精编【复变函数】 史上最全ppt 上_图文.ppt
合集下载
复变函数第4讲PPT课件
§2.1 解析函数的概念
1.复变函数的导数
1)导数概念:
设函数f (z)在点z0及其邻域内有定义,如果极限
lim f (z0 z) f (z0 )
z 0
z
存在, 那么就说f (z)在点z0可导. 这个极限值称
为f (z)在点z0的导数.
记作
f
'(z0 )
dw dz
z z0
lim
z 0
f
( z0
u e x cos y, x v e x si n y, x
u e x si ny u v
y v
e x cos y
x y v u
y
x y
故 f (z) e x (cos y i siny)在 全 平 面 可 导 , 解 析 。
f '(z) u i v e x cos y ie x si ny f (z). x x
条件是 u(x, y) 和 v(x, y)在D内可微,且
满足Cauchy-Rieman方程
u v ,
v
u .
x y x y
并且在解析的条件下
f (z) ux ivx vy iuy
第18页/共26页
例1 判定下列函数在何处可导,在何处解析:
(1) f (z) ex (cosy i siny); 解:(1) u e x cos y, v e x siny,
第7页/共26页
例如
f
(z)
1 z2
z
,则当z
0,
1时 ,f
'(z)
2z 1 (z2 z)2
.
思考题
实 函 数 中, f ( x) x 2 在( , )内 可 导;
1.复变函数的导数
1)导数概念:
设函数f (z)在点z0及其邻域内有定义,如果极限
lim f (z0 z) f (z0 )
z 0
z
存在, 那么就说f (z)在点z0可导. 这个极限值称
为f (z)在点z0的导数.
记作
f
'(z0 )
dw dz
z z0
lim
z 0
f
( z0
u e x cos y, x v e x si n y, x
u e x si ny u v
y v
e x cos y
x y v u
y
x y
故 f (z) e x (cos y i siny)在 全 平 面 可 导 , 解 析 。
f '(z) u i v e x cos y ie x si ny f (z). x x
条件是 u(x, y) 和 v(x, y)在D内可微,且
满足Cauchy-Rieman方程
u v ,
v
u .
x y x y
并且在解析的条件下
f (z) ux ivx vy iuy
第18页/共26页
例1 判定下列函数在何处可导,在何处解析:
(1) f (z) ex (cosy i siny); 解:(1) u e x cos y, v e x siny,
第7页/共26页
例如
f
(z)
1 z2
z
,则当z
0,
1时 ,f
'(z)
2z 1 (z2 z)2
.
思考题
实 函 数 中, f ( x) x 2 在( , )内 可 导;
复变函数第二章(第三讲)PPT课件
解 (2) f (z)=ex(cosy +isiny) 则 u=excosy, v= exsiny
u e x cos y, x v e x sin y, x
u e x sin y u v
y v
e x cos y
x v
y u
在R
2成立,
y
x y
且u, v在R2上偏导数连续
故 f (z) e x (cos y i sin y)在复平面C上可导,解析; 且f '(z) u i v e x cos y ie x sin y f (z)。
定理 设f (z)= u + i v, z= x +i y, z0=x0+i y0, 则f (z)在
(1) u( x, y), v( x, y)在( x0 , y0 )可微 ,
z0处可导 (2)
u x
v ,
y
u y
v x
在(
x0
,
y0
)成立.
定义 方程
u v v u x y x y
称为Cauchy-Riemann方程(简称C-R方程).
1.导数的概念
定义2.1.1 设函数f (z)在z0的某邻域N( z0 ,δ)内有定
义, 且极限 lim f (z0 z) f (z0 )存在,则称函数
z0
z
f (z)在点z0处可导。称此极限值为f (z)在z0的导数
记作
dw f '(z0 ) dz zz0
lim z0
f (z0 z) z
z
z
x x x x x iy x iy
当z取实数趋于0时, f z 1; 当z取纯虚数趋于0时, f z
0;
【精品】复变函数总复习PPT课件
其中 是由 c 与 c k 组成的复合闭路
3、牛顿-莱不尼茨公式
设函数 f ( z ) 在单连通区域D内解析,G ( z )
为 f ( z ) 的一个原函数,则
z2 z1
f(z)dzG(z2)G(z1)
4、柯西积分公式
设函数 f ( z ) 在区域D内处处解析,C为D
内任意一条正向简单闭曲线,它的内部完全属
第一章:复数与复变函数
❖ 复数的概念 ❖ 复数的运算 ❖ 复数的几何表示 1、复平面 1)复数 zxyi用平面上的点( x , y )表示;
2)复数 zxyi用平面上的向量 O z 表示
3)复数的三角表示式及指数表示式
zz(cos(argz)isin(argz))(三角式)
zeiargz
(指数式)
(1i)i e e iLni()1 i[ln 1 i iA(1 r ig )]
e e i12ln24i2ki
42ki12ln2
e 4 2k c o 1 2lsn 2 isi 1 2 n ln 2
其 k 0 , 1 中 , 2 , . 故 (1 i)i的 辐 角 的 主 值 为 1 ln 2 .
函数 f(z) u (x ,y) iv (x ,y )在点 z xiy 处的 导数公式:
f(z) u i v u i u v i v v i u x x x y y x y y
定理2 设函数 f(z) u (x ,y) iv (x ,y )在区域D
内有定义,则 f ( z ) 在D内解析 u( x , y )与 v ( x , y )
1、 f(z)dz f(z)dz
c
c
2、 ckf(z)dzkcf(z)dz
3、 c [f(z ) g (z )] d z cf(z )d z cg (z )d z
复变函数与积分变换PPT_图文_图文
x y=-3
§1.4 复数域的几何模型---复球面
N
0
对复平面内任一 点z, 用直线将z 与N相连, 与球面 相交于P点, 则球 面上除N点外的 所有点和复平面 上的所有点有一 一对应的关系, 而N点本身可代 表无穷远点, 记 作.
这样的球面称作 x1
复球面.
x
x1
x3
除了复数的平
面表示方法外,
加减法与平行四边形 法则的几何意义:
乘、除法的几何意义
:
,
,
,
定理1 两个复数乘积的模等于它们的模的乘积, 两个复 数乘积的幅角等于它们幅角的和.
几何上 z1z2 相 当于将 z2 的 模扩大 |z1| 倍 并旋转一个角
度Arg z1 .
0
1
等式 Arg(z1z2)=Arg z1+Arg z2, 的意思是等式的两 边都是无限集合, 两边的集合相等, 即每给定等式左边 的一个数, 就有等式右边的一个数与之对应, 反之亦然 .
复变函数与积分变换PPT_图文_图文.ppt
引言
在十六世纪中叶,G. Cardano (1501-1576) 在研究一元二次
方程
时引进了复数。他发现这个方程没有根,并
把这个方程的两个根形式地表为
。在当时,
包括他自己在内,谁也弄不清这样表示有什麽好处。事实上,
复数被Cardano引入后,在很长一段时间内不被人们所理睬,并 被认为是没有意义的,不能接受的“虚数”。直到十七与十八世纪,
解:
设 z = x + i y , 方程变为
y
O
x
-i
几何上, 该方程表示到点2i和-2的距离相等的点的轨 迹, 所以方程表示的曲线就是连接点2i和-2的线段的垂直
复数及复变函数.ppt
z2 z1 — 点z1与z2之间的距离
由此得 :
z1
z2 z1 z2 z1 (三角不等式)
z2
z2 z1 z2 z1
o
x
8 October 2020 © 2009, Henan Polytechnic University
99
第一章复数及复变函数
2. 几何形式(向量表示)
z x iy 点P( x,y) OP { x, y}
可用向量OP表示z x iy .
称向量的长度为复数z=x+iy的模或绝对值;
以正实轴 为始边, 以向量OP为终边的角的
弧度数 称为复数z=x+iy的辐角.(z≠0时)
y
(z)
模 :| z || OP | r
定义 若z=x+iy , 称z=x-iy 为z 的共轭复数.
•共轭复数的性质
(conjugate)
(1) (z1 z2 ) z1 z2
(z1z2 ) z1z2
(2) z z (4)z z 2 Re(z)
( z1 ) z1
z z 2i Im(z)
z2 z2
(3)z z
(R(e z))2 (Im(z))2
记作θ0=argz.
z=0时,辐角不确定(不定义)
计算
argz(z≠0) 的公式
arg
z
arctan y x
2
arctan
y x
x 0, y R
x 0, y 0
x 0, y 0 x 0, y 0
8 October 2020 © 2009, Henan Polytechnic University
CH1 复数及复变函数
1、复数及其代数运算 2、复数的表示方法 3、复数的乘幂与方根 4、区域 5、复变函数 6、复变函数的极限与连续性
第2章复变函数与解析函数精品PPT课件
①在 z
(分母在 z 0
0不连为续0的)在两z个0 处函连数续f(z;)与g(z)的和,差,积,商
②若函数 hg(z)在点 z 0 处连续,函数 w f(h)
在 h0 g(z0连) 续,则复合函数 wf[g(z)]
在 z 0 处连续(证略).
例3 求 lim z 1 zi z 2
解: 因为 z 1 在点zi 处连续,故 z2
注:连续的条件:
(1) 在z 0处有定义;
(2) z 0 处的极限值等于该点的函数值.
2)连续充要条件: 定理 函数 f(z) u (x ,y ) i(v x ,y ),在 z0 x0iy0 处连续的充要条件是u(x, y) 和 v(x, y) 都 在点(x0, y0)处连续.
3)连续函数性质:
x2 y2
x2 y2
化为一个复变函数.
解 设 zxiy ,wuiv, 则 wuiv 2xiy x2 y2
将 x 1 (z z) ,y 1 (z z) 以及 x2 y2 zz 得 2 w312i (z0)
2z 2z
二.复变函数的极限与连续性 1.极限:
1)定义 设函数f(z) 在 z 0 的去心邻域内有定义,若对任
2. 可导与连续的关系
若函数wf(z)在点z 0 处可导,则 f (z)在点 z 0 处必
连续.反之不一定.
3.用定义求导的步骤 1)求增量比; 2)求增量比的极限.
例1 求 f ( z) z 2 的导数.
二.解析函数的概念及求导法则
1. 解析函数的定义
1) 点处解析: 如果f(z)不仅在点 z 0处可导,且在点 z 0 的某邻域内的处处可导,则称f(z)在点 z 0处解析;
3)运算法则:类似于实函数极限的运算法则. 例
复变函数ppt第三章
移向得
∫C0 f ( z)dz = ∫C1 f ( z)dz + ∫C2 f ( z)dz + L+ ∫Cn f ( z)dz
完
27
例3 设C为一简单闭光滑曲线, a∈C.计算积分 ∫ C
page47
dz . z−a
参考解答 a
C
r
a
C
Cr
(1)
(2)
完
28
dz 例4 计算积分 ∫ C 2 . 积分按逆时针方向,沿曲线 逆 z −z C进行,C是包含单位圆周|z|=1的任意一条光
31
定理3 定理3 设w=f(z) 在单连通区域D内解析,则由
F(z) = ∫ f (ξ )dξ
z0
z
z ∈ D (Th3-1)
定义的函数F(z)在D内解析,且
F ′( z ) = f ( z )
参考证明
完
32
牛顿-莱布尼兹公式
定理4 定理4 设w=f(z) 在单连通区域 单连通区域D内解析, Φ ( z )是f(z) 单连通区域 的任一原函数,那么
都含在C0内部,这n+1条曲线围成了一个多连通区域 多连通区域 D,D的边界 ∂D 称为复闭路 复闭路. 复闭路 左手法则定正向: 左手法则定正向 沿着D的边界走, 区域D的点总在 左手边.
C0
C3
C2 C1
∴当C0取逆时针, C1 , C2 ,L , Cn都取顺时针.
24
∂D = C 0 + C1 + C 2 +
第三章 复变函数的积分 复变函数
引言 复变函数积分的概念 柯西—古萨定理 柯西 古萨定理 柯西积分公式、 柯西积分公式、 解析函数的高阶导数公式 解析函数与调和函数的关系
复变函数 ppt课件
z x iy
其中 i 为虚数单位,满足 i2 1
记号: x Re z , y Im z
若 x 0 ,则称 z iy 为纯虚数。
称复数 x iy 为复数 z x iy 的共轭复数,
记为 z x iy
注:1)两个复数相等,是指二者实部、虚部分别相等; 2)两个复数之间无法比较大小,除非都是实数。
为arg z,这样,我们有:
Arg z arg z 2k
2020/12/27
15
arg z 与 arctan y 关系如下 x
arctan
y x
,
2
,
当x 0时 当x 0, y 0时
arg
z
2
,
当x 0, y 0时
arctan
y x
+
,
当x
0,
y
0时
arctan
2020/12/27
4
x
arctan x
1
dx
1
x
(
1
1
)dx
0 1 x2
2i 0 i x i x
[ 1 2i
ln
i i
x x
]0x
1 2i
ln
i i
x x
1 2i
ln1
1 ln i x 2i i x
这样取X =1,得
arctan1 1 ln i 1
4
2i i 1
1 ln( i 1)2 4i i 1
除 法: z z1 z2
z2 z z1 (z2 0)
运算:
2020/12/27
z1 z1z2 z2 z2 z2
(z2 0)
10
容易证明,复数的运算满足分配律、交换律、结合律。 此外,共轭复数具有下列性质:
复变函数与积分变换第1章复数与复变函数精品PPT课件
(5)乘法对于加法的分配律 z1(z2z3)z1z2z1z3 复数运算的其它结果:
(1)z0z, 0z0 (2) z1z, z11
z
(3)若 z1z2 0,则 z 1 与 z 2 至少有一个为零, 反之亦然.
共轭复数的运算性质:
(1) z z
(2) z1z2 z1z2
(3) z1z2 z1z2
Argz
并规定按逆时针方向取值为正,顺时针方
向取值为负.
4.复数的三角表示式
称 zr(coissin )
为复数 z的三角表示式.
5.复数的指数表示式
称 z rei为复数 z的指数表示式.
例3 求 Arg2(2i)和 Arg3 (4i). 解
A 2 r2 i) g a (2 r 2 g i) 2 (k
25
25
zz(16 8i)1 ( 6 8i)64 25252525 125
1.1.3 复数的各种表示、模与辐角
1.复数的几何表示
由复数 zxiy的定义可知,复数是由一对 有序实数 (x, y) 惟一确定的,于是可建立全 体复数和 x O y 平面上的全部点之间的一一
对应关系,即可以用横坐标为 x,纵坐标
所以
rz (1)2( 3)22
设 argz,
则
tant 3 3
1
又因为 z1i 3 位于第II象限,
所以 argz 2 ,
于是
3
z 1i
3 2(cos2isin2)
i 2
2e 3
3
3
1.1.4. 复数的幂与根
1. 复数的乘幂
设 n为正整数,n个非零相同复数 z的乘积,
称为 的 z次幂n,记为 ,z即n
6
(1)z0z, 0z0 (2) z1z, z11
z
(3)若 z1z2 0,则 z 1 与 z 2 至少有一个为零, 反之亦然.
共轭复数的运算性质:
(1) z z
(2) z1z2 z1z2
(3) z1z2 z1z2
Argz
并规定按逆时针方向取值为正,顺时针方
向取值为负.
4.复数的三角表示式
称 zr(coissin )
为复数 z的三角表示式.
5.复数的指数表示式
称 z rei为复数 z的指数表示式.
例3 求 Arg2(2i)和 Arg3 (4i). 解
A 2 r2 i) g a (2 r 2 g i) 2 (k
25
25
zz(16 8i)1 ( 6 8i)64 25252525 125
1.1.3 复数的各种表示、模与辐角
1.复数的几何表示
由复数 zxiy的定义可知,复数是由一对 有序实数 (x, y) 惟一确定的,于是可建立全 体复数和 x O y 平面上的全部点之间的一一
对应关系,即可以用横坐标为 x,纵坐标
所以
rz (1)2( 3)22
设 argz,
则
tant 3 3
1
又因为 z1i 3 位于第II象限,
所以 argz 2 ,
于是
3
z 1i
3 2(cos2isin2)
i 2
2e 3
3
3
1.1.4. 复数的幂与根
1. 复数的乘幂
设 n为正整数,n个非零相同复数 z的乘积,
称为 的 z次幂n,记为 ,z即n
6
复变函数PPT第二章
(3) w z Re z.
解: (1) w z 2 x2 y2 , u x2 y2 , v 0,
u 2x, u 2 y, v 0, v 0.
x
y
x
y
z 偏导数在复平面上处处连续,但只在 =0满足C-R方程,
故函数 w z 2仅在 z 0 处可导, 且 f (z) 0.
在复平面内处处不解析.
x x y y 故 u v u v 0,
x y y x 所以 u 常数, v 常数,
因此 f (z) 在区域 D内为一常数.
参照以上例题可进一步证明:
如果 f (z) 在区域 D内解析, 则以下条件彼此等价.
(1) f (z)为常数;
(2) f (z) 0;
(3) f (z) 常数;
(2) f (z) e x (cos y i sin y) 指数函数 u e x cos y, v e x sin y,
u e x cos y, u e x sin y,
x
y
四个偏导数均连续
v e x sin y, v e x cos y,
x
y
且 u v , u v . x y y x
(4) f (z)解析;
(5) Re[ f (z)] 常数; (6) Im[ f (z)] 常数;
(7) v u2;
(8) arg f (z) 常数.
(9) au bv c(a,b,c为不全为零的实常数).
思考题
(1)复变函数 f (z) 在点z0 可导与在z0 解析有无区别? (2)用柯西-黎曼条件判断f (z) u( x, y) iv( x, y) 解析时应注意什么?
6z6 10z4 z2 6z 1 . (z2 1)2
复变函数PPT教学课件-第三节复变函数解析性
函数 f ( z ) u( x, y) iv( x, y) 在区域D 内有定义, 在 D内一点 z x yi 可导,u,v的偏导数存在
f ( z z ) f ( z ) lim =f '( z ) ,设 z x iy, z 0 z f ( z z ) f ( z ) u iv
2
在定义中应注意:
z0 z z0 (即z 0)的方式是任意的.
即z0 z在区域D内以任意方式趋于 z0时, f ( z0 z ) f ( z0 ) 比值 都趋于同一个数 . z
如 果 函 数 f (z) 在 区 域 D 内 处 处 可 导 , 我 们 就 称 f (z) 在 区 域 D 内 可 导.
7
4.求导法则:
由于复变函数中导数的定义与一元实变函 数中导数的定义在形式上完全一致, 并且复变函 数中的极限运算法则也和实变函数中一样, 因而 实变函数中的求导法则都可以不加更改地推广 到复变函数中来, 且证明方法也是相同的. 求导公式与法则: (1) (c ) 0, 其中c为复常数.
n1 ( 2) ( z ) nz , 其中n为正整数.
13
小结与思考
理解复变函数导数与微分以及解析函数的 概念; 掌握连续、可导、解析之间的关系以及 求导方法. 注意: 复变函数的导数定义与一元实变函数
的导数定义在形式上完全一样, 它们的一些求
导公式与求导法则也一样, 然而复变函数极限 存在要求与z 趋于零的方式无关, 这表明它在 一点可导的条件比实变函数严格得多.
故 w z 在复平面内处处不可导 , 处处不解析.
27
(2) f ( z ) e x (cos y i sin y ) 指数函数 x x u e cos y, v e sin y, u u x x e cos y , e sin y , x y 四个偏导数 v v 均连续 x e sin y , e x cos y , x y u v u v 即 , . x y y x
f ( z z ) f ( z ) lim =f '( z ) ,设 z x iy, z 0 z f ( z z ) f ( z ) u iv
2
在定义中应注意:
z0 z z0 (即z 0)的方式是任意的.
即z0 z在区域D内以任意方式趋于 z0时, f ( z0 z ) f ( z0 ) 比值 都趋于同一个数 . z
如 果 函 数 f (z) 在 区 域 D 内 处 处 可 导 , 我 们 就 称 f (z) 在 区 域 D 内 可 导.
7
4.求导法则:
由于复变函数中导数的定义与一元实变函 数中导数的定义在形式上完全一致, 并且复变函 数中的极限运算法则也和实变函数中一样, 因而 实变函数中的求导法则都可以不加更改地推广 到复变函数中来, 且证明方法也是相同的. 求导公式与法则: (1) (c ) 0, 其中c为复常数.
n1 ( 2) ( z ) nz , 其中n为正整数.
13
小结与思考
理解复变函数导数与微分以及解析函数的 概念; 掌握连续、可导、解析之间的关系以及 求导方法. 注意: 复变函数的导数定义与一元实变函数
的导数定义在形式上完全一样, 它们的一些求
导公式与求导法则也一样, 然而复变函数极限 存在要求与z 趋于零的方式无关, 这表明它在 一点可导的条件比实变函数严格得多.
故 w z 在复平面内处处不可导 , 处处不解析.
27
(2) f ( z ) e x (cos y i sin y ) 指数函数 x x u e cos y, v e sin y, u u x x e cos y , e sin y , x y 四个偏导数 v v 均连续 x e sin y , e x cos y , x y u v u v 即 , . x y y x