可得出答案.【解答】解:∵四边形ABCD是菱形,∴AC⊥BD,AO=OC=AC=2,OB=OD=BD=8,∵△ABO沿点A到点C的方向平移,得到△A'B'O',点A'与点C重合,∴O'C=OA=2,O'B'=OB=8,∠CO'B'=90°,∴AO'=AC+O'C=6,∴AB'===10;故选:C.【点评】本题考查了菱形的性质、平移的性质、勾股定理;熟练掌握菱形的性质和平移的性质是解题的关键.10.【分析】由题意得到三角形DEC与三角形ABC相似,由相似三角形面积之比等于相似比的平方两三角形面积之比,进而求出四边形ABDE与三角形ABC面积之比,求出四边形ABDE面积,即可确定出三角形ABC面积.【解答】解:∵AB⊥AD,AD⊥DE,∴∠BAD=∠ADE=90°,∴DE∥AB,∴∠CED=∠CAB,∵∠C=∠C,∴△CED∽△CAB,∵DE=1,AB=2,即DE:AB=1:2,∴S△DEC:S△ACB=1:4,∴S四边形ABDE:S△ACB=3:4,∵S四边形ABDE=S△ABD+S△ADE=×2×2+×2×1=2+1=3,∴S△ACB=4,故选:B.【点评】此题考查了相似三角形的判定与性质,以及等腰直角三角形,熟练掌握相似三角形的判定与性质是解本题的关键.二、填空题:本大题共8小题,每小题3分,共24分.把答案直接填在答题卡相应位置上.11.【分析】根据同底数的幂的乘法,底数不变,指数相加,计算即可.【解答】解:a2•a3=a2+3=a5.故答案为:a5.【点评】熟练掌握同底数的幂的乘法的运算法则是解题的关键.12.【分析】直接提取公因式x,进而分解因式即可.【解答】解:x2﹣xy=x(x﹣y).故答案为:x(x﹣y).【点评】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.13.【分析】直接利用二次根式有意义的条件分析得出答案.【解答】解:若在实数范围内有意义,则x﹣6≥0,解得:x≥6.故答案为:x≥6.【点评】此题主要考查了二次根式有意义的条件,正确把握二次根式的定义是解题关键.14.【分析】直接利用已知解方程组进而得出答案.【解答】解:∵a+2b=8,3a+4b=18,则a=8﹣2b,代入3a+4b=18,解得:b=3,则a=2,故a+b=5.故答案为:5.【点评】此题主要考查了解二元一次方程组,正确掌握解题方法是解题关键.15.【分析】观察图形可知该“七巧板”中7块图形之一的正方形面积是大正方形面积的,先根据正方形面积公式求出大正方形面积,从而得到小正方形面积,进一步得到该“七巧板”中7块图形之一的正方形边长.【解答】解:10×10=100(cm2)=(cm)答:该“七巧板”中7块图形之一的正方形边长为cm.故答案为:.【点评】考查了七巧板,关键是得到该“七巧板”中7块图形之一的正方形面积是大正方形面积的.16.【分析】直接根据题意得出恰有三个面涂有红色的有8个,再利用概率公式求出答案.【解答】解:由题意可得:小立方体一共有27个,恰有三个面涂有红色的有8个,故取得的小正方体恰有三个面涂有红色的概率为:.故答案为:.【点评】此题主要考查了概率公式的应用,正确得出三个面涂有红色小立方体的个数是解题关键.17.【分析】连接OP,利用等腰三角形的性质可得出∠OAB=45°,结合PC⊥OA可得出△ACD为等腰直角三角形,进而可得出AC=1,设该扇形的半径长为r,则OC=r﹣1,在Rt△POC中,利用勾股定理可得出关于r的方程,解之即可得出结论.【解答】解:连接OP,如图所示.∵OA=OB,∠AOB=90°,∴∠OAB=45°.∵PC⊥OA,∴△ACD为等腰直角三角形,∴AC=CD=1.设该扇形的半径长为r,则OC=r﹣1,在Rt△POC中,∠PCO=90°,PC=PD+CD=3,∴OP2=OC2+PC2,即r2=(r﹣1)2+9,解得:r=5.故答案为:5.【点评】本题考查了勾股定理、等腰直角三角形以及圆的认识,利用勾股定理,找出关于扇形半径的方程是解题的关键.18.【分析】图中阴影部分的面积=外框大直角三角板的面积﹣内框小直角三角板的面积,根据等腰直角三角形的性质求出内框直角边长,再根据三角形面积公式计算即可求解.【解答】解:如图,EF=DG=CH=,∵含有45°角的直角三角板,∴BC=,GH=2,∴FG=8﹣﹣2﹣=6﹣2,∴图中阴影部分的面积为:8×8÷2﹣(6﹣2)×(6﹣2)÷2=32﹣22+12=10+12(cm2)答:图中阴影部分的面积为(10)cm2.故答案为:(10).【点评】考查了等腰直角三角形,相似三角形的判定与性质,平行线之间的距离,关键是求出内框直角边长.三、解答题;本大题共10小题,共76分.把解答过程写答题卡相应位置上,解答时应写出必要的计算过程、推演步骤或文字说明,作图时用2B铅笔或黑色墨水签宇笔.19.【分析】直接利用绝对值的性质以及零指数幂的性质分别化简得出答案.【解答】解:原式=3+2﹣1=4.【点评】此题主要考查了实数运算,正确化简各数是解题关键.20.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式x+1<5,得:x<4,解不等式2(x+4)>3x+7,得:x<1,则不等式组的解集为x<1.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.21.【分析】先根据分式的混合运算顺序和运算法则化简原式,再将x的值代入计算可得.【解答】解:原式=÷(﹣)=÷=•=,当x=﹣3时,原式===.【点评】本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则.22.【分析】(1)直接利用概率公式计算可得;(2)用列表法将所有等可能的结果一一列举出来即可,找到符合条件的结果数,再利用概率公式计算.【解答】解:(1)从盒子中任意抽取一张卡片,恰好抽到标有奇数卡片的概率是为=,故答案为:.(2)根据题意列表得:由表可知,共有12种等可能结果,其中抽取的2张卡片标有数字之和大于4的有8种结果,所以抽取的2张卡片标有数字之和大于4的概率为=.【点评】本题考查列表法与树状图法,解答本题的关键是明确题意,画出相应的树状图或表格,求出相应的概率.23.【分析】(1)由书法小组人数及其对应百分比可得总人数,再根据各小组人数之和等于总人数求得航模人数,从而补全图形;(2)根据百分比的概念可得m、n的值;(3)总人数乘以样本中围棋的人数所占百分比.【解答】解:(1)参加这次问卷调查的学生人数为30÷20%=150(人),航模的人数为150﹣(30+54+24)=42(人),补全图形如下:(2)m%=×100%=36%,n%=×100%=16%,即m=36、n=16,故答案为:36、16;(3)估计该校选择“围棋”课外兴趣小组的学生有1200×16%=192(人).【点评】本题考查了条形统计图和扇形统计图,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.24.【分析】(1)由旋转的性质可得AC=AF,利用SAS证明△ABC≌△AEF,根据全等三角形的对应边相等即可得出EF=BC;(2)根据等腰三角形的性质以及三角形内角和定理求出∠BAE=180°﹣65°×2=50°,那么∠F AG=50°.由△ABC≌△AEF,得出∠F=∠C=28°,再根据三角形外角的性质即可求出∠FGC=∠F AG+∠F=78°.【解答】(1)证明:∵∠CAF=∠BAE,∴∠BAC=∠EAF.∵将线段AC绕A点旋转到AF的位置,∴AC=AF.在△ABC与△AEF中,,∴△ABC≌△AEF(SAS),∴EF=BC;(2)解:∵AB=AE,∠ABC=65°,∴∠BAE=180°﹣65°×2=50°,∴∠F AG=∠BAE=50°.∵△ABC≌△AEF,∴∠F=∠C=28°,∴∠FGC=∠F AG+∠F=50°+28°=78°.【点评】本题考查了旋转的性质,全等三角形的判定与性质,等腰三角形的性质,三角形内角和定理以及三角形外角的性质,证明△ABC≌△AEF是解题的关键.25.【分析】(1)过点A作AH⊥x轴,垂足为点H,AH交OC于点M,利用等腰三角形的性质可得出DH的长,利用勾股定理可得出AH的长,进而可得出点A的坐标,再利用反比例函数图象上点的坐标特征即可求出k值;(2)由OB的长,利用反比例函数图象上点的坐标特征可得出BC的长,利用三角形中位线定理可求出MH的长,进而可得出AM的长,由AM∥BC可得出△ADM∽△BDC,利用相似三角形的性质即可求出的值.【解答】解:(1)过点A作AH⊥x轴,垂足为点H,AH交OC于点M,如图所示.∵OA=AB,AH⊥OB,∴OH=BH=OB=2,∴AH==6,∴点A的坐标为(2,6).∵A为反比例函数y=图象上的一点,∴k=2×6=12.(2)∵BC⊥x轴,OB=4,点C在反比例函数y=上,∴BC==3.∵AH∥BC,OH=BH,∴MH=BC=,∴AM=AH﹣MH=.∵AM∥BC,∴△ADM∽△BDC,∴==.【点评】本题考查了反比例函数图象上点的坐标特征、等腰三角形的性质、勾股定理以及相似三角形的判定与性质,解题的关键是:(1)利用等腰三角形的性质及勾股定理,求出点A的坐标;(2)利用相似三角形的性质求出的值.26.【分析】(1)点D是中点,OD是圆的半径,又OD⊥BC,而AB是圆的直径,则∠ACB=90°,故:AC∥OD;(2)证明△DCE∽△DCA,即可求解;(3)=3,即△AEC和△DEF的相似比为3,设:EF=k,则CE=3k,BC=8k,tan ∠CAD=,则AC=6k,AB=10k,即可求解.【解答】解:(1)因为点D是弧BC的中点,所以∠CAD=∠BAD,即∠CAB=2∠BAD,而∠BOD=2∠BAD,所以∠CAB=∠BOD,所以DO∥AC;(2)∵,∴∠CAD=∠DCB,∴△DCE∽△DCA,∴CD2=DE•DA;(3)∵tan∠CAD=,设:DE=a,则CD=2a,AD=4a,AE=3a,∴=3,即△AEC和△DEF的相似比为3,设:EF=k,则CE=3k,BC=8k,tan∠CAD=,∴AC=6k,AB=10k,∴sin∠CDA=.【点评】本题为圆的综合运用题,涉及到三角形相似等知识点,本题的关键是通过相似比,确定线段的比例关系,进而求解.27.【分析】(1)由题意得t=2.5s时,函数图象发生改变,得出t=2.5s时,M运动到点B 处,得出动点M的运动速度为:=2cm/s,由t=7.5s时,S=0,得出t=7.5s时,M 运动到点C处,得出BC=10(cm);(2)①由题意得出当在点C相遇时,v==(cm/s),当在点B相遇时,v==6(cm/s),即可得出答案;②过P作EF⊥AB于F,交CD于E,则EF∥BC,由平行线得出=,得出AF=2,DE=AF=2,CE=BF=3,由勾股定理得出PF=4,得出EP=6,求出S1=S△APM=S△APF+S梯形PFBM﹣S△ABM=﹣2x+15,S2=S△DPM=S△DEP+S梯形EPMC﹣S△DCM=2x,得出S1•S2=(﹣2x+15)×2x=﹣4x2+30x=﹣4(x﹣)2+,即可得出结果.【解答】解:(1)∵t=2.5s时,函数图象发生改变,∴t=2.5s时,M运动到点B处,∴动点M的运动速度为:=2cm/s,∵t=7.5s时,S=0,∴t=7.5s时,M运动到点C处,∴BC=(7.5﹣2.5)×2=10(cm),故答案为:2,10;(2)①∵两动点M,N在线段BC上相遇(不包含点C),∴当在点C相遇时,v==(cm/s),当在点B相遇时,v==6(cm/s),∴动点N运动速度v(cm/s)的取值范围为cm/s<v≤6cm/s;②过P作EF⊥AB于F,交CD于E,如图3所示:则EF∥BC,EF=BC=10,∴=,∵AC==5,∴=,解得:AF=2,∴DE=AF=2,CE=BF=3,PF==4,∴EP=EF﹣PF=6,∴S1=S△APM=S△APF+S梯形PFBM﹣S△ABM=×4×2+(4+2x﹣5)×3﹣×5×(2x﹣5)=﹣2x+15,S2=S△DPM=S△DEP+S梯形EPMC﹣S△DCM=×2×6+(6+15﹣2x)×3﹣×5×(15﹣2x)=2x,∴S1•S2=(﹣2x+15)×2x=﹣4x2+30x=﹣4(x﹣)2+,∵2.5<<7.5,在BC边上可取,∴当x=时,S1•S2的最大值为.【点评】本题是四边形综合题目,考查了矩形的性质、函数的图象、三角形面积公式、梯形面积公式、平行线的性质、勾股定理等知识;本题综合性强,有一定难度,正确理解函数图象是解题的关键.28.【分析】(1)由y=﹣x2+(a+1)x﹣a,令y=0,即﹣x2+(a+1)x﹣a=0,可求出A、B坐标结合三角形的面积,解出a=﹣3;(2)三角形外接圆圆心是三边垂直平分线的交点,求出两边垂直平分线,解交点可求出;(3)作PM⊥x轴,则=由可得A、Q到PB的距离相等,得到AQ∥PB,求出直线PB的解析式,以抛物线解析式联立得出点P坐标,由于△PBQ≌△ABP,可得PQ=AB=4,利用两点间距离公式,解出m值.【解答】解:(1)∵y=﹣x2+(a+1)x﹣a令y=0,即﹣x2+(a+1)x﹣a=0解得x1=a,x2=1由图象知:a<0∴A(a,0),B(1,0)∵s△ABC=6∴解得:a=﹣3,(a=4舍去)(2)设直线AC:y=kx+b,由A(﹣3,0),C(0,3),可得﹣3k+b=0,且b=3∴k=1即直线AC:y=x+3,A、C的中点D坐标为(﹣,)∴线段AC的垂直平分线解析式为:y=﹣x,线段AB的垂直平分线为x=﹣1代入y=﹣x,解得:y=1∴△ABC外接圆圆心的坐标(﹣1,1)(3)作PM⊥x轴,则=∵∴A、Q到PB的距离相等,∴AQ∥PB设直线PB解析式为:y=x+b∵直线经过点B(1,0)所以:直线PB的解析式为y=x﹣1联立解得:∴点P坐标为(﹣4,﹣5)又∵∠P AQ=∠AQB可得:△PBQ≌△ABP(AAS)∴PQ=AB=4设Q(m,m+3)由PQ=4得:解得:m=﹣4,m=﹣8(当m=﹣8时,∠P AQ≠∠AQB,故应舍去)∴Q坐标为(﹣4,﹣1)【点评】本题考查二次函数的综合应用,函数和几何图形的综合题目,抛物线和直线“曲直”联立解交点,利用三角形的全等和二次函数的性质把数与形有机的结合在一起,转化线段长求出结果.。

2019年江苏省苏州市中考数学试卷(详解版)

2019年江苏省苏州市中考数学试卷(详解版)

2019年江苏省苏州市中考数学试卷一、选择题(本大题共10小题, 每小题3分,共30分)答案解析A.B.C.D.的相反数是().1D的相反数是,故选:.答案解析A.B.C.D.有一组数据:,,,,,这组数据的中位数为().2B这组数据排列排序为:,,,,,∴这组数据的中位数为.故选.答案解析A.B.C. D.苏州是全国重点旅游城市,年实现旅游总收入约为万元,数据用科学记数法可表示为().3D 将用科学记数法表示为:.故选.4如图,已知直线5如图,∵,∴,∵,∴,∵,∴.故选:.答案解析A.B.C.D.小明用元买售价相同的软面笔记本,小丽用元买售价相同的硬面笔记本(两人的钱恰好用完),已知每本硬面笔记本比软面笔记本贵元,且小明和小丽买到相同数量的笔记本,设软面笔记本每本售价为元,根据题意可列出的方程为().6A设软面笔记本每本售价为元,根据题意可列出的方程为,故选.答案解析A.B.C.D.若一次函数(,为常数,且)的图象经过点,,则不等式的解为().7D如图所示:不等式的解为:.故选:.8如图,小亮为了测量校园里教学楼9如图,菱形10如图,在11计算:12因式分解:13若14若15“16如图,讲一个棱长为17如图,扇形18如图,一块含有19计算:20解不等式组:21先化简,在求值:22在一个不透明的盒子中装有23某校计划组织学生参加24如图,25如图,26如图,答案解析若,求的值.(3)证明见解析.(1)证明见解析.(2).(3)∵点是中点,是圆半径,∴,∵是圆的直径,∴,∴.(1)∵,∴,∴,∴.(2)∵,∴和的相似比为:,设:,则,,,∴,即和的相似比为,设:,则,,,∴,,∴.(3)已知矩形中,.点为对角线上的一点,且.如图①,动点从点出发,在矩形边上沿着的方向匀速运动(不包含点).设动点的运动时间为,的面积为,与的函数关系如图②所示.2728如图①,抛物线∴、到的距离相等,∴,设直线解析式为:,∵直线经过点,所以:直线的解析式为,联立,解得:,∴点坐标为,又∵,可得:≌,可得:≌,∴,设,由得:,解得:,(舍去),∴坐标为.。

(完整版)江苏苏州2019中考试卷-数学(解析版)

(完整版)江苏苏州2019中考试卷-数学(解析版)

江苏苏州2019中考试卷-数学(解析版)【一】选择题〔此题共10个小题,每题3分,共30分〕1、2的相反数是〔〕A、﹣2B、2C、﹣D、考点:相反数。

专题:常规题型。

分析:依照相反数的定义即可求解、解答:解:2的相反数等于﹣2、应选A、点评:此题考查了相反数的知识,属于基础题,注意熟练掌握相反数的概念是关键、2、假设式子在实数范围内有意义,那么x的取值范围是〔〕A、x<2B、x≤2C、x>2D、x≥2考点:二次根式有意义的条件。

分析:依照二次根式中的被开方数必须是非负数,即可求解、解答:解:依照题意得:x﹣2≥0,解得:x≥2、应选D、点评:此题考查的知识点为:二次根式的被开方数是非负数、3、一组数据2,4,5,5,6的众数是〔〕考点:众数。

分析:依照众数的定义解答即可、解答:解:在2,4,5,5,6中,5出现了两次,次数最多,故众数为5、应选C、点评:此题考查了众数的概念﹣﹣﹣﹣一组数据中,出现次数最多的数位众数,众数能够有多个、停止时,指针指向阴影区域的概率是〔〕A、B、C、D、考点:几何概率。

分析:确定阴影部分的面积在整个转盘中占的比例,依照那个比例即可求出转盘停止转动时指针指向阴影部分的概率、解答:解:如图:转动转盘被均匀分成6部分,阴影部分占2份,转盘停止转动时指针指向阴影部分的概率是=;应选B、点评:此题考查了几何概率、用到的知识点为:概率=相应的面积与总面积之比、5、如图,BD是⊙O的直径,点A、C在⊙O上,=,∠AOB=60°,那么∠BDC的度数是〔〕A、20°B、25°C、30°D、40°考点:圆周角定理;圆心角、弧、弦的关系。

分析:由BD是⊙O的直径,点A、C在⊙O上,=,∠AOB=60°,利用在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半,即可求得∠BDC的度数、解答:解:∵=,∠AOB=60°,∴∠BDC=∠AOB=30°、应选C、点评:此题考查了圆周角定理、此题比较简单,注意数形结合思想的应用,注意在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半定理的应用、6、如图,矩形ABCD的对角线AC、BD相交于点O,CE∥BD,DE∥AC,假设AC=4,那么四边形CODE的周长〔〕A、4B、6C、8D、10考点:菱形的判定与性质;矩形的性质。

2019江苏省苏州市中考数学试卷(解析版)

2019江苏省苏州市中考数学试卷(解析版)

2019年江苏省苏州市中考数学试卷一、选择题(本大题共10小题,共30.0分)1.5的相反数是()A. B. C. 5 D.2.有一组数据:2,2,4,5,7,这组数据的中位数为()A. 2B. 4C. 5D. 73.苏州是全国重点旅游城市,2018年实现旅游总收入约为26000000万元,数据26000000用科学记数法可表示为()A. B. C. D.4.如图,已知直线a∥b,直线c与直线a,b分别交于点A,B.若∠ = 4°,则∠2等于()A.B. 4C.D. 445.如图,AB为⊙O的切线,切点为A连接AO、BO,BO与⊙O交于点C,延长BO与⊙O交于点D,连接AD.若∠ABO= °,则∠ADC的度数为()A. 4B.C.D.6.小明用15元买售价相同的软面笔记本,小丽用24元买售价相同的硬面笔记本(两人的钱恰好用完),已知每本硬面笔记本比软面笔记本贵3元,且小明和小丽买到相同数量的笔记本,设软面笔记本每本售价为x元,根据题意可列出的方程为()A. 4B. 4C. 4D. 47.若一次函数y=kx+b(k,b为常数,且k≠ )的图象经过点A(0,-1),B(1,1),则不等式kx+b>1的解为()A. B. C. D.8.如图,小亮为了测量校园里教学楼AB的高度,将测角仪CD竖直放置在与教学楼水平距离为18m的地面上,若测角仪的高度是1.5m.测得教学楼的顶部A处的仰角为°.则教学楼的高度是()A.B. 54mC.D. 18m9.如图,菱形ABCD的对角线AC,BD交于点O,AC=4,BD=16,将△ABO沿点A到点C的方向平移,得到△A'B'O'.当点A'与点C重合时,点A与点B'之间的距离为()A. 6B. 8C. 10D. 1210.如图,在△ABC中,点D为BC边上的一点,且AD=AB=2,AD⊥AB.过点D作DE⊥AD,DE交AC于点E.若DE=1,则△ABC的面积为()A. 4B. 4C.D. 8二、填空题(本大题共8小题,共24.0分)11.计算:a2•a3=______.12.因式分解:x2-xy=______.13.若在实数范围内有意义,则x的取值范围为______.14.若a+2b=8,3a+4b=18,则a+b的值为______.15.“七巧板”是我们祖先的一项卓越创造,可以拼出许多有趣的图形,被誉为“东方魔板”.图①是由边长为10cm的正方形薄板分为7块制作成的“七巧板”,图②是用该“七巧板”拼成的一个“家”的图形.该“七巧板”中7块图形之一的正方形边长为______cm(结果保留根号).16.如图,将一个棱长为3的正方体的表面涂上红色,再把它分割成棱长为1的小正方体,从中任取一个小正方体,则取得的小正方体恰有三个面涂有红色的概率为______.17.如图,扇形OAB中,∠AOB= °.P为弧AB上的一点,过点P作PC⊥OA,垂足为C,PC与AB交于点D.若PD=2,CD=1,则该扇形的半径长为______.18.如图,一块含有4 °角的直角三角板,外框的一条直角边长为8cm,三角板的外框线和与其平行的内框线之间的距离均为cm,则图中阴影部分的面积为______cm2(结果保留根号).三、计算题(本大题共1小题,共6.0分)19.先化简,再求值:÷(1-),其中,x=-3.四、解答题(本大题共9小题,共70.0分)20.计算:()2+|-2|-(π-2)021.解不等式组:422.在一个不透明的盒子中装有4张卡片,4张卡片的正面分别标有数字1,2,3,4,这些卡片除数字外都相同,将卡片搅匀.(1)从盒子中任意抽取一张卡片,恰好抽到标有奇数卡片的概率是______;(2)先从盒了中任意抽取一张卡片,再从余下的3张卡片中任意抽取一张卡片,求抽取的2张卡片标有数字之和大于4的概率.(请用画树状图或列表等方法求解).23.某校计划组织学生参加“书法”、“摄影”、“航模、“围棋”四个课外兴趣小组,要求每人必须参加,并且只能选择其中一个小组,为了解学生对四个课外兴趣小组的选择情况,学校从全体学生中随机抽取部分学生进行问卷调查,并把调查结果制成如图所示的扇形统计图和条形统计图(部分信息未给出),请你根据给出的信息解答下列问题:(1)求参加这次问卷调查的学生人数,并补全条形统计图(画图后请标注相应的数据);(2)m=______,n=______;(3)若该校共有1200名学生,试估计该校选择“围棋”课外兴趣小组的学生有多少人?24.如图,△ABC中,点E在BC边上,AE=AB,将线段AC绕A点旋转到AF的位置,使得∠CAF=∠BAE,连接EF,EF与AC交于点G.(1)求证:EF=BC;(2)若∠ABC= °,∠ACB= °,求∠FGC的度数.25.如图,A为反比例函数y=(其中x>0)图象上的一点,在x轴正半轴上有一点B,OB=4.连接OA,AB,且OA=AB=2.(1)求k的值;(2)过点B作BC⊥OB,交反比例函数y=(其中x>0)的图象于点C,连接OC交AB于点D,求的值.26.如图,AB为⊙O的直径,C为⊙O上一点,D是弧BC的中点,BC与AD、OD分别交于点E、F.(1)求证:DO∥AC;(2)求证:DE•DA=DC2;(3)若tan∠CAD=,求sin∠CDA的值.27.已知矩形ABCD中,AB=5cm,点P为对角线AC上的一点,且AP=2cm.如图①,动点M从点A出发,在矩形边上沿着A→B→C的方向匀速运动(不包含点C).设动点M的运动时间为t(s),△APM的面积为S(cm2),S与t的函数关系如图②所示.(1)直接写出动点M的运动速度为______cm/s,BC的长度为______cm;(2)如图③,动点M重新从点A出发,在矩形边上按原来的速度和方向匀速运动,同时,另一个动点N从点D出发,在矩形边上沿着D→C→B的方向匀速运动,设动点N的运动速度为v(cm/s).已知两动点M,N经过时间x(s)在线段BC上相遇(不包含点C),动点M,N相遇后立即同时停止运动,记此时△APM与△DPN 的面积分别为S1(cm2),S2(cm2)①求动点N运动速度v(cm/s)的取值范围;②试探究S1•S2是否存在最大值,若存在,求出S1•S2的最大值并确定运动时间x的值;若不存在,请说明理由.28.如图①,抛物线y=-x2+(a+1)x-a与x轴交于A,B两点(点A位于点B的左侧),与y轴交于点C.已知△ABC的面积是6.(1)求a的值;(2)求△ABC外接圆圆心的坐标;(3)如图②,P是抛物线上一点,Q为射线CA上一点,且P、Q两点均在第三象限内,Q、A是位于直线BP同侧的不同两点,若点P到x轴的距离为d,△QPB的面积为2d,且∠PAQ=∠AQB,求点Q的坐标.答案和解析1.【答案】D【解析】解:5的相反数是-5.故选:D.根据只有符号不同的两数叫做互为相反数解答.本题考查了相反数的定义,是基础题,熟记概念是解题的关键.2.【答案】B【解析】解:这组数据排列顺序为:2,2,4,5,7,∴这组数据的中位数为4,故选:B.将数据从小到大重新排列后根据中位数的定义求解可得.本题主要考查中位数,熟练掌握中位数的定义是解题的关键.3.【答案】D【解析】解:将26000000用科学记数法表示为: . × 7.故选:D.科学记数法的表示形式为a× n的形式,其中 ≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a× n的形式,其中 ≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.【答案】A【解析】解:如图所示:∵a∥b,∠ = 4°,∴∠1=∠ = 4°,∴∠ = °- 4°= °.故选:A.直接利用平行线的性质得出∠3的度数,再利用邻补角的性质得出答案.此题主要考查了邻补角的性质以及平行线的性质,正确得出∠3的度数是解题关键.5.【答案】D【解析】解:∵AB为⊙O的切线,∴∠OAB= °,∵∠ABO= °,∴∠AOB= °-∠ABO= 4°,∵OA=OD,∴∠ADC=∠OAD,∵∠AOB=∠ADC+∠OAD,∴∠ADC=∠AOB= °;故选:D.由切线的性质得出∠OAB= °,由直角三角形的性质得出∠AOB= °-∠ABO= 4°,由等腰三角形的性质得出∠ADC=∠OAD,再由三角形的外角性质即可得出答案.本题考查了切线的性质、直角三角形的性质、等腰三角形的性质以及三角形的外角性质;熟练掌握切线的性质和等腰三角形的性质是解题的关键.6.【答案】A【解析】解:设软面笔记本每本售价为x元,根据题意可列出的方程为:=.故选:A.直接利用用15元买售价相同的软面笔记本,小丽用24元买售价相同的硬面笔记本,得出等式求出答案.此题主要考查了由实际问题抽象出分式方程,正确找出等量关系是解题关键.7.【答案】D【解析】解:如图所示:不等式kx+b>1的解为:x>1.故选:D.直接利用已知点画出函数图象,利用图象得出答案.此题主要考查了一次函数与一元一次不等式,正确数形结合分析是解题关键.8.【答案】C【解析】解:过D作DE⊥AB,∵在D处测得旗杆顶端A的仰角为 °,∴∠ADE= °,∵BC=DE=18m,∴AE=DE•tan °= m,∴AB=AE+BE=AE+CD=18+1.5=19.5m,故选:C.根据三角函数和直角三角形的性质解答即可.此题考查了仰角的定义.注意能借助仰角构造直角三角形并解直角三角形是解此题的关键.9.【答案】C【解析】解:∵四边形ABCD是菱形,∴AC⊥BD,AO=OC=AC=2,OB=OD=BD=8,∵△ABO沿点A到点C的方向平移,得到△A'B'O',点A'与点C重合,∴O'C=OA=2,O'B'=OB=8,∠CO'B'= °,∴AO'=AC+O'C=6,∴AB'===10;故选:C.由菱形的性质得出AC⊥BD,AO=OC=AC=2,OB=OD=BD=8,由平移的性质得出O'C=OA=2,O'B'=OB=8,∠CO'B'= °,得出AO'=AC+O'C=6,由勾股定理即可得出答案.本题考查了菱形的性质、平移的性质、勾股定理;熟练掌握菱形的性质和平移的性质是解题的关键.10.【答案】B【解析】解:∵AB⊥AD,AD⊥DE,∴∠BAD=∠ADE= °,∴DE∥AB,∴∠CED=∠CAB,∵∠C=∠C,∴△CED∽△CAB,∵DE=1,AB=2,即DE:AB=1:2,∴S△DEC :S△ACB=1:4,∴S四边形ABDE :S△ACB=3:4,∵S四边形ABDE =S△ABD+S△ADE=× × +× × = + = ,∴S△ACB=4,故选:B.由题意得到三角形DEC与三角形ABC相似,由相似三角形面积之比等于相似比的平方两三角形面积之比,进而求出四边形ABDE与三角形ABC面积之比,求出四边形ABDE面积,即可确定出三角形ABC面积.此题考查了相似三角形的判定与性质,以及等腰直角三角形,熟练掌握相似三角形的判定与性质是解本题的关键.11.【答案】a5【解析】解:a2•a3=a2+3=a5.故答案为:a5.根据同底数的幂的乘法,底数不变,指数相加,计算即可.熟练掌握同底数的幂的乘法的运算法则是解题的关键.12.【答案】x(x-y)【解析】解:x2-xy=x(x-y).故答案为:x(x-y).直接提取公因式x,进而分解因式即可.此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.13.【答案】x≥【解析】解:若在实数范围内有意义,则x- ≥ ,解得:x≥ .故答案为:x≥ .直接利用二次根式有意义的条件分析得出答案.此题主要考查了二次根式有意义的条件,正确把握二次根式的定义是解题关键.14.【答案】5【解析】解:∵a+2b=8,3a+4b=18,则a=8-2b,代入3a+4b=18,解得:b=3,则a=2,故a+b=5.故答案为:5.直接利用已知解方程组进而得出答案.此题主要考查了解二元一次方程组,正确掌握解题方法是解题关键.15.【答案】【解析】解: × = (cm2)=(cm)答:该“七巧板”中7块图形之一的正方形边长为cm.故答案为:.观察图形可知该“七巧板”中7块图形之一的正方形面积是大正方形面积的,先根据正方形面积公式求出大正方形面积,从而得到小正方形面积,进一步得到该“七巧板”中7块图形之一的正方形边长.考查了七巧板,关键是得到该“七巧板”中7块图形之一的正方形面积是大正方形面积的.16.【答案】【解析】解:由题意可得:小立方体一共有27个,恰有三个面涂有红色的有8个,故取得的小正方体恰有三个面涂有红色的概率为:.故答案为:.直接根据题意得出恰有三个面涂有红色的有8个,再利用概率公式求出答案.此题主要考查了概率公式的应用,正确得出三个面涂有红色小立方体的个数是解题关键.17.【答案】5【解析】解:连接OP,如图所示.∵OA=OB,∠AOB= °,∴∠OAB=4 °.∵PC⊥OA,∴△ACD为等腰直角三角形,∴AC=CD=1.设该扇形的半径长为r,则OC=r-1,在Rt△POC中,∠PCO= °,PC=PD+CD=3,∴OP2=OC2+PC2,即r2=(r-1)2+9,解得:r=5.故答案为:5.连接OP,利用等腰三角形的性质可得出∠OAB=4 °,结合PC⊥OA可得出△ACD为等腰直角三角形,进而可得出AC=1,设该扇形的半径长为r,则OC=r-1,在Rt△POC中,利用勾股定理可得出关于r的方程,解之即可得出结论.本题考查了勾股定理、等腰直角三角形以及圆的认识,利用勾股定理,找出关于扇形半径的方程是解题的关键.18.【答案】(10)【解析】解:如图,EF=DG=CH=,∵含有4 °角的直角三角板,∴BC=,GH=2,∴FG=8--2-=6-2,∴图中阴影部分的面积为:× ÷ -(6-2)×(6-2)÷=32-22+12=10+12(cm2)答:图中阴影部分的面积为(10)cm2.故答案为:(10).图中阴影部分的面积=外框大直角三角板的面积-内框小直角三角板的面积,根据等腰直角三角形的性质求出内框直角边长,再根据三角形面积公式计算即可求解.考查了等腰直角三角形,相似三角形的判定与性质,平行线之间的距离,关键是求出内框直角边长.19.【答案】解:原式=÷(-)=÷=•=,当x=-3时,原式===.【解析】先根据分式的混合运算顺序和运算法则化简原式,再将x的值代入计算可得.本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则.20.【答案】解:原式=3+2-1=4.【解析】直接利用绝对值的性质以及零指数幂的性质分别化简得出答案.此题主要考查了实数运算,正确化简各数是解题关键.21.【答案】解:解不等式x+1<5,得:x<4,解不等式2(x+4)>3x+7,得:x<1,则不等式组的解集为x<1.【解析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.22.【答案】【解析】解:(1)从盒子中任意抽取一张卡片,恰好抽到标有奇数卡片的概率是为=,故答案为:.(2)根据题意列表得:由表可知,共有12种等可能结果,其中抽取的2张卡片标有数字之和大于4的有8种结果,所以抽取的2张卡片标有数字之和大于4的概率为=.(1)直接利用概率公式计算可得;(2)用列表法将所有等可能的结果一一列举出来即可,找到符合条件的结果数,再利用概率公式计算.本题考查列表法与树状图法,解答本题的关键是明确题意,画出相应的树状图或表格,求出相应的概率.23.【答案】36 16【解析】解:(1)参加这次问卷调查的学生人数为 ÷ %= (人),航模的人数为150-(30+54+24)=42(人),补全图形如下:(2)m%=× %= %,n%=× %= %,即m=36、n=16,故答案为:36、16;(3)估计该校选择“围棋”课外兴趣小组的学生有 × %= (人).(1)由书法小组人数及其对应百分比可得总人数,再根据各小组人数之和等于总人数求得航模人数,从而补全图形;(2)根据百分比的概念可得m、n的值;(3)总人数乘以样本中围棋的人数所占百分比.本题考查了条形统计图和扇形统计图,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.24.【答案】(1)证明:∵∠CAF=∠BAE,∴∠BAC=∠EAF.∵将线段AC绕A点旋转到AF的位置,∴AC=AF.在△ABC与△AEF中,∠ ∠ ,∴△ABC≌△AEF(SAS),∴EF=BC;(2)解:∵AB=AE,∠ABC= °,∴∠BAE= °- °× = °,∴∠FAG=∠BAE= °.∵△ABC≌△AEF,∴∠F=∠C= °,∴∠FGC=∠FAG+∠F= °+ °= °.【解析】(1)由旋转的性质可得AC=AF,利用SAS证明△ABC≌△AEF,根据全等三角形的对应边相等即可得出EF=BC;(2)根据等腰三角形的性质以及三角形内角和定理求出∠BAE= °- °× = °,那么∠FAG= °.由△ABC≌△AEF,得出∠F=∠C= °,再根据三角形外角的性质即可求出∠FGC=∠FAG+∠F= °.本题考查了旋转的性质,全等三角形的判定与性质,等腰三角形的性质,三角形内角和定理以及三角形外角的性质,证明△ABC≌△AEF是解题的关键.25.【答案】解:(1)过点A作AH⊥x轴,垂足为点H,AH交OC于点M,如图所示.∵OA=AB,AH⊥OB,∴OH=BH=OB=2,∴AH==6,∴点A的坐标为(2,6).∵A为反比例函数y=图象上的一点,∴k= × = .(2)∵BC⊥x轴,OB=4,点C在反比例函数y=上,∴BC==3.∵AH∥BC,OH=BH,∴MH=BC=,∴AM=AH-MH=.∵AM∥BC,∴△ADM∽△BDC,∴==.【解析】(1)过点A作AH⊥x轴,垂足为点H,AH交OC于点M,利用等腰三角形的性质可得出DH的长,利用勾股定理可得出AH的长,进而可得出点A的坐标,再利用反比例函数图象上点的坐标特征即可求出k值;(2)由OB的长,利用反比例函数图象上点的坐标特征可得出BC的长,利用三角形中位线定理可求出MH的长,进而可得出AM的长,由AM∥BC可得出△ADM∽△BDC,利用相似三角形的性质即可求出的值.本题考查了反比例函数图象上点的坐标特征、等腰三角形的性质、勾股定理以及相似三角形的判定与性质,解题的关键是:(1)利用等腰三角形的性质及勾股定理,求出点A的坐标;(2)利用相似三角形的性质求出的值.26.【答案】解:(1)∵点D是中点,OD是圆的半径,∴OD⊥BC,∵AB是圆的直径,∴∠ACB= °,∴AC∥OD;(2)∵,∴∠CAD=∠DCB,∴△DCE∽△DCA,∴CD2=DE•DA;(3)∵tan∠CAD=,∴△DCE和△DAC的相似比为:,设:DE=a,则CD=2a,AD=4a,AE=3a,∴=3,即△AEC和△DEF的相似比为3,设:EF=k,则CE=3k,BC=8k,tan∠CAD=,∴AC=6k,AB=10k,∴sin∠CDA=.【解析】(1)点D是中点,OD是圆的半径,又OD⊥BC,而AB是圆的直径,则∠ACB= °,故:AC∥OD;(2)证明△DCE∽△DCA,即可求解;(3)=3,即△AEC和△DEF的相似比为3,设:EF=k,则CE=3k,BC=8k,tan∠CAD=,则AC=6k,AB=10k,即可求解.本题为圆的综合运用题,涉及到三角形相似等知识点,本题的关键是通过相似比,确定线段的比例关系,进而求解.27.【答案】2 10【解析】解:(1)∵t=2.5s时,函数图象发生改变,∴t=2.5s时,M运动到点B处,∴动点M的运动速度为:=2cm/s,∵t=7.5s时,S=0,∴t=7.5s时,M运动到点C处,∴BC=(7.5-2.5)× = (cm),故答案为:2,10;(2)①∵两动点M,N在线段BC上相遇(不包含点C),∴当在点C相遇时,v==(cm/s),当在点B相遇时,v==6(cm/s),∴动点N运动速度v(cm/s)的取值范围为cm/s<v≤ cm/s;②过P作EF⊥AB于F,交CD于E,如图3所示:则EF∥BC,EF=BC=10,∴=,∵AC==5,∴=,解得:AF=2,∴DE=AF=2,CE=BF=3,PF==4,∴EP=EF-PF=6,∴S1=S△APM=S△APF+S梯形PFBM-S△ABM=×4× +(4+2x-5)× -× ×(2x-5)=-2x+15,S 2=S△DPM=S△DEP+S梯形EPMC-S△DCM=× × +(6+15-2x)× -× ×(15-2x)=2x,∴S1•S2=(-2x+15)× x=-4x2+30x=-4(x-)2+,∵2.5<<7.5,在BC边上可取,∴当x=时,S1•S2的最大值为.(1)由题意得t=2.5s时,函数图象发生改变,得出t=2.5s时,M运动到点B处,得出动点M的运动速度为:=2cm/s,由t=7.5s时,S=0,得出t=7.5s 时,M运动到点C处,得出BC=10(cm);(2)①由题意得出当在点C相遇时,v==(cm/s),当在点B相遇时,v==6(cm/s),即可得出答案;②过P作EF⊥AB于F,交CD于E,则EF∥BC,由平行线得出=,得出AF=2,DE=AF=2,CE=BF=3,由勾股定理得出PF=4,得出EP=6,求出S 1=S△APM=S△APF+S梯形PFBM-S△ABM=-2x+15,S2=S△DPM=S△DEP+S梯形EPMC-S△DCM=2x,得出S1•S2=(-2x+15)× x=-4x2+30x=-4(x-)2+,即可得出结果.本题是四边形综合题目,考查了矩形的性质、函数的图象、三角形面积公式、梯形面积公式、平行线的性质、勾股定理等知识;本题综合性强,有一定难度,正确理解函数图象是解题的关键.28.【答案】解:(1)∵y=-x2+(a+1)x-a令y=0,即-x2+(a+1)x-a=0解得x1=a,x2=1由图象知:a<0∴A(a,0),B(1,0)∵s△ABC=6∴解得:a=-3,(a=4舍去)(2)设直线AC:y=kx+b,由A(-3,0),C(0,3),可得-3k+b=0,且b=3∴k=1即直线AC:y=x+3,A、C的中点D坐标为(-,)∴线段AC的垂直平分线解析式为:y=-x,线段AB的垂直平分线为x=-1代入y=-x,解得:y=1∴△ABC外接圆圆心的坐标(-1,1)(3)作PM⊥x轴,则=4∵∴A、Q到PB的距离相等,∴AQ∥PB设直线PB解析式为:y=x+b∵直线经过点B(1,0)所以:直线PB的解析式为y=x-1联立解得:4∴点P坐标为(-4,-5)又∵∠PAQ=∠AQB可得:△PBQ≌△ABP(AAS)∴PQ=AB=4设Q(m,m+3)由PQ=4得:44解得:m=-4,m=-8(舍去)∴Q坐标为(-4,-1)【解析】(1)由y=-x2+(a+1)x-a,令y=0,即-x2+(a+1)x-a=0,可求出A、B坐标结合三角形的面积,解出a=-3;(2)三角形外接圆圆心是三边垂直平分线的交点,求出两边垂直平分线,解交点可求出;(3)作PM⊥x轴,则=由可得A、Q到PB的距离相等,得到AQ∥PB,求出直线PB的解析式,以抛物线解析式联立得出点P 坐标,由于△PBQ≌△ABP,可得PQ=AB=4,利用两点间距离公式,解出m值.本题考查二次函数的综合应用,函数和几何图形的综合题目,抛物线和直线“曲直”联立解交点,利用三角形的全等和二次函数的性质把数与形有机的结合在一起,转化线段长求出结果.。

2019年江苏省苏州市中考数学试卷含答案解析

2019年江苏省苏州市中考数学试卷含答案解析

数学试卷 第1页(共26页) 数学试卷 第2页(共26页)绝密★启用前江苏省苏州市2019年初中毕业暨升学考试数 学(本试卷满分130分,考试时间120分钟)第Ⅰ卷(选择题 共30分)一、选择题(本大题共10小题,每小题3分,共30分。

在每小题给出的四个选项中,只有一项是符合题要求的。

) 1.5的相反数是( )A .15B .15-C .5D .5- 2.有一组数据:2,2,4,5,7这组数据的中位数为( )A .2B .4C .5D .73.苏州是全国重点旅游城市,2018年实现旅游总收入约为26 000 000万元,数据26 000 000用科学记数法可表示为( )A .80.2610⨯B .82.610⨯C .62610⨯D .72.610⨯4.如图,已知直线//a b ,直线c 与直线a b ,分别交于点A B ,.若154∠=,则2∠=( )A .126B .134C .136D .1445.如图,AB 为O ⊙的切线,切点为A ,连接AO BO 、,BO 与O ⊙交于点C ,延长BO 与O ⊙交于点D ,连接AD ,若36ABO ∠=,则ADC ∠的度数为( )A .54B .36C .32D .276.小明5元买售价相同的软面笔记本,小丽用24元买售价相同的硬面笔记本(两人的钱恰好用完),已知每本硬面笔记本比软面笔记本贵3元,且小明和小丽买到相同数量的笔记本,设软面笔记本每本售价为x 元,根据题意可列出的方程为 ( ) A .15243x x =+ B .15243x x =-C .15243x x =+D .15243x x=- 7.若一次函数y kx b =+(k b 、为常数,且0k ≠)的图像经过点()01A -,,()11B ,,则不等式1kx b +>的解为( ) A .0x <B .0x >C .1x <D .1x >8.如图,小亮为了测量校园里教学楼AB 的高度,将测角仪CD 竖直放置在与教学楼水平距离为的地面上,若测角仪的高度为1.5m ,测得教学楼的顶部A 处的仰角为30,则教学楼的高度是( )A .55.5mB .54mC .19.5mD .18m9.如图,菱形ABCD 的对角线AC ,BD 交于点O ,416AC BD ==,,将ABO △沿点A 到点C 的方向平移,得到ABC '''△,当点A '与点C 重合时,点A 与点B '之间的距离为( )A .6B .8C .10D .12 10.如图,在ABC △中,点D 为BC 边上的一点,且2AD AB ==,AD AB ⊥,过点D 作DE AD ⊥,DE 交AC 于点E ,若1DE =,则ABC △的面积为( )A.B .4C.D .8aDCDBBC毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共26页) 数学试卷 第4页(共26页)第Ⅱ卷(非选择题 共100分)二、填空题(本大题共8小题,每小题3分,共24分.请把答案填在题中的横线上) 11.计算:23a a ⋅= . 12.因式分解:2x xy -= .13.x 的取值范围为 . 14.若28a b +=,3418a b +=,则a b +的值为 .15.“七巧板”是我们祖先的一项卓越创造,可以拼出许多有趣的图形,被誉为“东方魔板”,图1是由边长10 cm 的正方形薄板分成7块制作成的“七巧板”图2是用该“七巧板”拼成的一个“家”的图形,该“七巧板”中7块图形之一的正方形边长为______cm (结果保留根号).16.如图,将一个棱长为3的正方体的表面涂上红色,再把它分割成棱长为1的小正方形,从中任取一个小正方体,则取得的小正方体恰有三个面涂有红色的概率为 .17.如图,扇形OAB 中,90AOB ∠=︒。

2019年江苏苏州中考数学试题(解析版)

2019年江苏苏州中考数学试题(解析版)

{来源}2019年江苏省苏州市中考数学试卷 {适用范围:3. 九年级}{标题}2019年江苏省苏州市中考数学试卷考试时间:120分钟 满分:130分{题型:1-选择题}一、选择题:本大题共10小题,每小题3分,合计30分. {题目}1.(2019年苏州T1)5的相反数是( )A .15B .15- C .5 D .5-{答案}D{解析}本题考查了实数的相反数,只有符号不同的两个数互为相反数.5的相反数是﹣5,因此本题选D . {分值}3{章节: [1-1-2-3]相反数} {考点:相反数的定义} {类别:常考题} {难度:1-最简单}{题目}2.(2019年苏州T2)有一组数据:2,2,4,5,7这组数据的中位数为( )A .2B .4C .5D .7 {答案}B{解析}本题考查了中位数.一组数据中按照从大到小(或从小到大)的顺序排列,若有奇数个数据,则最中间的那个数就是中位数,若有偶数个数据,则中间两个数的平均数是中位数.本题的数据从小到大的顺序排列为:2,2,4,5,7,所以中位数为4,因此本题选B . {分值}3{章节:[1-20-1-2]中位数和众数 } {考点:中位数} {{类别:常考题} {难度:1-最简单}{题目}3.(2019年苏州T3)苏州是全国重点旅游城市,2018年实现旅游总收入约为26 000 000万元,数据26 000 000用科学记数法可表示为( )A .80.2610⨯B .82.610⨯C .62610⨯D .72.610⨯{答案}D{解析}本题考查了科学记数法表示较大的数.把一个绝对值小于1或绝对值大于10的数表示成a ×10n的形式(1≤a <10,n 为不等于0的整数),这种记数数的方法叫做科学记数法.26 000 000=2.6×107,因此本题选D . {分值}3{章节:[1-1-5-2]科学计数法}{考点:将一个绝对值较大的数科学计数法} {类别:常考题} {难度:1-最简单}{题目}4.(2019年苏州T4)如图,已知直线//a b ,直线c 与直线a b ,分别交于点A B ,.若154∠=o ,则2∠=( )A .126oB .134oC .136oD .144o{答案}A{解析}本题考查了平行线的性质.如答图,根据对顶角相等得到1354∠=∠=o ,根据“两直线平行,同旁内角互补”得到32180∠+∠=o ,所以218054126∠=-=o o o ,因此本题选A . {分值}3{章节:[1-5-3]平行线的性质} {考点:中位数}{考点:对顶角、邻补角}{考点:两直线平行同旁内角互补} {类别:常考题} {难度:2-简单}{题目}5.(2019年苏州T5)如图,AB 为O ⊙的切线,切点为A ,连接AO BO 、,BO 与O ⊙交于点C ,延长BO 与O ⊙交于点D ,连接AD ,若36ABO ∠=o ,则ADC ∠的度数为( ) A .54o B .36o C .32o D .27o{答案}D{解析}本题考查了切线的性质、三角形的内角和定理及三角形外角的性质等知识点.由切线的性质得到90BAO ∠=o ,所以903654AOB ∠=-=o o o ,由OD OA =,可得OAD ODA ∠=∠,而AOB OAD ODA ∠=∠+∠,所以27ADC ADO ∠=∠=o ,因此本题选D .{分值}3{章节:[1-24-2-2]直线和圆的位置关系} {考点:三角形的外角}{考点:三角形内角和定理} {考点:切线的性质} {类别:常考题} {难度:2-简单}aaDB{题目}6.(2019年苏州T6)小明用15元买售价相同的软面笔记本,小丽用24元买售价相同的硬面笔记本(两人的钱恰好用完),已知每本硬面笔记本比软面笔记本贵3元,且小明和小丽买到相同数量的笔记本,设软面笔记本每本售价为x 元,根据题意可列出的方程为( )A .15243x x =+ B .15243x x =- C .15243x x=+ D .15243x x=- {答案}A{解析}本题考查了分式方程的应用,列方程的关键是找出等量关系,本题的等量关系为“小明购买的软面笔记本数=小丽购买的硬面笔记本数”,所以可列方程:15243x x =+,因此本题选A . {分值}3{章节:[1-15-3]分式方程} {考点:其他分式方程的应用} {类别:常考题} {难度:2-简单}{题目}7.(2019年苏州T7)若一次函数y kx b =+(k b 、为常数,且0k ≠)的图像经过点()01A -,,()11B ,,则不等式1kx b +>的解为( )A .0x <B .0x >C .1x <D .1x > {答案}D{解析}本题考查了解一元一次不等式组以及不等式组解集,根据题意可以画出如下图图像,观察图像易得不等式1kx b +>的解为1x >,因此本题选D .{分值}3{章节:[1-19-3]一次函数与方程、不等式} {考点:一次函数与一元一次不等式} {类别:常考题} {难度:3-中等难度}{题目}8.(2019年苏州T8)如图,小亮为了测量校园里教学楼AB 的高度,将测角仪CD 竖直放置在与教学楼水平距离为的地面上,若测角仪的高度为1.5m ,测得教学楼的顶部A 处的仰角为30o ,则教学楼的高度是( )A .55.5mB .54mC .19.5mD .18mx{答案}C{解析}本题考查了解直角三角形的应用.如答图,过D 作DE AB ⊥交AB 于E ,DE =BC=,在Rt △ADE 中,tan30AEDE=o,所以18m AE ==,所以AB =18+1.5=19.5m ,因此本题选C . {分值}3{章节:[1-28-1-2]解直角三角形}{考点:解直角三角形的应用—测高测距离} {类别:常考题} {难度:3-中等难度}{题目}9.(2019年苏州T9)如图,菱形ABCD 的对角线AC ,BD 交于点O ,416AC BD ==,,将ABO V 沿点A 到点C 的方向平移,得到A B C '''V ,当点A '与点C 重合时,点A 与点B '之间的距离为( ) A .6B .8C .10D .12{答案}C{解析}本题考查了菱形的性质、平移的性质以及勾股定理.由菱形的性质得28AO OC CO BO OD B O '''======,,90AOB AO B ''∠=∠=o ,即AO B ''V 为直角三角形,所以10AB '==,因此本题选C . {分值}3{章节:[1-18-2-2]菱形} {考点:勾股定理} {考点:平移的性质}CEDB{考点:菱形的性质} {类别:易错题} {难度:3-中等难度}{题目}10.(2019年苏州T10)如图,在ABC V 中,点D 为BC 边上的一点,且2AD AB ==,AD AB ⊥,过点D 作DE AD ⊥,DE 交AC 于点E ,若1DE =,则ABC V 的面积为( )A.B .4 C. D .8{答案}B{解析}本题考查了三角形相似的判定和性质.由于,AB AD DE AD ⊥⊥,可得出: 90BAD ADE ∠=∠=o ,所以//AB DE ,易证CDE V ∽CBA V ,所以12DC DE BC BA ==,即12DC BD DC =+;由题意可得BD =,所以DC =,容易求出ABC V,所以11422ABC S BC =⨯=⨯=V ,因此本题选B .{分值}3{章节:[1-27-1-1]相似三角形的判定} {考点:由平行判定相似} {{考点:相似三角形的性质} {类别:常考题} {难度:4-较高难度}{题型:2-填空题}二、填空题:本大题共8小题,每小题3分,合计24分. {题目}11.(2019年苏州T11)计算:23a a =g .{答案}5a{解析}本题考查了同底数幂的运算法则.同底数幂相乘,底数不变,指数相加,所以23a a =g 5a ,因此本题答案为5a . {分值}3{章节:[1-14-1]整式的乘法}{考点:全等三角形的判定ASA,AAS} {考点:同底数幂的乘法} {类别:常考题} {难度:1-最简单}{题目}12.(2019年苏州T12)因式分解:2x xy -= .{答案}()x x y -{解析}本题考查了提公因式法分解因式,2x xy -=()x x y -,因此本题答案为()x x y -. {分值}3{章节:[1-14-3]因式分解}{考点:因式分解-提公因式法} {类别:常考题} {难度:1-最简单}DBC{题目}13.(2019年苏州T13x 的取值范围为 .{答案}x ≥6{解析}本题考查了二次根式有意义的条件.当二次根式的被开方数为非负数时,该二次根式有意义,所以x -6≥0,即x ≥6,因此本题答案为x ≥6. {分值}3{章节:[1-16-1]二次根式}{考点:二次根式的有意义的条件} {类别:常考题} {难度:1-最简单}{题目}14.(2019年苏州T14)若28,3418a b a b +=+=,则a +b 的值为 . {答案}5{解析}本题考查了运用整体思想求代数式的值.(3a +4b )-(a +2b )=2(a +b )=18-8,所以a +b 的值为5,因此本题答案为5. {分值}3{章节:[1-2-2]整式的加减} {考点:整式加减} {类别:常考题} {难度:2-简单}{题目}15.(2019年苏州T15)“七巧板”是我们祖先的一项卓越创造,可以拼出许多有趣的图形,被誉为“东方魔板”,图①是由边长10 cm 的正方形薄板分成7块制作成的“七巧板”,图②是用该“七巧板”拼成的一个“家”的图形,该“七巧板”中7块图形之一的正方形边长为_______cm (结果保留根号).{答案 {解析}本题考查了“七巧板”以及勾股定理的有关知识,观察“七巧板”图案可知,阴影部分的正方形的边长等于大正方形对角线的14,所以阴影部分的正方形的边长为14=2,因此本题答. {分值}3{章节:[1-17-1]勾股定理} {考点:勾股定理} {类别:常考题} {难度:2-简单}{题目}16.(2019年苏州T16)如图,将一个棱长为3的正方体的表面涂上红色,再把它分割成棱长为1的小正方体,从中任取一个小正方体,则取得的小正方体恰有三个面涂有红色的概率为 .{答案}827{解析}本题考查了求简单事件的概率.由题意可知大正方体被分割成27个棱长为1的小正方体,其中有8个(大正方体每个顶点处的)小正方体恰好有三个面涂有红色,因此本题答案为827.{分值}3{章节:[1-25-1-2]概率} {考点:一步事件的概率} {类别:常考题} {{难度:2-简单}{题目}17.(2019年苏州T17)如图,扇形OAB 中,90AOB ∠=︒.P 为弧AB 上的一点,过点P 作PC OA ⊥,垂足为C ,PC 与AB 交于点D ,若2,1PD CD ==,则该扇形的半径长为 .{答案}5{解析}本题考查了等腰直角三角形的性质以及勾股定理的应用.由题意可知AC =CD =1,连接OP ,设该扇形的半径为r ,由勾股定理可列方程:32+(r -1)2=r 2,解得r =5,因此本题答案为5. {分值}3{章节:[1-17-1]勾股定理} {考点:勾股定理的应用} {类别:常考题} {难度:3-中等难度}{题目}18.(2019年苏州T18)如图,一块含有45︒角的直角三角板,外框的一条直角边长为10 cm ,cm ,则图中阴影部分的面积为 cm (结果保留根号).{答案}14+{解析}本题考查了等腰直角三角形、勾股定理、三角函数等知识.如答图:过顶点A 作AB 垂直于大直角三角形底边,由题意得:AB =10×sin45°=AE =EC =BD所以AC =2,CD=(2+=2,所以内外两个等腰直角三角形面积分别为:S 外=10×10÷2=50,S 内=CD 2=()22=36-,所以阴影S =50-(36-)=14+,因此本题答案为14+.{分值}3{章节:[1-2-1]整式}{考点:规律-数字变化类} {类别:常考题} {难度:4-较高难度}{题型:4-解答题}三、解答题:本大题共8小题,合计69分.{题目}19.(2019年苏州T19)计算:()222π+---.{解析}本题考查了实数的运算.先分别计算出2=3,2-=2,()02-π=1,再从左至右计算.{答案}解:321=+-原式4=. {分值}5{章节:[1-16-1]二次根式} {难度:2-简单} {类别:常考题}{考点:绝对值的性质} {考点:零次幂}{考点:平方根的性质}{题目}20.(2019年苏州T20)()152437x x x +<⎧⎪⎨+>+⎪⎩解不等式组:. {解析}本题考查了解一元一次不等式组.分解出不等式组中的每个不等式,再取它们解集的公共部分.{答案}解:解不等式①得:4x <;解不等式②得:1x < 不等式组的解集为1x <.{分值}5{章节:[1-9-3]一元一次不等式组} {难度:2-简单} {类别:常考题}{考点:解一元一次不等式组}{题目}21.(2019年苏州T21)先化简,再求值:2361693x x x x -⎛⎫÷- ⎪+++⎝⎭,其中3x =-.{解析}本题考查了分式的化简求值.先化简分式,再代入求值.{答案}解:原式()233633x x x x -+-=÷++()23333x x x x --=÷++ C D()23333x x x x -+=⋅-+13x =+当3x =-时,原式==2. {分值}6{章节:[1-15-2-2]分式的加减} {难度:2-简单} {类别:常考题}{考点:分式的混合运算}{题目}22.(2019年苏州T22)在一个不透明的盒子中装有4张卡片.4张卡片的正面分别标有数字1,2,3,4,这些卡片除数字外都相同,将卡片搅匀.(1)从盒子任意抽取一张卡片,恰好抽到标有奇数卡片的概率是 ;(2)先从盒子中任意抽取一张卡片,再从余下的3张卡片中任意抽取一张卡片,求抽取的2张卡片标有数字之和大于4的概率(请用画树状图或列表等方法求解).{解析}本题考查了概率的简单应用.(1)这4张卡片中标有奇数的卡片有2张,所以恰好抽到标有奇数卡片的概率是12,(2)通过画树状图或列表求出两步事件的概率,注意本问是不放回的.{答案}解:(1)12(2)82123P ==. 答:从盒子任意抽取一张卡片,恰好抽到标有奇数卡片的概率是12,抽取的2张卡片标有数字之和大于4的概率为23. {分值}6{章节:[1-25-2]用列举法求概率} {难度:2-简单} {类别:常考题}{考点:一步事件的概率} {考点:两步事件不放回}{题目}23.(2019年苏州T23)某校计划组织学生参加“书法”、“摄影”、“航模”、“围棋”四个课外兴题小组.要求每人必须参加,并且只能选择其中一个小组,为了解学生对四个课外兴趣小组的选择情況,学校从全体学生中随机抽取部分学生进行问卷调查,并把调查结果制成如图所示的扇形统计图和条形统计图(部分信息未给出).请你根据给出的信息解答下列问题:(1)求参加这次问卷调查的学生人数,并补全条形统计图(画图后请标注相应的数据); (2)________, ________;m n ==(3)若某校共有1200名学生,试估计该校选择“围棋”课外兴趣小组有多少人?(3)选择“围棋”课外兴趣小组的人数为()241200=192150⨯人 答:参加问卷调查的学生人数为150人,36,16m n ==,选择“围棋”课外兴趣小组的人数为192人. {分值}8{章节:[1-10-1]统计调查}} {难度:2-简单} {类别:常考题} {考点:扇形统计图} {考点:条形统计图}{考点:用样本估计总体}{题目}24.(2019年苏州T24)如图,ABC △中,点E 在BC 边上,AE AB =,将线段AC 绕点A 旋转到AF 的位置,使得CAF BAE ∠=∠,连接EF ,EF 与AC 交于点G . (1)求证:EF BC =;的度数.{解析}本题考查了全等三角形的判定和性质、等腰三角形的性质等知识点.(1)要证EF =BC ,可通过△BAC ≌△EAF 证出;(2)可以运用三角形外角的性质求出∠FGC 的度数.{答案}解:(1)CAF BAE ∠=∠Q BAC EAF ∴∠=∠AE AB AC AF ==Q 又, ()BAC EAF SAS ∴△≌△ EF BC ∴=(2)65AB AE ABC =∠=︒Q , 18065250BAE ∴∠=︒-︒⨯=︒ 50FAG ∴∠=︒BAC EAF Q 又△≌△ 28F C ∴∠=∠=︒ 502878FGC ∴∠=︒+︒=︒. {分值}8{章节:[1-13-2-1]等腰三角形} {难度:3-中等难度} {类别:常考题}{考点:全等三角形的判定SAS} {考点:等边对等角} {考点:等角对等边} {考点:三角形的外角}{题目}25.(2019年苏州T25)如图,A 为反比例函数ky x=()0x >其中图像上的一点,在x 轴正半轴上有一点B ,4OB =.连接OA ,AB ,且OA AB == (1)求k 的值;(2)过点B 作BC OB ⊥,交反比例函数ky x=()0x >其中的图像于点C ,连接OC 交AB 于点D ,求AD DB的值.{解析}本题考查了反比例函数及相似三角形的有关性质.(1)运用等腰三角形的“三线合一”的性质及勾股定理求出点A 的坐标,再待定系数法直接求反比例函数的表达式;(2)运用平行线得相似的方法,判断出两组三角形相似,再运用相似三角形的性质求出ADDB的值.{答案}解:(1)过点A 作AH OB ⊥交x 轴于点H ,交OC 于点M .4OA AB OB ===Q ,2OH ∴=,6AH ∴=,()2,6A ∴,12k ∴=; (2)124x y x==将代入,()4,3D 得,3BC ∴=.由平行线分线段成比例,所以1322MH BC ==,92AM ∴=AH x BC x ⊥⊥Q 轴,轴,AH BC ∴∥,ADM BDC ∴△∽△,32AD AM BD BC ∴==.{分值}8{章节:[1-27-1-2]相似三角形的性质} {难度:3-中等难度} {类别:常考题} {考点:三线合一} {考点:勾股定理}{考点:反比例函数的解析式} {考点:由平行判定相似} {考点:相似三角形的性质}{题目}26.(2019年苏州T26)如图,AB 为O e 的直径,D 是弧BC 的中点,BC 与AD ,OD 分别交于点E ,F .(1)求证:DO AC ∥;(2)求证:2DE DA DC ⋅=;(3)若1tan 2CAD ∠=,求sin CDA ∠的值.{解析}本题考查了垂径定理的逆定理,圆中的角、平行线的判定,相似三角形的判定、三角函数等知识,属于圆的综合题.(1)垂径定理的逆定理、“直径所对的圆周角是直角”以及平行线的判定定理等知识可以证出;(2)运用“两个角对应相等的两个三角形相似”可以证出△ACD ∽△CED ,在运用相似三角形的性质可以证出2DE DA DC ⋅=;(3)利用(2)的结论以及三角函数的有关知识可求出sin CDA ∠的值.{答案}解:(1)证明:∵D 为弧BC 的中点,OD 为O e 的半径 ∴OD BC ⊥又∵AB 为O e 的直径 ∴90ACB ∠=︒ ∴AC OD ∥MA(2)证明:∵D 为弧BC 的中点∴»»CDBD = ∴DCB DAC ∠=∠ ∴DCE DAC ∆∆∽ ∴DC DE DA DC=即2DE DA DC ⋅=(3)解:∵DCE DAC ∆∆∽,1tan 2CAD ∠= ∴12CD DE CE DA DC AC === 设CD =2a ,则DE =a ,4DA a = 又∵AC OD ∥ ∴AEC DEF ∆∽ ∴3CE AE EF DE== 所以83BC CE =又2AC CE =∴103AB CE =即3sin sin 5CA CDA CBA AB ∠=∠==.{分值}10{章节:[1-28-3]锐角三角函数} {难度:4-较高难度} {类别:常考题} {考点:垂径定理}{考点:直径所对的圆周角} {考点:圆心角、弧、弦的关系}{考点:相似三角形的判定(两角相等)} {考点:相似三角形的性质} {考点:三角函数的关系}{题目}27.(2019年苏州T27)已知矩形ABCD 中,AB =5 cm ,点P 为对角线AC 上的一点,且AP =.如图①,动点M 从点A 出发,在矩形边上沿着A B C →→的方向匀速运动(不包含点C ).设动点M 的运动时间为t (s ),APM ∆的面积为S (cm²),S 与t 的函数关系如图②所示: (1)直接写出动点M 的运动速度为 cm/s ,BC 的长度为 cm ;(2)如图③,动点M 重新从点A 出发,在矩形边上,按原来的速度和方向匀速运动.同时,另一个动点N 从点D 出发,在矩形边上沿着D C B →→的方向匀速运动,设动点N 的运动速度为v (cm/s).已知两动点M 、N 经过时间()x s 在线段BC 上相遇(不包含点C ),动点M 、N 相遇后立即停止运动,记此时APM DPN ∆∆与的面积为()()2212,S cm S cm .①求动点N 运动速度v (cm/s)的取值范围;②试探究12S S ⋅是否存在最大值.若存在,求出12S S ⋅的最大值并确定运动速度时间x 的值;若不存在,请说明理由.{解析}本题考查了函数图像、动点的行程问题以及二次函数等知识,属于动态几何的综合题.(1)根据题意,观察图像可得当点M 运动到B 点时,t =2.5,当点M 运动到C 点(不包含C 点),t =7.5,因此可以求出M 点的运动速度和BC 的长;(2)①点M 、N 在边BC上相遇,且不包含C 点,运用极端原理考虑,在B 点处相遇时,则N 点的运动时间为2.5秒,在C 点处相遇时(不包含C 点),则N 点的运动时间为7.5秒,运用不等式组可以求出v 的取值范围;②分别用含x 的代数式表示出S 1和S 2,在计算12S S ⋅,得到一个关于x 的二次函数,运用二次函数的性质求出最大值即可.{答案}解:(1)2;10(2)①∵在边BC 上相遇,且不包含C 点,点M 、N 的运动时间相同,由题意可列不等式组:57.515 2.5<vv⎧⎪⎪⎨⎪≥⎪⎩解得263<v ≤;②如答图,12()PAD CDM ABM N ABCD S S S S S S ∆∆∆+=---(N )矩形 ()()5152525751022x x ⨯-⨯-=---=15,过M 点作MH ⊥AC ,则12MH CM = ,∴ ,∴2S =15-(﹣2x +15)=2x ,()122152S S x x ⋅=-+⋅ =2430x x -+=215225444x ⎛⎫--+ ⎪⎝⎭因为152.57.54<<,所以当154x =时,12S S ⋅取最大值2254.{分值}10{章节:[1-22-3]实际问题与二次函数} {难度:4-较高难度} {类别:常考题}{考点:一元一次方程的应用(行程问题)} {考点:动点问题的函数图象} {考点:几何图形最大面积问题} {考点:其他二次函数综合题}{题目}28.(2019年苏州T28)如图①,抛物线2(1)y x a x a =-++-与x 轴交于A 、B 两点(点A 位于点B 的左侧),与y 轴交于点C ,已知ABC ∆的面积为6.①(图)PBCDAS (cm²)t (s )②图O2.57.5112152S MH AP x =⋅=-+2x-5(N )(1)求a 的值;(2)求ABC ∆外接圆圆心的坐标;(3)如图②,P 是抛物线上一点,点Q 为射线CA 上一点,且P 、Q 两点均在第三象限内,Q 、A 是位于直线BP 同侧的不同两点,若点P 到x 轴的距离为d ,QPB ∆的面积为2d ,且PAQ AQB ∠=∠,求点Q 的坐标.(图①) (图②){解析}本题考查了二次函数与一元二次方程、三角形外接圆的圆心以及等腰三角形的判定等知识,属于二次函数的综合题.(1)令y =0,求出x 的值,x 的值就是二次函数的图像与x 轴交点的横坐标;(2)根据圆的轴对称性,可知圆心就是边AB 和边AC 垂直平分线的交点,通过轴对称性求解;(3)先求出△ABP 的面积,发现△ABP 的面积与△QBP 的面积相等,得出AQ ∥BP ,再根据“等角对等边”得出AP =QB ,通过勾股定理列出方程可求出点Q 的坐标.{答案}解:(1)解:由题意得()0,C a -,且2(1)y x a x a =-++-=()()1x x a --- 由图知:0a <,令y =0 ,则x 1=1,x 2=a , 所以A (,0a ),()1,0B ,()0,C a -()()112ABC S a a ∆=-⋅-=6 34()a a =-=或舍 ∴3a =-;(2)由(1)得A (-3,0),()1,0B ,()0,3C ,所以AO =OC =3,且∠AOC =90°, ABC ∆外接圆圆心就是线段AB 和AC 垂直平分线的交点,很显然线段AC 的垂直平分线与∠AOC 的角平分线所在的直线y x =-重合, 又∵AB 的垂直平分线为1x =- , ∴1y x x =-⎧⎨=-⎩ 得11x y =-⎧⎨=⎩ABC ∆外接圆圆心的坐标(﹣1,1). (3)解:过点P 作PD ⊥x 轴 由题意得:PD =d ,∴12ABP S PD AB ∆=⋅ =12×4·d =2d ,∵QPB ∆的面积为2d ,∴ABP BPQ S S ∆∆=,即A 、D 两点到PB 得距离相等 ∴AQ PB ∥设PB 直线解析式为y x b =+,且它经过点(1,0)B ∴1y x =-∴2123y x y x x =-⎧⎨=--+⎩,解得45x y =-⎧⎨=⎩ 或1()0x y =⎧⎨=⎩舍所以P (-4,-5),由于PAQ AQB ∠=∠,AQ ∥BP ,所以PBQ APB ∠=∠, 设BQ 于AP 交于点G ,则AG =QG ,BG =PG ,所以AP =QB ,∴BQ =AP直线AC 的表达式为y =x +3, 设点Q (m ,-m +3)(0m <),∴()()221326m m -++=4m =-或2(舍去) ∴Q ()4,1- .{分值}10{章节:[1-22-2]二次函数与一元二次方程} {难度:5-高难度} {类别:常考题}{考点:抛物线与一元二次方程的关系} {考点:三角形的外接圆与外心}{考点:待定系数法求一次函数的解析式} {考点:等角对等边} {考点:代数综合}。

2019年江苏省苏州市中考数学试卷附解析

2019年江苏省苏州市中考数学试卷附解析

2019年江苏省苏州市中考数学试卷一、选择题(本大题共10小题,共30.0分)1.5的相反数是()A. B. C. 5 D.2.有一组数据:2,2,4,5,7,这组数据的中位数为()A. 2B. 4C. 5D. 73.苏州是全国重点旅游城市,2018年实现旅游总收入约为26000000万元,数据26000000用科学记数法可表示为()A. B. C. D.4.如图,已知直线a∥b,直线c与直线a,b分别交于点A,B.若∠1=54°,则∠2等于()A.B.C.D.5.如图,AB为⊙O的切线,切点为A连接AO、BO,BO与⊙O交于点C,延长BO与⊙O交于点D,连接AD.若∠ABO=36°,则∠ADC的度数为()A. B. C. D.6.小明用15元买售价相同的软面笔记本,小丽用24元买售价相同的硬面笔记本(两人的钱恰好用完),已知每本硬面笔记本比软面笔记本贵3元,且小明和小丽买到相同数量的笔记本,设软面笔记本每本售价为x元,根据题意可列出的方程为()A. B. C. D.7.若一次函数y=kx+b(k,b为常数,且k≠0)的图象经过点A(0,-1),B(1,1),则不等式kx+b>1的解为()A. B. C. D.8.如图,小亮为了测量校园里教学楼AB的高度,将测角仪CD竖直放置在与教学楼水平距离为18m的地面上,若测角仪的高度是1.5m.测得教学楼的顶部A处的仰角为30°.则教学楼的高度是()A.B. 54mC.D. 18m9.如图,菱形ABCD的对角线AC,BD交于点O,AC=4,BD=16,将△ABO沿点A到点C的方向平移,得到△A'B'O'.当点A'与点C重合时,点A与点B'之间的距离为()A. 6B. 8C. 10D. 1210.如图,在△ABC中,点D为BC边上的一点,且AD=AB=2,AD⊥AB.过点D作DE⊥AD,DE交AC于点E.若DE=1,则△ABC的面积为()A. B. 4 C. D. 8二、填空题(本大题共8小题,共24.0分)11.计算:a2•a3=______.12.因式分解:x2-xy=______.13.若在实数范围内有意义,则x的取值范围为______.14.若a+2b=8,3a+4b=18,则a+b的值为______.15.“七巧板”是我们祖先的一项卓越创造,可以拼出许多有趣的图形,被誉为“东方魔板”.图①是由边长为10cm的正方形薄板分为7块制作成的“七巧板”,图②是用该“七巧板”拼成的一个“家”的图形.该“七巧板”中7块图形之一的正方形边长为______cm(结果保留根号).16.如图,将一个棱长为3的正方体的表面涂上红色,再把它分割成棱长为1的小正方体,从中任取一个小正方体,则取得的小正方体恰有三个面涂有红色的概率为______.17.如图,扇形OAB中,∠AOB=90°.P为弧AB上的一点,过点P作PC⊥OA,垂足为C,PC与AB交于点D.若PD=2,CD=1,则该扇形的半径长为______.18.如图,一块含有45°角的直角三角板,外框的一条直角边长为8cm,三角板的外框线和与其平行的内框线之间的距离均为cm,则图中阴影部分的面积为______cm2(结果保留根号).三、计算题(本大题共1小题,共6.0分)19.先化简,再求值:÷(1-),其中,x=-3.四、解答题(本大题共9小题,共70.0分)20.计算:()2+|-2|-(π-2)021.解不等式组:22.在一个不透明的盒子中装有4张卡片,4张卡片的正面分别标有数字1,2,3,4,这些卡片除数字外都相同,将卡片搅匀.(1)从盒子中任意抽取一张卡片,恰好抽到标有奇数卡片的概率是______;(2)先从盒了中任意抽取一张卡片,再从余下的3张卡片中任意抽取一张卡片,求抽取的2张卡片标有数字之和大于4的概率.(请用画树状图或列表等方法求解).23.某校计划组织学生参加“书法”、“摄影”、“航模、“围棋”四个课外兴趣小组,要求每人必须参加,并且只能选择其中一个小组,为了解学生对四个课外兴趣小组的选择情况,学校从全体学生中随机抽取部分学生进行问卷调查,并把调查结果制成如图所示的扇形统计图和条形统计图(部分信息未给出),请你根据给出的信息解答下列问题:(1)求参加这次问卷调查的学生人数,并补全条形统计图(画图后请标注相应的数据);(2)m=______,n=______;(3)若该校共有1200名学生,试估计该校选择“围棋”课外兴趣小组的学生有多少人?24.如图,△ABC中,点E在BC边上,AE=AB,将线段AC绕A点旋转到AF的位置,使得∠CAF=∠BAE,连接EF,EF与AC交于点G.(1)求证:EF=BC;(2)若∠ABC=65°,∠ACB=28°,求∠FGC的度数.25.如图,A为反比例函数y=(其中x>0)图象上的一点,在x轴正半轴上有一点B,OB=4.连接OA,AB,且OA=AB=2.(1)求k的值;(2)过点B作BC⊥OB,交反比例函数y=(其中x>0)的图象于点C,连接OC交AB于点D,求的值.26.如图,AB为⊙O的直径,C为⊙O上一点,D是弧BC的中点,BC与AD、OD分别交于点E、F.(1)求证:DO∥AC;(2)求证:DE•DA=DC2;(3)若tan∠CAD=,求sin∠CDA的值.27.已知矩形ABCD中,AB=5cm,点P为对角线AC上的一点,且AP=2cm.如图①,动点M从点A出发,在矩形边上沿着A→B→C的方向匀速运动(不包含点C).设动点M的运动时间为t(s),△APM的面积为S(cm2),S与t的函数关系如图②所示.(1)直接写出动点M的运动速度为______cm/s,BC的长度为______cm;(2)如图③,动点M重新从点A出发,在矩形边上按原来的速度和方向匀速运动,同时,另一个动点N从点D 出发,在矩形边上沿着D→C→B的方向匀速运动,设动点N的运动速度为v(cm/s).已知两动点M,N经过时间x(s)在线段BC上相遇(不包含点C),动点M,N相遇后立即同时停止运动,记此时△APM与△DPN的面积分别为S1(cm2),S2(cm2)①求动点N运动速度v(cm/s)的取值范围;②试探究S1•S2是否存在最大值,若存在,求出S1•S2的最大值并确定运动时间x的值;若不存在,请说明理由.28.如图①,抛物线y=-x2+(a+1)x-a与x轴交于A,B两点(点A位于点B的左侧),与y轴交于点C.已知△ABC的面积是6.(1)求a的值;(2)求△ABC外接圆圆心的坐标;(3)如图②,P是抛物线上一点,Q为射线CA上一点,且P、Q两点均在第三象限内,Q、A是位于直线BP同侧的不同两点,若点P到x轴的距离为d,△QPB的面积为2d,且∠PAQ=∠AQB,求点Q的坐标.答案和解析1.【答案】D【解析】解:5的相反数是-5.故选:D.根据只有符号不同的两数叫做互为相反数解答.本题考查了相反数的定义,是基础题,熟记概念是解题的关键.2.【答案】B【解析】解:这组数据排列顺序为:2,2,4,5,7,∴这组数据的中位数为4,故选:B.将数据从小到大重新排列后根据中位数的定义求解可得.本题主要考查中位数,熟练掌握中位数的定义是解题的关键.3.【答案】D【解析】解:将26000000用科学记数法表示为:2.6×107.故选:D.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.【答案】A【解析】解:如图所示:∵a∥b,∠1=54°,∴∠1=∠3=54°,∴∠2=180°-54°=126°.故选:A.直接利用平行线的性质得出∠3的度数,再利用邻补角的性质得出答案.此题主要考查了邻补角的性质以及平行线的性质,正确得出∠3的度数是解题关键.5.【答案】D【解析】解:∵AB为⊙O的切线,∴∠OAB=90°,∵∠ABO=36°,∴∠AOB=90°-∠ABO=54°,∵OA=OD,∴∠ADC=∠OAD,∵∠AOB=∠ADC+∠OAD,∴∠ADC=∠AOB=27°;故选:D.由切线的性质得出∠OAB=90°,由直角三角形的性质得出∠AOB=90°-∠ABO=54°,由等腰三角形的性质得出∠ADC=∠OAD,再由三角形的外角性质即可得出答案.本题考查了切线的性质、直角三角形的性质、等腰三角形的性质以及三角形的外角性质;熟练掌握切线的性质和等腰三角形的性质是解题的关键.6.【答案】A【解析】解:设软面笔记本每本售价为x元,根据题意可列出的方程为:=.故选:A.直接利用用15元买售价相同的软面笔记本,小丽用24元买售价相同的硬面笔记本,得出等式求出答案.此题主要考查了由实际问题抽象出分式方程,正确找出等量关系是解题关键.7.【答案】D【解析】解:如图所示:不等式kx+b>1的解为:x>1.故选:D.直接利用已知点画出函数图象,利用图象得出答案.此题主要考查了一次函数与一元一次不等式,正确数形结合分析是解题关键.8.【答案】C【解析】解:过D作DE⊥AB,∵在D处测得旗杆顶端A的仰角为30°,∴∠ADE=30°,∵BC=DE=18m,∴AE=DE•tan30°=18m,∴AB=AE+BE=AE+CD=18+1.5=19.5m,故选:C.根据三角函数和直角三角形的性质解答即可.此题考查了仰角的定义.注意能借助仰角构造直角三角形并解直角三角形是解此题的关键.9.【答案】C【解析】解:∵四边形ABCD是菱形,∴AC⊥BD,AO=OC=AC=2,OB=OD=BD=8,∵△ABO沿点A到点C的方向平移,得到△A'B'O',点A'与点C重合,∴O'C=OA=2,O'B'=OB=8,∠CO'B'=90°,∴AO'=AC+O'C=6,∴AB'===10;故选:C.由菱形的性质得出AC⊥BD,AO=OC=AC=2,OB=OD=BD=8,由平移的性质得出O'C=OA=2,O'B'=OB=8,∠CO'B'=90°,得出AO'=AC+O'C=6,由勾股定理即可得出答案.本题考查了菱形的性质、平移的性质、勾股定理;熟练掌握菱形的性质和平移的性质是解题的关键.10.【答案】B【解析】解:∵AB⊥AD,AD⊥DE,∴∠BAD=∠ADE=90°,∴DE∥AB,∴∠CED=∠CAB,∵∠C=∠C,∴△CED∽△CAB,∵DE=1,AB=2,即DE:AB=1:2,∴S△DEC:S△ACB=1:4,∴S四边形ABDE:S△ACB=3:4,∵S四边形ABDE=S△ABD+S△ADE=×2×2+×2×1=2+1=3,∴S△ACB=4,故选:B.由题意得到三角形DEC与三角形ABC相似,由相似三角形面积之比等于相似比的平方两三角形面积之比,进而求出四边形ABDE与三角形ABC面积之比,求出四边形ABDE面积,即可确定出三角形ABC 面积.此题考查了相似三角形的判定与性质,以及等腰直角三角形,熟练掌握相似三角形的判定与性质是解本题的关键.11.【答案】a5【解析】解:a2•a3=a2+3=a5.故答案为:a5.根据同底数的幂的乘法,底数不变,指数相加,计算即可.熟练掌握同底数的幂的乘法的运算法则是解题的关键.12.【答案】x(x-y)【解析】解:x2-xy=x(x-y).故答案为:x(x-y).直接提取公因式x,进而分解因式即可.此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.13.【答案】x≥6【解析】解:若在实数范围内有意义,则x-6≥0,解得:x≥6.故答案为:x≥6.直接利用二次根式有意义的条件分析得出答案.此题主要考查了二次根式有意义的条件,正确把握二次根式的定义是解题关键.解:∵a+2b=8,3a+4b=18,则a=8-2b,代入3a+4b=18,解得:b=3,则a=2,故a+b=5.故答案为:5.直接利用已知解方程组进而得出答案.此题主要考查了解二元一次方程组,正确掌握解题方法是解题关键.15.【答案】【解析】解:10×10=100(cm2)=(cm)答:该“七巧板”中7块图形之一的正方形边长为cm.故答案为:.观察图形可知该“七巧板”中7块图形之一的正方形面积是大正方形面积的,先根据正方形面积公式求出大正方形面积,从而得到小正方形面积,进一步得到该“七巧板”中7块图形之一的正方形边长.考查了七巧板,关键是得到该“七巧板”中7块图形之一的正方形面积是大正方形面积的.16.【答案】【解析】解:由题意可得:小立方体一共有27个,恰有三个面涂有红色的有8个,故取得的小正方体恰有三个面涂有红色的概率为:.故答案为:.直接根据题意得出恰有三个面涂有红色的有8个,再利用概率公式求出答案.此题主要考查了概率公式的应用,正确得出三个面涂有红色小立方体的个数是解题关键.解:连接OP,如图所示.∵OA=OB,∠AOB=90°,∴∠OAB=45°.∵PC⊥OA,∴△ACD为等腰直角三角形,∴AC=CD=1.设该扇形的半径长为r,则OC=r-1,在Rt△POC中,∠PCO=90°,PC=PD+CD=3,∴OP2=OC2+PC2,即r2=(r-1)2+9,解得:r=5.故答案为:5.连接OP,利用等腰三角形的性质可得出∠OAB=45°,结合PC⊥OA可得出△ACD为等腰直角三角形,进而可得出AC=1,设该扇形的半径长为r,则OC=r-1,在Rt△POC中,利用勾股定理可得出关于r的方程,解之即可得出结论.本题考查了勾股定理、等腰直角三角形以及圆的认识,利用勾股定理,找出关于扇形半径的方程是解题的关键.18.【答案】(10)【解析】解:如图,EF=DG=CH=,∵含有45°角的直角三角板,∴BC=,GH=2,∴FG=8--2-=6-2,∴图中阴影部分的面积为:8×8÷2-(6-2)×(6-2)÷2=32-22+12=10+12(cm2)答:图中阴影部分的面积为(10)cm2.故答案为:(10).图中阴影部分的面积=外框大直角三角板的面积-内框小直角三角板的面积,根据等腰直角三角形的性质求出内框直角边长,再根据三角形面积公式计算即可求解.考查了等腰直角三角形,相似三角形的判定与性质,平行线之间的距离,关键是求出内框直角边长.19.【答案】解:原式=÷(-)=÷=•=,当x=-3时,原式===.【解析】先根据分式的混合运算顺序和运算法则化简原式,再将x的值代入计算可得.本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则.20.【答案】解:原式=3+2-1=4.【解析】直接利用绝对值的性质以及零指数幂的性质分别化简得出答案.此题主要考查了实数运算,正确化简各数是解题关键.21.【答案】解:解不等式x+1<5,得:x<4,解不等式2(x+4)>3x+7,得:x<1,则不等式组的解集为x<1.【解析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.22.【答案】【解析】解:(1)从盒子中任意抽取一张卡片,恰好抽到标有奇数卡片的概率是为=,故答案为:.(2)根据题意列表得:1 2 3 41 3 4 52 3 5 63 4 5 74 5 6 7由表可知,共有12种等可能结果,其中抽取的2张卡片标有数字之和大于4的有8种结果,所以抽取的2张卡片标有数字之和大于4的概率为=.(1)直接利用概率公式计算可得;(2)用列表法将所有等可能的结果一一列举出来即可,找到符合条件的结果数,再利用概率公式计算.本题考查列表法与树状图法,解答本题的关键是明确题意,画出相应的树状图或表格,求出相应的概率.23.【答案】36 16【解析】解:(1)参加这次问卷调查的学生人数为30÷20%=150(人),航模的人数为150-(30+54+24)=42(人),补全图形如下:(2)m%=×100%=36%,n%=×100%=16%,即m=36、n=16,故答案为:36、16;(3)估计该校选择“围棋”课外兴趣小组的学生有1200×16%=192(人).(1)由书法小组人数及其对应百分比可得总人数,再根据各小组人数之和等于总人数求得航模人数,从而补全图形;(2)根据百分比的概念可得m、n的值;(3)总人数乘以样本中围棋的人数所占百分比.本题考查了条形统计图和扇形统计图,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.24.【答案】(1)证明:∵∠CAF=∠BAE,∴∠BAC=∠EAF.∵将线段AC绕A点旋转到AF的位置,∴AC=AF.在△ABC与△AEF中,,∴△ABC≌△AEF(SAS),∴EF=BC;(2)解:∵AB=AE,∠ABC=65°,∴∠BAE=180°-65°×2=50°,∴∠FAG=∠BAE=50°.∵△ABC≌△AEF,∴∠F=∠C=28°,∴∠FGC=∠FAG+∠F=50°+28°=78°.【解析】(1)由旋转的性质可得AC=AF,利用SAS证明△ABC≌△AEF,根据全等三角形的对应边相等即可得出EF=BC;(2)根据等腰三角形的性质以及三角形内角和定理求出∠BAE=180°-65°×2=50°,那么∠FAG=50°.由△ABC≌△AEF,得出∠F=∠C=28°,再根据三角形外角的性质即可求出∠FGC=∠FAG+∠F=78°.本题考查了旋转的性质,全等三角形的判定与性质,等腰三角形的性质,三角形内角和定理以及三角形外角的性质,证明△ABC≌△AEF是解题的关键.25.【答案】解:(1)过点A作AH⊥x轴,垂足为点H,AH交OC于点M,如图所示.∵OA=AB,AH⊥OB,∴OH=BH=OB=2,∴AH==6,∴点A的坐标为(2,6).∵A为反比例函数y=图象上的一点,∴k=2×6=12.(2)∵BC⊥x轴,OB=4,点C在反比例函数y=上,∴BC==3.∵AH∥BC,OH=BH,∴MH=BC=,∴AM=AH-MH=.∵AM∥BC,∴△ADM∽△BDC,∴==.【解析】(1)过点A作AH⊥x轴,垂足为点H,AH交OC于点M,利用等腰三角形的性质可得出DH的长,利用勾股定理可得出AH的长,进而可得出点A的坐标,再利用反比例函数图象上点的坐标特征即可求出k值;(2)由OB的长,利用反比例函数图象上点的坐标特征可得出BC的长,利用三角形中位线定理可求出MH的长,进而可得出AM的长,由AM∥BC可得出△ADM∽△BDC,利用相似三角形的性质即可求出的值.本题考查了反比例函数图象上点的坐标特征、等腰三角形的性质、勾股定理以及相似三角形的判定与性质,解题的关键是:(1)利用等腰三角形的性质及勾股定理,求出点A的坐标;(2)利用相似三角形的性质求出的值.26.【答案】解:(1)∵点D是中点,OD是圆的半径,∴OD⊥BC,∵AB是圆的直径,∴∠ACB=90°,∴AC∥OD;(2)∵,∴∠CAD=∠DCB,∴△DCE∽△DCA,∴CD2=DE•DA;(3)∵tan∠CAD=,∴△DCE和△DAC的相似比为:,设:DE=a,则CD=2a,AD=4a,AE=3a,∴=3,即△AEC和△DEF的相似比为3,设:EF=k,则CE=3k,BC=8k,tan∠CAD=,∴AC=6k,AB=10k,∴sin∠CDA=.【解析】(1)点D是中点,OD是圆的半径,又OD ⊥BC,而AB是圆的直径,则∠ACB=90°,故:AC∥OD;(2)证明△DCE∽△DCA,即可求解;(3)=3,即△AEC和△DEF的相似比为3,设:EF=k,则CE=3k,BC=8k,tan∠CAD=,则AC=6k,AB=10k,即可求解.本题为圆的综合运用题,涉及到三角形相似等知识点,本题的关键是通过相似比,确定线段的比例关系,进而求解.27.【答案】2 10【解析】解:(1)∵t=2.5s时,函数图象发生改变,∴t=2.5s时,M运动到点B处,∴动点M的运动速度为:=2cm/s,∵t=7.5s时,S=0,∴t=7.5s时,M运动到点C处,∴BC=(7.5-2.5)×2=10(cm),故答案为:2,10;(2)①∵两动点M,N在线段BC上相遇(不包含点C),∴当在点C相遇时,v==(cm/s),当在点B相遇时,v==6(cm/s),∴动点N运动速度v(cm/s)的取值范围为cm/s<v≤6cm/s;②过P作EF⊥AB于F,交CD于E,如图3所示:则EF∥BC,EF=BC=10,∴=,∵AC==5,∴=,解得:AF=2,∴DE=AF=2,CE=BF=3,PF==4,∴EP=EF-PF=6,∴S1=S△APM=S△APF+S梯形PFBM-S△ABM=×4×2+(4+2x-5)×3-×5×(2x-5)=-2x+15,S2=S△DPM=S△DEP+S梯形EPMC-S△DCM=×2×6+(6+15-2x)×3-×5×(15-2x)=2x,∴S1•S2=(-2x+15)×2x=-4x2+30x=-4(x-)2+,∵2.5<<7.5,在BC边上可取,∴当x=时,S1•S2的最大值为.(1)由题意得t=2.5s时,函数图象发生改变,得出t=2.5s时,M运动到点B处,得出动点M的运动速度为:=2cm/s,由t=7.5s时,S=0,得出t=7.5s时,M运动到点C处,得出BC=10(cm);(2)①由题意得出当在点C相遇时,v==(cm/s),当在点B相遇时,v==6(cm/s),即可得出答案;②过P作EF⊥AB于F,交CD于E,则EF∥BC,由平行线得出=,得出AF=2,DE=AF=2,CE=BF=3,由勾股定理得出PF=4,得出EP=6,求出S1=S△APM=S△APF+S梯形PFBM-S△ABM=-2x+15,S2=S△DPM=S△DEP+S梯形EPMC-S△DCM=2x,得出S1•S2=(-2x+15)×2x=-4x2+30x=-4(x-)2+,即可得出结果.本题是四边形综合题目,考查了矩形的性质、函数的图象、三角形面积公式、梯形面积公式、平行线的性质、勾股定理等知识;本题综合性强,有一定难度,正确理解函数图象是解题的关键.28.【答案】解:(1)∵y=-x2+(a+1)x-a令y=0,即-x2+(a+1)x-a=0解得x1=a,x2=1由图象知:a<0∴A(a,0),B(1,0)∵s△ABC=6∴解得:a=-3,(a=4舍去)(2)设直线AC:y=kx+b,由A(-3,0),C(0,3),可得-3k+b=0,且b=3∴k=1即直线AC:y=x+3,A、C的中点D坐标为(-,)∴线段AC的垂直平分线解析式为:y=-x,线段AB的垂直平分线为x=-1代入y=-x,解得:y=1∴△ABC外接圆圆心的坐标(-1,1)(3)作PM⊥x轴,则=∵∴A、Q到PB的距离相等,∴AQ∥PB设直线PB解析式为:y=x+b∵直线经过点B(1,0)所以:直线PB的解析式为y=x-1联立解得:∴点P坐标为(-4,-5)又∵∠PAQ=∠AQB可得:△PBQ≌△ABP(AAS)∴PQ=AB=4设Q(m,m+3)由PQ=4得:解得:m=-4,m=-8(舍去)∴Q坐标为(-4,-1)【解析】(1)由y=-x2+(a+1)x-a,令y=0,即-x2+(a+1)x-a=0,可求出A、B坐标结合三角形的面积,解出a=-3;(2)三角形外接圆圆心是三边垂直平分线的交点,求出两边垂直平分线,解交点可求出;(3)作PM⊥x轴,则=由可得A、Q到PB的距离相等,得到AQ∥PB,求出直线PB 的解析式,以抛物线解析式联立得出点P坐标,由于△PBQ≌△ABP,可得PQ=AB=4,利用两点间距离公式,解出m值.本题考查二次函数的综合应用,函数和几何图形的综合题目,抛物线和直线“曲直”联立解交点,利用三角形的全等和二次函数的性质把数与形有机的结合在一起,转化线段长求出结果.。

江苏苏州2019中考试卷-数学(解析版)

江苏苏州2019中考试卷-数学(解析版)

江苏苏州2019中考试卷-数学(解析版)【一】选择题〔此题共10个小题,每题3分,共30分〕1、2的相反数是〔〕A、﹣2B、 2C、﹣D、考点:相反数。

专题:常规题型。

分析:依照相反数的定义即可求解、解答:解:2的相反数等于﹣2、应选A、点评:此题考查了相反数的知识,属于基础题,注意熟练掌握相反数的概念是关键、2、假设式子在实数范围内有意义,那么x的取值范围是〔〕A、x<2B、x≤2C、x >2D、x≥2考点:二次根式有意义的条件。

分析:依照二次根式中的被开方数必须是非负数,即可求解、解答:解:依照题意得:x﹣2≥0,解得:x≥2、应选D、点评:此题考查的知识点为:二次根式的被开方数是非负数、3、一组数据2,4,5,5,6的众数是〔〕考点:众数。

分析:依照众数的定义解答即可、解答:解:在2,4,5,5,6中,5出现了两次,次数最多,故众数为5、应选C、点评:此题考查了众数的概念﹣﹣﹣﹣一组数据中,出现次数最多的数位众数,众数能够有多个、停止时,指针指向阴影区域的概率是〔〕A、B、C、D、考点:几何概率。

分析:确定阴影部分的面积在整个转盘中占的比例,依照那个比例即可求出转盘停止转动时指针指向阴影部分的概率、解答:解:如图:转动转盘被均匀分成6部分,阴影部分占2份,转盘停止转动时指针指向阴影部分的概率是=;应选B、点评:此题考查了几何概率、用到的知识点为:概率=相应的面积与总面积之比、5、如图,BD是⊙O的直径,点A、C在⊙O上,=,∠AOB=60°,那么∠BDC的度数是〔〕A、20°B、25°C、30°D、40°考点:圆周角定理;圆心角、弧、弦的关系。

分析:由BD是⊙O的直径,点A、C在⊙O上,=,∠AOB=60°,利用在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半,即可求得∠BDC的度数、解答:解:∵=,∠AOB=60°,∴∠BDC=∠AOB=30°、应选C、点评:此题考查了圆周角定理、此题比较简单,注意数形结合思想的应用,注意在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半定理的应用、6、如图,矩形ABCD的对角线AC、BD相交于点O,CE∥BD,DE∥AC,假设AC=4,那么四边形CODE的周长〔〕A、4B、6C、8D、10考点:菱形的判定与性质;矩形的性质。

江苏省苏州市2019年中考数学试题(含解析)

江苏省苏州市2019年中考数学试题(含解析)

2019年苏州市初中毕业暨升学考试试卷数学本试卷由选择题、填空题和解答题三大题组成,共2小题,满分130分,考试时间120分钟,注意事项:1.答题前,考生务必将自己的姓名、考点名、考场号、座位号、用0.5毫米黑色墨水签字笔填写在答题卡相应位置上,并认真核对条形码上的准考号、姓名是否与本人的相符; 2.答选择题必须用2B 铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,请用橡皮擦干净后,再选涂其他答案;答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡指定的位置上,不在答题区域内的答案一律无效,不得用其他笔答;3.考生答题必须答在答题卡上,保持卡面清洁,不要折叠,不要弄破,答在试卷和草稿纸上一律无效。

一、选择题:本大题共10小题,每小题3分,共30分。

在每小题给出的四个选项中,只有一项是符合题要求的。

请将选择题的答案用2B 铅笔涂在答题卡相应位置上。

1.5的相反数是( )A .15B .15-C .5D .5-2.有一组数据:2,2,4,5,7这组数据的中位数为( ) A .2B .4C .5D .73.苏州是全国重点旅游城市,2018年实现旅游总收入约为26 000 000万元,数据26 000 000用科学记数法可表示为( ) A .80.2610⨯B .82.610⨯C .62610⨯D .72.610⨯4.如图,已知直线//a b ,直线c 与直线a b ,分别交于点A B ,.若154∠=o ,则2∠=( ) A .126oB .134oC .136oD .144o5.如图,AB 为O ⊙的切线,切点为A ,连接AO BO 、,BO 与O ⊙交于点C ,延长BO 与aO ⊙交于点D ,连接AD ,若36ABO ∠=o ,则ADC ∠的度数为( )A .54oB .36oC .32oD .27o6.小明5元买售价相同的软面笔记本,小丽用24元买售价相同的硬面笔记本(两人的钱恰好用完),已知每本硬面笔记本比软面笔记本贵3元,且小明和小丽买到相同数量的笔记本,设软面笔记本每本售价为x 元,根据题意可列出的方程为( ) A .15243x x =+ B .15243x x =- C .15243x x=+ D .15243x x=- 7.若一次函数y kx b =+(k b 、为常数,且0k ≠)的图像经过点()01A -,,()11B ,,则不等式1kx b +>的解为( ) A .0x <B .0x >C .1x <D .1x >8.如图,小亮为了测量校园里教学楼AB 的高度,将测角仪CD 竖直放置在与教学楼水平距离为的地面上,若测角仪的高度为1.5m ,测得教学楼的顶部A 处的仰角为30o ,则教学楼的高度是( ) A .55.5mB .54mC .19.5mD .18m9.如图,菱形ABCD 的对角线AC ,BD 交于点O ,416AC BD ==,,将ABO V 沿点A 到点C 的方向平移,得到A B C '''V ,当点A '与点C 重合时,点A 与点B '之间的距离为( )A .6B .8D .1210.如图,在ABC V 中,点D 为BC 边上的一点,且2AD AB ==,AD AB ⊥,过点D 作DE AD ⊥,DE 交AC 于点E ,若1DE =,则ABC V 的面积为( )DBCDBA.B .4 C. D .8二、填空:本大题共8小题,每小题3分,共24分,把答案直接填在答题卡相应位置上。

江苏省苏州市2019年中考数学真题试题(含解析)

江苏省苏州市2019年中考数学真题试题(含解析)

2019年江苏省苏州市中考数学试卷注:请使用office word软件打开,wps word会导致公式错乱一、选择题(本大题共10小题,共30.0分)1.5的相反数是()A. 15B. −15C. 5D. −52.有一组数据:2,2,4,5,7,这组数据的中位数为()A. 2B. 4C. 5D. 73.苏州是全国重点旅游城市,2018年实现旅游总收入约为26000000万元,数据26000000用科学记数法可表示为()A. 0.26×108B. 2.6×108C. 26×106D. 2.6×1074.如图,已知直线a∥b,直线c与直线a,b分别交于点A,B.若∠1=54°,则∠2等于()A. 126∘B. 134∘C. 136∘D. 144∘5.如图,AB为⊙O的切线,切点为A连接AO、BO,BO与⊙O交于点C,延长BO与⊙O交于点D,连接AD.若∠ABO=36°,则∠ADC的度数为()A. 54∘B. 36∘C. 32∘D. 27∘6.小明用15元买售价相同的软面笔记本,小丽用24元买售价相同的硬面笔记本(两人的钱恰好用完),已知每本硬面笔记本比软面笔记本贵3元,且小明和小丽买到相同数量的笔记本,设软面笔记本每本售价为x元,根据题意可列出的方程为()A. 15x =24x+3B. 15x=24x−3C. 15x+3=24xD. 15x−3=24x7.若一次函数y=kx+b(k,b为常数,且k≠0)的图象经过点A(0,-1),B(1,1),则不等式kx+b>1的解为()A. x<0B. x>0C. x<1D. x>18.如图,小亮为了测量校园里教学楼AB的高度,将测角仪CD竖直放置在与教学楼水平距离为18√3m的地面上,若测角仪的高度是1.5m.测得教学楼的顶部A处的仰角为30°.则教学楼的高度是()A. 55.5mB. 54mC. 19.5mD. 18m9.如图,菱形ABCD的对角线AC,BD交于点O,AC=4,BD=16,将△ABO沿点A到点C的方向平移,得到△A'B'O'.当点A'与点C重合时,点A与点B'之间的距离为()A. 6B. 8C. 10D. 1210.如图,在△ABC中,点D为BC边上的一点,且AD=AB=2,AD⊥AB.过点D作DE⊥AD,DE交AC于点E.若DE=1,则△ABC的面积为()A. 4√2B. 4C. 2√5D. 8二、填空题(本大题共8小题,共24.0分)11.计算:a2•a3=______.12.因式分解:x2-xy=______.13.若√x−6在实数范围内有意义,则x的取值范围为______.14.若a+2b=8,3a+4b=18,则a+b的值为______.15.“七巧板”是我们祖先的一项卓越创造,可以拼出许多有趣的图形,被誉为“东方魔板”.图①是由边长为10cm的正方形薄板分为7块制作成的“七巧板”,图②是用该“七巧板”拼成的一个“家”的图形.该“七巧板”中7块图形之一的正方形边长为______cm(结果保留根号).16.如图,将一个棱长为3的正方体的表面涂上红色,再把它分割成棱长为1的小正方体,从中任取一个小正方体,则取得的小正方体恰有三个面涂有红色的概率为______.17.如图,扇形OAB中,∠AOB=90°.P为弧AB上的一点,过点P作PC⊥OA,垂足为C,PC与AB交于点D.若PD=2,CD=1,则该扇形的半径长为______.18. 如图,一块含有45°角的直角三角板,外框的一条直角边长为8cm ,三角板的外框线和与其平行的内框线之间的距离均为√2cm ,则图中阴影部分的面积为______cm 2(结果保留根号).三、计算题(本大题共1小题,共6.0分)19. 先化简,再求值:x−3x 2+6x+9÷(1-6x+3),其中,x =√2-3.四、解答题(本大题共9小题,共70.0分) 20. 计算:(√3)2+|-2|-(π-2)021. 解不等式组:{2(x +4)>3x +7x+1<522. 在一个不透明的盒子中装有4张卡片,4张卡片的正面分别标有数字1,2,3,4,这些卡片除数字外都相同,将卡片搅匀.(1)从盒子中任意抽取一张卡片,恰好抽到标有奇数卡片的概率是______; (2)先从盒了中任意抽取一张卡片,再从余下的3张卡片中任意抽取一张卡片,求抽取的2张卡片标有数字之和大于4的概率.(请用画树状图或列表等方法求解).23. 某校计划组织学生参加“书法”、“摄影”、“航模、“围棋”四个课外兴趣小组,要求每人必须参加,并且只能选择其中一个小组,为了解学生对四个课外兴趣小组的选择情况,学校从全体学生中随机抽取部分学生进行问卷调查,并把调查结果制成如图所示的扇形统计图和条形统计图(部分信息未给出),请你根据给出的信息解答下列问题:(1)求参加这次问卷调查的学生人数,并补全条形统计图(画图后请标注相应的数据);(2)m=______,n=______;(3)若该校共有1200名学生,试估计该校选择“围棋”课外兴趣小组的学生有多少人?24.如图,△ABC中,点E在BC边上,AE=AB,将线段AC绕A点旋转到AF的位置,使得∠CAF=∠BAE,连接EF,EF与AC交于点G.(1)求证:EF=BC;(2)若∠ABC=65°,∠ACB=28°,求∠FGC的度数.25.如图,A为反比例函数y=k(其中x>0)图象上的一点,x在x轴正半轴上有一点B,OB=4.连接OA,AB,且OA=AB=2√10.(1)求k的值;(2)过点B作BC⊥OB,交反比例函数y=k(其中x>0)的图象于点C,连接OCx的值.交AB于点D,求ADDB26.如图,AB为⊙O的直径,C为⊙O上一点,D是弧BC的中点,BC与AD、OD分别交于点E、F.(1)求证:DO∥AC;(2)求证:DE•DA=DC2;,求sin∠CDA的值.(3)若tan∠CAD=1227.已知矩形ABCD中,AB=5cm,点P为对角线AC上的一点,且AP=2√5cm.如图①,动点M从点A出发,在矩形边上沿着A→B→C的方向匀速运动(不包含点C).设动点M的运动时间为t(s),△APM的面积为S(cm2),S与t的函数关系如图②所示.(1)直接写出动点M的运动速度为______cm/s,BC的长度为______cm;(2)如图③,动点M重新从点A出发,在矩形边上按原来的速度和方向匀速运动,同时,另一个动点N从点D出发,在矩形边上沿着D→C→B的方向匀速运动,设动点N的运动速度为v(cm/s).已知两动点M,N经过时间x(s)在线段BC上相遇(不包含点C),动点M,N相遇后立即同时停止运动,记此时△APM与△DPN 的面积分别为S1(cm2),S2(cm2)①求动点N运动速度v(cm/s)的取值范围;②试探究S1•S2是否存在最大值,若存在,求出S1•S2的最大值并确定运动时间x的值;若不存在,请说明理由.28.如图①,抛物线y=-x2+(a+1)x-a与x轴交于A,B两点(点A位于点B的左侧),与y轴交于点C.已知△ABC的面积是6.(1)求a的值;(2)求△ABC外接圆圆心的坐标;(3)如图②,P是抛物线上一点,Q为射线CA上一点,且P、Q两点均在第三象限内,Q、A是位于直线BP同侧的不同两点,若点P到x轴的距离为d,△QPB的面积为2d,且∠PAQ=∠AQB,求点Q的坐标.答案和解析1.【答案】D【解析】解:5的相反数是-5.故选:D.根据只有符号不同的两数叫做互为相反数解答.本题考查了相反数的定义,是基础题,熟记概念是解题的关键.2.【答案】B【解析】解:这组数据排列顺序为:2,2,4,5,7,∴这组数据的中位数为4,故选:B.将数据从小到大重新排列后根据中位数的定义求解可得.本题主要考查中位数,熟练掌握中位数的定义是解题的关键.3.【答案】D【解析】解:将26000000用科学记数法表示为:2.6×107.故选:D.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.【答案】A【解析】解:如图所示:∵a∥b,∠1=54°,∴∠1=∠3=54°,∴∠2=180°-54°=126°.故选:A.直接利用平行线的性质得出∠3的度数,再利用邻补角的性质得出答案.此题主要考查了邻补角的性质以及平行线的性质,正确得出∠3的度数是解题关键.5.【答案】D【解析】解:∵AB为⊙O的切线,∴∠OAB=90°,∵∠ABO=36°,∴∠AOB=90°-∠ABO=54°,∵OA=OD,∴∠ADC=∠OAD,∵∠AOB=∠ADC+∠OAD,∴∠ADC=∠AOB=27°;故选:D.由切线的性质得出∠OAB=90°,由直角三角形的性质得出∠AOB=90°-∠ABO=54°,由等腰三角形的性质得出∠ADC=∠OAD,再由三角形的外角性质即可得出答案.本题考查了切线的性质、直角三角形的性质、等腰三角形的性质以及三角形的外角性质;熟练掌握切线的性质和等腰三角形的性质是解题的关键.6.【答案】A【解析】解:设软面笔记本每本售价为x元,根据题意可列出的方程为:=.故选:A.直接利用用15元买售价相同的软面笔记本,小丽用24元买售价相同的硬面笔记本,得出等式求出答案.此题主要考查了由实际问题抽象出分式方程,正确找出等量关系是解题关键.7.【答案】D【解析】解:如图所示:不等式kx+b>1的解为:x>1.故选:D.直接利用已知点画出函数图象,利用图象得出答案.此题主要考查了一次函数与一元一次不等式,正确数形结合分析是解题关键.8.【答案】C【解析】解:过D作DE⊥AB,∵在D处测得旗杆顶端A的仰角为30°,∴∠ADE=30°,∵BC=DE=18m,∴AE=DE•tan30°=18m,∴AB=AE+BE=AE+CD=18+1.5=19.5m,故选:C.根据三角函数和直角三角形的性质解答即可.此题考查了仰角的定义.注意能借助仰角构造直角三角形并解直角三角形是解此题的关键.9.【答案】C【解析】解:∵四边形ABCD是菱形,∴AC⊥BD,AO=OC=AC=2,OB=OD=BD=8,∵△ABO沿点A到点C的方向平移,得到△A'B'O',点A'与点C重合,∴O'C=OA=2,O'B'=OB=8,∠CO'B'=90°,∴AO'=AC+O'C=6,∴AB'===10;故选:C.由菱形的性质得出AC⊥BD,AO=OC=AC=2,OB=OD=BD=8,由平移的性质得出O'C=OA=2,O'B'=OB=8,∠CO'B'=90°,得出AO'=AC+O'C=6,由勾股定理即可得出答案.本题考查了菱形的性质、平移的性质、勾股定理;熟练掌握菱形的性质和平移的性质是解题的关键.10.【答案】B【解析】解:∵AB⊥AD,AD⊥DE,∴∠BAD=∠ADE=90°,∴DE∥AB,∴∠CED=∠CAB,∵∠C=∠C,∴△CED∽△CAB,∵DE=1,AB=2,即DE:AB=1:2,∴S△DEC:S△ACB=1:4,∴S四边形ABDE:S△ACB=3:4,∵S四边形ABDE=S△ABD+S△ADE=×2×2+×2×1=2+1=3,∴S△ACB=4,故选:B.由题意得到三角形DEC与三角形ABC相似,由相似三角形面积之比等于相似比的平方两三角形面积之比,进而求出四边形ABDE与三角形ABC面积之比,求出四边形ABDE面积,即可确定出三角形ABC面积.此题考查了相似三角形的判定与性质,以及等腰直角三角形,熟练掌握相似三角形的判定与性质是解本题的关键.11.【答案】a5【解析】解:a2•a3=a2+3=a5.故答案为:a5.根据同底数的幂的乘法,底数不变,指数相加,计算即可.熟练掌握同底数的幂的乘法的运算法则是解题的关键.12.【答案】x(x-y)【解析】解:x2-xy=x(x-y).故答案为:x(x-y).直接提取公因式x,进而分解因式即可.此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.13.【答案】x≥6【解析】解:若在实数范围内有意义,则x-6≥0,解得:x≥6.故答案为:x≥6.直接利用二次根式有意义的条件分析得出答案.此题主要考查了二次根式有意义的条件,正确把握二次根式的定义是解题关键.14.【答案】5【解析】解:∵a+2b=8,3a+4b=18,则a=8-2b,代入3a+4b=18,解得:b=3,则a=2,故a+b=5.故答案为:5.直接利用已知解方程组进而得出答案.此题主要考查了解二元一次方程组,正确掌握解题方法是解题关键.15.【答案】5√22【解析】解:10×10=100(cm2)=(cm)答:该“七巧板”中7块图形之一的正方形边长为cm.故答案为:.观察图形可知该“七巧板”中7块图形之一的正方形面积是大正方形面积的,先根据正方形面积公式求出大正方形面积,从而得到小正方形面积,进一步得到该“七巧板”中7块图形之一的正方形边长.考查了七巧板,关键是得到该“七巧板”中7块图形之一的正方形面积是大正方形面积的.16.【答案】827【解析】解:由题意可得:小立方体一共有27个,恰有三个面涂有红色的有8个,故取得的小正方体恰有三个面涂有红色的概率为:.故答案为:.直接根据题意得出恰有三个面涂有红色的有8个,再利用概率公式求出答案.此题主要考查了概率公式的应用,正确得出三个面涂有红色小立方体的个数是解题关键.17.【答案】5【解析】解:连接OP,如图所示.∵OA=OB,∠AOB=90°,∴∠OAB=45°.∵PC⊥OA,∴△ACD为等腰直角三角形,∴AC=CD=1.设该扇形的半径长为r,则OC=r-1,在Rt△POC中,∠PCO=90°,PC=PD+CD=3,∴OP2=OC2+PC2,即r2=(r-1)2+9,解得:r=5.故答案为:5.连接OP,利用等腰三角形的性质可得出∠OAB=45°,结合PC⊥OA可得出△ACD为等腰直角三角形,进而可得出AC=1,设该扇形的半径长为r,则OC=r-1,在Rt△POC中,利用勾股定理可得出关于r的方程,解之即可得出结论.本题考查了勾股定理、等腰直角三角形以及圆的认识,利用勾股定理,找出关于扇形半径的方程是解题的关键.18.【答案】(10+12√2)【解析】解:如图,EF=DG=CH=,∵含有45°角的直角三角板,∴BC=,GH=2,∴FG=8--2-=6-2,∴图中阴影部分的面积为:8×8÷2-(6-2)×(6-2)÷2=32-22+12=10+12(cm2)答:图中阴影部分的面积为(10)cm2.故答案为:(10).图中阴影部分的面积=外框大直角三角板的面积-内框小直角三角板的面积,根据等腰直角三角形的性质求出内框直角边长,再根据三角形面积公式计算即可求解.考查了等腰直角三角形,相似三角形的判定与性质,平行线之间的距离,关键是求出内框直角边长.19.【答案】解:原式=x−3(x+3)2÷(x+3x+3-6x+3)=x−3 (x+3)2÷x−3 x+3=x−3 (x+3)2•x+3 x−3=1x+3,当x=√2-3时,原式=√2−3+3=√2=√22.【解析】先根据分式的混合运算顺序和运算法则化简原式,再将x 的值代入计算可得. 本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则.20.【答案】解:原式=3+2-1=4. 【解析】直接利用绝对值的性质以及零指数幂的性质分别化简得出答案. 此题主要考查了实数运算,正确化简各数是解题关键. 21.【答案】解:解不等式x +1<5,得:x <4,解不等式2(x +4)>3x +7,得:x <1, 则不等式组的解集为x <1. 【解析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键. 22.【答案】12【解析】解:(1)从盒子中任意抽取一张卡片,恰好抽到标有奇数卡片的概率是为=,故答案为:.(2)根据题意列表得: 1 2 3 4 1 3 4 52 3 5 63 4 5 74 5 6 7由表可知,共有12种等可能结果,其中抽取的2张卡片标有数字之和大于4的有8种结果,所以抽取的2张卡片标有数字之和大于4的概率为=.(1)直接利用概率公式计算可得;(2)用列表法将所有等可能的结果一一列举出来即可,找到符合条件的结果数,再利用概率公式计算.本题考查列表法与树状图法,解答本题的关键是明确题意,画出相应的树状图或表格,求出相应的概率.23.【答案】36 16【解析】解:(1)参加这次问卷调查的学生人数为30÷20%=150(人),航模的人数为150-(30+54+24)=42(人),补全图形如下:(2)m%=×100%=36%,n%=×100%=16%,即m=36、n=16,故答案为:36、16;(3)估计该校选择“围棋”课外兴趣小组的学生有1200×16%=192(人).(1)由书法小组人数及其对应百分比可得总人数,再根据各小组人数之和等于总人数求得航模人数,从而补全图形;(2)根据百分比的概念可得m、n的值;(3)总人数乘以样本中围棋的人数所占百分比.本题考查了条形统计图和扇形统计图,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.24.【答案】(1)证明:∵∠CAF=∠BAE,∴∠BAC=∠EAF.∵将线段AC绕A点旋转到AF的位置,∴AC=AF.在△ABC与△AEF中,{AB=AE∠BAC=∠EAF AC=AF,∴△ABC≌△AEF(SAS),∴EF=BC;(2)解:∵AB=AE,∠ABC=65°,∴∠BAE=180°-65°×2=50°,∴∠FAG=∠BAE=50°.∵△ABC≌△AEF,∴∠F=∠C=28°,∴∠FGC=∠FAG+∠F=50°+28°=78°.【解析】(1)由旋转的性质可得AC=AF,利用SAS证明△ABC≌△AEF,根据全等三角形的对应边相等即可得出EF=BC;(2)根据等腰三角形的性质以及三角形内角和定理求出∠BAE=180°-65°×2=50°,那么∠FAG=50°.由△ABC≌△AEF,得出∠F=∠C=28°,再根据三角形外角的性质即可求出∠FGC=∠FAG+∠F=78°.本题考查了旋转的性质,全等三角形的判定与性质,等腰三角形的性质,三角形内角和定理以及三角形外角的性质,证明△ABC≌△AEF是解题的关键.25.【答案】解:(1)过点A作AH⊥x轴,垂足为点H,AH交OC于点M,如图所示.∵OA=AB,AH⊥OB,∴OH=BH=12OB=2,∴AH =√OA 2−OH 2=6, ∴点A 的坐标为(2,6).∵A 为反比例函数y =kx 图象上的一点, ∴k =2×6=12. (2)∵BC ⊥x 轴,OB =4,点C 在反比例函数y =12x 上, ∴BC =kOB =3. ∵AH ∥BC ,OH =BH , ∴MH =12BC =32, ∴AM =AH -MH =92. ∵AM ∥BC ,∴△ADM ∽△BDC , ∴AD DB =AM BC =32. 【解析】(1)过点A 作AH ⊥x 轴,垂足为点H ,AH 交OC 于点M ,利用等腰三角形的性质可得出DH 的长,利用勾股定理可得出AH 的长,进而可得出点A 的坐标,再利用反比例函数图象上点的坐标特征即可求出k 值;(2)由OB 的长,利用反比例函数图象上点的坐标特征可得出BC 的长,利用三角形中位线定理可求出MH 的长,进而可得出AM 的长,由AM ∥BC 可得出△ADM ∽△BDC ,利用相似三角形的性质即可求出的值.本题考查了反比例函数图象上点的坐标特征、等腰三角形的性质、勾股定理以及相似三角形的判定与性质,解题的关键是:(1)利用等腰三角形的性质及勾股定理,求出点A 的坐标;(2)利用相似三角形的性质求出的值.26.【答案】解:(1)∵点D 是BC ⏜中点,OD 是圆的半径, ∴OD ⊥BC ,∵AB 是圆的直径, ∴∠ACB =90°, ∴AC ∥OD ;(2)∵CD⏜=BD ⏜, ∴∠CAD =∠DCB , ∴△DCE ∽△DCA , ∴CD 2=DE •DA ;(3)∵tan∠CAD=1,2∴△DCE和△DAC的相似比为:1,2设:DE=a,则CD=2a,AD=4a,AE=3a,∴AE=3,DE即△AEC和△DEF的相似比为3,设:EF=k,则CE=3k,BC=8k,tan∠CAD=1,2∴AC=6k,AB=10k,∴sin∠CDA=3.5【解析】(1)点D是中点,OD是圆的半径,又OD⊥BC,而AB是圆的直径,则∠ACB=90°,故:AC∥OD;(2)证明△DCE∽△DCA,即可求解;(3)=3,即△AEC和△DEF的相似比为3,设:EF=k,则CE=3k,BC=8k,tan∠CAD=,则AC=6k,AB=10k,即可求解.本题为圆的综合运用题,涉及到三角形相似等知识点,本题的关键是通过相似比,确定线段的比例关系,进而求解.27.【答案】2 10【解析】解:(1)∵t=2.5s时,函数图象发生改变,∴t=2.5s时,M运动到点B处,∴动点M的运动速度为:=2cm/s,∵t=7.5s时,S=0,∴t=7.5s时,M运动到点C处,∴BC=(7.5-2.5)×2=10(cm),故答案为:2,10;(2)①∵两动点M,N在线段BC上相遇(不包含点C),∴当在点C相遇时,v==(cm/s),当在点B相遇时,v==6(cm/s),∴动点N运动速度v(cm/s)的取值范围为cm/s<v≤6cm/s;②过P作EF⊥AB于F,交CD于E,如图3所示:则EF∥BC,EF=BC=10,∴=,∵AC==5,∴=,解得:AF=2,∴DE=AF=2,CE=BF=3,PF==4,∴EP=EF-PF=6,∴S1=S△APM=S△APF+S梯形PFBM-S△ABM=×4×2+(4+2x-5)×3-×5×(2x-5)=-2x+15,S2=S△DPM=S△DEP+S梯形EPMC-S△DCM=×2×6+(6+15-2x)×3-×5×(15-2x)=2x,∴S1•S2=(-2x+15)×2x=-4x2+30x=-4(x-)2+,∵2.5<<7.5,在BC边上可取,∴当x=时,S1•S2的最大值为.(1)由题意得t=2.5s时,函数图象发生改变,得出t=2.5s时,M运动到点B处,得出动点M的运动速度为:=2cm/s,由t=7.5s时,S=0,得出t=7.5s时,M 运动到点C处,得出BC=10(cm);(2)①由题意得出当在点C相遇时,v==(cm/s),当在点B相遇时,v= =6(cm/s),即可得出答案;②过P作EF⊥AB于F,交CD于E,则EF∥BC,由平行线得出=,得出AF=2,DE=AF=2,CE=BF=3,由勾股定理得出PF=4,得出EP=6,求出S1=S△APM=S△APF+S梯形PFBM-S△ABM=-2x+15,S2=S△DPM=S△DEP+S梯形EPMC-S△DCM=2x,得出S1•S2=(-2x+15)×2x=-4x2+30x=-4(x-)2+,即可得出结果.本题是四边形综合题目,考查了矩形的性质、函数的图象、三角形面积公式、梯形面积公式、平行线的性质、勾股定理等知识;本题综合性强,有一定难度,正确理解函数图象是解题的关键.28.【答案】解:(1)∵y =-x 2+(a +1)x -a令y =0,即-x 2+(a +1)x -a =0 解得x 1=a ,x 2=1 由图象知:a <0∴A (a ,0),B (1,0) ∵s △ABC =6∴12(1−a)(−a)=6解得:a =-3,(a =4舍去) (2)设直线AC :y =kx +b , 由A (-3,0),C (0,3), 可得-3k +b =0,且b =3 ∴k =1即直线AC :y =x +3,A 、C 的中点D 坐标为(-32,32)∴线段AC 的垂直平分线解析式为:y =-x , 线段AB 的垂直平分线为x =-1 代入y =-x , 解得:y =1∴△ABC 外接圆圆心的坐标(-1,1)(3)作PM⊥x轴,则s△BAP=12AB⋅PM=12×4×d∵s△PQB=S△PAB∴A、Q到PB的距离相等,∴AQ∥PB设直线PB解析式为:y=x+b∵直线经过点B(1,0)所以:直线PB的解析式为y=x-1联立{y=x−1y=−x2−2x+3解得:{y=−5x=−4∴点P坐标为(-4,-5)又∵∠PAQ=∠AQB可得:△PBQ≌△ABP(AAS)∴PQ=AB=4设Q(m,m+3)由PQ=4得:(m+4)2+(m+3+5)2=42解得:m=-4,m=-8(舍去)∴Q坐标为(-4,-1)【解析】(1)由y=-x2+(a+1)x-a,令y=0,即-x2+(a+1)x-a=0,可求出A、B坐标结合三角形的面积,解出a=-3;(2)三角形外接圆圆心是三边垂直平分线的交点,求出两边垂直平分线,解交点可求出;(3)作PM⊥x轴,则=由可得A、Q到PB的距离相等,得到AQ∥PB,求出直线PB的解析式,以抛物线解析式联立得出点P坐标,由于△PBQ≌△ABP,可得PQ=AB=4,利用两点间距离公式,解出m值.本题考查二次函数的综合应用,函数和几何图形的综合题目,抛物线和直线“曲直”联立解交点,利用三角形的全等和二次函数的性质把数与形有机的结合在一起,转化线段长求出结果.。

2019年江苏省苏州市中考数学试卷含答案解析

2019年江苏省苏州市中考数学试卷含答案解析

徐老师江苏省苏州市2019年初中毕业暨升学考试数学(本试卷满分130分,考试时间120分钟)第Ⅰ卷(选择题共30分)一、选择题(本大题共10小题,每小题3分,共30分。

在每小题给出的四个选项中,只有一项是符合题要求的。

)1.5的相反数是()A .15B .15-C .5D .5-2.有一组数据:2,2,4,5,7这组数据的中位数为()A .2B .4C .5D .73.苏州是全国重点旅游城市,2018年实现旅游总收入约为26000000万元,数据26000000用科学记数法可表示为()A .80.2610⨯B .82.610⨯C .62610⨯D .72.610⨯4.如图,已知直线//a b ,直线c 与直线a b ,分别交于点A B ,.若154∠=o ,则2∠=()A .126oB .134oC .136oD .144o5.如图,AB 为O ⊙的切线,切点为A ,连接AO BO 、,BO 与O ⊙交于点C ,延长BO 与O ⊙交于点D ,连接AD ,若36ABO ∠=o ,则ADC ∠的度数为()A .54oB .36oC .32oD .27o6.小明5元买售价相同的软面笔记本,小丽用24元买售价相同的硬面笔记本(两人的钱恰好用完),已知每本硬面笔记本比软面笔记本贵3元,且小明和小丽买到相同数量的笔记本,设软面笔记本每本售价为x 元,根据题意可列出的方程为()A .15243x x =+B .15243x x =-C .15243x x =+D .15243x x=-7.若一次函数y kx b =+(k b 、为常数,且0k ≠)的图像经过点()01A -,,()11B ,,则不等式1kx b +>的解为()A .0x <B .0x >C .1x <D .1x >8.如图,小亮为了测量校园里教学楼AB 的高度,将测角仪CD 竖直放置在与教学楼水平距离为183m 的地面上,若测角仪的高度为1.5m ,测得教学楼的顶部A 处的仰角为30o ,则教学楼的高度是()A .55.5mB .54mC .19.5mD .18m 9.如图,菱形ABCD 的对角线AC ,BD 交于点O ,416AC BD ==,,将ABO △沿点A 到点C 的方向平移,得到A B C '''△,当点A '与点C 重合时,点A 与点B '之间的距离为()A .6B .8C .10D .1210.如图,在ABC △中,点D 为BC 边上的一点,且2AD AB ==,AD AB ⊥,过点D 作DE AD ⊥,DE 交AC 于点E ,若1DE =,则ABC △的面积为()徐老师A.42B.4C.25D.8第Ⅱ卷(非选择题共100分)二、填空题(本大题共8小题,每小题3分,共24分.请把答案填在题中的横线上)11.计算:23a a⋅=.12.因式分解:2x xy-=.136x-x的取值范围为.14.若28+=,则a b+的值为.a ba b+=,341815.“七巧板”是我们祖先的一项卓越创造,可以拼出许多有趣的图形,被誉为“东方魔板”,图1是由边长10cm的正方形薄板分成7块制作成的“七巧板”图2是用该“七巧板”拼成的一个“家”的图形,该“七巧板”中7块图形之一的正方形边长为______cm(结果保留根号).16.如图,将一个棱长为3的正方体的表面涂上红色,再把它分割成棱长为1的小正方形,从中任取一个小正方体,则取得的小正方体恰有三个面涂有红色的概率为.17.如图,扇形OAB中,90∠=︒。

2019年江苏省苏州市中考数学试题及参考答案(word解析版)

2019年江苏省苏州市中考数学试题及参考答案(word解析版)

2019年江苏省苏州市中考数学试题及参考答案与解析(满分130分,考试时间120分钟)一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题要求的.1.5的相反数是()A.B.﹣C.5 D.﹣52.有一组数据:2,2,4,5,7,这组数据的中位数为()A.2 B.4 C.5 D.73.苏州是全国重点旅游城市,2018年实现旅游总收入约为26000000万元,数据26000000用科学记数法可表示为()A.0.26×108B.2.6×108C.26×106D.2.6×1074.如图,已知直线a∥b,直线c与直线a,b分别交于点A,B.若∠1=54°,则∠2等于()A.126°B.134°C.136°D.144°5.如图,AB为⊙O的切线,切点为A连接AO、BO,BO与⊙O交于点C,延长BO与⊙O交于点D,连接AD.若∠ABO=36°,则∠ADC的度数为()A.54°B.36°C.32°D.27°6.小明用15元买售价相同的软面笔记本,小丽用24元买售价相同的硬面笔记本(两人的钱恰好用完),已知每本硬面笔记本比软面笔记本贵3元,且小明和小丽买到相同数量的笔记本,设软面笔记本每本售价为x元,根据题意可列出的方程为()A.=B.=C.=D.=7.若一次函数y=kx+b(k,b为常数,且k≠0)的图象经过点A(0,﹣1),B(1,1),则不等式kx+b>1的解为()A.x<0 B.x>0 C.x<1 D.x>18.如图,小亮为了测量校园里教学楼AB的高度,将测角仪CD竖直放置在与教学楼水平距离为18 m的地面上,若测角仪的高度是1.5m.测得教学楼的顶部A处的仰角为30°.则教学楼的高度是()A.55.5m B.54m C.19.5m D.18m9.如图,菱形ABCD的对角线AC,BD交于点O,AC=4,BD=16,将△ABO沿点A到点C的方向平移,得到△A'B'O'.当点A'与点C重合时,点A与点B'之间的距离为()A.6 B.8 C.10 D.1210.如图,在△ABC中,点D为BC边上的一点,且AD=AB=2,AD⊥AB.过点D作DE⊥AD,DE交AC于点E.若DE=1,则△ABC的面积为()A.4B.4 C.2D.8二、填空题:本大题共8小题,每小题3分,共24分.11.计算:a2•a3=.12.因式分解:x2﹣xy=.13.若在实数范围内有意义,则x的取值范围为.14.若a+2b=8,3a+4b=18,则a+b的值为.15.“七巧板”是我们祖先的一项卓越创造,可以拼出许多有趣的图形,被誉为“东方魔板”.图①是由边长为10cm的正方形薄板分为7块制作成的“七巧板”,图②是用该“七巧板”拼成的一个“家”的图形.该“七巧板”中7块图形之一的正方形边长为cm(结果保留根号).16.如图,将一个棱长为3的正方体的表面涂上红色,再把它分割成棱长为1的小正方体,从中任取一个小正方体,则取得的小正方体恰有三个面涂有红色的概率为.17.如图,扇形OAB中,∠AOB=90°.P为弧AB上的一点,过点P作PC⊥OA,垂足为C,PC 与AB交于点D.若PD=2,CD=1,则该扇形的半径长为.18.如图,一块含有45°角的直角三角板,外框的一条直角边长为8cm,三角板的外框线和与其平行的内框线之间的距离均为cm,则图中阴影部分的面积为cm2(结果保留根号).三、解答题;本大题共10小题,共76分.解答时应写出必要的计算过程、推演步骤或文字说明.19.(5分)计算:()2+|﹣2|﹣(π﹣2)020.(5分)解不等式组:21.(6分)先化简,再求值:÷(1﹣),其中,x=﹣3.22.(6分)在一个不透明的盒子中装有4张卡片,4张卡片的正面分别标有数字1,2,3,4,这些卡片除数字外都相同,将卡片搅匀.(1)从盒子中任意抽取一张卡片,恰好抽到标有奇数卡片的概率是;(2)先从盒了中任意抽取一张卡片,再从余下的3张卡片中任意抽取一张卡片,求抽取的2张卡片标有数字之和大于4的概率.(请用画树状图或列表等方法求解).23.(8分)某校计划组织学生参加“书法”、“摄影”、“航模、“围棋”四个课外兴趣小组,要求每人必须参加,并且只能选择其中一个小组,为了解学生对四个课外兴趣小组的选择情况,学校从全体学生中随机抽取部分学生进行问卷调查,并把调查结果制成如图所示的扇形统计图和条形统计图(部分信息未给出),请你根据给出的信息解答下列问题:(1)求参加这次问卷调查的学生人数,并补全条形统计图(画图后请标注相应的数据);(2)m=,n=;(3)若该校共有1200名学生,试估计该校选择“围棋”课外兴趣小组的学生有多少人?24.(8分)如图,△ABC中,点E在BC边上,AE=AB,将线段AC绕A点旋转到AF的位置,使得∠CAF=∠BAE,连接EF,EF与AC交于点G.(1)求证:EF=BC;(2)若∠ABC=65°,∠ACB=28°,求∠FGC的度数.25.(8分)如图,A为反比例函数y=(其中x>0)图象上的一点,在x轴正半轴上有一点B,OB=4.连接OA,AB,且OA=AB=2.(1)求k的值;(2)过点B作BC⊥OB,交反比例函数y=(其中x>0)的图象于点C,连接OC交AB于点D,求的值.26.(10分)如图,AB为⊙O的直径,C为⊙O上一点,D是弧BC的中点,BC与AD、OD分别交于点E、F.(1)求证:DO∥AC;(2)求证:DE•DA=DC2;(3)若tan∠CAD=,求sin∠CDA的值.27.(10分)已知矩形ABCD中,AB=5cm,点P为对角线AC上的一点,且AP=2cm.如图①,动点M从点A出发,在矩形边上沿着A→B→C的方向匀速运动(不包含点C).设动点M的运动时间为t(s),△APM的面积为S(cm2),S与t的函数关系如图②所示.(1)直接写出动点M的运动速度为cm/s,BC的长度为cm;(2)如图③,动点M重新从点A出发,在矩形边上按原来的速度和方向匀速运动,同时,另一个动点N从点D出发,在矩形边上沿着D→C→B的方向匀速运动,设动点N的运动速度为v (cm/s).已知两动点M,N经过时间x(s)在线段BC上相遇(不包含点C),动点M,N相遇后立即同时停止运动,记此时△APM与△DPN的面积分别为S1(cm2),S2(cm2)①求动点N运动速度v(cm/s)的取值范围;②试探究S1•S2是否存在最大值,若存在,求出S1•S2的最大值并确定运动时间x的值;若不存在,请说明理由.28.(10分)如图①,抛物线y=﹣x2+(a+1)x﹣a与x轴交于A,B两点(点A位于点B的左侧),与y轴交于点C.已知△ABC的面积是6.(1)求a的值;(2)求△ABC外接圆圆心的坐标;(3)如图②,P是抛物线上一点,Q为射线CA上一点,且P、Q两点均在第三象限内,Q、A 是位于直线BP同侧的不同两点,若点P到x轴的距离为d,△QPB的面积为2d,且∠PAQ=∠AQB,求点Q的坐标.参考答案与解析一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题要求的.1.5的相反数是()A.B.﹣C.5 D.﹣5【知识考点】相反数.【思路分析】根据只有符号不同的两数叫做互为相反数解答.【解答过程】解:5的相反数是﹣5.故选:D.【总结归纳】本题考查了相反数的定义,是基础题,熟记概念是解题的关键.2.有一组数据:2,2,4,5,7,这组数据的中位数为()A.2 B.4 C.5 D.7【知识考点】中位数.【思路分析】将数据从小到大重新排列后根据中位数的定义求解可得.【解答过程】解:这组数据排列顺序为:2,2,4,5,7,∴这组数据的中位数为4,故选:B.【总结归纳】本题主要考查中位数,熟练掌握中位数的定义是解题的关键.3.苏州是全国重点旅游城市,2018年实现旅游总收入约为26000000万元,数据26000000用科学记数法可表示为()A.0.26×108B.2.6×108C.26×106D.2.6×107【知识考点】科学记数法—表示较大的数.【思路分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答过程】解:将26000000用科学记数法表示为:2.6×107.故选:D.【总结归纳】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.如图,已知直线a∥b,直线c与直线a,b分别交于点A,B.若∠1=54°,则∠2等于()A.126°B.134°C.136°D.144°【知识考点】平行线的性质.【思路分析】直接利用平行线的性质得出∠3的度数,再利用邻补角的性质得出答案.【解答过程】解:如图所示:∵a∥b,∠1=54°,∴∠1=∠3=54°,∴∠2=180°﹣54°=126°.故选:A.【总结归纳】此题主要考查了邻补角的性质以及平行线的性质,正确得出∠3的度数是解题关键.5.如图,AB为⊙O的切线,切点为A连接AO、BO,BO与⊙O交于点C,延长BO与⊙O交于点D,连接AD.若∠ABO=36°,则∠ADC的度数为()A.54°B.36°C.32°D.27°【知识考点】圆周角定理;切线的性质.【思路分析】由切线的性质得出∠OAB=90°,由直角三角形的性质得出∠AOB=90°﹣∠ABO =54°,由等腰三角形的性质得出∠ADC=∠OAD,再由三角形的外角性质即可得出答案.【解答过程】解:∵AB为⊙O的切线,∴∠OAB=90°,∵∠ABO=36°,∴∠AOB=90°﹣∠ABO=54°,∵OA=OD,∴∠ADC=∠OAD,∵∠AOB=∠ADC+∠OAD,∴∠ADC=∠AOB=27°;故选:D.【总结归纳】本题考查了切线的性质、直角三角形的性质、等腰三角形的性质以及三角形的外角性质;熟练掌握切线的性质和等腰三角形的性质是解题的关键.6.小明用15元买售价相同的软面笔记本,小丽用24元买售价相同的硬面笔记本(两人的钱恰好用完),已知每本硬面笔记本比软面笔记本贵3元,且小明和小丽买到相同数量的笔记本,设软面笔记本每本售价为x元,根据题意可列出的方程为()A.=B.=C.=D.=【知识考点】由实际问题抽象出分式方程.【思路分析】直接利用用15元买售价相同的软面笔记本,小丽用24元买售价相同的硬面笔记本,得出等式求出答案.【解答过程】解:设软面笔记本每本售价为x元,根据题意可列出的方程为:=.故选:A.【总结归纳】此题主要考查了由实际问题抽象出分式方程,正确找出等量关系是解题关键.7.若一次函数y=kx+b(k,b为常数,且k≠0)的图象经过点A(0,﹣1),B(1,1),则不等式kx+b>1的解为()A.x<0 B.x>0 C.x<1 D.x>1【知识考点】一次函数与一元一次不等式.【思路分析】直接利用已知点画出函数图象,利用图象得出答案.【解答过程】解:如图所示:不等式kx+b>1的解为:x>1.故选:D.【总结归纳】此题主要考查了一次函数与一元一次不等式,正确数形结合分析是解题关键.8.如图,小亮为了测量校园里教学楼AB的高度,将测角仪CD竖直放置在与教学楼水平距离为18 m的地面上,若测角仪的高度是1.5m.测得教学楼的顶部A处的仰角为30°.则教学楼的高度是()A.55.5m B.54m C.19.5m D.18m【知识考点】解直角三角形的应用﹣仰角俯角问题.【思路分析】根据三角函数和直角三角形的性质解答即可.【解答过程】解:过D作DE⊥AB,∵在D处测得旗杆顶端A的仰角为30°,∴∠ADE=30°,∵BC=DE=18m,∴AE=DE•tan30°=18m,∴AB=AE+BE=AE+CD=18+1.5=19.5m,故选:C.【总结归纳】此题考查了仰角的定义.注意能借助仰角构造直角三角形并解直角三角形是解此题的关键.9.如图,菱形ABCD的对角线AC,BD交于点O,AC=4,BD=16,将△ABO沿点A到点C的方向平移,得到△A'B'O'.当点A'与点C重合时,点A与点B'之间的距离为()A.6 B.8 C.10 D.12【知识考点】菱形的性质;平移的性质.【思路分析】由菱形的性质得出AC⊥BD,AO=OC=AC=2,OB=OD=BD=8,由平移的性质得出O'C=OA=2,O'B'=OB=8,∠CO'B'=90°,得出AO'=AC+O'C=6,由勾股定理即可得出答案.【解答过程】解:∵四边形ABCD是菱形,∴AC⊥BD,AO=OC=AC=2,OB=OD=BD=8,∵△ABO沿点A到点C的方向平移,得到△A'B'O',点A'与点C重合,∴O'C=OA=2,O'B'=OB=8,∠CO'B'=90°,∴AO'=AC+O'C=6,∴AB'===10;故选:C.【总结归纳】本题考查了菱形的性质、平移的性质、勾股定理;熟练掌握菱形的性质和平移的性质是解题的关键.10.如图,在△ABC中,点D为BC边上的一点,且AD=AB=2,AD⊥AB.过点D作DE⊥AD,DE交AC于点E.若DE=1,则△ABC的面积为()A.4B.4 C.2D.8【知识考点】等腰直角三角形;相似三角形的判定与性质.【思路分析】由题意得到三角形DEC与三角形ABC相似,由相似三角形面积之比等于相似比的平方两三角形面积之比,进而求出四边形ABDE与三角形ABC面积之比,求出四边形ABDE面积,即可确定出三角形ABC面积.【解答过程】解:∵AB⊥AD,AD⊥DE,∴∠BAD=∠ADE=90°,∴DE∥AB,∴∠CED=∠CAB,∵∠C=∠C,∴△CED∽△CAB,∵DE=1,AB=2,即DE:AB=1:2,∴S△DEC:S△ACB=1:4,∴S四边形ABDE:S△ACB=3:4,∵S四边形ABDE=S△ABD+S△ADE=×2×2+×2×1=2+1=3,∴S△ACB=4,故选:B.【总结归纳】此题考查了相似三角形的判定与性质,以及等腰直角三角形,熟练掌握相似三角形的判定与性质是解本题的关键.二、填空题:本大题共8小题,每小题3分,共24分.11.计算:a2•a3=.【知识考点】同底数幂的乘法.【思路分析】根据同底数的幂的乘法,底数不变,指数相加,计算即可.【解答过程】解:a2•a3=a2+3=a5.故答案为:a5.【总结归纳】熟练掌握同底数的幂的乘法的运算法则是解题的关键.12.因式分解:x2﹣xy=.【知识考点】因式分解﹣提公因式法.【思路分析】直接提取公因式x,进而分解因式即可.【解答过程】解:x2﹣xy=x(x﹣y).故答案为:x(x﹣y).【总结归纳】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.13.若在实数范围内有意义,则x的取值范围为.【知识考点】二次根式有意义的条件.【思路分析】直接利用二次根式有意义的条件分析得出答案.【解答过程】解:若在实数范围内有意义,则x﹣6≥0,解得:x≥6.故答案为:x≥6.【总结归纳】此题主要考查了二次根式有意义的条件,正确把握二次根式的定义是解题关键.14.若a+2b=8,3a+4b=18,则a+b的值为.【知识考点】整式的加减;解二元一次方程组.【思路分析】直接利用已知解方程组进而得出答案.【解答过程】解:∵a+2b=8,3a+4b=18,则a=8﹣2b,代入3a+4b=18,解得:b=3,则a=2,故a+b=5.故答案为:5.【总结归纳】此题主要考查了解二元一次方程组,正确掌握解题方法是解题关键.15.“七巧板”是我们祖先的一项卓越创造,可以拼出许多有趣的图形,被誉为“东方魔板”.图①是由边长为10cm的正方形薄板分为7块制作成的“七巧板”,图②是用该“七巧板”拼成的一个“家”的图形.该“七巧板”中7块图形之一的正方形边长为cm(结果保留根号).【知识考点】七巧板.【思路分析】观察图形可知该“七巧板”中7块图形之一的正方形面积是大正方形面积的,先根据正方形面积公式求出大正方形面积,从而得到小正方形面积,进一步得到该“七巧板”中7块图形之一的正方形边长.【解答过程】解:10×10=100(cm2)=(cm)答:该“七巧板”中7块图形之一的正方形边长为cm.故答案为:.【总结归纳】考查了七巧板,关键是得到该“七巧板”中7块图形之一的正方形面积是大正方形面积的.16.如图,将一个棱长为3的正方体的表面涂上红色,再把它分割成棱长为1的小正方体,从中任取一个小正方体,则取得的小正方体恰有三个面涂有红色的概率为.【知识考点】概率公式.【思路分析】直接根据题意得出恰有三个面涂有红色的有8个,再利用概率公式求出答案.【解答过程】解:由题意可得:小立方体一共有27个,恰有三个面涂有红色的有8个,故取得的小正方体恰有三个面涂有红色的概率为:.故答案为:.【总结归纳】此题主要考查了概率公式的应用,正确得出三个面涂有红色小立方体的个数是解题关键.17.如图,扇形OAB中,∠AOB=90°.P为弧AB上的一点,过点P作PC⊥OA,垂足为C,PC 与AB交于点D.若PD=2,CD=1,则该扇形的半径长为.【知识考点】勾股定理;等腰直角三角形;圆的认识.【思路分析】连接OP,利用等腰三角形的性质可得出∠OAB=45°,结合PC⊥OA可得出△ACD 为等腰直角三角形,进而可得出AC=1,设该扇形的半径长为r,则OC=r﹣1,在Rt△POC中,利用勾股定理可得出关于r的方程,解之即可得出结论.【解答过程】解:连接OP,如图所示.∵OA=OB,∠AOB=90°,∴∠OAB=45°.∵PC⊥OA,∴△ACD为等腰直角三角形,∴AC=CD=1.设该扇形的半径长为r,则OC=r﹣1,在Rt△POC中,∠PCO=90°,PC=PD+CD=3,∴OP2=OC2+PC2,即r2=(r﹣1)2+9,解得:r=5.故答案为:5.【总结归纳】本题考查了勾股定理、等腰直角三角形以及圆的认识,利用勾股定理,找出关于扇形半径的方程是解题的关键.18.如图,一块含有45°角的直角三角板,外框的一条直角边长为8cm,三角板的外框线和与其平行的内框线之间的距离均为cm,则图中阴影部分的面积为cm2(结果保留根号).【知识考点】平行线之间的距离;等腰直角三角形;相似三角形的判定与性质.【思路分析】图中阴影部分的面积=外框大直角三角板的面积﹣内框小直角三角板的面积,根据等腰直角三角形的性质求出内框直角边长,再根据三角形面积公式计算即可求解.【解答过程】解:如图,EF=DG=CH=,∵含有45°角的直角三角板,∴BC=,GH=2,∴FG=8﹣﹣2﹣=6﹣2,∴图中阴影部分的面积为:8×8÷2﹣(6﹣2)×(6﹣2)÷2=32﹣22+12=10+12(cm2)答:图中阴影部分的面积为(10)cm2.故答案为:(10).【总结归纳】考查了等腰直角三角形,相似三角形的判定与性质,平行线之间的距离,关键是求出内框直角边长.三、解答题;本大题共10小题,共76分.解答时应写出必要的计算过程、推演步骤或文字说明.19.(5分)计算:()2+|﹣2|﹣(π﹣2)0【知识考点】实数的运算;零指数幂.【思路分析】直接利用绝对值的性质以及零指数幂的性质分别化简得出答案.【解答过程】解:原式=3+2﹣1=4.【总结归纳】此题主要考查了实数运算,正确化简各数是解题关键.20.(5分)解不等式组:【知识考点】解一元一次不等式组.【思路分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答过程】解:解不等式x+1<5,得:x<4,解不等式2(x+4)>3x+7,得:x<1,则不等式组的解集为x<1.【总结归纳】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.21.(6分)先化简,再求值:÷(1﹣),其中,x=﹣3.【知识考点】分式的化简求值.【思路分析】先根据分式的混合运算顺序和运算法则化简原式,再将x的值代入计算可得.【解答过程】解:原式=÷(﹣)=÷=•=,当x=﹣3时,原式===.【总结归纳】本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则.22.(6分)在一个不透明的盒子中装有4张卡片,4张卡片的正面分别标有数字1,2,3,4,这些卡片除数字外都相同,将卡片搅匀.(1)从盒子中任意抽取一张卡片,恰好抽到标有奇数卡片的概率是;(2)先从盒了中任意抽取一张卡片,再从余下的3张卡片中任意抽取一张卡片,求抽取的2张卡片标有数字之和大于4的概率.(请用画树状图或列表等方法求解).【知识考点】概率公式;列表法与树状图法.【思路分析】(1)直接利用概率公式计算可得;(2)用列表法将所有等可能的结果一一列举出来即可,找到符合条件的结果数,再利用概率公式计算.【解答过程】解:(1)从盒子中任意抽取一张卡片,恰好抽到标有奇数卡片的概率是为=,故答案为:.(2)根据题意列表得:由表可知,共有12种等可能结果,其中抽取的2张卡片标有数字之和大于4的有8种结果,所以抽取的2张卡片标有数字之和大于4的概率为=.【总结归纳】本题考查列表法与树状图法,解答本题的关键是明确题意,画出相应的树状图或表格,求出相应的概率.23.(8分)某校计划组织学生参加“书法”、“摄影”、“航模、“围棋”四个课外兴趣小组,要求每人必须参加,并且只能选择其中一个小组,为了解学生对四个课外兴趣小组的选择情况,学校从全体学生中随机抽取部分学生进行问卷调查,并把调查结果制成如图所示的扇形统计图和条形统计图(部分信息未给出),请你根据给出的信息解答下列问题:(1)求参加这次问卷调查的学生人数,并补全条形统计图(画图后请标注相应的数据);(2)m=,n=;(3)若该校共有1200名学生,试估计该校选择“围棋”课外兴趣小组的学生有多少人?【知识考点】用样本估计总体;扇形统计图;条形统计图.【思路分析】(1)由书法小组人数及其对应百分比可得总人数,再根据各小组人数之和等于总人数求得航模人数,从而补全图形;(2)根据百分比的概念可得m、n的值;(3)总人数乘以样本中围棋的人数所占百分比.【解答过程】解:(1)参加这次问卷调查的学生人数为30÷20%=150(人),航模的人数为150﹣(30+54+24)=42(人),补全图形如下:(2)m%=×100%=36%,n%=×100%=16%,即m=36、n=16,故答案为:36、16;(3)估计该校选择“围棋”课外兴趣小组的学生有1200×16%=192(人).【总结归纳】本题考查了条形统计图和扇形统计图,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.24.(8分)如图,△ABC中,点E在BC边上,AE=AB,将线段AC绕A点旋转到AF的位置,使得∠CAF=∠BAE,连接EF,EF与AC交于点G.(1)求证:EF=BC;(2)若∠ABC=65°,∠ACB=28°,求∠FGC的度数.【知识考点】全等三角形的判定与性质;旋转的性质.【思路分析】(1)由旋转的性质可得AC=AF,利用SAS证明△ABC≌△AEF,根据全等三角形的对应边相等即可得出EF=BC;(2)根据等腰三角形的性质以及三角形内角和定理求出∠BAE=180°﹣65°×2=50°,那么∠FAG=50°.由△ABC≌△AEF,得出∠F=∠C=28°,再根据三角形外角的性质即可求出∠FGC=∠FAG+∠F=78°.【解答过程】(1)证明:∵∠CAF=∠BAE,∴∠BAC=∠EAF.∵将线段AC绕A点旋转到AF的位置,∴AC=AF.在△ABC与△AEF中,,∴△ABC≌△AEF(SAS),∴EF=BC;(2)解:∵AB=AE,∠ABC=65°,∴∠BAE=180°﹣65°×2=50°,∴∠FAG=∠BAE=50°.∵△ABC≌△AEF,∴∠F=∠C=28°,∴∠FGC=∠FAG+∠F=50°+28°=78°.【总结归纳】本题考查了旋转的性质,全等三角形的判定与性质,等腰三角形的性质,三角形内角和定理以及三角形外角的性质,证明△ABC≌△AEF是解题的关键.25.(8分)如图,A为反比例函数y=(其中x>0)图象上的一点,在x轴正半轴上有一点B,OB=4.连接OA,AB,且OA=AB=2.(1)求k的值;(2)过点B作BC⊥OB,交反比例函数y=(其中x>0)的图象于点C,连接OC交AB于点D,求的值.【知识考点】反比例函数图象上点的坐标特征;相似三角形的判定与性质.【思路分析】(1)过点A作AH⊥x轴,垂足为点H,AH交OC于点M,利用等腰三角形的性质可得出DH的长,利用勾股定理可得出AH的长,进而可得出点A的坐标,再利用反比例函数图象上点的坐标特征即可求出k值;(2)由OB的长,利用反比例函数图象上点的坐标特征可得出BC的长,利用三角形中位线定理可求出MH的长,进而可得出AM的长,由AM∥BC可得出△ADM∽△BDC,利用相似三角形的性质即可求出的值.【解答过程】解:(1)过点A作AH⊥x轴,垂足为点H,AH交OC于点M,如图所示.∵OA=AB,AH⊥OB,∴OH=BH=OB=2,∴AH==6,∴点A的坐标为(2,6).∵A为反比例函数y=图象上的一点,∴k=2×6=12.(2)∵BC⊥x轴,OB=4,点C在反比例函数y=上,∴BC==3.∵AH∥BC,OH=BH,∴MH=BC=,∴AM=AH﹣MH=.∵AM∥BC,∴△ADM∽△BDC,∴==.【总结归纳】本题考查了反比例函数图象上点的坐标特征、等腰三角形的性质、勾股定理以及相似三角形的判定与性质,解题的关键是:(1)利用等腰三角形的性质及勾股定理,求出点A的坐标;(2)利用相似三角形的性质求出的值.26.(10分)如图,AB为⊙O的直径,C为⊙O上一点,D是弧BC的中点,BC与AD、OD分别交于点E、F.(1)求证:DO∥AC;(2)求证:DE•DA=DC2;(3)若tan∠CAD=,求sin∠CDA的值.【知识考点】圆的综合题.【思路分析】(1)点D是中点,OD是圆的半径,又OD⊥BC,而AB是圆的直径,则∠ACB =90°,故:AC∥OD;(2)证明△DCE∽△DCA,即可求解;(3)=3,即△AEC和△DEF的相似比为3,设:EF=k,则CE=3k,BC=8k,tan∠CAD =,则AC=6k,AB=10k,即可求解.【解答过程】解:(1)∵点D是中点,OD是圆的半径,∴OD⊥BC,∵AB是圆的直径,∴∠ACB=90°,∴AC∥OD;(2)∵,∴∠CAD=∠DCB,∴△DCE∽△DCA,∴CD2=DE•DA;(3)∵tan∠CAD=,∴△DCE和△DAC的相似比为:,设:DE=a,则CD=2a,AD=4a,AE=3a,∴=3,即△AEC和△DEF的相似比为3,设:EF=k,则CE=3k,BC=8k,tan∠CAD=,∴AC=6k,AB=10k,∴sin∠CDA=.【总结归纳】本题为圆的综合运用题,涉及到三角形相似等知识点,本题的关键是通过相似比,确定线段的比例关系,进而求解.27.(10分)已知矩形ABCD中,AB=5cm,点P为对角线AC上的一点,且AP=2cm.如图①,动点M从点A出发,在矩形边上沿着A→B→C的方向匀速运动(不包含点C).设动点M的运动时间为t(s),△APM的面积为S(cm2),S与t的函数关系如图②所示.(1)直接写出动点M的运动速度为cm/s,BC的长度为cm;(2)如图③,动点M重新从点A出发,在矩形边上按原来的速度和方向匀速运动,同时,另一个动点N从点D出发,在矩形边上沿着D→C→B的方向匀速运动,设动点N的运动速度为v (cm/s).已知两动点M,N经过时间x(s)在线段BC上相遇(不包含点C),动点M,N相遇后立即同时停止运动,记此时△APM与△DPN的面积分别为S1(cm2),S2(cm2)①求动点N运动速度v(cm/s)的取值范围;②试探究S1•S2是否存在最大值,若存在,求出S1•S2的最大值并确定运动时间x的值;若不存在,请说明理由.【知识考点】四边形综合题.【思路分析】(1)由题意得t=2.5s时,函数图象发生改变,得出t=2.5s时,M运动到点B处,得出动点M的运动速度为:=2cm/s,由t=7.5s时,S=0,得出t=7.5s时,M运动到点C处,得出BC=10(cm);(2)①由题意得出当在点C相遇时,v==(cm/s),当在点B相遇时,v==6(cm/s),即可得出答案;②过P作EF⊥AB于F,交CD于E,则EF∥BC,由平行线得出=,得出AF=2,DE=AF=2,CE=BF=3,由勾股定理得出PF=4,得出EP=6,求出S1=S△APM=S△APF+S梯形PFBM ﹣S△ABM=﹣2x+15,S2=S△DPM=S△DEP+S梯形EPMC﹣S△DCM=2x,得出S1•S2=(﹣2x+15)×2x=﹣4x2+30x=﹣4(x﹣)2+,即可得出结果.【解答过程】解:(1)∵t=2.5s时,函数图象发生改变,∴t=2.5s时,M运动到点B处,∴动点M的运动速度为:=2cm/s,∵t=7.5s时,S=0,∴t=7.5s时,M运动到点C处,∴BC=(7.5﹣2.5)×2=10(cm),故答案为:2,10;(2)①∵两动点M,N在线段BC上相遇(不包含点C),∴当在点C相遇时,v==(cm/s),当在点B相遇时,v==6(cm/s),∴动点N运动速度v(cm/s)的取值范围为cm/s<v≤6cm/s;②过P作EF⊥AB于F,交CD于E,如图3所示:则EF∥BC,EF=BC=10,∴=,∵AC==5,∴=,解得:AF=2,∴DE=AF=2,CE=BF=3,PF==4,∴EP=EF﹣PF=6,∴S1=S△APM=S△APF+S梯形PFBM﹣S△ABM=×4×2+(4+2x﹣5)×3﹣×5×(2x﹣5)=﹣2x+15,。

2019年江苏省苏州市中考数学试题(原卷+解析)

2019年江苏省苏州市中考数学试题(原卷+解析)

2019年苏州市初中毕业暨升学考试试卷数学(参考答案与解析)一、选择题:本大题共10小题,每小题3分,共30分。

在每小题给出的四个选项中,只有一项是符合题要求的。

请将选择题的答案用2B 铅笔涂在答题卡相应位置上。

1.【解答】5的相反是为5- 故选D 2.【解答】该组数据共5个数,中位数为中间的数:4 故选B 3.【解答】726000000 2.610=⨯ 故选D 4.【解答】根据对顶角相等得到1354∠=∠=o 根据两直线平行,同旁内角互补得到32180∠+∠=o 所以218054126∠=-=o o o 故选A5.【解答】切线性质得到90BAO ∠=o 903654AOB ∴∠=-=o o o OD OA =Q OAD ODA ∴∠=∠ AOB OAD ODA ∠=∠+∠Q27ADC ADO ∴∠=∠=o故选Da6.【解答】找到等量关系为两人买的笔记本数量 15243x x ∴=+ 故选A 7.【解答】如下图图像,易得1kx b +>时,1x > 故选D8.【解答】过D 作DE AB ⊥交AB 于E ,在Rt ADE V 中,tan30AEDE=o18m AE ∴== 18 1.519.5m AB ∴=+=故选C 9.【解答】由菱形的性质得28AO OC CO BO OD B O '''======, 90AOB AO B ''∠=∠=o AO B ''∴V 为直角三角形10AB '∴= 故选C 10.xDE BC ==CA【解答】AB AD DE AD ∴⊥⊥, 90BAD ADE ∴∠=∠=o //AB DE ∴易证CDE CBA V :V 12DC DE BC BA ∴== 即12DC BD DC =+由题得BD =∴解得DC =ABC V11422ABC S BC ∴=⨯⨯V故选B二、填空:本大题共8小题,每小题3分,共24分,把答案直接填在答题卡相应位置上 11.【解答】5a 12.【解答】()x x y - 13.【解答】6x ≥ 14.【解答】5 15.16.【解答】82717.【解答】5 18【解答】14+【解析】如右图:过顶点A 作AB ⊥大直角三角形底边由题意:2CD AC ==∴(2CD ==2∴(()22=2S -阴影=14=+C D三、解答题:本大题共10小题,共76分.把解答过程写在答题卡相应位置上,解答时应写出必要得计算过程,推演步骤或文字说明.作图时用2B 铅笔或黑色墨水签字笔. 19.【解答】解:321=+-原式4=20.【解答】解:由①得15x +<4x <由②得()2437x x +>+ 2837x x +>+ 1x ->- 1x <1x <所以21.【解答】解:原式()233633x x x x -+-=÷++ ()23333x x x x --=÷++ ()23333x x x x -+=⋅-+ 13x =+代入3x原式22.【解答】解: (1)12(2)82123P == 答:从盒子任意抽取一张卡片,恰好抽到标有奇数卡片的概率是12,抽取的2张卡片标有数字之和大于4的概率为23. 23.【解答】解:(1) 参加问卷调查的学生人数为()()3020%150÷=人;(2)36,16m n ==(3)选择“围棋”课外兴趣小组的人数为()241200=192150⨯人 答:参加问卷调查的学生人数为150人,36,16m n ==,选择“围棋”课外兴趣小组的人数为192人.24.【解答】解:(1)CAF BAE ∠=∠Q BAC EAF ∴∠=∠AE AB AC AF ==Q 又, ()BAC EAF SAS ∴△≌△EF BC ∴=(2)65AB AE ABC =∠=︒Q , 18065250BAE ∴∠=︒-︒⨯=︒ 50FAG ∴∠=︒ BAC EAF Q 又△≌△ 28F C ∴∠=∠=︒502878FGC ∴∠=︒+︒=︒25.【解答】解:(1)过点A 作AH OB ⊥交x 轴于点H ,交OC 于点M .4OA AB OB ===Q2OH ∴= 6AH ∴=()2,6A ∴ 12k ∴=(2)124x y x==将代入 ()4,3D 得 3BC ∴=1322MH BC ==Q92AM ∴=AH x BC x ⊥⊥Q 轴,轴 AH BC ∴∥ADM BDC ∴△∽△ 32AD AM BD BC ∴== 26.【解析】(1)证明:∵D 为弧BC 的中点,OD 为O e 的半径 ∴OD BC ⊥又∵AB 为O e 的直径 ∴90ACB ∠=︒ ∴AC OD ∥(2)证明:∵D 为弧BC 的中点 ∴»»CDBD = ∴DCB DAC ∠=∠∴DCE DAC ∆∆∽ ∴DC DEDA DC=即2DE DA DC ⋅=(3)解:∵DCE DAC ∆∆∽,1tan 2CAD ∠= ∴12CD DE CE DA DC AC === 设CD =2a ,则DE =a ,4DA a = 又∵AC OD ∥ ∴AEC DEF ∆∽ ∴3CE AEEF DE== 所以83BC CE =又2AC CE = ∴103AB CE =即3sin sin 5CA CDA CBA AB ∠=∠==27.【解析】(1)2/cm s ;10cm(2)①解:∵在边BC 上相遇,且不包含C 点 ∴57.515 2.5C vB v⎧⎪⎪⎨⎪≥⎪⎩<在点在点∴2/6/3cm s v cm s ≤<②如右图12()PAD CDM ABM N ABCD S S S S S S ∆∆∆+=---(N )矩形 ()()5152525751022x x ⨯-⨯-=---=15过M 点做MH ⊥AC,则12MH CM ==∴112152S MH AP x =⋅=-+∴22S x =()122152S S x x ⋅=-+⋅ =2430x x -+ =215225444x ⎛⎫--+ ⎪⎝⎭因为152.57.54<<,所以当154x =时,12S S ⋅取最大值2254.28.【解析】(1)解:由题意得()()1y x x a =--- 由图知:0a <所以A (,0a ),()1,0B ,()0,C a - ()()112ABC S a a ∆=-⋅-=6 34()a a =-=或舍∴3a =-(2)由(1)得A (-3,0),()1,0B ,()0,3C ∴直线AC 得解析式为:3y x =+ AC 中点坐标为33,22⎛⎫- ⎪⎝⎭∴AC 的垂直平分线为:y x =-15-2x2x-5(N )又∵AB 的垂直平分线为:1x =- ∴1y x x =-⎧⎨=-⎩ 得11x y =-⎧⎨=⎩ABC ∆外接圆圆心的坐标(-1,1).(3)解:过点P 做PD ⊥x 轴 由题意得:PD =d ,∴12ABP S PD AB ∆=⋅=2d∵QPB ∆的面积为2d∴ABP BPQ S S ∆∆=,即A 、D 两点到PB 得距离相等 ∴AQ PB ∥设PB 直线解析式为;y x b =+过点(1,0)B ∴1y x =-∴2123y x y x x =-⎧⎨=--+⎩易得45x y =-⎧⎨=⎩ 1()0x y =⎧⎨=⎩舍 所以P (-4,-5),由题意及PAQ AQB ∠=∠ 易得:ABQ QPA ∆∆≌ ∴BQ =AP设Q (m ,-1)(0m <) ∴()221126m -+= 4m =-∴Q ()4,1-。

2019年江苏省苏州市中考数学试题(含答案)

2019年江苏省苏州市中考数学试题(含答案)

江苏省苏州市 2019 年中考数学试卷一、选择题(共 10 小题,每小题 3 分,共 30 分)1.(3 分)(2019•苏州)(﹣3)×3 的结果是( )A.﹣9B.0C.9D.﹣6考点:有理数的乘法. 分析:根据两数相乘,异号得负,可得答案. 解答:解:原式=﹣3×3=﹣9,故选:A. 点评:本题考查了有理数的乘法,先确定积的符号,再进行绝对值得运算.2.(3 分)(2019•苏州)已知∠α 和∠β 是对顶角,若∠α=30°,则∠β 的度数为( )A.30°B.60°C.70°D.150°考点:对顶角、邻补角 分析:根据对顶角相等可得∠β 与∠α 的度数相等为 30°. 解答:解:∵∠α 和∠β 是对顶角,∠α=30°,∴根据对顶角相等可得∠β=∠α=30°. 故选:A. 点评:本题主要考查了对顶角相等的性质,比较简单.3.(3 分)(2019•苏州)有一组数据:1,3,3,4,5,这组数据的众数为( )A.1B.3C.4D.5考点:众数 分析:根据众数的概念求解. 解答:解:这组数据中 3 出现的次数最多,故众数为 3. 故选 B 点评:本题考查了众数的概念:一组数据中出现次数最多的数据叫做众数.4.(3 分)(2019•苏州)若式子A.x≤﹣4B.x≥﹣4在实数范围内有意义,则 x 的取值范围是( )C.x≤4D.x≥4考点:二次根式有意义的条件 分析:二次根式有意义,被开方数是非负数. 解答:解:依题意知,x﹣4≥0,解得 x≥4. 故选:D.点评:考查了二次根式的意义和性质.概念:式子 (a≥0)叫二次根式.性质:二次根式 中的被开方数必须是非负数,否则二次根式无意义.5.(3 分)(2019•苏州)如图,一个圆形转盘被分成 6 个圆心角都为 60°的扇形,任意转动这个转盘 1 次, 当转盘停止转动时,指针指向阴影区域的概率是( )A.B.C.D.考点:几何概率. 分析:设圆的面积为 6,易得到阴影区域的面积为 4,然后根据概率的概念计算即可. 解答:解:设圆的面积为 6,∵圆被分成 6 个相同扇形, ∴每个扇形的面积为 1, ∴阴影区域的面积为 4, ∴指针指向阴影区域的概率= = .故选 D. 点评:本题考查了求几何概率的方法:先利用几何性质求出整个几何图形的面积 n,再计算出其中某个区域的几何图形的面积 m,然后根据概率的定义计算出落在这个几何区域 的事件的概率= .6.(3 分)(2019•苏州)如图,在△ABC 中,点 D 在 BC 上,AB=AD=DC,∠B=80°,则∠C 的度数为( )A.30°B.40°C.45°D.60°考点:等腰三角形的性质 分析:先根据等腰三角形的性质求出∠ADB 的度数,再由平角的定义得出∠ADC 的度数,根据等腰三角形的性质即可得出结论. 解答:解:∵△ABD 中,AB=AD,∠B=80°,∴∠B=∠ADB=80°, ∴∠ADC=180°﹣∠ADB=100°, ∵AD=CD,∴∠C===40°.故选 B. 点评:本题考查的是等腰三角形的性质,熟知等腰三角形的两底角相等是解答此题的关键.7.(3 分)(2019•苏州)下列关于 x 的方程有实数根的是( )A.x2﹣x+1=0B.x2+x+1=0C.(x﹣1)(x+2)=0D.(x﹣1)2+1=0考点:根的判别式. 菁优网版权所有专题:计算题.分析:分别计算 A、B 中的判别式的值;根据判别式的意义进行判断;利用因式分解法对 C 进行判断;根据非负数的性质对 D 进行判断.解答:解:A、△=(﹣1)2﹣4×1×1=﹣3<0,方程没有实数根,所以 A 选项错误; B、△=12﹣4×1×1=﹣3<0,方程没有实数根,所以 B 选项错误; C、x﹣1=0 或 x+2=0,则 x1=1,x2=﹣2,所以 C 选项正确; D、(x﹣1)2=﹣1,方程左边为非负数,方程右边为 0,所以方程没有实数根,所以 D 选项错误.故选 C. 点评:本题考查了一元二次方程 ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有 实数根.8.(3 分)(2019•苏州)二次函数 y=ax2+bx﹣1(a≠0)的图象经过点(1,1),则代数式 1﹣a﹣b 的值为( )A.﹣3B.﹣1C.2D.5考点:二次函数图象上点的坐标特征. 菁优网版权所有分析:把点(1,1)代入函数解析式求出 a+b,然后代入代数式进行计算即可得解. 解答:解:∵二次函数 y=ax2+bx﹣1(a≠0)的图象经过点(1,1),∴a+b﹣1=1, ∴a+b=2, ∴1﹣a﹣b=1﹣(a+b)=1﹣2=﹣1. 故选 B. 点评:本题考查了二次函数图象上点的坐标特征,整体思想的利用是解题的关键.9.(3 分)(2019•苏州)如图,港口 A 在观测站 O 的正东方向,OA=4km,某船从港口 A 出发,沿北偏东 15°方向航行一段距离后到达 B 处,此时从观测站 O 处测得该船位于北偏东 60°的方向,则该船航行的距离 (即 AB 的长)为( )A.4kmB.2 kmC.2 kmD.( +1)km考点:解直角三角形的应用-方向角问题. 菁优网版权所有分析:过点 A 作 AD⊥OB 于 D.先解 Rt△AOD,得出 AD= OA=2,再由△ABD 是等腰直角三角形,得出 BD=AD=2,则 AB= AD=2 . 解答:解:如图,过点 A 作 AD⊥OB 于 D.在 Rt△AOD 中,∵∠ADO=90°,∠AOD=30°,OA=4,∴AD= OA=2.在 Rt△ABD 中,∵∠ADB=90°,∠B=∠CAB﹣∠AOB=75°﹣30°=45°, ∴BD=AD=2, ∴AB= AD=2 . 即该船航行的距离(即 AB 的长)为 2 km. 故选 C.点评:本题考查了解直角三角形的应用﹣方向角问题,难度适中,作出辅助线构造直角三角 形是解题的关键.10.(3 分)(2019•苏州)如图,△AOB 为等腰三角形,顶点 A 的坐标(2, ),底边 OB 在 x 轴上.将 △AOB 绕点 B 按顺时针方向旋转一定角度后得△A′O′B′,点 A 的对应点 A′在 x 轴上,则点 O′的坐 标为( )A.( , )B.( , ) C.( , ) D.( ,4 )考点:坐标与图形变化-旋转. 菁优网版权所有分析:过点 A 作 AC⊥OB 于 C,过点 O′作 O′D⊥A′B 于 D,根据点 A 的坐标求出 OC、 AC,再利用勾股定理列式计算求出 OA,根据等腰三角形三线合一的性质求出 OB, 根据旋转的性质可得 BO′=OB,∠A′BO′=∠ABO,然后解直角三角形求出 O′D、 BD,再求出 OD,然后写出点 O′的坐标即可.解答:解:如图,过点 A 作 AC⊥OB 于 C,过点 O′作 O′D⊥A′B 于 D,∵A(2, ), ∴OC=2,AC= ,由勾股定理得,OA===3,∵△AOB 为等腰三角形,OB 是底边, ∴OB=2OC=2×2=4, 由旋转的性质得,BO′=OB=4,∠A′BO′=∠ABO,∴O′D=4× = ,BD=4× = ,∴OD=OB+BD=4+ = ,∴点 O′的坐标为( , ). 故选 C.点评:本题考查了坐标与图形变化﹣旋转,主要利用了勾股定理,等腰三角形的性质,解直 角三角形,熟记性质并作辅助线构造出直角三角形是解题的关键.二、填空题(共 8 小题,每小题 3 分,共 24 分)11.(3 分)(2019•苏州) 的倒数是.考点:倒数. 菁优网版权所有分析:根据乘积为 1 的两个数倒数,可得一个数的倒数. 解答:解: 的倒数是 ,故答案为: .点评:本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.12.(3 分)(2019•苏州)已知地球的表面积约为 510000000km2,数 510000000 用科学记数法可表示为 5.1×108 .考点:科学记数法—表示较大的数. 菁优网版权所有分析:科学记数法的表示形式为 a×10n 的形式,其中 1≤|a|<10,n 为整数.确定 n 的值是易 错点,由于 510000000 有 9 位,所以可以确定 n=9﹣1=8.解答:解:510 000 000=5.1×108. 故答案为:5.1×108.点评:此题考查科学记数法表示较大的数的方法,准确确定 a 与 n 值是关键.13.(3 分)(2019•苏州)已知正方形 ABCD 的对角线 AC= ,则正方形 ABCD 的周长为 4 .考点:正方形的性质. 菁优网版权所有分析:根据正方形的对角线等于边长的倍求出边长,再根据正方形的周长公式列式计算即可得解.解答:解:∵正方形 ABCD 的对角线 AC= ,∴边长 AB= ÷ =1,∴正方形 ABCD 的周长=4×1=4.故答案为:4.点评:本题考查了正方形的性质,比较简单,熟记正方形的对角线等于边长的 倍是解题的关键.14.(3 分)(2019•苏州)某学校计划开设 A、B、C、D 四门校本课程供全体学生选修,规定每人必须并且 只能选修其中一门,为了了解个门课程的选修人数.现从全体学生中随机抽取了部分学生进行调查,并把 调查结果绘制成如图所示的条形统计图.已知该校全体学生人数为 1200 名,由此可以估计选修 C 课程的学 生有 240 人.考点:用样本估计总体;条形统计图. 菁优网版权所有分析:根据样本的数据,可得样本 C 占样本的比例,根据样本的比例,可 C 占总体的比例,根据总人数乘以 C 占得比例,可得答案.解答:解:C 占样本的比例,C 占总体的比例是 ,选修 C 课程的学生有 1200× =240(人),故答案为:240. 点评:本题考查了用样本估计总体,先求出样本所占的比例,估计总体中所占的比例.15.(3 分)(2019•苏州)如图,在△ABC 中,AB=AC=5,BC=8.若∠BPC= ∠BAC,则 tan∠BPC=.考点:锐角三角函数的定义;等腰三角形的性质;勾股定理. 菁优网版权所有分析:先过点 A 作 AE⊥BC 于点 E,求得∠BAE= ∠BAC,故∠BPC=∠BAE.再在 Rt△BAE 中,由勾股定理得 AE 的长,利用锐角三角函数的定义,求得 tan∠BPC=tan∠BAE=.解答:解:过点 A 作 AE⊥BC 于点 E,∵AB=AC=5, ∴BE= BC= ×8=4,∠BAE= ∠BAC,∵∠BPC= ∠BAC,∴∠BPC=∠BAE. 在 Rt△BAE 中,由勾股定理得AE=,∴tan∠BPC=tan∠BAE=.故答案为: .点评:求锐角的三角函数值的方法:利用锐角三角函数的定义,通过设参数的方法求三角函 数值,或者利用同角(或余角)的三角函数关系式求三角函数值.16.(3 分)(2019•苏州)某地准备对一段长 120m 的河道进行清淤疏通.若甲工程队先用 4 天单独完成其 中一部分河道的疏通任务,则余下的任务由乙工程队单独完成需要 9 天;若甲工程队先单独工作 8 天,则 余下的任务由乙工程队单独完成需要 3 天.设甲工程队平均每天疏通河道 xm,乙工程队平均每天疏通河道 ym,则(x+y)的值为 20 .考点:二元一次方程组的应用. 菁优网版权所有分析:设甲工程队平均每天疏通河道 xm,乙工程队平均每天疏通河道 ym,就有 4x+9y=120,8x+3y=120,由此构成方程组求出其解即可. 解答:解:设甲工程队平均每天疏通河道 xm,乙工程队平均每天疏通河道 ym,由题意,得,解得:.∴x+y=20. 故答案为:20. 点评:本题考查了列二元一次房产界实际问题的运用,二元一次方程组的解法的运用,工程 问题的数量关系的运用,解答时由工程问题的数量关系建立方程组求出其解是关键.17.(3 分)(2019•苏州)如图,在矩形 ABCD 中, = ,以点 B 为圆心,BC 长为半径画弧,交边 AD 于 点 E.若 AE•ED= ,则矩形 ABCD 的面积为 5 .考点:矩形的性质;勾股定理. 菁优网版权所有分析:连接 BE,设 AB=3x,BC=5x,根据勾股定理求出 AE=4x,DE=x,求出 x 的值,求出 AB、BC,即可求出答案.解答:解:如图,连接 BE,则 BE=BC.设 AB=3x,BC=5x, ∵四边形 ABCD 是矩形, ∴AB=CD=3x,AD=BC=5x,∠A=90°, 由勾股定理得:AE=4x, 则 DE=5x﹣4x=x, ∵AE•ED= , ∴4x•x= ,解得:x= (负数舍去), 则 AB=3x= ,BC=5x= , ∴矩形 ABCD 的面积是 AB×BC= × =5, 故答案为:5. 点评:本题考查了矩形的性质,勾股定理的应用,解此题的关键是求出 x 的值,题目比较好, 难度适中. 18.(3 分)(2019•苏州)如图,直线 l 与半径为 4 的⊙O 相切于点 A,P 是⊙O 上的一个动点(不与点 A 重合),过点 P 作 PB⊥l,垂足为 B,连接 PA.设 PA=x,PB=y,则(x﹣y)的最大值是 2 .考点:切线的性质. 菁优网版权所有分析:作直径 AC,连接 CP,得出△APC∽△PBA,利用 = ,得出 y= x2,所以 x﹣y=x ﹣ x2=﹣ x2+x=﹣ (x﹣4)2+2,当 x=4 时,x﹣y 有最大值是 2.解答:解:如图,作直径 AC,连接 CP,∴∠CPA=90°, ∵AB 是切线, ∴CA⊥AB, ∵PB⊥l, ∴AC∥PB, ∴∠CAP=∠APB, ∴△APC∽△PBA, ∴=, ∵PA=x,PB=y,半径为 4∴=,∴y= x2,∴x﹣y=x﹣ x2=﹣ x2+x=﹣ (x﹣4)2+2,当 x=4 时,x﹣y 有最大值是 2, 故答案为:2. 点评:此题考查了切线的性质,平行线的性质,相似三角形的判定与性质,以及二次函数的 性质,熟练掌握性质及定理是解本题的关键.三、解答题(共 11 小题,共 76 分) 19.(5 分)(2019•苏州)计算:22+|﹣1|﹣ .考点:实数的运算. 菁优网版权所有专题:计算题. 分析:原式第一项利用乘方的意义化简,第二项利用绝对值的代数意义化简,最后一项利用平方根定义化简,计算即可得到结果. 解答:解:原式=4+1﹣2=3. 点评:此题考查了实数的运算,熟练掌握运算法则解本题的关键.20.(5 分)(2019•苏州)解不等式组:.考点:解一元一次不等式组. 菁优网版权所有专题:计算题.分析:分别求出不等式组中两不等式的解集,找出解集的公共部分即可.解答:解:,由①得:x>3;由②得:x≤4, 则不等式组的解集为 3<x≤4. 点评:此题考查了解一元一次不等式组,熟练掌握运算法则是解本题的关键.21.(5 分)(2019•苏州)先化简,再求值:,其中.考点:分式的化简求值. 菁优网版权所有分析:分式的化简,要熟悉混合运算的顺序,分子、分母能因式分解的先因式分解;除法要统一为乘法运算,注意化简后,将,代入化简后的式子求出即可.÷+÷×,==22.(6分)(2019•苏州)解分式方程:+=3.x=x=23.(6分)(2019•苏州)如图,在Rt△ABC中,∠ACB=90°,点D、F分别在AB、AC上,CF=CB,连接CD,将线段CD绕点C按顺时针方向旋转90°后得CE,连接EF.(1)求证:△BCD≌△FCE;(2)若EF∥CD,求∠BDC的度数.24.(7分)(2019•苏州)如图,已知函数y=﹣x+b的图象与x轴、y轴分别交于点A、B,与函数y=x的图象交于点M,点M的横坐标为2,在x轴上有一点P(a,0)(其中a>2),过点P作x轴的垂线,分别交函数y=﹣x+b和y=x的图象于点C、D.(1)求点A的坐标;(2)若OB=CD,求a的值.﹣a+3﹣(﹣x+b﹣x+3得﹣x+3=0x+3a+3﹣(﹣25.(7分)(2019•苏州)如图,用红、蓝两种颜色随机地对A、B、C三个区域分别进行涂色,每个区域必须涂色并且只能涂一种颜色,请用列举法(画树状图或列表)求A、C两个区域所涂颜色不相同的概率.P=.26.(8分)(2019•苏州)如图,已知函数y=(x>0)的图象经过点A、B,点A的坐标为(1,2),过点A作AC∥y轴,AC=1(点C位于点A的下方),过点C作CD∥x轴,与函数的图象交于点D,过点B作BE⊥CD,垂足E在线段CD上,连接OC、OD.(1)求△OCD的面积;(2)当BE=AC时,求CE的长.(BE=,纵坐标是.CE=27.(8分)(2019•苏州)如图,已知⊙O上依次有A、B、C、D四个点,=,连接AB、AD、BD,弦AB不经过圆心O,延长AB到E,使BE=AB,连接EC,F是EC的中点,连接BF.(1)若⊙O的半径为3,∠DAB=120°,求劣弧的长;(2)求证:BF=BD;(3)设G是BD的中点,探索:在⊙O上是否存在点P(不同于点B),使得PG=PF?并说明PB与AE的位置关系.,再利用弧长公式求出劣弧的长;,再利用圆心角定理得出=BD,∴的长为:×π×=+=,==BD28.(9分)(2019•苏州)如图,已知l1⊥l2,⊙O与l1,l2都相切,⊙O的半径为2cm,矩形ABCD的边AD、AB分别与l1,l2重合,AB=4cm,AD=4cm,若⊙O与矩形ABCD沿l1同时向右移动,⊙O的移动速度为3cm,矩形ABCD的移动速度为4cm/s,设移动时间为t(s)(1)如图①,连接OA、AC,则∠OAC的度数为105°;(2)如图②,两个图形移动一段时间后,⊙O到达⊙O1的位置,矩形ABCD到达A1B1C1D1的位置,此时点O1,A1,C1恰好在同一直线上,求圆心O移动的距离(即OO1的长);(3)在移动过程中,圆心O到矩形对角线AC所在直线的距离在不断变化,设该距离为d(cm),当d<2时,求t的取值范围(解答时可以利用备用图画出相关示意图).cmcmDAC==,=t=+6F=+﹣(=2+22+229.(10分)(2019•苏州)如图,二次函数y=a(x2﹣2mx﹣3m2)(其中a,m是常数,且a>0,m>0)的图象与x轴分别交于点A、B(点A位于点B的左侧),与y轴交于C(0,﹣3),点D在二次函数的图象上,CD∥AB,连接AD,过点A作射线AE交二次函数的图象于点E,AB平分∠DAE.(1)用含m的代数式表示a;(2)求证:为定值;(3)设该二次函数图象的顶点为F,探索:在x轴的负半轴上是否存在点G,连接GF,以线段GF、AD、AE的长度为三边长的三角形是直角三角形?如果存在,只要找出一个满足要求的点G即可,并用含m的代数式表示该点的横坐标;如果不存在,请说明理由.)求证中,a===,==CGO=,,===4==3==。

江苏省苏州市2019年中考数学试题及参考答案与解析

江苏省苏州市2019年中考数学试题及参考答案与解析

江苏省苏州市2019年中考数学试题及参考答案与解析(满分130分,考试时间120分钟)一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题要求的.1.5的相反数是()A.B.﹣C.5 D.﹣5【知识考点】相反数.【思路分析】根据只有符号不同的两数叫做互为相反数解答.【解答过程】解:5的相反数是﹣5.故选:D.【总结归纳】本题考查了相反数的定义,是基础题,熟记概念是解题的关键.2.有一组数据:2,2,4,5,7,这组数据的中位数为()A.2 B.4 C.5 D.7【知识考点】中位数.【思路分析】将数据从小到大重新排列后根据中位数的定义求解可得.【解答过程】解:这组数据排列顺序为:2,2,4,5,7,∴这组数据的中位数为4,故选:B.【总结归纳】本题主要考查中位数,熟练掌握中位数的定义是解题的关键.3.苏州是全国重点旅游城市,2018年实现旅游总收入约为26000000万元,数据26000000用科学记数法可表示为()A.0.26×108B.2.6×108C.26×106D.2.6×107【知识考点】科学记数法—表示较大的数.【思路分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答过程】解:将26000000用科学记数法表示为:2.6×107.故选:D.【总结归纳】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.如图,已知直线a∥b,直线c与直线a,b分别交于点A,B.若∠1=54°,则∠2等于()A.126°B.134°C.136°D.144°【知识考点】平行线的性质.【思路分析】直接利用平行线的性质得出∠3的度数,再利用邻补角的性质得出答案.【解答过程】解:如图所示:∵a∥b,∠1=54°,∴∠1=∠3=54°,∴∠2=180°﹣54°=126°.故选:A.【总结归纳】此题主要考查了邻补角的性质以及平行线的性质,正确得出∠3的度数是解题关键.5.如图,AB为⊙O的切线,切点为A连接AO、BO,BO与⊙O交于点C,延长BO与⊙O交于点D,连接AD.若∠ABO=36°,则∠ADC的度数为()A.54°B.36°C.32°D.27°【知识考点】圆周角定理;切线的性质.【思路分析】由切线的性质得出∠OAB=90°,由直角三角形的性质得出∠AOB=90°﹣∠ABO =54°,由等腰三角形的性质得出∠ADC=∠OAD,再由三角形的外角性质即可得出答案.【解答过程】解:∵AB为⊙O的切线,∴∠OAB=90°,∵∠ABO=36°,∴∠AOB=90°﹣∠ABO=54°,∵OA=OD,∴∠ADC=∠OAD,∵∠AOB=∠ADC+∠OAD,∴∠ADC=∠AOB=27°;故选:D.【总结归纳】本题考查了切线的性质、直角三角形的性质、等腰三角形的性质以及三角形的外角性质;熟练掌握切线的性质和等腰三角形的性质是解题的关键.6.小明用15元买售价相同的软面笔记本,小丽用24元买售价相同的硬面笔记本(两人的钱恰好用完),已知每本硬面笔记本比软面笔记本贵3元,且小明和小丽买到相同数量的笔记本,设软面笔记本每本售价为x元,根据题意可列出的方程为()A.=B.=C.=D.=【知识考点】由实际问题抽象出分式方程.【思路分析】直接利用用15元买售价相同的软面笔记本,小丽用24元买售价相同的硬面笔记本,得出等式求出答案.【解答过程】解:设软面笔记本每本售价为x元,根据题意可列出的方程为:=.故选:A.【总结归纳】此题主要考查了由实际问题抽象出分式方程,正确找出等量关系是解题关键.7.若一次函数y=kx+b(k,b为常数,且k≠0)的图象经过点A(0,﹣1),B(1,1),则不等式kx+b>1的解为()A.x<0 B.x>0 C.x<1 D.x>1【知识考点】一次函数与一元一次不等式.【思路分析】直接利用已知点画出函数图象,利用图象得出答案.【解答过程】解:如图所示:不等式kx+b>1的解为:x>1.故选:D.【总结归纳】此题主要考查了一次函数与一元一次不等式,正确数形结合分析是解题关键.8.如图,小亮为了测量校园里教学楼AB的高度,将测角仪CD竖直放置在与教学楼水平距离为18 m的地面上,若测角仪的高度是1.5m.测得教学楼的顶部A处的仰角为30°.则教学楼的高度是()A.55.5m B.54m C.19.5m D.18m【知识考点】解直角三角形的应用﹣仰角俯角问题.【思路分析】根据三角函数和直角三角形的性质解答即可.【解答过程】解:过D作DE⊥AB,∵在D处测得旗杆顶端A的仰角为30°,∴∠ADE=30°,∵BC=DE=18m,∴AE=DE•tan30°=18m,∴AB=AE+BE=AE+CD=18+1.5=19.5m,故选:C.【总结归纳】此题考查了仰角的定义.注意能借助仰角构造直角三角形并解直角三角形是解此题的关键.9.如图,菱形ABCD的对角线AC,BD交于点O,AC=4,BD=16,将△ABO沿点A到点C的方向平移,得到△A'B'O'.当点A'与点C重合时,点A与点B'之间的距离为()A.6 B.8 C.10 D.12【知识考点】菱形的性质;平移的性质.【思路分析】由菱形的性质得出AC⊥BD,AO=OC=AC=2,OB=OD=BD=8,由平移的性质得出O'C=OA=2,O'B'=OB=8,∠CO'B'=90°,得出AO'=AC+O'C=6,由勾股定理即可得出答案.【解答过程】解:∵四边形ABCD是菱形,∴AC⊥BD,AO=OC=AC=2,OB=OD=BD=8,∵△ABO沿点A到点C的方向平移,得到△A'B'O',点A'与点C重合,∴O'C=OA=2,O'B'=OB=8,∠CO'B'=90°,∴AO'=AC+O'C=6,∴AB'===10;故选:C.【总结归纳】本题考查了菱形的性质、平移的性质、勾股定理;熟练掌握菱形的性质和平移的性质是解题的关键.10.如图,在△ABC中,点D为BC边上的一点,且AD=AB=2,AD⊥AB.过点D作DE⊥AD,DE交AC于点E.若DE=1,则△ABC的面积为()A.4B.4 C.2D.8【知识考点】等腰直角三角形;相似三角形的判定与性质.【思路分析】由题意得到三角形DEC与三角形ABC相似,由相似三角形面积之比等于相似比的平方两三角形面积之比,进而求出四边形ABDE与三角形ABC面积之比,求出四边形ABDE面积,即可确定出三角形ABC面积.【解答过程】解:∵AB⊥AD,AD⊥DE,∴∠BAD=∠ADE=90°,∴DE∥AB,∴∠CED=∠CAB,∵∠C=∠C,∴△CED∽△CAB,∵DE=1,AB=2,即DE:AB=1:2,∴S△DEC:S△ACB=1:4,∴S四边形ABDE:S△ACB=3:4,∵S四边形ABDE=S△ABD+S△ADE=×2×2+×2×1=2+1=3,∴S△ACB=4,故选:B.【总结归纳】此题考查了相似三角形的判定与性质,以及等腰直角三角形,熟练掌握相似三角形的判定与性质是解本题的关键.二、填空题:本大题共8小题,每小题3分,共24分.11.计算:a2•a3=.【知识考点】同底数幂的乘法.【思路分析】根据同底数的幂的乘法,底数不变,指数相加,计算即可.【解答过程】解:a2•a3=a2+3=a5.故答案为:a5.【总结归纳】熟练掌握同底数的幂的乘法的运算法则是解题的关键.12.因式分解:x2﹣xy=.【知识考点】因式分解﹣提公因式法.【思路分析】直接提取公因式x,进而分解因式即可.【解答过程】解:x2﹣xy=x(x﹣y).故答案为:x(x﹣y).【总结归纳】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.13.若在实数范围内有意义,则x的取值范围为.【知识考点】二次根式有意义的条件.【思路分析】直接利用二次根式有意义的条件分析得出答案.【解答过程】解:若在实数范围内有意义,则x﹣6≥0,解得:x≥6.故答案为:x≥6.【总结归纳】此题主要考查了二次根式有意义的条件,正确把握二次根式的定义是解题关键.14.若a+2b=8,3a+4b=18,则a+b的值为.【知识考点】整式的加减;解二元一次方程组.【思路分析】直接利用已知解方程组进而得出答案.【解答过程】解:∵a+2b=8,3a+4b=18,则a=8﹣2b,代入3a+4b=18,解得:b=3,则a=2,故a+b=5.故答案为:5.【总结归纳】此题主要考查了解二元一次方程组,正确掌握解题方法是解题关键.15.“七巧板”是我们祖先的一项卓越创造,可以拼出许多有趣的图形,被誉为“东方魔板”.图①是由边长为10cm的正方形薄板分为7块制作成的“七巧板”,图②是用该“七巧板”拼成的一个“家”的图形.该“七巧板”中7块图形之一的正方形边长为cm(结果保留根号).【知识考点】七巧板.【思路分析】观察图形可知该“七巧板”中7块图形之一的正方形面积是大正方形面积的,先根据正方形面积公式求出大正方形面积,从而得到小正方形面积,进一步得到该“七巧板”中7块图形之一的正方形边长.【解答过程】解:10×10=100(cm2)=(cm)答:该“七巧板”中7块图形之一的正方形边长为cm.故答案为:.【总结归纳】考查了七巧板,关键是得到该“七巧板”中7块图形之一的正方形面积是大正方形面积的.16.如图,将一个棱长为3的正方体的表面涂上红色,再把它分割成棱长为1的小正方体,从中任取一个小正方体,则取得的小正方体恰有三个面涂有红色的概率为.【知识考点】概率公式.【思路分析】直接根据题意得出恰有三个面涂有红色的有8个,再利用概率公式求出答案.【解答过程】解:由题意可得:小立方体一共有27个,恰有三个面涂有红色的有8个,故取得的小正方体恰有三个面涂有红色的概率为:.故答案为:.【总结归纳】此题主要考查了概率公式的应用,正确得出三个面涂有红色小立方体的个数是解题关键.17.如图,扇形OAB中,∠AOB=90°.P为弧AB上的一点,过点P作PC⊥OA,垂足为C,PC 与AB交于点D.若PD=2,CD=1,则该扇形的半径长为.【知识考点】勾股定理;等腰直角三角形;圆的认识.【思路分析】连接OP,利用等腰三角形的性质可得出∠OAB=45°,结合PC⊥OA可得出△ACD 为等腰直角三角形,进而可得出AC=1,设该扇形的半径长为r,则OC=r﹣1,在Rt△POC中,利用勾股定理可得出关于r的方程,解之即可得出结论.【解答过程】解:连接OP,如图所示.∵OA=OB,∠AOB=90°,∴∠OAB=45°.∵PC⊥OA,∴△ACD为等腰直角三角形,∴AC=CD=1.设该扇形的半径长为r,则OC=r﹣1,在Rt△POC中,∠PCO=90°,PC=PD+CD=3,∴OP2=OC2+PC2,即r2=(r﹣1)2+9,解得:r=5.故答案为:5.【总结归纳】本题考查了勾股定理、等腰直角三角形以及圆的认识,利用勾股定理,找出关于扇形半径的方程是解题的关键.18.如图,一块含有45°角的直角三角板,外框的一条直角边长为8cm,三角板的外框线和与其平行的内框线之间的距离均为cm,则图中阴影部分的面积为cm2(结果保留根号).【知识考点】平行线之间的距离;等腰直角三角形;相似三角形的判定与性质.【思路分析】图中阴影部分的面积=外框大直角三角板的面积﹣内框小直角三角板的面积,根据等腰直角三角形的性质求出内框直角边长,再根据三角形面积公式计算即可求解.【解答过程】解:如图,EF=DG=CH=,∵含有45°角的直角三角板,∴BC=,GH=2,∴FG=8﹣﹣2﹣=6﹣2,∴图中阴影部分的面积为:8×8÷2﹣(6﹣2)×(6﹣2)÷2=32﹣22+12=10+12(cm2)答:图中阴影部分的面积为(10)cm2.故答案为:(10).【总结归纳】考查了等腰直角三角形,相似三角形的判定与性质,平行线之间的距离,关键是求出内框直角边长.三、解答题;本大题共10小题,共76分.解答时应写出必要的计算过程、推演步骤或文字说明.19.(5分)计算:()2+|﹣2|﹣(π﹣2)0【知识考点】实数的运算;零指数幂.【思路分析】直接利用绝对值的性质以及零指数幂的性质分别化简得出答案.【解答过程】解:原式=3+2﹣1=4.【总结归纳】此题主要考查了实数运算,正确化简各数是解题关键.20.(5分)解不等式组:【知识考点】解一元一次不等式组.【思路分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答过程】解:解不等式x+1<5,得:x<4,解不等式2(x+4)>3x+7,得:x<1,则不等式组的解集为x<1.【总结归纳】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.21.(6分)先化简,再求值:÷(1﹣),其中,x=﹣3.【知识考点】分式的化简求值.【思路分析】先根据分式的混合运算顺序和运算法则化简原式,再将x的值代入计算可得.【解答过程】解:原式=÷(﹣)=÷=•=,当x=﹣3时,原式===.【总结归纳】本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则.22.(6分)在一个不透明的盒子中装有4张卡片,4张卡片的正面分别标有数字1,2,3,4,这些卡片除数字外都相同,将卡片搅匀.(1)从盒子中任意抽取一张卡片,恰好抽到标有奇数卡片的概率是;(2)先从盒了中任意抽取一张卡片,再从余下的3张卡片中任意抽取一张卡片,求抽取的2张卡片标有数字之和大于4的概率.(请用画树状图或列表等方法求解).【知识考点】概率公式;列表法与树状图法.【思路分析】(1)直接利用概率公式计算可得;(2)用列表法将所有等可能的结果一一列举出来即可,找到符合条件的结果数,再利用概率公式计算.【解答过程】解:(1)从盒子中任意抽取一张卡片,恰好抽到标有奇数卡片的概率是为=,故答案为:.(2)根据题意列表得:1 2 3 41 3 4 52 3 5 63 4 5 74 5 6 7由表可知,共有12种等可能结果,其中抽取的2张卡片标有数字之和大于4的有8种结果,所以抽取的2张卡片标有数字之和大于4的概率为=.【总结归纳】本题考查列表法与树状图法,解答本题的关键是明确题意,画出相应的树状图或表格,求出相应的概率.23.(8分)某校计划组织学生参加“书法”、“摄影”、“航模、“围棋”四个课外兴趣小组,要求每人必须参加,并且只能选择其中一个小组,为了解学生对四个课外兴趣小组的选择情况,学校从全体学生中随机抽取部分学生进行问卷调查,并把调查结果制成如图所示的扇形统计图和条形统计图(部分信息未给出),请你根据给出的信息解答下列问题:(1)求参加这次问卷调查的学生人数,并补全条形统计图(画图后请标注相应的数据);(2)m=,n=;(3)若该校共有1200名学生,试估计该校选择“围棋”课外兴趣小组的学生有多少人?【知识考点】用样本估计总体;扇形统计图;条形统计图.【思路分析】(1)由书法小组人数及其对应百分比可得总人数,再根据各小组人数之和等于总人数求得航模人数,从而补全图形;(2)根据百分比的概念可得m、n的值;(3)总人数乘以样本中围棋的人数所占百分比.【解答过程】解:(1)参加这次问卷调查的学生人数为30÷20%=150(人),航模的人数为150﹣(30+54+24)=42(人),补全图形如下:(2)m%=×100%=36%,n%=×100%=16%,即m=36、n=16,故答案为:36、16;(3)估计该校选择“围棋”课外兴趣小组的学生有1200×16%=192(人).【总结归纳】本题考查了条形统计图和扇形统计图,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.24.(8分)如图,△ABC中,点E在BC边上,AE=AB,将线段AC绕A点旋转到AF的位置,使得∠CAF=∠BAE,连接EF,EF与AC交于点G.(1)求证:EF=BC;(2)若∠ABC=65°,∠ACB=28°,求∠FGC的度数.【知识考点】全等三角形的判定与性质;旋转的性质.【思路分析】(1)由旋转的性质可得AC=AF,利用SAS证明△ABC≌△AEF,根据全等三角形的对应边相等即可得出EF=BC;(2)根据等腰三角形的性质以及三角形内角和定理求出∠BAE=180°﹣65°×2=50°,那么∠FAG=50°.由△ABC≌△AEF,得出∠F=∠C=28°,再根据三角形外角的性质即可求出∠FGC=∠FAG+∠F=78°.【解答过程】(1)证明:∵∠CAF=∠BAE,∴∠BAC=∠EAF.∵将线段AC绕A点旋转到AF的位置,∴AC=AF.在△ABC与△AEF中,,∴△ABC≌△AEF(SAS),∴EF=BC;(2)解:∵AB=AE,∠ABC=65°,∴∠BAE=180°﹣65°×2=50°,∴∠FAG=∠BAE=50°.∵△ABC≌△AEF,∴∠F=∠C=28°,∴∠FGC=∠FAG+∠F=50°+28°=78°.【总结归纳】本题考查了旋转的性质,全等三角形的判定与性质,等腰三角形的性质,三角形内角和定理以及三角形外角的性质,证明△ABC≌△AEF是解题的关键.25.(8分)如图,A为反比例函数y=(其中x>0)图象上的一点,在x轴正半轴上有一点B,OB=4.连接OA,AB,且OA=AB=2.(1)求k的值;(2)过点B作BC⊥OB,交反比例函数y=(其中x>0)的图象于点C,连接OC交AB于点D,求的值.【知识考点】反比例函数图象上点的坐标特征;相似三角形的判定与性质.【思路分析】(1)过点A作AH⊥x轴,垂足为点H,AH交OC于点M,利用等腰三角形的性质可得出DH的长,利用勾股定理可得出AH的长,进而可得出点A的坐标,再利用反比例函数图象上点的坐标特征即可求出k值;(2)由OB的长,利用反比例函数图象上点的坐标特征可得出BC的长,利用三角形中位线定理可求出MH的长,进而可得出AM的长,由AM∥BC可得出△ADM∽△BDC,利用相似三角形的性质即可求出的值.【解答过程】解:(1)过点A作AH⊥x轴,垂足为点H,AH交OC于点M,如图所示.∵OA=AB,AH⊥OB,∴OH=BH=OB=2,∴AH==6,∴点A的坐标为(2,6).∵A为反比例函数y=图象上的一点,∴k=2×6=12.(2)∵BC⊥x轴,OB=4,点C在反比例函数y=上,∴BC==3.∵AH∥BC,OH=BH,∴MH=BC=,∴AM=AH﹣MH=.∵AM∥BC,∴△ADM∽△BDC,∴==.【总结归纳】本题考查了反比例函数图象上点的坐标特征、等腰三角形的性质、勾股定理以及相似三角形的判定与性质,解题的关键是:(1)利用等腰三角形的性质及勾股定理,求出点A的坐标;(2)利用相似三角形的性质求出的值.26.(10分)如图,AB为⊙O的直径,C为⊙O上一点,D是弧BC的中点,BC与AD、OD分别交于点E、F.(1)求证:DO∥AC;(2)求证:DE•DA=DC2;(3)若tan∠CAD=,求sin∠CDA的值.【知识考点】圆的综合题.【思路分析】(1)点D是中点,OD是圆的半径,又OD⊥BC,而AB是圆的直径,则∠ACB =90°,故:AC∥OD;(2)证明△DCE∽△DCA,即可求解;(3)=3,即△AEC和△DEF的相似比为3,设:EF=k,则CE=3k,BC=8k,tan∠CAD=,则AC=6k,AB=10k,即可求解.【解答过程】解:(1)∵点D是中点,OD是圆的半径,∴OD⊥BC,∵AB是圆的直径,∴∠ACB=90°,∴AC∥OD;(2)∵,∴∠CAD=∠DCB,∴△DCE∽△DCA,∴CD2=DE•DA;(3)∵tan∠CAD=,∴△DCE和△DAC的相似比为:,设:DE=a,则CD=2a,AD=4a,AE=3a,∴=3,即△AEC和△DEF的相似比为3,设:EF=k,则CE=3k,BC=8k,tan∠CAD=,∴AC=6k,AB=10k,∴sin∠CDA=.【总结归纳】本题为圆的综合运用题,涉及到三角形相似等知识点,本题的关键是通过相似比,确定线段的比例关系,进而求解.27.(10分)已知矩形ABCD中,AB=5cm,点P为对角线AC上的一点,且AP=2cm.如图①,动点M从点A出发,在矩形边上沿着A→B→C的方向匀速运动(不包含点C).设动点M的运动时间为t(s),△APM的面积为S(cm2),S与t的函数关系如图②所示.(1)直接写出动点M的运动速度为cm/s,BC的长度为cm;(2)如图③,动点M重新从点A出发,在矩形边上按原来的速度和方向匀速运动,同时,另一个动点N从点D出发,在矩形边上沿着D→C→B的方向匀速运动,设动点N的运动速度为v (cm/s).已知两动点M,N经过时间x(s)在线段BC上相遇(不包含点C),动点M,N相遇后立即同时停止运动,记此时△APM与△DPN的面积分别为S1(cm2),S2(cm2)①求动点N运动速度v(cm/s)的取值范围;②试探究S1•S2是否存在最大值,若存在,求出S1•S2的最大值并确定运动时间x的值;若不存在,请说明理由.【知识考点】四边形综合题.【思路分析】(1)由题意得t=2.5s时,函数图象发生改变,得出t=2.5s时,M运动到点B处,得出动点M的运动速度为:=2cm/s,由t=7.5s时,S=0,得出t=7.5s时,M运动到点C处,得出BC=10(cm);(2)①由题意得出当在点C相遇时,v==(cm/s),当在点B相遇时,v==6(cm/s),即可得出答案;②过P作EF⊥AB于F,交CD于E,则EF∥BC,由平行线得出=,得出AF=2,DE=AF=2,CE=BF=3,由勾股定理得出PF=4,得出EP=6,求出S1=S△APM=S△APF+S梯形PFBM ﹣S△ABM=﹣2x+15,S2=S△DPM=S△DEP+S梯形EPMC﹣S△DCM=2x,得出S1•S2=(﹣2x+15)×2x=﹣4x2+30x=﹣4(x﹣)2+,即可得出结果.【解答过程】解:(1)∵t=2.5s时,函数图象发生改变,∴t=2.5s时,M运动到点B处,∴动点M的运动速度为:=2cm/s,∵t=7.5s时,S=0,∴t=7.5s时,M运动到点C处,∴BC=(7.5﹣2.5)×2=10(cm),故答案为:2,10;(2)①∵两动点M,N在线段BC上相遇(不包含点C),∴当在点C相遇时,v==(cm/s),当在点B相遇时,v==6(cm/s),∴动点N运动速度v(cm/s)的取值范围为cm/s<v≤6cm/s;②过P作EF⊥AB于F,交CD于E,如图3所示:则EF∥BC,EF=BC=10,∴=,∵AC==5,∴=,解得:AF=2,∴DE=AF=2,CE=BF=3,PF==4,∴EP=EF﹣PF=6,∴S1=S△APM=S△APF+S梯形PFBM﹣S△ABM=×4×2+(4+2x﹣5)×3﹣×5×(2x﹣5)=﹣2x+15,S2=S△DPM=S△DEP+S梯形EPMC﹣S△DCM=×2×6+(6+15﹣2x)×3﹣×5×(15﹣2x)=2x,∴S1•S2=(﹣2x+15)×2x=﹣4x2+30x=﹣4(x﹣)2+,∵2.5<<7.5,在BC边上可取,∴当x=时,S1•S2的最大值为.【总结归纳】本题是四边形综合题目,考查了矩形的性质、函数的图象、三角形面积公式、梯形面积公式、平行线的性质、勾股定理等知识;本题综合性强,有一定难度,正确理解函数图象是解题的关键.28.(10分)如图①,抛物线y=﹣x2+(a+1)x﹣a与x轴交于A,B两点(点A位于点B的左侧),与y轴交于点C.已知△ABC的面积是6.(1)求a的值;(2)求△ABC外接圆圆心的坐标;(3)如图②,P是抛物线上一点,Q为射线CA上一点,且P、Q两点均在第三象限内,Q、A 是位于直线BP同侧的不同两点,若点P到x轴的距离为d,△QPB的面积为2d,且∠PAQ=∠AQB,求点Q的坐标.【知识考点】二次函数综合题.【思路分析】(1)由y=﹣x2+(a+1)x﹣a,令y=0,即﹣x2+(a+1)x﹣a=0,可求出A、B坐标结合三角形的面积,解出a=﹣3;(2)三角形外接圆圆心是三边垂直平分线的交点,求出两边垂直平分线,解交点可求出;(3)作PM⊥x轴,则=由可得A、Q到PB的距离相等,得到AQ∥PB,求出直线PB的解析式,以抛物线解析式联立得出点P坐标,由于△PBQ≌△ABP,可得PQ=AB=4,利用两点间距离公式,解出m值.【解答过程】解:(1)∵y=﹣x2+(a+1)x﹣a令y=0,即﹣x2+(a+1)x﹣a=0解得x1=a,x2=1由图象知:a<0∴A(a,0),B(1,0)∵s△ABC=6∴解得:a=﹣3,(a=4舍去)(2)设直线AC:y=kx+b,由A(﹣3,0),C(0,3),可得﹣3k+b=0,且b=3∴k=1即直线AC:y=x+3,A、C的中点D坐标为(﹣,)∴线段AC的垂直平分线解析式为:y=﹣x,线段AB的垂直平分线为x=﹣1代入y=﹣x,解得:y=1∴△ABC外接圆圆心的坐标(﹣1,1)(3)作PM⊥x轴,则=∵∴A、Q到PB的距离相等,∴AQ∥PB设直线PB解析式为:y=x+b∵直线经过点B(1,0)所以:直线PB的解析式为y=x﹣1联立解得:∴点P坐标为(﹣4,﹣5)又∵∠PAQ=∠AQB可得:△PBQ≌△ABP(AAS)∴PQ=AB=4设Q(m,m+3)由PQ=4得:解得:m=﹣4,m=﹣8(舍去)∴Q坐标为(﹣4,﹣1)【总结归纳】本题考查二次函数的综合应用,函数和几何图形的综合题目,抛物线和直线“曲直”联立解交点,利用三角形的全等和二次函数的性质把数与形有机的结合在一起,转化线段长求出结果.。

2019年江苏省苏州市中考数学试题(解析版)

2019年江苏省苏州市中考数学试题(解析版)

2019年苏州市初中毕业暨升学考试试卷数学本试卷由选择题、填空题和解答题三大题组成,共2小题,满分130分,考试时间120分钟,注意事项:1.答题前,考生务必将自己的姓名、考点名、考场号、座位号、用0.5毫米黑色墨水签字笔填写在答题卡相应位置上,并认真核对条形码上的准考号、姓名是否与本人的相符; 2.答选择题必须用2B 铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,请用橡皮擦干净后,再选涂其他答案;答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡指定的位置上,不在答题区域内的答案一律无效,不得用其他笔答;3.考生答题必须答在答题卡上,保持卡面清洁,不要折叠,不要弄破,答在试卷和草稿纸上一律无效。

一、选择题:本大题共10小题,每小题3分,共30分。

在每小题给出的四个选项中,只有一项是符合题要求的。

请将选择题的答案用2B 铅笔涂在答题卡相应位置上。

1.5的相反数是( )A .15B .15-C .5D .5-2.有一组数据:2,2,4,5,7这组数据的中位数为( ) A .2B .4C .5D .73.苏州是全国重点旅游城市,2018年实现旅游总收入约为26 000 000万元,数据26 000 000用科学记数法可表示为( ) A .80.2610⨯B .82.610⨯C .62610⨯D .72.610⨯4.如图,已知直线//a b ,直线c 与直线a b ,分别交于点A B ,.若154∠=o ,则2∠=( ) A .126oB .134oC .136oD .144o5.如图,AB 为O ⊙的切线,切点为A ,连接AO BO 、,BO 与O ⊙交于点C ,延长BOa与O ⊙交于点D ,连接AD ,若36ABO ∠=o ,则ADC ∠的度数为( )A .54oB .36oC .32oD .27o6.小明5元买售价相同的软面笔记本,小丽用24元买售价相同的硬面笔记本(两人的钱恰好用完),已知每本硬面笔记本比软面笔记本贵3元,且小明和小丽买到相同数量的笔记本,设软面笔记本每本售价为x 元,根据题意可列出的方程为( ) A .15243x x =+ B .15243x x =- C .15243x x=+ D .15243x x=- 7.若一次函数y kx b =+(k b 、为常数,且0k ≠)的图像经过点()01A -,,()11B ,,则不等式1kx b +>的解为( ) A .0x <B .0x >C .1x <D .1x >8.如图,小亮为了测量校园里教学楼AB 的高度,将测角仪CD 竖直放置在与教学楼水平距离为的地面上,若测角仪的高度为1.5m ,测得教学楼的顶部A 处的仰角为30o ,则教学楼的高度是( ) A .55.5mB .54mC .19.5mD .18m9.如图,菱形ABCD 的对角线AC ,BD 交于点O ,416AC BD ==,,将ABO V 沿点A 到点C 的方向平移,得到A B C '''V ,当点A '与点C 重合时,点A 与点B '之间的距离为( ) A .6B .8C .10D .12102AD AB ==,AD AB ⊥,过点D 作DE AD ⊥,DE 交AC 于点E ,若1DE =,则ABC V 的面积为( )DBCBA.B .4 C. D .8二、填空:本大题共8小题,每小题3分,共24分,把答案直接填在答题卡相应位置上。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019年江苏省苏州市中考数学试卷及答案解析一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题要求的.请将选择题的答案用2B 铅笔涂在答题卡相应位置上. 1.5的相反数是( ) A .15B .−15C .5D .﹣5解:5的相反数是﹣5. 故选:D .2.有一组数据:2,2,4,5,7,这组数据的中位数为( ) A .2B .4C .5D .7解:这组数据排列顺序为:2,2,4,5,7, ∴这组数据的中位数为4, 故选:B .3.苏州是全国重点旅游城市,2018年实现旅游总收入约为26000000万元,数据26000000用科学记数法可表示为( ) A .0.26×108B .2.6×108C .26×106D .2.6×107解:将26000000用科学记数法表示为:2.6×107. 故选:D .4.如图,已知直线a ∥b ,直线c 与直线a ,b 分别交于点A ,B .若∠1=54°,则∠2等于( )A .126°B .134°C .136°D .144°解:如图所示: ∵a ∥b ,∠1=54°, ∴∠1=∠3=54°,∴∠2=180°﹣54°=126°. 故选:A .5.如图,AB 为⊙O 的切线,切点为A ,连接AO 、BO ,BO 与⊙O 交于点C ,延长BO 与⊙O 交于点D ,连接AD .若∠ABO =36°,则∠ADC 的度数为( )A .54°B .36°C .32°D .27°解:∵AB 为⊙O 的切线, ∴∠OAB =90°, ∵∠ABO =36°,∴∠AOB =90°﹣∠ABO =54°, ∵OA =OD , ∴∠ADC =∠OAD , ∵∠AOB =∠ADC +∠OAD , ∴∠ADC =12∠AOB =27°; 故选:D .6.小明用15元买售价相同的软面笔记本,小丽用24元买售价相同的硬面笔记本(两人的钱恰好用完),已知每本硬面笔记本比软面笔记本贵3元,且小明和小丽买到相同数量的笔记本,设软面笔记本每本售价为x 元,根据题意可列出的方程为( ) A .15x=24x+3B .15x=24x−3C .15x+3=24xD .15x−3=24x解:设软面笔记本每本售价为x 元, 根据题意可列出的方程为:15x=24x+3.故选:A .7.若一次函数y =kx +b (k ,b 为常数,且k ≠0)的图象经过点A (0,﹣1),B (1,1),则不等式kx+b>1的解为()A.x<0B.x>0C.x<1D.x>1解:如图所示:不等式kx+b>1的解为:x>1.故选:D.8.如图,小亮为了测量校园里教学楼AB的高度,将测角仪CD竖直放置在与教学楼水平距离为18√3m的地面上,若测角仪的高度是1.5m.测得教学楼的顶部A处的仰角为30°.则教学楼的高度是()A.55.5m B.54m C.19.5m D.18m解:过D作DE⊥AB,∵在D处测得教学楼的顶部A的仰角为30°,∴∠ADE=30°,∵BC=DE=18√3m,∴AE=DE•tan30°=18m,∴AB=AE+BE=AE+CD=18+1.5=19.5m,故选:C.9.如图,菱形ABCD的对角线AC,BD交于点O,AC=4,BD=16,将△ABO沿点A到点C的方向平移,得到△A'B'O'.当点A'与点C重合时,点A与点B'之间的距离为()A.6B.8C.10D.12解:∵四边形ABCD是菱形,∴AC⊥BD,AO=OC=12AC=2,OB=OD=12BD=8,∵△ABO沿点A到点C的方向平移,得到△A'B'O',点A'与点C重合,∴O'C=OA=2,O'B'=OB=8,∠CO'B'=90°,∴AO'=AC+O'C=6,∴AB'=√O′B′2+AO′2=√82+62=10;故选:C.10.如图,在△ABC中,点D为BC边上的一点,且AD=AB=2,AD⊥AB.过点D作DE ⊥AD,DE交AC于点E.若DE=1,则△ABC的面积为()A.4√2B.4C.2√5D.8解:∵AB⊥AD,AD⊥DE,∴∠BAD=∠ADE=90°,∴DE∥AB,∴∠CED=∠CAB,∵∠C=∠C,∴△CED∽△CAB,∵DE=1,AB=2,即DE:AB=1:2,∴S△DEC:S△ACB=1:4,∴S四边形ABDE:S△ACB=3:4,∵S四边形ABDE=S△ABD+S△ADE=12×2×2+12×2×1=2+1=3,∴S△ACB=4,故选:B.二、填空题:本大题共8小题,每小题3分,共24分.把答案直接填在答题卡相应位置上.11.计算:a2•a3=a5.解:a2•a3=a2+3=a5.故答案为:a5.12.因式分解:x2﹣xy=x(x﹣y).解:x2﹣xy=x(x﹣y).故答案为:x(x﹣y).13.若√x−6在实数范围内有意义,则x的取值范围为x≥6.解:若√x−6在实数范围内有意义,则x﹣6≥0,解得:x≥6.故答案为:x≥6.14.若a+2b=8,3a+4b=18,则a+b的值为5.解:∵a+2b=8,3a+4b=18,则a=8﹣2b,代入3a+4b=18,解得:b=3,则a=2,故a+b=5.故答案为:5.15.“七巧板”是我们祖先的一项卓越创造,可以拼出许多有趣的图形,被誉为“东方魔板”.图①是由边长为10cm 的正方形薄板分为7块制作成的“七巧板”,图②是用该“七巧板”拼成的一个“家”的图形.该“七巧板”中7块图形之一的正方形边长为 5√22cm (结果保留根号).解:10×10=100(cm 2)√1008=5√22(cm ) 答:该“七巧板”中7块图形之一的正方形边长为5√22cm . 故答案为:5√22. 16.如图,将一个棱长为3的正方体的表面涂上红色,再把它分割成棱长为1的小正方体,从中任取一个小正方体,则取得的小正方体恰有三个面涂有红色的概率为827.解:由题意可得:小立方体一共有27个,恰有三个面涂有红色的有8个, 故取得的小正方体恰有三个面涂有红色的概率为:827.故答案为:827.17.如图,扇形OAB 中,∠AOB =90°.P 为弧AB 上的一点,过点P 作PC ⊥OA ,垂足为C ,PC 与AB 交于点D .若PD =2,CD =1,则该扇形的半径长为 5 .解:连接OP,如图所示.∵OA=OB,∠AOB=90°,∴∠OAB=45°.∵PC⊥OA,∴△ACD为等腰直角三角形,∴AC=CD=1.设该扇形的半径长为r,则OC=r﹣1,在Rt△POC中,∠PCO=90°,PC=PD+CD=3,∴OP2=OC2+PC2,即r2=(r﹣1)2+9,解得:r=5.故答案为:5.18.如图,一块含有45°角的直角三角板,外框的一条直角边长为8cm,三角板的外框线和与其平行的内框线之间的距离均为√2cm,则图中阴影部分的面积为(10+12√2)cm2(结果保留根号).解:如图,EF=DG=CH=√2,∵含有45°角的直角三角板,∴BC=√2,GH=2,∴FG=8−√2−2−√2=6﹣2√2,∴图中阴影部分的面积为:8×8÷2﹣(6﹣2√2)×(6﹣2√2)÷2=32﹣22+12√2=10+12√2(cm2)答:图中阴影部分的面积为(10+12√2)cm2.故答案为:(10+12√2).三、解答题;本大题共10小题,共76分.把解答过程写答题卡相应位置上,解答时应写出必要的计算过程、推演步骤或文字说明,作图时用2B铅笔或黑色墨水签宇笔.19.(5分)计算:(√3)2+|﹣2|﹣(π﹣2)0解:原式=3+2﹣1=4.20.(5分)解不等式组:{x+1<52(x+4)>3x+7解:解不等式x+1<5,得:x<4,解不等式2(x+4)>3x+7,得:x<1,则不等式组的解集为x<1.21.(6分)先化简,再求值:x−3x2+6x+9÷(1−6x+3),其中,x=√2−3.解:原式=x−3(x+3)2÷(x+3x+3−6x+3)=x−3 (x+3)2÷x−3 x+3=x−3 (x+3)2•x+3 x−3=1x+3,当x=√2−3时,原式=2−3+3=2=√22.22.(6分)在一个不透明的盒子中装有4张卡片,4张卡片的正面分别标有数字1,2,3,4,这些卡片除数字外都相同,将卡片搅匀.(1)从盒子中任意抽取一张卡片,恰好抽到标有奇数卡片的概率是12;(2)先从盒了中任意抽取一张卡片,再从余下的3张卡片中任意抽取一张卡片,求抽取的2张卡片标有数字之和大于4的概率.(请用画树状图或列表等方法求解). 解:(1)从盒子中任意抽取一张卡片,恰好抽到标有奇数卡片的概率是为24=12,故答案为:12.(2)根据题意列表得:1 2 3 4 1 3 4 5 2 3 5 6 3 4 5 7 4567由表可知,共有12种等可能结果,其中抽取的2张卡片标有数字之和大于4的有8种结果,所以抽取的2张卡片标有数字之和大于4的概率为812=23.23.(8分)某校计划组织学生参加“书法”、“摄影”、“航模、“围棋”四个课外兴趣小组,要求每人必须参加,并且只能选择其中一个小组,为了解学生对四个课外兴趣小组的选择情况,学校从全体学生中随机抽取部分学生进行问卷调查,并把调查结果制成如图所示的扇形统计图和条形统计图(部分信息未给出),请你根据给出的信息解答下列问题: (1)求参加这次问卷调查的学生人数,并补全条形统计图(画图后请标注相应的数据); (2)m = 36 ,n = 16 ;(3)若该校共有1200名学生,试估计该校选择“围棋”课外兴趣小组的学生有多少人?解:(1)参加这次问卷调查的学生人数为30÷20%=150(人),航模的人数为150﹣(30+54+24)=42(人),补全图形如下:(2)m%=54150×100%=36%,n%=24150×100%=16%,即m=36、n=16,故答案为:36、16;(3)估计该校选择“围棋”课外兴趣小组的学生有1200×16%=192(人).24.(8分)如图,△ABC中,点E在BC边上,AE=AB,将线段AC绕A点旋转到AF的位置,使得∠CAF=∠BAE,连接EF,EF与AC交于点G.(1)求证:EF=BC;(2)若∠ABC=65°,∠ACB=28°,求∠FGC的度数.(1)证明:∵∠CAF =∠BAE ,∴∠BAC =∠EAF .∵将线段AC 绕A 点旋转到AF 的位置,∴AC =AF .在△ABC 与△AEF 中,{AB =AE ∠BAC =∠EAF AC =AF,∴△ABC ≌△AEF (SAS ),∴EF =BC ;(2)解:∵AB =AE ,∠ABC =65°,∴∠BAE =180°﹣65°×2=50°,∴∠F AG =∠BAE =50°.∵△ABC ≌△AEF ,∴∠F =∠C =28°,∴∠FGC =∠F AG +∠F =50°+28°=78°.25.(8分)如图,A 为反比例函数y =k x (其中x >0)图象上的一点,在x 轴正半轴上有一点B ,OB =4.连接OA ,AB ,且OA =AB =2√10.(1)求k 的值;(2)过点B 作BC ⊥OB ,交反比例函数y =k x (其中x >0)的图象于点C ,连接OC 交AB 于点D ,求AD DB 的值.解:(1)过点A 作AH ⊥x 轴,垂足为点H ,AH 交OC 于点M ,如图所示.∵OA =AB ,AH ⊥OB ,∴OH =BH =12OB =2,∴AH =√OA 2−OH 2=6,∴点A 的坐标为(2,6).∵A 为反比例函数y =k x 图象上的一点,∴k =2×6=12.(2)∵BC ⊥x 轴,OB =4,点C 在反比例函数y =12x 上, ∴BC =k OB =3.∵AH ∥BC ,OH =BH ,∴MH =12BC =32,∴AM =AH ﹣MH =92.∵AM ∥BC ,∴△ADM ∽△BDC ,∴AD DB =AM BC =32.26.(10分)如图,AB 为⊙O 的直径,C 为⊙O 上一点,D 是弧BC 的中点,BC 与AD 、OD 分别交于点E 、F .(1)求证:DO ∥AC ;(2)求证:DE •DA =DC 2;(3)若tan ∠CAD =12,求sin ∠CDA 的值.解:(1)因为点D是弧BC的中点,所以∠CAD=∠BAD,即∠CAB=2∠BAD,而∠BOD=2∠BAD,所以∠CAB=∠BOD,所以DO∥AC;(2)∵CD̂=BD̂,∴∠CAD=∠DCB,∴△DCE∽△DAC,∴CD2=DE•DA;(3)∵tan∠CAD=12,连接BD,则BD=CD,∠DBC=∠CAD,在Rt△BDE中,tan∠DBE=DEBD=DECD=12,设:DE=a,则CD=2a,而CD2=DE•DA,则AD=4a,∴AE=3a,∴AEDE=3,而△AEC∽△DEF,即△AEC和△DEF的相似比为3,设:EF=k,则CE=3k,BC=8k,tan∠CAD=1 2,∴AC=6k,AB=10k,∴sin∠CDA=3 5.27.(10分)已知矩形ABCD中,AB=5cm,点P为对角线AC上的一点,且AP=2√5cm.如图①,动点M从点A出发,在矩形边上沿着A→B→C的方向匀速运动(不包含点C).设动点M的运动时间为t(s),△APM的面积为S(cm2),S与t的函数关系如图②所示.(1)直接写出动点M的运动速度为2cm/s,BC的长度为10cm;(2)如图③,动点M重新从点A出发,在矩形边上按原来的速度和方向匀速运动,同时,另一个动点N从点D出发,在矩形边上沿着D→C→B的方向匀速运动,设动点N 的运动速度为v(cm/s).已知两动点M,N经过时间x(s)在线段BC上相遇(不包含点C),动点M,N相遇后立即同时停止运动,记此时△APM与△DPN的面积分别为S1(cm2),S2(cm2)①求动点N运动速度v(cm/s)的取值范围;②试探究S1•S2是否存在最大值,若存在,求出S1•S2的最大值并确定运动时间x的值;若不存在,请说明理由.解:(1)∵t=2.5s时,函数图象发生改变,∴t=2.5s时,M运动到点B处,∴动点M的运动速度为:52.5=2cm/s,∵t=7.5s时,S=0,∴t=7.5s时,M运动到点C处,∴BC=(7.5﹣2.5)×2=10(cm),故答案为:2,10;(2)①∵两动点M,N在线段BC上相遇(不包含点C),∴当在点C相遇时,v=57.5=23(cm/s),当在点B 相遇时,v =5+102.5=6(cm /s ), ∴动点N 运动速度v (cm /s )的取值范围为23cm /s <v ≤6cm /s ;②过P 作EF ⊥AB 于F ,交CD 于E ,如图3所示:则EF ∥BC ,EF =BC =10,∴AF AB =AP AC ,∵AC =√AB 2+BC 2=5√5,∴AF 5=√55√5, 解得:AF =2,∴DE =AF =2,CE =BF =3,PF =√AP 2−AF 2=4,∴EP =EF ﹣PF =6,∴S 1=S △APM =S △APF +S梯形PFBM ﹣S △ABM =12×4×2+12(4+2x ﹣5)×3−12×5×(2x ﹣5)=﹣2x +15,S 2=S △DPM =S △DEP +S 梯形EPMC ﹣S △DCM =12×2×6+12(6+15﹣2x )×3−12×5×(15﹣2x )=2x ,∴S 1•S 2=(﹣2x +15)×2x =﹣4x 2+30x =﹣4(x −154)2+2254,∵2.5<154<7.5,在BC 边上可取,∴当x =154时,S 1•S 2的最大值为2254.28.(10分)如图①,抛物线y =﹣x 2+(a +1)x ﹣a 与x 轴交于A ,B 两点(点A 位于点B的左侧),与y 轴交于点C .已知△ABC 的面积是6.(1)求a 的值;(2)求△ABC 外接圆圆心的坐标;(3)如图②,P 是抛物线上一点,Q 为射线CA 上一点,且P 、Q 两点均在第三象限内,Q 、A 是位于直线BP 同侧的不同两点,若点P 到x 轴的距离为d ,△QPB 的面积为2d ,且∠P AQ =∠AQB ,求点Q 的坐标.解:(1)∵y =﹣x 2+(a +1)x ﹣a令y =0,即﹣x 2+(a +1)x ﹣a =0解得x 1=a ,x 2=1由图象知:a <0∴A (a ,0),B (1,0)∵S △ABC =6∴12(1−a)(−a)=6 解得:a =﹣3,(a =4舍去)(2)∵A (﹣3,0),C (0,3),∴OA =OC ,∴线段AC 的垂直平分线过原点,∴线段AC 的垂直平分线解析式为:y =﹣x ,∵由A (﹣3,0),B (1,0),∴线段AB 的垂直平分线为x =﹣1将x =﹣1代入y =﹣x ,解得:y =1∴△ABC 外接圆圆心的坐标(﹣1,1)(3)作PM ⊥x 轴交x 轴于M ,则S △BAP =12AB •PM =12×4d ∵S △PQB =S △P AB∴A 、Q 到PB 的距离相等,∴AQ ∥PB设直线PB 解析式为:y =x +b∵直线经过点B (1,0)所以:直线PB 的解析式为y =x ﹣1联立{y =−x 2−2x +3y =x −1解得:{x =−4y =−5∴点P 坐标为(﹣4,﹣5)又∵∠P AQ =∠AQB ,∴∠BP A =∠PBQ ,∴AP =QB ,在△PBQ 与△BP A 中,{AP =QB ∠BPA =∠PBQ PB =BP,∴△PBQ ≌△ABP (SAS ),∴PQ =AB =4设Q (m ,m +3)由PQ =4得:(m +4)2+(m +3+5)2=42 解得:m =﹣4,m =﹣8(当m =﹣8时,∠P AQ ≠∠AQB ,故应舍去) ∴Q 坐标为(﹣4,﹣1)。

相关文档
最新文档