福州市初中数学函数基础知识知识点总复习

合集下载

初三函数全部知识点总结

初三函数全部知识点总结

初三函数全部知识点总结一、函数的概念1. 函数的定义函数是一种对应关系,它把一个自变量的值对应到一个因变量的值上。

一般地,函数f(x)可以表示为y=f(x),其中x为自变量,y为因变量。

2. 自变量与因变量自变量是函数中独立变化的变量,通常用x表示;因变量是根据自变量的取值而定的变量,通常用y表示。

3. 定义域和值域定义域是自变量的所有可能取值的集合;值域是因变量的所有可能取值的集合。

4. 函数的图像函数的图像是函数在平面直角坐标系中的点的集合。

二、函数的表示方法1. 用一个通项公式表示函数函数f(x)有时可以用一个表达式y=f(x)表示。

2. 用函数的图像表示函数函数的图像是函数在平面直角坐标系中的点的集合。

三、常见函数及其性质1. 线性函数线性函数是具有形式y=kx的函数,其中k为常数。

2. 幂函数幂函数是具有形式y=ax^n的函数,其中a和n为常数。

3. 指数函数指数函数是具有形式y=a^x的函数,其中a为正数且不等于1。

4. 对数函数对数函数是指数函数的逆运算。

5. 三角函数三角函数包括正弦函数、余弦函数、正切函数等。

四、函数的性质1. 奇偶性如果对于函数f(x),有f(-x)=f(x),则称f(x)为偶函数;如果对于函数f(x),有f(-x)=-f(x),则称f(x)为奇函数。

2. 增减性如果函数f(x)在区间(a,b)上有f'(x)>0,那么f(x)在区间(a,b)上是增函数;如果函数f(x)在区间(a,b)上有f'(x)<0,那么f(x)在区间(a,b)上是减函数。

3. 最值和零点函数在定义域内可能有最大值、最小值和零点。

4. 对称性有关函数的图像可能有关于y轴对称、关于x轴对称、或者关于原点对称的性质。

五、函数的运算1. 基本函数的运算加减乘除四则运算和复合运算。

2. 复合函数复合函数是一个函数作为另一个函数的自变量而得到的函数。

3. 函数的反函数函数的反函数是满足f(f^(-1)(x))=x和f^(-1)(f(x))=x的函数。

(完整版)初中数学函数知识点归纳

(完整版)初中数学函数知识点归纳

初中数学函数板块的知识点总结与归类学习方法初中数学知识大纲中,函数知识占了很大的知识体系比例,学好了函数,掌握了函数的基本性质及其应用,真正精通了函数的每一个模块知识,会做每一类函数题型,就读于中考中数学成功了一大半,数学成绩自然上高峰,同时,函数的思想是学好其他理科类学科的基础。

初中数学从性质上分,可以分为:一次函数、反比例函数、二次函 数和锐角三角函数,下面介绍各类函数的定义、基本性质、函数图象及函数应用思维方式方法。

一、一次函数1. 定义:在定义中应注意的问题y =kx +b 中,k 、b 为常数,且k ≠0,x 的指数一定为1。

2. 图象及其性质 (1)形状、直线()时,随的增大而增大,直线一定过一、三象限时,随的增大而减小,直线一定过二、四象限200k y x k y x ><⎧⎨⎪⎩⎪()若直线::3111222l y k x b l y k x b =+=+当时,;当时,与交于,点。

k k l l b b b l l b 121212120===//()(4)当b>0时直线与y 轴交于原点上方;当b<0时,直线与y 轴交于原点的下方。

(5)当b=0时,y =kx (k ≠0)为正比例函数,其图象是一过原点的直线。

(6)二元一次方程组与一次函数的关系:两一次函数图象的交点的坐标即为所对应方程组的解。

3. 应用:要点是(1)会通过图象得信息;(2)能根据题目中所给的信息写出表达式。

(二)反比例函数 1. 定义:应注意的问题:中()是不为的常数;()的指数一定为“”y kxk x =-1021 2. 图象及其性质: (1)形状:双曲线()对称性:是中心对称图形,对称中心是原点是轴对称图形,对称轴是直线和212()()y x y x==-⎧⎨⎪⎩⎪()时两支曲线分别位于一、三象限且每一象限内随的增大而减小时两支曲线分别位于二、四象限且每一象限内随的增大而增大300k y x k y x ><⎧⎨⎪⎩⎪(4)过图象上任一点作x 轴与y 轴的垂线与坐标轴构成的矩形面积为|k|。

数学函数知识点简洁归纳

数学函数知识点简洁归纳

数学函数知识点简洁归纳一、函数概念1. 函数:对于给定的两个集合A与B,如果存在一种对应法则,使得A中的每一个元素,按照法则的要求,对应到B中的某一个元素,那么这种对应关系称为从A到B的函数,记作y = f(x)。

2. 变量:在函数关系式中,令x与y互相替换得到的新式子称为由x所对应的y的值,其中的x与y称为变量。

3. 值域:函数在其定义域内任取一个x的值,根据对应法则,可以得到唯一确定的y的值,这个集合称为函数的值域。

二、基本初等函数1. 幂函数:形如y=x^a(a为实数)的函数称为幂函数。

2. 指数函数:形如y=a^x(a>0且a≠1)的函数称为指数函数。

3. 对数函数:形如y=log(a) x(a>0且a≠1)的函数称为对数函数。

4. 三角函数:数学中常用的一类周期性函数,主要有正弦、余弦、正切、余切等。

三、函数性质1. 增减性:对于定义域内的某个区间来说,如果在该区间内y随x的增大而增大,则该函数在该区间内具有增函数性质;如果在该区间内y随x的增大而减小,则该函数在该区间内具有减函数性质。

2. 有界性:对于任意给定的x值,对应的y值总有范围限制。

四、复合函数两个函数$f(u)$和$u=g(x)$的复合函数可以表示为$y=f[g(x)]$,通常简称为复合过程。

复合过程通常有两种类型:外层函数与内层函数的变量顺序相反,这两种情况通常也可以看成一种模型化的对应关系,即将已知对象视为变量的一种形式化方法。

具体在解析几何中常用的变比方程(参数方程、极坐标方程)就属于这一类型。

此类形式主要用于多元微积分的函数分析。

注意区别其他三种情况的对应关系模型和符号。

五、其他知识点1. 图像:函数的图像是函数的图形在平面直角坐标系上的表示方法,是研究函数的重要工具。

图像可以是单值图像或复值图像。

单值图像是指每一个输入值对应一个输出值;复值图像是指输入值的对应输出值除了数值之外还带有某种其他信息。

复值图像常见于如坐标轴的交叉点或对称点等位置信息等表示方法。

初中数学函数知识点归纳

初中数学函数知识点归纳

初中数学函数知识点归纳初中数学中的函数知识点主要包括函数的定义、函数的性质、函数的表示方法、函数之间的关系以及函数的应用等内容。

下面我将对这些知识点进行归纳总结。

一、函数的定义:1.自变量和因变量:函数是一种数与数之间的对应关系,其中自变量是输入的数值,因变量是输出的数值。

2.值域:函数的值域是所有可能输出的数值的集合,通常用符号D表示。

3.定义域:函数的定义域是所有可能输入的数值的集合,通常用符号R表示。

二、函数的性质:1.奇偶性:函数f(x)的性质与其自变量的奇偶性有关,如果f(-x)=f(x),则函数是偶函数;如果f(-x)=-f(x),则函数是奇函数。

2.单调性:函数在一些定义域上的增减性,可以分为递增和递减。

3.周期性:函数在一些定义域上的输出数值存在重复规律,称为函数的周期性。

三、函数的表示方法:1.函数表:通过给定自变量的数值,得出相应的因变量的数值。

2.函数图像:将函数的自变量和因变量分别作为x轴和y轴坐标,画出函数的图像。

3.函数公式:通过表示自变量与因变量之间关系的数学式子来表示函数。

四、函数之间的关系:1.复合函数:若函数f(x)的值域是另一个函数g(x)的定义域,则通过将f(x)的输出作为g(x)的输入,得到的新函数称为复合函数。

2.反函数:若函数f(x)的一些值对应唯一的自变量,且该自变量对应的值也能唯一地确定f(x)的值,则称函数f(x)具有反函数,记作f^(-1)(x)。

3.逆函数:若函数f(x)的自变量与因变量对换,得到新的函数g(x),则称g(x)为函数f(x)的逆函数,记作g(x)=f^(-1)(x)。

五、函数的应用:1.函数的模型:可以用函数来表示一些实际问题中的关系,如速度函数、利润函数等。

2.函数的最值:通过求函数的最大值和最小值,可以解决许多优化问题。

3.函数的图像在坐标系中的位置和形状:通过观察函数的图像,可以判断其基本形状、范围、特征点等。

六、常见的函数类型:1. 一次函数:f(x) = kx + b,其中k和b为常数,其图像为一条直线。

初中数学函数知识点归纳

初中数学函数知识点归纳

初中数学函数知识点归纳初中数学中,函数是一个重要的概念。

在学习函数时,主要包括函数的定义、函数的基本性质、函数的图像以及函数的应用等方面的内容。

一、函数的定义在初中数学中,函数通常被理解为一种数学关系。

具体地说,如果存在一个规则,它能够将一个数集的每个元素与另一个数集的唯一元素相对应,那么我们就称这个规则为函数。

数集的每个元素称为自变量,相对应的元素称为函数值或因变量。

例如,y=2x就是一个函数的表示方式,其中y是因变量,x是自变量。

这个函数的规则是将自变量x乘以2得到对应的y值。

二、函数的基本性质1.定义域和值域:函数的定义域指的是自变量的取值范围,而值域指的是因变量的取值范围。

定义域和值域的确定可以通过函数的解析式,也可以通过函数的图像来确定。

2.单调性:函数的单调性是指函数在一些区间内是递增还是递减。

对于递增的函数,当自变量增加时,因变量也增加;对于递减的函数,当自变量增加时,因变量减少。

3.奇偶性:奇函数和偶函数是函数的一种分类。

当函数满足f(-x)=-f(x)时,我们称这个函数为奇函数;当函数满足f(-x)=f(x)时,我们称这个函数为偶函数。

4.对称轴:对于偶函数,它的图像关于y轴对称;对于奇函数,它的图像关于原点对称。

因此,对称轴就是y轴或者原点。

5.零点:函数的零点指的是函数取0的自变量值,也叫做函数的根。

求零点的方法有很多,例如用图像法、方程求解法等。

三、函数的图像1. 直线函数:直线函数的图像是一条直线。

其解析式通常为y = kx + b,其中k是斜率,表示直线的倾斜程度,b是截距,表示直线与y轴的交点。

2.常函数:常函数的图像是一条水平的直线。

它的解析式为y=c,其中c是常数。

3. 平方函数:平方函数的图像是一条抛物线。

其解析式通常为y = ax^2 + bx + c,其中a、b、c都是常数。

4.开方函数:开方函数是平方函数的反函数。

其图像是一条拋物線的一部分,始终在x轴的非负值上。

数学初中函数知识总结

数学初中函数知识总结

数学初中函数知识总结函数是数学中的基础概念之一,也是中学数学中的重要内容。

在初中阶段,学生们开始接触函数的概念和相关知识,逐渐深入探讨函数的性质和应用。

本文将对初中函数的知识进行总结和梳理,包括函数的定义、性质、图像和应用等方面。

一、函数的定义函数是以某个变量(自变量)为输入,通过某种规则或算法得到另一个变量(因变量)为输出的关系。

简单来说,函数就是一种对应关系。

用符号表示函数的一般形式为:y = f(x),其中x是自变量,y是因变量,f(x)代表函数关系。

二、函数的性质1. 定义域和值域:函数的定义域是自变量可能取得的值的集合,值域是因变量可能取得的值的集合。

在定义函数时,需要确定函数的定义域和值域。

2. 奇偶性:对于函数f(x),如果对于任意x,有f(-x) = f(x),则该函数是偶函数;如果对于任意x,有f(-x) = -f(x),则该函数是奇函数;否则,函数既不是偶函数也不是奇函数。

3. 单调性:函数的单调性描述了函数的增减规律。

如果函数的自变量增大时,对应的因变量也增大,则该函数是递增的;如果函数的自变量增大时,对应的因变量减小,则该函数是递减的。

三、函数的图像函数的图像是函数的可视化表示,可以通过画出函数的图像来更好地理解和分析函数的性质。

1. 直线函数:直线函数的图像是一条直线,可以通过确定直线上两个点或一个点和斜率来确定直线函数的图像。

2. 平方函数:平方函数的图像是一条抛物线,开口方向取决于平方项系数的正负。

平方函数的顶点是抛物线的最低点或最高点,也是抛物线的对称轴与x轴的交点。

3. 一次函数:一次函数的图像是一条斜率不变的直线,可以通过确定直线上两个点或一个点和斜率来确定一次函数的图像。

四、函数的应用函数是数学中的一个强大工具,不仅在数学中有广泛的应用,还可以在实际生活和其他学科中得到应用。

1. 函数的模型建立:通过观察和分析实际问题,可以建立函数模型来解决问题。

例如,利用一次函数模型可以描述物体的匀速直线运动,二次函数模型可以描述物体的自由落体运动。

初二函数知识点

初二函数知识点

初二函数知识点一、函数基础知识1. 函数定义函数是指一个从集合A(称为定义域)到集合B(称为值域)的映射,记作f: A → B。

在初中数学中,函数通常指的是一种特殊的对应关系,即对于定义域内的每一个x值,都有唯一确定的y值与之对应。

2. 函数的表示方法- 表格法:通过表格列出几组对应值。

- 公式法:用数学公式表达,如y = f(x)。

- 图像法:在坐标系中画出函数的图像。

3. 函数的性质- 单值性:一个x值对应一个y值。

- 定义域和值域:定义域是函数中所有可能的x值的集合,值域是函数中所有可能的y值的集合。

- 函数图像:函数的图像是坐标系中所有满足函数关系的点的集合。

二、线性函数1. 线性函数定义线性函数是指函数关系式为y = kx + b的形式,其中k为斜率,b为截距。

2. 线性函数的性质- 斜率k表示函数的增减性,k > 0时,y随x的增大而增大;k < 0时,y随x的增大而减小。

- 截距b表示当x=0时,y的取值。

- 线性函数图像是一条直线。

3. 线性函数图像的绘制- 利用斜率和截距确定直线的位置和倾斜程度。

- 通常选择两个点(x, y),利用公式计算出y值,然后在坐标系中绘制这两个点,并通过这两个点画一条直线。

三、二次函数1. 二次函数定义二次函数是指函数关系式为y = ax^2 + bx + c的形式,其中a、b、c 为常数,且a ≠ 0。

2. 二次函数的性质- a的符号决定了抛物线的开口方向,a > 0时开口向上,a < 0时开口向下。

- b和c的值影响抛物线的位置和对称轴。

- 二次函数图像是一条抛物线。

3. 二次函数图像的绘制- 确定顶点、对称轴和与x轴的交点(根)。

- 利用顶点式或交点式绘制抛物线。

四、函数的应用1. 实际问题建模将实际问题转化为函数关系式,通过分析函数的性质来解决问题。

2. 函数的最值问题通过求导数或配方法来求解函数的最大值和最小值。

3. 函数的图像变换通过平移、伸缩等变换来研究函数图像的变化规律。

初中数学函数知识点总结归纳

初中数学函数知识点总结归纳

初中数学函数知识点总结归纳数学函数是初中数学的重要内容之一,也是数学学习中的基础知识。

它是描述两个变量之间关系的工具,广泛应用于各个领域中。

下面是对初中数学函数知识点的总结归纳:一、函数的定义1.函数的定义:函数是一个将自变量的取值域映射到因变量的取值域的规则。

2.函数的三要素:定义域、值域和对应关系。

3.函数的表示方法:用解析式、图象、数据表等形式表示函数。

4.函数的记号:函数记作y=f(x),其中x为自变量,y为因变量,f为函数的名称。

5.函数的分类:函数可以分为一次函数、二次函数、指数函数、对数函数、幂函数等。

二、函数的性质1.定义域:函数的自变量的取值范围。

2.相等:对于任意x₁,x₂∈定义域,若f(x₁)=f(x₂),则称函数f(x)在x₁和x₂处相等。

3.奇偶性:若对于任意x∈定义域,有f(-x)=f(x),则函数为偶函数;若对于任意x∈定义域,有f(-x)=-f(x),则函数为奇函数。

4.单调性:若对于任意x₁<x₂,有f(x₁)<f(x₂),则函数为增函数;若对于任意x₁<x₂,有f(x₁)>f(x₂),则函数为减函数。

5.周期性:若存在正数T,使得对于任意x∈定义域,有f(x+T)=f(x),则函数为周期函数。

6.图象:函数的图象是函数在平面直角坐标系上的表示,可以通过图象来研究函数的性质。

三、一次函数1. 一次函数的定义:函数的表达式为y=kx+b,其中k和b为常数,k称为斜率,b称为截距。

2.斜率的含义:斜率表示函数图象在平面直角坐标系中的倾斜程度。

3.截距的含义:截距表示函数图象与y轴交点的纵坐标。

4.一次函数的性质:一次函数的图象是一条直线,它在平面直角坐标系中的形状和位置与斜率和截距有关。

四、二次函数1. 二次函数的定义:函数的表达式为y=ax²+bx+c,其中a,b,c为常数,且a≠0。

2.二次函数的图象:二次函数的图象是抛物线,可以分为开口向上和开口向下两种情况。

初中函数入门基础知识

初中函数入门基础知识

初中函数入门基础知识数学函数是一个比较难的知识点,下面是整理初中函数入门基础知识点汇总1函数的有关概念(1)函数:在某一变化过程中,如果有两个变量x,y,并且对于x在某一范围内的每一个确定的值,y都有唯一确定的值与其对应,那么就说y是x的函数,x叫做自变量。

(2)函数自变量的取值范围函数自变量的取值范围应使函数解析式有意义;应用问题中,自变量的取值范围还应具有实际意义;求函数自变量的取值范围的过程,实质上是解不等式或不等式组的过程;(3)常见自变量的取值范围:分式型:分母不为0;二次根式型:被开方数大于等于0;分式、二次根式混合型:分母不为0,且被开方数大于等于0.(4)函数值:当函数自变量x取某一数值时,与之对应的唯一确定的y值,叫做这个函数当函数自变量取该值时的函数数值。

2一次函数知识点一、定义与定义式:自变量x和因变量y有如下关系:y=kx+b则此时称y是x的一次函数。

特别地,当b=0时,y是x的正比例函数。

即:y=kx(k为常数,k≠0)二、一次函数的性质:1.y的变化值与对应的x的变化值成正比例,比值为k即:y=kx+b(k为任意不为零的实数b取任何实数)2.当x=0时,b为函数在y轴上的截距。

三、一次函数的图像及性质:1.作法与图形:通过如下3个步骤(1)列表;(2)描点;(3)连线,可以作出一次函数的图像——一条直线。

因此,作一次函数的图像只需知道2点,并连成直线即可。

(通常找函数图像与x轴和y轴的交点)2.性质:(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b。

(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像总是过原点。

3.k,b与函数图像所在象限:当k>0时,直线必通过一、三象限,y随x的增大而增大;当k<0时,直线必通过二、四象限,y随x的增大而减小。

当b>0时,直线必通过一、二象限;当b=0时,直线通过原点当b<0时,直线必通过三、四象限。

初中数学函数知识点

初中数学函数知识点

初中数学函数知识点初中数学函数知识点(一)一、函数的基本概念1. 函数的定义与表达式:函数是一种具有确定性的关系,将一个数(自变量)唯一地对应到另一个数(因变量)。

函数通常用符号表示,如f(x)、g(x)等。

2. 自变量与因变量:自变量是指函数中输入的数,通常用x表示;因变量是指自变量通过函数转化所得到的输出数,通常用y表示。

3. 定义域和值域:函数的定义域是指自变量的取值范围,值域是指因变量的取值范围。

4. 函数的图象:函数的图象是自变量与因变量的对应关系在平面直角坐标系上的图形表示。

二、一次函数1. 一次函数的形式:一次函数是指函数的表达式中只有一次幂的项,通常表示为f(x) = kx + b,其中k、b为常数。

2. 一次函数的图象:一次函数的图象是一条直线,其斜率k表示该直线的倾斜程度,截距b表示该直线与y轴的交点。

3. 一次函数的特点:当斜率k>0时,函数单调递增;当斜率k<0时,函数单调递减;当斜率k=0时,函数为常值函数。

三、二次函数1. 二次函数的形式:二次函数是指函数的表达式中含有x的二次幂的项,通常表示为f(x) = ax^2 + bx + c,其中a、b、c为常数且a≠0。

2. 二次函数的图象:二次函数的图象是一条抛物线,其开口方向由二次项的系数a的正负决定。

当a>0时,抛物线开口向上;当a<0时,抛物线开口向下。

3. 二次函数的顶点:二次函数的图象上最高(或最低)的点称为顶点,其横坐标为 x = -b / (2a),纵坐标为 f(-b / (2a))。

4. 二次函数的轴对称性:二次函数的图象以顶点为对称轴关于y轴对称。

四、绝对值函数1. 绝对值函数的形式:绝对值函数是指函数的表达式中含有绝对值运算符| |,通常表示为f(x) = |x|。

2. 绝对值函数的图象:绝对值函数的图象是一条以原点为中心的V字形曲线,其左右两段的斜率大小相等。

3. 绝对值函数的特点:当自变量为正数时,函数的值与自变量相等;当自变量为负数时,函数的值为自变量取相反数。

初中数学函数知识点总结

初中数学函数知识点总结

初中数学函数知识点总结一、函数的定义及性质:1.函数的定义:函数是一个或多个自变量(输入)与一个因变量(输出)之间的对应关系。

2.函数的三要素:定义域、值域和对应关系。

3.函数的表示方法:函数表达式、函数图象和函数关系式。

4.函数的分类:一次函数、二次函数、反比例函数、指数函数、对数函数等。

5.确定函数的条件:给定函数的表达式、图象、关系式或特定点坐标等。

二、函数的运算法则:1.函数的和、差、积、商运算规则。

2.函数的复合运算规则。

3.函数的反函数及其性质。

4.函数的平移、翻折和伸缩等运算。

三、常见的函数类型及性质:1.一次函数(线性函数):(1)函数的定义:y = kx + b,k为斜率,b为截距。

(2)函数的图象:直线。

(3)性质:对称性、单调性、与坐标轴的交点。

2.二次函数:(1)函数的定义:y = ax^2 + bx + c,a不等于0。

(2)函数的图象:抛物线。

(3)性质:对称轴、顶点坐标、单调性、与坐标轴的交点、方程的根。

3.反比例函数:(1)函数的定义:y=k/x,k不等于0。

(2)函数的图象:双曲线的一支。

(3)性质:对称性、单调性、与坐标轴的交点。

4.指数函数:(1)函数的定义:y=a^x,a大于0且不等于1(2)函数的图象:以原点为中心对称的曲线。

(3)性质:单调性、与坐标轴的交点。

5.对数函数:(1)函数的定义:y = loga(x),a大于0且不等于1(2)函数的图象:一条斜率小于1的直线。

(3)性质:单调性、与坐标轴的交点。

四、函数的应用:1.函数在数学模型中的应用:解决实际问题时,可以建立函数模型进行分析和求解。

2.函数的最值问题:通过函数的图象或导数来确定函数的最大值、最小值。

3.函数的相关性分析:通过分析变量之间的函数关系,判断相关性并探究其影响因素。

4.函数的综合应用:如面积、体积、速度、加速度等问题的求解。

五、函数的图象与函数的性质:1.函数图象的绘制:根据函数的定义和性质,确定关键点,描绘出精确的函数图象。

初中基本函数知识点总结

初中基本函数知识点总结

初中基本函数知识点总结一、函数的基本概念1. 函数的定义:函数是一个对应关系,它把一个数集中的每一个数映射成另一个数集中的唯一一个数。

2. 自变量和因变量:在函数中,自变量是输入的值,因变量是输出的值。

3. 函数的表示:一般来说,函数可以用表格、图像、公式或者文字描述。

4. 定义域和值域:在函数中,定义域是自变量的取值范围,值域是因变量的取值范围。

二、函数的图像和性质1. 函数的图像:函数的图像是自变量和因变量之间的关系的几何表示。

2. 函数的性质:函数的性质包括奇偶性、单调性、周期性等。

三、基本初等函数1. 常数函数:常数函数的表达式是f(x) = C (C为常数),它的图像是一条水平的直线。

2. 一次函数:一次函数的表达式是f(x) = kx + b (k和b为常数,k≠0),它的图像是一条斜线。

3. 二次函数:二次函数的表达式是f(x) = ax² + bx + c (a、b、c为常数,且a≠0),它的图像是一条开口向上或向下的抛物线。

4. 幂函数:幂函数的表达式是f(x) = xᵐ (m为常数),它的图像是经过原点的曲线。

5. 指数函数:指数函数的表达式是f(x) = aˣ (a为正实数,且a≠1),它的图像是逐渐上升或逐渐下降的曲线。

6. 对数函数:对数函数的表达式是f(x) = logₐx (a为正实数,且a≠1),它的图像是一条拐点在(1,0)处的曲线。

四、函数的运算1. 函数的和、差、积、商:函数的和、差、积、商分别对应于两个函数的和、差、积、商。

2. 复合函数:复合函数是指一个函数的自变量被另一个函数的因变量代替。

3. 反函数:若函数y=f(x)的定义域为D,值域为R,则对于D中的任意一个数x,能使f(x) = y成立的y是唯一的,那么函数y=f(x)的反函数是一个函数,其定义域为R,值域为D。

五、函数的应用1. 函数的应用:在实际生活中,函数的运用十分广泛,包括表示物体的运动规律、生活中的购物花费、投资收益等。

初二函数所有的知识点总结

初二函数所有的知识点总结

初二函数所有的知识点总结一、函数的概念函数是一种特殊的关系,它表示一种从一个集合到另一个集合的对应关系。

在数学上,函数通常用 f(x) 或 y = f(x) 的形式表示,其中 x 是自变量,y 是因变量。

函数的定义域是指函数的自变量可以取的值的集合,值域是函数的因变量所能取得的值的集合。

函数的图像是函数在坐标系上的呈现形式,它能够直观地表示函数的性质。

函数的性质包括奇偶性、单调性、周期性等。

二、函数的表示方法1. 公式表示法:函数可以用数学公式的方式进行表示,比如 f(x) = 2x + 3。

2. 表格表示法:可以通过制作函数的输入和输出值的对应表格来表示函数。

3. 图形表示法:函数的图像可以用坐标系上的点来表示。

三、函数的运算1. 函数的加法和减法:当两个函数相加或相减时,可将它们的对应值相加或相减。

2. 函数的乘法和除法:当两个函数相乘或相除时,可将它们的对应值相乘或相除。

3. 复合函数:当一个函数中出现另一个函数时,称为复合函数。

四、基本函数1. 线性函数:线性函数是一种特殊的一次函数,它的图像是一条直线,表示为 f(x) = kx + b。

2. 平方函数:平方函数的一般形式是 f(x) = ax^2 + bx + c,它的图像是一条抛物线。

3. 绝对值函数:绝对值函数的一般形式是 f(x) = |x - a| + b,它的图像以直线为轴对称。

4. 一次函数:一次函数的一般形式是 f(x) = ax + b,它的图像是一条直线。

5. 反比例函数:反比例函数的一般形式是 f(x) = k/x,它的图像是两个坐标轴的倒数。

五、函数的性质1. 奇函数和偶函数:奇函数满足 f(-x) = -f(x),而偶函数满足 f(-x) = f(x)。

2. 单调函数:如果函数 f(x) 的导数在定义域上恒大于 0 或恒小于 0,那么 f(x) 就是单调函数。

3. 周期函数:如果存在一个正数 T,使得对于定义域上的任意 x 都有 f(x+T) = f(x),那么f(x) 就是周期函数。

(完整版)初中数学中考复习函数知识点总结,推荐文档

(完整版)初中数学中考复习函数知识点总结,推荐文档

初中数学中考复习函数知识点总结(掌握函数的定义、性质和图像)函数的基本知识:基本概念1、变量:在一个变化过程中可以取不同数值的量。

常量:在一个变化过程中只能取同一数值的量。

2、函数:一般的,在一个变化过程中,如果有两个变量x和y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就把x称为自变量,把y称为因变量,y是x的函数。

*判断A是否为B的函数,只要看B取值确定的时候,A是否有唯一确定的值与之对应3、确定函数定义域的方法:(1)关系式为整式时,函数定义域为全体实数;(2)关系式含有分式时,分式的分母不等于零;(3)关系式含有二次根式时,被开放方数大于等于零;(4)关系式中含有指数为零的式子时,底数不等于零;(5)实际问题中,函数定义域还要和实际情况相符合,使之有意义。

4、函数的图像一般来说,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象.5.函数解析式:用含有表示自变量的字母的代数式表示因变量的式子叫做解析式。

6、描点法画函数图形的一般步骤第一步:列表(表中给出一些自变量的值及其对应的函数值);第二步:描点(在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点);第三步:连线(按照横坐标由小到大的顺序把所描出的各点用平滑曲线连接起来)。

7、函数的表示方法:列表法、解析式法、图象法一次函数图象和性质【知识梳理】一、一次函数的基础知识1、定义:一般地,形如y=kx +b(k,b 是常数,k≠0),那么y 叫做x 的一次函数当b=0时,y=kx +b 即y=kx ,称为正比倒函数,所以说正比例函数是一种特殊的一次函数.一次函数的一般形式: y=kx+b (k≠0)说明: ① k 不为零 ②x 指数为1 ③ b 取任意实数2、解析式:y=kx+b(k 、b 是常数,k 0)≠3、图像:一次函数y=kx+b 的图象是经过(0,b )和(-,0)两点的一条直线,我们称它为直线y=kx+b, kb4、增减性(单调性): k>0,y 随x 的增大而增大(单调增);k<0,y 随x 而增大而减小(单调减)5、必过点:(0,b )和(-,0):理由如下:y=kx+b 中,kb⑴当x=o,时,y=?? 所以,该函数经过( , )点⑵当y=o,时,x=??所以,该函数经过( ,)点所以,一次函数的图象是必经过(,0)和(0,b )两点的一条直线.,注:两点y kx b =+kb-确定一条直线。

初中数学函数知识点归纳

初中数学函数知识点归纳

初中数学函数知识点归纳一、函数的概念和性质1.函数的定义:函数是一个由一个或多个自变量和一个因变量组成的数学关系。

对于每一个自变量的取值,函数都有一个确定的因变量值与之对应。

2.函数的表示:函数可以用函数表、函数图、函数解析式等形式来表示。

3.函数的自变量和因变量:自变量是输入值,因变量是对应的输出值。

4.定义域:函数可以接受的自变量的取值范围称为函数的定义域。

5.值域:函数所有可能的因变量值的集合称为函数的值域。

二、常见函数的性质和图像1.奇偶性:奇函数满足f(-x)=-f(x),偶函数满足f(-x)=f(x)。

2.单调性:增函数在定义域内满足f(x1)<f(x2)当x1<x2,减函数在定义域内满足f(x1)>f(x2)当x1<x23.分段函数:定义域被分为不同区间,每个区间内可以使用不同的函数关系来表达。

三、常见的数学函数1. 线性函数:f(x)=ax+b,其中a和b为常数,表示一条直线的函数关系。

2. 幂函数:f(x)=ax^n,其中a和n为常数,表示自变量的n次幂关系。

3.反比例函数:f(x)=a/x,其中a为常数,表示自变量和因变量之间的反比例关系。

4.指数函数:f(x)=a^x,其中a为常数且大于0且不等于1,表示指数和对数之间的关系。

5. 对数函数:f(x)=log_a(x),其中a为常数且大于0且不等于1,表示指数和对数之间的关系。

6.三角函数:如正弦函数、余弦函数、正切函数等,主要描述角度和边长之间的关系。

7.复合函数:由多个函数通过代数运算组合而成的函数。

四、函数的性质和运算1.函数的相等:两个函数f(x)和g(x)在其定义域内的每个点上的值都相等时,称这两个函数相等。

2.函数的复合:将一个函数的输出作为另一个函数的输入,得到的新函数称为复合函数。

3.函数的逆函数:若一个函数f(x)的定义域和值域互换,且满足f(f^(-1)(x))=x和f^(-1)(f(x))=x,则f(x)的逆函数为f^(-1)(x)。

初中函数知识点全面总结

初中函数知识点全面总结

初中函数知识点全面总结一、函数的基本概念1.1 函数的引入在日常生活和数学问题中,我们经常遇到一些问题,例如:已知椭圆的长轴、短轴的长度,我们可以求椭圆的面积;已知一个正方体的边长,我们可以求它的体积,这些问题都是函数的具体例子。

函数研究的对象是一对对象之间的依赖关系。

1.2 函数的定义函数是一个变量间的依赖关系。

如果对于每一个自变量x,都有唯一的因变量y和它对应,那么这个变量x和它所对应的y就构成函数。

通常记作y=f(x)。

1.3 自变量、因变量和函数符号在函数f(x)中,x称为自变量,y称为因变量,而f(x)则是函数的符号表示。

1.4 自变量和因变量的关系自变量和因变量之间存在着一一对应的关系。

当自变量x取不同的值时,因变量y也会随之变化。

这种变化规律可以用图象或公式来表示。

1.5 函数的图象对于函数y=f(x),其图象是平面直角坐标系内一条曲线。

曲线上的每一个点(x,y)都满足方程y=f(x)。

1.6 函数的定义域和值域函数的定义域是自变量的取值范围,值域是因变量的取值范围。

例如,对于函数f(x)=x^2,其定义域是实数集R,值域是非负实数集[0,+∞)。

二、函数的表示方法2.1 列表法通过若干对自变量和因变量对照,列出所有自变量和因变量的对应关系,就是列表法表示函数。

2.2 公式法用一个能够表示自变量与因变量之间的对应关系的等式来表示函数。

2.3 函数关系图象法可以通过函数的图象来表达函数。

三、函数的性质3.1 函数的奇偶性当自变量为-x时,若f(x)=-f(-x),则函数f(x)为奇函数;当自变量为-x时,若f(x)=f(-x),则函数f(x)为偶函数。

3.2 增减性与极值若在自变量的某一邻域内,函数值随着自变量的增大而增大,则称此函数在此邻域内是增函数;反之,则是减函数。

当函数在某一点上取得最大值或最小值时,称这个函数在这一点有极值。

3.3 奇偶性与周期性若f(x+T)=f(x)对于一切x都成立,则称T为函数f(x)的周期。

初中数学函数知识点和常见题型总结

初中数学函数知识点和常见题型总结

函数知识点及常见题型总结函数在初中数学中考中分值大约有20~25分,一次函数、二次函数和反比例函数都会考查,其中一次函数和反比例函数分值共约占其中的50%,二次函数约占另一半。

函数的题型以下归纳总结了11种,当然这并不包括所有可能出现的情况,仅仅只是较为常见的。

函数有时是以下题型组合起来构成的较为复杂的题型,因此,我们必须掌握住以下题型才能寻求突破。

换句话说,我们掌握住以下题型,复杂的题型分解开来,我们也能各个突破,最终解决掉。

一、核心知识点总结1、函数的表达式1)一次函数:y=kx+b(,k b 是常数,0k ≠) 2)反比例函数:函数xky =(k 是常数,0k ≠)叫做反比例函数。

注意:0x ≠ 3)二次函数:)0,,(2≠++=a c b a c bx ax y 是常数,, 2、点的坐标与函数的关系1)点的坐标用(),a b 表示,横坐标在前,纵坐标在后,中间有“,”分开。

平面内点的坐标是有序实数对,当b a ≠时,(),a b 和(),b a 是两个不同点的坐标。

2)点的坐标:从点向x 轴和y 轴引垂线,横纵坐标的绝对值对应相对应线段的长度。

3)若某一点在某一函数图像上,则该点的坐标可代入函数的表达式中,要将函数图像上的点与坐标一一联系起来。

3、函数的图像 1)一次函数一次函数by=的=的图像是经过点(0,b)的直线;正比例函数kxy+kx图像是经过原点(0,0)的直线。

2)反比例函数3)二次函数4、函数图像的平移① 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; ② 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:③平移规律 在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”.概括成八个字“左加右减,上加下减”.【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位二、常见题型:1、求函数的表达式常见求函数表达式的方法是待定系数法,假设出函数解析式,将函数上的点的坐标代入函数,求出未知系数。

初三数学函数知识归纳总结

初三数学函数知识归纳总结

初三数学函数知识归纳总结函数是数学中非常重要的一个概念,是数理统计、物理学、经济学等多个学科的基础。

在初三的数学课程中,函数是一个重要的内容,学好函数对于日后的学习及解题能力的提升至关重要。

下面对初三数学函数知识进行归纳总结。

一、函数的概念与表示函数是一种对应关系,它将一个集合中的每个元素映射到另一个集合中的唯一元素。

函数通常用符号表示,常见的表示方式有函数图像、解析式以及函数关系式等。

1.1 函数的基本定义函数是自变量与因变量之间的一种特殊关系,其中自变量的值确定时,因变量的值也随之确定。

1.2 函数的表示方式函数可以通过以下方式表示:- 函数图像:图像可以将自变量和因变量的关系以图像的形式展现出来,有助于直观了解函数特性。

- 解析式:使用数学表达式来表示函数,通常形如 f(x) = 表达式。

- 函数关系式:使用自变量和因变量之间的关系式来表示函数,如 y = 2x + 3。

二、函数的性质函数作为数学中的一个重要概念,具有一些常见的性质,了解这些性质有助于更好地理解和使用函数。

2.1 定义域与值域- 定义域:函数中自变量的所有取值范围构成的集合。

- 值域:函数中因变量的所有可能取值组成的集合。

2.2 奇偶性- 奇函数:当函数满足 f(-x) = -f(x),即函数关于原点对称时,称该函数为奇函数。

- 偶函数:当函数满足 f(-x) = f(x),即函数关于y轴对称时,称该函数为偶函数。

2.3 单调性- 单调递增:当函数中的任意两个不同的自变量取值时,对应的因变量值满足递增关系。

- 单调递减:当函数中的任意两个不同的自变量取值时,对应的因变量值满足递减关系。

2.4 对称性- 函数关于y轴对称:当函数满足 f(-x) = f(x),即函数关于y轴对称时,称函数具有关于y轴的对称性。

- 函数关于x轴对称:当函数满足 f(x) = -f(x),即函数关于x轴对称时,称函数具有关于x轴的对称性。

三、常见函数类型初三数学课程中,我们遇到了很多常见的函数类型,每种类型的函数都有其特定的特性和应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
∴△APC∽△ACB


解得:AB=
在Rt△ABC中,BC=
故选C.
【点睛】
此题考查的是根据函数图象解决问题,掌握图象和图形的对应关系、相似三角形的判定及性质和勾股定理是解决此题的关键.
8.函数 的取值范围()
A. B. C. D.
【答案】C
【解析】
【分析】
根据二次根式中,被开方数是非负数可得.
【详解】
7.如图,在 中,点 为 边中点,动点 从点 出发,沿着 的路径以每秒1个单位长度的速度运动到 点,在此过程中线段 的长度 随着运动时间 的函数关系如图2所示,则 的长为( )
A. B. C. D.
【答案】C
【解析】
【分析】
根据图象和图形的对应关系即可求出CD的长,从而求出AD和AC,然后根据图象和图形的对应关系和垂线段最短即可求出CP⊥AB时AP的长,然后证出△APC∽△ACB,列出比例式即可求出AB,最后用勾股定理即可求出BC.
∴DE= BC′= x,
∴y= BC′•DE= x2.
当x=1时,y= ,且抛物线的开口向上.
如图2所示:1<x≤2时,过点A′作A′E⊥B′C′,垂足为E.
∵y= B′C′•A′E= ×1× = .
∴函数图象是一条平行与x轴的线段.
如图3所示:2<x≤3时,过点D作DE⊥B′C,垂足为E.
y= B′C•DE= (x-3)2,函数图象为抛物线的一部分,且抛物线开口向上.
本题主要考查了动点问题与函数图像相结合,解题的关键在于根据运动过程写出函数关系,要注意自变量的取值范围,以及是否为分段函数.
4.如图,边长为 的等边 和边长为 的等边 ,它们的边 , 位于同一条直线 上,开始时,点 与点 重合, 固定不动,然后把 自左向右沿直线 平移,移出 外(点 与点 重合)停止,设 平移的距离为 ,两个三角形重合部分的面积为 ,则 关于 的函数图象是()
A. B.
C. D.
【答案】C
【解析】
【分析】
先弄清题意,再分析路程和时间的关系.
【详解】
∵停下修车时,路程没变化,
观察图象,A、B、D的路程始终都在变化,故错误;
C、修车是的路程没变化,故C正确;
故选:C.
【点睛】
考核知识点:函数的图象.理解题意看懂图是关键.
10.若A(﹣3,y1)、B(0,y2)、C(2,y3)为二次函数y=(x+1)2+1的图象上的三点,则y1、y2、y3的大小关系是()
【点睛】
此题主要考查了函数图象,首先应理解函数图象的横轴和纵轴表示的量,再根据实际情况来判断函数图象.
故选:A.
【点睛】
本题考查分段函数的图象,根据△PAB面积的变化,正确从图象中得出所需信息是解题关键.
3.如图,在直角三角形 中, , , ,动点 从点 开始沿 以 的速度运动至 点停止;动点 从点 同时出发沿 以 的速度运动至 点停止,连接 .设运动时间为 (单位: ), 去掉 后剩余部分的面积为 (单位: ),则能大致反映 与 的函数关系的图象是()
(1)当函数表达式是整式时,自变量可取全体实数;
(2)当函数表达式是分式时,考虑分式的分母不能为0;
(3)当函数表达式是二次根式时,被开方数非负.
2.如图1,在矩形ABCD中,动点P从点A出发,以相同的速度,沿A→B→C→D→A方向运动到点A处停止.设点P运动的路程为x,△PAB的面积为y,如果y与x的函数图象如图2所示,则矩形ABCD的面积为()
∴y2<y1<y3.
故选:B.
【点睛】
本题考查了比较函数值大小的问题,掌握二次函数的性质、代入法是解题的关键.
11.骆驼被称为“沙漠之舟”,它的体温随时间的变化而发生较大变化,其体温( )与时间(小时)之间的关系如图1所示.
小清同学根据图1绘制了图2,则图2中的变量有可能表示的是().
A.骆驼在 时刻的体温与0时体温的绝对差(即差的绝对值)
福州市初中数学函数基础知识知识点总复习
一、选择题
1.函数y= 中,自变量x的取值范围是( )
A.x≠1B.x>0C.x≥1D.x>1
【答案】D
【解析】
【分析】
根据被开方数大于等于0,分母不等于0列式计算即可得解.
【详解】
由题意得,x-1≥0且x-1≠0,
解得x>1.
故选D.
【点睛】
本题考查了函数自变量的范围,一般从三个方面考虑:
A. B.
C. D.
【答案】D
【解析】
【分析】
由题意当 时, ,当 时, ,由此即可判断.
【详解】
由题意当 时, ,
当 时, ,
故选D.
【点睛】
本题考查动点问题的函数图象,解题的关键是理解题意,学会用分类讨论是扇形思考问题.
16.“同辞家门赴车站,别时叮咛语千万,学子满载信心去,老父怀抱希望还.”如果用纵轴 表示父亲和学子在行进中离家的距离,横 表示离家的时间,下面与上述诗意大致相吻合的图象是()
共有6种等可能的结果数,其中两点都落在抛物线 上的结果数为2,
所以两点都落在抛物线 上的概率是 ;
故选: .
【点睛】
本题考查了列表法或树状图法和函数图像上点的特征.通过列表法或树状图法展示所有等可能的结果求出 ,再从中选出符合事件 或 的结果数目 ,然后根据概率公式求出事件 或 的概率.也考查了二次函数图象上点的坐标特征.
函数 的取值范围: ,所以 .
故选:C
【点睛】
考核知识点:自变量求值范围.理解二次根式有意义的条件.
9.李明骑车上学,一开始以某一速度行进,途中车子发生故障,只好停下修车,车修好后,因怕耽误时间,于是加快了车速.如用s表示李明离家的距离,t为时间.在下面给出的表示s与t的关系图中,符合上述情况的是( )
13.在平面直角坐标系中有三个点的坐标: ,从 三个点中依次取两个点,求两点都落在抛物线 上的概率是()
A. B. C. D.
【答案】A
【解析】
【分析】
先画树状图展示所有6种等可能的结果数,再找出两点都落在抛物线 上的结果数,然后根据概率公式求解.
【详解】
解:在 三点中,其中AB两点在 上,
根据题意画图如下:
A. B.
C. D.
【答案】B
【解析】
【分析】
首先正确理解小诗的含义,然后再根据时间与离家的距离关系找出函数图象.
【详解】
解:同辞家门赴车站,父亲和孩子的函数图象在一开始的时候应该一样,
别时叮咛语千万,时间在加长,路程不变,
学子满载信心去,学子离家越来越远,
老父怀抱希望还,父亲回家离家越来越近,
故选:B.
故选:C.
【点睛】
本题主要考查的是动点问题的函数图象,求得函数的解析式是解题的关键.
5.已知圆锥的侧面积是8πcm2,若圆锥底面半径为R(cm),母线长为l(cm),则R关于l的函数图象大致是( )
A. B.
C. D.
【答案】A
【解析】
【分析】
根据圆锥的侧面展开图是扇形、扇形面积公式列出关系式,根据反比例函数图象判断即可.
A. B. C. D.
【答案】B
【解析】
【分析】
正确理解函数图象即可得出答案.
【详解】
解:同辞家门赴车站,父亲和学子的函数图象在一开始的时候应该一样,当学子离开车站出发,离家的距离越来越远,父亲离开车站回家,离家越来越近.
故选B.
【点睛】
首先应理解函数图象的横轴和纵轴表示的量,再根据实际情况来判断函数图象.
∴从开始进水到把水放完需要12+8=20分钟,
故选:A.
【点睛】
本题考查从函数的图象获取信息和用一元一次方程解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,能够通过图象列出算式和方程是解题的关键.
15.如图,在矩形 中, , ,动点 沿折线 从点 开始运动到点 .设运动的路程为 , 的面积为 ,那么 与 之间的函数关系的图象大致是( )
A. B. C. D.
【答案】C
【解析】
【分析】
分为0≤x≤1、1<x≤2、2<x≤3三种情况画出图形,然后依据等边三角形的性质和三角形的面积公式可求得y与x的函数关系式,于是可求得问题的答案.
【详解】
解:如图1所示:当0≤x≤1时,过点D作DE⊥BC′.
∵△ABC和△A′B′C′均为等边三角形,
△DBC′为等边三角形.
故选:B.
【点睛】
本题考查函数图象,正确理解函数图象横纵坐标表示的意义,理解问题的过程,能够通过图象得到函数是随自变量的增大,知道函数值是增大还是减小以及理解本题中温差的含义是解决本题的关键.
12.父亲节当天,学校“文苑”栏登出了某同学回忆父亲的小诗:“同辞家门赴车站,别时叮咛语千万,学子满载信心去,老父怀抱希望还.”如果用纵轴y表示父亲和学子在行进中离家的距离,横轴t表示离家的时间,下面与上述诗意大致相吻合的图像是()
A. B. C. D.
【答案】B
【解析】
【分析】
根据已知题意写出函数关系,y为 去掉 后剩余部分的面积,注意1.5秒时点E运动到C点,而点F则继续运动,因此y的变化应分为两个阶段.
【详解】
解: ,
当 时, . ;
当 时, , ,
由此可知当 时,函数为二次函数,当 时,函数为一次函数.
故选B.
【点睛】
A.24B.40C.56D.60
【答案】A
【解析】
【分析】
由点P的运动路径可得△PAB面积的变化,根据图2得出AB、BC的长,进而求出矩形ABCD的面积即可得答案.
【详解】
∵点P在AB边运动时,△PAB的面积为0,在BC边运动时,△PAB的面积逐渐增大,
∴由图2可知:AB=4,BC=10-4=6,
相关文档
最新文档