扫描探针显微镜(scanning

合集下载

第10章 扫描探针显微镜

第10章 扫描探针显微镜

STM工作原理说明 STM工作原理说明
• 对于如此微小的扫描移动和精确的距离控制, 对于如此微小的扫描移动和精确的距离控制, STM的实现方法 依靠压电陶瓷。压电陶瓷是一种 STM的实现方法—依靠压电陶瓷。 的实现方法 依靠压电陶瓷 性能奇特的材料, 性能奇特的材料,当在压电陶瓷对称的两个端面加上 电压时,压电陶瓷会按特定的方向伸长或缩短。 电压时,压电陶瓷会按特定的方向伸长或缩短。而伸 长或缩短的尺寸与所加的电压的大小呈线形关系。 长或缩短的尺寸与所加的电压的大小呈线形关系。既 可以通过改变电压来控制压电陶瓷的微小伸缩。 可以通过改变电压来控制压电陶瓷的微小伸缩。把三 个分别代表X,Y,Z方向的压电陶瓷块组成三角架的 个分别代表X 形状。通过控制X 形状。通过控制X,Y方向伸缩达到驱动探针在样品 表面扫描的目的; 表面扫描的目的;通过控制 Z 方向压电陶瓷的伸缩 达到控制探针与样品之间距离的目的。 达到控制探针与样品之间距离的目的。
扫描探针显微镜家族成员
显微镜名称 扫描隧道顕微鏡 STM:Scanning Tunneling Microscopy 原子力顕微鏡 AFM:Atomic Force Microscopy 近接場光学顕微鏡 NSOM:Near-field Scanning Optical Microscopy 磁力顕微鏡 MFM:Magnetic Force Microscopy 摩擦力顕微鏡 FFM:Friction Force Microscopy 检测的物理量 隧道电流 原子力 近接場光 磁力 摩擦力
STM工作原理说明 STM工作原理说明
• STM探针的尖端是非常尖锐的,通常 STM探针的尖端是非常尖锐的 探针的尖端是非常尖锐的, 只有一两个原子。 只有一两个原子。因为只有原子级锐度的 针尖才能得到原子级分辨率的图象, 针尖才能得到原子级分辨率的图象,STM 探针通常是用电化学的方法制作的。 探针通常是用电化学的方法制作的。也有 人用剪切的简单方法得到尖锐的针尖。 人用剪切的简单方法得到尖锐的针尖。

SPM(扫描式探针显微镜)一般用语

SPM(扫描式探针显微镜)一般用语

SPM(扫描式探针显微镜)一般用语●SPM(扫描式探针显微镜;Scanning Probe Microscope)于试料表面以微小探针扫描,探针与试料间相互作用的物理量(穿隧电流、原子间力、摩擦力、磁力力等)检测,对于微小领域的表面形状检测及物性分析等行为的总称。

主要代表SPM 的有STM(扫描式穿隧电流显微镜)、AFM(原子力显微镜)等。

●STM(扫描式穿隧电流显微镜;Scanning Tunneling Microscope)使用导电性探针与试料间微小电流的利用,对探针与试料间的距离扫描控制,以分析试料表面形状,获得原子级图像的SPM。

使用测定试料必须为导电性材质。

●AFM(原子力显微镜;Atomic Force Microscope)于挠性微悬臂先端的探针与试料表面微小作用力的接触,控制微悬臂的受力值,对探针与试料间的距离扫描控制,以分析试料表面形状,获得原子级图像的SPM 表面形状。

另外可区分为接触式(DC mode) 与非接触式(AC mode) 二种类型的AFM。

使用测定试料可为导电性材质或绝缘体,亦可探测试料表面物性(摩擦力粘弹性表面电位等)的应用。

●LFM(侧向摩擦力显微术;Lateral Force Microscopy)接触式AFM 模式下可探测试料的摩擦力分布,LFM 属于SPM 的探测方式之一。

针对试料的Y 轴方向侧振动,此时探针连杆产生的扭转角度讯号可求得摩擦力分布的图像。

试料面的凹凸对连杆扭曲的形状影响较小。

●FFM(摩擦力显微术;Friction Force Microscopy)接触式AFM 模式下可探测试料的摩擦力分布,FFM 属于SPM 的探测方式之一。

主要根据探针连杆扭转方向变化(扭转角度范围的设定值为-90°至90°),此时产生的扭转角度讯号(FFM讯号) 可求得摩擦力分布的图像。

主要应用于无法试料表面形状判别的材质性问题,如参杂物分布的状况调查。

扫描隧道显微镜的工作原理与应用

扫描隧道显微镜的工作原理与应用

扫描隧道显微镜的工作原理与应用扫描隧道显微镜(Scanning Tunneling Microscope,简称STM)是一种利用量子隧穿效应的高分辨率显微镜。

它采用的是一根极细的金属探头和样品之间的隧穿电流来获取样品表面的信息。

STM具有非常高的分辨率,能够在原子尺度下的样品表面进行观测和操纵,因此在材料科学、表面物理、纳米技术等领域有着广泛的应用。

一、工作原理STM的工作基于量子力学中的隧穿效应。

隧穿效应是一种粒子从一个区域超越到另一个区域的现象。

在STM中,金属探头和样品之间形成一个电势差,并使用一个反馈电路来保持电流恒定。

隧穿电流是通过探头和样品之间的隧穿效应产生的。

探头与样品之间的距离非常小,约为几个纳米,隧穿电流的大小取决于两者之间的距离。

当探头在样品表面上移动时,由于样品表面具有不同的高度和电性特征,因此隧穿电流的大小也会发生变化。

这种变化通过反馈电路测量并转换为高度和电性的信息,然后通过计算机处理并呈现出来。

样品表面的信息在计算机中显示为一个图像。

二、应用A.材料科学STM被广泛应用于材料科学领域,如表征材料表面和分析材料电子结构等。

在纳米材料研究中,STM可以检测材料中的特定原子和分子,并且可以通过组装单个原子或分子来设计新的材料。

B.表面物理STM是表面物理学中非常有用的工具。

它可以研究各种表面效应,例如表面扭转、重排和易于惯性传输的晶格振动模式。

此外,STM还可以用于表面缺陷和缺失等杂质的检测和定位。

C.纳米技术STM在纳米技术领域具有广泛应用。

纳米材料、纳米结构的制备和表征在纳米技术领域是非常重要的。

通过STM可以定量地观察单个原子和分子,这对于设计和制备纳米材料和纳米器件非常有帮助。

D.生物学STM可以在原子和分子的尺度上进行生物学实验。

在生物领域,STM可用于研究DNA分子的结构和功能,以及在膜结构中的蛋白质微区域中检测生物分子等。

E.电子学STM还可以用作电子学中的电极,例如调制电流分布、表征器件中的界面和自旋极化等方法。

扫描探针显微镜spm、afm

扫描探针显微镜spm、afm

扫描探针显微镜(scanning probe microscope,SPM) 一、 设备简介:该仪器集成原子力显微镜(AFM)、摩擦力显微镜(LFM)、扫描隧道显微镜(STM)、磁力显微镜(MFM)和静电力显微镜(EFM) 于一体,具有接触、轻敲、相移成像、抬起等多种工作模式,能够提供全部的原子力显微镜 (AFM) 和扫描隧道 (STM) 显微镜成像技术,可以测量样品的表面特性,如形貌、粘弹性、摩擦力、吸附力和磁/电场分布等等。

●分辨率原子力显微镜(AFM):横向 0.26nm, 垂直 1nm(以云母晶体标定) 扫描隧道显微镜(STM):横向 0.13nm, 垂直 0.1nm(以石墨晶体标定)●机械性能样品尺寸:最大可达直径12mm,厚度8mm扫描范围:125X125μm,垂向1μm●型号:Veeco NanoScope MultiMode扫描探针显微镜本次培训着重介绍该设备常用模式:Contact Mode AFM二、AFM独特的优点归纳如下:(l)具有原子级的超高分辨率。

理论横向分辨率可达0.1nm,而纵向分辨率更高达0.01nm。

,从而可获得物质表面的原子晶格图像。

(2)可实时获得样品表面的实空间三维图像。

既适用于具有周期性结构的表面,又适用于非周期性表面结构的检测。

(3)可以观察到单个原子层的局部表面性质。

直接检测表面缺陷、表面重构、表面吸附形态和位置。

2012is coming(4)可在真空、大气、常温、常压等条件下工作,甚至可将样品浸在液体中,不需要特殊的样品制备技术。

三、AFM的基本原理:AFM基于微探针与样品之间的原子力作用机制。

以带有金字塔形微探针的“V”字形微悬臂(Cantilever)代替STM的针尖,当微探针在z向逼近样品表面时,探针针尖的原子与样品原子之间将产生一定的作用力,即原子力,原子力的大小约在10-8~10-12N之间。

与隧道电流类似,原子力的大小与探针一样品间距成一定的对应关系,这种关系可以由原子力曲线来表征一般而言,当探针充分逼近样品进入原子力状态时,如两者间距相对较远,总体表现为吸引力;当两者相当接近时,则总体表现为排斥力。

扫描探针显微镜原理

扫描探针显微镜原理

扫描探针显微镜原理扫描探针显微镜(Scanning Probe Microscope,SPM)是一种通过扫描探测器表面的探针来获取样品表面形貌和性质的显微镜。

它的工作原理基于根据样品表面的形貌变化,通过探测器与样品表面之间的相互作用力测量来获得显微图像。

在扫描探针显微镜中,探测器通过一系列控制机构移动并探测样品表面的特征。

其中最常使用的探测器是探针,它通常是由纳米尺寸的针状探头构成,例如扫描电子显微镜中的原子力显微镜(Atomic Force Microscopy,AFM)和扫描隧道显微镜(Scanning Tunneling Microscopy,STM)。

在AFM中,探针通过控制探测器的位置,使得探针与样品表面保持一定的距离,并通过弹性变形或电力作用测量样品表面与探针之间的相互作用力。

这个相互作用力的变化可以通过探测器的位置和力传感器来测量,从而得到样品表面形貌的信息。

通过扫描探针与样品表面的相对运动,可以逐点测量并构建出样品表面的三维形貌图像。

在STM中,探针与样品之间的相互作用力主要是电荷之间的库仑作用力。

当探针和样品表面之间存在一定的电压差时,电子会通过隧道效应穿过探针与样品之间的空隙,形成隧道电流。

根据隧道电流的强度,可以推断出样品表面的形貌信息。

通过调整电压和探针的位置,可以扫描整个样品表面,并获得高分辨率的原子级图像。

与传统的光学显微镜相比,扫描探针显微镜具有更高的分辨率和更强的表面灵敏度。

它不依赖于样品的透明性或反射性,可以用于观察各种类型的样品,包括生物样品、纳米材料和表面结构复杂的材料等。

因此,扫描探针显微镜在材料科学、生物学和纳米技术等领域具有广泛的应用前景。

扫描探针显微镜成像原理

扫描探针显微镜成像原理

扫描探针显微镜成像原理扫描探针显微镜(Scanning Probe Microscopy, SPM)是一种高分辨率的表面分析和制备技术,目前已经成为材料科学、物理学、化学、生物学等领域中不可或缺的工具。

其主要原理是利用探针在样品表面进行扫描,并通过感知器测量样品表面力、电流、电压等信号,以获得样品表面形貌、电荷分布、力和磁性等物理数据,从而实现对样品表面微观结构的观测和操纵。

SPM技术主要分为场发射扫描电子显微镜(Field Emission Scanning Electron Microscopy, FESEM)和扫描探针显微镜两大类。

扫描探针显微镜包括了原子力显微镜(Atomic Force Microscopy, AFM)、磁力显微镜(Magnetic Force Microscopy, MFM)、静电力显微镜(Kelvin Probe Force Microscopy, KPFM)和电荷注入记录显微镜(Scanning Capacitance Microscopy, SCM)等多种类型。

本文将主要介绍原子力显微镜的成像原理。

原子力显微镜(AFM)是20世纪80年代初期发明的一种新型扫描探针显微镜。

它采用的是一种机械测量方法,利用管壳、针、针尖等传感器进行扫描,对样品表面进行接触式的探测,可以实现纳米级别的表面形貌检测和测量。

AFM显微镜主要由扫描机构、探针和控制系统组成。

扫描机构控制扫描探针在样品表面进行扫描,探针则负责探测样品表面的形态变化和材料力学性质。

控制系统则通过信号采集与处理,将探针扫描时所接收到的信号转换成图像。

探针是AFM图像获得的关键之一。

探针直接接触样品表面,测量样品表面形貌的方法是通过探针尖端与样品表面的相互作用来实现的。

探针通常是由硅或氮化硅材料制成,尖端则是采用电子束刻蚀、化学腐蚀、电解腐蚀或氙气离子束刻蚀的方法来加工制作。

当探针尖端接触到样品表面时,由于原子间作用力的存在,会产生相互作用力的变化。

扫描探针显微镜

扫描探针显微镜

为了抑制低频振动,需要另外的悬簧。
(3) 冲气平台:通常用做光学工作台,典型 的固有频率为1—1.2Hz。对大于10Hz的 振动传递函数可达到0.1。

某些系统提供有效的振动隔离仅限于垂 直方向,也有对水平方向同样有效的气 动平台。 缺点:体积庞大,相当笨重,

1.2.2 机械系统 STM的机械系统应满足STM扫描及调 整针尖与样品距离等操作的要求。 例如: ① 在x和y方向上的扫描范围至少为 1µ m×1µ m,也可以根据使用者的要求选 择更大的使用范围10µ m×10µ m。 控制精度应达到0.1Å左右。
② 恒高模式: 探针在样品表面扫描时,使探针的 绝对高度不变,这时探针与样品表面的 相对距离就会改变,即隧道电流会改变, 通过测量电流的变化来反映样品表面的 高低起伏。这种扫描模式叫恒高模式。 (见图2.2(b)


恒电流模式是STM常用的工作模式,而恒 高模式仅适用于对起伏不大的表面进行 成像。 当样品表面起伏较大时,由于针尖离表 面非常近,采用恒高模式扫描可能造成 针尖与样品表面相撞,导致针尖与样品 表面破坏。

隧道电流的强度与针尖和样品间距S成指 数关系,对间距S的变化非常敏感,STM 就是利用这一原理来工作的。

它的工作模式有两种:
恒高模式 恒流模式

① 恒流模式: 探针在样品表面扫描时,通过反馈 回路控制隧道电流恒定不变,即探针与 样品表面相对距离保持恒定,这时探针 沿xy平面内扫描时在z轴方向的运动就反 映了样品表面的高低起伏,这种扫描模 式叫恒流模式。 见图2.2(a)
1.4 STM的应用: ①表面结构观测 STM是研究表面原子结构强有力的 工具,尽管有些时候并不能将STM图像 的结构细节简单地归结为原子的空间排 布情况,但人们利用STM可解决许多表 面科学问题。 例如:Si(111)表面的7×7重构结构。

利用扫描探针显微镜研究材料表面

利用扫描探针显微镜研究材料表面

利用扫描探针显微镜研究材料表面随着科技的不断进步,材料表面的研究变得愈发重要。

在材料科学中,材料表面的特性对于材料的性能、功能以及应用可能起着决定性的作用。

为了更好地理解材料表面的性质,人们使用了各种各样的技术,其中一种便是扫描探针显微镜。

扫描探针显微镜(Scanning Probe Microscopy,SPM)是一种基于扫描探针的显微技术,通过探测器与样品之间的相互作用来研究材料表面的形态、结构以及性质。

这种技术具有高分辨率、高灵敏度和非破坏性等特点,能够在纳米尺度下观察和测量材料表面的微观结构和性质。

其中一种常见的扫描探针显微镜是原子力显微镜(Atomic Force Microscope,AFM)。

通过探针的尖端与样品表面的相互作用力,AFM能够绘制出材料表面的拓扑图像。

AFM可以实现高分辨率的表面测量,其分辨率可以达到纳米甚至次纳米级。

AFM的工作原理基于探针的尖端与样品表面之间的相互作用力。

探针的尖端通过弹性力与样品表面保持接触,并且在扫描过程中受到表面特征的影响。

通过感应探针尖端的弯曲变化,可以获取关于样品表面形貌以及力学性质等信息。

除了原子力显微镜,扫描探针显微镜还包括场发射显微镜(Field Emission Microscope,FEM)和电子探针显微镜(Electron Probe Microscope,EPM)等。

这些显微镜在不同的研究领域中发挥着重要的作用。

利用扫描探针显微镜进行材料表面研究可以帮助我们深入了解材料的结构和性质。

例如,通过观察材料表面的拓扑图像,可以分析材料的表面形状、纹理以及粗糙度等特征。

这对于材料的制备和性能的改善非常重要。

此外,扫描探针显微镜还可以用于研究材料表面的化学性质。

通过结合特定的化学探针,可以实现对材料表面化学组成和反应的表征。

这有助于我们了解材料的化学性质,并且为材料的应用提供参考。

扫描探针显微镜在材料科学领域的应用非常广泛。

它可以应用在金属、陶瓷、半导体、生物材料等各种类型的材料中。

扫描探针显微镜

扫描探针显微镜

T与势垒宽度a、能量差(V0-E)以及粒子的质量
m有着很敏感的依赖关系,随着a的增加,T将指数 衰减,因此在宏观实验中,很难观察到粒子隧穿势
垒的现象。
(2)隧道电流
扫描隧道显微镜是将原子线度的探针和样品表 面作为两个电极,当样品和针尖的距离非常接近时 (通常小于1nm),在外加电场的作用下,电子会 穿过两电极之间的势垒流向另一电极,从而形成隧 道电流。因此,STM图像是样品表面原子几何结构 和电子结构的综合效应的结果。
控制探针在被检测样品的表面进行扫描,同时记录下 扫描过程中探针尖端和样品表面的相互作用,就能得到 样品表面的相关信息。
利用这种方法得到被测样品表面信息的分辨率取决于 控制扫描的定位精度和探针作用尖端的大小(即探针的 尖锐度)。
SPM的特点
原子级高分辨率 ; 实空间中表面的三维图像 ; 观察单个原子层的局部表面结构 ; 可在真空、大气、常温等不同环境下工作; 可以得到有关表面结构的信息,例如表面不同
使人类第一次能够实时地观察单个原子在物质 表面的排列状态和与表面电子行为有关的物理、 化学性质。
在表面科学、材料科学、生命科学等领域的研 究中有着重大的意义和广阔的前景,被国际科 学界公认为二十世纪八十年代世界十大科技成 就之一。
Gerd Binning (IBM) (1947-)
Heinrich Rohrer (Zurich) (1933-)
In Touch with Atoms
In Touch with Atoms
美国商用机 器公司利用STM 直接操作原子, 成功地在Ni上, 按自己的意志安 排原子合成IBM 字样。
STM的优点
1. 高分辨率,分辨率横向0.1nm、纵向0.01nm; 2. 可实时地得到在实空间中表面的三维图象; 3. 可观察单个原子层的局部表面结构; 4. 可在真空、大气等不同环境下工作,甚至可将样品浸在

什么是扫描隧道显微镜

什么是扫描隧道显微镜

什么是扫描隧道显微镜
扫描隧道显微镜(Scanning Tunneling Microscope,缩写为STM)是一种扫描探针显微术工具,它可以让科学家观察和定位单个原子,具有比同类原子力显微镜更高的分辨率。

STM在低温下(4K)可以利用探针尖端精确操纵原子,因此它在纳米科技既是重要的测量工具又是加工工具。

扫描隧道显微镜利用量子力学中的隧道效应,当扫描针尖在样品表面上方沿z轴来回扫描时,由于针尖和样品之间的距离非常近,使得针尖和样品之间产生隧道效应,从而获得表面形貌的微细结构信息。

扫描隧道显微镜具有原子级(埃级)的空间分辨率和优于500飞秒的时间分辨率,成为国内首套自主研制的太赫兹扫描隧道显微镜系统。

STM在原子级扫描、材料表面探伤及修补、引导微观化学反应、控制原子排列等领域广泛应用。

如需了解更多有关扫描隧道显微镜的信息,可以查阅相关的专业文献,或者咨询相关领域的专家学者。

扫描探针显微镜工作原理

扫描探针显微镜工作原理

扫描探针显微镜工作原理
扫描探针显微镜(Scanning Probe Microscope,SPM)是一种
高分辨率显微镜,能够实现对物质表面的原子级别成像。

其工作原理基于显微针(probe)的扫描和相互作用力的测量。

1. 探针的制备:显微针一般是由导电材料制成,如金属或半导体材料。

常用的探针形状包括尖锐的金字塔、圆锥或纳米线等。

2. 扫描:探针通过微机械控制精确地扫描物体表面。

扫描方式一般有两种:原子力显微镜(Atomic Force Microscopy,AFM)和隧道电子显微镜(Scanning Tunneling Microscopy,STM)。

3. 相互作用力测量:
- AFM:探针尖端与样品表面之间的相互作用力会改变探针
的弯曲度或振动频率,并通过探针弹性常数和振幅的变化来测量相互作用力。

常用的工作模式有接触模式、非接触模式和谐振模式。

- STM:通过将探针靠近样品表面,利用隧道效应中的电子
隧道电流来实现相互作用力测量。

由于隧道电流强依赖于针尖与样品之间的距离,通过测量电流变化可以获得样品表面的几何拓扑图像。

4. 数据处理和成像:根据探针的扫描轨迹和相互作用力的测量结果,可以得到物体表面的几何形貌和性质。

通过计算机图像处理算法进行数据处理和分析,可以生成高分辨率的原子级别表面成像。

扫描探针显微镜具有高分辨率、操作灵活等优点,并可以应用于材料科学、生物学、纳米技术等领域的研究和应用。

材料现代分析与测试 第七章 扫描探针显微分析

材料现代分析与测试 第七章 扫描探针显微分析

第七章扫描探针显微分析第一节概述电子探针显微分析(Electrom Probe Microanalysis——EPMA)也称为电子探针X射线显微分析,是利用电子光学和X射线光谱学的基本原理将显微分析和成分分析相结合的一种微区分析方法。

该分析方法特别适用于分析试样中微小区域的化学成分分析,是研究材料组织结构和元素分布状态的极为有用的分析方法。

扫描探针显微镜(Scanning Probe Microscopes 简称SPM)包括扫描显微镜(STM)、原子力显微镜(AFM)、激光力显微镜(LFM)、磁力显微镜(MFM)、静电力显微镜以及扫描热显微镜等,是一类完全新型的显微镜。

它们通过其端粗细只有一个原子大小的探针在非常近的距离上探索物体表面的情况,便可以分辨出其它显微镜所无法分辨的极小尺度上的表面特征。

一、SPM的基本原理控制探针在被检测样品的表面进行扫描,同时记录下扫描过程中探针尖端和样品表面的相互作用,就能得到样品表面的相关信息。

因此,利用这种方法得到被测样品表面信息的分辨率取决于控制扫描的定位精度和探针作用尖端的大小(即探针的尖锐度)。

二、SPM的特点1. 原子级高分辨率。

STM在平行和垂直于样品表面方向的分辨率分别可达0.1nm 和0.01nm,即可以分辨出单个原子,具有原子级的分辨率。

2. 可实时地得到实空间中表面的三维图像,可用于具有周期性或不具备周期性的表面结构研究及表面扩散等动态过程的研究。

3. 可以观察单个原子层的局部表面结构,因而可直接观察表面缺陷、表面重构、表面吸附体的形态和位置,以及由吸附体引起的表面重构等。

4. 可在真空、大气、常温,以及水和其它溶液等不同环境下工作,不需要特别的制样技术,并且探测过程对样品无损伤。

这些特点适用于研究生物样品和在不同试验条件下对样品表面的评价。

5. 配合扫描隧道谱STS(Scanning Tunneling Spectroscopy)可以得到有关表面结构的信息,例如表面不同层次的态密度、表面电子阱、电荷密度波、表面势垒的变化和能隙结构等。

扫描隧道显微镜的原理

扫描隧道显微镜的原理

扫描隧道显微镜的原理扫描隧道显微镜(Scanning Tunneling Microscope,简称STM)是一种利用量子隧穿效应进行成像的仪器,它可以在原子尺度上观察和操作物质表面的原子结构。

STM的原理是基于电荷隧穿效应,通过在探针和样品之间施加一定的电压,使电子以概率的形式从探针隧穿到样品表面,从而获得样品表面的拓扑形貌和电子结构信息。

在STM中,探针是一个锐利的金属尖端,通常由钨或铂铱制成。

这个探针被放置在与样品表面非常接近的位置上,通常只有几个纳米的距离。

当施加一定的直流电压时,由于量子隧穿效应的存在,电子可以从探针的表面隧穿到样品表面。

这个电流被称为隧穿电流,它与探针和样品之间的距离、样品表面的形貌和电子结构密切相关。

为了保持探针和样品之间的距离保持稳定,STM采用了一个反馈回路系统。

它通过测量隧穿电流的变化来调整探针和样品之间的距离,以保持隧穿电流的恒定。

这种反馈机制可以使STM实现高分辨率的成像,并且可以在原子尺度上进行操控。

通过测量隧穿电流的大小和变化,可以获得样品表面的拓扑图像。

由于电子的隧穿概率与距离的关系是指数衰减的,因此隧穿电流的大小和样品表面的高度之间存在着非常敏感的关系。

当探针在样品表面扫描时,隧穿电流的变化被记录并转换为图像,从而得到样品表面的形貌信息。

除了表面拓扑图像,STM还可以提供样品表面的电子结构信息。

在STM中,探针和样品之间的电流不仅取决于距离,还取决于样品表面的电子状态密度。

通过测量隧穿电流的能谱分布,可以获得样品表面的电子能级结构和局部密度状态。

这使得STM成为研究表面物理和表面化学现象的强大工具。

扫描隧道显微镜的发展使得科学家们能够在原子尺度上观察和操作物质,为凝聚态物理、表面科学和纳米科技的发展提供了重要的工具。

它不仅可以帮助我们更好地理解物质的基本性质,还可以在纳米材料的制备和纳米器件的研发中发挥重要作用。

随着技术的不断进步,STM的分辨率和功能得到了进一步提高,使得更多的物理和化学现象可以在原子尺度上得到研究和探索。

扫描探针显微镜简介

扫描探针显微镜简介
上的表面细节与特征。它包括扫描隧道显微镜(STM)、原子力显 微镜(AFM)、激光力显微镜(LFM)、磁力显微镜(MFM)、静电 力显微镜以及扫描热显微镜等,是一类完全新型的显微镜。这里 主要介绍扫描隧道显微镜和原子力显微镜。
2
第一部分
扫描隧道显微镜
Scanning Tunneling Microscope
检测器测量到这些交替变化的振幅值,再通过反馈回路,调整针尖 与样品之间的距离,保证振幅恒定在某一个恒定值,这样针尖在扫描 过程中的运动轨迹就反映了样品的表面形貌。
21
Atomic Force Microscope
• AFM characteristic
(一)在大气中,原子力显微镜同样具有原子级的分辨率。 (二)原子力显微镜既可以观察导体,也可以观察非导体, 从而弥补了STM的不足。 (三)可以进行样品高度方向的测定。
• Operating modes of AFM
– Static atomic force microscopy
Fts=constant – Dynamic atomic force microscopy
19
Atomic Force Microscope
Dynamic atomic force microscopy
10
SPM Family Tree
C-AFM
SThM LFM FMM PFM NSOM STS Standard modes Optional modes
11
EFM SCM
NC-AFM (DFM)
MFM
STM
第二部分 原子力显微镜
Atomic Force Microscope
Atomic Force Microscope

【实验一】扫描探针显微镜(SPM)解析

【实验一】扫描探针显微镜(SPM)解析

2020/10/29
分析测试中心
动态力显微镜(DFM)
工作原理:保持针尖悬臂 的振幅衰减量不变
2020/10/29
自由振荡
分析测试中心
振幅衰减
动态力显微镜(DFM)
动态力显微镜是在样品扫描过程中,让探针的悬 臂在其共振频率附近作受迫振动,使得针尖以敲 打的方式敲击样品表面,由于在敲击过程中针尖 与表面之间的相互作用力会改变针尖的振动状态 (振幅,频率),从而引起反馈与控制扫描系统 的反应,调整扫描状态,保证针尖悬臂的振动状 态为初始状态,从而获得样品表面的形貌特征。
STM Scanning Tunneling Microscopy)
(扫 描 隧 道 显 微 镜
2020/10/29
扫描隧道显微镜(STM)
工作原理:保持 隧道电流的值恒 定。
2020/10/29
分析测试中心
扫描隧道显微镜(STM)特点
优点:1.目前分辨率最高的显微镜 2.可通过对扫描隧道谱的分析得到样品
这种扫描成像的方式减弱了针尖对样品的切向伤害,并且使得针尖与样品之间的相 互作用力大大减小。动态力显微镜(DFM)对样品表面基本没有损伤,可以对柔软、 易碎的样品进行表征。
2020/10/29
分析测试中心
相位像成像——样品表面倾斜角度不同
2020/10/29
分析测试中心
动态力显微镜(DFM)特点
扫描探针对于样品要求:1.样品厚度不超过1cm 2.表面清洗干净,无污染 3.表面比较平整
2020/10/29
分析测试中心

原动 子态 力力 显显 微微 镜镜 ((
分析测试中心
扫描探针显微镜SPM (scanning Probe Microscopy)

讲义实验四:扫描探针显微镜(扫描隧道显微镜)

讲义实验四:扫描探针显微镜(扫描隧道显微镜)

可以产生隧道电流。
2.压电效应与压电扫描管
所谓压电效应是指某种类型的晶体在受到机械力发生形变时会产生电场,或给晶体加一
电场时晶体会产生物理形变的现象。许多化合物的单晶,如石英等都具有压电性质,但目前
广泛采用的是多晶陶瓷材料,例如钛酸锆酸铅[Pb(Ti,Zr)O3](简称 PZT)和钛酸钡等。当在压
电陶瓷加上对称电压时,压电陶瓷会按特定的方向伸长或缩短,也就是说,可以通过改变电
隧道效应是由于粒子的波动性而引起的,只有在一定的条件下,隧道效应才会显著。经 计算,透射系数 T 为:
( ) T ≈ 16E V0 − E
− 2a
eh
2m(V0 −E )
V0
(4-1)
由式(1-1)可见,T 与势垒宽度a,能量差(V0 − E) 以及粒子的质量m 有着很敏感的关系。 随着势垒厚(宽)度a 的增加,T 将指数衰减,因此在一般的宏观实验中,很难观察到粒子隧 穿势垒的现象。
再次,SPM 的使用环境宽松。电子显微镜等仪器对工作环境要求比较苛刻,样品必须 安放在高真空条件下才能进行测试。而 SPM 既可以在真空中工作,又可以在大气中、低温、 常温、高温,甚至在溶液中使用。因此 SPM 适用于各种工作环境下的科学实验。
SPM 的应用领域是宽广的。无论是物理、化学、生物、医学等基础学科,还是材料、 微电子等应用学科都有它的用武之地。利用 STM 针尖,可实现对原子和分子的移动和操纵, 这为纳米科技的全面发展奠定了基础。SPM 的价格相对于电子显微镜等大型仪器来讲是较
会伸展或收缩(由电压的正负和压电陶瓷的极化方向决定),导致陶瓷管向垂直于管轴的方向
弯曲。通过在相邻的两个电极上按一定顺序施加电压就可以实现在 x-y 方向的相互垂直移

扫描探针显微镜使用方法说明书

扫描探针显微镜使用方法说明书

扫描探针显微镜使用方法说明书使用扫描探针显微镜的方法说明书第一部分:引言在科学研究和相关学科领域,显微镜是一种不可或缺的工具。

扫描探针显微镜(Scanning Probe Microscope,简称SPM)是一种非常重要的显微镜,广泛应用于纳米尺度下的表面形貌观测和材料性质的测量。

本说明书将为您介绍扫描探针显微镜的使用方法。

第二部分:仪器基本构造SPM主要由扫描单元和控制单元组成。

扫描单元包括扫描探针和样品台,控制单元包括控制面板和电脑连接接口。

第三部分:准备工作1. 确保实验室环境整洁、无尘,并保持适宜的温度和湿度。

2. 打开仪器电源,确保所有指示灯均正常亮起。

3. 检查样品台表面有无杂质,如果有,请使用无尘纱布轻轻擦拭。

4. 准备扫描探针,从存放盒中取出并确认表面无损伤。

5. 将扫描探针插入扫描单元,确保连接牢固。

第四部分:操作步骤1. 打开控制面板软件,并连接SPM仪器。

2. 在软件界面上选择合适的扫描模式,如原子力显微镜(Atomic Force Microscopy,AFM)或磁力显微镜(Magnetic Force Microscopy,MFM)。

3. 设定扫描参数,包括扫描速度、扫描范围和采样点数等。

4. 载入样品,切记保持样品平整,并固定在样品台上。

5. 选择适当的探针和扫描模式,并进行扫描区域的选择。

6. 开始扫描,观察样品表面的变化,并通过显微镜界面实时监控。

7. 根据需要调整扫描参数,以获得更准确的结果。

第五部分:操作注意事项1. 操作前确保已仔细阅读仪器的用户手册,并按照说明进行操作。

2. 避免直接用手触摸样品和探针,在操作过程中需佩戴手套,以防止外界污染。

3. 注意仪器的安全使用,避免碰撞或震动。

4. 在操作过程中要保持耐心,避免过度扫描或频繁更换探针。

5. 定期对仪器进行维护和校准,以保证其稳定性和准确性。

第六部分:结果分析与展示扫描探针显微镜可以获得高分辨率的表面形貌图像和有关材料性质的信息。

扫描探针显微镜

扫描探针显微镜

扫描探针显微镜扫描探针显微镜(ScanningProbeMicroscope,SPM)是扫描隧道显微镜及在扫描隧道显微镜的基础上进展起来的各种新型探针显微镜(原子力显微镜AFM,激光力显微镜LFM,磁力显微镜MFM等等)的统称,是国际上近年进展起来的表面分析仪器,是综合运用光电子技术、激光技术、微弱信号检测技术、精密机械设计和加工、自动掌控技术、数字信号处理技术、应用光学技术、计算机高速采集和掌控及高辨别图形处理技术等现代科技成果的光、机、电一体化的高科技产品。

目录应用特点应用SPM的应用领域是宽广的。

无论是物理、化学、生物、医学等基础学科,还是材料、微电子等应用学科都有它的用武之地。

SPM的价格相对于电子显微镜等大型仪器来讲是较低的。

同其它表面分析技术相比,SPM有着诸多优势,不仅可以得到高辨别率的表面成像,与其他类型的显微镜相比(光学显微镜,电子显微镜)相比,SPM扫描成像的一个巨大的优点是可以成三维的样品表面图像,还可对材料的各种不同性质进行讨论。

同时,SPM正在向着更高的目标进展,即它不仅作为一种测量分析工具,而且还要成为一种加工工具,也将使人们有本领在微小的尺度上对物质进行改性、重组、再造.SPM对人们认得世界和改造世界的本领将起着极大的促进作用。

同时受制其定量化分析的不足,因此SPM的计量化也是人们正在致力于讨论的另一紧要方向,这对于半导体工业和超精密加工技术来说有着非同一般的意义扫描隧道显微镜(STM)在化学中的应用讨论虽然只进行了几年,但涉及的范围已极为广泛。

由于扫描隧道显微镜(STM)的最早期讨论工作是在超高真空中进行的,因此最直接的化学应用是察看和记录超高真空条件下金属原子在固体表面的吸附结构。

在化学各学科的讨论方向中,电化学可算是很活跃的领域,可能是由于电解池与扫描隧道显微镜(STM)装置的相像性所致。

同时对相界面结构的再认得也是电化学家们长期关注的课题。

专用于电化学讨论的扫描隧道显微镜(STM)装置已研制成功。

扫描探针显微镜(SPM)原理简介及操作(修正版)

扫描探针显微镜(SPM)原理简介及操作(修正版)

扫描探针显微镜(SPM)原理简介庞文辉 2012.2.22一、SPM定义扫描探针显微镜(Scanning Probe Microscope,SPM)是扫描隧道显微镜及在扫描隧道显微镜的基础上发展起来的各种新型探针显微镜(原子力显微镜AFM,激光力显微镜LFM,磁力显微镜MFM等等)的统称,包括多种成像模式,他们的共同特点是探针在样品表面扫描,同时针尖与样品间的相互作用力被记录。

SPM的两种基本形式:1、扫描隧道显微镜(Scanning Probe Microscope,STM)2、原子力显微镜(Atomic Force Microscope,AFM)AFM有两种主要模式:●接触模式(contact mode)●轻敲模式(tapping mode)SPM的其他形式:●侧向摩擦力显微术(Lateral Force Microscopy)●磁场力显微镜(Magnetic Force Microscope)●静电力显微镜(Electric Force Microscope)●表面电势显微镜(Surface Potential Microscope)●导电原子力显微镜(Conductive Atomic Force Microscope)●自动成像模式(ScanAsyst)●相位成像模式(Phase Imaging)●扭转共振模式(Torisonal Resonance Mode)●压电响应模式(Piezo Respnance Mode)●……二、STM原理及应用基于量子力学中的隧穿效应,用一个半径很小的针尖探测被测样品表面,以金属针尖为一电极,被测固体表面为另一电极,当他们之间的距离小到1nm左右时,形成隧道结,电子可从一个电极通过量子隧穿效应穿过势垒到底另一个电极,形成隧穿电流。

在极间加很小偏压,即有净隧穿电流出现。

隧穿电流与两极的距离成指数关系,反馈原理是采用横流模式,当两极间距不同(电流不同),系统会调整Z轴的位置从而成高度像。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

扫描探针显微镜(scanning probe microscope,SPM) 一、 设备简介:
该仪器集成原子力显微镜(AFM)、摩擦力显微镜(LFM)、扫描隧道显微镜(STM)、磁力显微镜(MFM)和静电力显微镜(EFM) 于一体,具有接触、轻敲、相移成像、抬起等多种工作模式,能够提供全部的原子力显微镜 (AFM) 和扫描隧道 (STM) 显微镜成像技术,可以测量样品的表面特性,如形貌、粘弹性、摩擦力、吸附力和磁/电场分布等等。

●分辨率
原子力显微镜(AFM):横向 0.26nm, 垂直 1nm(以云母晶体标定) 扫描隧道显微镜(STM):横向 0.13nm, 垂直 0.1nm(以石墨晶体标定)●机械性能
样品尺寸:最大可达直径12mm,厚度8mm
扫描范围:125X125μm,垂向1μm
●型号:
Veeco NanoScope MultiMode扫描探针显微镜
本次培训着重介绍该设备常用模式:Contact Mode AFM
二、AFM独特的优点归纳如下:
(l)具有原子级的超高分辨率。

理论横向分辨率可达0.1nm,而纵向分辨率更高达0.01nm。

,从而可获得物质表面的原子晶格图像。

(2)可实时获得样品表面的实空间三维图像。

既适用于具有周期性结
构的表面,又适用于非周期性表面结构的检测。

(3)可以观察到单个原子层的局部表面性质。

直接检测表面缺陷、表面重构、表面吸附形态和位置。

(4)可在真空、大气、常温、常压等条件下工作,甚至可将样品浸在液体中,不需要特殊的样品制备技术。

三、AFM的基本原理:
AFM基于微探针与样品之间的原子力作用机制。

以带有金字塔形微探针的“V”字形微悬臂(Cantilever)代替STM的针尖,当微探针在z向逼近样品表面时,探针针尖的原子与样品原子之间将产生一定的作用力,即原子力,原子力的大小约在10-8~10-12N之间。

与隧道电流类似,原子力的大小与探针一样品间距成一定的对应关系,这种关系可以由原子力曲线来表征一般而言,当探针充分逼近样品进入原子力状态时,如两者间距相对较远,总体表现为吸引力;当两者相当接近时,则总体表现为排斥力。

原子力变化的梯度约为10-13N/nm。

原子力虽然很微弱,但是足以推动极为灵敏的微悬臂并使之偏转一定的角度。

因此,微悬臂的偏转量与探针一样品间距成对应关系,在对样品进行XY扫描时,检测这一偏转量,即可获得样品表面的微观形貌。

图表 1 AFM原理示意图
图表 2 AFM测试点示意图
四、启用AFM(contact)功能测试步骤: 开机顺序:
z开启设备电脑开关及双屏显示器;
z开启显微镜光源;
z开启光学显微镜CRT显示器电源;
z将设备主部隔尘罩小心地取下,将显微镜调整至设备主机方向,光斑打到载物台中心处;
z打开设备主机电源,在主机controller的控制板上,确认AFM模式;
z打开pc中的 软件,激活软件与设备主机连接图标;
z在软件中设置当前样品需要的扫描范围,台阶高度,扫描速度等参数;台阶高度不可超多1μm,扫描速度设置在5μm/s以内为宜;
z倾斜着取下AFM针夹具,倒置于滤纸上,放于衣袖碰触不到的地方,以免碰伤悬臂
z放样品,样品粘于专用样品台片上,
z调整样品位置,在CRT上观察确定样品测试点位于下针位置附近;z放置AFM测试夹具,一定要小心,注意观察悬臂与样品表面的距离,若相距太近,则将测试夹具小心取出,放置妥当后,使用手动抬针方法将三个支柱抬高,同时保证三支柱设备光路台面水平;z高度调节到安全距离以后,小心地放入AFM针测试夹具,用肉眼结合CRT上观察确定样品与针的保持一段距离;
z固定夹具,此时主机显示屏上,标定激光器电压的SUM值为7V左右;
z探测器的水平偏差值(Horiz)接近0.0V,垂直偏差(Vert)接近
-2.0V;
z开始手动下针,注意时时观察光学显微镜CRT,下针过程中注意三轴的同步;
z当样品表面与悬臂焦距接近时,调节此时的horizontal deflection和vertical deflection值,分别至0V和-0.7~-0.8V 附近
z单击启动软件中自动下针控件,下针过程中注意观察主机中的水平偏差值(Horiz)和垂直偏差(Vert),示值趋势是减小的为正常;
z下针完成后,将扫描频率调低(即降低扫描速度),设置X轴与Y 轴的offset值(offset范围不得超过70μm),确定扫描位置和范围后,重新开始从上往下或从下往上扫描,并拍取图象。

z扫描完毕后,软件抬针,处理数据,保存。

z手动抬针,小心地将夹具取出,置于安全的位置,再取出样品,将载样品的圆片置于培养皿中,针测试夹具放回设备主机中。

关机顺序:
z关闭设备主控电源;
z关闭光学显微镜CRT电源、光源;
z将光学显微镜置于原本所在方向,盖上物镜盖;
z将主机隔尘罩小心的罩于主机上;
z关闭计算机电源及双屏显示器电源;
五、注意事项:
z此为精密设备,需倍加爱护;
z该设备需熟练掌握下针技巧后,才可独立操作;
z针夹具取出后,一定倒置于滤纸上,并保证放于衣袖碰触不到的地方;
z下针过程中注意观察主机中的水平偏差值(Horiz)和垂直偏差(Vert),示值趋势是减小的为正常;
z显微镜视场光斑打到样品台中心位置,保证样品台平整时,针在视场的中心位置;
z手动下针的过程中,调三轴调节钮时,注意观察水平偏差值(Horiz)和垂直偏差(Vert);
z自动下针完成后,在调节X,Y offset确定扫描位置和范围的时候,务必先将采样频率降低;
z测试过程中,密切注意测试状态:显示CRT上针的状态及软件中可能出现超限提示的部分;
z测试过程中,尽量保正环境气流稳定,请缓慢行走,轻轻关门;
六、本设备其它功能:
以下为本设备理论上可实现的各种功能(需要购买相应配件予以实施):
Appendix:
The MultiMode performs a full range of SPM techniques for surface characterization of properties like topography, elasticity, friction, adhesion, electrical and magnetic fields:
Tapping Mode
Contact Mode AFM
Phase Imaging
Lateral Force Microscopy (LFM)
Magnetic Force Microscopy (MFM)
Scanning Tunneling Microscopy (STM)
Force Modulation
Electric Force Microscopy (EFM)
Scanning Capacitance Microscopy (SCM)
Surface Potential Microscopy
Force-Distance and Force-Volume Measurements
Nanoindenting/Scratching
Electrochemical Microscopy (ECSTM and ECAFM) Phase Imaging
PicoForce Force Spectroscopy
and many more。

相关文档
最新文档