电磁式继电器的工作原理
继电器的工作原理和作用
继电器的工作原理简介当输入量(如电压、电流、温度等)达到规定值时,使被控制的输出电路导通或断开的电器。
可分为电气量(如电流、电压、频率、功率等)继电器及非电气量(如温度、压力、速度等)继电器两大类。
具有动作快、工作稳定、使用寿命长、体积小等优点。
广泛应用于电力保护、自动化、运动、遥控、测量和通信等装置中。
1、电磁继电器的工作原理和特性电磁式继电器一般由铁芯、线圈、衔铁、触点簧片等组成的。
只要在线圈两端加上一定的电压,线圈中就会流过一定的电流,从而产生电磁效应,衔铁就会在电磁力吸引的作用下克服返回弹簧的拉力吸向铁芯,从而带动衔铁的动触点与静触点(常开触点)吸合。
当线圈断电后,电磁的吸力也随之消失,衔铁就会在弹簧的反作用力返回原来的位置,使动触点与原来的静触点(常闭触点)释放。
这样吸合、释放,从而达到了在电路中的导通、切断的目的。
对于继电器的“常开、常闭”触点,可以这样来区分:继电器线圈未通电时处于断开状态的静触点,称为“常开触点”;处于接通状态的静触点称为“常闭触点”。
继电器的输入信号x从零连续增加达到衔铁开始吸合时的动作值xx,继电器的输出信号立刻从y=0跳跃到y=ym,即常开触点从断到通。
一旦触点闭合,输入量x继续增大,输出信号y将不再起变化。
当输入量x从某一大于xx值下降到xf,继电器开始释放,常开触点断开。
我们把继电器的这种特性叫做继电特性,也叫继电器的输入-输出特性。
释放值xf与动作值xx的比值叫做反馈系数,即Kf= xf /xx 触点上输出的控制功率Pc与线圈吸收的最小功率P0之比叫做继电器的控制系数,即Kc=PC/P02、热敏干簧继电器的工作原理和特性热敏干簧继电器是一种利用热敏磁性材料检测和控制温度的新型热敏开关。
它由感温磁环、恒磁环、干簧管、导热安装片、塑料衬底及其他一些附件组成。
热敏干簧继电器不用线圈励磁,而由恒磁环产生的磁力驱动开关动作。
恒磁环能否向干簧管提供磁力是由感温磁环的温控特性决定的。
继电器的工作原理和作用
继电器的工作原理简介当输入量(如电压、电流、温度等)达到规定值时,使被控制的输出电路导通或断开的电器。
可分为电气量(如电流、电压、频率、功率等)继电器及非电气量(如温度、压力、速度等)继电器两大类。
具有动作快、工作稳定、使用寿命长、体积小等优点。
广泛应用于电力保护、自动化、运动、遥控、测量和通信等装置中。
1、电磁继电器的工作原理和特性 电磁式继电器一般由铁芯、线圈、衔铁、触点簧片等组成的。
只要在线圈两端加上一定的电压,线圈中就会流过一定的电流,从而产生电磁效应,衔铁就会在电磁力吸引的作用下克服返回弹簧的拉力吸向铁芯,从而带动衔铁的动触点与静触点(常开触点)吸合。
当线圈断电后,电磁的吸力也随之消失,衔铁就会在弹簧的反作用力返回原来的位置,使动触点与原来的静触点(常闭触点)释放。
这样吸合、释放,从而达到了在电路中的导通、切断的目的。
对于继电器的“常开、常闭”触点,可以这样来区分:继电器线圈未通电时处于断开状态的静触点,称为“常开触点”;处于接通状态的静触点称为“常闭触点”。
继电器的输入信号x从零连续增加达到衔铁开始吸合时的动作值xx,继电器的输出信号立刻从y=0跳跃到y=ym,即常开触点从断到通。
一旦触点闭合,输入量x继续增大,输出信号y将不再起变化。
当输入量x从某一大于xx值下降到xf,继电器开始释放,常开触点断开。
我们把继电器的这种特性叫做继电特性,也叫继电器的输入-输出特性。
释放值xf与动作值xx的比值叫做反馈系数,即 Kf= xf /xx 触点上输出的控制功率Pc与线圈吸收的最小功率P0之比叫做继电器的控制系数,即Kc=PC/P02、热敏干簧继电器的工作原理和特性 热敏干簧继电器是一种利用热敏磁性材料检测和控制温度的新型热敏开关。
它由感温磁环、恒磁环、干簧管、导热安装片、塑料衬底及其他一些附件组成。
热敏干簧继电器不用线圈励磁,而由恒磁环产生的磁力驱动开关动作。
恒磁环能否向干簧管提供磁力是由感温磁环的温控特性决定的。
欧姆龙MY2NJ电磁继电器的工作原理作用接线
欧姆龙MY2NJ,电磁继电器的工作原理,作用,接线
电磁继电器的工作原理
电磁式继电器一般由铁芯、线圈、衔铁、触点簧片等组成的。
只要在线圈两端加上一定的电压,线圈中就会流过一定的电流,从而产生电磁效应,衔铁就会在电磁力吸引的作用下克服返回弹簧的拉力吸向铁芯,从而带动衔铁的动触点与静触点(常开触点)吸合。
当线圈断电后,电磁的吸力也随之消失,衔铁就会在弹簧的反作用力返回原来的位置,使动触点与原来的静触点(常闭触点)吸合。
这样吸合、释放,从而达到了在电路中的导通、切断的目的。
对于继电器的「常开、常闭」触点,可以这样来区分:继电器线圈未通电时处于断开状态的静触点,称为「常开触点」;处于接通状态的静触点称为「常闭触点」。
继电器动作接线演示图
继电器动作演示图。
继电器的工作原理及作用
继电器的工作原理及作用
继电器是一种电磁式开关设备,广泛应用于工业、电力系统和控制电路中。
它
的主要作用是实现电路的开闭,起到控制和保护电路的作用。
下面将详细介绍继电器的工作原理和作用。
工作原理
继电器的工作原理基于电磁感应的原理。
当通入电流到继电器的线圈中时,线
圈中产生磁场,这个磁场将吸引触点闭合或者分离,从而实现电路的连接和断开。
继电器的主要组成部分包括线圈、触点和磁性材料。
当通入电流时,线圈中产生的磁场会使得触点闭合,从而导通电路;当断开电
流时,磁场消失,触点分离,电路断开。
通过控制电流的通断,可以实现对电路的控制。
作用
1.电气隔离:继电器能够在控制电路和被控制电路之间提供电气隔离,
以保护控制电路。
2.放大信号:继电器能够将微弱信号放大,以控制大功率电路的操作。
3.** 控制电路:** 继电器可以实现电路的开闭,从而实现对设备、机
器等的控制。
4.过载保护:继电器中的热继电器可以通过测量电流大小来实现对电
路的过载保护,当电流超过设定值时,会使触点跳闸,切断电路,保护设备不受损坏。
5.多功能:继电器可以根据不同的控制需求,通过更换不同的触点或
继电器模块,实现不同的功能,如时间延迟、记忆功能等。
继电器作为一种常用的电气控制设备,在工业自动化、电力系统和控制领域具
有重要的作用。
掌握继电器的工作原理和作用,能够更好地应用于实际工程中,提高电气控制系统的可靠性和安全性。
24V电磁继电器的简称和工作原理
24V电磁继电器的简称和工作原理24V电磁继电器的简称是24V继电器,它通常由铁心、线圈、触点和外壳等部件组成。
线圈是继电器的主要部件之一,可以通过施加24V的电压来激励线圈,产生磁场。
当线圈中的电流达到一定程度时,将吸引铁核,使触点的状态发生变化。
触点有两种状态,分别是常开(NO)和常闭(NC)。
当线圈通电时,触点由常开状态切换到常闭状态,当线圈断电时,触点由常闭状态切换到常开状态。
24V电磁继电器的工作原理是基于电磁感应现象。
当外加24V的直流电压通过线圈时,线圈产生的磁场会吸引铁核,使得触点发生动作。
触点的动作状态与线圈的通断状态有关。
当线圈通电时,磁场吸引铁核,使触点发生动作,当线圈断电时,铁核失去磁性,使触点恢复到初始状态。
触点的运动,即打开或关闭了电路。
24V继电器的工作原理可以通过以下步骤来说明:1.当继电器的线圈未通电时,铁核不受磁场影响,触点处于常开状态。
此时,电路中的电流无法经过继电器。
2.当继电器的线圈通电时,线圈产生的磁场吸引铁核,触点由常开状态切换到常闭状态。
此时,电路中的电流可以经过继电器。
3.当线圈断电时,铁核失去磁性,触点恢复到常开状态。
此时,电路中的电流再次无法经过继电器。
通过对24V继电器进行控制,可以实现对电路的自动开关。
通过将小电流的控制信号与大电流的控制对象进行隔离,继电器可以保护小电流电路和实现远距离的电路控制。
此外,24V继电器具有可靠性高、耐久性好、响应速度快、结构简单、安装方便等特点,使其成为广泛应用的常见电气设备。
电磁继电器构造
电磁继电器构造电磁继电器是一种电气控制设备,它可以在电路中起到开关、保护、转换等作用。
本文将从电磁继电器的构造、工作原理、应用领域等方面进行详细的介绍。
一、电磁继电器的构造电磁继电器由磁路系统、触点系统、弹簧系统和外壳系统四部分组成。
1. 磁路系统磁路系统是电磁继电器的核心部分,它由铁芯、线圈和磁路板组成。
铁芯是电磁继电器的主要磁路部件,它通常由软磁材料制成,如硅钢片、镍铁合金等。
线圈是电磁继电器的发热部件,通电时会产生电磁场,使铁芯磁化,从而吸合触点。
磁路板是将铁芯和线圈固定在一起的支撑部件。
2. 触点系统触点系统是电磁继电器的关键部分,它由动触点、静触点和触点弹簧组成。
动触点是由弹簧和触点杆组成的,通电时会受到电磁力的作用,向静触点方向运动,从而闭合电路。
静触点是固定在继电器上的触点,它与动触点接触时会闭合电路。
触点弹簧是将动触点和静触点分开的弹簧,通电时会拉动动触点,当电流断开时,触点弹簧会将动触点弹回原位。
3. 弹簧系统弹簧系统是用来控制触点运动的部分,它由闭合弹簧和断开弹簧组成。
闭合弹簧是使动触点闭合的弹簧,断开弹簧是使动触点断开的弹簧。
4. 外壳系统外壳系统是电磁继电器的保护部分,它由外壳和连接杆组成。
外壳是将磁路系统、触点系统和弹簧系统固定在一起的保护壳,连接杆是用来连接电气设备的。
二、电磁继电器的工作原理电磁继电器的工作原理是基于电磁感应现象的。
当继电器通电时,线圈中会产生电流,电流会在铁芯中产生磁场,使铁芯磁化。
磁化后的铁芯会吸引动触点,使动触点与静触点接触,从而闭合电路。
当电流断开时,线圈中不再产生磁场,铁芯失去磁化,动触点受到触点弹簧的作用,弹回原位,与静触点分开,电路断开。
三、电磁继电器的应用领域电磁继电器广泛应用于各个领域,如电力、机械、交通、电子、通信等。
在电力领域,电磁继电器可以用于控制电动机、保护电路等。
在机械领域,电磁继电器可以用于控制机器人、自动化生产线等。
在交通领域,电磁继电器可以用于控制信号灯、电梯等。
电磁继电器灯的工作原理
电磁继电器灯的工作原理
电磁继电器灯是一种通过电磁原理控制电灯开关的装置。
它由电磁铁、触点和控制电路组成。
工作原理如下:
1. 当继电器的控制电路通电时,电流经过电磁铁线圈,产生磁场。
2. 磁场作用下,铁芯被吸引,使得铁芯和连接在上面的触点闭合。
3. 触点闭合时,电灯电路连通,电灯亮起。
4. 当控制电路断电时,线圈中断电流,磁场消失。
5. 铁芯恢复原位,使触点分离,电灯电路断开,电灯熄灭。
通过控制电路的通断,可以实现对电灯的开关控制。
电磁继电器灯在家居、工业等领域中广泛应用,可以实现远距离的控制,以及对复杂电路的开关控制。
电磁继电器工作原理
·电磁继电器工作原理1、通用电磁继电器工作原理以图1所示结构为例进行说明,当线圈引出脚两端加上电压或电流,线圈的激磁电流产生磁通,磁通通过铁心、轭铁、衔铁和工作气隙组成的磁路,并在工作气隙产生电磁吸力。
当激磁电流上升达到某一值时,电磁吸力矩将克服动簧的反力矩使衔铁转动,带动推动片推动动簧,实现触点闭合;当激磁电流减小到一定值时,动簧反力矩大于电磁吸力矩衔铁回到初始状态,触点断开。
2、磁保持继电器工作原理如图2所示,继电器触点状态保持力是由衔铁部分中的两件磁钢产生的,磁钢产生的磁通通过右衔铁—轭铁磁极—铁心—轭铁磁极—左衔铁—磁钢形成闭合回路,在衔铁和轭铁极间产生吸力,如图所示,左衔铁的延伸臂通过推动片对动簧片施加推力,使动、静触点间产生足够的压力,使其能可靠载流。
当需要使继电器触点断开时,只需对线圈施加一个足够宽度脉冲电压,该脉冲电压产生的磁通与磁钢产生的磁通方向相反,在磁极上就会产生与磁钢相同的极性,根据磁场同性相斥原理,在衔铁和轭铁磁极间会产生推力,当磁路产生的合成力矩大小簧片的反力矩,动簧朝后运动,衔铁部分绕转轴转动,继电器会呈现图3的断开状态。
如果要返回闭合状态,必须在线圈上施加一相反的脉冲,否则,继电器触点状态会永远保持下去。
·电磁继电器技术参数含义1、环境温度范围工作环境温度范围是指继电器经历的最低环境温度至最高环境温度的作用后,继电器不发生功能失效。
按照IEC标准指气候系列试验的最低、最高温度。
2、标准试验条件塑封继电器的标准试验为温度:15-35℃相对湿度:25%-75%大气压力:86-106Kpa继电器标称电寿命等技术指标是在标准试验条件下的测试数据。
当继电器处于超出标准试验测试时,继电器的技术指标将可能会发生变化,甚至于可靠性会发生降低。
因此,继电器的使用环境条件对继电器的性能有着重大的影响。
3、振动稳定性(正弦振动)振动稳定性是指经一种重复周期的正弦运动后,产品能维持正常工作的能力,振动加速度值是位移与频率的函数。
继电器 原理
继电器原理
继电器是一种电气控制元件,具有开关、调节、保护、转换等作用,被广泛应用于电力系统、自动化控制、家用电器等领域。
继电器的核心是一组电磁线圈和可移动接点,通过控制电磁线圈的通断来实现接点的开合,从而实现电路的操作。
继电器的原理可以分为电磁吸合原理、电磁释放原理和接点动作原理三部分。
1.电磁吸合原理
当与继电器电磁线圈相接的电路通电时,电磁线圈中会产生磁场,这个磁场会将带有可移动接点的铁芯吸引,使得接点闭合。
当电路断电时,电磁线圈中的磁场消失,接点又会打开。
电磁吸合原理是继电器最基本的工作原理,它实现了电路的闭合和断开,是所有继电器的基础。
电磁释放原理与电磁吸合原理相反,当电磁线圈不再通电时,磁场消失,可移动接点受到弹簧力的作用因而分离,电路被断开。
如果需要使继电器保持闭合状态,可以使用保持回路,即在电磁线圈上加上一个并联的常闭接点,从而形成一个反馈回路,使继电器能够自动保持闭合。
3.接点动作原理
接点动作原理指的是可移动接点的动作方式。
继电器的接点动作可以分为常开、常闭和转换三种形式。
常开接点在电磁线圈不通电时开放,通电时闭合;常闭接点在电磁线圈不通电时闭合,通电时开放;转换接点则可以实现电路的正反转换。
在电路中,不同类型的继电器可用于不同的场合和用途。
例如,常开接点的继电器通常用于故障报警、声音报警或样品采集等领域,而常闭接点的继电器则常用于断电保护、继电保护、断路器选择等领域。
综上所述,继电器的原理主要涉及电磁吸合、电磁释放和接点动作三个方面,通过控制这三个方面可以实现不同类型的继电器在不同场合的应用。
2电磁继电器原理简介
东莞三友电器有限公司继电器生产、技术、品质培训教材(2)电磁继电器基本原理简介二00二年六月十七日修订电磁继电器原理简介1、概述继电器的本质继电器就是一种电气开关。
不过,这种开关不是人直接用手去操纵的,而是由外来的电信号来控制的。
这些外来的电信号或由各种各样的传感器产生、或由各种编程软件按指令或程序自动取得。
于是,继电器就会按人的安排,自动地切换电路,使各种电气设备、器具自动地完成人们需要的工作。
所以,通俗的讲,继电器是一种自动控制的电气开关。
发展简史自十八世纪初电报发明以后,就有了电磁继电器,它最初是用于电报的。
电话的发明与发展给继电器的发展以有力的推动,因为电话交换机大量使用继电器。
电力系统的监控和保护也是继电器应用的一大领域。
随后的工业自动化又开辟了继电器在新的应用,而随着人们生活水平的提高,各种家用电器中使继电器的用量急剧增加。
随着应用的扩大和生产技术的提高,继电器技术也越来越成熟、产品体积不断缩小、成本不断降低、性能也逐步提高,种类更是十分繁多。
最初的继电器零件都是切削加工出来的,电磁系统和触点系统都装在一块绝缘板上,体积很大,制造费工费时。
后来有了冲压技术和热固性塑料,继电器制造才稍微变得容易些。
近代由于各种热塑性塑料的发展和精密冲压技术的发展,继电器的设计和生产技术才得到极大的提高。
现在军用微型电磁继电器的体积已经小于¢*,并有两组C型触点,可控制28V*1A的直接负载,失效率低于104次,广泛用于航空航天领域。
由于民用继电器用量的急剧增加,它的生产技术发展很快,实力雄厚的继电器制造商已普遍采用全自动或半自动生产线进行继电器生产。
20世纪六十年代出现了两种新型继电器:舌簧继电器和基于半导体技术的固态继电器(Solid State Relay)。
舌簧继电器结构十分简单,它的触点系统与磁路全二为一,是将两根导磁又导电的簧片封结在一个玻璃管中做成的,叫做舌簧管。
将舌簧管放在个线圈中就做成了舌簧继电器。
继电器的工作原理
继电器的工作原理和特性一、继电器的工作原理和特性继电器是一种电子控制器件,它具有控制系统(又称输入回路)和被控制系统(又称输出回路),通常应用于自动控制电路中,它实际上是用较小的电流去控制较大电流的一种“自动开关”。
故在电路中起着自动调节、安全保护、转换电路等作用。
1、电磁继电器的工作原理和特性电磁式继电器一般由铁芯、线圈、衔铁、触点簧片等组成的。
只要在线圈两端加上一定的电压,线圈中就会流过一定的电流,从而产生电磁效应,衔铁就会在电磁力吸引的作用下克服返回弹簧的拉力吸向铁芯,从而带动衔铁的动触点与静触点(常开触点)吸合。
当线圈断电后,电磁的吸力也随之消失,衔铁就会在弹簧的反作用力返回原来的位置,使动触点与原来的静触点(常闭触点)吸合。
这样吸合释放,从而达到了在电路中的导通、切断的目的。
对于继电器的“常开、常闭”触点,可以这样来区分:继电器线圈未通电时处于断开状态的静触点,称为“常开触点”;处于接通状态的静触点称为“常闭触点”。
2、热敏干簧继电器的工作原理和特性热敏干簧继电器是一种利用热敏磁性材料检测和控制温度的新型热敏开关。
它由感温磁环、恒磁环、干簧管、导热安装片、塑料衬底及其他一些附件组成。
热敏干簧继电器不用线圈励磁,而由恒磁环产生的磁力驱动开关动作。
恒磁环能否向干簧管提供磁力是由感温磁环的温控特性决定的。
3、固态继电器(SSR)的工作原理和特性固态继电器是一种两个接线端为输入端,另两个接线端为输出端的四端器件,中间采用隔离器件实现输入输出的电隔离。
固态继电器按负载电源类型可分为交流型和直流型。
按开关型式可分为常开型和常闭型。
按隔离型式可分为混合型、变压器隔离型和光电隔离型,以光电隔离型为最多。
二、继电器主要产品技术参数1、额定工作电压是指继电器正常工作时线圈所需要的电压。
根据继电器的型号不同,可以是交流电压,也可以是直流电压。
2、直流电阻是指继电器中线圈的直流电阻,可以通过万能表测量。
3、吸合电流是指继电器能够产生吸合动作的最小电流。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电磁式继电器的工作原理
1.电磁式电流继电器
电流继电器的线圈串联在被测量的电路中,以反应电流的变化。
由于其线圈串联在被测电路中,为了不影响被测电路的正常工作,继电器线圈阻抗应比被测电路的等值阻抗要小得多。
因此,电流继电器的线圈匝数少、导线粗。
根据实际的要求,除一般的控制用电流继电器外,还有保护用的过电流继电器和欠电流继电器。
(1)过电流继电器
过电流继电器的线圈串于被测的电路中,常闭触头串在接触器的线圈电路中,常开触头一般用作对过电流继电器的自锁和接通指示灯线路。
电流继电器在电路正常工作时衔铁不吸合(即不动作),当电流超过某一整定值时衔铁才吸上(动作)。
于是它的常开触头断开,从而切断接触器线圈电源,而使接触器的常开触头断开被测电路,使设备脱离电源,起到保护的作用。
同时过电流继电器的常开触头闭合进行自锁或接通指示灯,指示发生过电流。
过电流继电器的整定值的整定范围为1.1—3.5倍额定电流。
有些过电流继电器有手动复位机构。
当过电流时,继电器动作,衔铁吸合。
即使线圈电流减少到零,衔铁也不会释放;只有操作人员检査故障或处理故障后,松开锁扣机构,才返回原位。
手动复位机构的存在减少了过电流事故的重复发生。
(2)欠电流继电器
欠电流继电器一般将常开触头串在接触器的线圈电路中。
欠电流继电器的吸引电流为线圈额定电流的30%—65%,释放电流为额定电流的10%—20%,因此,在电路正常工作时,衔铁是吸合的,只有当电流降低到某一定值时,继电器释放,输出信号,去控制接触器失电,从而使控制设备脱离电源,起到保护作用。
欠电流继电器可以用作直流电机的零励磁保护。
2.电磁式电压继电器
电压继电器的结构与电流继电器相似,不同的是电压继电器的线圈与被测电路并联,以反应电压的变化。
因此它的吸引线圈匝数多、导线细、电阻大。
根据实际需要,电压继电器有:过电压继电器、欠电压继电器等等。
过电压继电器在电压为UN的105%—120%欠以上时动作,其工作原理与过电流继电器相似;欠电压继电器在电压为UN的40%—70%时动作,原理与欠电流继电器相似;零电压继电器当电压降至UN的5%—25%时动作。
3.电磁式中间继电器
中间继电器实质上为电压继电器,但它的触头数量较多,触头容量较大(额定电流5—10A)动作灵敏。
其主要用途为:当其它继电器的触头数量或容量不够时,可借助中间继电器来扩大它们的触头数或触头容量,起到中间转换作用。