三角形全等添加辅助线的5种常用方法
全等三角形常见五种辅助线添法专训(学生版)
全等三角形常见五种辅助线添法专训【目录】辅助线添法一 倍长中线法辅助线添法二 截长补短法辅助线添法三 旋转法辅助线添法四 作平行线法辅助线添法五 作垂线法【经典例题一倍长中线法】【模型解读】中线是三角形中的重要线段之一,在利用中线解决几何问题时,常常采用“倍长中线法”添加辅助线.所谓倍长中线法,就是将三角形的中线延长一倍,以便构造出全等三角形,从而运用全等三角形的有关知识来解决问题的方法.【常见模型】1(2023春·吉林·八年级校考阶段练习)【阅读理解】数学兴趣小组活动时,老师提出如下问题:如图1,在△ABC中,若AB=8,AC=6,求BC边上的中线AD的取值范围.小明提出了如下解决方法,延长线段AD至点E,使DE=AD,连接BE.请根据小明的方法回答下列问题.(1)由已知和作图能得到△ADC≌△EDB的理由是.A.SSSB.SASC.AASD.HL(2)探究得出AD的取值范围.A.6<AD<8B.6≤AD≤8C.1<AD<7D.1≤AD≤7【问题解决】(3)如图2,在△ABC中,CD=AB,∠BDA=∠BAD,AE是△ABD的中线,求证:∠C=∠BAE.【变式训练】1(2022秋·甘肃庆阳·八年级校考期末)小明遇到这样一个问题,如图1,△ABC中,AB=7,AC=5,点D为BC的中点,求AD的取值范围.小明发现老师讲过的“倍长中线法”可以解决这个问题,所谓倍长中线法,就是将三角形的中线延长一倍,以便构造出全等三角形,从而运用全等三角形的有关知识来解决问题的方法,他的做法是:如图2,延长AD到E,使DE=AD,连接BE,构造△BED≅△CAD,经过推理和计算使问题得到解决.请回答:(1)小明证明△BED≅△CAD用到的判定定理是:(用字母表示);(2)AD的取值范围是;(3)小明还发现:倍长中线法最重要的一点就是延长中线一倍,完成全等三角形模型的构造.参考小明思考问题的方法,解决问题:如图3,在△ABC中,AD为BC边上的中线,且AD平分∠BAC,求证:AB= AC.2(2023·江苏·八年级假期作业)(1)如图1,AD是△ABC的中线,延长AD至点E,使ED=AD,连接CE.①证明△ABD≌△ECD;②若AB=5,AC=3,设AD=x,可得x的取值范围是;(2)如图2,在△ABC中,D是BC边上的中点,DE⊥DF,DE交AB于点E,DF交AC于点F,连接EF,求证:BE+CF>EF.3(2023·江苏·八年级假期作业)【观察发现】如图①,△ABC 中,AB =7,AC =5,点D 为BC 的中点,求AD 的取值范围.小明的解法如下:延长AD 到点E ,使DE =AD ,连接CE .在△ABD 与△ECD 中BD =DC∠ADB =∠EDCAD =DE∴△ABD ≅△ECD (SAS )∴AB =.又∵在△AEC 中EC -AC <AE <EC +AC ,而AB =EC =7,AC =5,∴<AE <.又∵AE =2AD .∴<AD <.【探索应用】如图②,AB ∥CD ,AB =25,CD =8,点E 为BC 的中点,∠DFE =∠BAE ,求DF 的长为.(直接写答案)【应用拓展】如图③,∠BAC =60°,∠CDE =120°,AB =AC ,DC =DE ,连接BE ,P 为BE 的中点,求证:AP ⊥DP .【经典例题二截长补短法】【模型分析】截长补短的方法适用于求证线段的和差倍分关系.截长:指在长线段中截取一段等于已知线段;补短:指将短线段延长,延长部分等于已知线段.该类题目中常出现等腰三角形、角平分线等关键词句,可以采用截长补短法构造全等三角形来完成证明过程,截长补短法(往往需证2次全等).【模型图示】(1)截长:在较长线段上截取一段等于某一短线段,再证剩下的那一段等于另一短线段.例:如图,求证BE+DC=AD方法:①在AD上取一点F,使得AF=BE,证DF=DC;②在AD上取一点F,使DF=DC,证AF=BE (2)补短:将短线段延长,证与长线段相等例:如图,求证BE+DC=AD方法:①延长DC至点M处,使CM=BE,证DM=AD;②延长DC至点M处,使DM=AD,证CM=BE1(2023·江苏·八年级假期作业)把两个全等的直角三角形的斜边重合,组成一个四边形ACBD以D为顶点作∠MDN,交边AC、BC于M、N.(1)若∠ACD=30°,∠MDN=60°,∠MDN两边分别交AC、BC于点M、N,AM、MN、BN三条线段之间有何种数量关系?证明你的结论;(2)当∠ACD+∠MDN=90°时,AM、MN、BN三条线段之间有何数量关系?证明你的结论;(3)如图③,在(2)的条件下,若将M、N改在CA、BC的延长线上,完成图3,其余条件不变,则AM、MN、BN之间有何数量关系(直接写出结论,不必证明)【变式训练】1(2023·江苏·八年级假期作业)已知:如图,在△ABC中,∠B=60°,D、E分别为AB、BC上的点,且AE、CD交于点F.若AE、CD为△ABC的角平分线.(1)求∠AFC的度数;(2)若AD=6,CE=4,求AC的长.2(2023·江苏·八年级假期作业)在△ABC中,∠ACB=2∠B,如图①,当∠C=90°,AD为∠BAC的平分线时,在AB上截取AE=AC,连接DE,易证AB=AC+CD.(1)如图②,当∠C≠90°,AD为△ABC的角平分线时,线段AB,AC,CD之间又有怎样的数量关系?不需要说明理由,请直接写出你的猜想.(2)如图③,当∠ACB≠90°,AD为△ABC的外角平分线时,线段AB,AC,CD之间又有怎样的数量关系?请写出你的猜想,并对你的猜想进行说明.3(2023·江苏·八年级假期作业)如图,在四边形ABCD中,AB=AD,∠B+∠ADC=180°,点E、F分别在直线BC、CD上,且∠EAF=12∠BAD.(1)当点E、F分别在边BC、CD上时(如图1),请说明EF=BE+FD的理由.(2)当点E、F分别在边BC、CD延长线上时(如图2),(1)中的结论是否仍然成立?若成立,请说明理由;若不成立,请写出EF、BE、FD之间的数量关系,并说明理由.【经典例题三旋转法】【模型分析】旋转:将包含一条短边的图形旋转,使两短边构成一条边,证与长边相等.注:旋转需要特定条件(两个图形的短边共线),该方法常在半角模型中使用.【模型图示】例:如图,已知AB=AC,∠ABM=∠CAN=90°,求证BM+CN=MN方法:旋转△ABM至△ACF处,证NE=MN1(2022秋·湖北孝感·八年级统考期中)已知:△ABC≌△DEC,∠ACB=90°,∠B=32°.(1)如图1当点D在AB上,∠ACD.(2)如图2猜想△BDC与△ACE的面积有何关系?请说明理由.(温馨提示:两三角形可以看成是等底的)【变式训练】1(2023春·全国·八年级专题练习)(1)如图①,在正方形ABCD中,E、F分别是BC、DC上的点,且∠EAF=45°,连接EF,探究BE、DF、EF之间的数量关系,并说明理由;(2)如图②,在四边形ABCD中,AB=AD,∠B+∠D=180°,E、F分别是BC、DC上的点,且∠EAF= 1∠BAD,此时(1)中的结论是否仍然成立?请说明理由.22(2021秋·天津和平·八年级校考期中)在△BAC中,∠BAC=90°,AB=AC,AE是过A的一条直线,BD⊥AE于点D,CE⊥AE于E,(1)如图(1)所示,若B,C在AE的异侧,易得BD与DE,CE的关系是DE=;(2)若直线AE绕点A旋转到图(2)位置时,(BD<CE),其余条件不变,问BD与DE,CE的关系如何?请予以证明;(3)若直AE绕点A旋转到图(3)的位置,(BD>CE),问BD与DE,CE的关系如何?请直接写出结果,不需证明.3(2021秋·河南周口·八年级统考期末)在Rt△ABC中,∠ACB=90°,CA=CB,点D是直线AB上的一点,连接CD,将线段CD绕点C逆时针旋转90°,得到线段CE,连接EB.(1)操作发现如图1,当点D在线段AB上时,请你直接写出AB与BE的位置关系为;线段BD、AB、EB的数量关系为;(2)猜想论证当点D在直线AB上运动时,如图2,是点D在射线AB上,如图3,是点D在射线BA上,请你写出这两种情况下,线段BD、AB、EB的数量关系,并对图2的结论进行证明;(3)拓展延伸若AB=5,BD=7,请你直接写出△ADE的面积.【经典例题四作平行线法】2(2022秋·江苏·八年级专题练习)如图所示:△ABC是等边三角形,D、E分别是AB及AC延长线上的一点,且BD=CE,连接DE交BC于点M.求让:MD=ME【变式训练】4(2022秋·江苏·八年级专题练习)P为等边△ABC的边AB上一点,Q为BC延长线上一点,且PA =CQ,连PQ交AC边于D.(1)证明:PD=DQ.(2)如图2,过P作PE⊥AC于E,若AB=6,求DE的长.5(2022秋·八年级课时练习)读下面的题目及分析过程,并按要求进行证明.已知:如图,E是BC的中点,点A在DB上,且∠BAE=∠CDE,求证:AB=CD分析:证明两条线段相等,常用的一般方法是应用全等三角形或等腰三角形的判定和性质,观察本题中要证明的两条线段,它们不在同一个三角形中,且它们分别所在的两个三角形也不全等.因此,要证明AB =CD,必须添加适当的辅助线,构造全等三角形或等腰三角形.现给出如下三种添加辅助线的方法,请任意选择其中两种对原题进行证明.图(1):延长DE到F使得EF=DE图(2):作CG⊥DE于G,BF⊥DE于F交DE的延长线于F图(3):过C点作CF∥AB交DE的延长线于F.6(2023春·全国·七年级专题练习)已知在等腰△ABC中,AB=AC,在射线CA上截取线段CE,在射线AB上截取线段BD,连接DE,DE所在直线交直线BC与点M.请探究:(1)如图(1),当点E在线段AC上,点D在AB延长线上时,若BD=CE,请判断线段MD和线段ME的数量关系,并证明你的结论.(2)如图(2),当点E在CA的延长线上,点D在AB的延长线上时,若BD=CE,则(1)中的结论还成立吗?如果成立,请证明;如果不成立,说明理由;(3)如图(3),当点E在CA的延长线上,点D在线段AB上(点D不与A,B重合),DE所在直线与直线BC交于点M,若CE=2BD,请直接写出线段MD与线段ME的数量关系.【经典例题五作垂直法】1(2022秋·湖北武汉·八年级统考期中)我们定义:三角形一个内角的平分线所在的直线与另一个内角相邻的外角的平分线相交所成的锐角称为该三角形第三个内角的遥望角.(1)如图1,∠E是△ABC中∠A的遥望角.①直接写出∠E与∠A的数量关系;②连接AE,猜想∠BAE与∠CAE的数量关系,并说明理由.(2)如图2,四边形ABCD中,∠ABC=∠ADC=90°,点E在BD的延长线上,连CE,若已知DE=DC =AD,求证:∠BEC是△ABC中∠BAC的遥望角.【变式训练】1(2022秋·八年级课时练习)如图1,已知四边形ABCD,连接AC,其中AD⊥AC,BC⊥AC,AC =BC,延长CA到点E,使得AE=AD,点F为AB上一点,连接FE、FD,FD交AC于点G.(1)求证:△EAF≌△DAF;(2)如图2,连接CF,若EF=FC,求∠DCF的度数.已知:如图,点E是BC的中点,点A在DE上,且∠BAE=∠CDE.求证:AB=CD.分析:证明两条线段相等,常用的方法是应用全等三角形或等腰三角形的判定和性质,观察本题中要证明的两条线段,它们不在同一个三角形中,且它们分别所在的两个三角形也不全等,因此,要证AB=CD,必须添加适当的辅助线,构造全等三角形或等腰三角形.(1)现给出如下两种添加辅助线的方法,请任意选出其中一种,对原题进行证明.①如图1,延长DE到点F,使EF=DE,连接BF;②如图2,分别过点B、C作BF⊥DE,CG⊥DE,垂足分别为点F,G.(2)请你在图3中添加不同于上述的辅助线,并对原题进行证明.已知:如图,E是BC的中点,点A在DE上,且∠BAE=∠CDE.求证:AB=CD.分析:证明两条线段相等,常用的一般方法是应用全等三角形或等腰三角形的判定和性质,观察本题中要证AB=CD,必须添加适当的辅助线,构造全等三角形或等腰三角形请用二种不同的方法证明.【重难点训练】4(2023·江苏·八年级假期作业)如图,AD为△ABC中BC边上的中线(AB>AC).(1)求证:AB-AC<2AD<AB+AC;(2)若AB=8cm,AC=5cm,求AD的取值范围.5(2023·江苏·八年级假期作业)如图1,在△ABC中,若AB=10,BC=8,求AC边上的中线BD的取值范围.(1)小聪同学是这样思考的:延长BD至E,使DE=BD,连接CE,可证得△CED≌△ABD.①请证明△CED≌△ABD;②中线BD的取值范围是.(2)问题拓展:如图2,在△ABC中,点D是AC的中点,分别以AB,BC为直角边向△ABC外作等腰直角三角形ABM和等腰直角三角形BCN,其中,AB=BM,BC=BN,∠ABM=∠NBC=∠90°,连接MN.请写出BD与MN的数量关系,并说明理由.6(2023春·全国·七年级专题练习)【阅读理解】课外兴趣小组活动时,老师提出了如下问题:如图1,△ABC中,若AB=8,AC=6,求BC边上的中线AD的取值范围.小明在组内经过合作交流,得到了如下的解决方法:如图2,延长AD到点E,使DE=AD,连接BE.请根据小明的方法思考:(1)如图2,由已知和作图能得到△ADC≌△EDB的理由是.A.SSSB.SASC.AASD.ASA(2)如图2,AD长的取值范围是.A.6<AD<8B.6≤AD≤8C.1<AD<7D.1≤AD≤7【感悟】解题时,条件中若出现“中点”、“中线”字样,可以考虑延长中线构造全等三角形,把分散的已知条件和所求证的结论转化到同一个三角形中.【问题解决】(3)如图3,AD是△ABC的中线,BE交AC于点E,交AD于F,且AE=EF.求证:AC=BF.7(2023·江苏·八年级假期作业)(1)如图1,已知△ABC中,AD是中线,求证:AB+AC>2AD;(2)如图2,在△ABC中,D,E是BC的三等分点,求证:AB+AC>AD+AE;(3)如图3,在△ABC中,D,E在边BC上,且BD=CE.求证:AB+AC>AD+AE.8(2023·江苏·八年级假期作业)课堂上,老师提出了这样一个问题:如图1,在△ABC中,AD平分∠BAC交BC于点D,且AB+BD=AC,求证:∠ABC=2∠ACB,小明的方法是:如图2,在AC上截取AE,使AE=AB,连接DE,构造全等三角形来证明.(1)小天提出,如果把小明的方法叫做“截长法”,那么还可以用“补短法”通过延长线段AB构造全等三角形进行证明.辅助线的画法是:延长AB至F,使BF=,连接DF请补全小天提出的辅助线的画法,并在图1中画出相应的辅助线;(2)小芸通过探究,将老师所给的问题做了进一步的拓展,给同学们提出了如下的问题:如图3,点D在△ABC的内部,AD,BD,CD分别平分∠BAC,∠ABC,∠ACB,且AB+BD=AC.求证:∠ABC=2∠ACB.请你解答小芸提出的这个问题(书写证明过程);(3)小东将老师所给问题中的一个条件和结论进行交换,得到的命题如下:如果在△ABC中,∠ABC=2∠ACB,点D在边BC上,AB+BD=AC,那么AD平分∠BAC小东判断这个命题也是真命题,老师说小东的判断是正确的.请你利用图4对这个命题进行证明.9(2023春·江苏·八年级专题练习)如图,在锐角ΔABC中,∠A=60°,点D,E分别是边AB,AC上一动点,连接BE交直线CD于点F.(1)如图1,若AB>AC,且BD=CE,∠BCD=∠CBE,求∠CFE的度数;(2)如图2,若AB=AC,且BD=AE,在平面内将线段AC绕点C顺时针方向旋转60°得到线段CM,连接MF,点N是MF的中点,连接CN.在点D,E运动过程中,猜想线段BF,CF,CN之间存在的数量关系,并证明你的猜想.10(2023·江苏·八年级假期作业)问题背景:如图1:在四边形ABCD中,AB=AD.∠BAD=120°.∠B=∠ADC=90°.E,F分别是BC.CD上的点,且∠EAF=60°,探究图中线段BE,EF,FD之间的数量关系.(1)小王同学探究此问题的方法是:延长FD到点G.使DG=BE.连接AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是;(直接写结论,不需证明)探索延伸:(2)如图2,若在四边形ABCD中,AB=AD,∠B+∠ADF=180°.E,F分别是BC,CD上的点,且∠EAF=12∠BAD,(1)中结论是否仍然成立,并说明理由;(3)如图3,在四边形ABCD中,AB=AD,∠B+∠ADC=180°,E、F分别是边BC、CD延长线上的点,且∠EAF=12∠BAD,(1)中的结论是否仍然成立?若成立,请证明:若不成立,请直接写出它们之间的数量关系.11(2023·全国·九年级专题练习)(1)如图1,在四边形ABCD中,AB=AD,∠B=∠D=90°,E、F分别是边BC、CD上的点,且∠EAF=12∠BAD,线段EF、BE、FD之间的关系是;(不需要证明)(2)如图2,在四边形ABCD中,AB=AD,∠B+∠D=180°,E、F分别是边BC、CD上的点,且∠EAF=12∠BAD,(1)中的结论是否仍然成立?若成立,请证明.若不成立,请写出它们之间的数量关系,并证明.(3)如图3,在四边形ABCD中,AB=AD,∠B+∠D=180°,E、F分别是边BC、CD延长线上的点,且∠EAF=12∠BAD,(1)中的结论是否仍然成立?若成立,请证明.若不成立,请写出它们之间的数量关系,并证明.12(2023春·全国·七年级期末)(1)问题引入:如图1,点F是正方形ABCD边CD上一点,连接AF,将△ADF绕点A顺时针旋转90°与△ABG重合(D与B重合,F与G重合,此时点G,B,C在一条直线上),∠GAF的平分线交BC于点E,连接EF,判断线段EF与GE之间有怎样的数量关系,并说明理由.(2)知识迁移:如图2,在四边形ABCD中,∠ADC+∠B=180°,AB=AD,E,F分别是边BC,CD延长线上的点,连接AE,AF,且∠BAD=2∠EAF,试写出线段BE,EF,DF之间的数量关系,并说明理由.(3)实践创新:如图3,在四边形ABCD中,∠ABC=90°,AC平分∠DAB,点E在AB上,连接DE,CE,且∠DAB=∠DCE=60°,若DE=a,AD=b,AE=c,求BE的长.(用含a,b,c的式子表示)13(2022秋·八年级课时练习)如图,点P为等边△ABC的边AB上一点,Q为BC延长线上一点,AP=CQ,PQ交AC于D,(1)求证:DP=DQ;(2)过P作PE⊥AC于E,若BC=4,求DE的长.14(2022秋·全国·八年级专题练习)如图,在△ABC中,AC=BC,AD平分∠CAB.(1)如图1,若ACB=90°,求证:AB=AC+CD;(2)如图2,若AB=AC+BD,求∠ACB的度数;(3)如图3,若∠ACB=100°,求证:AB=AD+CD.15(2023·全国·九年级专题练习)通过类比联想、引申拓展典型题目,可达到解一题知一类的目的.下面是一个案例,请补充完整.【解决问题】如图,点E 、F 分别在正方形ABCD 的边BC 、CD 上,∠EAF =45°,连接EF ,则EF =BE +DF ,试说明理由.证明:延长CD 到G ,使DG =BE ,在△ABE 与△ADG 中,AB =AD∠B =∠ADG =90°BE =DG∴△ABE ≌△ADG 理由:(SAS )进而证出:△AFE ≌___________,理由:(__________)进而得EF =BE +DF .【变式探究】如图,四边形ABCD 中,AB =AD ,∠BAD =90°点E 、F 分别在边BC 、CD 上,∠EAF =45°.若∠B 、∠D 都不是直角,则当∠B 与∠D 满足等量关系________________时,仍有EF =BE +DF .请证明你的猜想.【拓展延伸】如图,若AB =AD ,∠BAD ≠90°,∠EAF ≠45°,但∠EAF =12∠BAD ,∠B =∠D =90°,连接EF ,请直接写出EF 、BE 、DF 之间的数量关系.。
全等三角形添加辅助线的方法
全等三角形添加辅助线的方法要向一个全等三角形添加辅助线,只需在三角形内或外画直线,以切割或连接三角形的一些部分。
这些辅助线可以帮助我们更好地理解和分析三角形的特性和属性。
接下来,我将介绍几种常见的方法来添加辅助线。
1.三角形中线:连接每个顶点与对边中点的线段。
这条线段将三角形划分为两个全等的三角形。
它们的边长相等,角度相等。
2.三角形的角平分线:从每个顶点作出形成该顶点角的两个邻边的角平分线。
这些角平分线会相交于三角形内部的一点,该点是三角形内角平分线的交点。
3.三角形的高线:从每个顶点作出与对边垂直相交的线段。
这些线段的交点将构成三角形的三条高线,它们的长度相等,且垂直于对边。
4.三角形的中线:从每个顶点作出与对边平行的线段。
这些线段的交点将构成三角形的三条中线,它们的长度相等,且平行于对边。
5.三角形的中心:连接三角形的三个顶点与重心的线段。
重心是三角形内部所有高线的交点。
三角形的重心被定义为三边中点的连线的交点,其坐标为三个顶点的坐标之和的1/3这些辅助线有助于我们更好地理解和分析全等三角形的特性和属性。
它们可以帮助我们推导出一些重要的结论和公式,还可以用于证明和解决三角形的相关问题。
例如,通过添加辅助线可以证明全等三角形的性质:全等三角形的对应边长相等,对应角度相等,对应角内的三角形也全等。
此外,辅助线还可以帮助我们解决一些基于全等三角形的问题。
比如,如果两个三角形的一对对应边长和一对对应角度都相等,我们可以利用辅助线来证明它们是全等三角形。
因此,通过添加辅助线,我们可以更好地理解和分析全等三角形的性质和问题。
在解决相关问题时,辅助线可以作为重要的工具来简化问题和得出正确的答案。
构造全等三角形添加辅助线的方法
构造全等三角形添加辅助线的方法构造全等三角形是初中数学中的一个重要内容,理解并掌握构造全等三角形的方法对同学们建立良好的几何直观和提高几何证明能力等方面有很大帮助。
添加辅助线是构造全等三角形的重要方法之一。
本文列举了10条关于构造全等三角形添加辅助线的方法,并详细描述了每一种方法的步骤和原理。
一、通过中位线构造全等三角形步骤:1、作出一个三角形ABC和它的一条中位线AD;2、将角BAD和角ACD作为两个角,作一个新的三角形BAD,使它的对边和AC平行;3、证明三角形BAC和三角形BAD全等。
原理:两个平行线截一组平行于它们的直线形成的线段,具有相等的长度。
二、通过角平分线构造全等三角形步骤:1、作出一个三角形ABC,以角A为中心画一条角平分线AE;2、将角EAB和角EAC作为两个角,分别连线得到三角形EAB和三角形EAC;3、证明三角形ABC和三角形EAB全等。
原理:在一个三角形中,一边上的角平分线将这条边分成两个相等的线段,同时将对角的两个角平分为两个相等的角。
三、通过三角形内角和不变构造全等三角形步骤:1、作出两个全等三角形ABC和DEF;2、在三角形ABC内部选取一个点M;3、以点M为中心,作一个半径等于EF的圆,在这个圆上分别找到两个点P、Q;4、连接点P、Q和点M,分别得到三角形AMP和BMQ;5、证明三角形AMP和三角形BMQ全等。
原理:三角形中角的和不变,即两个全等三角形中任意两个内角之和相等。
四、通过角平分线和垂线构造全等三角形步骤:1、作出一个三角形ABC,以角A为中心画一条角平分线AE,垂直于BC;2、在AE上选取一点G,将角GAB和角GAC作为两个角,分别连线得到三角形GAB和三角形GAC;3、以点B为中心,作一个半径等于CG的圆,在这个圆上分别找到两个点M、N;4、连接MN和点B,分别得到三角形MBC和NBC;5、证明三角形GAB和三角形MBC全等。
原理:在一个三角形中,角平分线和垂线的交点将底边分成相等的线段,在垂线上的任意一点到底边的两个端点距离相等。
全等三角形作辅助线的常用方法
全等三角形作辅助线的常用方法全等三角形是指具有相同形状和大小的三角形。
在解决几何问题时,我们常常会用到全等三角形作为辅助线来辅助推导和证明。
下面介绍几种常用的方法:1. SSS法:如果两个三角形的三边分别相等,则它们是全等三角形。
在使用SSS法时,我们要注意较长边对应较长边,较短边对应较短边。
2. SAS法:如果两个三角形的两边和夹角分别相等,则它们是全等三角形。
在使用SAS法时,我们要注意两个已知边的夹角位置,确保它们对应正确。
3. ASA法:如果两个三角形的两个夹角和一边分别相等,则它们是全等三角形。
在使用ASA法时,我们要注意两个已知夹角的边位置,确保它们对应正确。
4. RHS法:如果两个直角三角形的斜边和一个锐角分别相等,则它们是全等三角形。
在使用RHS法时,我们要注意斜边和锐角的位置,确保它们对应正确。
以上四种方法是解决全等三角形问题时常用的方法,根据具体情况选择合适的方法来辅助推导和证明。
除了这些方法,我们还可以利用全等三角形的性质来简化问题。
例如,当我们需要证明两条线段相等时,可以构造一个全等三角形,利用全等三角形的性质得出结论。
同样地,当我们需要证明两个角相等时,也可以构造一个全等三角形来简化问题。
在解决几何问题时,我们经常会遇到一些特殊的情况,例如等腰三角形、全等三角形的性质等。
在这些情况下,我们可以利用全等三角形的性质来推导出一些结论,进而解决问题。
总结一下,全等三角形作为几何问题中常用的辅助线,可以帮助我们推导和证明一些结论。
在解决几何问题时,我们可以根据题目给出的条件选择合适的方法来构造全等三角形,进而简化问题。
熟练掌握全等三角形的性质和常用方法,可以提高解题效率,解决更加复杂的几何问题。
全等三角形添加辅助线的方法
全等三角形添加辅助线的方法1.中线法:将两条边的中点相连并延长,然后证明其与其他一条边的边长和角度相等。
具体步骤如下:a.连接三角形两条边的中点,并延长至交于一点O。
b.证明∆ABC与∆ADB全等,其中∠CAB=∠DAB(两对顶点角),且AB =AD各一边。
c.推导出AC=BD(全等三角形的边)2.垂直平分线法:通过构造两条垂直平分线使其中两个角相等,从而推导出三角形全等。
具体步骤如下:a.根据题意连接一个角的两边,并找出该两边的垂直平分线。
b.证明∆ABC的两个∠BAC和∠BCA各自与∠ACD和∠ACB相等(垂直平分线构成等腰三角形),即∠BAC=∠ACD,∠BCA=∠ACB。
c.推导出∆ABC和∆ACD的三个角相等,从而两个三角形全等。
3.夹边法(重心法):通过构造两个辅助三角形,使两个夹角相等,从而推导出三角形全等。
具体步骤如下:a.过三角形一边的顶点作该边对边的平行线,分别与另两边相交得到两个辅助三角形。
b.证明这两个辅助三角形的两个夹角分别与原三角形的两个对应夹角相等(平行线与三角形两边的交角),即∠BAC=∠EAB,∠CBA=∠DBA。
c.推导出∠ABC和∠EDB相等,从而两个三角形全等。
4.等腰三角形法:通过构造两个等腰三角形,使它们的顶点与原三角形的顶点相连,从而推导出三角形全等。
a.根据题意找到一个角的顶点为原三角形的顶点,并构造一个等腰三角形,顶点为该角的顶点。
b.构造另一个等腰三角形,顶点为原三角形的顶点,并使这两个等腰三角形的顶点分别与原三角形的顶点相连。
c.证明这两个等腰三角形的两个底边与原三角形的两个对应边相等,即AC=DE,BC=DF。
d.推导出∆ABC和∆DEF的三个角相等,从而两个三角形全等。
通过以上几种常见的方法,可以添加辅助线来证明三角形的全等关系。
在实际问题中,根据具体的几何信息和条件,选择合适的辅助线构造方法,可以简化证明过程,并加深对全等三角形的理解。
三角形全等证明,10道考试真题,6种常用辅助线添加的方法和技巧.doc
三角形全等证明,10道考试真题,6种常用辅助线添加的方法和技巧以下六种常用的辅助线添加方法和技巧。
相互学习,一起进步。
方法一、双垂直构造三角形全等。
遇见角平分线,角平分线上的点向角两边做垂直,必出三角形全等。
例题1,是最基础,最简单的题型。
有些,需要我们证明角平分线的时候,同样可以向角两边做垂直,那么只要两个垂线段相等,到角两边距离相等的点在角平分线上。
例题2,过点P做MN平行BC,则出现在AB边和CD 边上,双垂直。
根据题意,证明三角形QNP全等于三角形PMB,结论得证。
方法二,倍长中线。
三角形中,遇见中点,很容易想到倍长中线。
例题3,倍长中线后,得出三角形ACE全等于三角形ACM。
例题4,延长AD至E,使DE=AD。
得出三角形ADC全等于三角形EDB。
第2小题,根据三角形的三边关系,等量代换,即可求出AD的取值范围。
方法三、截长补短法。
求证两个线段和等于一个线段的时候,很容易想到截长补短的辅助线添加方法。
截长补短法,包括了截长法和补短法,两种方法。
一般来说,一道题,既可以用截长法,也可以用补短法。
例题6、解析中用了延长AD至M,使MD=FD。
请认真看解答过程。
再请按照图3的辅助线,自行练习推理,举一反三,得出结论。
方法四、平行线发或者平移法。
解题方法1,过点O做OD平行BC。
还有两个方法,请自行推理,如图3和图4.方法五,旋转法。
把一个三角形,经过旋转,旋转后必出三角形全等,得出结论。
例8和例9,其实也就是,最近经典的半角模型。
之前也专门讲过,这个几何模型。
请认真参考,这个两个例题。
从中总结规律和解题方法。
方法六、翻折法,或者叫对称法。
例题10,看起来很难,当你认真看完解题过程,肯定会有所收获。
几种证明全等三角形添加辅助线的方法
几种证明全等三角形添加辅助线的方法在几何证明中,证明两个三角形全等是常见的任务之一、为了证明两个三角形全等,可以利用几何性质和辅助线的方法。
以下是几种常见的证明全等三角形添加辅助线的方法。
方法一:辅助线连接两个三角形的顶点和中点。
假设有两个三角形ABC和DEF,我们要证明它们全等。
我们可以通过在两个三角形中选择一对对应的顶点,然后通过连接这对顶点和中点来添加辅助线。
例如,可以连接点A和B的中点M,以及连接点D和E的中点N。
通过连接辅助线MN,我们可以观察到三角形AMN和DMN是全等的,因为它们具有相等的边MN和相等的边角(由三角形ABC和DEF的边和角的性质可得)。
由于三角形AMN和DNM的对应边和对应角也相等,我们可以得出结论,三角形ABC和DEF是全等的。
方法二:辅助线连接两个三角形的顶点和底边中点。
假设有两个三角形ABC和DEF,我们要证明它们全等。
我们可以通过在两个三角形中选择一对对应的顶点,然后通过连接这对顶点和底边的中点来添加辅助线。
例如,可以连接点A和D的中点M,以及连接点B和E 的中点N。
通过连接辅助线MN,我们可以观察到三角形AMN和DMN是全等的,因为它们具有相等的边MN和相等的边角(由三角形ABC和DEF的边和角的性质可得)。
由于三角形AMN和DNM的对应边和对应角也相等,我们可以得出结论,三角形ABC和DEF是全等的。
方法三:辅助线连接两个三角形的对应角的角平分线。
假设有两个三角形ABC和DEF,我们要证明它们全等。
我们可以通过连接每个三角形对应角的角平分线来添加辅助线。
通过连接辅助线,我们可以得到一些相似的三角形。
根据相似三角形的性质,我们可以得到一些相等的边和角。
通过观察这些相等的边和角,我们可以得出结论,三角形ABC和DEF是全等的。
方法四:辅助线连接两个三角形的中垂线。
假设有两个三角形ABC和DEF,我们要证明它们全等。
我们可以通过连接每个三角形的边的中点,然后连接这些中点的垂线来添加辅助线。
全等三角形六种辅助线方法及例题
全等三角形六种辅助线方法及例题全等三角形是初中数学中一个非常重要的概念,掌握全等三角形的判定方法和辅助线方法对于解题至关重要。
本文将介绍全等三角形的六种辅助线方法,并结合例题进行详细讲解。
一、辅助线法1.等角分线法:将三角形内角的平分线相互交点构成的点与三角形的另外一个顶点相连,得到一条辅助线。
这条辅助线将三角形分成两个等角的小三角形,从而得到相似或全等三角形。
2.中线法:将三角形任意两边的中点相连,得到三角形的中线。
相等的中线将三角形分成两个面积相等的小三角形,从而得到相似或全等三角形。
3.高线法:将三角形内任意一条边的垂线向另外两边引出,得到三角形的高线。
相等的高线将三角形分成两个面积相等的小三角形,从而得到相似或全等三角形。
4.角平分线法:将三角形内角的平分线相互交点构成的点相连,得到三角形的角平分线。
相等的角平分线将三角形分成两个面积相等的小三角形,从而得到相似或全等三角形。
5.角平分线中垂线法:将三角形内角的平分线的中垂线相互交点构成的点相连,得到三角形的角平分线中垂线。
相等的角平分线中垂线将三角形分成两个面积相等的小三角形,从而得到相似或全等三角形。
6.外心连线法:将三角形外接圆心与三角形三个顶点分别相连,得到三条辅助线。
这三条辅助线相等,将三角形分成三个面积相等的小三角形,从而得到相似或全等三角形。
二、例题解析1.已知△ABC,点D,E分别为BC,AB边上的中点,连接AD,BE相交于点F,求证:△DEF≌△ABC。
解析:由题意可知,△ABC是由两个等腰三角形组成的,因此可使用中线法证明两个三角形的全等。
由于D,E分别是BC,AB边上的中点,因此DE是AC中线,即DE=1/2AC;同理,AE是BC中线,AF=1/2BC。
因此,△ADB和△AEC是等腰三角形,且AD=EC,AB=AB,∠BAC=∠BAC,因此△ADB≌△AEC。
又因为DE是AC中线,BF是AE中线,因此DE=1/2AC,BF=1/2AE。
(完整版)全等三角形常用辅助线做法
五种辅助线助你证全等姚全刚在证明三角形全等时有时需增加辅助线,对学习几何证明不久的学生而言常常是难点.下面介绍证明全等常常有的五种辅助线,供同学们学习时参照.一、截长补短一般地,当所证结论为线段的和、差关系,且这两条线段不在同素来线上时,平时能够考虑用截长补短的方法:或在长线段上截取一部分使之与短线段相等;或将短线段延长使其与长线段相等.例 1.如图 1,在△ ABC 中,∠ ABC=60 °, AD 、CE 分别均分∠ BAC 、∠ ACB .求证:AC=AE+CD .解析:要证AC=AE+CD ,AE 、CD 不在同素来线上.故在AC 上截取 AF=AE ,则只要证明 CF=CD .证明:在 AC 上截取 AF=AE ,连接 OF.∵ AD 、 CE 分别均分∠ BAC 、∠ ACB ,∠ ABC=60 °∴∠ 1+∠ 2=60 °,∴∠ 4=∠ 6=∠ 1+∠ 2=60 °.显然,△ AEO ≌△ AFO ,∴∠ 5=∠4=60°,∴∠ 7=180°-(∠ 4+ ∠ 5) =60 °在△ DOC 与△ FOC 中,∠ 6=∠ 7=60°,∠ 2=∠ 3, OC=OC∴△ DOC ≌△ FOC, CF=CD∴ AC=AF+CF=AE+CD.截长法与补短法,详尽作法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,使之与特定线段相等,再利用三角形全等的有关性质加以说明。
这种作法,适合于证明线段的和、差、倍、分等类的题目。
例2:如图甲, AD∥BC,点 E 在线段 AB上,∠ ADE=∠CDE,∠ DCE=∠ECB。
求证: CD=AD+BC。
思路解析:1)题意解析:此题观察全等三角形常有辅助线的知识:截长法或补短法。
2)解题思路:结论是CD=AD+BC,可考虑用“截长补短法”中的“截长”,即在 CD上截取 CF=CB,只要再证 DF=DA即可,这就转变成证明两线段相等的问题,进而达到简化问题的目的。
三角形全等证明常见做辅助线方法
三角形全等证明常见做辅助线方法一、遇到三角形中线时常见的辅助线若遇到三角形的中线,可倍长中线,使延长线段与原中线长相等,构造全等三角形。
(倍长中线法或“旋转”全等)1、如图,AD 为 △ABC 的中线,求证:AB +AC >2AD 。
(三角形一边上的中线小于其他两边之和的一半)2、已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD 。
3、如图,已知:AD 是△ABC 的中线,且CD=AB ,AE 是△ABD 的中线,求证:AC=2AE.C二、遇到角平分线时常见的辅助线1.角平分线上点向角两边作垂线构造全等 过角平分线上一点向角两边作垂线,利用角平分线上的点到角两边距离相等的性质来证明问题。
(作垂线)2.截取构造全等(截长法、补短法)如图1-1,∠AOC=∠BOC ,如取OE=OF ,并连接DE 、DF ,则有△OED ≌△OFD ,从而为我们证明线段、角相等创造了条件。
ADBC图1-1B3.延长垂线段(延长法)遇到垂直于角平分线的线段,则延长该线段与角的另一边相交,构成等腰三角形。
4.作平行线①、以角平分线上一点作角的另一边的平行线,构造等腰三角形,图4-1。
②、通过一边上的点作角平分线的平行线与另外一边的反向延长线相交,从而也构造等腰三角形,图4-2。
图4-2图4-1ABCBIG4、已知:如图2-6,在正方形ABCD 中,E 为CD 的中点,F 为BC上的点,∠FAE=∠DAE 。
求证:AF=AD+CF 。
5、已知CE 、AD 是△ABC 的角平分线,∠B=60°,求证:AC=AE+CD6、已知:如图在△ABC 中,∠A=90°,AB=AC ,BD 是∠ABC 的平分线,求证:BC=AB+AD三、截长补短法(适合于证明线段的和、差、倍、分等类题目)截长法:在长线段上截取与两条线段中的一条相等的一段,证明剩余的线段与另一段相 等(截取----全等----等量代换)图2-6ECDABCD AEBDC补短法:延长其中一短线段使之与长线段相等,再证明延长段与另一短线段相等(延长----全等----等量代换)①、对于证明有关线段和差的不等式,通常会联系到三角形中两线段之和大于第三边、之差小于第三边,故可想办法将其放在一个三角形中证明。
全等三角形的辅助线的常见添法
全等三角形的辅助线的常见添法一、前言全等三角形是初中数学中一个重要的概念,其性质和应用十分广泛。
在解决全等三角形相关问题时,辅助线的运用是非常常见的方法之一。
本文将介绍几种常见的全等三角形辅助线添法。
二、中线中线是连接三角形一个顶点和对边中点的线段。
在全等三角形的证明中,经常使用到中线。
1. 作平移假设有两个全等三角形ABC和DEF,需要证明它们完全重合。
可以在BC上取一点M,在EF上取一点N,连接MN,并作平移使得BC重合于EF,即可证明ABC和DEF完全重合。
2. 作垂线假设有两个全等三角形ABC和DEF,需要证明它们完全重合。
可以在BC上取一点M,在EF上作MN垂直于EF,并延长至交于P,则BP=FP,CP=EP,因此可以通过SAS(边-角-边)准则证明ABC和DEF完全重合。
三、高线高线是从一个顶点向对边所在直线作垂线所得到的线段。
在证明两个直角三角形相似时常用到高线。
1. 作垂心假设有两个直角三角形ABC和DEF,需要证明它们相似。
可以在ABC 中作垂心H,连接AH、BH、CH,并在DEF中作DH垂直于EF,延长至交于K,则AK=DK,因此可以通过AA(角-角)准则证明ABC 和DEF相似。
2. 作中线假设有两个三角形ABC和DEF,其中BC=EF,需要证明它们相似。
可以在BC上取一点M,在EF上取一点N,连接MN,并作垂线PH 垂直于MN且交于O,则PO为MN的中线。
由于BM=FN,BO=EO(因为PH平分MN),因此可以通过SAS准则证明ABC和DEF相似。
四、角平分线角平分线是从一个顶点出发将角分成两个相等的角所得到的线段。
在证明两个三角形相似时常用到角平分线。
1. 作等腰三角形假设有两个三角形ABC和DEF,其中∠BAC=∠EDF且AC=DF,需要证明它们相似。
可以在BC上取一点M,在EF上取一点N,并连接AN、BM以及CN与AM的交点为P,则AP=PN(因为AP是∠BAC 的平分线),BP=PM(因为BP是∠ABM的平分线),因此可以通过SAS准则证明ABC和DEF相似。
完整版)全等三角形常用辅助线做法
完整版)全等三角形常用辅助线做法证明三角形全等时,有时需要添加辅助线,对于初学几何证明的学生来说,这往往是一个难点。
下面介绍证明全等时常见的五种辅助线,供同学们研究时参考。
一、截长补短当所证结论为线段的和、差关系,且这两条线段不在同一直线上时,通常可以考虑用截长补短的办法。
具体作法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,使之与特定线段相等,再利用三角形全等的有关性质加以说明。
这种作法适用于证明线段的和、差、倍、分等类的题目。
例如,在△ABC中,∠ABC=60°,AD、CE分别平分∠BAC、∠ACB。
要证明AC=AE+CD,因为AE、CD不在同一直线上,所以在AC上截取AF=AE,只要证明CF=CD即可。
具体证明过程为:在AC上截取AF=AE,连接OF。
由于AD、CE分别平分∠BAC、∠ACB,∠ABC=60°,因此∠1+∠2=60°,∠4=∠6=∠1+∠2=60°。
显然,△AEO≌△AFO,因此∠5=∠4=60°,∠7=180°-(∠4+∠5)=60°。
在△DOC与△FOC中,∠6=∠7=60°,∠2=∠3,OC=OC,因此△DOC≌△FOC,CF=CD,所以XXX。
另一个例子是在图甲中,AD∥BC,点E在线段AB上,∠ADE=∠CDE,∠DCE=∠ECB。
要证明CD=AD+BC。
因为结论是CD=AD+BC,可以考虑用“截长补短法”中的“截长”,即在CD上截取CF=CB,只要再证明DF=DA即可,这就转化为证明两线段相等的问题,从而达到简化问题的目的。
具体证明过程为:在CD上截取CF=BC,如图乙,因此△XXX≌△BCE(SAS),∴∠2=∠1.又因为AD∥BC,∴∠ADC+∠BCD=180°,∴∠DCE+∠XXX°,∴∠2+∠3=90°,∠1+∠4=90°,∴∠3=∠4.在△FDE与△ADE中,∴△XXX≌△ADE(ASA),∴DF=DA,因此CD=DF+CF,∴XXX。
全等三角形添加辅助线的方法
全等三角形添加辅助线的方法全等三角形是指具有相等边长和相等内角的两个三角形。
在解决几何问题中,我们经常需要证明或利用全等三角形的性质。
为了更方便地使用全等三角形,我们可以使用辅助线来帮助我们找到全等三角形。
接下来,我将详细介绍几种添加辅助线的方法。
1.中点连线法:在一个三角形中,我们可以通过连接两个边的中点来构造一个平行边。
如果两个三角形的对应边都是平行的,并且两个三角形的第三边相等,那么这两个三角形是全等的。
因此,通过画出中点连线,我们可以找到两个全等的三角形。
例如,在一个三角形ABC中,我们可以通过连接边AB和AC的中点D和E来构造一个平行四边形DCBE。
然后,我们可以继续连接BE和CD,并连接AD和CE,这样就构成了两个全等三角形ADE和CDE。
通过使用这种方法,我们可以更方便地证明或利用全等三角形的性质。
2.高度法:对于一个三角形ABC,我们可以通过作其高来构造两个全等的三角形。
三角形ABC的高是指从顶点到对边的垂直线段。
如果两个三角形的高相等,并且它们的底边相等,那么这两个三角形是全等的。
因此,通过作两个三角形的高,我们可以找到两个全等的三角形。
例如,在一个三角形ABC中,我们可以通过作高AD和高BE来构造两个全等的三角形ABD和ACE。
通过使用这种方法,我们可以更方便地证明或利用全等三角形的性质。
3.角平分线法:对于一个三角形ABC,我们可以通过作角平分线来构造两个全等的三角形。
三角形ABC的角平分线是指从角的顶点到对边的线段,将角分为两个相等的角。
如果两个三角形的相应角相等,并且它们的底边相等,那么这两个三角形是全等的。
因此,通过作两个三角形的角平分线,我们可以找到两个全等的三角形。
例如,在一个三角形ABC中,我们可以通过作角平分线AD和角平分线BE来构造两个全等的三角形ADC和BEC。
通过使用这种方法,我们可以更方便地证明或利用全等三角形的性质。
4.相似三角形法:对于两个相似的三角形ABC和DEF,如果它们的对应边比例相等,那么它们是全等的。
三角形全等添加辅助线的5种常用方法
三角形全等添加辅助线的5种常用方法三角形全等的证明及相关问题,是初中几何部分的基础,也是重点和难点,不管是在中考还是平时的考试中,都是咼频出现。
全等三角形的基础知识点就那么几条,很容易掌握,但是一般考试中的题目, 不可能直接给出几组条件让我们直接写出证明过程,很多时候都要经过分析思考,添加辅助线,才能得到全等三角形。
下面就简单介绍一下构造全等三角形的五种常用方法。
一、等腰三角形三线合一法当我们遇到等腰三角形(等边三角形)相关题目时,用三线合一性质,很容易找出思路。
它的原理就是利用三角形全等变换中的对折重叠。
我们来看一个例题:证明:延长BA, CE交于点Xl、倍长中线法遇到一个中点的时候,通常会延长经过该中点的线段。
倍长中线指延长中线至一点,使所延长部分与该中线相等,并连接该点与这一条边的一个顶点,得到两个三角形全等。
如图所示,点D为△ABC边BC的中点•延长AD至点E,使得DE = AD,并连接BE,贝UAADC 也zEDB (SAS)我们来看一个例题:三、遇角平分线作双垂线法在题中遇见角平分线,做双垂直,必出全等三角形。
可以从角平分线上的点向两边作垂线,也可以过角平分线上的点作角平分线的垂线与角的两边相交。
在很多综合几何题当中,关于角平分线的辅助线添加方法最常用的就是这个。
看看在具体题目中怎么操作吧!例 3;已知,如SLAC 平分ZBAD, CD=CB, AB>AD, 求证畫ZB+ZADC=18O0・AC证明:作CE丄AB于E,CF丄AD于F. TAC 平分 ZBADr ACE=CF.在 RtACBE 和RtACDF 中,%心RtACBE^RtACDF (HL),二ZB二ZCDF,VZCDF+ZADC=180° , A ZB+ZATC=180°四、作平行线法在几何题的证明中,作平行线的方法也非常实用,一般来讲,在等腰、等边这类特殊的三解形中,作平行线绝对是首要考虑。
例4如ffl, A ABC中,是朋上一点,F是AC延长线上一点,连EF交BC于D,若EB=CF.求证當DE=DF.五、截长补短法题目中出现线段之间的和、差、倍、分时,考虑截长补短法;截长补短的目的是把几条线段之间的数量关系转换为两条线段间的等量关系例6;如图甲.AD/BC.点E 在线段AB 上.ZADE 二ZCDE, ZDCE=ZECB,求证:CRAMBU证明:在CD 上截取CF-BC.如图乙(T - < Ji在厶 FCE^ABCE 中 - netCE CLAAFCE^ABCE(SAS), .\Z2=Z1- 又VAD/7BC,AZADC+ZBCD^180° , :.ZXE+ZCDE=90<>, /- Z2+Z3=90* , •\ ZUZ4=90° . :. Z3=Z14 LH 3)1加十 z5 = Z4A AFDE^AADli (ASA) , ADF-DAr 又 VCD=DF+CF, <\CD=AD+BC O D D{。
全等三角形六种常用辅助线的添加方法和技巧
全等三角形六种常用辅助线的添加方法和技巧下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!全等三角形是初中数学中的重要概念,对于解决与三角形相关的问题具有重要作用。
【初中数学知识点解析】构造全等三角形的五种常用方法
方法4 倍长中线法 4.如应图,在△ABC中,D为BC的中点.
(1)求证:AB+AC>2AD; (2)若AB=5,AC=3,求AD的取值范围.
(1)证明: 延长AD至点E,使DE=AD,连接BE. ∵D为BC的中点, ∴CD=BD. 又∵AD=ED,∠ADC=∠EDB, ∴△ADC≌△EDB. ∴AC=EB. ∵AB+BE>AE, ∴AB+AC>2AD.
∴∠B=∠ADG=90°.
在△ABE与△ADG中,
方法5 截长(补短)法
5.如图,在四边形ABCD中,AB=AD,∠BAD=120°,∠B=
∠ADC=90°.E,F分别是BC,CD上的点,且∠EAF=60°.探究图
中线段BE,EF,FD之间的数量关系并证明.
AB=AD,
∠B=∠ADG=90°,
BE=DG,
要点提示
在进行几何题的证明或计算时,需要在图形中添加一些 辅助线,辅助线能使题目中的条件比较集中,能比较容易找 到一些量之间的关系,使数学问题较轻松地解决.
常见的辅助线作法有:翻折法、构造法、旋转法、倍长中 线法和截长(补短)法,目的都是构造全等三角形.
方法1 翻折法
1.如图,在△ABC中,BE是∠ABC的平分线,AD⊥BE,垂足为D. 求证:∠2=∠1+∠C. 证明:如图,延长AD交BC于点F.(相当于将AB边向下翻
方法3 旋转法
3.如图,在正方形ABCD中,E为BC边上一点,F为CD边上一点, BE+DF=EF,求∠EAF的度数.
∴△ABH≌△ADF. ∴AH=AF,∠BAH=∠DAF. ∴∠BAH+∠BAF=∠DAF+∠BAF, 即∠HAF=∠BAD=90°. ∵BE+DF=EF, ∴BE+BH=EF,即HE=EF. 在△AEH和△AEF中,
全等三角形六种辅助线方法
全等三角形六种辅助线方法全等三角形是指具有相同形状和大小的三角形。
在解决与全等三角形相关的问题时,辅助线是一种常用的方法,可以帮助我们更好地理解和解决问题。
下面将介绍全等三角形的六种辅助线方法。
一、垂直辅助线法垂直辅助线法是指通过某个顶点引一条垂直线与对边相交,从而将三角形分割成两个直角三角形。
利用直角三角形的性质,我们可以更方便地求解各种问题。
二、角平分线法角平分线法是指通过某个顶点引一条角平分线与对边相交,将三角形分割成两个等角的三角形。
利用等角三角形的性质,我们可以更容易地求解各种问题。
三、高线法高线法是指通过某个顶点引一条垂直于底边的线段,将三角形分割成一个直角三角形和一个等腰三角形。
利用这两个三角形的性质,我们可以更快速地解决问题。
四、中线法中线法是指连接三角形的两个顶点和底边中点,将三角形分割成三个相似的三角形。
利用相似三角形的性质,我们可以更高效地解决问题。
五、中垂线法中垂线法是指通过三角形的每条边的中点引一条垂直于对边的线段,将三角形分割成三个直角三角形。
利用直角三角形的性质,我们可以更轻松地解决问题。
六、对称线法对称线法是指通过三角形的某个顶点引一条对称线,将三角形分割成两个全等的三角形。
利用全等三角形的性质,我们可以更直接地解决问题。
通过以上六种辅助线方法,我们可以更灵活地分析和解决与全等三角形相关的问题。
这些方法使得计算更加简便,推理更加直观,提高了问题解决的效率。
同时,这些方法也加深了我们对全等三角形的理解,拓宽了我们的数学思维。
在实际应用中,我们可以根据具体问题的要求选择合适的辅助线方法,以便更好地解决问题。
全等三角形的六种辅助线方法是垂直辅助线法、角平分线法、高线法、中线法、中垂线法和对称线法。
这些方法在解决与全等三角形相关的问题时起到了重要的作用,使我们能够更快速、准确地解决问题。
希望通过这篇文章的介绍,能够帮助大家更好地理解和应用这些方法。
三角形中14种辅助线添加方法
三角形中14种辅助线添加方法三角形是几何学中的基本图形之一,是由三条边和三个内角组成的闭合图形。
在解决三角形相关问题时,为了更好地理解和分析三角形的性质,可以通过添加辅助线来辅助我们的思考。
添加辅助线的方法有很多种,下面将介绍三角形中的14种常见的辅助线添加方法。
1.中垂线:通过三角形的三个顶点与对边的中点相连的线段。
中垂线可以相互垂直且交于同一点,称为三角形的垂心。
2.角平分线:从三角形的一个内角的顶点出发,将这个内角平分成两个相等的角的直线。
三角形的三条角平分线交于一点,称为三角形的内心。
3.高线:从三角形的顶点到对边的垂线,与对边垂足构成的线段。
三角形的三条高线交于一点,称为三角形的垂心。
4.中线:三角形两个顶点的中点连线。
三角形的三条中线交于一点,称为三角形的重心。
5.对角线:连接三角形两个不相邻的顶点的线段。
6.垂直平分线:连接三角形一边的中点与该边上的顶点的直线,且与相对边垂直。
7.旁切线:从三角形的一个顶点开始,与对边相切于三角形外接圆的线段。
8.中辅线:连接三角形两个边的中点的直线。
9.内外角平分线:从三角形顶点开始,将相邻内角或外角平分成两个相等的角的直线。
10.黄金分割线:三角形的一条内角平分线与对边上适当位置的点相连接形成的线段,使得线段的两侧比例相等。
11.斜边中线:从三角形两个锐角的顶点开始,与斜边的中点相连的直线。
12.顶点角平分线:连接三角形一个顶点与另外两个相邻顶点的内角平分线。
13.倍长边线:将三角形中两个边的一部分向外延伸,与第三条边相交的直线。
14.平行线:与三角形的其中一边平行的线段。
以上是三角形中的14种常见的辅助线添加方法,通过添加辅助线可以帮助我们更好地理解和分析三角形的性质,解决三角形相关的问题。
在实际运用中,我们可以根据具体情况选择适合的辅助线添加方法,以便更好地解决问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三角形全等添加辅助线的5种常用方法
三角形全等的证明及相关问题,是初中几何部分的基础,也是重点和难点,不管是在中考还是平时的考试中,都是高频出现。
全等三角形的基础知识点就那么几条,很容易掌握,但是一般考试中的题目,不可能直接给出几组条件让我们直接写出证明过程,很多时候都要经过分析思考,添加辅助线,才能得到全等三角形。
下面就简单介绍一下构造全等三角形的五种常用方法。
一、等腰三角形三线合一法
当我们遇到等腰三角形(等边三角形)相关题目时,用三线合一性质,很容易找出思路。
它的原理就是利用三角形全等变换中的对折重叠。
我们来看一个例题:
二、倍长中线法
遇到一个中点的时候,通常会延长经过该中点的线段。
倍长中线指延长中线至一点,使所延长部分与该中线相等,并连接该点与这一条边的一个顶点,得到两个三角形全等。
如图所示,点D为△ABC边BC的中点.延长AD至点E,使得DE=AD,并连接BE,则△ADC≌△EDB(SAS)。
我们来看一个例题:
三、遇角平分线作双垂线法
在题中遇见角平分线,做双垂直,必出全等三角形。
可以从角平分线上的点向两边作垂线,也可以过角平分线上的点作角平分线的垂线与角的两边相交。
在很多综合几何题当中,关于角平分线的辅助线添加方法最常用的就是这个。
看看在具体题目中怎么操作吧!
四、作平行线法
在几何题的证明中,作平行线的方法也非常实用,一般来讲,在等腰、等边这类特殊的三解形中,作平行线绝对是首要考虑。
五、截长补短法
题目中出现线段之间的和、差、倍、分时,考虑截长补短法;截长补短的目的是把几条线段之间的数量关系转换为两条线段间的等量关系。