初中数学计算能力提升训练测精彩试题 打印

合集下载

初中数学计算能力提升训练测试题

初中数学计算能力提升训练测试题

精心整理计算能力训练(整式1)6、(1)计算1092)21(⋅-=(2)计算532)(x x ÷ 计算能力训练(整式2)a ab a a -÷-+-8、试确定2011201075⋅的个位数字计算能力训练(分式1)1.(辨析题)不改变分式的值,使分式115101139x y x y -+的各项系数化为整数,分子、分母应乘以(• )A .10B .9C .45D .90A .1个B .2个C .3个D .4个5.(技能题)约分:(1)22699x x x ++-; (2)2232m m m m-+-. 6.(技能题)通分:(1)26x ab ,29y a bc ; (2)2121a a a -++,261a -. 7.(妙法求解题)已知x+1x=3,求2421x x x ++的值 计算能力训练(分式2)1.根据分式的基本性质,分式a a b--可变形为( ) a a a a7.211x x =+-拓展创新题8.(学科综合题)已知a 2-4a+9b 2+6b+5=0,求1a -1b的值.9.(巧解题)已知x 2+3x+1=0,求x 2+21x 的值. 计算能力训练(分式方程1)选择1、(2009年安徽)甲志愿者计划用若干个工作日完成社区的某项工作,从第三个工作日起,乙志愿者加盟此项工作,且甲、乙两人工效相同,结果提前3天完成任务,则甲志愿者计划完成此项工作的天数是……………【 】A .8 B.7 C .6 D .5务,问计划每天加工服装多少套?在这个问题中,设计划每天加工x 套,则根据题意可得方程为(A )18%)201(400160=++x x (B )18%)201(160400160=+-+xx (C )18%20160400160=-+x x (D )18%)201(160400400=+-+x x7、(2009年嘉兴市)解方程x x -=-22482的结果是( ) A .2-=x B .2=x C .4=x D .无解8、(2009年漳州)分式方程211x x=+的解是( ) A .1 B .1- C .13 D .13- 9、(09湖南怀化)分式方程2131=-x 的解是( )A .解为2x =B .解为4x =C .解为3x =D .无解计算能力训练(分式方程2)填空1、(2009年邵阳市)请你给x 选择一个合适的值,使方程2112-=-x x 成立,你选择的x =________。

初中数学计算能力提升训练测试题

初中数学计算能力提升训练测试题

1.化简:b b a a 3)43(4---.2.求比多项式22325b ab a a +--少ab a -25的多项式.3.先化简、再求值)432()12(3)34(222a a a a a a --+-+-- (其中2-=a )4、先化简、再求值)]23()5[(42222y xy x y xy x xy -+--+- (其中21,41-=-=y x )5、计算a a a ⋅+2433)(2)(36、(1)计算1092)21(⋅-=(2)计算532)(x x ÷(3)下列计算正确的是 ( ).(A)3232a a a =+ (B)a a 2121=- (C)623)(a a a -=⋅- (D)aa 221=-计算: (1))3()32()23(32232b a ab c b a -⋅-⋅-; (2))3)(532(22a a a -+-;(3))8(25.123x x -⋅ ; (4))532()3(2+-⋅-x x x ;(5)())2(32y x y x +-; (6)利用乘法公式计算:()()n m n m 234234+--+(7)()()x y y x 5225--- (8)已知6,5-==+ab b a ,试求22b ab a +-的值(9)计算:2011200920102⨯-(10)已知多项式3223-++x ax x 能被122+x 整除,商式为3-x ,试求a 的值1、 b a c b a 232232÷-2、 )2(23)2(433y x y x +÷+3、22222335121)433221(y x y x y x y x ÷+-4、当5=x 时,试求整式()()13152322+--+-x x x x 的值5、已知4=+y x ,1=xy ,试求代数式)1)(1(22++y x 的值6、计算:)()532(222223m m n n m n m a a b a a-÷-+-++7、一个矩形的面积为ab a 322+,其宽为a ,试求其周长8、试确定2011201075⋅的个位数字1.(辨析题)不改变分式的值,使分式115101139x y x y -+的各项系数化为整数,分子、分母应乘以(• )A .10B .9C .45D .902.(探究题)下列等式:①()a b c --=-a b c -;②x y x -+-=x y x -;③a b c -+=-a b c +; ④m n m --=-m n m-中,成立的是( ) A .①② B .③④ C .①③ D .②④3.(探究题)不改变分式2323523x x x x -+-+-的值,使分子、分母最高次项的系数为正数,正确的是(• )A .2332523x x x x +++-B .2332523x x x x -++-C .2332523x x x x +--+D .2332523x x x x ---+ 4.(辨析题)分式434y x a+,2411x x --,22x xy y x y -++,2222a ab ab b +-中是最简分式的有( ) A .1个 B .2个 C .3个 D .4个5.(技能题)约分:(1)22699x x x ++-; (2)2232m m m m-+-.6.(技能题)通分:(1)26x ab ,29y a bc ; (2)2121a a a -++,261a -.7.(妙法求解题)已知x+1x=3,求2421x x x ++的值计算能力训练(分式2)1.根据分式的基本性质,分式a a b--可变形为( ) A .a a b -- B .a a b + C .-a a b - D .a a b + 2.下列各式中,正确的是( )A .x y x y -+--=x y x y -+;B .x y x y -+-=x y x y ---;C .x y x y -+--=x y x y +-;D .x y x y -+-=x y x y-+ 3.下列各式中,正确的是( )A .a m a b m b +=+B .a b a b ++=0C .1111ab b ac c --=-- D .221x y x y x y -=-+ 4.(2005·天津市)若a=23,则2223712a a a a ---+的值等于_______. 5.(2005·广州市)计算222a ab a b+-=_________. 6.公式22(1)x x --,323(1)x x --,51x -的最简公分母为( ) A .(x-1)2 B .(x-1)3 C .(x-1) D .(x-1)2(1-x )37.21?11x x x -=+-,则?处应填上_________,其中条件是__________.拓展创新题8.(学科综合题)已知a 2-4a+9b 2+6b+5=0,求1a -1b 的值.9.(巧解题)已知x 2+3x+1=0,求x 2+21x 的值.计算能力训练(分式方程1)选择1、(2009年安徽)甲志愿者计划用若干个工作日完成社区的某项工作,从第三个工作日起,乙志愿者加盟此项工作,且甲、乙两人工效相同,结果提前3天完成任务,则甲志愿者计划完成此项工作的天数是……………【 】A .8 B.7 C .6 D .52、(2009年上海市)3.用换元法解分式方程13101x x x x --+=-时,如果设1x y x -=,将原方程化为关于y 的整式方程,那么这个整式方程是( )A .230y y +-=B .2310y y -+=C .2310y y -+=D .2310y y --= 3、(2009襄樊市)分式方程131x x x x +=--的解为( ) A .1 B .-1 C .-2 D .-34、(2009柳州)5.分式方程3221+=x x 的解是( ) A .0=x B .1=x C .2=x D .3=x5、(2009年孝感)关于x 的方程211x a x +=-的解是正数,则a 的取值范围是 A .a >-1B .a >-1且a ≠0C .a <-1D .a <-1且a ≠-26、(2009泰安)某服装厂准备加工400套运动装,在加工完160套后,采用了新技术,使得工作效率比原计划提高了20%,结果共用了18天完成任务,问计划每天加工服装多少套?在这个问题中,设计划每天加工x 套,则根据题意可得方程为(A )18%)201(400160=++x x (B )18%)201(160400160=+-+xx (C )18%20160400160=-+x x (D )18%)201(160400400=+-+x x7、(2009年嘉兴市)解方程x x -=-22482的结果是( ) A .2-=xB .2=xC .4=xD .无解8、(2009年漳州)分式方程211x x =+的解是( ) A .1B .1-C .13D .13- 9、(09湖南怀化)分式方程2131=-x 的解是( ) A .21=x B .2=x C .31-=x D . 31=x10、(2009年安徽)甲志愿者计划用若干个工作日完成社区的某项工作,从第三个工作日起,乙志愿者加盟此项工作,且甲、乙两人工效相同,结果提前3天完成任务,则甲志愿者计划完成此项工作的天数是【 】A .8 B.7 C .6 D .511、(2009年广东佛山)方程121x x=-的解是( ) A .0 B .1 C .2 D .312、(2009年山西省)解分式方程11222x x x-+=--,可知方程( ) A .解为2x = B .解为4x = C .解为3x = D .无解13、(2009年广东佛山)方程121x x=-的解是( ) A .0 B .1 C .2 D .314、(2009年山西省)解分式方程11222x x x-+=--,可知方程( ) A .解为2x = B .解为4x = C .解为3x = D .无解计算能力训练(分式方程2)填空1、(2009年邵阳市)请你给x 选择一个合适的值,使方程2112-=-x x 成立,你选择的x =________。

初中的数学计算能力提升训练测试题打印

初中的数学计算能力提升训练测试题打印

1.化简:b b a a 3)43(4---.2.求比多项式22325b ab a a +--少ab a -25的多项式.3.先化简、再求值)432()12(3)34(222a a a a a a --+-+-- (其中2-=a )4、先化简、再求值)]23()5[(42222y xy x y xy x xy -+--+- (其中21,41-=-=y x )5、计算a a a ⋅+2433)(2)(36、(1)计算1092)21(⋅-=(2)计算532)(x x ÷(3)下列计算正确的是 ( ).(A)3232a a a =+ (B)a a2121=- (C)623)(a a a -=⋅- (D)aa 221=-计算: (1))3()32()23(32232b a ab c b a -⋅-⋅-; (2))3)(532(22a a a -+-;(3))8(25.123x x -⋅ ; (4))532()3(2+-⋅-x x x ;(5)())2(32y x y x +-; (6)利用乘法公式计算:()()n m n m 234234+--+(7)()()x y y x 5225--- (8)已知6,5-==+ab b a ,试求22b ab a +-的值(9)计算:2011200920102⨯-(10)已知多项式3223-++x ax x 能被122+x 整除,商式为3-x ,试求a 的值1、 b a c b a 232232÷-2、 )2(23)2(433y x y x +÷+3、22222335121)433221(y x y x y x y x ÷+-4、当5=x 时,试求整式()()13152322+--+-x x x x 的值5、已知4=+y x ,1=xy ,试求代数式)1)(1(22++y x 的值6、计算:)()532(222223m m n n m nm a a b a a -÷-+-++7、一个矩形的面积为ab a 322+,其宽为a ,试求其周长8、试确定2011201075⋅的个位数字1.(辨析题)不改变分式的值,使分式115101139x yx y -+的各项系数化为整数,分子、分母应乘以(• )A .10B .9C .45D .90 2.(探究题)下列等式:①()a b c --=-a b c -;②x y x -+-=x y x -;③a b c -+=-a bc+;④m n m --=-m nm-中,成立的是( )A .①②B .③④C .①③D .②④3.(探究题)不改变分式2323523x xx x -+-+-的值,使分子、分母最高次项的系数为正数,正确的是(• )A .2332523x x x x +++-B .2332523x x x x -++-C .2332523x x x x +--+D .2332523x x x x ---+4.(辨析题)分式434y x a +,2411x x --,22x xy y x y-++,2222a abab b +-中是最简分式的有( )A .1个B .2个C .3个D .4个5.(技能题)约分:(1)22699x x x ++-; (2)2232m m m m-+-.6.(技能题)通分:(1)26x ab ,29y a bc ; (2)2121a a a -++,261a -.7.(妙法求解题)已知x+1x =3,求2421x x x ++的值1.根据分式的基本性质,分式aa b--可变形为( ) A .a a b -- B .a a b + C .-a a b - D .aa b+2.下列各式中,正确的是( )A .x y x y -+--=x y x y -+; B .x y x y -+-=x y x y ---; C .x y x y -+--=x y x y +-; D .x y x y -+-=x yx y-+3.下列各式中,正确的是( ) A .a m ab m b +=+ B .a b a b ++=0 C .1111ab b ac c --=-- D .221x y x y x y-=-+ 4.(2005·天津市)若a=23,则2223712a a a a ---+的值等于_______.5.(2005·广州市)计算222a aba b+-=_________. 6.公式22(1)x x --,323(1)x x --,51x -的最简公分母为( ) A .(x-1)2B .(x-1)3C .(x-1)D .(x-1)2(1-x )37.21?11x x x -=+-,则?处应填上_________,其中条件是__________.拓展创新题8.(学科综合题)已知a 2-4a+9b 2+6b+5=0,求1a -1b的值.9.(巧解题)已知x 2+3x+1=0,求x 2+21x 的值.计算能力训练(分式方程1)选择1、(2009年安徽)甲志愿者计划用若干个工作日完成社区的某项工作,从第三个工作日起,乙志愿者加盟此项工作,且甲、乙两人工效相同,结果提前3天完成任务,则甲志愿者计划完成此项工作的天数是……………【 】 A .8 B.7 C .6 D .52、(2009年上海市)3.用换元法解分式方程13101x x x x --+=-时,如果设1x y x -=,将原方程化为关于y 的整式方程,那么这个整式方程是( )A .230y y +-=B .2310y y -+=C .2310y y -+=D .2310y y --=3、(2009襄樊市)分式方程131x x x x +=--的解为( ) A .1 B .-1 C .-2 D .-34、(2009柳州)5.分式方程3221+=x x 的解是( ) A .0=x B .1=x C .2=x D .3=x 5、(2009年孝感)关于x 的方程211x a x +=-的解是正数,则a 的取值范围是A .a >-1B .a >-1且a ≠0C .a <-1D .a <-1且a ≠-26、(2009泰安)某服装厂准备加工400套运动装,在加工完160套后,采用了新技术,使得工作效率比原计划提高了20%,结果共用了18天完成任务,问计划每天加工服装多少套?在这个问题中,设计划每天加工x 套,则根据题意可得方程为 (A )18%)201(400160=++x x (B )18%)201(160400160=+-+x x (C ) 18%20160400160=-+x x (D )18%)201(160400400=+-+xx7、(2009年嘉兴市)解方程xx -=-22482的结果是( ) A .2-=x B .2=x C .4=x D .无解8、(2009年漳州)分式方程211x x=+的解是( )A .1B .1-C .13D .13-9、(09湖南怀化)分式方程2131=-x 的解是( ) A .21=x B .2=x C .31-=x D . 31=x10、(2009年安徽)甲志愿者计划用若干个工作日完成社区的某项工作,从第三个工作日起,乙志愿者加盟此项工作,且甲、乙两人工效相同,结果提前3天完成任务,则甲志愿者计划完成此项工作的天数是【 】 A .8 B.7 C .6 D .511、(2009年广东佛山)方程121x x=-的解是( ) A .0 B .1 C .2 D .312、(2009年山西省)解分式方程11222x x x-+=--,可知方程( ) A .解为2x = B .解为4x = C .解为3x = D .无解13、(2009年广东佛山)方程121x x=-的解是( ) A .0 B .1 C .2 D .314、(2009年山西省)解分式方程11222x x x-+=--,可知方程( ) A .解为2x = B .解为4x = C .解为3x = D .无解计算能力训练(分式方程2)填空1、(2009年邵阳市)请你给x 选择一个合适的值,使方程2112-=-x x 成立,你选择的x =________。

(完整版)初中数学计算能力提升训练测试题

(完整版)初中数学计算能力提升训练测试题

1.化简:b b a a 3)43(4---.2.求比多项式22325b ab a a +--少ab a -25的多项式.3.先化简、再求值)432()12(3)34(222a a a a a a --+-+-- (其中2-=a )4、先化简、再求值)]23()5[(42222y xy x y xy x xy -+--+- (其中21,41-=-=y x )5、计算a a a ⋅+2433)(2)(36、(1)计算1092)21(⋅-=(2)计算532)(x x ÷(3)下列计算正确的是 ( ).(A)3232a a a =+ (B)a a 2121=- (C)623)(a a a -=⋅- (D)aa 221=-计算: (1))3()32()23(32232b a ab c b a -⋅-⋅-; (2))3)(532(22a a a -+-;(3))8(25.123x x -⋅ ; (4))532()3(2+-⋅-x x x ;(5)())2(32y x y x +-; (6)利用乘法公式计算:()()n m n m 234234+--+(7)()()x y y x 5225--- (8)已知6,5-==+ab b a ,试求22b ab a +-的值(9)计算:2011200920102⨯-(10)已知多项式3223-++x ax x 能被122+x 整除,商式为3-x ,试求a 的值1、 b a c b a 232232÷-2、 )2(23)2(433y x y x +÷+3、22222335121)433221(y x y x y x y x ÷+-4、当5=x 时,试求整式()()13152322+--+-x x x x 的值5、已知4=+y x ,1=xy ,试求代数式)1)(1(22++y x 的值6、计算:)()532(222223m m n n m n m a a b a a-÷-+-++7、一个矩形的面积为ab a 322+,其宽为a ,试求其周长8、试确定2011201075⋅的个位数字1.(辨析题)不改变分式的值,使分式115101139x y x y -+的各项系数化为整数,分子、分母应乘以(• )A .10B .9C .45D .902.(探究题)下列等式:①()a b c --=-a b c -;②x y x -+-=x y x -;③a b c -+=-a b c +; ④m n m --=-m n m-中,成立的是( ) A .①② B .③④ C .①③ D .②④3.(探究题)不改变分式2323523x x x x -+-+-的值,使分子、分母最高次项的系数为正数,正确的是(• )A .2332523x x x x +++-B .2332523x x x x -++-C .2332523x x x x +--+D .2332523x x x x ---+ 4.(辨析题)分式434y x a+,2411x x --,22x xy y x y -++,2222a ab ab b +-中是最简分式的有( ) A .1个 B .2个 C .3个 D .4个5.(技能题)约分:(1)22699x x x ++-; (2)2232m m m m-+-.6.(技能题)通分:(1)26x ab ,29y a bc ; (2)2121a a a -++,261a -.7.(妙法求解题)已知x+1x=3,求2421x x x ++的值计算能力训练(分式2)1.根据分式的基本性质,分式a a b--可变形为( ) A .a a b -- B .a a b + C .-a a b - D .a a b + 2.下列各式中,正确的是( )A .x y x y -+--=x y x y -+;B .x y x y -+-=x y x y ---;C .x y x y -+--=x y x y +-;D .x y x y -+-=x y x y-+ 3.下列各式中,正确的是( )A .a m a b m b +=+B .a b a b ++=0C .1111ab b ac c --=-- D .221x y x y x y -=-+ 4.(2005·天津市)若a=23,则2223712a a a a ---+的值等于_______. 5.(2005·广州市)计算222a ab a b+-=_________. 6.公式22(1)x x --,323(1)x x --,51x -的最简公分母为( ) A .(x-1)2 B .(x-1)3 C .(x-1) D .(x-1)2(1-x )37.21?11x x x -=+-,则?处应填上_________,其中条件是__________.拓展创新题8.(学科综合题)已知a 2-4a+9b 2+6b+5=0,求1a -1b 的值.9.(巧解题)已知x 2+3x+1=0,求x 2+21x 的值.计算能力训练(分式方程1)选择1、(2009年安徽)甲志愿者计划用若干个工作日完成社区的某项工作,从第三个工作日起,乙志愿者加盟此项工作,且甲、乙两人工效相同,结果提前3天完成任务,则甲志愿者计划完成此项工作的天数是……………【 】A .8 B.7 C .6 D .52、(2009年上海市)3.用换元法解分式方程13101x x x x --+=-时,如果设1x y x -=,将原方程化为关于y 的整式方程,那么这个整式方程是( )A .230y y +-=B .2310y y -+=C .2310y y -+=D .2310y y --= 3、(2009襄樊市)分式方程131x x x x +=--的解为( ) A .1 B .-1 C .-2 D .-34、(2009柳州)5.分式方程3221+=x x 的解是( ) A .0=x B .1=x C .2=x D .3=x5、(2009年孝感)关于x 的方程211x a x +=-的解是正数,则a 的取值范围是 A .a >-1B .a >-1且a ≠0C .a <-1D .a <-1且a ≠-26、(2009泰安)某服装厂准备加工400套运动装,在加工完160套后,采用了新技术,使得工作效率比原计划提高了20%,结果共用了18天完成任务,问计划每天加工服装多少套?在这个问题中,设计划每天加工x 套,则根据题意可得方程为(A )18%)201(400160=++x x (B )18%)201(160400160=+-+xx (C )18%20160400160=-+x x (D )18%)201(160400400=+-+x x7、(2009年嘉兴市)解方程x x -=-22482的结果是( ) A .2-=xB .2=xC .4=xD .无解8、(2009年漳州)分式方程211x x =+的解是( ) A .1B .1-C .13D .13- 9、(09湖南怀化)分式方程2131=-x 的解是( ) A .21=x B .2=x C .31-=x D . 31=x10、(2009年安徽)甲志愿者计划用若干个工作日完成社区的某项工作,从第三个工作日起,乙志愿者加盟此项工作,且甲、乙两人工效相同,结果提前3天完成任务,则甲志愿者计划完成此项工作的天数是【 】A .8 B.7 C .6 D .511、(2009年广东佛山)方程121x x=-的解是( ) A .0 B .1 C .2 D .312、(2009年山西省)解分式方程11222x x x-+=--,可知方程( ) A .解为2x = B .解为4x = C .解为3x = D .无解13、(2009年广东佛山)方程121x x=-的解是( ) A .0 B .1 C .2 D .314、(2009年山西省)解分式方程11222x x x-+=--,可知方程( ) A .解为2x = B .解为4x = C .解为3x = D .无解计算能力训练(分式方程2)填空1、(2009年邵阳市)请你给x 选择一个合适的值,使方程2112-=-x x 成立,你选择的x =________。

初中数学计算能力提升训练测试题

初中数学计算能力提升训练测试题

强化运算能力提升数学质量计算能力训练(整式1)1.化简: 4a (3a 4b) 3b .2.求比多项式5a22a 3ab b 2少 5a 2ab 的多项式.3.先化简、再求值(4a23a) 3(2a2 a 1) ( 2 3a 24a) (其中a2 )4、先化简、再求值4xy [( x25xy y 2 ) ( x 23xy 2 y 2 )](其中x 1, y1) 425、计算3( a3)32(a 4 )2a6、( 1)计算(1)9210= 2(2)计算(x2)3x5(3)下列计算正确的是 ().(A) 2a2 a 3a3(B) 2a11(C) ( a)3a2 a 6(D) 2a122a a计算:(1) ( 3a 2b 3c) (2ab 2 ) 2 ( 3a 3 b) ;(2) ( 2a 23a 5)(3 a 2 ) ;2 3(3) 1.25 x3( 8 x 2 ) ;( 4) ( 3x) (2x23x 5) ;(5) 2x3 y (x 2 y) ; ( 6)利用乘法公式计算 : 4m 3 2n 4m 3 2n(7) 5x 2 y2 y 5x ( 8)已知 a b 5, ab6 ,试求 a 2 ab b 2 的值( 9)计算 : 2010 2 2009 2011(10)已知多项式 2x 3 ax 2 x 3 能被 2x 2 1整除,商式为 x3 ,试求 a 的值1、2a 2 b3 c 2a 2 b2、3(x 2 y)33(x 2y) 342(1x5 y32x3 y 23x2 y 2 )1x2 y23、234124、当x 5 时,试求整式3x22x25x 1 3x 1 的值54 , xy 1 ,试求代数式( x21)( y21)的值、已知 x y6、计算 : ( 2a3m 2n3a 2m n b2 n 5a 2m )( a 2m )一个矩形的面积为2a 23ab ,其宽为a,试求其周长7、8、试确定520107 2011的个位数字计算能力训练(分式 1)1.(辨析题)不改变分式的值,使分式( ? )1 x 1 y510的各项系数化为整数,分子、分母应乘以1 x 1 y39A .10B .9C .45D .902.(探究题)下列等式:①( a b) =- a b; ② x y = x y; ③ a b =- a b ;c c xx c c ④mn=-m n中 , 成立的是()mmA .①②B .③④C .①③D .②④23.(探究题)不改变分式23xx的值,使分子、分母最高次项的系数为正数,正确5x 3 2x 3的是(?)A . 3x 2x 2B . 3x 2x 2 C . 3x 2x 2 D . 3x 2x 2 5x 32x 35x 32x 35x 32x 35x 32x 34.(辨析题)分式4 y 3x,x 2 1 ,x 2 xyy 2,a 2 2ab 中是最简分式的有()4ax41x yab 2b2A .1个B .2个 C.3个 D.4 个5.(技能题)约分:( 1) x 26x 9 ; ( 2) m 23m 2 .x 29m 2m6. (技能题)通分:( 1)x 2 ,y; ( 2)a 1 ,6.6ab 222a 1a 29a bc a17. (妙法求解题)已知x+1=3,求x 4x 2 的值xx 21计算能力训练(分式2)1. 根据分式的基本性质,分式a 可变形为( )aaa baa A .B .CD .a b.-ba ba ba 2.下列各式中,正确的是()A . xy = x yxy x y; B . x y = x y x y x y; C .x y = xy; D . x y = x yx y x yx y x y3.下列各式中,正确的是( )A . a m aB . a b =0C . ab 1 b 1D .x y1b m ba bac 1 c 1x 2y 2x y4.( 2005·天津市)若 a= 2,则a 22a 3的值等于 _______ .3a 2 7a125.( 2005·广州市)计算a 2ab =_________.a2b26.公式x 22 , 2x 33 ,5 的最简公分母为( )( x 1)(1 x)x 1A .( x-1 ) 2B .( x-1 )3C .( x-1 )D .( x-1 ) 2( 1-x ) 37.x1? ,则?处应填上 _________,其中条件是 __________ . x1x 2 1拓展创新题8.(学科综合题)已知 a 2-4a+9b 2+6b+5=0,求 1 -1的值.a b2219.(巧解题)已知 x +3x+1=0,求 x + 的值.计算能力训练 (分式方程 1)选择1、(2009 年安徽)甲志愿者计划用若干个工作日完成社区的某项工作,从第三3个工作日起,乙志愿者加盟此项工作,且甲、乙两人工效相同,结果提前 天完成任务,则甲志愿者计划完成此项工作的天数是 ,,,,, 【 】 A .8 B.7 C .6 D . 5 2、(2009 年上海市 )3 .用换元法解分式方程x 13x 1时,如果设 x 1y ,xx 1x将原方程化为关于 y 的整式方程,那么这个整式方程是()A .y 2y3 0 . y 23 y 1 0B C . 3 y 2y 1 0. 2 y 1 0D 3 y3、(2009 襄樊市)分式方程x x1的解为( )x 3x 1A . 1B .-1C .-2D . -34、(2009 柳州) 5.分式方程12 3 的解是()2xxA . x 0B . x 1C . x 2D . x 35、(2009 年孝感)关于 x 的方程 2 xa 1 的解是正数,则 a 的取值范围是A .a >- 1x1B . a >- 1 且 a ≠ 0C .a <- 1D .a <- 1 且 a ≠- 26、( 2009 泰安)某服装厂准备加工 400 套运动装,在加工完 160 套后,采用了新技术,使得工作效率比原计划提高了 20%,结果共用了 18 天完成任务, 问计划每天加工服装多少套?在这个问题中,设计划每天加工 x 套,则根据题意可得方程为(A )16040018(B ) 160400 160 18x(1 20%) xx(1 20%) x( C )160 400 160 18( D ) 400400 160 18x 20% xx(1 20%) x7、(2009 年嘉兴市)解方程8 2的结果是()4 x 2 2 xA . x 2B . x 2C . x 4D .无解8、(2009 年漳州)分式方程2 1的解是()A . 1B . 1C .1D .13 31 9、(09 湖南怀化)分式方程2 的解是()3x 1A . x1 1 D .1B . x 2C . xx23310、( 2009 年安徽)甲志愿者计划用若干个工作日完成社区的某项工作,从第三个工作日起,乙志愿者加盟此项工作,且甲、乙两人工效相同,结果提前 3 天完成任务,则甲志愿者计划完成此项工作的天数是【 】A .8B.7C .6D . 511、( 2009年广东佛山)方程11 2的解是( )x xA . 0B .1C .2D .312、( 2009 年山西省)解分式方程1x 2 1 ,可知方程()x 2 2 xA .解为 x 2B .解为 x4C .解为 x 3D .无解 13、( 2009年广东佛山)方程 11 2的解是( )A . 0B .1x x C .2D .314、( 2009 年山西省)解分式方程1x 2 1 ,可知方程()x 2 2 xA .解为 x 2B .解为 x4C .解为 x 3D .无解计算能力训练 (分式方程 2)填空1、( 2009 年邵阳市)请你给 x 选择一个合适的值,使方程21 成立,你选择的 xx 1 x2=________。

初中数学计算能力提升训练测试题

初中数学计算能力提升训练测试题

6、〔1〕计算1092)21(⋅-=〔2〕计算532)(x x ÷计算能力训练〔整式2〕计算: (1))3()32()23(32232b a ab c b a -⋅-⋅-; (2))3)(532(22a a a -+-;〔3〕)8(25.123x x -⋅ ; 〔4〕)532()3(2+-⋅-x x x ;〔5〕())2(32y x y x +-; 〔6〕利用乘法公式计算:()()n m n m 234234+--+〔7〕()()x y y x 5225--- 〔8〕已知6,5-==+ab b a ,试求22b ab a +-的值1、 b a c b a 232232÷-2、 )2(23)2(433y x y x +÷+34、当5=x 时,试求整式()()13152322+--+-x x x x 的值5、已知4=+y x ,1=xy ,试求代数式)1)(1(22++y x 的值6、计算:)()532(222223m m n n m n m a a b a a-÷-+-++8、试确定2011201075⋅的个位数字1.〔辨析题〕不改变分式的值,使分式115101139x y x y -+的各项系数化为整数,分子、分母应乘以〔• 〕A .10B .9C .45D .902.〔探究题〕以下等式:①()a b c --=-a b c -;②x y x -+-=x y x -;③a b c -+=-a b c +; ④m n m --=-m n m-中,成立的是〔 〕 A .①② B .③④ C .①③ D .②④3.〔探究题〕不改变分式2323523x x x x -+-+-的值,使分子、分母最高次项的系数为正数,正确的选项是〔• 〕A .2332523x x x x +++-B .2332523x x x x -++-C .2332523x x x x +--+D .2332523x x x x ---+ 4.〔辨析题〕分式434y x a +,2411x x --,22x xy y x y-++,2222a ab ab b +-中是最简分式的有〔 〕 A .1个 B .2个 C .3个 D .4个5.〔技能题〕约分:〔1〕22699x x x ++-; 〔2〕2232m m m m-+-.6.〔技能题〕通分:〔1〕26x ab ,29y a bc ; 〔2〕2121a a a -++,261a -.7.〔妙法求解题〕已知x+1x =3,求2421x x x ++的值1.根据分式的基本性质,分式a a b--可变形为〔 〕 A .a a b -- B .a a b + C .-a a b - D .a a b + 2.以下各式中,正确的选项是〔 〕A .x y x y -+--=x y x y -+;B .x y x y -+-=x y x y ---;C .x y x y -+--=x y x y +-;D .x y x y -+-=x y x y-+ 3.以下各式中,正确的选项是〔 〕A .a m a b m b +=+B .a b a b ++=0C .1111ab b ac c --=--D .221x y x y x y-=-+ 4.〔2005·天津市〕假设a=23,则2223712a a a a ---+的值等于_______. 5.〔2005·广州市〕计算222a ab a b+-=_________. 6.公式22(1)x x --,323(1)x x --,51x -的最简公分母为〔 〕 A .〔x-1〕2 B .〔x-1〕3 C .〔x-1〕 D .〔x-1〕2〔1-x 〕37.21?11x x x -=+-,则?处应填上_________,其中条件是__________.拓展创新题8.〔学科综合题〕已知a 2-4a+9b 2+6b+5=0,求1a -1b 的值.9.〔巧解题〕已知x 2+3x+1=0,求x 2+21x 的值.选择1、〔2009年安徽〕甲志愿者计划用假设干个工作日完成社区的某项工作,从第三个工作日起,乙志愿者加盟此项工作,且甲、乙两人工效相同,结果提前3天完成任务,则甲志愿者计划完成此项工作的天数是……………【 】A .8 B.7 C .6 D .52、(2009年上海市)3.用换元法解分式方程13101x x x x --+=-时,如果设1x y x-=,将原方程化为关于y 的整式方程,那么这个整式方程是〔 〕A .230y y +-=B .2310y y -+=C .2310y y -+=D .2310y y --= 3、〔2009襄樊市〕分式方程131x x x x +=--的解为〔 〕 A .1 B .-1 C .-2 D .-34、〔2009柳州〕5.分式方程3221+=x x 的解是〔 〕 A .0=x B .1=x C .2=x D .3=x5、〔2009年孝感〕关于x 的方程211x a x +=-的解是正数,则a 的取值范围是 A .a >-1B .a >-1且a ≠0C .a <-1D .a <-1且a ≠-26、〔2009泰安〕某服装厂准备加工400套运动装,在加工完160套后,采用了新技术,使得工作效率比原计划提高了20%,结果共用了18天完成任务,问计划每天加工服装多少套?在这个问题中,设计划每天加工x 套,则根据题意可得方程为〔A 〕18%)201(400160=++x x 〔B 〕18%)201(160400160=+-+xx 〔C 〕18%20160400160=-+x x 〔D 〕18%)201(160400400=+-+x x7、〔2009年嘉兴市〕解方程x x -=-22482的结果是〔 〕 A .2-=xB .2=xC .4=xD .无解8、〔2009年漳州〕分式方程211x x=+的解是〔 〕A .1B .1-C .13D .13- 9、〔09湖南怀化〕分式方程2131=-x 的解是〔 〕 A .21=x B .2=x C .31-=x D . 31=x10、〔2009年安徽〕甲志愿者计划用假设干个工作日完成社区的某项工作,从第三个工作日起,乙志愿者加盟此项工作,且甲、乙两人工效相同,结果提前3天完成任务,则甲志愿者计划完成此项工作的天数是【 】A .8 B.7 C .6 D .511、〔2009年广东佛山〕方程121x x=-的解是〔 〕 A .0 B .1 C .2 D .312、〔2009年山西省〕解分式方程11222x x x-+=--,可知方程〔 〕 A .解为2x = B .解为4x = C .解为3x = D .无解13、〔2009年广东佛山〕方程121x x=-的解是〔 〕 A .0 B .1 C .2 D .314、〔2009年山西省〕解分式方程11222x x x-+=--,可知方程〔 〕 A .解为2x = B .解为4x = C .解为3x = D .无解计算能力训练(分式方程2)填空1、〔2009年邵阳市〕请你给x 选择一个合适的值,使方程2112-=-x x 成立,你选择的x =________。

(完整)初中数学计算能力提升训练测试题.doc

(完整)初中数学计算能力提升训练测试题.doc

强化运算能力提升数学质量计算能力训练(整式1)6、( 1)计算( 1 ) 9 210=2(2)计算(x2)3x 5计算能力训练(整式2)计算:(1) ( 3 a 2b3 c) ( 2 ab2 )2 ( 3a3 b) ;(2) ( 2a2 3a 5)(3 a2 ) ;2 3(3)1.25 x3( 8x 2 ) ;(4)(3x) (2x 23x 5) ;(5)2x 3 y (x 2 y) ;(6)利用乘法公式计算: 4m 3 2n 4m 32n (7) 5x 2 y 2 y 5x(8)已知a b 5, ab 6 ,试求 a2ab b2的值计算能力训练(整式3)1、2a 2 b3 c 2a 2b 2、3(x 2 y)33(x 2 y) 3 4 234、当x 5 时,试求整式3x22x25x 13x 1 的值5y 4 xy 1 2 2、已知 x ,,试求代数式的值6、计算 : ( 2a3m 2n3a 2m n b2 n 5a 2m )( a 2m )8、试确定520107 2011的个位数字计算能力训练(分式 1) 1.(辨析题)不改变分式的值,使分式( ? )1 x 1 y510的各项系数化为整数,分子、分母应乘以1 x 1 y39A . 10B . 9C .45D . 902.(探究题)下列等式:①( a b) =- a b ; ② x y = x y; ③ a b =- a b ;c c x x c c④m n=-m n中 , 成立的是()mmA .①②B .③④C .①③D .②④23.(探究题)不改变分式23xx的值,使分子、分母最高次项的系数为正数,正确5x 3 2x 3的是( ? )A . 3x 2x 2B . 3x 2 x 2C . 3x 2x 2D . 3x 2 x 25x 32x 35x 3 2x 35x 32x 35x 32x 34.(辨析题)分式 4 y 3x ,x 2 1 ,x 2 xy y 2,a 2 2ab 中是最简分式的有()4ax 4 1 x yab 2b 2A . 1 个B . 2 个 C. 3 个 D.4 个5.(技能题)约分:( 1)x 26x 9 ; ( 2)m 23m 2 .x 29m 2m6. (技能题)通分:( 1)x 2 ,y; ( 2)a 1,6.6ab 222a 1 a 29a bc a 17. (妙法求解题)已知1x 2的值x+ =3,求x 4 x 2x1计算能力训练(分式 2)1. 根据分式的基本性质,分式a可变形为()a bA .a B .aa D .aa bC .-ba ba ba 2.下列各式中,正确的是( )A . x y = x yx y x y; B . x y = xy x yx y; C . x y = x y x y x y; D . x y = x yx y x y3.下列各式中,正确的是()A . a m aB . a b =0C . ab 1 b 1D .x y1b m ba bac 1 c 1x 2 y 2x y4.( 2005·天津市)若 2,则a 2 2a 3a=a 2 7a 的值等于 _______ .312a 2 ab =_________.5.( 2005·广州市)计算 2b 2a6.公式x 22 ,2x 33 , 5 的最简公分母为( )( x 1) (1 x) x 1A .( x-1 ) 2B .( x-1 )3C.( x-1 ) D .( x-1 ) 2( 1-x ) 37.x1 ? ,则?处应填上 _________,其中条件是 __________ . x 1 x2 1拓展创新题8.(学科综合题)已知 a 2-4a+9b 2+6b+5=0,求 1 -1的值.a b9.(巧解题)已知 x 2+3x+1=0,求 x 2+ 1的值.x 2计算能力训练 (分式方程 1)1、(2009 年安徽)甲志愿者 划用若干个工作日完成社区的某 工作,从第三个工作日起,乙志愿者加盟此 工作,且甲、乙两人工效相同, 果提前 3 天完成任 , 甲志愿者 划完成此 工作的天数是⋯⋯⋯⋯⋯【 】A .8 B.7 C .6 D . 52、(2009 年上海市 )3 .用 元法解分式方程x 13x 1 0 ,如果x 1y ,xx 1x将原方程化 关于 y 的整式方程,那么 个整式方程是()A .y 2y 3 0 . y 23y 1 0B C .3 y 2y 1 0. 3 y 2 y 1 0D3、(2009 襄樊市)分式方程x 3 x 1的解 ()xx 1 A . 1B . -1C .-2D . -34、(2009 柳州) 5.分式方程12 的解是()2x x 3A . x 0B . x 1C . x 2D . x 35、(2009 年孝感)关于 x 的方程2 xa 1 的解是正数, a 的取 范 是A .a >- 1x1B . a >- 1 且 a ≠ 0C .a <- 1D .a <- 1 且 a ≠- 26、( 2009 泰安)某服装厂准 加工 400 套运 装,在加工完 160 套后,采用了新技 ,使得工作效率比原 划提高了 20%, 果共用了 18 天完成任 ,划每天加工服装多少套?在 个 中, 划每天加工 x 套, 根据 意可得方程( A )160400 18(B ) 160400 160 18x (1 20%) xx(1 20%) x( C )160 400 160 18( D ) 400400 160 18x20% xx(1 20%) x7、(2009 年嘉 市)解方程8 2的 果是() 4 x 2 2 xA . x 2B . x 2C . x 4D .无解8、(2009 年漳州)分式方程2 1的解是()x 1 xA . 1B . 1C .1D .13 31 9、(09 湖南怀化)分式方程2 的解是()3x 1A . x1 1 D .1 B . x 2C . xx23310、( 2009 年安徽)甲志愿者计划用若干个工作日完成社区的某项工作,从第三个工作日起,乙志愿者加盟此项工作,且甲、乙两人工效相同,结果提前 3天完成任务,则甲志愿者计划完成此项工作的天数是【 】A .8 B.7 C .6 D . 511、( 2009年广东佛山)方程1 12 的解是( )x xA . 0B .1C .2D .312、( 2009 年山西省)解分式方程1x 2 1 ,可知方程()x 2 2 xA .解为 x 2B .解为 x4 C .解为 x 3D .无解 13、( 2009年广东佛山)方程 1 1 2 的解是( )A . 0B .1x x C .2D .314、( 2009 年山西省)解分式方程1x 2 1 ,可知方程()x 2 2 xA .解为 x 2B .解为 x4 C .解为 x 3D .无解计算能力训练 (分式方程 2)填空1、( 2009 年邵阳市)请你给 x 选择一个合适的值,使方程 2 1 成立,你选择的 x =________。

初中数学计算能力提升训练测试题

初中数学计算能力提升训练测试题

3、( 2009 年滨州)解方程 4、( 2009 仙桃)分式方程 5、 (2009 成都 ) 分式方程
时,若设
,则方程可化为

的解为 ________________ .
的解是 _________
6、( 2009 山西省太原市)方程
的解是

7、( 2009 年吉林省)方程
的解是
8、( 2009 年杭州市)已知关于 的方程
7.
,则?处应填上 _________,其中条件是 __________ .
拓展创新题 8.(学科综合题)已知 a2-4a+9b 2+6b+5=0,求 - 的值.
9.(巧解题)已知 x 2+3x+1=0,求 x2+ 的值.
计算能力训练 (分式方程 1)
选择
1、( 2009 年安徽)甲志愿者计划用若干个工作日完成社区的某项工作,从第三个工作日起,乙 志愿者加盟此项工作,且甲、乙两人工效相同,结果提前 3 天完成任务,则甲志愿者计划完
二、分组分解因式
,则该三角形的形状 ,则这个三 角形 是 ,试判断△ ABC的形
1.分解因式: a2- 1+ b2-2ab=_______________。
2.分解因式:
_______________。
三、其他
1.已知: m2=n+ 2, n2= m+ 2(m≠ n) ,求: m3- 2mn+n3 的值。
四、①已知

的值,②若
值.
五、若
,求
的值.
六、说明 :对于任意的正整数 n, 代数式 n(n+7)-(n+3)(n-2)的值是否总能被 6 整除.( 7 分)
计算能力训练( 一元一次方程 1)

初中数学计算能力提升训练测试题 打印

初中数学计算能力提升训练测试题  打印

1.化简:b b a a 3)43(4---.2.求比多项式22325b ab a a +--少ab a -25的多项式.3.先化简、再求值)432()12(3)34(222a a a a a a --+-+-- (其中2-=a )4、先化简、再求值)]23()5[(42222y xy x y xy x xy -+--+- (其中21,41-=-=y x )5、计算a a a ⋅+2433)(2)(36、(1)计算1092)21(⋅-= (2)计算532)(x x ÷(3)下列计算正确的是 ( ).(A)3232a a a =+ (B)a a 2121=- (C)623)(a a a -=⋅- (D)aa 221=-计算: (1))3()32()23(32232b a ab c b a -⋅-⋅-; (2))3)(532(22a a a -+-;(3))8(25.123x x -⋅ ; (4))532()3(2+-⋅-x x x ;(5)())2(32y x y x +-; (6)利用乘法公式计算:()()n m n m 234234+--+(7)()()x y y x 5225--- (8)已知6,5-==+ab b a ,试求22b ab a +-的值(9)计算:2011200920102⨯-(10)已知多项式3223-++x ax x 能被122+x 整除,商式为3-x ,试求a 的值1、 b a c b a 232232÷-2、 )2(23)2(433y x y x +÷+3、22222335121)433221(y x y x y x y x ÷+-4、当5=x 时,试求整式()()13152322+--+-x x x x 的值5、已知4=+y x ,1=xy ,试求代数式)1)(1(22++y x 的值6、计算:)()532(222223m m n n m nm a a b a a -÷-+-++7、一个矩形的面积为ab a 322+,其宽为a ,试求其周长8、试确定2011201075⋅的个位数字1.(辨析题)不改变分式的值,使分式115101139x yx y -+的各项系数化为整数,分子、分母应乘以(• )A .10B .9C .45D .90 2.(探究题)下列等式:①()a b c --=-a b c -;②x y x -+-=x y x -;③a b c -+=-a bc+;④m n m --=-m nm-中,成立的是( )A .①②B .③④C .①③D .②④3.(探究题)不改变分式2323523x xx x -+-+-的值,使分子、分母最高次项的系数为正数,正确的是(• )A .2332523x x x x +++-B .2332523x x x x -++-C .2332523x x x x +--+D .2332523x x x x ---+4.(辨析题)分式434y x a+,2411x x --,22x xy y x y -++,2222a abab b +-中是最简分式的有( )A .1个B .2个C .3个D .4个5.(技能题)约分:(1)22699x x x ++-; (2)2232m m m m-+-.6.(技能题)通分:(1)26x ab ,29y a bc ; (2)2121a a a -++,261a -.7.(妙法求解题)已知x+1x=3,求2421x x x ++的值计算能力训练(分式2)1.根据分式的基本性质,分式aa b--可变形为( ) A .a a b -- B .a a b + C .-a a b - D .aa b+2.下列各式中,正确的是( )A .x y x y -+--=x y x y -+; B .x y x y -+-=x y x y ---; C .x y x y -+--=x y x y +-; D .x y x y -+-=x yx y-+3.下列各式中,正确的是( ) A .a m ab m b +=+ B .a ba b++=0 C .1111ab b ac c --=-- D .221x y x y x y -=-+ 4.(2005·天津市)若a=23,则2223712a a a a ---+的值等于_______.5.(2005·广州市)计算222a aba b+-=_________. 6.公式22(1)x x --,323(1)x x --,51x -的最简公分母为( )A .(x-1)2B .(x-1)3C .(x-1)D .(x-1)2(1-x )37.21?11x x x -=+-,则?处应填上_________,其中条件是__________.拓展创新题8.(学科综合题)已知a 2-4a+9b 2+6b+5=0,求1a -1b的值.9.(巧解题)已知x 2+3x+1=0,求x 2+21x 的值.计算能力训练(分式方程1)选择1、(2009年安徽)甲志愿者计划用若干个工作日完成社区的某项工作,从第三个工作日起,乙志愿者加盟此项工作,且甲、乙两人工效相同,结果提前3天完成任务,则甲志愿者计划完成此项工作的天数是……………【 】 A .8 B.7 C .6 D .52、(2009年上海市)3.用换元法解分式方程13101x x x x --+=-时,如果设1x y x -=,将原方程化为关于y 的整式方程,那么这个整式方程是( )A .230y y +-=B .2310y y -+=C .2310y y -+=D .2310y y --=3、(2009襄樊市)分式方程131x x x x +=--的解为( ) A .1 B .-1 C .-2 D .-34、(2009柳州)5.分式方程3221+=x x 的解是( ) A .0=x B .1=x C .2=x D .3=x 5、(2009年孝感)关于x 的方程211x a x +=-的解是正数,则a 的取值范围是A .a >-1B .a >-1且a ≠0C .a <-1D .a <-1且a ≠-26、(2009泰安)某服装厂准备加工400套运动装,在加工完160套后,采用了新技术,使得工作效率比原计划提高了20%,结果共用了18天完成任务,问计划每天加工服装多少套?在这个问题中,设计划每天加工x 套,则根据题意可得方程为 (A )18%)201(400160=++x x (B )18%)201(160400160=+-+x x (C ) 18%20160400160=-+xx (D )18%)201(160400400=+-+x x7、(2009年嘉兴市)解方程xx -=-22482的结果是( ) A .2-=x B .2=x C .4=x D .无解8、(2009年漳州)分式方程211x x =+的解是( ) A .1B .1-C .13D .13-9、(09湖南怀化)分式方程2131=-x 的解是( ) A .21=x B .2=x C .31-=x D . 31=x10、(2009年安徽)甲志愿者计划用若干个工作日完成社区的某项工作,从第三个工作日起,乙志愿者加盟此项工作,且甲、乙两人工效相同,结果提前3天完成任务,则甲志愿者计划完成此项工作的天数是【 】 A .8 B.7 C .6 D .511、(2009年广东佛山)方程121x x=-的解是( )A .0B .1C .2D .312、(2009年山西省)解分式方程11222x x x-+=--,可知方程( ) A .解为2x = B .解为4x = C .解为3x = D .无解13、(2009年广东佛山)方程121x x=-的解是( )A .0B .1C .2D .314、(2009年山西省)解分式方程11222x x x-+=--,可知方程( ) A .解为2x = B .解为4x = C .解为3x = D .无解计算能力训练(分式方程2)填空1、(2009年邵阳市)请你给x 选择一个合适的值,使方程2112-=-x x 成立,你选择的x =________。

整理初中数学计算能力提升训练测试题--打印

整理初中数学计算能力提升训练测试题--打印

初中数学计算能力提升训练测试题1.简案1课时课前预习比一比,看谁算得又对又快,并说说计算方法。

124×75= 28×154=教学内容教科书P50、P51练习八。

教学目标1.学生在已有的笔算乘法的基础上,通过自主探究,进一步熟练三位数乘两位数的笔算方法,提高计算能力和解决实际问题的能力。

2.学生在汇报展示、课堂互动交流中经历巩固笔算乘法计算和解决问题的全过程,体验数学知识的应用性,进一步巩固算理和计算的方法。

3.在学习的过程中,感受数学知识与实际生活的联系,进一步体验学习成功带来的快乐,激发探索计算方法、解决问题的兴趣。

教学重点熟练三位数乘两位数的笔算方法,能正确计算。

教学难点应用数学知识解决实际问题。

教学用具口算卡片、多媒体课件。

教学过程基础练习一、基础练习1.口算热身28×3= 16×8= 300×16= 40×60=4×160= 3×150= 12×52≈ 29×49≈学生开火车形式回答,并说说你是怎样口算和估算的。

(动画效果,单击)2. 填空3 2 2× 2 41 2 8 8 表示( )6 4 4 表示( )7 7 2 8 表示( )学生回答,并对他正确的回答表示肯定和赞扬。

(动画效果,单击)综合练习1.列竖式计算124×73= 28×153=(1)指两名学生到黑板上做题。

(2)同桌互对答案并改正,并说说你是怎么算的?(动画效果,单击)(3)观察两位同学在黑板上所做的题,判断对不对?如不对,可主动到黑板前用红粉笔改正。

(4)寻找学生的错例并投影出来,让学生观察这些题有没有错?错在哪里?谁来帮帮他?(5)28×153这个横式怎样列竖式计算比较简便?(6)小结:列竖式计算时要注意些什么?2.引诱上当(1)让学生仔细观察,说一说这些题有没有错?错在哪里?然后改正。

初中数学计算能力提升训练测试题

初中数学计算能力提升训练测试题

计算能力训练(整式1)6、(1)计算1092)21(⋅-= (2)计算532)(x x ÷计算能力训练(整式2)计算: (1))3()32()23(32232b a ab c b a -⋅-⋅-;(2))3)(532(22a a a -+-; (3))8(25.123x x -⋅;(4))532()3(2+-⋅-x x x ;(5)())2(32y x y x +-;(6)利用乘法公式计算:()()n m n m 234234+--+(7)()()x y y x 5225---(8)已知6,5-==+ab b a ,试求22b ab a +-的值 计算能力训练(整式3)1、b a c b a 232232÷-2、)2(23)2(433y x y x +÷+ 34、当5=x 时,试求整式()()13152322+--+-x x x x 的值5、已知4=+y x ,1=xy ,试求代数式)1)(1(22++y x 的值6、计算:)()532(222223m m n n m n m a a b a a -÷-+-++8、试确定2011201075⋅的个位数字1.(辨析题)不改变分式的值,使分式115101139x y x y -+的各项系数化为整数,分子、分母应乘以(•)A .10B .9C .45D .902.(探究题)下列等式:①()a b c --=-a b c -;②x yx -+-=x yx -;③a b c -+=-a b c+; ④m n m --=-m n m-中,成立的是() A .①②B .③④C .①③D .②④3.(探究题)不改变分式2323523x x x x -+-+-的值,使分子、分母最高次项的系数为正数,正确的是(•)A .2332523x x x x +++-B .2332523x x x x -++-C .2332523x x x x +--+D .2332523x x x x ---+ 4.(辨析题)分式434y x a +,2411x x --,22x xy y x y -++,2222a ab ab b +-中是最简分式的有()A .1个B .2个C .3个D .4个5.(技能题)约分:(1)22699x x x ++-;(2)2232m m m m-+-. 6.(技能题)通分:(1)26xab ,29y a bc ;(2)2121a a a -++,261a -. 7.(妙法求解题)已知x+1x =3,求2421x x x ++的值1.根据分式的基本性质,分式a a b--可变形为() A .a a b --B .a a b +C .-a a b -D .a a b + 2.下列各式中,正确的是()A .x y x y -+--=x y x y -+;B .x y x y -+-=x y x y ---;C .x y x y -+--=x y x y +-;D .x y x y -+-=x y x y-+ 3.下列各式中,正确的是()A .a m a b m b +=+B .a b a b ++=0C .1111ab b ac c --=--D .221x y x y x y -=-+ 4.(2005·天津市)若a=23,则2223712a a a a ---+的值等于_______. 5.(2005·广州市)计算222a ab a b+-=_________. 6.公式22(1)x x --,323(1)x x --,51x -的最简公分母为() A .(x-1)2B .(x-1)3 C .(x-1)D .(x-1)2(1-x )3 7.21?11x x x -=+-,则?处应填上_________,其中条件是__________. 拓展创新题8.(学科综合题)已知a 2-4a+9b 2+6b+5=0,求1a -1b 的值.9.(巧解题)已知x 2+3x+1=0,求x 2+21x 的值.计算能力训练(分式方程1)选择1、(2009年安徽)甲志愿者计划用若干个工作日完成社区的某项工作,从第三个工作日起,乙志愿者加盟此项工作,且甲、乙两人工效相同,结果提前3天完成任务,则甲志愿者计划完成此项工作的天数是……………【】A .8 B.7 C .6 D .52、(2009年上海市)3.用换元法解分式方程13101x x x x --+=-时,如果设1x y x-=,将原方程化为关于y 的整式方程,那么这个整式方程是()A .230y y +-=B .2310y y -+=C .2310y y -+=D .2310y y --= 3、(2009襄樊市)分式方程131x x x x +=--的解为() A .1B .-1 C .-2 D .-34、(2009柳州)5.分式方程3221+=x x 的解是() A .0=x B .1=x C .2=x D .3=x 5、(2009年孝感)关于x 的方程211x ax +=-的解是正数,则a 的取值范围是 A .a >-1 B .a >-1且a ≠0C .a <-1D .a <-1且a ≠-26、(2009泰安)某服装厂准备加工400套运动装,在加工完160套后,采用了新技术,使得工作效率比原计划提高了20%,结果共用了18天完成任务,问计划每天加工服装多少套?在这个问题中,设计划每天加工x 套,则根据题意可得方程为(A )18%)201(400160=++x x (B )18%)201(160400160=+-+xx (C )18%20160400160=-+xx (D )18%)201(160400400=+-+x x 7、(2009年嘉兴市)解方程x x -=-22482的结果是( ) A .2-=x B .2=x C .4=x D .无解8、(2009年漳州)分式方程211x x=+的解是() A .1 B .1-C .13 D .13- 9、(09湖南怀化)分式方程2131=-x 的解是() A .21=x B .2=x C .31-=x D .31=x 10、(2009年安徽)甲志愿者计划用若干个工作日完成社区的某项工作,从第三个工作日起,乙志愿者加盟此项工作,且甲、乙两人工效相同,结果提前3天完成任务,则甲志愿者计划完成此项工作的天数是【】A .8 B.7 C .6 D .511、(2009年广东佛山)方程121x x=-的解是( )A .0B .1C .2D .312、(2009年山西省)解分式方程11222x x x-+=--,可知方程() A .解为2x =B .解为4x =C .解为3x =D .无解13、(2009年广东佛山)方程121x x=-的解是( ) A .0 B .1 C .2 D .314、(2009年山西省)解分式方程11222x x x-+=--,可知方程() A .解为2x =B .解为4x =C .解为3x =D .无解计算能力训练(分式方程2)填空1、(2009年邵阳市)请你给x 选择一个合适的值,使方程2112-=-x x 成立,你选择的x =________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.化简:b b a a 3)43(4---.2.求比多项式22325b ab a a +--少ab a -25的多项式.3.先化简、再求值)432()12(3)34(222a a a a a a --+-+-- (其中2-=a )4、先化简、再求值)]23()5[(42222y xy x y xy x xy -+--+- (其中21,41-=-=y x )5、计算a a a ⋅+2433)(2)(36、(1)计算1092)21(⋅-=(2)计算532)(x x ÷(3)下列计算正确的是 ( ).(A)3232a a a =+ (B)a a 2121=- (C)623)(a a a -=⋅- (D)aa 221=-计算: (1))3()32()23(32232b a ab c b a -⋅-⋅-; (2))3)(532(22a a a -+-;(3))8(25.123x x -⋅ ; (4))532()3(2+-⋅-x x x ;(5)())2(32y x y x +-; (6)利用乘法公式计算:()()n m n m 234234+--+(7)()()x y y x 5225--- (8)已知6,5-==+ab b a ,试求22b ab a +-的值(9)计算:2011200920102⨯-(10)已知多项式3223-++x ax x 能被122+x 整除,商式为3-x ,试求a 的值1、 b a c b a 232232÷-2、 )2(23)2(433y x y x +÷+3、22222335121)433221(y x y x y x y x ÷+-4、当5=x 时,试求整式()()13152322+--+-x x x x 的值5、已知4=+y x ,1=xy ,试求代数式)1)(1(22++y x 的值6、计算:)()532(222223m m n n m n m a a b a a-÷-+-++7、一个矩形的面积为ab a 322+,其宽为a ,试求其周长8、试确定2011201075⋅的个位数字1.(辨析题)不改变分式的值,使分式115101139x y x y -+的各项系数化为整数,分子、分母应乘以(• )A .10B .9C .45D .902.(探究题)下列等式:①()a b c --=-a b c -;②x y x -+-=x y x -;③a b c -+=-a b c +; ④m n m --=-m n m-中,成立的是( ) A .①② B .③④ C .①③ D .②④3.(探究题)不改变分式2323523x x x x -+-+-的值,使分子、分母最高次项的系数为正数,正确的是(• )A .2332523x x x x +++-B .2332523x x x x -++-C .2332523x x x x +--+D .2332523x x x x ---+ 4.(辨析题)分式434y x a+,2411x x --,22x xy y x y -++,2222a ab ab b +-中是最简分式的有( ) A .1个 B .2个 C .3个 D .4个5.(技能题)约分:(1)22699x x x ++-; (2)2232m m m m -+-.6.(技能题)通分:(1)26x ab ,29y a bc ; (2)2121a a a -++,261a -.7.(妙法求解题)已知x+1x=3,求2421x x x ++的值1.根据分式的基本性质,分式a a b--可变形为( ) A .a a b -- B .a a b + C .-a a b - D .a a b + 2.下列各式中,正确的是( )A .x y x y -+--=x y x y -+;B .x y x y -+-=x y x y ---;C .x y x y -+--=x y x y +-;D .x y x y -+-=x y x y-+ 3.下列各式中,正确的是( )A .a m a b m b +=+B .a b a b ++=0C .1111ab b ac c --=-- D .221x y x y x y -=-+ 4.(2005·市)若a=23,则2223712a a a a ---+的值等于_______. 5.(2005·市)计算222a ab a b+-=_________. 6.公式22(1)x x --,323(1)x x --,51x -的最简公分母为( ) A .(x-1)2 B .(x-1)3 C .(x-1) D .(x-1)2(1-x )37.21?11x x x -=+-,则?处应填上_________,其中条件是__________.拓展创新题8.(学科综合题)已知a 2-4a+9b 2+6b+5=0,求1a -1b 的值.9.(巧解题)已知x 2+3x+1=0,求x 2+21x的值.选择1、(2009年)甲志愿者计划用若干个工作日完成社区的某项工作,从第三个工作日起,乙志愿者加盟此项工作,且甲、乙两人工效相同,结果提前3天完成任务,则甲志愿者计划完成此项工作的天数是……………【 】A .8 B.7 C .6 D .52、(2009年市)3.用换元法解分式方程13101x x x x --+=-时,如果设1x y x-=,将原方程化为关于y 的整式方程,那么这个整式方程是( )A .230y y +-=B .2310y y -+=C .2310y y -+=D .2310y y --= 3、(2009襄樊市)分式方程131x x x x +=--的解为( ) A .1 B .-1 C .-2 D .-34、(2009)5.分式方程3221+=x x 的解是( ) A .0=x B .1=x C .2=x D .3=x5、(2009年)关于x 的方程211x a x +=-的解是正数,则a 的取值围是 A .a >-1B .a >-1且a ≠0C .a <-1D .a <-1且a ≠-26、(2009)某服装厂准备加工400套运动装,在加工完160套后,采用了新技术,使得工作效率比原计划提高了20%,结果共用了18天完成任务,问计划每天加工服装多少套?在这个问题中,设计划每天加工x 套,则根据题意可得方程为(A )18%)201(400160=++x x (B )18%)201(160400160=+-+xx (C )18%20160400160=-+x x (D )18%)201(160400400=+-+x x7、(2009年市)解方程x x -=-22482的结果是( ) A .2-=xB .2=xC .4=xD .无解8、(2009年)分式方程211x x=+的解是( )A .1B .1-C .13D .13- 9、(09)分式方程2131=-x 的解是( ) A .21=x B .2=x C .31-=x D . 31=x 10、(2009年)甲志愿者计划用若干个工作日完成社区的某项工作,从第三个工作日起,乙志愿者加盟此项工作,且甲、乙两人工效相同,结果提前3天完成任务,则甲志愿者计划完成此项工作的天数是【 】A .8 B.7 C .6 D .511、(2009年)方程121x x=-的解是( ) A .0 B .1 C .2 D .312、(2009年省)解分式方程11222x x x-+=--,可知方程( ) A .解为2x = B .解为4x = C .解为3x = D .无解13、(2009年)方程121x x=-的解是( ) A .0 B .1 C .2 D .314、(2009年省)解分式方程11222x x x-+=--,可知方程( ) A .解为2x = B .解为4x = C .解为3x = D .无解计算能力训练(分式方程2)填空1、(2009年市)请你给x 选择一个合适的值,使方程2112-=-x x 成立,你选择的x =________。

2、(2009年市)方程1112x x=+的解是x = 3、(2009年滨州)解方程2223321x x x x --=-时,若设21x y x =-,则方程可化为 . 4、(2009仙桃)分式方程11x x 1x 2--=+的解为________________. 5、(2009)分式方程2131x x =+的解是_________ 6、(2009省市)方程2512x x=-的解是 . 7、(2009年省)方程312x =-的解是 8、(2009年市)已知关于x 的方程322=-+x m x 的解是正数,则m 的取值围为_____________. 9、(2009年市)在课外活动跳绳时,相同时间小林跳了90下,小群跳了120下.已知小群每分钟比小林多跳20下,设小林每分钟跳x 下,则可列关于x 的方程为 .10、(2009年市)若关于x 的分式方程311x a x x --=-无解,则a = . 11、(2009年)分式方程1211x x =+-的解为 .12、(2009年)方程x x 527=+的解是 .13、(2009年)若关于x 的分式方程311x a x x --=-无解,则a = .14、(2009年市江津区)分式方程121+=x x 的解是 .15、(2009年市)分式方程1223x x =+的解是_____________.16、(2009)方程0211=+-x 的解是 . 计算能力训练(分式方程4)1、 解分式方程:(1)132x x=- (2)223-=x x(3)x x x -=+--23123. (4)21x +=1.(5)22333x x x -+=-- (6)22111x x =---(7)2131x x =--. (8)223-=x x(9)x x x -=+--23123. (10)6122x x x +=-+(11)14143=-+--xx x (12)33122x x x -+=--.(13)22111x x =---. (14)12111x x x -=--. 计算能力训练(整式的乘除与因式分解1)一、逆用幂的运算性质1.2005200440.25⨯= .2.( 23 )2002×(1.5)2003÷(-1)2004=________。

3.若23n x =,则6n x = .4.已知:2,3==n m x x ,求n m x 23+、n m x 23-的值。

5.已知:a m =2,b n =32,则n m 1032+=________。

相关文档
最新文档