中位线直角三角形中线长定理的运用
华东师大初中数学九年级上册三角形中位线定理 知识讲解[精品]
三角形中位线定理【学习目标】1. 理解三角形的中位线的概念,掌握三角形的中位线定理.2. 掌握中点四边形的形成规律.【要点梳理】要点一、三角形的中位线1.连接三角形两边中点的线段叫做三角形的中位线.2.定理:三角形的中位线平行于第三边,并且等于第三边的一半.要点诠释:(1)三角形有三条中位线,每一条与第三边都有相应的位置关系与数量关系. (2)三角形的三条中位线把原三角形分成可全等的4个小三角形.因而每个小三角形的周长为原三角形周长的12,每个小三角形的面积为原三角形面积的14.(3)三角形的中位线不同于三角形的中线.要点二、顺次连接特殊的平行四边形各边中点得到的四边形的形状(1)顺次连接平行四边形各边中点得到的四边形是平行四边形.(2)顺次连接矩形各边中点得到的四边形是菱形.(3)顺次连接菱形各边中点得到的四边形是矩形.(4)顺次连接正方形各边中点得到的四边形是正方形.要点诠释:新四边形由原四边形各边中点顺次连接而成.(1)若原四边形的对角线互相垂直,则新四边形是矩形.(2)若原四边形的对角线相等,则新四边形是菱形.(3)若原四边形的对角线垂直且相等,则新四边形是正方形.【典型例题】类型一、三角形的中位线1、(2016•北京)如图,在四边形ABCD中,∠ABC=90°,AC=AD,M,N分别为AC,CD的中点,连接BM,MN,BN.(1)求证:BM=MN;(2)∠BAD=60°,AC平分∠BAD,AC=2,求BN的长.【思路点拨】(1)根据三角形中位线定理得MN=AD,根据直角三角形斜边中线定理得BM=AC,由此即可证明.(2)首先证明∠BMN=90°,根据BN2=BM2+MN2即可解决问题.【答案与解析】(1)证明:在△CAD中,∵M、N分别是AC、CD的中点,∴MN∥AD,MN=AD,在RT△ABC中,∵M是AC中点,∴BM=AC,∵AC=AD,∴MN=BM.(2)解:∵∠BAD=60°,AC平分∠BAD,∴∠BAC=∠DAC=30°,由(1)可知,BM=AC=AM=MC,∴∠BMC=∠BAM+∠ABM=2∠BAM=60°,∵MN∥AD,∴∠NMC=∠DAC=30°,∴∠BMN=∠BMC+∠NMC=90°,∴BN2=BM2+MN2,由(1)可知MN=BM=AC=1,∴BN=【总结升华】本题考查三角形中位线定理、直角三角形斜边中线定理、勾股定理等知识,解题的关键是灵活应用这些知识解决问题,属于中考常考题型.举一反三:【变式】如图,矩形OABC的顶点A、C分别在x轴、y轴正半轴上,B点坐标为(3,2),OB与AC交于点P,D、E、F、G分别是线段OP、AP、BP、CP的中点,则四边形DEFG的周长为_____.【答案】5;解:∵四边形OABC是矩形,∴OA=BC,AB=OC;BA⊥OA,BC⊥OC.∵B点坐标为(3,2),∴OA=3,AB=2.∵D、E、F、G分别是线段OP、AP、BP、CP的中点,∴DE=GF=1.5; EF=DG=1.∴四边形DEFG的周长为(1.5+1)×2=5.2、如图,在△ABC中,已知点D、E、F分别是AB、BC、CA的中点,AH是高.(1)若BC=10,AH=8,则四边形ADEF的面积为.(2)求证:∠DHF=∠DEF.B【思路点拨】(1)由三角形面积公式可知:△BDE、△EFC的面积都等于△ABC面积的四分之一,进而可求出四边形ADEF的面积.(2)首先证明四边形ADEF是平行四边形,进而可得∠DEF=∠DAF,再利用直角三角形的中线性质得线段相等,从而得角等,最终可得到∠DAF=∠DEF,即可证出∠DHF=∠DEF.【答案解析】(1)解:∵BC=10,AH=8,∴S△ABC=×8×10=40,∵点D、E、F分别是AB、BC、CA的中点,∴△BDE、△EFC的面积都等于△ABC面积的,∴四边形ADEF的面积=40﹣20=20,故答案为:20;(2)证明:∵D、E、F分别是△ABC各边中点,∴DE∥AC,EF∥AB,∴四边形ADEF是平行四边形,∴∠DEF=∠DAF,∵AH是△ABC的高∴△ABH、△ACH是直角三角形,∵点D、点F是斜边AB、AC中点,∴DH=DA,HF=AF,∴∠DAH=∠DHA,∠FAH=∠FHA,∴∠DAH+∠FAH=∠FHA+∠DHA,即∠DAF=∠DHF , ∴∠DEF=∠DHF .【总结升华】此题主要考查了平行四边形的性质与判定,三角形的中位线定理,直角三角形的性质,解决题目的关键是证明∠DHF=∠DAF 与∠DAF=∠DEF .3、如图所示,在△ABC 中,M 为BC 的中点,AD 为∠BAC 的平分线,BD ⊥AD 于D ,AB =12,AC =18,求MD 的长.【思路点拨】本题中所求线段MD 与已知线段AB 、AC 之间没有什么联系,但由M 为BC 的中点联想到中位线,另有AD 为角平分线和垂线,根据等腰三角形“三线合一”构造等腰三角形ABN ,D 为BN 的中点,DM 即为中位线,不难求出MD 的长度. 【答案与解析】解:延长BD 交AC 于点N .∵ AD 为∠BAC 的角平分线,且AD ⊥BN , ∴ ∠BAD =∠NAD ,∠ADB =∠ADN =90°,在△ABD 和△AND 中,BAD NAD AD =ADADB ADN ∠∠⎧⎪⎨⎪∠∠⎩== ∴ △ABD ≌△AND(ASA) ∴ AN =AB =12,BD =DN .∵ AC =18,∴ NC =AC -AN =18-12=6, ∵ D 、M 分别为BN 、BC 的中点, ∴ DM =12CN =162⨯=3.【总结升华】当条件中含有中点的时候,可以将它与等腰三角形的“三线合一”、三角形的中线、中位线等联系起来,进行联想,必要时添加辅助线,构造中位线等图形. 举一反三:【变式】如图所示,四边形ABCD 中,Q 是CD 上的一定点,P 是BC 上的一动点,E 、F 分别是PA 、PQ 两边的中点;当点P 在BC 边上移动的过程中,线段EF 的长度将( ).A .先变大,后变小B .保持不变C .先变小,后变大D .无法确定 【答案】B ;解: 连接AQ .∵ E 、F 分别是PA 、PQ 两边的中点,∴ EF 是△PAQ 的中位线,即AQ =2EF .∵ Q 是CD 上的一定点,则AQ 的长度保持不变, ∴ 线段EF 的长度将保持不变.4、我们给出如下定义:有一组相邻内角相等的四边形叫做等邻角四边形.请解答下列问题:(1)如图1,在△ABC 中,AB=AC ,点D 在BC 上,且CD=CA ,点E 、F 分别为BC 、AD 的中点,连接EF 并延长交AB 于点G .求证:四边形AGEC 是等邻角四边形;(2)如图2,若点D 在△ABC 的内部,(2)中的其他条件不变,EF 与CD 交于点H ,图中是否存在等邻角四边形,若存在,指出是哪个四边形,不必证明;若不存在,请说明理由.【思路点拨】(1)运用中位线的性质,找出对应相等的角;(2)根据题意易知满足条件的四边形即为第一题的四边形. 【答案与解析】解:(1)取AC 的中点H ,连接HE 、HF∵点E 为BC 中点∴EH 为△ABC 的中位线∴EH∥AB,且EH=12AB 同理FH∥DC,且FH=12DC∵AB=AC,DC=AC ∴AB=DC ,EH=FH ∴∠1=∠2∵EH∥AB,FH∥DC ∴∠2=∠4,∠1=∠3 ∴∠4=∠3∵∠AGE+∠4=180°,∠GEC+∠3=180° ∴∠AGE=∠GEC∴四边形AGEC是邻角四边形(2)存在等邻角四边形,为四边形AGHC.【总结升华】本题考查了三角形的中位线以及等腰三角形的性质的综合运用.本题较灵活,要求学生能够把题中的条件转化成角,从而找出相等的角来解题.举一反三:【变式】如图,AB∥CD,E,F分别为AC,BD的中点,若AB=5,CD=3,则EF的长是()A.4 B.3 C.2 D.1【答案】D;解:连接DE并延长交AB于H,∵CD∥AB,∴∠C=∠A,∠CDE=∠AHE,∵E是AC中点,∴AE=CE,∴△DCE≌△HAE,∴DE=HE,DC=AH,∵F是BD中点,∴EF是△DHB的中位线,∴EF=12 BH,∴BH=AB-AH=AB-DC=2,∴EF=1.类型二、中点四边形5、如图,在梯形ABCD中,AD∥BC,AB=DC,对角线AC、BD交于点O,AC⊥BD,E、F、G、H分别是AB、BC、CD、DA的中点.(1)求证:四边形EFGH是正方形;(2)若AD=2,BC=4,求四边形EFGH的面积.【思路点拨】(1)先由三角形的中位线定理求出四边相等,然后由AC⊥BD入手,进行正方形的判断.(2)连接EG ,利用梯形的中位线定理求出EG 的长,然后结合(1)的结论求出2EH =92,也即得出了正方形EHGF 的面积. 【答案与解析】证明:(1)在△ABC 中,E 、F 分别是AB 、BC 的中点,故可得:EF =12AC ,同理FG =12BD ,GH =12AC ,HE =12BD , 在梯形ABCD 中,AB =DC ,故AC =BD ,∴EF =FG =GH =HE , ∴四边形EFGH 是菱形. 设AC 与EH 交于点M ,在△ABD 中,E 、H 分别是AB 、AD 的中点, 则EH∥BD, 同理GH∥AC, 又∵AC⊥BD,∴EH⊥HG,∴四边形EFGH 是正方形. (2)连接EG . 在梯形ABCD 中,∵E、G 分别是AB 、DC 的中点, ∴EG=12(AD +BC )=3. 在Rt△EHG 中,∵222EH GH EG +=,EH =GH , ∴2EH =92,即四边形EFGH 的面积为92. 【总结升华】此题考查了等腰梯形的性质及三角形、梯形的中位线定理,解答本题的关键是根据三角形的中位线定理得出EH =HG =GF =FE ,这是本题的突破口. 举一反三:【变式】如图,E 、F 、G 、H 分别是边AB 、BC 、CD 、DA 的中点. (1)判断四边形EFGH 的形状,并说明你的理由;(2)连接BD 和AC ,当BD 、AC 满足何条件时,四边形EFGH 是正方形.【答案】解:(1)四边形EFGH 是平行四边形.理由:连接AC ,∵E、F 分别是AB 、BC 的中点,∴EF∥AC,且EF =12AC , 同理,HG∥AC,且HG =12AC ,∴EF∥HG,且EF =HG ,∴四边形EFGH 是平行四边形;(2)当BD =AC ,且B D⊥AC 时,EFGH 是正方形. 理由:连接AC ,BD ,∵E、F 、G 、H 分别是边AB 、BC 、CD 、DA 的中点, ∴EF=GH =12AC ,EH =FG =12BD ,EH∥BD,GH∥AC, ∵BD=AC ,BD⊥AC,∴EH=EF =FG =GH ,EH⊥GH,∴四边形ABCD 是菱形,∠EHG=90°, ∴四边形EFGH 是正方形.。
中位线及其应用
中位线及其应用知识定位中位线在初中几何或者竞赛中占据非常大的地位,它的有关知识是今后我们学习综合题目或者三角形综合的重要基础。
中位线的证明性质以及应用,必须熟练掌握。
本节我们通过一些实例的求解,旨在介绍数学竞赛中中位线相关问题的常见题型及其求解方法本讲将通过例题来说明这些方法的运用。
知识梳理1、三角形中位线定义(1)三角形中位线定义:连接三角形两边中点的线段叫做三角形的中位线。
三角形的中位线与三角形的中线区分:三角形中线是连接一顶点和它的对边中点的线段,而三角形中位线是连接三角形两边中点的线段。
(2)三角形中位线定理:三角形的中位线平行于第三边且等于第三边的一半。
如图,在ABC ∆中,点D 、E 分别为边AB 、AC 的中点,则DE 为ABC ∆的中位线。
几何语言描述:因为D 、E 分别为边AB 、AC 的中点,所以DE//BC,且DE=12BC提示 a :“平行且等于第三边的一半”,具体应用时要根据题目的要求灵活进行选择,并 不一定要把两个结论都写出来。
b :一个三角形有三条中位线。
c :经过三角形一边的中点且与另一边平行的直线,必平分第三边,这是一种重要 的作辅助线的方法。
2、三角形中位线的性质(1)三角形中位线平行于第三边,并且等于第三边的一半。
梯形中位线平行于两底,并且等于两底和的一半。
(2)中位线性质定理的结论,兼有位置和大小关系,可以用它判定平行,计算线段的长度,确定线段的和、差、倍关系。
(3)运用中位线性质的关键是从出现的线段中点,找到三角形或梯形,包括作出辅助线。
(4)中位线性质定理,常与它的逆定理结合起来用。
它的逆定理就是平行线截比例线段定理及推论,①一组平行线在一直线上截得相等线段,在其他直线上截得的线段也相等②经过三角形一边中点而平行于另一边的直线,必平分第三边③经过梯形一腰中点而平行于两底的直线,必平分另一腰补充:有关线段中点的其他定理还有:①直角三角形斜边中线等于斜边的一半②等腰三角形底边中线和底上的高,顶角平分线互相重合③对角线互相平分的四边形是平行四边形④线段中垂线上的点到线段两端的距离相等因此如何发挥中点作用必须全面考虑。
初中数学-三角形中的中线的用法教师版
三角形中的中线的用法模块一:三角形中位线 1.定义:连接三角形两边中点的线段. 2.定理:三角形中位线平行于三角形的第三边且等于第三边的一半.若DE 为ABC △的中位线,则DE//BC ,且12DE BC =.3.三角形中位线里隐含重要性质: ①三角形的三条中位线将原三角形分割成四个全等的三角形.EF 、GE 、GF 是ABC △的三条中位线,则有:①AEG EBF CFG FGE △△△△≌≌≌②12EFG ABC C C =△△,14EFG ABC S S =△△②三角形的三条中位线组成一个三角形,其周长为原三角形的周长的一半,其面积为原三角形面积的四分之一. 模块二:直角三角形斜边中线 定理:直角三角形斜边上的中线等于斜边的一半.若AD 为Rt ABC △斜边上的中线,则12AD BC =.相关结论:(1)AD BD DC ==; (2)ABD △,ACD △为等腰三角形 (3)2ADB C ∠=∠,2ADC B ∠=∠拓展:在由两个直角三角形组成的图中,M 为中点.相关结论:(1)AM MD =;(2)2AMD ABD ∠=∠. 模块三:中点辅助线综合E DCB AMMABCDA BCDDCBAFA B CE G(1)如图1-1,在ABC△中,D,E,F分别是AB,BC,AC的中点,若ABC△的周长为20cm,则DEF△的周长为__________.(2)如图1-2,在Rt ABC△中,30A∠=︒,1BC=,点D,E分别是直角边BC,AC的中点,则DE的长为__________.图1-1 图1-2(3)如图1-3,ABC△中,6AB AC==,8BC=,AE平分BAC∠交BC于点E,点D为AB的中点,连接DE,则BDE△的周长是__________.(4)如图1-4,在四边形ABCD中,E、F分别为AB、CD的中点.求证:1()2EF AC BD<+.图1-3 图1-4【解析】(1)10cm.(2)1.(3)10.(4)证明:取AD的中点M,连结EM和FM.∵E、F是AB、CD中点,∴12EM BD=,12FM AC=.又∵EF EM FM<+,∴1()2EF AC BD<+.【教师备课提示】考察中位线产生的线段长度关系.第(4)题利用中位线构造出长为12AC,12BD的线段并将线段集中;也可以求证1()2EF AD BC<+,方法是取AC 或BD的中点.FEDCBA模块一三角形中位线例题1MAB CDEF(1)如图2-1,在四边形ABCD 中,P 是对角线BD 的中点,E ,F 分别是AB ,CD 的中点,AD BC =,18PEF ∠=︒,则PFE ∠的度数是__________度.(2)如图2-2,已知四边形ABCD 的对角线AC BD =,E 、F 分别是AD 、BC 的中点,连结EF 分别交AC 、BD 于M 、N ,求证:AMN BNM =∠∠.(3)已知,如图2-3四边形ABCD 中,AD BC =,E 、F 分别是AB 和CD 的中点,AD 、EF 、BC 的延长线分别交于M 、N 两点.求证:AME BNE ∠=∠.图2-1 图2-2 图2-3【解析】(1)18.(2)设AB 的中点为G ,连结GE 、GF ,容易证得:GE //BD ,12EG BD =,GF //AC ,12EF AC =,从而GF GE =,GEF GFE ∠=∠, ∴AMN BNM =∠∠.(构造中位线来利用对角线相等的条件,也可以取AC 或BD 的中点.) (3)连接AC ,取AC 中点H ,连接FH 、EH .∵DF CF =,AH CH =,∴FH//AD ,12FH AD =,同理,12EH BC =,EH//BC , ∵AD BC =,∴EH FH =,∴HFE HEF ∠=∠, ∵FH//AM ,EH//BC , ∴AM E HFE ∠=∠,HEF BNE ∠=∠, ∴AME BNE ∠=∠.【教师备课提示】考察中位线的性质,学会通过构造中位线去利用已知的条件.CM FEND B AA CDM FE NB例题2CM FE G NDB AA H C D MF E NB如图,在ABC △中,D 、G 分别为AB 、AC 上的点,且BD CG =,M 、N 分别是BG 、CD 的中点,过MN 的直线交AB 于点P ,交AC 于点Q ,求证:AP AQ =.【解析】连DG ,找DG 的中点E ,连ME 、NE ,∵M 、N 分别是BG 与CD 的中点.∴ME//AB ,12ME BD =,NE//AC ,12NE GC =.∴APQ EMN ∠=∠,AQP ENM ∠=∠.∵BD GC =,∴EM EN =, ∴EMN ENM ∠=∠,∴APQ AQP ∠=∠,∴AP AQ =. 【教师备课提示】还可以取BC 中点.总结:已知四边形对角线中点,则取一边中点,可出两条中位线,学会构造出中位线去利用题目中给出的等量关系.已知:在ABC △中,90ABC ∠=︒,点E 在直线AB 上,ED 与直线AC 垂直,垂足为D ,且点M 为EC 中点,连接BM 、DM .(1)如图4-1,若点E 在线段AB 上,探究线段BM 与DM 及BM D ∠与BCD ∠所满足的数量关系,并直接写出你得到的结论;(2)如图4-2,若点E 在BA 延长线上,你(1)中的结论是否发生变化?写出你的猜想并证明.图4-1 图4-2【解析】(1)BM DM =,2BMD BCD ∠=∠;(2)结论不变,由题意知MB MC MD ==,∴2BME BCM ∠=∠,2DME DCM ∠=∠,两式相减,得2BMD BCD ∠=∠.NM PQG D C BAEA BC DG Q PM N 图2图1BEM CDAMEDCBA例题3模块二直角三角形斜边中线例题4如图,90MON∠=︒,ABC△中,90BAC∠=︒,2AB=,1AC=,AB在MON∠上滑动,求OC的最大值.【解析】取AB的中点D,连结OD、DC,则1OD=,2DC=,可得12OC≤+,即OC的最大值为12+(O、D、C三点共线时).在Rt ABC△中,90BAC∠=︒,AD BC⊥,E、F、G分别是AB、AC、BC的中点,M 是DG的中点,求证:ME MF=.【解析】连结DF、EG,可证DF GE=,MDF MGE∠=∠,MD MG=,则MDF MGE△≌△,得证.例题5模块三中点辅助线综合例题6如图,在五边形ABCDE 中,90ABC AED ∠=∠=︒,BAC EAD ∠=∠,F 为CD 的中点.求证:BF EF =.【解析】方法一:如图1,取AC 中点M ,取AD 中点N ,连BM ,MF ,NF ,EN . ∵90ABC AED ∠=∠=︒,1122BM AC FN EN AD MF ====,,∴BMF FNE △≌△,∴BF EF =,方法二:如图2,延长CB 到M ,使得MB BC =, 延长DE 到N ,使得NE DE =, 连接AM ,AN ,MD ,CN . 由90ABC AED ∠=∠=°,AMC △,ADN △是等腰三角形,F 是CD 中点,则BF //MD ,12BF MD =,EF//CN ,12EF CN =,MAD CAN △≌△,MD CN =,∴BF EF =,此题的两种解法中综合了中点的三个基本用法:等腰三角形三线合一;直角三角形斜边中线;中位线,即以下三个模型:图2图1MNN MACBDEF F EDB CA例题7FEDB C A(1)如图1-1,在ABC△中,点D是BC中点,AE平分∠BAC,BE⊥AE于E,延长BE 交AC于F.若AB=10厘米,AC=16厘米,则DE的长度为__________.(2)如图1-2,已知,在四边形ABCD中,AD BC=,P是对角线BD的中点,N是DC 的中点,M是AB的中点,30DBC∠=︒,70ADB∠=︒.求MNP∠度数.图1-1 图1-2【解析】(1)3厘米;(2)∵在四边形ABCD中,P是对角线BD的中点,M、N分别是AB、CD的中点,∴NP,PM分别是CDB△与DAB△的中位线,∴12PN BC=,12PM AD=,PN//BC,PM//AD,∴30NPD DBC∠=∠=︒,70MPB ADB∠=∠=︒,∴110DPM∠=︒;∴140NPM∠=︒,∵AD BC=;∴PN PM=,故NMP△是等腰三角形.∵140NPM∠=︒,∴20PMN PNM∠=∠=︒.复习巩固模块一三角形中位线演练1(1)如图2-1,ABC △中,过点A 分别作ABC ∠、ACB ∠的外角平分线.....的垂线..AD 、AE ,垂足为D 、E .求证:①//ED BC ;②1()2ED AB AC BC =++.(2)(四川省中考题)如图2-2,已知:AD 是ABC △的中线,AE 是ABD △的中线,且AB BD =,求证:2AC AE =.图2-1 图2-2【解析】(1)①分别延长AD 、AE 与直线BC 交于点F 、G ,∵BD ⊥AD ,且BD 为ABF ∠的角平分线∴AD FD =,且AB BF =(等腰三角形的三线合一) 同理可得AE GE =,AC GC =, ∴DE 为AFG △的中位线,∴ED //BC ,且12DE FG =.②由(1)知12DE FG =,且AB BF =,AC GC =,∴111()()222ED FG=FB BC CG AB BC AC =++=++.(2)取AC 的中点F ,连结DF ,易得DF//AB ,12DF AB =,ADF BAD ∠=∠,而1122DE BD AB ==,故DF DE =.再证ADE ADF △≌△,∴AE AF =,∴2AC AE =.C ED BA演练2CF E D B A(1)如图3-1,四边形ABCD 中,90ADC ∠=︒,取AC 中点O ,BC 中点E ,连接OD 、OE 、DE ,20CAD CAB ∠=∠=︒,则DOE ∠=__________.(2)如图3-2所示,ABC △中,AH BC ⊥于H ,点E 、D 、F 分别是AB 、BC 、AC 的中点,10cm HF =,则ED 的长度是__________.图3-1 图3-2【解析】(1)60︒.(2)10cm .(1)如图4-1,在ABC △中,2B C ∠=∠,M 是BC 中点,AD BC ⊥于D .求证:12DM AB =.(2)如图4-2,已知:ABD △和ACE △都是直角三角形,且90ABD ACE ∠=∠=︒,BAD CAE ∠=∠.连接DE ,设M 为DE 的中点.求证:MB MC =.【解析】(1)法一:取AB 中点G ,连结GD 、GM ,则12GD AB =,GM AC ∥.则GMD C ∠=∠. 而GD GB B GDB GMD DGM =⇒∠=∠=∠+∠ C DGM =∠+∠,由于2B C ∠=∠,所以DGM C GMD ∠=∠=∠.∴12MD GD AB ==. OEDC B AMEDCBA模块二直角三角形斜边中线演练3模块三中点辅助线综合演练4CAB GNDMC AB D M法二:同理可以取AC的中点N,连接DN,MN.(2)如图,分别取AD、AE的中点P、Q,连接PB、PM、QC、QM,由P、M、Q分别是AD、DE、AE的中点,∴PM//AE,12PM AE=,QM//AD,12QM AD=,∵ABD△、ACE△是直角三角形,∴12PB AD=,12CQ AE=,∴PB QM=,PM QC=,∵BAD CAE∠=∠,∴ADB AEC∠=∠,∴DPB CQE∠=∠,由AD//QM,AE//PM,∴APM AQM∠=∠,∴BPM MQC∠=∠,∴BPM MQC△≌△,∴MB MC=.QPAB CDE M图3。
专题22 三角形中位线定理应用问题(解析版)
专题22 三角形中位线定理应用问题1.三角形中位线的定义:连接三角形两边中点的线段叫做三角形的中位线。
2.三角形中位线定理:三角形的中位线平行于第三边,并且等于它的一半。
3.对三角形中位线的深刻理解(1)三角形有三条中位线,每一条与第三边都有相应的位置关系与数量关系.(2)三角形的三条中位线把原三角形分成可全等的4个小三角形.因而每个小三角形的周长为原三角形周长的,每个小三角形的面积为原三角形面积的. (3)三角形的中位线不同于三角形的中线.【例题1】(2020•福建)如图,面积为1的等边三角形ABC 中,D ,E ,F 分别是AB ,BC ,CA 的中点,则△DEF 的面积是( )A .1B .12C .13D .14 【答案】D【解析】根据三角形的中位线定理和相似三角形的判定和性质定理即可得到结论.∵D ,E ,F 分别是AB ,BC ,CA 的中点,1214∴DE =12AC ,DF =12BC ,EF =12AB ,∴DF BC =EF AB =DE AC =12,∴△DEF ∽△ABC ,∴S △DEFS △ABC =(DE AC )2=(12)2=14, ∵等边三角形ABC 的面积为1,∴△DEF 的面积是14.【对点练习】(2019内蒙古赤峰)如图,菱形ABCD 周长为20,对角线AC 、BD 相交于点O ,E 是CD 的中点,则OE 的长是( )A .2.5B .3C .4D .5【答案】A .【解析】∵四边形ABCD 为菱形,∴CD =BC ==5,且O 为BD 的中点, ∵E 为CD 的中点,∴OE 为△BCD 的中位线,∴OE =CB =2.5。
【点拨】掌握菱形特点,根据三角形中位线定理解决问题。
【例题2】(2020•临沂)如图,在△ABC 中,D 、E 为边AB 的三等分点,EF ∥DG ∥AC ,H 为AF 与DG 的交点.若AC =6,则DH = .【解析】1.【分析】由三等分点的定义与平行线的性质得出BE =DE =AD ,BF =GF =CG ,AH =HF ,DH 是△AEF 的中位线,易证△BEF ∽△BAC ,得EF AC =BE AB ,解得EF =2,则DH =12EF =1. 【解析】∵D 、E 为边AB 的三等分点,EF ∥DG ∥AC ,∴BE =DE =AD ,BF =GF =CG ,AH =HF ,∴AB =3BE ,DH 是△AEF 的中位线,∴DH =12EF ,∵EF ∥AC ,∴△BEF ∽△BAC ,∴EF AC =BE AB ,即EF 6=BE 3BE ,解得:EF =2,∴DH =12EF =12×2=1,【对点练习】(2019广西梧州)如图,已知在△ABC 中,D 、E 分别是AB 、AC 的中点,F 、G 分别是AD 、AE 的中点,且FG =2cm ,则BC 的长度是 cm .【答案】8.【解析】利用三角形中位线定理求得FG=DE,DE=BC.如图,∵△ADE中,F、G分别是AD、AE的中点,∴DE=2FG=4cm,∵D,E分别是AB,AC的中点,∴DE是△ABC的中位线,∴BC=2DE=8cm【点拨】连续两次应用三角形中位线定理处理本题,是关键。
八年级全等三角形中的中点、中线问题
全等三角形中的中点、中线问题三角形中线的定义:三角形顶点和对边中点的连线三角形中线的相关定理: 直角三角形斜边的中线等于斜边的一半等腰三角形底边的中线三线合一(底边的中线、顶角的角平分线、底边的高重合) 三角形中位线定义:连结三角形两边中点的线段叫做三角形的中位线. 三角形中位线定理:三角形的中位线平行于第三边并且等于它的一半.中位线判定定理:经过三角形一边中点且平行于另一边的直线必平分第三边.中线中位线相关问题(涉及中点的问题)见到中线(中点),我们可以联想的内容无非是倍长中线以及中位线定理(以后还要学习中线长公式),尤其是在涉及线段的等量关系时,倍长中线的应用更是较为常见.【例1】 如图,AC DE ∥,BC EF ∥,AC DE =.求证:AF BD =.FEDCBA【巩固】如图所示:AB CD ∥,AB CD =.求证:AD BC ∥.DCBA【例2】 如图,已知AB DC =,AD BC =,O 是BD 中点,过O 点的直线分别交DA 、BC 的延长线于E F ,.求证:E F ∠=∠21OFEDCBA【例3】 如图,AB CD ,相交于点O ,OA OB =,E 、F 为CD 上两点,AE BF ∥,CE DF =.求证:AC BD ∥. OF E DBA【巩固】如图,在梯形ABCD 中,AD BC ∥,E 为CD 中点,连结AE 并延长AE 交BC 的延长线于点F .求证:FC AD =.FEDCBA【例4】 已知:如图,梯形ABCD 中,AD BC ∥,点E 是CD 的中点,BE 的延长线与AD 的延长线相交于点F .求证:BCE FDE ∆∆≌.DFECBA【例5】 如图,在ABC ∆中,D 是BC 边的中点,F ,E 分别是AD 及其延长线上的点,CF BE ∥.求证:BDE CDF ∆∆≌.FEDCBA【例6】 已知ACB ∆,B ACB ∠=∠,D ,E 分别是AB 及AC 延长线上的一点,且BD CE =,连接DE 交底BC于G ,求证GD GE =.GED C BA【例7】 如左下图,在矩形ABCD 中,E 为CB 延长线上一点且AC CE =,F 为AE 的中点.求证:BF FD ⊥.F EDCBA【例8】 如右下图,在ABC ∆中,BE 、CF 分别为边AC 、AB 的高,D 为BC 的中点,DM EF ⊥于M .求证:FM EM =.MFED CB A【例9】 已知:ABC ∆中,AM 是中线.求证:1()2AM AB AC <+.MCBA【例10】 在△ABC 中,59AB AC ==,,则BC 边上的中线AD 的长的取值范围是什么?【例11】 如图,ABC ∆中,<AB AC ,AD 是中线.求证:<DAC DAB ∠∠.DCBA【例12】 如图,已知在ABC ∆中,AD 是BC 边上的中线,E 是AD 上一点,延长BE 交AC 于F ,AF EF =,求证:AC BE =.FEDC BA【例13】 如图,已知在ABC ∆中,AD 是BC 边上的中线,E 是AD 上一点,且BE AC =,延长BE 交AC 于F ,AF 与EF 相等吗?为什么?FED CBA【例14】 如图所示,已知ABC ∆中,AD 平分BAC ∠,E 、F 分别在BD 、AD 上.DE CD =,EF AC =.求证:EF ∥ABFACD E B【例15】 ABC ∆中,AB AC >,AD 、AE 分别是BC 边上的中线和A ∠的平分线,则AD 和AE 的大小关系是AD ______AE .(填“>”、 “<”或“=”)E AB CD 【例16】 已知AM 为ABC ∆的中线,AMB ∠,AMC ∠的平分线分别交AB 于E 、交AC 于F .求证:BE CF EF +>.FE AB D C【巩固】在Rt ABC ∆中,90A ∠=︒,点D 为BC 的中点,点E 、F 分别为AB 、AC 上的点,且ED FD ⊥.以线段BE 、EF 、FC 为边能否构成一个三角形?若能,该三角形是锐角三角形、直角三角形或钝角三角形?FEDCBA【例17】 如图所示,在ABC ∆中,D 是BC 的中点,DM 垂直于DN ,如果2222BM CN DM DN +=+,求证()22214AD AB AC =+.NMDCBA【巩固】在Rt ABC ∆中,F 是斜边AB 的中点,D 、E 分别在边CA 、CB 上,满足90DFE ∠=︒.若3AD =,4BE =,则线段DE 的长度为_________.FEDCBA【例18】 如图所示,在ABC ∆中,AB AC =,延长AB 到D ,使B D A B =,E 为AB 的中点,连接CE 、CD ,求证2CD EC =.ECB A【例19】 已知ABC ∆中,AB AC =,BD 为AB 的延长线,且BD AB =,CE 为ABC ∆的AB 边上的中线.求证2CD CE =EDCB A1. 如图,AC 、BD 相交于O 点,且AC BD =,AB CD =,求证:OA OD =.ABCDO2. 如图所示:AF CD =,BC EF =,AB DE =,A D ∠=∠.求证:BC EF ∥.A BCD EF3. 如图所示,在ABC ∆和A B C '''∆中,AD 、A D ''分别是BC 、B C ''上的中线,且AB A B ''=,AC A C ''=,AD A D ''=,求证ABC A B C '''∆∆≌.DCB AD'C'B'A'4. 如图,在ABC ∆中,AD 交BC 于点D ,点E 是BC 中点,EF AD ∥交CA 的延长线于点F ,交AB 于点G ,若BG CF =,求证:AD 为ABC ∆的角平分线.F GE DCBA5. 如图所示,90BAC DAE ∠=∠=︒,M 是BE 的中点,AB AC =,AD AE =,求证AM CD ⊥.MECBA。
三角形中线长定理 直角三角形射影定理
《三角形中线长定理与直角三角形射影定理》一、引言在几何学中,三角形是最基本的几何图形之一,而三角形中线长定理和直角三角形射影定理则是三角形内部各条线段关系的重要定理。
本文将以这两个定理为主题,深入探讨它们的意义、应用和证明方法,以帮助读者全面地理解这一部分几何知识。
二、三角形中线长定理1. 定理表述三角形中线长定理是指三角形中线的性质,其中线是连接一个三角形的两个顶点与中点的线段。
具体而言,三角形中线长定理表述为:在一个三角形中,两个中线的长度相等,且等于第三个中线的一半。
2. 意义与应用三角形中线长定理的意义在于它揭示了三角形内部各线段之间的等长关系,为解决相关问题提供了依据。
在实际应用中,这个定理常常用于计算三角形的各边长度、面积等问题,尤其在建筑、工程等领域有着广泛的应用价值。
3. 证明方法对于三角形中线长定理的证明,我们可以采用几何推理和数学运算相结合的方法进行证明。
具体而言,可以利用向量、中位线定理、勾股定理等几何知识来进行推导,最终得出结论。
这一证明过程不仅可以帮助我们深入理解定理的本质,也有助于培养我们的逻辑思维能力。
三、直角三角形射影定理1. 定理表述直角三角形射影定理是指在直角三角形中,三条射影的性质。
其中,射影是垂直于斜边的边线。
具体而言,直角三角形射影定理表述为:在一个直角三角形中,斜边上的高等于两条直角边上的高的乘积。
2. 意义与应用直角三角形射影定理的意义在于它揭示了直角三角形内部各射影之间的数学关系,为求解与直角三角形有关的问题提供了重要工具。
在实际应用中,这个定理常常用于测量、工程设计、地理测量等领域,为解决实际问题提供了依据。
3. 证明方法对于直角三角形射影定理的证明,我们可以采用几何相似性和数学运算相结合的方法进行证明。
具体而言,可以利用三角形相似性、直角三角形的性质等进行推导,最终得出结论。
这一证明过程可以帮助我们更深入地理解定理的内涵,提高我们的几何推理能力。
中位线直角三角形中线长定理的运用
a
10
变1:如图,△ABC和△CDE都是 等腰直角三角形,F是AE中点,试 判断△BDF的形状。
a
11
a
4
4.如图,△ABC中,AB=6,AC=10, AE平分
5.如图,四边形ABCD中,O为AC,BD 的交点,AC=BD,E,F分别是AB,CD 的中点,E,F交AC,BD于M,N点,判断 △MON的形状。
a
6
Rt△斜边上中线的等于斜边的 一半
三角形的中位线定理
a
1
1,如图,△ABC中,DE是中位线, F是BC中点,证明:DE、AF互相 平分。
a
2
2.如图,四边形ABCD中,E,F,G,H分 别是各边中点,证明:EFGH是平行 四边形。
a
3
3.如图,△ABC中,BD,CE分别是 中线,交于G点,F,H分别是 BG,CG的中点,证明:GB=2GD
a
7
6.如图,△ABC中,BF,CE分别是 高,M是EF的中点,D是BC的中 点,证明:DM⊥EF
M
a
8
7.如图,Rt△ABC中,∠B=90°, ∠C=30°,E是AC中点,F满足 BF=AB,求∠AFE的度数。
a
9
8.如图,△ABC和△CDE都是等腰 直角三角形,且B是DC中点,F是 AE中点,试判断△BDF的形状。
苏教版八年级下册数学[三角形中位线定理 知识点整理及重点题型梳理]
苏教版八年级下册数学重难点突破知识点梳理及重点题型巩固练习三角形中位线定理【学习目标】1. 理解三角形的中位线的概念,掌握三角形的中位线定理.2. 掌握中点四边形的形成规律.【要点梳理】要点一、三角形的中位线1.连接三角形两边中点的线段叫做三角形的中位线.2.定理:三角形的中位线平行于第三边,并且等于第三边的一半.要点诠释:(1)三角形有三条中位线,每一条与第三边都有相应的位置关系与数量关系.(2)三角形的三条中位线把原三角形分成可全等的4个小三角形.因而每个小三角形的周长为原三角形周长的12,每个小三角形的面积为原三角形面积的14.(3)三角形的中位线不同于三角形的中线.要点二、顺次连接特殊的平行四边形各边中点得到的四边形的形状(1)顺次连接平行四边形各边中点得到的四边形是平行四边形.(2)顺次连接矩形各边中点得到的四边形是菱形.(3)顺次连接菱形各边中点得到的四边形是矩形.(4)顺次连接正方形各边中点得到的四边形是正方形.要点诠释:新四边形由原四边形各边中点顺次连接而成.(1)若原四边形的对角线互相垂直,则新四边形是矩形.(2)若原四边形的对角线相等,则新四边形是菱形.(3)若原四边形的对角线垂直且相等,则新四边形是正方形.【典型例题】类型一、三角形的中位线1、(2016•北京)如图,在四边形ABCD中,∠ABC=90°,AC=AD,M,N分别为AC,CD的中点,连接BM,MN,BN.(1)求证:BM=MN;(2)∠BAD=60°,AC平分∠BAD,AC=2,求BN的长.【思路点拨】(1)根据三角形中位线定理得MN=AD,根据直角三角形斜边中线定理得BM=AC,由此即可证明.(2)首先证明∠BMN=90°,根据BN2=BM2+MN2即可解决问题.【答案与解析】(1)证明:在△CAD中,∵M、N分别是AC、CD的中点,∴MN∥AD,MN=AD,在RT△ABC中,∵M是AC中点,∴BM=AC,∵AC=AD,∴MN=BM.(2)解:∵∠BAD=60°,AC平分∠BAD,∴∠BAC=∠DAC=30°,由(1)可知,BM=AC=AM=MC,∴∠BMC=∠BAM+∠ABM=2∠BAM=60°,∵MN∥AD,∴∠NMC=∠DAC=30°,∴∠BMN=∠BMC+∠NMC=90°,∴BN2=BM2+MN2,由(1)可知MN=BM=AC=1,∴BN=【总结升华】本题考查三角形中位线定理、直角三角形斜边中线定理、勾股定理等知识,解题的关键是灵活应用这些知识解决问题,属于中考常考题型.举一反三:【变式】如图,矩形OABC的顶点A、C分别在x轴、y轴正半轴上,B点坐标为(3,2),OB与AC交于点P,D、E、F、G分别是线段OP、AP、BP、CP的中点,则四边形DEFG的周长为_____.【答案】5;解:∵四边形OABC是矩形,∴OA=BC,AB=OC;BA⊥OA,BC⊥OC.∵B点坐标为(3,2),∴OA=3,AB=2.∵D、E、F、G分别是线段OP、AP、BP、CP的中点,∴DE=GF=1.5; EF=DG=1.∴四边形DEFG的周长为(1.5+1)×2=5.2、如图,在△ABC中,已知点D、E、F分别是AB、BC、CA的中点,AH是高.(1)若BC=10,AH=8,则四边形ADEF的面积为.(2)求证:∠DHF=∠DEF.HF EDCBA【思路点拨】(1)由三角形面积公式可知:△BDE、△EFC的面积都等于△ABC面积的四分之一,进而可求出四边形ADEF的面积.(2)首先证明四边形ADEF是平行四边形,进而可得∠DEF=∠DAF,再利用直角三角形的中线性质得线段相等,从而得角等,最终可得到∠DAF=∠DEF,即可证出∠DHF=∠DEF.【答案解析】(1)解:∵BC=10,AH=8,∴S△ABC=×8×10=40,∵点D、E、F分别是AB、BC、CA的中点,∴△BDE、△EFC的面积都等于△ABC面积的,∴四边形ADEF的面积=40﹣20=20,故答案为:20;(2)证明:∵D 、E 、F 分别是△ABC 各边中点,∴DE ∥AC ,EF ∥AB ,∴四边形ADEF 是平行四边形,∴∠DEF=∠DAF ,∵AH 是△ABC 的高∴△ABH 、△ACH 是直角三角形,∵点D 、点F 是斜边AB 、AC 中点,∴DH=DA ,HF=AF ,∴∠DAH=∠DHA ,∠FAH=∠FHA ,∴∠DAH+∠FAH=∠FHA+∠DHA ,即∠DAF=∠DHF ,∴∠DEF=∠DHF .【总结升华】此题主要考查了平行四边形的性质与判定,三角形的中位线定理,直角三角形的性质,解决题目的关键是证明∠DHF=∠DAF 与∠DAF=∠DEF .3、如图所示,在△ABC 中,M 为BC 的中点,AD 为∠BAC 的平分线,BD ⊥AD 于D ,AB =12,AC =18,求MD 的长.【思路点拨】本题中所求线段MD 与已知线段AB 、AC 之间没有什么联系,但由M 为BC 的中点联想到中位线,另有AD 为角平分线和垂线,根据等腰三角形“三线合一”构造等腰三角形ABN ,D 为BN 的中点,DM 即为中位线,不难求出MD 的长度.【答案与解析】解:延长BD 交AC 于点N .∵ AD 为∠BAC 的角平分线,且AD ⊥BN ,∴ ∠BAD =∠NAD ,∠ADB =∠ADN =90°,在△ABD 和△AND 中,BAD NAD AD =ADADB ADN ∠∠⎧⎪⎨⎪∠∠⎩== ∴ △ABD ≌△AND(ASA)∴ AN =AB =12,BD =DN .∵ AC =18,∴ NC =AC -AN =18-12=6,∵ D 、M 分别为BN 、BC 的中点,∴ DM =12CN =162⨯=3. 【总结升华】当条件中含有中点的时候,可以将它与等腰三角形的“三线合一”、三角形的中线、中位线等联系起来,进行联想,必要时添加辅助线,构造中位线等图形.举一反三:【变式】如图所示,四边形ABCD中,Q是CD上的一定点,P是BC上的一动点,E、F分别是PA、PQ两边的中点;当点P在BC边上移动的过程中,线段EF的长度将( ).A.先变大,后变小 B.保持不变 C.先变小,后变大 D.无法确定【答案】B;解:连接AQ.∵ E、F分别是PA、PQ两边的中点,∴ EF是△PAQ的中位线,即AQ=2EF.∵ Q是CD上的一定点,则AQ的长度保持不变,∴线段EF的长度将保持不变.4、我们给出如下定义:有一组相邻内角相等的四边形叫做等邻角四边形.请解答下列问题:(1)如图1,在△ABC中,AB=AC,点D在BC上,且CD=CA,点E、F分别为BC、AD的中点,连接EF并延长交AB于点G.求证:四边形AGEC是等邻角四边形;(2)如图2,若点D在△ABC的内部,(2)中的其他条件不变,EF与CD交于点H,图中是否存在等邻角四边形,若存在,指出是哪个四边形,不必证明;若不存在,请说明理由.【思路点拨】(1)运用中位线的性质,找出对应相等的角;(2)根据题意易知满足条件的四边形即为第一题的四边形.【答案与解析】解:(1)取AC的中点H,连接HE、HF∵点E为BC中点∴EH为△ABC的中位线∴EH∥AB,且EH=12AB同理FH∥DC,且FH=12DC∵AB=AC,DC=AC∴AB=DC,EH=FH∴∠1=∠2∵EH∥AB,FH∥DC∴∠2=∠4,∠1=∠3∴∠4=∠3∵∠AGE+∠4=180°,∠GEC+∠3=180°∴∠AGE=∠GEC∴四边形AGEC是邻角四边形(2)存在等邻角四边形,为四边形AGHC.【总结升华】本题考查了三角形的中位线以及等腰三角形的性质的综合运用.本题较灵活,要求学生能够把题中的条件转化成角,从而找出相等的角来解题.举一反三:【变式】如图,AB∥CD,E,F分别为AC,BD的中点,若AB=5,CD=3,则EF的长是()A.4 B.3 C.2 D.1【答案】D;解:连接DE并延长交AB于H,∵CD∥AB,∴∠C=∠A,∠CDE=∠AHE,∵E是AC中点,∴AE=CE,∴△DCE≌△HAE,∴DE=HE,DC=AH,∵F是BD中点,∴EF是△DHB的中位线,∴EF=12 BH,∴BH=AB-AH=AB-DC=2,∴EF=1.类型二、中点四边形5、如图,在梯形ABCD中,AD∥BC,AB=DC,对角线AC、BD交于点O,AC⊥BD,E、F、G、H分别是AB、BC、CD、DA的中点.(1)求证:四边形EFGH 是正方形;(2)若AD =2,BC =4,求四边形EFGH 的面积.【思路点拨】(1)先由三角形的中位线定理求出四边相等,然后由AC⊥BD 入手,进行正方形的判断.(2)连接EG ,利用梯形的中位线定理求出EG 的长,然后结合(1)的结论求出2EH =92,也即得出了正方形EHGF 的面积. 【答案与解析】证明:(1)在△ABC 中,E 、F 分别是AB 、BC 的中点,故可得:EF =12AC ,同理FG =12BD ,GH =12AC ,HE =12BD , 在梯形ABCD 中,AB =DC ,故AC =BD ,∴EF=FG =GH =HE ,∴四边形EFGH 是菱形.设AC 与EH 交于点M ,在△ABD 中,E 、H 分别是AB 、AD 的中点,则EH∥BD,同理GH∥AC,又∵AC⊥BD,∴EH⊥HG,∴四边形EFGH 是正方形.(2)连接EG .在梯形ABCD 中,∵E、G 分别是AB 、DC 的中点,∴EG=12(AD +BC )=3. 在Rt△EHG 中, ∵222EH GH EG +=,EH =GH ,∴2EH =92,即四边形EFGH 的面积为92. 【总结升华】此题考查了等腰梯形的性质及三角形、梯形的中位线定理,解答本题的关键是根据三角形的中位线定理得出EH =HG =GF =FE ,这是本题的突破口.举一反三:【变式】如图,E 、F 、G 、H 分别是边AB 、BC 、CD 、DA 的中点.(1)判断四边形EFGH 的形状,并说明你的理由;(2)连接BD和AC,当BD、AC满足何条件时,四边形EFGH是正方形.【答案】解:(1)四边形EFGH是平行四边形.理由:连接AC,∵E、F分别是AB、BC的中点,∴EF∥AC,且EF=12 AC,同理,HG∥AC,且HG=12 AC,∴EF∥HG,且EF=HG,∴四边形EFGH是平行四边形;(2)当BD=AC,且BD⊥AC时,EFGH是正方形.理由:连接AC,BD,∵E、F、G、H分别是边AB、BC、CD、DA的中点,∴EF=GH=12AC,EH=FG=12BD,EH∥BD,GH∥AC,∵BD=AC,BD⊥AC,∴EH=EF=FG=GH,EH⊥GH,∴四边形ABCD是菱形,∠EHG=90°,∴四边形EFGH是正方形.。
三角形中线的运用
∴DE= 1 2
BC
且 DE ∥ BC
3.在直角三角形中,30°角所对的直角边等于 斜边 的一半 .
如图,在RT△ABC中,∠C=90°, ∠A=30°,
∴BC=
1 2
AB .
4.等腰三角形“三线合一”的性质:
如图,已知AB=AC,AD⊥BC.
∴BD=CD=
1 2
BC
,
∠BAD=∠CAB.
5.一种常见的关于中点的辅助线思想 ——“倍长中线法”
如图:在△ABC中,点D是BC边的中点, 我们可以将AD延长至A′,使A′D=AD , 连接A′B(A′C).
∴△ACD≌ △A′BD (△ABD≌ △A′C)D
∴ AA′=2AD.
例1:如图:∠BAC=∠DAE=90º,AB=AC,AD=AE, 连接BE、CD,M为BE的中点,连接AM,
求证:CD=2AM.
北碚区王朴中学童昌强
三角形中线的运用
一.知识回顾—线段“中点”相关知识点: 1.在直角三角形中,斜边上的中线等于 斜边的一半
如图,在RT△ABC中,∠ABC=90°, 点D是AC的中点,
∴AD=CD= BD = 1 AC . 2
2.三角形的中位线平行且等于 第三边的一半
如图,在△ABC中,点D、E分别为AB、AC中,点E在AC上,且AE=CE ,连接 BE,点D在BC的延长线上,且CE=CD,连接ED、AD. 点F是BE的中点,连接FA、FD.求证:AD=2AF.
A
E
F B
D C
A
B
MC
E
D
A
B M
D
C
E
A′
△ACD≌△EA′A
A
B
三角形中位线定理的几种证明方法及教学中需要说明的地方
三角形中位线定理的证明及其教学说明以下内容作者为:青岛第四中学杨瀚书老师一、 三角形中位线定理的几种证明方法法1: 如图所示,延长中位线DE 至F ,使,连结CF ,则,有ADFC ,所以FCBD ,则四边形BCFD 是平行四边形,DF BC 。
因为 ,所以DEBC 21.法2C 作交DE 的延长线于F ,则,有FCAD ,那么FCBD ,则四边形BCFD 为平行四边形,DFBC 。
因为 ,所以DEBC 21.法3:如图所示,延长DE 至F ,使 ,连接CF 、DC 、AF ,则四边形ADCF 为平行四边形,有ADCF ,所以FCBD ,那么四边形BCFD 为平行四边形,DF BC 。
因为 ,所以DEBC 21.法4:如图所示,过点E 作MN ∥AB ,过点A 作AM ∥BC ,则四边形ABNM 为平行四边形,易证CEN AEM ∆≅∆,从而点E 是MN 的中点,易证四边形ADEM 和BDEN 都为平行四边形,所以DE=AM=NC=BN ,DE ∥BC ,即DEBC 21。
法5:如图所示,过三个顶点分别向中位线作垂线.二、教学说明1、三角形中位线定理的另外一种猜想过程:“二维”转化为“一维”在引导学生探索三角形中位线定理时,由于学生画出中位线后,就不难直观地发现平行关系,难的是发现数量关系,我联想到在此之前认识线段中点时的一道典型例题,挖掘它与原有知识的内在联系,从而作如下探索引导。
⑴如图,A为线段BC(或线段BC的延长线)上的任意一点,D、E分别是AB、AC 的中点,线段DE与BC有什么关系?AB C图⑴:⑵如果点A不在直线BC上,图形如何变化?上述结论仍然成立吗?C图⑵:说明:学生观察(几何画板制作的)课件演示:当△ABC的顶点A运动到直线B C上时,中位线DE也运动到BC上,这样由“二维”转化为“一维”,学生就不难猜想性质的两方面,特别是数量关系,而想到去度量、验证和猜想,水到渠成.如果教师直接叫学生去度量角度和长度,是强扭的瓜不甜.2、教学重点:本课重点是掌握和运用三角形中位线定理。
三角形中位线定理的几种证明方法及教学中需要说明的地方
三角形中位线定理的证明及其教学说明以下内容作者为:青岛第四中学杨瀚书老师一、 三角形中位线定理的几种证明方法法1: 如图所示,延长中位线DE 至F ,使 ,连结CF ,则,有ADFC,所以FC BD ,则四边形BCFD 是平行四边形,DFBC 。
因为,所以DEBC 21.法2:如图所示,过C 作交DE 的延长线于F ,则,有FCAD ,那么FC BD ,则四边形BCFD 为平行四边形,DF BC 。
因为 ,所以DEBC 21.法3:如图所示,延长DE 至F ,使 ,连接CF 、DC 、AF,则四边形ADCF 为平行四边形,有AD CF ,所以FC BD,那么四边形BCFD 为平行四边形,DFBC 。
因为,所以DEBC 21.法4:如图所示,过点E 作MN ∥AB ,过点A 作AM ∥BC,则四边形ABNM 为平行四边形,易证CEN AEM ∆≅∆,从而点E 是MN 的中点,易证四边形ADEM 和BDEN 都为平行四边形,所以DE=AM=NC=BN ,DE ∥BC ,即DEBC 21。
法5:如图所示,过三个顶点分别向中位线作垂线.二、教学说明1、三角形中位线定理的另外一种猜想过程:“二维”转化为“一维”在引导学生探索三角形中位线定理时,由于学生画出中位线后,就不难直观地发现平行关系,难的是发现数量关系,我联想到在此之前认识线段中点时的一道典型例题,挖掘它与原有知识的内在联系,从而作如下探索引导。
⑴如图,A 为线段BC(或线段BC 的延长线)上的任意一点,D 、E 分别是AB 、AC 的中点,线段DE 与BC 有什么关系?ABC图⑴:⑵如果点A 不在直线BC 上,图形如何变化?上述结论仍然成立吗?A 运动到直线BC 上时,中位线DE ",学生就不难.2第一,要知道中位线定理的作用:可以证明两条直线平行及线段的倍分关系,计算边长或中位线的长。
第二,要知道中位线定理的使用形式,如: ∵ DE 是△ABC 的中位线∴ DE ∥BC ,BC DE 21第三,让学生通过部分题目进行训练,进而掌握和运用三角形中位线定理.题1 如图4。
三角形中位线定理的多种证明
2023年5月下半月㊀解法探究㊀㊀㊀㊀三角形中位线定理的多种证明◉青岛市即墨区实验学校㊀孙㊀凯㊀㊀摘要:三角形中位线定理是初中几何重要的结论,为解题提供了线段的位置与长度关系.教材中对该定理的证明耐人寻味 通过辅助线,将三角形转化为平行四边形,再运用平行四边形的性质进行证明.这样的辅助线,与以前的 将四边形转化为三角形 完全不一样,进一步丰富了学生对转化思想更深层次的认识,也完善了对辅助线作法的认知.基于八年级学生的基础,本文中给出了其他几种解法,以培养学生的理性思考能力,提高学生的数学素养.关键词:三角形中位线;多角度解答;辅助线㊀㊀三角形中位线定理是初中数学的一个重要定理,因为只有中点的条件,而要证明两个不同类型的结论,对学生而言,有一定的难度.人教版数学教材八年级下册第48页是通过构造平行四边形,运用平行四边形的判定与性质来进行证明的.除此之外,学生对其他证法知之甚少.其实,三角形中位线定理的证明方法有很多种,现仅基于八年级知识范围补充几种不同的证法,供大家参考.1例题呈现图1已知:如图1,әA B C 中,D ,E 分别是边A B ,A C 的中点.求证:D E ʊB C ,D E =12B C .2多法探究思路一:从面积入手.分析:由三角形中线性质可知,三角形的中线把三角形分成面积相等的两部分,因此易证әB C D 与әB C E 面积相等,则D E ʊB C .那么如何证明D E =12B C 呢?由S әB D E =12S әB E C ,运用三角形的面积公式即可证得.证法一:面积法.图2证明:如图2,过点D 作D F ʅB C 于点F ,过点E 作E G ʅB C 于点G ,连接B E ,C D .ȵA D =B D =12A B ,A E =C E =12A C ,ʑS әB D C =12S әA B C ,S әC E B =12S әA B C .ʑS әB D C =S әC E B ,即12B C D F =12B C E G .ʑD F =E G .又D F ʊE G ,ʑ四边形D F G E 是平行四边形.ʑD E ʊB C .ȵS әD B E =12S әA E B ,S әA E B =S әB E C ,ʑS әD B E =12S әB E C ,即12D E E G =14B C E G .ʑD E =12B C .点评:证法一利用面积相等的两个三角形证得线段平行,又运用三角形面积公式推导出线段的倍分关系,是三角形面积的正逆运用.用三角形面积的性质解题,显得灵动㊁直观,更具创造性.思路二:从等长线段入手,构造平行线.证法二:重合法.分析:本题中已有 中点 条件,要想出现三角形全等,必须出现对应角相等,可过点E 分别作B C ,A B 的平行线,出现一对全等三角形,再运用平行四边形性质证明.图3证明:如图3,过点E 作A B 的平行线交B C 于点F ,过点E 作B C 的平行线交A B 于点G .ȵG E ʊB C ,E F ʊA B ,ʑøA E G =øC ,øA =øF E C .又ȵA E =E C ,ʑәA E G ɸәE C F (A S A ).ʑA G =E F ,G E =C F .由辅助线作法可知四边形B F E G 是平行四边形,ʑA G =E F =G B =12A B .又ȵA D =D B =12A B ,ʑ点G 与点D 重合.ʑD E ʊB C ,C F =D E =B F .ʑD E =12B C .点评:运用好题目的核心条件是解题关键.证法二利用线段中点去证明线段的平行及大小关系,既可用57Copyright ©博看网. All Rights Reserved.解法探究2023年5月下半月㊀㊀㊀全等,又可以用平行四边形的性质或二者兼施,达到目的.证法三:旋转法.分析:一组对边平行且相等的四边形是平行四边形.基于这个判定定理,只需把әA D E 绕点E 旋转180ʎ便可得到C F ʊB D 且C F =B D ,再运用平行四边形性质解答即可.图4证明:如图4,将әA D E 绕点E 顺时针旋转180ʎ到әC F E 的位置,此时әA D E ɸәC F E .ʑC F ʊB D ,且C F =B D .ʑ四边形B D F C 为平行四边形.ʑD F ʊB C ,且D F =B C .ʑD E ʊB C ,且D E =12B C .点评:旋转是重要的图形变换方式之一,根据题目特点,运用旋转的性质构造解题模型,显得明快,富有生机.证法四:平移法.分析:如何利用 点E 是A C 中点 并运用三角形全等㊁平行四边形性质是解题关键.为此,可以过点E 作A B 平行线,过点A 作B C 平行线.图5证明:如图5,过点E 作A B 的平行线交B C 于点F ,过点A 作B C 的平行线交F E 的延长线于点G (即平移线段A B ,D E ).ȵA G ʊB C ,ʑøG =øE F C .又ȵA E =E C ,øA E G =øC E F ,ʑәA E G ɸәC E F (A A S ).ʑE G =E F ,A G =F C .由辅助线作法易知四边形A B F G 是平行四边形,ʑA B =G F .ȵD ,E 分别是A B ,A C 的中点,ʑB D ʊE F 且B D =E F ,E G ʊA D 且E G =A D .ʑ四边形A D E G ,D B F E 都是平行四边形.ʑD E ʊB C ,B F =D E =A G =F C .ʑD E =12B C .点评:证法四是继证法二㊁证法三之后,再一次灵活运用中点,构造全等模型并运用平行四边形性质进行解答.合理运用题目条件,并添置辅助线,构造解题模型,是学生综合运用基础知识㊁基本技能的表现.思路三:从中点入手,建立坐标系.证法五:坐标法.分析:D ,E 分别为A B ,A C 中点,可以建立平面直角坐标系,用中点坐标公式解答.证明:如图6,以B C 所在直线为x 轴,过点A 作B C 的垂线,以该垂线所在直线为y 轴,建立平面直角坐标系.图6设点A ,B ,C 的坐标分别为(0,a ),(b ,0),(c ,0).因为D ,E 分别是A B ,A C 的中点,所以由中点坐标公式,得D(b 2,a 2),E(c 2,a2).易得直线D E 的解析式为y =a2,与x 轴平行,即D E ʊB C .又D E =c -b 2,B C =c -b ,所以D E =12B C .点评:建立适当的平面直角坐标系,用坐标或函数关系式表示问题中的几何元素,用代数方法解决几何问题,是全新的视角,有助于深入了解问题㊁剖析问题,可以拓展学生数学思维.当然,三角形中位线定理的证明方法还有多种,比如,用相似,过点A ,B ,C 分别作直线D E 的垂线,等等.以上只是起抛砖引玉作用,相信大家在教学中还会有更多更好的方法.3类比探究问题1㊀已知:如图1,әA B C 中,D 是边A B 的中点,点E 在边A C 上,D E ʊB C .求证:E 为A C 的中点,D E =12B C .问题2㊀已知:如图1,әA B C 中,D E ʊB C ,D E =12B C .求证:D ,E 分别是边A B ,A C 的中点.以上两个问题,实际上是三角形中位线定理的逆定理,可以参考例题证法进行证明.类似的问题,还有梯形中位线定理,梯形中位线的逆定理,不再赘述.4教学启示教材是根据«义务教育数学课程标准(2022年版)»编写而成的,充分反映了课标的各种目标及要求,是理解数学㊁理解学生㊁理解教学的有力保证,是强有力的资源.课本的例习题为学生的学习活动提供了基本素材,具有普适性,但往往只呈现某一方面,其他很多方面还需要教师带领学生去开发.教师只有理解教材的深刻用意,才能更好地开发教材㊁用好教材.在平时课堂教学中,教师要利用课本中 有意义且不复杂 的问题去帮助学生发现问题的各个方面,让学生体会到 自己是一个发现者㊁研究者㊁探索者 ,这也是 人的心灵深处都有的一种根深蒂固的需要 .让学生带着问题去自由探究,探究问题的多种解法㊁问题变式及应用㊁问题的关联与内在联系,从而感受到数学的思考方法,处理问题的理性思维, ,从而把这些经验迁移应用到以后的学习中去,提升数学素养.Z67Copyright ©博看网. All Rights Reserved.。
中位线直角三角形中线长定理的运用
Rt△斜边上中线的等于斜边的 一半
---精品---
6.如图,△ABC中,BF,CE分别是 高,M是EF的中点,D是BC的中 点,证明:DM⊥EF
M
---精品---
7.如图,Rt△ABC中,∠B=90°, ∠C=30°,E是AC中点,F满足 B和△CDE都是等腰 直角三角形,且B是DC中点,F是 AE中点,试判断△BDF的形状。
三角形的中位线定理
---精品---
1,如图,△ABC中,DE是中位线, F是BC中点,证明:DE、AF互相 平分。
---精品---
2.如图,四边形ABCD中,E,F,G,H分 别是各边中点,证明:EFGH是平行 四边形。
---精品---
3.如图,△ABC中,BD,CE分别是 中线,交于G点,F,H分别是 BG,CG的中点,证明:GB=2GD
F
---精品---
变1:如图,△ABC和△CDE都是 等腰直角三角形,F是AE中点,试 判断△BDF的形状。
---精品---
---精品---
4.如图,△ABC中,AB=6,AC=10, AE平分∠BAC,BE垂直AE,D是BC 中点,求DE的长度。
---精品---
5.如图,四边形ABCD中,O为AC,BD 的交点,AC=BD,E,F分别是AB,CD 的中点,E,F交AC,BD于M,N点,判断 △MON的形状。
---精品---
三角形的中线及中位线性质的运用举例
直角三角形斜边上中线性质的运用在直角三角形中有这样一个十分重要而又运用广泛的性质:直角三角形中,斜边上的中线等于斜边的一半.下面就这一性质的应用举例说明.例1 如图1,已知,△ABC 中,CE ⊥AD 于E ,BD ⊥AD 于D ,BM =CM .求证:ME =MD .分析 要证明ME =MD 首先想到的要证明两个角相等,可没有足够的条件,但有中点和垂线,于是想到通过辅助线构造直角三角形,利用直角三角形斜边上的中线性质证明.证明 延长DM 与CE 交于N .因为CE ⊥AD 于E ,BD ⊥AD 于D , 所以CE ∥BD ,即∠NCM =∠DBM ,又∠CMN =∠BMD ,BM =CM ,所以△CMN ≌△BMD , 所以NM =DM ,即M 为ND 中点.因为CE ⊥AD 于E ,所以△NED 为直角三角形,所以ME =12ND ,所以ME =MD .例2 如图2,BD 、CE 是高,G 、F 分别是BC 、DE 的中点,求证:FG ⊥DE .分析 有三角形高就会想到直角三角形,有中点当然会联想到直角三角形斜边上的中点性质和等腰三角形的性质,于是,连结DG 、EG ,可得DG 、EG 分别是Rt △BDC 和Rt △BEC 的中线,可知△GDE 是等腰三角形,进而由F 是DE 的中点,即FG ⊥DE .证明 因为BD 、CE 是高,所以∠BDC =∠BEC =90°, 即△BDC 和△BEC 都是直角三角形. 又因为G 是BC 的中点,所以DG =EG =12BC ,即△GDE 是等腰三角形. 因为F 是DE 的中点,所以GF 是等腰三角形GDE 的底边DE 上的中线, 所以由等腰三角形的“三线合一”,得GF 也是底边DE 上的高线,EDBCA FG图2N ED CBAM图1所以FG ⊥DE .例3 如图3所示,点E 、F 分别为正方形ABCD 边AB 、BC 的中点,DF 、CE 交于点M ,CE 的延长线交DA 的延长线于G ,试探索:(1)DF 与CE 的位置关系;(2)MA 与DG 的大小关系.分析(1)要探索DF 与CE 的位置关系,由图可以猜想到DF ⊥CE ,而由条件可以证明△EBC ≌△FCD ,则有∠ECB =∠FDC ,即可证明DF ⊥CE .(2)仍然通过观察分析图形,可以猜想MA =12DG ,而事实上,由(1)可知△DMG 是直角三角形,再由条件可得△GAE ≌△CBE ,即得GA =CB ,于是利用直角三角形斜边上的中线性质即可证明.解(1)DF ⊥CE .理由:因为点E 、F 分别为正方形ABCD 边AB 、BC 的中点, 所以∠B =∠FCD =90°,BE =12AB ,CF =12BC ,而AB =BC =CD ,即BE =CF , 所以△EBC ≌△FCD ,所以∠ECB =∠FDC ,而∠DFC +∠FDC =90°,所以∠DFC +∠FCM =90°, 即∠CMF =90°,所以DF ⊥CE . (2)MA =12DG .理由:因为F 是AB 的中点,所以AE =BE , 又∠GAE =∠B ,∠AEG =∠BEC ,所以△GAE ≌△CBE ,所以GA =CB . 而由(1)可知△DMG 是直角三角形,所以MA =12DG . 例4 已知:如图4,□ABCD 中,对角线AC 、BD 相交于点O ,EF ⊥AC ,O 是垂足,EF 分别交AB 、CD 于点E 、F ,且BE =OE =12AE .求证:□ABCD 是矩形.EDBCA FGM 图3图4ABCEGFOD分析 要证□ABCD 是矩形,只要证AC =BD 或OA =OB 即可.由BE =OE =12AE ,可作出Rt △AOE 斜边上的中线OG ,这样可证得△AOG ≌△BOE ,于是证得OA =OB .证明 取AE 的中点G ,连结OG ,所以Rt △AOE 中,OG =12AE =AG , 因为BE =OE =12AE ,所以OE =OG ,AG =BE ,即∠OGE =∠OEG , 所以∠AGO =∠OEB ,所以△AGO ≌△BEO ,所以OA =OB ,又四边形ABCD 是平行四边形,所以AC =2OA ,BD =2OB ,即AC =BD , 所以□ABCD 是矩形.综上所述,利用直角三角形斜边上中线的性质解题时,应依据条件,贯例图形,通过分析,把问题转化为证明线段相等,或通过辅助线,构造出直角三角形,利用“直角三角形斜边上的中线等于斜边的一半”,同时兼用全等三角形的知识,从而逐步逼近结论.在几何证明中,另外,熟练地识别图形、善于构造图形,并运用图形的性质进行推理论证是十分重要的.下面一道题目供同学们自己练习:如图6所示,在梯形ABCD 中,AB ∥CD ,∠C +∠D =90°,E 、F 为AB 、CD 的中点.求证:CD -AB =2EF .提示:作EM ∥AD 交CD 于M ,EN ∥BC 交CD 于N .利用直角三角形斜边上中线等斜边的一半.图6FEDCBA聚焦中位线定理的运用中位线定理是三角形一个重要定理.有一个特点,在同一个题设下有两个结论:一个结论是表明两条线段的位置关系(平行),另一个结论是表明两条线段的数量关系(一半).在应用这个定理时,不一定同时需要两个结论,有时需要平行,有时需要倍分关系.可以根据具体情况,按需选用.现举例说明中位线定理的运用.一、用于证明平行例1 在△ABC 中,BD 平分∠ABC ,A D ⊥BD,垂足为D ,AE=EC. 求证:DE ∥BC.图1CFEDBA证明:延长AD 交BC 于点F. 因为BD 平分∠ABC , 所以∠ABD =∠CBD. 因为A D ⊥BD,所以∠BDA =∠BDF=900. 又BD=BD,所以△BDA ≌△BDF(ASA). 所以AD=DF.又因为AE=EC,所以DE ∥FC, 即DE ∥BC (三角形的中位线定理). 二、用于证明角相等例2 如图2,四边形ABCD 中,对角线AC 、BD 相交于O ,已知AC=BD,M,N 分别是AD 、BC 的中点,MN 与AC 、BD 分别交于E 、F 点.求证:∠AEN=∠BFM.图24312FEBAP NMCD分析:可取CD 或AB 的中点构造中位线. 证明:可取AB 的中点P ,连接PM 、PN. 因为AM=MD,AP=BP,BN=NC, 所以MPBD 21,PN AC 21(三角形中位线定理). 所以∠1=∠3,∠2=∠4. 又因为AC=BD, 所以MP=NP, ∠3=∠4, 所以∠1=∠2.所以∠AEN=∠BFM (等角的补角相等). 三、用于证明线段相等例3 如图3,△ABC 的AB 、AC 向形外作正三角形ABD 和ACE,分别取BD 、BC 、CE 的中点P 、M 、Q.求证:PM=QM.图3QPCAD分析:中点P 、M 所在线段DB 、CB 有公共端点B ,若连接它们的另一端D 、C ,则PM 使成为△BCD 的中位线,同理连接BE 之后MQ 也成为△BEC 的中位线,通过中位线定理的传递,问题转化为证明DC 与BE 相等.证明过程由同学们自己完成!四、用于证明线段的特殊关系例4 如图4,已知四边形ABCD 中,E 、F 、G 、H 分别为AB 、CD 、AC 、BD 的中点,且E 、F 、G 、H 不在同一条直线上,求证:EF 和GH 互相平分.分析:要证明EF 和GH 互相平分,可证明四边形EGFH 是平行四边形;有中点,可考虑利用中位线定理.图4GHBE ACFD证明:连接EG 、GF 、FH 、HE. 因为AE=EB, BH=HD, 所以EH AD 21. 同理FG AD 21. 所以EHFG.所以四边形EGFH 是平行四边形. 所以EF 和GH 互相平分.巧用中线的性质解题我们知道三角形的一条中线将三角形分成的两个三角形等底同高,这样的两个三角形的面积相等.下面我们利用上述性质来巧解以下问题.一、巧算式子的值例1 在数学活动中,小明为了求23411112222++++ (1)2n +的值(结果用n 表示),设计了如图1所示的几何图形.请你利用这个几何图形求23411112222++++ (1)2n +的值.图1解析:从图中可以看出大三角形的面积为1,根据三角形的中线把它分成两个面积相等的三角形可知,23411112222++++…12n +12n +表示:组成面积为1的大三角形的所有小三角形的面积之和,于是23411112222++++ (12)n +112n =-.【点评】此题运用“数形结合思想”,借助三角形的面积来求数的运算. 二、求图形的面积例2 如图2,长方形ABCD 的长为a ,宽为b ,E 、F 分别是BC 和CD 的中点,DE 、BF 交于点G ,求四边形ABGD 的面积.图2 解析:连接CG ,不难得出BCFSDCE S=4ab=,从而BEGDFG S S=,由E 、F 分别是BC 和CD 的中点,可得△DGF、△CFG、△CEG、△BEG的面积相等,因此S四边形ABGDab=-4ab43⨯23=ab.【点评】本题的难度较大,通过连接CG,巧妙地把四边形ABGD以外的部分分成四个面积相等的三角形.像CG这样原题中没有,但我们在解题的过程中用它来“辅助”解决问题的线,称之为“辅助线”.三、巧等分土地例3.有一块三角形优良品种试验基地,如图3所示,•由于引进四个优良品种进行对比试验,需将这块土地分成面积相等的四块,请你制定出两种以上的划分方案供选择(画图说明).图3解析:可根据中线的特征,先分为两个面积相等的三角形,然后再依次等分.方案1:如答图(1),在BC上取D、E、F,使BD=ED=EF=FC,连接AE、ED、•AF.(1) (2) (3)方案2:如答图2,分别取AB、BC、CA的中点D、E、F,连接DE、EF、DF.方案3:如答图3,分别取BC的中点D,CD的中点E,AB的中点F,连接AD、AE、DF.【点评】三角形面积计算公式为12×底×高,因此解题的关键是找出底、高分别相等的四个三角形.对于本题,同学们!你还有别的方法吗?试试看.。
任意三角形中位线定理
任意三角形中位线定理1.引言1.1 概述概述三角形是几何学中的重要概念,它由三条边和三个顶点组成。
我们可以根据角度和边的长度来分类不同类型的三角形,例如等边三角形、等腰三角形和一般三角形等。
在本篇长文中,我们将重点讨论任意三角形中的中位线定理。
中位线是连接三角形的一个顶点和对边中点的线段。
我们将介绍中位线的定义和性质,并详细阐述中位线定理的表述、证明和应用。
中位线定理是关于三角形中位线的一个重要定理。
它揭示了三角形中位线和三角形边的关系,并且具有很多重要的应用。
在本文中,我们将探索中位线定理的证明过程,并讨论它在几何学和实际问题中的应用。
通过研究和理解中位线定理,我们可以深入了解三角形的性质和特点。
这对于几何学的学习和问题解决都具有重要意义。
我们将从基础的定义和性质开始,逐步引入中位线定理的概念和应用,希望读者能够通过本文更好地理解和运用中位线定理。
接下来,我们将在正文部分详细介绍任意三角形的定义和中位线的定义和性质,以便为后续的中位线定理的讨论做好准备。
通过系统而全面的阐述,我们希望读者能够对中位线定理有一个清晰的认识,并能够灵活运用它解决相关问题。
在结论部分,我们将对中位线定理进行准确的表述,并给出具体的证明和应用示例。
这将进一步巩固读者对中位线定理的理解和运用能力。
总之,本文将从引言、正文和结论三个部分系统地介绍任意三角形中位线定理。
通过详细的讲解和实例的引导,我们旨在帮助读者更好地理解和应用这一定理,进一步提升几何学的学习和问题解决能力。
1.2 文章结构文章结构部分的内容如下:文章结构的设计旨在使读者能够清晰地理解任意三角形中位线定理的内容。
本文分为引言、正文和结论三个部分,下面对各个部分进行简要说明。
引言部分主要包括概述、文章结构和目的三个子部分。
在概述中,将简要介绍任意三角形中位线定理的背景和重要性。
通过引入这个概念,读者可以对该定理的应用和实际意义有一个初步的了解。
在文章结构中,将对整篇文章的结构进行总体的安排和描述,使读者能够预期文章的组织方式和内容概况。
例谈中位线定理在几何问题中的应用
数学·解题研究例谈中位线定理在几何问题中的应用广东珠海市南屏中学(519000) 李小娟[摘 要]中位线定理是初中数学的重要定理,它在平面几何问题的解决中有广泛的应用。
文章通过分析典型例题,介绍一些中位线定理的应用方法,旨在帮助学生提高解题效率,提升解题能力。
[关键词]中位线定理;几何问题;应用[中图分类号] G 633.6 [文献标识码] A [文章编号] 1674-6058(2024)05-0009-03中位线定理是初中数学的重要定理,它在平面几何问题的解决中有广泛的应用。
下面笔者结合一些典型例题介绍一些中位线定理的应用方法。
一、利用中位线定理求线段的长因为中位线定理反映两条线段之间的数量关系,所以已知三角形中位线与第三边中的其中一个量,就可以求得另一个量。
[例1](1)课本再现:如图1所示,D 、E 分别是△ABC 的边AB 、AC 的中点。
求证:DE ∥BC ,且DE =12BC 。
定理证明:如图2所示,延长DE 至点F ,使得EF =DE ,连接CF 。
请你写出完整的证明过程。
D o cu m图1 图2(2)知识应用:如图3在四边形ABCD 中,AB =6,CD =8,∠BAC =30°,∠ACD =120°点E 、F 、M 分别是AD 、BC 、AC 的中点,求EF 的长。
(1)证明:在△AED 和△CEF 中,ìíîïïDE =FE ,∠AED =∠CEF AE =CE ,,∴△AED ≌△CEF (SAS ),∴AD =CF ,∠A =∠ECF ,∴AB ∥CF ,∵AD =BD ,∴BD =CF ,∴四边形DBCF为平行四边形,∴DF ∥BC ,DF =BC ,∴DE ∥BC ,DE =12BC 。
(2)解:∵点E 、M 分别是AD 、AC 的中点,∴EM 是△ADC 的中位线,∴EM =12CD =4,EM ∥CD ,∴∠EMC +∠ACD =180°,∵∠ACD =120°,∴∠EMC =60°。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
M
7.如图,Rt△ABC中,∠B=90°, ∠C=30°,E是AC中点,F满足 BF=AB,求∠AFE的度数。
8.如图,△ABC和△CDE都是等腰 直角三角形,且B是DC中点,F是 C和△CDE都是 等腰直角三角形,F是AE中点,试 判断△BDF的形状。
三角形的中位线定理
1,如图,△ABC中,DE是中位线, F是BC中点,证明:DE、AF互相 平分。
2.如图,四边形ABCD中,E,F,G,H分 别是各边中点,证明:EFGH是平行 四边形。
3.如图,△ABC中,BD,CE分别是 中线,交于G点,F,H分别是 BG,CG的中点,证明:GB=2GD
4.如图,△ABC中,AB=6,AC=10, AE平分∠BAC,BE垂直AE,D是 BC中点,求DE的长度。
5.如图,四边形ABCD中,O为AC,BD 的交点,AC=BD,E,F分别是AB,CD 的中点,E,F交AC,BD于M,N点,判断 △MON的形状。
Rt△斜边上中线的等于斜边的 一半
6.如图,△ABC中,BF,CE分别是 高,M是EF的中点,D是BC的中 点,证明:DM⊥EF