传感器的定义
简述传感器定义
简述传感器定义传感器是一种能够感知和测量环境中各种物理量并将其转化为可供人类理解或机器处理的信号的设备。
传感器的作用类似于人类的感官系统,能够帮助我们感知世界并做出相应的反应。
传感器广泛应用于各个领域,如工业生产、医疗保健、环境监测、交通运输等,发挥着重要的作用。
传感器的工作原理基本上是通过将某种物理量转化为电信号,然后通过电路处理这些信号并输出结果。
传感器可以感知的物理量包括温度、压力、光线强度、声音等,不同的传感器可以感知不同的物理量。
传感器的种类也非常多样,包括光学传感器、压力传感器、温度传感器、声音传感器等等。
每种传感器都有其特定的工作原理和应用场景。
在工业生产领域,传感器被广泛应用于监测生产过程中的各种参数,如温度、压力、流量等,以确保生产过程稳定运行并提高生产效率。
在医疗保健领域,传感器被用于监测患者的生理参数,如心率、血压等,帮助医生及时了解患者的健康状况并采取相应的治疗措施。
在环境监测领域,传感器被用于监测大气污染、水质污染等环境参数,以帮助监管部门及时采取措施保护环境。
在交通运输领域,传感器被用于监测交通流量、道路状态等信息,以帮助交通管理部门优化交通流动并提高交通效率。
随着科技的不断发展,传感器技术也在不断创新和进步。
传感器不仅变得更加精确和灵敏,还变得更加智能化和多功能化。
例如,智能手机上的各种传感器可以实现重力感应、光线感应、陀螺仪等功能,为用户提供更加便利的体验。
随着物联网技术的普及,传感器还可以实现设备之间的互联互通,实现智能家居、智慧城市等应用,为人们的生活带来更多的便利和舒适。
总的来说,传感器作为一种重要的感知设备,已经深入到人类社会的各个角落。
它不仅帮助人类更好地了解和控制周围的环境,还推动了社会的科技进步和发展。
随着科技的不断发展和创新,传感器技术也将不断进步,为人类创造出更加美好的未来。
传感器的定义可能会随着技术的不断发展而有所变化,但其作为一种感知和测量设备的基本作用将不会改变。
简述传感器定义
简述传感器定义
传感器是一种能够感知、检测并接收外部环境信息的设备,它能够将物理量或化学量转换成电信号或其他可以辨识的形式。
传感器的作用在于将各种不同的物理量转换成电信号,从而实现对环境的监测和控制。
传感器在现代科技中扮演着至关重要的角色,它们被广泛应用于各个领域,如工业生产、医疗保健、环境监测、交通运输等。
通过传感器,人们可以实时地获取到各种环境参数,从而更好地了解和控制周围的环境。
传感器的种类繁多,根据其工作原理和应用领域的不同,可以分为多种类型。
常见的传感器包括温度传感器、湿度传感器、压力传感器、光敏传感器、声音传感器等。
这些传感器能够实现对不同物理量的监测和检测,从而为人们提供了更多的信息和数据支持。
传感器的工作原理也各不相同,但基本原理是一致的:通过特定的传感元件将感知到的物理量转换成电信号,再通过信号处理电路将其转换成人们可以理解的形式。
这样,人们就可以通过传感器获取到所需的信息,从而实现对环境的监测和控制。
随着科技的不断发展,传感器的应用范围也在不断扩大。
人们不仅可以通过传感器监测环境的温度、湿度、压力等基本参数,还可以通过传感器实现对生物体的监测,如心率、血压等。
传感器的应用
不仅提高了生产效率,还为人们的生活带来了便利与安全。
总的来说,传感器作为一种能够感知、检测并接收外部环境信息的设备,在现代科技中扮演着至关重要的角色。
通过传感器,人们可以实时获取各种环境参数,从而更好地了解和控制周围的环境。
传感器的应用范围越来越广泛,其在各个领域的作用也越来越重要,可以说传感器已经成为现代社会不可或缺的一部分。
传感器的名词解释是什么意思啊
传感器的名词解释是什么意思啊在现代科技发展的浪潮下,我们常常听到“传感器”这个词。
它在日常生活中已经变得越来越常见,但是你是否真正理解传感器是什么意思呢?在这篇文章中,我们将深入探讨传感器的定义、原理、应用以及未来前景。
一、定义传感器是一种能根据感受到的外部物理量(例如温度、湿度、光强、压力等)或者化学、生物活性物质,并把感受到的信息转化为可输出的电信号的装置。
换言之,传感器就是一种将现实世界的物理量转化为电信号的器件。
二、原理传感器的工作原理基于各种物理现象或化学反应。
例如,温度传感器利用温度导致电阻值变化的特性,将温度转化为电压或电阻的变化,然后通过电路进行信号处理,最终输出温度值。
光敏传感器则利用光敏材料受光照射后电阻变化的特性,将光强转化为电信号。
不同种类的传感器原理千差万别,但它们的目的都是感受到外部物理量,并将其转化为电信号。
三、应用传感器在各个领域都有广泛的应用。
其中,工业领域是传感器应用最为广泛的领域之一。
例如,工业现场常用的压力传感器可以用于检测管道、容器的压力变化,实现工业过程的监测和控制。
温湿度传感器可用于环境监测,提供实时的温度和湿度数据。
在汽车行业,传感器同样扮演着重要的角色。
车辆上装配的各种传感器能够监测车速、引擎温度、轮胎压力等参数,保障驾驶安全。
除了传统工业和汽车领域,传感器在智能家居、医疗健康、物联网等领域的应用也逐渐崭露头角。
智能家居领域的传感器能够感知环境中的人体活动、光照强度等信息,实现智能家居系统的自动化和便捷性。
在医疗健康领域,传感器可以监测病人的生理参数,提供及时的医疗数据,帮助医生进行准确的诊断。
而物联网发展的推动下,传感器的应用也得到了极大的拓展。
通过传感器,物体可以实现互联互通,实现智能化的生产、生活和管理。
四、未来前景传感器作为现代科技的核心之一,其未来前景将会更加广阔。
随着人工智能、大数据、云计算等技术的迅速发展,传感器将会扮演更重要的角色。
传感器概述
第一章传感器概述1.1 传感器的组成与分类1.1.1 传感器的定义✧传感器是能感受规定的被测量并按照一定规律转换成可用输出信号的器件或装置。
通常由敏感元件和转换元件组成。
敏感元件指传感器中能直接感受被测量的部分,转换元件指传感器中能将敏感元件输出转换为适于传输和测量的电信号部分。
✧传感器输出信号有很多形式,如电压、电流、频率、脉冲等,输出信号的形式由传感器的原理确定。
1.1.2 传感器的组成✧一般讲传感器由敏感元件和转换元件组成。
但由于传感器输出信号一般都很微弱,需要有信号调节与转换电路将其放大或转换为容易传输、处理、记录和显示的形式。
因此调节信号与转换电路及所需电源都应作为传感器组成的一部分。
如图1-1所示。
传感器组成方块图✧常见的调节信号与转换电路有放大器、电桥、振荡器、电荷放大器等,他们分别与相应的传感器相配合。
1.1.3 传感器的分类✧表1-1 按输入量分类、按工作原理分类、按物理现象分类、按能量关系分类和按输出信号分类。
1.2 传感器在科技发展中的重要性1.2.1 传感器的作用与地位将计算机比喻人的大脑,传感器比喻为人的感觉器官。
功能正常完美的感觉器官,迅速准确地采集与转换获得的外界信息,使大脑发挥应有的作用。
自动化程度越高,对传感器的依赖性就越大。
1.2.2 传感器技术是信息技术的基础与支柱现代信息技术的基础是信息采集、信息传输与信息处理,它们就是传感器技术、通信技术和计算机技术。
传感器在信息采集系统中处于前端,它的性能将影响整个系统的工作状态和质量。
1.2.3 科学技术的发展与传感器有密切关系传感器的重要性还体现在已经广泛应用于各个学科领域。
如工业自动化、农业现代化、军事工程、航天技术、机器人技术、资源探测、海洋开发、环境监测、安全保卫、医疗诊断、家用电器等领域。
1.3 传感器技术的发展动向✧传感器技术共性是利用物理定律和物质的物理、化学和生物特性,将非电量转换成电量。
✧传感器技术的主要发展方向一是开展基础研究,发现新现象,开发传感器的新材料和新工艺;二是实现传感器的集成化与智能化。
传感器的定义
传感器的定义
我国国家标准GB76615-87中关于传感器(Transducer/Sensor)的定义是:能感受规定的被测量并按一定的规律转换成可用输出信号的器件或装置。
这个定义所表述的传感器的主要内涵和特征主要包括以下几方面。
从传感器输入端来看,一个指定的传感器只能感受或响应规定的物理量,即传感器对规定的被测量具有最大的灵敏度和最好的选择性。
如我们不希望一只单功能的电流传感器还受环境温度变化的影响。
传感器能够感受或响应规定的物理量,既可以是非电量也可以是电量。
从输出端看,传感器的输出信号为“可用信号”。
这意指传感器的输出信号中不但载运着待测的原始信息,而且是能够被远距离传送、后续测量环节便于接收和进一步处理的信号形式,如最常见的是电、光信号,以及气动信号。
从输入与输出关系来看,这种关系应具有“一定规律”。
其意指传感器的输入与输出应是相关的,而且这种规律是可复现的。
传感器处于测量系统的最前端,起着获取检测信息与转换信息的重要作用。
第三章 传感器
第三章常用的传感器§3.1传感器的分类一、传感器的定义通俗的讲,传感器就是将被测信息转换成某种信号的器件。
也就是将被测物理量转换成于之相对应的、容易检测、传输或处理的信号的装置,称之为传感器。
传感器通常直接作用于被测量。
传感器是对信号进行感受与传送的装置,它是测试装置的输入环节,因此传感器的性能直接影响着整个测试装置的工作可靠性。
近来,随着测量、控制及信息技术的发展,传感器作为这个领域内的一个重要构成因素,被视为90年代的重要技术之一受到了普遍的重视。
深入研究传感器的原理和应用,研制新型传感器,对于社会生产、科学技术和日常生活中的自动测量和自动控制的发展,以及在科学技术领域里实现现代化都有重要意义。
二、传感器的组成传感器一般由敏感元件、传感元件和测量电路三个主要部分组成,有时还加上辅助电源。
通常可用图表示如下:图4-1 传感器的组成由于其用途的不同或是结构原理的不同,其繁简程度相差很大。
因此,传感器的组成将依不同情况而有差异。
敏感元件——传感器的核心,它直接感受被测量(一般为非电量)并转换成信号形成,即输出与被测量成确定关系的其它量的元件,如膜片、热电偶,波纹管等。
传感元件——又称变换器,是传感器的重要组成部分。
传感元件可以直接感受被测量(一般为非电量)而输出与被测量成确定关系的电量。
如热电偶和热敏电阻等。
传感元件也可以不只感受被测量,而只是感受与被测两或确定关系的其它非电量;如应变式压力传感器的电阻片,并不直接感受压力,只是感受与被测压力成确定关系的应变,然后输出电量,在多数情况下,使用的就是这种传感元件。
测量电路——能把传感元件输出的电信号转换为便于显示、记录、控制和处理的有用电信号的电路。
测量电路视传感元件的类型而定。
三、传感器的分类在生产和科研中应用的传感器种类很多,一种被测量有时可以用集中传感器来测量,用一种传感器往往可以测量多种物理量。
为了对传感器有一个概括的认识,对传感器进行研究是很必要的。
传感器的含义
1、传感器的定义英文名称:transducer / sensor传感器是一种物理装置或生物器官,能够探测、感受外界的信号、物理条件(如光、热、湿度)或化学组成(如烟雾),并将探知的信息传递给其他装置或器官。
国家标准GB7665-87对传感器下的定义是:“能感受规定的被测量并按照一定的规律转换成可用信号的器件或装置,通常由敏感元件和转换元件组成”。
传感器是一种检测装置,能感受到被测量的信息,并能将检测感受到的信息,按一定规律变换成为电信号或其他所需形式的信息输出,以满足信息的传输、处理、存储、显示、记录和控制等要求。
它是实现自动检测和自动控制的首要环节。
2、传感器的分类可以用不同的观点对传感器进行分类:它们的转换原理(传感器工作的基本物理或化学效应);它们的用途;它们的输出信号类型以及制作它们的材料和工艺等。
根据传感器工作原理,可分为物理传感器和化学传感器二大类:传感器工作原理的分类物理传感器应用的是物理效应,诸如压电效应,磁致伸缩现象,离化、极化、热电、光电、磁电等效应。
被测信号量的微小变化都将转换成电信号。
化学传感器包括那些以化学吸附、电化学反应等现象为因果关系的传感器,被测信号量的微小变化也将转换成电信号。
有些传感器既不能划分到物理类,也不能划分为化学类。
大多数传感器是以物理原理为基础运作的。
化学传感器技术问题较多,例如可靠性问题,规模生产的可能性,价格问题等,解决了这类难题,化学传感器的应用将会有巨大增长。
按照其用途,传感器可分类为:压力敏和力敏传感器位置传感器液面传感器能耗传感器速度传感器热敏传感器加速度传感器射线辐射传感器振动传感器湿敏传感器磁敏传感器气敏传感器真空度传感器生物传感器等。
以其输出信号为标准可将传感器分为:模拟传感器——将被测量的非电学量转换成模拟电信号。
数字传感器——将被测量的非电学量转换成数字输出信号(包括直接和间接转换)。
膺数字传感器——将被测量的信号量转换成频率信号或短周期信号的输出(包括直接或间接转换)。
简述传感器定义
传感器定义及应用1. 什么是传感器?传感器是一种能够将物理量或化学量转换为可供测量或处理的电信号的装置。
它可以感知和检测环境中的各种参数,并将这些参数转化为电信号,以便于我们进行分析、控制和监测。
传感器广泛应用于各个领域,如工业自动化、医疗健康、环境监测、智能家居等。
2. 传感器的工作原理传感器的工作原理基于物理现象或化学反应。
下面介绍几种常见的传感器类型及其工作原理:光电传感器光电传感器利用光电效应来检测光线的存在与否。
它通常由发光二极管(LED)和光敏二极管(光电池)组成。
当有物体遮挡光线时,光敏二极管接收到的光强度减弱,从而产生一个电信号。
温度传感器温度传感器通过测量物体内部或周围的温度来检测温度变化。
常见的温度传感器有热敏电阻、热电偶和红外线温度传感器等。
其中,热敏电阻的电阻值随温度的变化而变化,通过测量电阻值的变化可以推算出温度。
压力传感器压力传感器用于测量气体或液体的压力。
它通常由弹性元件和传感器芯片组成。
当被测介质施加压力时,弹性元件会产生形变,从而改变传感器芯片内部的电阻、电容或电感等特性,进而转换为电信号。
加速度传感器加速度传感器用于测量物体在三个方向上的加速度。
它通常基于微机械系统(MEMS)技术制造,利用微小质量在加速度作用下产生微小位移,并将其转换为电信号。
气体传感器气体传感器用于检测环境中的气体浓度。
不同类型的气体传感器采用不同的工作原理,如化学反应、光谱吸收和热导率等。
其中最常见的是化学式气体传感器,它基于被测气体与特定化学物质之间发生反应而产生变化。
3. 传感器的应用领域传感器在各个领域都有广泛的应用,下面介绍几个典型的应用领域:工业自动化在工业生产过程中,传感器可以实时监测各种物理量,如温度、压力、流量和液位等。
通过对这些参数的监测和控制,可以实现工业过程的自动化和优化,提高生产效率和质量。
医疗健康在医疗领域,传感器可以用于监测患者的生命体征和健康状况。
例如,心率传感器可以检测心脏的跳动频率;血压传感器可以测量血液在动脉中的压力;血糖传感器可以监测糖尿病患者的血糖水平。
传感器技术与应用
热电阻传感器是利用金属导体电阻值随温
度变化而变化的原理进行测温的。热电阻 广泛用来测量-200~850℃范围内的温度, 少数情况下,低温可测量至1K,高温达 1000℃。标准铂电阻温度计的精确度高, 作为复现国际温标的标准仪器,
PT100 欧
0度—100欧 100度—138.5
CU50
0度—50欧
电子设计专题讲座
传感器技术与应用
一、传感器的概念 1、定义:
人类为了从外界获取信息, 必须借助于 感觉器官。
随着科学技术的发展。 一系列代替、 补充、 延伸人的感觉器官功能的各种手 段就应运而生, 从而出现了各种用途的传 感器。
传感器是与人的感觉器官相对应的元 件。
国家标准GB7665-87对传感器下的定义
0
③ CTR
② P TC
① NTC
40
80
12 0 16 0 20 0
t/℃
(2)半导体热敏电阻电路
RTh Ub
Rs Uout
3 k Ub 33 2.2
RTh
Uout
Rs 3.322 k
(3)晶体二极管PN二极管测 温电路
R1 RW
R3
V
R2 R4
R5 VD
Rf
- + R6
(4)热电阻传感器
(1)压力; (2 ) 力/荷重; (3 ) 位移(厚 度); (4)力矩; (5)角度; (6)角速度 (转速); (7)速度; (8)加速度; (9)角 加速度; (10)倾斜角; (11)编码器; (12) 振动; (13)气体/烟雾; (14)温度; (15) 热能; (16)湿度; (17)水份; (18)露点; (19)液位; (20)料位; (21)流量; (22) 流速
传感器的基本原理及其应用
传感器的基本原理及其应用一、传感器的定义和分类1.1 传感器的定义传感器是一种能够将感知到的物理量转变为可测量或可使用的电信号的装置。
传感器可以用于测量温度、湿度、压力、光照强度、位移等各种物理量。
1.2 传感器的分类根据测量的物理量不同,传感器可以分为以下几类:•温度传感器•湿度传感器•压力传感器•光照传感器•位移传感器二、传感器的基本原理2.1 温度传感器的原理温度传感器是用于测量物体的温度的传感器。
常见的温度传感器有热电偶和热敏电阻。
热电偶是利用热电效应测量温度的,热敏电阻则是通过电阻值的变化来测量温度的。
2.2 湿度传感器的原理湿度传感器是用于测量物体的湿度的传感器。
常见的湿度传感器有湿度电容式传感器和湿敏电阻传感器。
湿度电容式传感器通过测量电容的变化来测量湿度,湿敏电阻传感器则是通过电阻值的变化来测量湿度的。
2.3 压力传感器的原理压力传感器是用于测量物体的压力的传感器。
常见的压力传感器有压阻式传感器和压电式传感器。
压阻式传感器是通过电阻值的变化来测量压力的,压电式传感器则是利用压电效应来测量压力的。
2.4 光照传感器的原理光照传感器是用于测量光照强度的传感器。
常见的光照传感器有光敏电阻和光电二极管传感器。
光敏电阻是通过电阻值的变化来测量光照强度的,光电二极管传感器则是利用光电效应来测量光照强度的。
2.5 位移传感器的原理位移传感器是用于测量物体的位移或位置的传感器。
常见的位移传感器有电感式位移传感器和光电式位移传感器。
电感式位移传感器是通过感应电磁场的变化来测量位移的,光电式位移传感器则是利用光电效应来测量位移的。
三、传感器的应用3.1 温度传感器的应用•家用电器中的恒温控制•工业生产过程中的温度监测和控制3.2 湿度传感器的应用•温室内的湿度检测和控制•空调设备中的湿度调节3.3 压力传感器的应用•工业生产中的压力监测和控制•汽车维修中对轮胎气压的检测3.4 光照传感器的应用•照明系统中的光照调节•环境监测中的光照强度检测3.5 位移传感器的应用•机械加工中的位置测量•自动化生产线中的物体定位和跟踪以上只是传感器应用的一部分,实际上,传感器在各个领域都有广泛的应用,如医疗设备、航空航天、能源管理等。
什么是传感器
什么是传感器最广义地来说,传感器是一种能把物理量或化学量转变成便于利用的电信号的器件。
国际电工委员会的定义为:“传感器是测量系统中的一种前置部件,它将输入变量转换成可供测量的信号”。
按照GoPEl等的说法是:“传感器是包括承载体和电路连接的敏感元件”,而“传感器系统则是组合有某种信息处理(模拟或数字)能力的传感器”。
传感器是传感器系统的一个组成部分,它是被测量信号输入的第一道关口。
传感器是接收信号或刺激并反应的器件,能将待测物理量或化学量转换成另一对应输出的装置。
用于自动化控制、安防设备等。
一个传感器的输入对输出的影响被称为传感系数或灵敏度(sensitivity)。
当一个传感器的输入和输出完全成线性关系的时候,这个传感器就是一个理想传感器。
同时,理想传感器还应该遵守以下原则:1.只受被测因素的影响;2.不受其他因素的影响;3.传感器本身不会影响被测因素。
传感器是一种物理装置或生物器官,能够探测、感受外界的信号、物理条件(如光、热、湿度)或化学组成(如烟雾),并将探知的信息传递给其他装置或器官。
“传感器”在新韦式大词典中定义为:“从一个系统接受功率,通常以另一种形式将功率送到第二个系统中的器件”。
根据这个定义,传感器的作用是将一种能量转换成另一种能量形式,所以不少学者也用“换能器-Transducer”来称谓“传感器-Sensor”。
传感器分类按技术分类超声波传感器、温度传感器、湿度传感器、气体传感器、气体报警器、压力传感器、加速度传感器、紫外线传感器、磁敏传感器、磁阻传感器、图像传感器、电量传感器、位移传感器。
按应用分类压力传感器、温湿度传感器、温度传感器、流量传感器、液位传感器、超声波传感器、浸水传感器、照度传感器、差压变送器、加速度传感器、位移传感器、称重传感器。
电子式传感器IR红外线近接/测距循线循迹Sensor超音波距离检测雷射区域距离测量仪室内定位系统碰撞传感器紧急/保护带状开关可挠曲传感器压力传感器温湿度传感器表面温度量测器数位电子罗盘(方向)GPS卫星定位模组计数&PWM产生器陀螺仪与加速度计倾斜仪与定向计Piezo压电震动传感器RFID Reader模组PIR物体移动检知TSL230 光To 频率霍尔效应传感器气体侦测器在医疗器械市场,小型化、低功耗和液媒兼容性高等传感器产品特点已成为全球性的发展趋势。
传感器概论
第1章概论一传感器的概念与发展1.1 传感器基本概念传感器(transducer/sensor)的定义是:能感受规定的被测量并按一定的规律转换成可用输出信号的器件或装置,通常由敏感元件和转换元件组成。
其中,敏感元件(sensing element)是指传感器中能直接感受或响应被测量的部分;转换元件(transducer element)是指传感器中能将敏感元件感受或响应的被测量转换成适于传输或测量的电信号以及其它某种可用信号的部分。
传感器狭义地定义为:能把外界非电信息转换成电信号输出的器件。
可以预料,当人类跨入光子时代,光信息成为更便于快速、高效地处理与传输的可用信号时,传感器的概念将随之发展成为:能把外界信息转换成光信号输出的器件。
传感器的任务就是感知与测量。
在人类文明史的历次产业革命中,感受、处理外部信息的传感技术一直扮演着一个重要的角色。
在18世纪产业革命以前,传感技术由人的感官实现:人观天象而仕农耕,察火色以冶铜铁。
从18世纪产业革命以来,特别是在20世纪信息革命中,传感技术越来越多地由人造感官,即工程传感器来实现。
目前,工程传感器应用如此广泛,以至可以说任何机械电气系统都离不开它。
现代工业、现代科学探索、特别是现代军事都要依靠传感器技术。
一个大国如果没有自身传感技术的不断进步,必将处处被动。
现代技术的发展,创造了多种多样的工程传感器。
工程传感器可以轻而易举地测量人体所无法感知的量,如紫外线、红外线、超声波、磁场等。
从这个意义上讲,工程传感器超过人的感官能力。
有些量虽然人的感官和工程传感器都能检测,但工程传感器测量得更快、更精确。
例如虽然人眼和光传感器都能检测可见光,进行物体识别与测距,但是人眼的视觉残留约为0.1s,而光晶体管的响应时间可短到纳秒以下;人眼的角分辨率为1ˊ,而光栅测距的精确度可达1";激光定位的精度在月球距离3×104km范围内可达10cm以下;工程传感器可以把人所不能看到的物体通过数据处理变为视觉图像。
传感器的概述
第一章 传感器的概述1.传感器的定义能感受规定的被测量并按照一定规律转换成可用输出信号的器件或装置叫做传感器。
2.传感器的共性:利用物理定律或物质的物理、化学、生物等特性,将非电量(位移、速度、加速度、力等)转换成 电量(电压、电流、电容、电阻等)输出。
3.传感器的组成:传感器由有敏感元件、转换元件、信号调理电路、辅助电源组成。
传感器基本组成有敏感元件和 转换元件两部分,分别完成检测和转换两个基本功能。
第二章 传感器的基本特性1.传感器的基本特性:静态特性、动态特性。
2.衡量传感器静态特性的主要指标有:线性度 、灵敏度 、分辨率迟滞 、重复性 、漂移。
3.迟滞产生原因:传感器机械部分存在摩擦、间隙、松动、积尘等。
4.产生漂移的原因:①传感器自身结构参数老化;②测试过程中环境发生变化。
5.例题:1.用某一阶环节传感器测量100Hz 的正弦信号,如要求幅值误差限制在±5%以内,时间常数应取多少?如果用该传感器测量50Hz 的正弦信号,其幅值误差和相位误差各为多少? 解:一阶传感器的频率响应特性: 幅频特性:2.在某二阶传感器的频率特性测试中发现,谐振发生在频率为216Hz 处,并得到最大福祉比为1.4比1,试估算该传感器的阻尼比和固有频率的大小。
3.玻璃水银温度计通过玻璃温包将热量传给水银,可用一阶微分方程来表示。
现已知某玻璃水银温度计特性的微分方1)(1)(+=ωτωj j H )(11)(ωτω+=A s rad f n n /135********.014.121)(A )(4)(1)(A n max n 21222=⨯=======⎭⎬⎫⎩⎨⎧+⎥⎦⎤⎢⎣⎡-=-ππωωξξωωωωωξωωω所以,时共振,则当解:二阶系统程是x y dtdy310224-⨯=+ ,y 代表水银柱的高度,x 代表输入温度(℃)。
求该温度计的时间常数及灵敏度。
解:原微分方程等价于:x y dt dy3102-=+所以:时间常数T=2S, 灵敏度Sn=10-3第三章 电阻式传感1.应变式电阻传感器的特点: 1)优点:①结构简单,尺寸小,质量小,使用方便,性能稳定可靠;②分辨力高,能测出极微小的应变;③灵敏度 高,测量范围广,测量速度快,适合静、动态测量;④易于实现测试过程自动化和多点同步测量、远距离 测量和遥测;⑤价格便宜,品种多样,工艺较成熟,便于选择和使用,可以测量多种物理量。
传感器的一些基本概念与常识
2. 正确度
正确度说明测量结果偏离真值的程度,即示值有规则偏离真值的程 度。指所测值与真值的符合程度(对应系统误差)。
3. 精确度
它含有精密度与正确度两者之和的意思,即测量的综合优良程度。 在最简单的场合下可取两者的代数和。通常精确度是以测量误差的相对 值来表示的。
.
20
• •
• •
•
•
• •
••
度就是它的静态特性的斜率,
如图 (a) 所示。即
Sn
y y0 x
非线性传感器的灵敏度是 一个变量,如图 (b) 所示,即 用 d y / d x 表示传感器在某一 工作点的灵敏度。
.
15
L2
L1
L0
L2
L1
L0
.
16
y
dy
y
x
dx
x
(a) 传 感 器 的 输 入 —输 出 特 性 曲 线
k tg y x
如果敏感元件直接输出的是电量,它就同时兼为转换元件,因此, 敏感元件和转换元件两者合一的传感器是很多的。例如:压电晶体、 热电偶、热敏电阻、光电器件等都是这种形式的传感器。
.
7
1. 敏感元件(预变换器):是指传感器中能直接感受或响应被测量(非
电量)并输出与之成确定关系的其他量(非电量)的部分。
(在完成非电量到电量的变换时,并非所有的非电量都能利用现有 手段直接变换为电量,往往是将被测非电量预先变换为另一种易于变换 成电量的非电量,然后再变换为电量。能够完成预变换的器件称为敏感 元件)。
Δmax —— 输出最大偏差; ΔT —— 温度变化范围
.
25
5、传感器的基体材料
45号钢
202、204不锈钢(铬-镍-锰 奥氏体不锈 钢30)4不锈钢(0Cr18Ni9) 316L不锈钢 ( 00Cr17Ni14Mo2 )
传感器的定义
传感器的定义传感器是一种能把物理量或化学量转变成便于利用的电信号的器件。
国际电工委员会(IEC:International Electrotechnical Committee)的定义为:“传感器是测量系统中的一种前置部件,它将输入变量转换成可供测量的信号”。
按照Gopel等的说法是:“传感器是包括承载体和电路连接的敏感元件”,而“传感器系统则是组合有某种信息处理(模拟或数字)能力的系统”。
传感器是传感系统的一个组成部分,它是被测量信号输入的第一道关口。
传感器把某种形式的能量转换成另一种形式的能量。
有两类:有源的和无源的。
有源传感器能将一种能量形式直接转变成另一种,不需要外接的能源或激励源。
无源传感器不能直接转换能量形式,但它能控制从另一输入端输入的能量或激励能,传感器承担将某个对象或过程的特定特性转换成数量的工作。
其“对象”可以是固体、液体或气体,而它们的状态可以是静态的,也可以是动态(即过程)的。
对象特性被转换量化后可以通过多种方式检测。
对象的特性可以是物理性质的,也可以是化学性质的。
按照其工作原理,它将对象特性或状态参数转换成可测定的电学量,然后将此电信号分离出来,送入传感器系统加以评测或标示。
传感器原理结构在一段特制的弹性轴上粘贴上专用的测扭应片并组成变桥,即为基础扭矩传感器;在轴上固定着:(1)能源环形变压器的次级线圈,(2)信号环形变压器初级线圈,(3)轴上印刷电路板,电路板上包含整流稳定电源、仪表放大电路、V/F变换电路及信号输出电路。
在传感器的外壳上固定着:(1)激磁电路,(2)能源环形变压器的初级线圈(输入),(3) 信号环形变压器次级线圈(输出),(4)信号处理电路工作过程向传感器提供±15V电源,激磁电路中的晶体振荡器产生400Hz的方波,经过TDA2030功率放大器即产生交流激磁功率电源,通过能源环形变压器T1从静止的初级线圈传递至旋转的次级线圈,得到的交流电源通过轴上的整流滤波电路得到±5V的直流电源,该电源做运算放大器AD822的工作电源;由基准电源AD589与双运放AD822组成的高精度稳压电源产生±4.5V的精密直流电源,该电源既作为电桥电源,又作为放大器及V/F转换器的工作电源。
传感器的定义、组成及分类
传感器一.传感器的定义传感器是一种能感受规定的被测量件并按照一定的规律转换成可用信号的器件或装置,通常由敏感元件和转换元件组成”。
传感器是一种以一定的精确度把被测量转换为与之有确定对应关系的、便于应用的某种物理量的测量装置。
其包含以下几个方面的含义:1.传感器是测量装置,能完成检测任务2.它的输入量是某一被测量,可能是物理量,也可能是化学量、生物量等3.输出量是某种物理量,这种量要便于传输、转换、处理、显示等等,这种量可以是气、光、电量,但主要是电量。
4.输入输出有对应关系,且应有一定的精确度。
二.传感器的组成传感器一般由敏感元件、转换元件、转换电路三部分组成:1.敏感元件(Sensitive element):直接感受被测量,并输出与被测量成确定关系的某一物理量的元件。
2.转换元件(Transduction element):以敏感元件的输出为输入,把输入转换成电路参数。
3.转换电路(Transduction circuit):上述电路参数接入转换电路,便可转换成电量输出。
实际上,有些传感器很简单,仅由一个敏感元件(兼作转换元件)组成,它感受被测量时直接输出电量。
如热电偶。
有些传感器由敏感元件和转换元件组成,没有转换电路。
有些传感器,转换元件不止一个,要经过若干次转换。
三.传感器的分类一、根据输入物理量可分为:位移传感器、压力传感器、速度传感器、温度传感器及气敏传感器等。
二、根据工作原理可分为:电阻式、电感式、电容式及电势式等。
三、根据输出信号的性质可分为:模拟式传感器和数字式传感器。
即模拟式传感器输出模拟信号,数字式传感器输出数字信号.四、根据能量转换原理可分为:有源传感器和无源传感器。
有源传感器将非电量转换为电能量,如电动势、电荷式传感器等;无源程序传感器不起能量转换作用,只是将被测非电量转换为电参数的量,如电阻式、电感式及电容光焕发式传感器等。
传感器分类表。
传感器的定义和组成
传感器的定义和组成1.传感器的定义广义地说,传感器是指能感知某一物理量、化学量或生物量等的信息,并能将之转化为可以加以利用的信息的装置。
人的五官就可广义地看作传感器,又例如测量仪器就是将被测量转化为人们可感知或定量认识的信号的传感器。
传感器狭义的定义是:感受被测量,并按一定规律将其转化为同种或别种性质的输出信号的装置。
中华人民共和国国家标准GB7665-1987对传感器(transd ucer/sensor)的定义是:能感受规定的被测量并按一定规律转换成可用输出信号的器件或装置。
由于电信号易于保存、放大、计算、传输,且是计算机唯一能够直接处理的信号,所以,传感器的输出一般是电信号(如电流、电压、电阻、电感、电容、频率等)。
2.传感器的组成传感器的作用一般是把被测的非电量转换成电量输出,因此它首先应包含一个元件去感受被测非电量的变化。
但并非所有的非电量都能利用现有手段直接变换成电量,这是需要将被测非电量先变换成易于变换成电量的某一中间非电量。
传感器中完成这一功能的元件称为敏感元件(或预变换器)。
例如应变式压力传感器的作用是将输入的压力信号变换成电压信号输出,它的敏感元件是一个弹性膜片,其作用是将压力转换成膜片的变形。
传感器中将敏感元件输出的中间非电量转换成电量输出的元件称为转换元件(或转换器),它是利用某种物理的、化学的、生物的或其他的效应来达到这一目的的。
例如应变式压力传感器的转换元件是一个应变片,它利用电阻应变效应(金属导体或半导体的电阻随着它所受机械变形的大小而发生变化的现象),将弹性膜片的变形转换为电阻值的变化。
所以,敏感元件(sensin g elemen t)是能直接感受或响应被测量的部分;转换元件(transd uctio n elemen t)是将敏感元件感受或响应的被测量转换成适于传输和测量的电信号部分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
传感器的定义
传感器(sensor)曾被称为换能器或变送器(Transducer),近年国际上多用“Sensor”一词。
按我国国家标准“传感器通用术语”中的定义:“传感器是能感受规定的被测量并按一定规律将其转换为有用信号的器件或装置”。
又指出“传感器通常由敏感器件、转换器件和电子线路组成”。
在有些传感器中敏感器件和转换器件是合为一体的。
在信息社会里,各行各业和人们日常生活中所遇到的信号大部分是非电量的,对于这些非电量信号,即使能检测出来也难以放大、处理和传输。
因此传感器通常是用于检测这些非电量信号并将其转变成便于计算机或电子仪器所接受和处理的电信号。
从传感器的作用来看,实质上就是代替人的五种感觉(视、听、触、嗅、味)器官的装置(图1-1).人们把外界信息通过五官收集起来,传递给大脑,在大脑中处理信息,得出一个“结果”,发出指令。
在电子设备中完成这一过程时,电子计算机相当于大脑,传感器作为电脑的五官,就像人的眼、耳、鼻、舌、皮肤那样可以收集各种信息,这些信息送入电脑后,由电脑进行判断处理,并发出各种控制执行机构,从而满足各种社会需求。
20世纪80年代后期,由于电子技术的进步,微型计算机的功能不断提高,价格却在不断下降,微型计算机在多方面迅速普及,而且已开始进入家庭。
相比之下,传感器处于较落后地位。
不少传感器尚不能很好地满足现
代信息系统对其准确度、速度和价格的要求。
传感器技术已成为微型计算机应用中的关键技术。
近年来,随着科学技术的迅速发展,特别是微电子加工技术、计算机芯片及外围扩展电路技术、新型材料技术的发展、使得传感器技术的开发和应用进入了一个崭新的阶段。
生物医学传感器(Biomedical Sensors)是获取人体生理和病理信息的工具,是生物医学工程学中的重要分支,对于化验、诊断、监护、控制、治疗和保健等都有重要作用。
来自海洋兴业。