第3讲 整式的乘法(培优课程讲义例题练习含答案)
(完整版)整式的乘除培优(可编辑修改word版)
![(完整版)整式的乘除培优(可编辑修改word版)](https://img.taocdn.com/s3/m/69a1099f690203d8ce2f0066f5335a8102d2660d.png)
(完整版)整式的乘除培优(可编辑修改word版)整式的乘除培优⼀、选择题:1﹒已知x a=2,x b=3,则x3a+2b 等于()A﹒17 B﹒72 C﹒24 D﹒362﹒下列计算正确的是()A﹒5x6·(-x3)2=-5x12 B﹒(x2+3y)(3y-x2)=9y2-x4C﹒8x5÷2x5=4x5 D﹒(x-2y)2=x2-4y23、已知M=20162,N=2015×2017,则M 与N 的⼤⼩是()A﹒M>N B﹒M<N C﹒M=N D﹒不能确定4、已知x2-4x-1=0,则代数式 2x(x-3)-(x-1)2+3 的值为()A﹒3 B﹒2 C﹒1 D﹒-15、若a x ÷a y =a2,(b x)y=b3,则(x+y)2的平⽅根是()A﹒4 B﹒±4C﹒±6D﹒166、计算-(a -b)4 (b -a)3 的结果为()A、-(a -b)7B、-(a +b)7C、(a-b)7D、(b-a)77、已知a=8131,b=2741,c=961,则a,b,c 的⼤⼩关系是()B、A.a>b>c B.a>c>b C.a<b<c D.b>c>a8、图①是⼀个边长为(m+n)的正⽅形,⼩颖将图①中的阴影部分拼成图②的形状,由图①和图②能验证的式⼦是()A.(m+n)2﹣(m﹣n)2=4mn B.(m+n)2﹣(m2+n2)=2mnC.(m﹣n)2+2mn=m2+n2 D.(m+n)(m﹣n)=m2﹣n29、若a﹣2=b+c,则a(a﹣b﹣c)+b(b+c﹣a)﹣c(a﹣b﹣c)的值为()=90 pA.4 B.2 C.1 D.810、当x=1 时,ax+b+1 的值为﹣2,则(a+b﹣1)(1﹣a﹣b)的值为()A.﹣16 B.﹣8 C.8 D.1611、已知a2+a﹣3=0,那么a2(a+4)的值是()A.9 B.﹣12 C.﹣18 D.﹣1512、在求1+6+62+63+64+65+66+67+68+69 的值时,⼩林发现:从第⼆个加数起每⼀个加数都是前⼀个加数的6 倍,于是她设:S=1+6+62+63+64+65+66+67+68+69①,然后在①式的两边都乘以6,得:6S=6+62+63+64+65+66+67+68+69+610②,②﹣①得6S﹣S=610﹣1,即5S=610﹣1,所以S=,得出答案后,爱动脑筋的⼩林想:如果把“6”换成字母“a”(a≠0 且a≠1),能否求出1+a+a2+a3+a4+…+a2014 的值?你的答案是()A. B. C. D.a2014﹣1⼆、填空:1、若ax3m y12÷3x3y2n=4x6y8,则(2m+n-a)n=﹒2、若(2x+3y)(mx-ny)=4x2-9y2,则mn=.3. 已知a+b=8,a2b2=4,则1(a2+b2)-ab=. 2999 p999 , q =119,那么9q (填>,<或=)5.已知10a= 20, 10b=1,则3a÷ 3b= 56.设A =(x -3)(x - 7),B =(x - 2)(x -8),则A B(填>,<,或=)7.若关于x 的多项式x2-8x +m =(x - 4)2 ,则m 的值为若关于x 的多项式x2+nx +m2=(x - 4)2 ,则m n=4. 若225 4 3 2 1 3 1 若关于 x 的多项式 x 2 + nx + 9 是完全平⽅式,则 n=8.计算: 20162 - 2015? 2016 =9. 计算: ?1- 1 ??1- 1 ? ?1- 1 ??1- 1 ? =? 32 ? 992 1002 ? 10.计算: (2 +1)(22 +1)(24 +1)(22n+1)=11、已知:(x +1)5 = a x 5 + a x 4 + a x 3 + a x 2+ a x + a ,则 a + a + a =12、已知: x 2 - (m - 2)x + 36 是完全平⽅式,则 m=13、已知:x 2 + y 2- 6 y = 2x - 10 ,则 x - y =14、已知:13x 2 - 6xy + y 2 - 4x +1 = 0 ,则(x + y )2017 x 2016= 15、若 P = a 2 + 2b 2 + 2a + 4b + 2017 ,则 P 的最⼩值是=16、已知 a =1 2018 x2 + 2018,b = 1 2018 x 2 + 2017,c = 1 2018x 2+ 2016 ,则 a 2 + b 2 + c 2 - ab - bc - ac 的值为17、已知(2016 - a )(2018 - a ) = 2017 ,则(2016 - a )2 + (2018 - a )2 =x - 1 18、已知 x x 2 5,则 x 4+ 1 =19、已知: x 2 - 3x - 1 = 0 ,则 x 2 + 1x2三、解答题:=, x 4 +1=x41、(x 2-2x -1)(x 2+2x -1);②(2m+n ﹣p )(2m ﹣n+p )2、形如 a b c的式⼦叫做⼆阶⾏列式,它的运算法则⽤公式表⽰为da c = ad - bc ,⽐如 2b d 1 5= 2 ? 3 -1? 5 = 1,请按照上述法则计算 30 5 =-2ab -3ab2a2b(-ab)2的结果。
整式的乘除(讲义及答案)
![整式的乘除(讲义及答案)](https://img.taocdn.com/s3/m/32e32a7b7375a417876f8f29.png)
整式的乘除(讲义)课前预习1. 整式的分类:___________________________________⎧⎧⎪⎪⎨⎪⎪⎪⎪⎩⎨⎧⎪⎪⎪⎨⎪⎪⎪⎩⎩定义:数字与字母的乘积组成的代数式单项式系数:单项式前面的次数:所有字母的整式定义:几个单项式的和项:组成多项式的每个单项式次数:项的次数2. ________________________________________________叫做同类项;把同类项合并成一项叫做合并同类项;合并同类项时,________________________________________________.3. 乘法分配律:()a b c +=_______________.4. 类比迁移:老师出了一道题,让学生计算52x y x ÷.小聪是这么做的:55232x y x x x x x y x y x x y x x x ⋅⋅⋅⋅⋅÷===⋅ 请你类比小聪的做法计算:22282m n m n ÷.知识点睛1. 单×单:_______乘以________,_________乘以________.2. 单×多:根据________________,转化为单×单.3. 多×多:握手原则.4. 单÷单:系数除以系数,字母除以字母.5. 多÷单:借用乘法分配律.精讲精练1. ①■342xy xy z ⋅=_______; ②2323(2)x y x y ⋅-=_______; ③231(4)2x y y ⎛⎫-⋅-= ⎪⎝⎭______;④322(3)(2)a a -⋅-; ⑤332(2)(2)x xy xy ⋅-⋅-.2. ①222(53)ab ab a b ⋅+______________________; ②221232ab c ab ab ⎛⎫-⋅= ⎪⎝⎭____________________; ③31(2)14a a ⎛⎫-⋅-= ⎪⎝⎭_________________;④222(2)()x y xy -⋅=_________________________; ⑤2222(3)x y z x x y -+-⋅=_________________________.3. 计算:①(34)(34)x y x y +⋅-; ②()(321)m n m n -⋅-+;③(2)(32)m n m n --⋅-; ④2(2)x y -;⑤()()a b c a b c +-⋅-+.4. 计算:①2 56(13)x x x x --+; ②210(23)(42)x x x --+.5. ①2212a b c ab ÷=_____;②3532(3)(0.5)m n m n -÷-=______; ③62(2)()xy xy -÷=______;④22(2)(_______)2a b a -÷=; ⑤4348()()3a b a b ⎡⎤-÷-=⎢⎥⎣⎦___________; ⑥23243(2)(7)14x y xy x y ⋅-÷.6. ①532(46)(2)x x x -÷-=_____________; ②2211322x y xy xy xy ⎛⎫⎛⎫-+÷-= ⎪ ⎪⎝⎭⎝⎭_______________; ③234432214633ab a b a b ab ⎛⎫⎛⎫-+÷-= ⎪ ⎪⎝⎭⎝⎭___________________; ④23222()(2)a b a b ab -÷=_____________; ⑤43522(2)()m n m n mn --÷=________________; ⑥23(____________________)3231a a a ÷=-+-.7. 计算:①423322223(3)(2)(2)4a b ab a b a b a b --⋅---÷;②322()(2)(48)(4)a b a b ab a b ab +-+-÷-;③2222(1)(1)(2)a a a --++;④433222113()(2)22a a a a a a a ⎛⎫⎛⎫-+÷--÷⋅+ ⎪ ⎪⎝⎭⎝⎭.【参考答案】课前预习1.数字因数,指数和,多项式,次数最高2.所含字母相同,并且相同字母的指数也相同的项,把同类项的系数相加,字母和字母的指数不变3.ab +ac4.4n知识点睛1.系数,系数;字母,字母2.乘法分配律精讲精练1. ①248x y z②536x y - ③242x y④818a - ⑤7432x y2. ①10a 2b 3+ 6a 3b 2 ②232213a b c a b - ③4122a a +-④44252x y x y - ⑤3234226x y x y z x y --+3. ①22916x y -②22352m mn m n n ++-- ③2262m mn n -++④2244x xy y -+ ⑤2222a b bc c -+-4. ①32618x x x -+-②2286x x ++ 5. ①2abc②36n ③44 64x y④322a b ⑤66a b -⑥324x y - 6. ①323x x -+②621x y -+- ③22312182a b a b -- ④11b 44- ⑤232m n m --⑥532693a a a +-- 7. ①424a b -②223a ab b +- ③251a --④4361a a ---。
2020华师大初二上册培优讲义第三讲 整式的乘法
![2020华师大初二上册培优讲义第三讲 整式的乘法](https://img.taocdn.com/s3/m/bb29cc169b89680202d825a4.png)
第三讲 整式的乘法学习目标1、知识目标:在具体情境中了解单项式乘法的意义,理解单项式乘法法则,会利用法则进行单项式的乘法运算;灵活运用单项式乘以单项式的法则进行运算;知道利用乘法分配律可以将单项式乘多项式转化成单项式乘单项式。
2、能力目标:经历探索单项式乘法法则的过程,理解单项式乘法运算的算理,发展学生有条理的思考能力和语言表达能力。
3、情感目标:体验探求数学问题的过程,体验转化的思想方法,获得成功的体验。
一、知识讲解课前测评1.若))(3(152n x x mx x ++=-+,则m 的值为( )A .-5B .5C .-2D .22.化简2)2()2(a a a --⋅-的结果是( )A .0B .22aC .26a -D .24a -3.计算:)(3)2(43222y x y x xy -⋅⋅-= 。
4.计算:2a 2(3a 2-5b )= 。
5.计算:)1)(2()6)(7(+---+x x x x = 。
知识点回顾1、掌握单项式与单项式相乘法则单项式与单项式相乘,只要将它们的 、相同 的幂分别相乘,对于只在一个单项式中出现的字母,则连同它的 一起作为 的一个因式。
2、掌握单项式与多项式相乘的法则(1)法则:单项式与多项式相乘,将单项式 乘以多项式的 ,再将所得的积 。
(2)表示:m (a+b )= 。
3、掌握多项式与多项式相乘的法则(1)法则:多项式与多项式相乘,先用一个多项式的 分别乘以另一个多项式的 ,再把所得的积 。
(2)表示:(m+n )(a+b )= 。
二、例题辨析【考点1、单项式乘以单项式】例1、计算下列各式:(1)221232a ab a bc -⋅⋅ (2)221()(5)2ab abc -⋅-;(3)23223)41)(21(y x y x -(4))103(·)102(63⨯⨯变式练习: 1.计算:._____________)(4)3(523232=-⋅-b a b a2.计算:=-⋅-22332)52()5(xy y x _________。
整式的乘法(培优)
![整式的乘法(培优)](https://img.taocdn.com/s3/m/c7196e87a45177232e60a224.png)
第3讲 整式的乘除〔培优〕第1局部 根底过关一、选择题1.以下运算正确的选项是〔 〕A. 954a a a =+B. 33333a a a a =⋅⋅C. 954632a a a =⨯D. ()743a a =- =⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛-20122012532135.2〔 〕A. 1-B. 1C. 0D. 19973.设()()A b a b a +-=+223535,那么A=〔 〕 A. 30ab B. 60ab C. 15ab D. 12ab4.,3,5=-=+xy y x 那么=+22y x 〔 〕A. 25. B 25- C 19 D 、19-5.,5,3==b a x x 那么=-b a x 23〔 〕 A 、2527 B 、109 C 、53 D 、52 6. .如图,甲、乙、丙、丁四位同学给出了四 种表示该长方形面积的多项式:①(2a +b )(m +n ); ②2a (m +n )+b (m +n );③m (2a +b )+n (2a +b ); ④2am +2an +bm +bn , 你认为其中正确的有〔 〕A 、①②B 、③④C 、①②③D 、①②③④7.如(x+m)与(x+3)的乘积中不含x 的一次项,那么m 的值为〔 〕A 、 –3B 、3C 、0D 、18..(a+b)2=9,ab= -112,那么a²+b 2的值等于〔 〕 A 、84 B 、78 C 、12 D 、69.计算〔a -b 〕〔a+b 〕〔a 2+b 2〕〔a 4-b 4〕的结果是〔 〕A .a 8+2a 4b 4+b 8B .a 8-2a 4b 4+b 8C .a 8+b 8D .a 8-b 8 10.m m Q m P 158,11572-=-=〔m 为任意实数〕,那么P 、Q 的大小关系为〔 〕 A 、Q P > B 、Q P = C 、Q P < D 、不能确定n mb a二、填空题11.设12142++mx x 是一个完全平方式,那么m =_______。
奥数-整式的乘除-第3讲法师
![奥数-整式的乘除-第3讲法师](https://img.taocdn.com/s3/m/32b69c8510661ed9ac51f349.png)
第三讲 整式的乘法与除法一、 基础知识●整式的加减整式的加减涉及到许多概念,准确地把握这些概念并注意它们的区别与联系是解决有关问题的基础,概括起来就是要掌握好以下两点:1.透彻理解“三式”和“四数”的概念“三式”指的是单项式、多项式、整式;“四数”指的是单项式的系数、次数和多项式的次数、项数.2.熟练掌握“两种排列”和“三个法则”“两种排列”指的是把一个多项式按某一字母的升幂或降幂排列,“三个法则”指的是去括号法则、添括号法则及合并同类项法则.物以类聚,人以群分.我们把整式中那些所含字母相同、并且相同字母的次数也相同的单项式作为一类——称为同类项,一个多项式中的同类项可以合聚在一起——称为合并同类型.这样,使得整式能大为简化,整式的加减实质就是合并同类项● 整式的乘法与除法 指数运算律是整式乘除的基础,有以下4个:.,(),()m n m n m mn a a aa a ab +==n =,.n n m n m n a b a a a -÷=学习指数运算律应注意:1.运算律成立的条件;2.运算律字母的意义:既可以表示一个数,也可以是一个单项式或者多项式;3.运算律的正向运用、逆向运用、综合运用.多项式除以多项式是整式除法的延拓与发展,方法与多位数除以多位数的演算方法相似,基本步骤是:1.将被除式和除式按照某字母的降幂排列,如有缺项,要留空位;2.确定商式,竖式演算式,同类项上下对齐;3.演算到余式为零或余式的次数小于除式的次数为止.二、 例题第一部分 基础概念与整式加减法例1. 若2x+5y-3=0,则432_____x y= (2002年绍兴市竞赛题)解:8例2. 已知单项式0.25x b y c 与单项式-0.125x 1-m y 12-n 的和为0.625ax n y m,求abc 的值. 解:12 提示:由题意得b=m-1=n,c=2n-1=m,0.625a=0.25+(-0.125)例3. 同时都含有字母a ,b ,c ,且系数为1的7次单项式共有( ).(A)4个 (B)12个 (D)25个(北京市竞赛题)解:C 提示:设满足条件的单项式为m n p a b c 的形式,其中m 、n 、p 为自然数,且m+n+p=7.例4. 把一个正方体的六个面分别标上字母A 、B 、C 、D 、E 、F 并展开如图 所示,已知:A=2234y xy x +-,C=2223y xy x --,B=)(21A c -, E=B -2C ,若正方体相对的两个面上的多项式的和都相等,求D 、F . (第9题) 解:2222374,9112D x xy y F x xy y =-+=-+例5. 已知 22276(2)()x xy y x y x y A x y B -----=-+++.求A 、B 的值. 思路点拨 等号左右两边的式子是恒等的,它们的对应项系数对应项系数对应相等,从而可以通过比较对应项系数来解.解:A=-3,B=2。
第三讲整式的乘法及乘法公式专题培优辅导
![第三讲整式的乘法及乘法公式专题培优辅导](https://img.taocdn.com/s3/m/b52d25c2192e45361066f5ee.png)
第三讲整式的乘法及乘法公式专题培优辅导 一、知识要点: 乘法公式(1) (a b)(a -b)二 a 2 -b 2 ⑶(x a)(x b) = x 2 (a b)x ab ⑸(a b)(a 2 - ab b 2) = a 3 b 3(7) (a b)3 = a 3 3a 2b 3ab 2 b 3乘法公式常用的变形有:2 2 2(a b) -(a b )22 2 2(a b ) - (a - b)⑵(a b)2 (a -b)2 =2 a 2 2b 2 ;(3) (a b)2 - (a -b)2 = 4ab ;2 2(4) ab =(a b) (a 旳 ,a 2 b 2 c 2 = (a b c)2 - 2(ab be ac)4二•经典例题讲解 例1【例1计算:1. (2x+3y)(3x -y) = _______________ ;2. (2x+5y)2= ______________________ ;3. (2x _3y)(3x -2y)二 ____________________4. (4x 6y)(2x _ 3y) = ___________________ ;5.』x-2y)2 二6. (x-3)(x 3)(x 2 9)=:27. (2x 1)(2x-1)___________ :8(x 2)( _________ )=X 2-4 :9. (x 1)(x -2) -(x -3)(x 3) = ____________________ :10. __________________________________ (2x -1)2 -(x 2)2= ___ : 11. (2x )( - y) =4x 2 - y 2 :12、1 -a a 1 a 21 a 4 1 = _____[来源如基础训练1 .计算(a-b ) (a-b )其结果为()2 2 2 2 2 2 2 2A . a -bB . a +bC . a -2ab+bD . a -2ab-b 2. (x+a ) (x-3 )的积的一次项系数为零,则a 的值是()A . 1B . 2C . 3D . 42(2)(a _b)2 =a 2 _2ab b 2⑷(a 一 b)(a 2 ab b 2) = a 3 一 b 3(6) (a b c)2 = a 2 b 2 c 2 2ab 2ac 2bc⑻(a -b)3 = a 3 -3a 2b 3ab 2 -b 32 2 2⑴(a _b) -a _2ab b ,3. 如果(x+3) (x+a) =x2-2x-1 5,贝U a 等于()A . 2B . -8C . -12D . -5[来源:Z#xx#]24 .解方程:(2x+3) (x-4 ) - (x+2) (x-3 ) =x +6 .5.先化简,再求值: 25x (x +2x+1) -x (x-4 ) (5x-3),其中 x=1 .【例2】1.如果多项式x 2 - mx 9是一个完全平方式,则 m 的值是 _______________ 。
整式的乘法的习题及答案
![整式的乘法的习题及答案](https://img.taocdn.com/s3/m/27e5e6804128915f804d2b160b4e767f5bcf8073.png)
整式的乘法的习题及答案整式的乘法是数学中的一个重要概念,它在代数学习中起着至关重要的作用。
在这篇文章中,我们将探讨一些整式乘法的习题及其答案,帮助读者更好地理解和掌握这个概念。
一、单项式的乘法单项式是指只包含一个字母和一个常数的代数式,例如3x、4y²等。
单项式的乘法是指将两个单项式相乘的操作。
1. 习题:计算下列单项式的乘法:a) 5x × 2yb) -3a² × 4b³c) 7m²n × (-2mn³)2. 答案:a) 5x × 2y = 10xyb) -3a² × 4b³ = -12a²b³c) 7m²n × (-2mn³) = -14m³n⁴通过以上习题,我们可以看到单项式的乘法实际上就是将两个单项式的系数相乘,字母部分则按照字母指数相加的规则进行运算。
二、多项式的乘法多项式是指由多个单项式相加或相减而成的代数式,例如3x² + 4xy - 2y²。
多项式的乘法是指将两个多项式相乘的操作。
1. 习题:计算下列多项式的乘法:a) (3x + 2y)(4x - 5y)b) (2a - 3b)(a + b)c) (5m + 7n)(m - n)2. 答案:a) (3x + 2y)(4x - 5y) = 12x² - 15xy + 8xy - 10y² = 12x² - 7xy - 10y²b) (2a - 3b)(a + b) = 2a² + 2ab - 3ab - 3b² = 2a² - ab - 3b²c) (5m + 7n)(m - n) = 5m² - 5mn + 7mn - 7n² = 5m² + 2mn - 7n²通过以上习题,我们可以看到多项式的乘法实际上就是将两个多项式中的每一项进行乘法运算,然后将结果相加。
北师大七年级下册《整式乘法》第3课时 积的乘方 讲义和强化练习(含答案)
![北师大七年级下册《整式乘法》第3课时 积的乘方 讲义和强化练习(含答案)](https://img.taocdn.com/s3/m/71d8df56d15abe23482f4de3.png)
第3课时 积的乘方【基础知识】1、积的乘方的意义: 积的乘方是指底数是乘积形式的乘方,如()()ab ab n3,等.2、积的乘方的性质:()ab a b n n n =·(n 为正整数);积的乘方,把积的每一个因式分别乘方,再把所得的幂相乘.注意: ()1三个或三个以上的乘方,也具有这一性质,例如:()abc a b c n n n n =··; ()2此性质逆用:()a b ab n n n ·=.【典型例题】例1、()13212ab ⎛⎫- ⎪⎝⎭ ()2()()()()----332232422x y x y x y ··()3()()()()()322322322462236ab a a b a b a b ----+--+··例2、计算:()1()()201920200.1258⨯- ()220192020532135⎛⎫⎛⎫⨯ ⎪ ⎪⎝⎭⎝⎭()3()20192020133⎛⎫-⨯- ⎪⎝⎭ ()4()()315150.1252⨯例3、若x y n n ==23,,求值:()3n xy =___________例4、已知23a =,26b =,212c=,探究a ,b ,c 之间的关系.【课后练习题】1、下列计算结果正确的是_______.A ()326ab ab = .B ()33339xy x y = .C ()22424a a -=- .D 221124x x ⎛⎫-= ⎪⎝⎭ 2、计算求值:012581010.⨯=__________, 805100300⨯=.__________.3、化简:(m ,n ,p 都是正整数)()123x x x m n m n -+=··__________ ;()2()()()x y y x x y --=--37·() ()3()()()[]x y y x x y p n m ----=··23__________4、计算:20202021522125⎛⎫⎛⎫-⨯-= ⎪ ⎪⎝⎭⎝⎭____________5、我们定义22a b a b =⋅e ,例如2352322232=⨯==e ,则35=e ____,48=e _____.6、若2228162n n ⨯⨯=,则n =__________;7、已知68m =,65n =,则26m n +=_______8、已知a ,b 满足2a b +=,5a b -=,则()()33a b a b +-= ________9、()1若aa a n m n ++=16·,且m n -=21,求m n 的值.()2若a b a c -=-=21,,求()()222a b c c a --+-的值.10、()1比较1002与753的大小.()2若a b nn ==123,,求()ab n 2的值.第3课时 积的乘方【典型例题】例1、()13618a b -; ()26636x y -;()346a b . 例2、()1 8; ()2 135;()3 3-; ()4 1. 例3、216.例4、2a c b +=.【课后练习】1、D2、 1 13、()1 216m x +; ()210;()3()23p n m x y ++--4、125-5、82 ,1226、37、3208、3109、()13; ()2 10.10、()11007523< ; ()294.。
(完整版)整式乘除与因式分解培优精练专题答案.docx
![(完整版)整式乘除与因式分解培优精练专题答案.docx](https://img.taocdn.com/s3/m/0fb016d8f5335a8103d22058.png)
整式乘除与因式分解培优精练专题答案一.选择题(共 9 小题)1.( 2014?台湾)算式 2 2 2之值的十位数字为何?()99903 +88805 +77707 A .1B . 2C . 6D . 8分析: 分别得出 999032、888052、 777072的后两位数,再相加即可得到答案.2解答: 解: 99903 的后两位数为 09,288805 的后两位数为 25,277707 的后两位数为 49,09+25+49=83 ,所以十位数字为 8, 故选: D .2.( 2014?盘锦)计算(2a 2) 3? a 正确的结果是( )A .3a7B . 4a7C . a7D . 4a6分析: 根据幂的乘方与积的乘方、单项式与单项式相乘及同底数幂的乘法法则进行计算即可.解答:解:原式 ==4a 7,故选: B .3.( 2014?遵义)若 a+b=2 , ab=2,则 a 2+b 2的值为( )A .6B . 4C . 3D . 2分析: 利用 a 2+b 2=( a+b ) 2﹣2ab 代入数值求解.解答: 解: a 2+b 2=( a+b ) 2﹣ 2ab=8﹣ 4=4,故选: B .4.( 2014?拱墅区二模)如果 ax 2+2x+ =(2x+) 2+m ,则 a , m 的值分别是()A . 2,0B . 4, 0C .2,D . 4,运用完全平方公式把等号右边展开,然后根据对应项的系数相等列式求解即可.解答:22+m ,解: ∵ax +2x+ =4x +2x+∴ ,解得 .故选 D.5.( 2014?江阴市模拟)如图,设(a>b>0),则有()A .B.C. 1<k< 2D. k>2解答:解:甲图中阴影部分的面积=a 2﹣ b2,乙图中阴影部分的面积=a( a﹣ b),=,∵a> b> 0,∴,∴1< k<2.故选: C.6.( 2012?鄂州三月调考)已知,则的值为()A .B.C. D .无法确定解答:解:∵a+ =,∴两边平方得:( a+ )2=10 ,展开得: a 2+2a? +=10 ,∴a 2+=10 ﹣ 2=8 ,∴( a﹣)2=a2﹣2a?+=a2+﹣2=8﹣2=6,∴a﹣=±,故 C.7.已知,代数式的等于()A .B.C.D.分析:先判断 a 是正数,然后利用完全平方公式把两平方并整理成的平方的形式,开方即可求解.解答:解:∵,∴a> 0,且2+a 2=1,∴+2+a 2=5,即(+|a|)2=5,开平方得,+|a|=.故 C.8.( 2012?州)求1+2+2 2+23+⋯+22012的,可令S=1+2+22+23+⋯+22012,2S=2+22+23+24+⋯+22013,因此 2S S=220131.仿照以上推理,算出1+5+5 2+53+⋯+52012的()A .520121B. 520131C.D.分析:根据目提供的信息,S=1+5+5 2+53+⋯+52012,用 5S S 整理即可得解.解答:解: S=1+5+52320125S=5+52342013 +5 +⋯+5,+5 +5 +⋯+5,因此, 5S S=520131,S=.故 C.9.( 2004?州)已知 a=x+20 ,b=x+19 , c=x+21 ,那么代数式 a 2+b2+c2ab bcac 的是()A .4B. 3C. 2D. 1:.分析:已知条件中的几个式子有中间变量 x ,三个式子消去 x 即可得到: a ﹣b=1 ,a ﹣ c=﹣ 1,b ﹣ c=﹣ 2,用这三个式子表示出已知的式子,即可求值.解答:解:法一: a 2+b 2+c 2﹣ ab ﹣ bc ﹣ ac , =a ( a ﹣ b ) +b ( b ﹣c ) +c ( c ﹣ a ),又由 a= x+20, b= x+19, c=x+21 ,得( a ﹣b ) = x+20 ﹣x ﹣ 19=1,同理得:( b ﹣ c )=﹣ 2,( c ﹣ a ) =1 , 所以原式 =a ﹣ 2b+c= x+20 ﹣ 2(x+19 ) + x+21=3 .故选 B .法二: a 2+b 2+c 2﹣ ab ﹣ bc ﹣ ac ,= ( 2a 2+2b 2+2c 2﹣ 2ab ﹣2bc ﹣ 2ac ),22 2 2 2 2= [( a ﹣ 2ab+b )+( a ﹣ 2ac+c ) +( b ﹣2bc+c ) ],= [( a ﹣ b ) 2+(a ﹣ c ) 2+( b ﹣ c ) 2] ,= ×( 1+1+4) =3. 故选 B .二.填空题(共 9 小题)x+5 )( x+n ) =x 2+mx ﹣ 5,则 m+n= 3 .10.( 2014?江西样卷)已知(分析: 把式子展开,根据对应项系数相等,列式求解即可得到m 、 n 的值.解答: 解:展开( x+5 )(x+n ) =x 2+( 5+n ) x+5n∵( x+5 )( x+n ) =x 2+mx ﹣5,∴5+n=m , 5n= ﹣5,∴n=﹣ 1, m=4 .∴m+n=4 ﹣ 1=3 .故答案为: 311.(2014?徐州一模)已知 x ﹣ =1,则 x 2+ = 3 .分析:首先将 x ﹣ =1 的两边分别平方,可得(x ﹣ )2=1,然后利用完全平方公式展开,解答:变形后即可求得 x 2+的值.或者首先把 x 2+凑成完全平方式 x 2+ =( x ﹣ )2+2,然后将 x ﹣ =1 代入,即可求得 x 2+的值.解:方法一: ∵x ﹣ =1,∴( x ﹣ ) 2=1,即 x 2+ ﹣ 2=1,∴x 2+=3.方法二: ∵x ﹣ =1 ,2 2,∴x + =( x ﹣ ) +2 =1 2+2, =3 .故答案为: 3.12.( 2011?平谷区二模)已知2 2.,那么 x +y = 6分析:首先根据完全平方公式将( x+y ) 2用( x+y )与 xy 的代数式表示,然后把x+y , xy的值整体代入求值.解答:解: ∵x+y=, xy=2 ,∴( x+y ) 2=x 2+y 2+2xy ,∴10=x 2+y 2+4,∴x 2+y 2=6.故答案是: 6.点评:本题主要考查完全平方公式的变形,熟记公式结构是解题的关键.完全平方公式:( a ±b )2=a 2±2ab+b 2.13.( 2010?贺州)已知 10m =2, 10n =3,则 103m+2n= 72 .解答: 解: 103m+2n =103m 102n =( 10m ) 3( 10n ) 2=23?32=8×9=72.点评: 本题利用了同底数幂相乘的性质的逆运算和幂的乘方的性质的逆运算.同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相乘.14.( 2005?宁波)已知 a ﹣ b=b ﹣ c= , a 2+b 2+c 2=1,则 ab+bc+ca 的值等于 ﹣.分析:先求出 a ﹣ c 的值,再利用完全平方公式求出(a ﹣b ),( b ﹣c ),( a ﹣ c )的平方和,然后代入数据计算即可求解.解答: 解: ∵a ﹣ b=b ﹣ c= ,∴( a ﹣ b )2= ,( b ﹣ c )2=, a ﹣ c= ,22﹣ 2ab= 2 2﹣ 2bc= 22,∴a +b , b +c , a +c ﹣ 2ac=∴2( a 2+b 2+c 2)﹣ 2( ab+bc+ca ) = ++= ,∴2﹣ 2( ab+bc+ca ) = ,∴1﹣( ab+bc+ca ) = ,∴ab+bc+ca=﹣ =﹣ .故答案为:﹣.点评:a ﹣ b=b ﹣ c= ,得到 a ﹣ c= ,然后对 a本题考查了完全平方公式,解题的关键是要由﹣ b= , b ﹣ c= , a ﹣ c= 三个式子两边平方后相加,化简求解.15.( 2014?厦门)设 a=192×918, b=8882﹣ 302, c=10532﹣ 7472,则数 a , b , c 按从小到大的顺序排列,结果是 a < c < b .考点 :因式分解的应用.分析:运用平方差公式进行变形,把其中一个因数化为 918,再比较另一个因数,另一个因数大的这个数就大.解答:解: a=192×918=361×918,b=888 2﹣302=( 888﹣ 30) ×(888+30 )=858×918,c=1053 2﹣7472=( 1053+747 )×( 1053﹣ 747)=1800×306=600×918,所以 a <c < b . 故答案为: a < c < b .16.( 1999?杭州)如果 a+b+ ,那么 a+2b ﹣ 3c= 0 .分析:先移项,然后将等号左边的式子配成两个完全平方式,从而得到三个非负数的和为0,根据非负数的性质求出a 、b 、c 的值后,再代值计算.解答:解:原等式可变形为:a ﹣ 2+b+1+|﹣ 1|=4+2﹣ 5( a ﹣ 2)+( b+1 )+|﹣ 1|﹣ 4﹣ 2 +5=0( a ﹣ 2)﹣ 4+4+ ( b+1 )﹣ 2+1+|﹣1|=0( ﹣ 2) 2+(﹣ 1)2+| ﹣ 1|=0;即:﹣ 2=0,﹣ 1=0,﹣ 1=0 ,∴=2, =1, =1,∴a ﹣ 2=4 ,b+1=1 , c ﹣1=1,解得: a=6, b=0 ,c=2;∴a+2b ﹣ 3c=6+0﹣ 3×2=0.17.已知 x ﹣ =1,则 = .分析:2的值,再把所求算式整理成 的形式, 然把 x ﹣ =1 两边平方求出x + 后代入数据计算即可.解答:解: ∵x ﹣ =1,∴x 2+﹣2=1 ,∴x 2+=1+2=3 ,= = = .故应填:.18.已知( 2008﹣ a )2+( 2007 ﹣a ) 2=1,则( 2008﹣a ) ?( 2007﹣ a ) = 0.解答:解: ∵( 2008﹣ a ) 2+(2007﹣ a )2=1,22﹣ 2( 2008﹣ a)( 2007﹣ a),∴(2008 ﹣ a)﹣ 2(2008 ﹣ a)( 2007﹣ a)+( 2007﹣ a) =1即( 2008﹣ a﹣ 2007+a)2=1﹣ 2( 2008﹣a)( 2007﹣a),整理得﹣ 2( 2008﹣a)(2007﹣ a) =0,∴( 2008 ﹣a)( 2007﹣ a) =0.三.解答题(共8 小题)22是一个完全平方式,那么k= 4 或﹣ 2 .19.如果 a ﹣2( k﹣ 1) ab+9b解答:解:∵a 2﹣2(k﹣1)ab+9b2=a2﹣2(k﹣1)ab+(3b)2,∴﹣ 2( k﹣1) ab=±2×a×3b,∴k﹣ 1=3 或 k﹣ 1=﹣ 3,解得 k=4 或 k= ﹣ 2.即k=4 或﹣ 2.故答案为: 4 或﹣ 2.点评:本题主要考查了完全平方式,根据平方项确定出这两个数是解题的关键,也是难点,熟记完全平方公式对解题非常重要.x x+320.已知 3 =8,求 3.解答:解: 3x+3=3x?33=8 ×27=216 .点评:本题考查了同底数幂的乘法,底数不变指数相加.n﹣5n+1 3m﹣22n﹣ 1 m﹣233m+221.计算: a ( a b) +( a b)(﹣ b)分析:先利用积的乘方,去掉括号,再利用同底数幂的乘法计算,最后合并同类项即可.解答:解:原式=a n﹣5(a2n+2b6m﹣4)+a3n﹣3b3m﹣6(﹣b3m+2),=a3n﹣ 3b6m﹣4+a3n﹣ 3(﹣b6m﹣ 4),3n﹣ 36m﹣43n﹣ 36m﹣4,=a b﹣ a b=0 .点评:本题考查了合并同类项,同底数幂的乘法,幂的乘方,积的乘方,理清指数的变化是解题的关键.22.已知 n 是正整数, 1++是一个有理式 A 的平方,那么,A=±.解答:解: 1++=,分子: n 2( n+1 )2+(n+1 )2+n2=n2( n+1 )2+n2+2n+1+n2,22=n ( n+1) +2n( n+1) +1,2=[n ( n+1 )+1] ,∴分子分母都是完全平方的形式,∴A= ±.故答案为:±.23.已知 2008=,其中 x,y 为正整数,求 x+y 的最大值和最小值.分析:首先根据 2008=可知 xy=2009 ,再根据 x,y 为正整数,确定 x、y 可能的取值.根据 xy 的乘积的个位是 9,确定 x、 y 的个位可能是1、3、 7、 9.通过 x、y 都具有同等的地位,那么x 取过的值, y 也有可能,故只取x 即可, x 的十位数最大不会超过 5.因而就x 取值可能是 1、 11、 13、 17、 19、 21、 23、 27、 29、 31、 33、 37、 39、 41、 43、47、 49.就这几种情况讨论即可.解答:解:∵2008=2008=xy ﹣ 1∴2009=xy∵x, y 为正整数,并且乘积是2009 的个位数是9因而 x、y 的个位可能是1、 3、 7、 9①当 x 的个位是 1 时,x=1 , y=2009 显然成立,x=11 , y 不存在,x=21 , y 不存在,x=31 , y 不存在,x=41 , y=49,②当 x 的个位是 3 时x=3 , y 不存在,x=13 , y 不存在,x=23 , y 不存在,x=33 , y 不存在,x=43 , y 不存在;③当的个位是7 时x=7 , y=287x=17 , y 不存在x=27 , y 不存在x=37 , y 不存在x=47 , y 不存在;④当 x 的个位是9 时x=9 , y 不存在 x=19 , y 不存在 x=29 , y 不存在 x=39 , y 不存在 x=49 , y=41. 故可能的情况是① x=1 , y=2009 或 x=2009 , y=1, x+y=2010 ② x=7 , y=287 或 x=287 , y=7, x+y=7+287=394 ③ x=41 , y=49 或 x=49, y=41, x+y=41+49=90故 x+y 的最大值是 2010,最小值是 9024.( 2000?内蒙古)计算:解答: 解:由题意可设字母 n=12346,那么 12345=n ﹣1, 12347=n+1 ,于是分母变为 n 2﹣( n ﹣ 1)(n+1 ).应用平方差公式化简得22222n ﹣( n ﹣1 ) =n ﹣ n +1=1 ,所以原式 =24690 .25.设 a 2+2a ﹣1=0 , b 4 ﹣2b 2﹣ 1=0 ,且 1﹣ ab 2≠0,求的值.分析:解法一:根据 1﹣ab 2≠0 的题设条件求得 b 2=﹣ a ,代入所求的分式化简求值.解法二:根据a 2+2a ﹣ 1=0 ,解得 a=﹣ 1+ 或 a=﹣ 1﹣,由 b 4﹣2b 2﹣ 1=0 ,解得:2b = +1,把所求的分式化简后即可求解.解答:解法一:解: ∵a 2+2a ﹣ 1=0 , b 4﹣2b 2﹣ 1=0∴( a 2+2a ﹣1)﹣( b 4﹣ 2b 2﹣ 1)=0化简之后得到: (a+b 2)( a ﹣ b 2+2) =0若 a ﹣ b 2+2=0 ,即 b 2=a+2,则 1﹣ ab 2=1﹣ a ( a+2) =1﹣ a 2﹣ 2a=0,与题设矛盾,所以a ﹣ b 2+2≠0因此 a+b 2=0,即 b 2=﹣ a∴===(﹣ 1) 2003=﹣ 1解法二: 解: a 2+2a ﹣ 1=0(已知),解得 a=﹣ 1+ 或 a=﹣1﹣ , 由 b 4﹣ 2b 2﹣ 1=0 ,解得: b 2= +1 , ∴ =b 2+ ﹣ 2+= +1﹣ 2+ ,当 a= ﹣ 1 时,原式 = +1﹣ 2+4+3 =4 +3 ,∵1﹣ ab 2≠0, ∴a= ﹣ 1 舍去;当 a=﹣ ﹣ 1 时,原式 = +1﹣2﹣ =﹣ 1,∴(﹣ 1) 2003=﹣ 1,即 =﹣ 1. 点评:本题考查了因式分解、根与系数的关系及根的判别式,解题关键是注意 1﹣ab 2≠0 的运用. 26.已知3|2x ﹣ 1|+ +( z ﹣1) 2=0,求 x 2+y 2+z 2+2xy+2xz+2yz 值. 分析:首先利用非负数的性质求得 x 、 y 、 z 的值,然后代入代数式求解即可. 解答:解: ∵3|2x ﹣1|+ +( z ﹣ 1) 2=0,∴2x ﹣ 1=0, 3y ﹣ 1=0, z ﹣ 1=0 ∴x= , y= , z=1 ∴x 2+y 2+z 2+2xy+2xz+2yz= ( )2+( ) 2+12+2× × +2× ×1+2 × ×1=点评: 本题考查了因式分解的应用及非负数的性质,解题的关键是求得未知数的值.。
《整式的乘除与因式分解》培优训练及答案
![《整式的乘除与因式分解》培优训练及答案](https://img.taocdn.com/s3/m/b9e65bf8360cba1aa811dac1.png)
整式的乘除与因式分解一、选择题:1.下列计算正确的是( )A .105532a a a =+B .632a a a =⋅C .532)(a a =D . 8210a a a =÷2.下列计算结果正确的是( )A .4332222y x xy y x -=⋅-B .2253xy y x -=y x 22-C .xy y x y x 4728324=÷D .49)23)(23(2-=---a a a3.两个三次多项式相加,结果一定是 ( )A .三次多项式B .六次多项式C .零次多项式D .不超过三次的多项式4.把多项式()()()111---+x x x 提取公因式()1-x 后,余下的部分是( )A .()1+xB .()1+-xC .xD .()2+-x5.计算24(1)(1)(1)(1)x x x x -++--的结果是 ( )A 、2B 、0C 、-2D 、-56.已知代数式12x a -1y 3与-3x -b y 2a+b 是同类项,那么a 、b 的值分别是( )A .2,1a b =-⎧⎨=-⎩B .2,1a b =⎧⎨=⎩C .2,1a b =⎧⎨=-⎩D .2,1a b =-⎧⎨=⎩7.已知2239494b b a b a n m =÷,则( )A .3,4==n mB .1,4==n mC .3,1==n mD .3,2==n m8.如图,是一个正方形与一个直角三角形所拼成的图形,则该图形的面积为()A .m 2+12mnB .22mn n -C .22m mn+ D .222m n +9.若2()9a b +=,2()4a b -=,则ab 的值是( )A 、54B 、-54C 、1D 、-1 二、填空题: 1.分解因式2233ax ay -= .2.分解因式ab b a 8)2(2+- =_______.3.分解因式221218x x -+= .4.若22210a b b -+-+=,则a = ,b = .5.代数式4x 2+3mx +9是完全平方式,则m =___________.6. 已知a+b=5,ab=3,求下列各式的值:(1)a 2+b 2= ;(2)-3a 2+ab-3b 2= .7. 已知522=+b a ,()()223232a b a b --+=-48,则a b +=________. 8. 已知正方形的面积是2269y xy x ++ (x >0,y >0),利用分解因式,写出表示该正方形的边长的代数式 .9.观察下列等式: 第一行 3=4-1第二行 5=9-4第三行 7=16-9第四行 9=25-16… …按照上述规律,第n 行的等式为____________ .三、解答题:1.计算题(1)(-3xy 2)3·(61x 3y )2 (2)4a 2x 2·(-52a 4x 3y 3)÷(-21a 5xy 2)(3)222)(4)(2)x y x y x y --+( (4)221(2)(2))x x x x x-+-+-(2.因式分解(1)3123x x - (2)2222)1(2ax x a -+(3)xy y x 2122--+ (4))()3()3)((22a b b a b a b a -+++-3.解方程:41)8)(12()52)(3(=-+--+x x x x4.已知x 2+x -1=0,求x 3+2x 2+3的值5.若(x 2+px +q )(x 2-2x -3)展开后不含x 2,x 3项,求p 、q 的值.四.综合拓展:1.已知c b a 、、是△ABC 的三边的长,且满足0)(22222=+-++c a b c b a ,试判断此三角形的形状.2.已知2006x+2006y=1,x+3y=2006,试求2x 2+8xy+6y 2的值五.巩固练习:1.若n221623=÷,则n 等于( )A .10B .5C .3D .62.计算:xy xy y x y x 2)232(2223÷+--的结果是( ) A .xy y x 232- B .22322+-xy y x C .1232+--xy y x D .12322+--xy y x3.下列计算正确的是( )A .x y x y x 221222223=⋅÷ B .57222257919n m n m m n n m =÷⋅ C .mn mn n m n m =⋅÷24322)(2 D .22242231043)3012(y x y x y x y x +=÷+4.已知一个多项式与单项式457y x -的积为2234775)2(72821y x y y x y x +-,则这个多项式为___5.若(a+b )2=13(a-b )2=7求a 2+b 2和ab 的值。
初一下期数学培优学案(3)整式的乘法
![初一下期数学培优学案(3)整式的乘法](https://img.taocdn.com/s3/m/e3589c8d6bec0975f465e236.png)
初一下期数学培优学案(3)整式的乘法一、复习1.已知9x x x n m n m =⋅-+求m 的值.2、计算:①()47p ②()732x x ⋅ ③()()4334a a - ④ n 10101057⋅⋅ ⑤()[]32b a - ⑥()[]622-3、已知:a m =3 ;b n =3 ,用a ,b 表示n m +3和n m 323+4.①325353⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛- = ;②()42xy -= ;③()n a 3= ; ④ ()323ab -= ; ⑤20082008818⎪⎭⎫ ⎝⎛⨯= ⑥(-2ab 2)3=5、找简便方法计算:⑴()1011005.02⨯ (2)22532⨯⨯ ⑶424532⨯⨯二、单项式乘以单项式1、什么是单项式?次数?系数?2、完成下列计算. ①()()2343p p -- ②()⎪⎭⎫ ⎝⎛--32117a a ③b a c ab 2227⨯ ④()()y xz z xy 2243⨯ ⑤⎪⎭⎫ ⎝⎛-⨯z y x y x 623534323、单乘单法则归纳:4、练习1、下列计算中正确的是( )(A )()()1223322x x x -=-(B )()()23322623b a ab b a =(C )()()6224a x xa a -=-- (D )()()5322y x xyz xy =- 2、计算:①()3223xyx -⋅ ②()()c b b a 23245-⋅- ③()()y x xz xy 210515-⎪⎭⎫ ⎝⎛- ④(-3xy 2)2·(-2x 2y)⑤()()ac abc c 241223-⎪⎭⎫ ⎝⎛-⋅ ⑥()⎪⎭⎫ ⎝⎛--abx bc a 311162三、单项式乘以多项式1、去括号法则:2、写出乘法分配律?3、利用乘法分配律计算:①⎪⎭⎫ ⎝⎛+-1323233x x x ②()1326-+n m mn4、单乘单法则归纳:5、练习1、计算:①()()322532ab ab a -- ②()8325322+-x x x ⎪⎭⎫ ⎝⎛⋅⎪⎭⎫⎝⎛-232211632xy xy y x ④ ()⎪⎭⎫ ⎝⎛-⋅-xy y x xy 515322⑤()()()()3326510103102103⨯⨯-⨯⨯⨯2、化简:()222210313xy y x x y xy x -⋅-⎪⎭⎫⎝⎛-⋅-3、解方程:()()3421958--=-x x x x4、先化简再求值:()()x x x x x x 31222---- 其中2-=x四、单项式乘以多项式多项式乘以多项式的法则:先用_____________________________________,再把所得的积_______。
(完整版)整式的乘法与因式分解培优
![(完整版)整式的乘法与因式分解培优](https://img.taocdn.com/s3/m/71379d297f1922791788e818.png)
第二章整式的乘法【知识点归纳】1. 同底数幂相乘, 不变,相加。
a n. a m =(m,n 是正整数 )2. 幂的乘方,不变,相乘。
(a n ) m =(m,n是正整数 )3. 积的乘方,等于把 ,再把所得的幂。
(ab) n =(n 是正整数 )4. 单项式与单项式相乘,把它们的 、分别相乘。
5. 单项式与多项式相乘 ,先用单项式,再把所得的积,a ( m+n )=6. 多项式与多项式相乘,先用一个多项式的每一项分别乘,再把所得的积,( a+b )( m+n )=。
7. 平方差公式,即两个数的 与这两个数的的积等于这两个数的平方差( a+b )(a-b ) =8. 完满平方公式,即两数和(或差)的平方,等于它们的 ,加(或减)它们的积的。
(a+b ) 2=,(a-b ) 2=。
9. 公式的灵便变形: ( a+b ) 2+(a-b )2 = ,(a+b ) 2- (a-b )2 =,a 2+b 2=(a+b ) 2- ,a 2+b 2=(a-b ) 2+ ,(a+b ) 2=(a-b )2 +,( a-b ) 2=(a+b )2 -。
【例 1】若代数式 (2 x 2 ax y 6) (2bx 2 3x 5 y 1) 的值与字母 x 的取值没关,求代数 式3a 2 2b 2( 1a 2 3b 2 ) 的值 4 4【例 2】已知两个多项式 A 和 B ,A nx n 4x 3 nx 3 x 3, B 3x n 4x 4 x 3 nx 2 2x 1,试判断可否存在整数 n ,使 A B 是五次六项式?【例 3】已知 x, y, z 为自然数,且 x y ,当x y 1999, z x 2000时,求 x y z 的所有值中最大的一个是多少?【例4】若是代数式ax5bx3cx 5 当x 2 时的值为7 , 那么当 x 2 时 , 该式的值是.【例 5】已知a为实数 , 且使a33a23a 2 0 ,求 ( a 1)1996( a 1)1997(a1)1998的值.【例 6】(1)已知 2x+2=a,用含 a 的代数式表示 2x;(2)已知 x=3m+2,y=9m+3m,试用含 x 的代数式表示 y.【例7】我们知道多项式的乘法能够利用图形的面积进行讲解,如(2a+b)( a+b)=2a2 +3ab+b2就能用图 1 或图 2 等图形的面积表示:( 1)请你写出图 3 所表示的一个等式:.( 2)试画出一个图形,使它的面积能表示:(a+b)(a+3b)=a2+4ab+3b2.【例 8】与猜想:( 1)算:①( x 1)( x+1)=;②( x 1)( x2+x+1) =;③( x 1)( x3+x2+x+1) =;( 2)依照以上果,写出以下各式的果.①( x 1)(x6+x5+x4+x3+x2+x+1)=;②( x 1)(x9+x8+x7+x6+x5+x4+x3+x2+x+1)=;( 3)(x 1)( x n﹣1 +x n﹣2+x n﹣3+⋯ +x2+x+1) =( n 整数);15( 4)若( x 1)?m=x 1, m=;( 5)依照猜想的律,算:226+225+⋯ +2+1.【例 9】真资料,尔后回答:我初中学了多式的运算法,相的,我能够算出多式的张开式,如:(a+b)1=a+b,(a+b)2=a2 +2ab+b2,323223( a+b)=(a+b)(a+b)=a +3a b+3ab +b,⋯下面我依次( a+b)n张开式的各系数一步研究,n取正整数能够独列成表中的形式:上面的多项式张开系数表称为“杨辉三角形” ;仔细观察“杨辉三角形” ,用你发现的规律回答以下问题:( 1)多项式( a+b)n的张开式是一个几次几项式?并展望第三项的系数;( 2)推断出多项式( a+b)n(n 取正整数)的张开式的各项系数之和为 S,(结果用含字母 n 的代数式表示).课后作业:1、若2x 5 y30 ,求 4x32 y的值。
整式的乘除培优题目.doc
![整式的乘除培优题目.doc](https://img.taocdn.com/s3/m/027989533968011ca30091af.png)
第三讲整式的乘法和除法一、指数运算律是整式乘除的基础,分别有同底数幂的乘法:,幂的乘方:,积的乘方:,同底数幂的除法:. 学习指数运算律应该注意:(1)运算律成立的条件;(2)运算律字母的意义:既可以表示一个数,也可以是一个单项式或者多项式.(3)运算律的正向运用、逆向运用、综合运用.二、乘法公式是在多项式乘法的基础上。
经多项式乘法的一般法则应用于一些特殊形式的多项式相乘,得出的既有特殊性又有实用性的具体结论,在复杂的数值计算,代数式的化简求值、代数式的恒等变形、代数式的证明等方面有着广泛的应用. 在学习乘法公式时应该注意:(1)熟悉公式的结构特点,理解掌握公式;(2)根据待求式的特点,模仿套用公式;(3)对公式中字母的全面理解,灵活应用公式;(4)既能正用,又能逆用,且能适当变形或重新组合,综合运用公式.例1:(1)计算:2000 20007 3 151998( ) (2)比较大小:2000 20003 7 35(2342)1005例2:有足够多的长方形和正方形卡片,如下图:(1)如果选取 1 号、2 号、3 号卡片分别为 1 张、2 张、3 张,可拼成一个长方形(不重叠无缝隙),请画出这个长方形的草图,并运用拼图前后面积之间的关系说明这个长方形的代数意义.这个长方形的代数意义是.2 2(2)小明想用类似方法解释多项式乘法(a+3b)(2a+b)=2a +7ab+3b ,那么需用 2 号卡片张,3 号卡片张.例3:(1)在2004,2005,2006,2007 这四个数中,不能表示为两个整数的平方差的是.(2)已知( 2000 a)( 1998 a) 1999 ,那么 2 ( 1998 )2( a a .2000 )2 b 2 c 2 a例4:已知a,b,c 满足a 2 7,b 2 1,c 6 17 ,则a+b+c 的值等于()练习:24 23 1、填空: 4 ( 0. 25) 12n6na ( ). ;若a 3 ,则2 13、若n 1 n ,y 2n 1 2n 2 ,其中n为整数,则x与y 的数量关系是()x 2 2A.x=4yB.y=4xC.x=12yD.y=12x4、如图,甲类纸片是边长为2的正方形,乙类纸片是边长为1的正方形,丙类纸片是长、宽边长分别是 2 和1 的长方形.现有甲类纸片1张,乙类纸片4张,则应至少取丙类纸片张才能用它们拼成一个新的正方形.2 25、计算: 1. 2345 0. 7655 2. 469 0. 76556、计算: 2 19502 19512 19522 ... 19972 19982 199919492 7、计算:(1)219991998219991997199919992 2(2)( 2 219992005)(19991996199820013995 )20022000 18、已知a 5,求aa 4 2 1a2a?2 n 29、若n满足( n 2004) ( 2005 ) 1,则(2005 n)( n 2004 ) 等于().A.-1B.0C.12D.12 mn n2 m2n mn210、若m,n为有理数,且 2 2 4 4 0 m =()m ,则A.-8B.-16C.8D.1611、小颖与同学做游戏,她把一张纸剪成5块再从所得的纸片中任取一块再剪成5块;然后再从所得 的纸片 中 任 取 一块, 再 剪 成 5块; ⋯这样类似 地进行 下 去 , 能 不 能 在 第 n 次 剪 出 的纸片 恰 好 是 2 0 13块, 若 能 , 求 出这个 n 值; 若 不 能 ,请说明 理 由 . 12、一个自然数减去 45 后是一个完全平方数,这个自然数加上44, 后仍是一个完全平方数,试求这个自然数.。
培优专题整式的乘法
![培优专题整式的乘法](https://img.taocdn.com/s3/m/8e9aaf3676eeaeaad0f33049.png)
整式的乘法培优训练教师寄语:任何的限制,都是从自己的内心开始的。
忘掉失败,不过要牢记失败中的教训。
【知识精要】1、幂的运算性质(m、n为正整数)(m为正整数)(m、n为正整数)(m、n为正整数,且a≠0,m>n)(a≠0)(a≠0,p为正整数)2、整式的乘法公式:3、科学记数法其中(1≤|a|<10)4、单项式的乘法法则:单项式与单项式相乘,把他们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。
5、单项式乘以多项式:就是用单项式去乘多项式的每一项,再把所得的积相加。
6、多项式与多项式相乘:先用多项式的每一项乘以另一个多项式的每一项,再把所的的积相加。
7、单项式的除法法则:单项式相除,把系数、同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式。
8多项式除以单项式:先把这个多项式的每一项除以这个单项式,在把所的的商相加。
例1.已知1582=+xx,求2)12()1(4)2)(2(++---+xxxxx的值.练习:1.若0422=--aa, 求代数式2]3)2()1)(1[(2÷--+-+aaa的值. 2.已知012=--xx,求)5()3()2)(2(2---+-+xxxxx的值.3. 已知)1()3)(3(1,09322---+++=-+xxxxxxx)求(的值.4.已知222x x-=,求代数式2(1)(3)(3)(3)(1)x x x x x-++-+--的值.5. 已知132=-xx,求)1)(4()2()2(22--+-+-+xxxxx)(的值.例2:已知012=-+x x ,求代数式3223++x x 的值。
练习:1. 已知0332=-+x x ,求代数式103523-++x x x 的值。
2. 已知012=-+a a ,求代数式3432234+--+a a a a 的值。
3. 已知0132=+-x x ,求代数式200973223+--x x x 的值。
整式的乘除(讲义及答案)(20200420015744)
![整式的乘除(讲义及答案)(20200420015744)](https://img.taocdn.com/s3/m/3a8ebf4205087632311212c0.png)
整式的乘除(讲义)课前预习1.整式的分类:___________________________________定义:数字与字母的乘积组成的代数式单项式系数:单项式前面的次数:所有字母的整式定义:几个单项式的和项:组成多项式的每个单项式次数:项的次数2.________________________________________________叫做同类项;把同类项合并成一项叫做合并同类项;合并同类项时,________________________________________________.3.乘法分配律:()a b c _______________.4.类比迁移:老师出了一道题,让学生计算52x y x .小聪是这么做的:55232x y x x x x x y x y x x yx x x 请你类比小聪的做法计算:22282m n m n .知识点睛1.单×单:_______乘以________,_________乘以________.2.单×多:根据________________,转化为单×单.3.多×多:握手原则.4.单÷单:系数除以系数,字母除以字母.5.多÷单:借用乘法分配律.精讲精练1.①■342xy xy z _______;②2323(2)x y x y _______;③231(4)2x y y ______;④322(3)(2)a a ;⑤332(2)(2)x xy xy .2.①222(53)ab ab a b ______________________;②221232ab c ab ab ____________________;③31(2)14a a _________________;④222(2)()x y xy _________________________;⑤2222(3)x y z x x y _________________________.3.计算:①(34)(34)x y x y ;②()(321)m n m n ;③(2)(32)m n m n ;④2(2)x y ;⑤()()a b c a b c .“■”在不引起歧义的情况下,单项式和其他单项式或多项式运算时,本身可以不加括号.4.计算:①256(13)x x x x ;②210(23)(42)x x x .5.①2212a b c ab _____;②3532(3)(0.5)m n m n ______;③62(2)()xy xy ______;④22(2)(_______)2a b a ;⑤4348()()3a b a b ___________;⑥23243(2)(7)14x y xy x y .6.①532(46)(2)x x x _____________;②2211322x y xy xy xy_______________;③234432214633ab a b a b ab ___________________;④23222()(2)a b a b ab _____________;⑤43522(2)()m n m n mn ________________;⑥23(____________________)3231aa a .7.计算:①423322223(3)(2)(2)4a b ab a b a b a b ;。
初二数学整式的乘法讲义+练习
![初二数学整式的乘法讲义+练习](https://img.taocdn.com/s3/m/a342d9bb02d276a200292eae.png)
整式的乘法一、知识点总结:1、单项式的概念:由数与字母的乘积构成的代数式叫做单项式。
单独的一个数或一个字母也是单项式。
单项式的数字因数叫做单项式的系数,字母指数和叫单项式的次数。
如:bc a 22-的 系数为2-,次数为4,单独的一个非零数的次数是0。
2、多项式:几个单项式的和叫做多项式。
多项式中每个单项式叫多项式的项,次数最高项的次数叫多项式的次数。
如:122++-x ab a ,项有2a 、ab 2-、x 、1,二次项为2a 、ab 2-,一次项为x ,常数项为1,各项次数分别为2,2,1,0,系数分别为1,-2,1,1,叫二次四项式。
3、整式:单项式和多项式统称整式。
注意:凡分母含有字母代数式都不是整式,也不是单项式和多项式。
4、多项式按字母的升(降)幂排列:如:1223223--+-y xy y x x按x 的升幂排列:3223221x y x xy y +-+--按x 的降幂排列:1223223--+-y xy y x x5、同底数幂的乘法法则:m n m n a a a +=(n m ,都是正整数)同底数幂相乘,底数不变,指数相加。
注意底数可以是多项式或单项式。
如:235()()()a b a b a b ++=+练习:(1).a (____)·a 4=a20.(在括号内填数) (2).若102·10m =102003,则m= . (3).23·83=2n ,则n= .(4).-a 3·(-a )5= ; x ·x 2·x 3y= .(5). a 5·a n +a 3·a 2+n –a ·a 4+n +a 2·a 3+n = .(6).-32×33=_________;-(-a )2=_________;(-x )2·(-x )3=_________;(a +b )·(a +b )4=_________;0.510×211=_________;a ·a m ·_________=a 5m +1(7). 下面计算正确的是( )A .326b b b =;B .336x x x +=;C .426a a a +=;D .56mm m =(8).下列各式正确的是( )A .3a 2·5a 3=15a 6 B.-3x 4·(-2x 2)=-6x 6 C .3x 3·2x 4=6x 12 D.(-b )3·(-b )5=b 86、幂的乘方法则:mn n m a a =)((n m ,都是正整数)幂的乘方,底数不变,指数相乘。
第3讲 整式的乘法(解析版)
![第3讲 整式的乘法(解析版)](https://img.taocdn.com/s3/m/81c21bd227fff705cc1755270722192e453658b2.png)
第3讲 整式的乘法【知识点拨】考点1:单项式的乘法法则单项式与单项式相乘,把它们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它们的指数作为积的一个因式.知识要点:(1)单项式的乘法法则的实质是乘法的交换律和同底数幂的乘法法则的综合应用.(2)单项式的乘法方法步骤:积的系数等于各系数的积,是把各单项式的系数交换到一起进行有理数的乘法计算,先确定符号,再计算绝对值;相同字母相乘,是同底数幂的乘法,按照“底数不变,指数相加”进行计算;只在一个单项式里含有的字母,要连同它的指数写在积里作为积的一个因式.(3)运算的结果仍为单项式,也是由系数、字母、字母的指数这三部分组成.(4)三个或三个以上的单项式相乘同样适用以上法则.考点2:单项式与多项式相乘的运算法则单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.即()m a b c ma mb mc ++=++.知识要点:(1)单项式与多项式相乘的计算方法,实质是利用乘法的分配律将其转化为多个单项式乘单项式的问题.(2)单项式与多项式的乘积仍是一个多项式,项数与原多项式的项数相同.(3)计算的过程中要注意符号问题,多项式中的每一项包括它前面的符号,同时还要注意单项式的符号.(4)对混合运算,应注意运算顺序,最后有同类项时,必须合并,从而得到最简的结果. 考点3:多项式与多项式相乘的运算法则多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.即()()a b m n am an bm bn ++=+++.知识要点:多项式与多项式相乘,仍得多项式.在合并同类项之前,积的项数应该等于两个多项式的项数之积.多项式与多项式相乘的最后结果需化简,有同类项的要合并.特殊的二项式相乘:()()()2x a x b x a b x ab ++=+++.【考点精讲】考点1:单项式乘单项式【例1】(2021秋•渝中区校级月考)计算的结果是.【解答】解:=x2y6•6x2y=x4y7,故答案为:x4y7.【例2】(2021秋•朝阳区校级月考)下列运算正确的是()A.3a2•2a=6a3B.(﹣a2)3=a6C.(a+b)2=a2+b2D.a2+b2=a4【解答】解:3a2•2a=6a3,故选项A正确;(﹣a2)3=﹣a6,故选项B错误;(a+b)2=a2+2ab+b2,故选项C错误;a2+b2不能合并为一项,故选项D错误;故选:A.【变式训练1】(2021春•扬中市期中)()2=4x2y4;(a2b)2•(a2b)3=.【解答】解:(±2xy2)2=4x2y4;(a2b)2•(a2b)3=a4b2•a6b3=a10b5;故答案为:±2xy2;a10b5.【变式训练2】(2021春•沙坪坝区校级月考)计算(﹣b)2•(﹣b)3•(﹣b)5=;(﹣x2)•(﹣x)2•(﹣x)3=;﹣4xy3•(﹣xy)+(﹣3xy2)2=.【解答】解:(﹣b)2•(﹣b)3•(﹣b)5=(﹣b)10=b10;(﹣x2)•(﹣x)2•(﹣x)3=﹣x2•x2•(﹣x3)=x7;﹣4xy3•(﹣xy)+(﹣3xy2)2=4x2y4+9x2y4=13x2y4.故答案为:b10;x7;13x2y4.【变式训练3】(2021春•郴州期末)计算2a•a2﹣a3的结果是.【解答】解:2a•a2﹣a3=2a3﹣a3=a3.故答案为:a3.【变式训练4】(2021秋•长春期中)若2a3y2•(﹣4a2y3)=ma5y n,则m+n的值为.【解答】解:∵2a3y2•(﹣4a2y3)=﹣8a5y5=ma5y n,∴m=﹣8,n=5,∴m+n=﹣8+5=﹣3.故答案为:﹣3.【变式训练5】(2021秋•延边州期末)计算:2a2•3a3﹣2a•(﹣a2)2.【解答】解:2a2•3a3﹣2a•(﹣a2)2.=2a2•3a3﹣2a•a4=6a5﹣2a5=4a5.【变式训练6】(2021秋•海淀区期中)计算:(1)x•x3+x2•x2.(2)5x2y•(﹣2xy2)3.(3)7x4•x5•(﹣x)7+5(x4)4.【解答】解:(1)原式=x4+x4=2x4;(2)原式=5x2y•(﹣8x3y6)=﹣40x5y7;(3)原式=7x4•x5•(﹣x7)+5x16=﹣7x16+5x16=﹣2x16.考点2:单项式乘多项式【例1】(2021秋•岳麓区校级月考)若一个长方体的长、宽、高分别为2x,x,3x﹣4,则长方体的体积为()A.3x3﹣4x2B.6x2﹣8x C.6x3﹣8x2D.6x3﹣8x【解答】解:由题意知,V长方体=(3x﹣4)•2x•x=6x3﹣8x2.故选:C.【例2】(2021春•常德期中)计算:﹣2a2(a﹣3ab)=.【解答】解:﹣2a2(a﹣3ab)=﹣2a3+6a3b.故答案为:﹣2a3+6a3b.【变式训练1】(2021春•竞秀区期末)某同学在计算﹣3x2乘一个多项式时错误的计算成了加法,得到的答案是x2﹣x+1,由此可以推断该多项式是()A.4x2﹣x+1 B.x2﹣x+1 C.﹣2x2﹣x+1 D.无法确定【解答】解:根据题意得:多项式为x2﹣x+1﹣(﹣3x2),x2﹣x+1﹣(﹣3x2)=x2﹣x+1+3x2=4x2﹣x+1,故选:A.【变式训练2】(2021秋•浦东新区期中)计算:﹣ab(9ab﹣a+6b)=.【解答】解:﹣ab(9ab﹣a+6b)=﹣6a2b2+a2b﹣4ab2.故答案为:﹣6a2b2+a2b﹣4ab2.【变式训练3】(2021春•永登县期中)解方程:2x(x﹣1)﹣x(2x+3)=15.【解答】解:2x(x﹣1)﹣x(2x+3)=152x2﹣2x﹣2x2﹣3x=15,整理得:﹣5x=15,解得:x=﹣3.【变式训练4】(2021秋•濮阳县校级月考)化简:x(x+1)﹣3x(x﹣2).【解答】解:原式=x2+x﹣x2+6x=﹣4x2+7x.考点3:多项式乘多项式【例1】(2021秋•荔湾区期末)若2x+m与x+3的乘积中不含x的一次项,则m的值为()A.﹣6 B.0 C.﹣2 D.3【解答】解:(2x+m)(x+3)=2x2+(m+6)x+3m,∵2x+m与x+3的乘积中不含x的一次项,∴m+6=0,解得:m=﹣6.故选:A.【例2】(2021秋•金昌期末)若(x2﹣x+m)(x﹣8)中不含x的一次项,则m的值为.【解答】解:(x2﹣x+m)(x﹣8)=x3﹣8x2﹣x2+8x+mx﹣8m=x3﹣9x2+(8+m)x﹣8m,∵不含x的一次项,∴8+m=0,解得:m=﹣8.故答案为﹣8.【变式训练1】(2021秋•肇州县期末)如果在计算(x+m)(x﹣6)所得的结果中不含x的一次项,则常数m的值为()A.m=0 B.m=6 C.m=﹣6 D.m=1【解答】解:(x+m)(x﹣6)=x2﹣6x+mx﹣6m=x2+(m﹣6)x﹣6m,∵(x+m)(x﹣6)所得的结果中不含x的一次项,∴m﹣6=0,∴m=6.故选:B.【变式训练2】(2021秋•海淀区校级期中)下列有四个结论.其中正确的是.①若(x﹣1)x+1=1,则x只能是2;②若(x﹣1)(x2+ax+1)的运算结果中不含x2项,则a=1;③若a+b=10,ab=2,则a﹣b=2;④若4x=a,8y=b,则23y﹣2x可表示.【解答】解:①若(x﹣1)x+1=1,则x是2或﹣1.故①错误;②若(x﹣1)(x2+ax+1)的运算结果中不含x2项,∵(x﹣1)(x2+ax+1)=x3+(a﹣1)x2+(1﹣a)x﹣1,∴a﹣1=0,解得a=1,故②正确;③若a+b=10,ab=2,∵(a﹣b)2=(a+b)2﹣4ab=100﹣8=92,则a﹣b=2,故③错误;④若4x=a,8y=b,则23y﹣2x=(23)y÷(22)x=8y÷4x=.故④正确.所以其中正确的是②④.故答案为:②④.【变式训练3】(2021秋•路南区期中)若关于x的多项式(2x﹣m)与(3x+5)的乘积中,一次项系数为25,则m的值()A.5 B.﹣5 C.3 D.﹣3【解答】解:(2x﹣m)(3x+5)=6x2﹣3mx+10x﹣5m=6x2+(10﹣3m)x﹣5m.∵积的一次项系数为25,∴10﹣3m=25.解得m=﹣5.故选:B.【变式训练4】(2021秋•东城区校级期中)在(x2+ax+b)(2x2﹣3x﹣1)的积中,x3项的系数为﹣5,x2项的系数为﹣6,求a,b的值.【解答】解:(x2+ax+b)(2x2﹣3x﹣1)=2x4﹣3x3﹣x2+2ax3﹣3ax2﹣ax+2bx2﹣3bx﹣b=2x4+(2a﹣3)x3+(2b﹣3a﹣1)x2﹣(a+3b)x﹣b,根据题意得:2a﹣3=﹣5,2b﹣3a﹣1=﹣6,解得:a=﹣1,b=﹣4.【变式训练5】(2021春•开福区校级期中)小明与小乐两人共同计算(2x+a)(3x+b),小明抄错为(2x﹣a)(3x+b),得到的结果为6x2﹣13x+6;小乐抄错为(2x+a)(x+b),得到的结果为2x2﹣x﹣6.(1)式子中的a,b的值各是多少?(2)请计算出原题的答案.【解答】解:(1)∵(2x﹣a)(3x+b)=6x2+(2b﹣3a)x﹣ab=6x2﹣13x+6,∴2b﹣3a=﹣13①,∵(2x+a)(x+b)=2x2+(2b+a)x+ab=2x2﹣x﹣6,∴2b+a=﹣1②,联立方程①②,可得,解得:;(2)(2x+a)(3x+b)=(2x+3)(3x﹣2)=6x2+5x﹣6.【变式训练6】(2021秋•滕州市期末)如图,在某住房小区的建设中,为了提高业主的宜居环境,小区准备在一个长为(4a+3b)米,宽为(2a+3b)米的长方形草坪上修建两条宽为b米的通道.(1)通道的面积是多少平方米?(2)剩余草坪的面积是多少平方米?【解答】解:(1)b(2a+3b)+b(4a+3b)﹣b2=2ab+3b2+4ab+3b2﹣b2=6ab+5b2(平方米).答:通道的面积是(6ab+5b2)平方米.(2)(4a+3b)(2a+3b)﹣(6ab+5b2)=8a2+6ab+12ab+9b2﹣6ab﹣5b2=8a2+12ab+4b2(平方米),答:剩余草坪的面积是(8a2+12ab+4b2)平方米.【课后巩固】一.选择题1.(2021秋•肇州县期末)如果在计算(x+m)(x﹣6)所得的结果中不含x的一次项,则常数m的值为()A.m=0 B.m=6 C.m=﹣6 D.m=1【解答】解:(x+m)(x﹣6)=x2﹣6x+mx﹣6m=x2+(m﹣6)x﹣6m,∵(x+m)(x﹣6)所得的结果中不含x的一次项,∴m﹣6=0,∴m=6.故选:B.2.(2021秋•遵义期末)根据图1的面积可以说明多项式的乘法运算(2a+b)(a+b)=2a2+3ab+b2,那么根据图2的面积可以说明多项式的乘法运算是()A.(a+3b)(a+b)=a2+4ab+3b2B.(a+3b)(a+b)=a2+3b2C.(b+3a)(b+a)=b2+4ab+3a2D.(a+3b)(a﹣b)=a2+2ab﹣3b2【解答】解:根据图2的面积得:(a+3b)(a+b)=a2+4ab+3b2,故选:A.3.(2021秋•定西期末)若(x﹣2)(x+3)=x2+ax+b,则a、b的值分别为()A.a=5,b=6 B.a=1,b=﹣6 C.a=1,b=6 D.a=5,b=﹣6【解答】解:∵(x﹣2)(x+3)=x2+x﹣6=x2+ax+b,∴a=1,b=﹣6.故选:B.4.(2021秋•浦东新区校级月考)下列式子中计算错误的是()A.(4×103)(5×103)=2×107B.4×103+5×103=9×103C.(4×10)3=6.4×104 D.43×53=2×103【解答】解:A、(4×103)(5×103)=2×107,正确,本选项不符合题意.B、4×103+5×103=9×103,正确,本选项不符合题意.C、(4×10)3=6.4×104,正确,本选项不符合题意.D、43×53=23×103,错误,本选项符合题意.故选:D.5.(2021春•碑林区校级月考)若(x2+x+b)•(2x+c)=2x3+7x2﹣x+a,则a,b,c的值分别为()A.a=﹣15,b=﹣3,c=5 B.a=﹣15,b=3,c=﹣5C.a=15,b=3,c=5 D.a=15,b=﹣3,c=﹣5【解答】解:∵(x2+x+b)•(2x+c)=2x3+7x2﹣x+a,2x3+2x2+2bx+cx2+cx+bc=2x3+7x2﹣x+a,2x3+(2+c)x2+(2b+c)x+bc=2x3+7x2﹣x+a,∴2+c=7,2b+c=﹣1,bc=a.解得c=5,b=﹣3,a=﹣15.故选:A.6.(2021春•宿豫区期中)如图,正方形卡片A类、B类和长方形卡片C类各若干张,如果要拼一个长为(2a+3b),宽为(a+2b)的大长方形,则需要A类、B类和C类卡片的张数分别为()A.2,8,5 B.3,8,6 C.3,7,5 D.2,6,7【解答】解:长为(2a+3b),宽为(a+2b)的大长方形的面积为:(2a+3b)×(a+2b)=2a2+7ab+6b2,∵A类卡片的面积为a2,B类卡片的面积为b2,C类卡片的面积为ab,∴需要A类卡片2张,B类卡片6张,C类卡片7张.故选:D.二.填空题7.(2021秋•朝阳区期中)如图,现有A类、B类正方形卡片和C类长方形卡片各若干张,若要拼一个长为(3a+b),宽为(a+2b)的大长方形,则需要7张C类卡片.【解答】解:∵(3a+b)(a+2b)=3a2+6ab+ab+2b2=3a2+7ab+2b2,∴若要拼一个长为(3a+b),宽为(a+2b)的大长方形,则需要A类3张,B类2张,C类7张.故答案为:7.8.(2021秋•浦东新区期中)将关于x的多项式x2+2x+3与2x+b相乘,若积中不出现一次项,则b=﹣3.【解答】解:根据题意得:(x2+2x+3)(2x+b)=2x3+(4+b)x2+(6+2b)x+3b,由积中不出现一次项,得到6+2b=0,解得:b=﹣3.故答案为:﹣3.9.(2021秋•香坊区校级期中)已知a﹣b=6,ab=5,则(a+1)(b﹣1)=﹣2.【解答】解:∵a﹣b=6,ab=5,∴(a+1)(b﹣1)=ab﹣a+b﹣1=ab﹣(a﹣b)﹣1=5﹣6﹣1=﹣2;故答案为:﹣2.10.(2021秋•海淀区校级期中)下列有四个结论.其中正确的是②④.①若(x﹣1)x+1=1,则x只能是2;②若(x﹣1)(x2+ax+1)的运算结果中不含x2项,则a=1;③若a+b=10,ab=2,则a﹣b=2;④若4x=a,8y=b,则23y﹣2x可表示.【解答】解:①若(x﹣1)x+1=1,则x是2或﹣1.故①错误;②若(x﹣1)(x2+ax+1)的运算结果中不含x2项,∵(x﹣1)(x2+ax+1)=x3+(a﹣1)x2+(1﹣a)x﹣1,∴a﹣1=0,解得a=1,故②正确;③若a+b=10,ab=2,∵(a﹣b)2=(a+b)2﹣4ab=100﹣8=92,则a﹣b=2,故③错误;④若4x=a,8y=b,则23y﹣2x=(23)y÷(22)x=8y÷4x=.故④正确.所以其中正确的是②④.故答案为:②④.11.(2021秋•雨花区校级月考)如图.现有正方形卡片A类,B类和长方形卡片C类各若干张,如果要拼一个长为(a+3b),宽为(3a+2b)的大长方形,那么需要C类卡片的张数是11.【解答】解:∵(a+3b)(3a+2b)=3a2+11ab+6b2,∵一张C类卡片的面积为ab,∴需要C类卡片11张.故答案为:11.12.(2021春•百色期末)若(ax+2y)(x﹣y)展开式中,不含xy项,则a的值为2.【解答】解:(ax+2y)(x﹣y)=ax2+(2﹣a)xy﹣2y2,含xy的项系数是2﹣a.∵展开式中不含xy的项,∴2﹣a=0,解得a=2.故答案为:2.13.(2014春•宜兴市校级期末)如图,正方形卡片A类、B类和长方形卡片C类各若干张(a≠b),如果要选用上述3类卡片共12张拼成一个大长方形(拼接时不可重叠,不可有缝隙)、且卡片全部用上,则不同的选取方案有11种.【解答】解:∵(a+b)(a+5b)=a2+6ab+5b2,∴1张A类卡片,6张C类卡片,5张B;类卡片,共12张,∵(a+b)(5a+b)=5a2+6ab+b2,∴5张A类卡片,6张C类卡片,1张B;类卡片,共12张,∵(a+b)(2a+4b)=2a2+6ab+4b2,∴2张A类卡片,6张C类卡片,4张B;类卡片,共12张,∵(a+b)(4a+2b)=4a2+6ab+2b2,∴4张A类卡片,6张C类卡片,2张B;类卡片,共12张,∵(a+b)(3a+3b)=3a2+6ab+3b2,∴3张A类卡片,6张C类卡片,3张B;类卡片,共12张,∵(a+2b)(a+3b)=a2+5ab+6b2,∴1张A类卡片,5张C类卡片,6张B;类卡片,共12张,∵(a+2b)(3a+b)=3a2+7ab+2b2,∴3张A类卡片,7张C类卡片,2张B;类卡片,共12张,∵(a+2b)(2a+2b)=2a2+6ab+4b2,∴2张A类卡片,6张C类卡片,4张B;类卡片,共12张,∵(2a+b)(a+3b)=2a2+7ab+3b2,∴2张A类卡片,7张C类卡片,3张B;类卡片,共12张,∵(2a+b)(3a+b)=6a2+5ab+b2,∴6张A类卡片,5张C类卡片,1张B;类卡片,共12张,∵(2a+b)(2a+2b)=4a2+6ab+2b2,∴4张A类卡片,6张C类卡片,2张B;类卡片,共12张,故一共有11种方案.14.设a、b、c、d为互不相等的实数,且(a2﹣c2)(a2﹣d2)=1,(b2﹣c2)(b2﹣d2)=1,则a2b2﹣c2d2=﹣1.【解答】解:a2、b2﹣是方程(x﹣c2)(x﹣d2)=1的两个根展开得:x2﹣(c2+d2)x+c2d2﹣1=0由根与系数的关系得:a2b2=c2d2﹣1∴a2b2﹣c2d2=﹣1故答案为:﹣1.15.(2021秋•奉贤区期末)计算:(x﹣1)(x+3)=x2+2x﹣3.【解答】解:(x﹣1)(x+3)=x2+3x﹣x﹣3=x2+2x﹣3.故答案为:x2+2x﹣3.16.(2021秋•昭阳区期末)在我们所学的课本中,多项式与多项式相乘可以用几何图形的面积来表示,例如:(2a+b)(a+b)=2a2+3ab+b2就可以用下面图中的图①来表示.请你根据此方法写出图②中图形的面积所表示的代数恒等式:(a+2b)(2a+b)=2a2+5ab+2b2.【解答】解:根据图形列得:(a+2b)(2a+b)=2a2+5ab+2b2.故答案为:(a+2b)(2a+b)=2a2+5ab+2b2.三.解答题17.(2021秋•新宾县期末)如图,某市有一块长(3a+b)米,宽为(2a+b)米的长方形地块,规划部门计划将阴影部分进行绿化,中间空白处将修建一座雕像.(1)求绿化的面积是多少平方米.(2)当a=2,b=1时求绿化面积.【解答】解:(1)S绿化面积=(3a+b)(2a+b)﹣(a+b)2=6a2+5ab+b2﹣a2﹣2ab﹣b2=5a2+3ab;答:绿化的面积是(5a2+3ab)平方米;(2)当a=2,b=1时,绿化面积=5×22+3×2×1=20+6=26.答:当a=2,b=1时,绿化面积为26平方米.18.(2021秋•河北区期末)计算:(1)(2)(x﹣1)(2x+1)﹣2(x﹣5)(x+2)【解答】解:(1)==﹣4x5y3+9x4y2﹣2x2y;(2)(x﹣1)(2x+1)﹣2(x﹣5)(x+2)=2x2+x﹣2x﹣1﹣2(x2+2x﹣5x﹣10)=2x2﹣x﹣1﹣2x2+6x+20=5x+19.19.(2021秋•抚顺县期末)如图,有一块长(3a+b)米,宽(2a+b)米的长方形广场,园林部门要对阴影区域进行绿化,空白区域进行广场硬化,阴影部分是边长为(a+b)米的正方形.(1)计算广场上需要硬化部分的面积;(2)若a=30,b=10,求硬化部分的面积.【解答】解:(1)根据题意,广场上需要硬化部分的面积是(2a+b)(3a+b)﹣(a+b)2=6a2+2ab+3ab+b2﹣(a+b)2=6a2+5ab+b2﹣(a2+2ab+b2)=6a2+5ab+b2﹣a2﹣2ab﹣b2=5a2+3ab答:广场上需要硬化部分的面积是(5a2+3ab)m2.(2)把a=30,b=10代入5a2+3ab=5×302+3×30×10=5400 m2答:广场上需要硬化部分的面积是5400m2.20.(2021秋•绿园区期末)某公司门前一块长为(6a+2b)米,宽为(4a+2b)米的长方形空地要铺地砖,如图所示,空白的甲、乙两正方形区域是建筑物,不需要铺地砖.两正方形区域的边长均为(a+b)米.(1)求铺设地砖的面积是多少平方米;(2)当a=2,b=3时,需要铺地砖的面积是多少?(3)在(2)的条件下,某种道路防滑地砖的规格是:正方形,边长为0.2米,每块1.5元,不考虑其他因素,如果要购买此种地砖,需要7575元钱.【解答】解:(1)铺设地砖的面积为:(6a+2b)(4a+2b)﹣2(a+b)2=24a2+20ab+4b2﹣2a2﹣4ab﹣2b2=22a2+16ab+2b2(平方米),答:铺设地砖的面积为22a2+16ab+2b2平方米;(2)当a=2,b=3时,原式=22×22+16×2×3+2×32=202(平方米),答:当a=2,b=3时,需要铺地砖的面积是202平方米;(3)202÷0.22×1.5=7575(元),故答案为:7575.21.(2021秋•市中区期中)(1)如图,长方形ABCD的周长为16,四个正方形的面积和为68,求矩形ABCD 的面积.(2)若(x2+nx+3)(x2﹣3x+m)的展开式中不含x2项和x3项,求m,n的值.【解答】解:(1)设AB=x,BC=y,由题意得,∵长方形ABCD的周长为16,∴2(x+y)=16,即x+y=8 ①,又∵四个正方形的面积和为68,∴2x2+2y2=68,即:x2+y2=34 ②,①的两边平方得(x+y)2=64,即x2+2xy+y2=64,将②代入得,2xy=30,∴xy=15,即矩形ABCD的面积为15;(2)(x2+nx+3)(x2﹣3x+m)=x4+(﹣3+n)x3+(m﹣3n+3)x2+(mn﹣9)x+3m,∵不含x2和x3项∴﹣3+n=0,m﹣3n+3=0,解得,m=6,n=3,答:m、n的值为6,3.22.(2021秋•海淀区校级期中)已知多项式x+2与另一个多项式A的乘积为多项式B.(1)若A为关于x的一次多项式x+a,B中x的一次项系数为0,直接写出a的值;(2)若B为x3+px2+qx+2,求2p﹣q的值.(3)若A为关于x的二次多项式x2+bx+c,判断B是否可能为关于x的三次二项式,如果可能,请求出b,c的值;如果不可能,请说明理由.【解答】解:(1)根据题意可知:B=(x+2)(x+a)=x2+(a+2)x+2a,∵B中x的一次项系数为0,∴a+2=0,解得a=﹣2.(2)设A为x2+tx+1,则(x+2)(x2+tx+1)=x3+px2+qx+2,∴,∴2p﹣q=2(t+2)﹣(2t+1)=3;(3)B可能为关于x的三次二项式,理由如下:∵A为关于x的二次多项式x2+bx+c,∴b,c不能同时为0,∵B=(x+2)(x2+bx+c)=x3+(b+2)x2+(2b+c)x+2c.当c=0时,B=x3+(b+2)x2+2bx,∵b不能为0,∴只能当b+2=0,即b=﹣2时,B为三次二项式,为x3﹣4x;当c≠0时,B=x3+(b+2)x2+(2b+c)x+2c.只有当,即时,B为三次二项式,为x3+8.综上所述:当或时,B为三次二项式.23.(2021秋•双流区校级期中)为探求1×2+2×3+3×4+…+n(n+1)的值,喜欢研究的小明同学发现有下面三个等式:1×2=(1×2×3﹣0×1×2)2×3=(2×3×4﹣1×2×3)3×4=(3×4×5﹣2×3×4)他将这三个式子相加得到1×2+2×3+3×4=×3×4×5.请你沿着小明的思路继续研究:(1)填空:计算1×2+2×3+3×4+…+100×101=343400.计算1×2+2×3+3×4+…+n×(n+1)=n(n+1)(n+2).(2)利用(1)的规律计算:2×4+4×6+6×8+…+100×102.(3)继续研究,计算1×2×3+2×3×4+3×4×5+…+n(n+1)(n+2)的公式(要求仿照小明的思路写出推导过程).【解答】解:(1)1×2+2×3+3×4+…+100×101=(100×101×102)=343400,1×2+2×3+3×4+…+n×(n+1)=n×(n+1)(n+2),故答案为:343400,n(n+1)(n+2);(2)仿照上述的方法可得,2×4=(2×4×6﹣0×2×4),4×6=(4×6×8﹣2×4×6),6×8=(6×8×10﹣4×6×8),……100×102=(100×102×104﹣98×100×102),将上式相加得,2×4+4×6+6×8+…+100×102=(100×102×104)=176800;(3)仿照上述的方法可得,1×2×3=(1×2×3×4﹣0×1×2×3),2×3×4=(2×3×4×5﹣1×2×3×4),3×4×5=(3×4×5×6﹣2×3×4×5),……n(n+1)(n+2)=[n(n+1)(n+2)(n+3)﹣(n﹣1)n(n+1)(n+2)],将上述的式子相加得,1×2×3+2×3×4+3×4×5+…+n(n+1)(n+2)=n(n+1)(n+2)(n+3).24.(2021春•顺德区校级期末)(﹣2y3)2+(﹣4y2)3﹣(﹣2y)2•(﹣3y2)2.【解答】解:(﹣2y3)2+(﹣4y2)3﹣(﹣2y)2•(﹣3y2)2=4y6﹣64y6﹣4y2•(9y4)=4y6﹣64y6﹣36y6=﹣96y6.25.(2021春•潍坊期中)如图,某市有一块长为(3a+b)米,宽为(2a+b)米的长方形地块,规划部门计划将阴影部分进行绿化,中间将修建一座雕像,则绿化的面积是多少平方米?并求出当a=6,b=4时的绿化面积.【解答】解:S阴影=(3a+b)(2a+b)﹣(a+b)2=6a2+3ab+2ab+b2﹣a2﹣2ab﹣b2=5a2+3ab(平方米),当a=6,b=4时,5a2+3ab=5×36+3×6×4=180+72=252(平方米).26.(2021秋•潮州期末)欢欢与乐乐两人共同计算(2x+a)(3x+b),欢欢抄错为(2x﹣a)(3x+b),得到的结果为6x2﹣13x+6;乐乐抄错为(2x+a)(x+b),得到的结果为2x2﹣x﹣6.(1)式子中的a、b的值各是多少?(2)请计算出原题的正确答案.【解答】解:(1)根据题意可知,由于欢欢抄错了第一个多项式中的a的符号,得到的结果为6x2﹣13x+6,那么(2x﹣a)(3x+b)=6x2+(2b﹣3a)x﹣ab=6x2﹣13x+6,可得2b﹣3a=﹣13 ①乐乐由于漏抄了第二个多项式中的x的系数,得到的结果为2x2﹣x﹣6,可知(2x+a)(x+b)=2x2﹣x﹣6即2x2+(2b+a)x+ab=2x2﹣x﹣6,可得2b+a=﹣1 ②,解关于①②的方程组,可得a=3,b=﹣2;(2)正确的式子:(2x+3)(3x﹣2)=6x2+5x﹣6。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
整式的乘法(提高)【学习目标】1. 会进行单项式的乘法,单项式与多项式的乘法,多项式的乘法计算.2. 掌握整式的加、减、乘、乘方的较简单的混合运算,并能灵活地运用运算律简化运算. 【要点梳理】要点一、单项式的乘法法则单项式与单项式相乘,把它们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它们的指数作为积的一个因式.要点诠释:(1)单项式的乘法法则的实质是乘法的交换律和同底数幂的乘法法则的综合应用.(2)单项式的乘法方法步骤:积的系数等于各系数的积,是把各单项式的系数交换到一起进行有理数的乘法计算,先确定符号,再计算绝对值;相同字母相乘,是同底数幂的乘法,按照“底数不变,指数相加”进行计算;只在一个单项式里含有的字母,要连同它的指数写在积里作为积的一个因式.(3)运算的结果仍为单项式,也是由系数、字母、字母的指数这三部分组成. (4)三个或三个以上的单项式相乘同样适用以上法则. 要点二、单项式与多项式相乘的运算法则单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.即()m a b c ma mb mc ++=++.要点诠释:(1)单项式与多项式相乘的计算方法,实质是利用乘法的分配律将其转化为多个单项式乘单项式的问题.(2)单项式与多项式的乘积仍是一个多项式,项数与原多项式的项数相同. (3)计算的过程中要注意符号问题,多项式中的每一项包括它前面的符号,同时还要注意单项式的符号.(4)对混合运算,应注意运算顺序,最后有同类项时,必须合并,从而得到最简的结果.要点三、多项式与多项式相乘的运算法则多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.即()()a b m n am an bm bn ++=+++.要点诠释:多项式与多项式相乘,仍得多项式.在合并同类项之前,积的项数应该等于两个多项式的项数之积.多项式与多项式相乘的最后结果需化简,有同类项的要合并.特殊的二项式相乘:()()()2x a x b x a b x ab ++=+++.【典型例题】类型一、单项式与单项式相乘1、 计算: (1)()()121232n n xy xy x z +⎛⎫-⋅-⋅- ⎪⎝⎭(2)322325(3)(6)()(4)a b b ab ab ab a -+----.【答案与解析】 解:(1)()()121232n n xy xy x z +⎛⎫-⋅-⋅- ⎪⎝⎭()()()()121232n nx x x y y z +⎡⎤⎛⎫=-⨯-⨯-⋅⋅⋅⋅ ⎪⎢⎥⎝⎭⎣⎦413n n x y z ++=-(2)322325(3)(6)()(4)a bb ab ab ab a -+----3222325936()16a b b a b ab ab a =+--333333334536167a b a b a b a b =--=-.【总结升华】凡是在单项式里出现过的字母,在其结果也应全都有,不能漏掉.注意运算顺序,有同类项,必须合并.类型二、单项式与多项式相乘2、计算: (1)(2)2(1)3(5)x x x x x x --+-- (2)2322(32)3(21)a a a a a a +--+-+【思路点拨】先单项式乘多项式去掉括号,然后移项、合并进行化简. 【答案与解析】解:(1)(2)2(1)3(5)x x x x x x --+--2(2)(2)(2)(3)(3)(5)x x x x x x x x =+-+-+-+-+--2222222315411x x x x x x x x =----+=-+.(2)2322(32)3(21)a a a a a a +--+-+2322232(2)(3)(3)2(3)()(3)a a a a a a a a =++-+-+-+--+-3232326436333a a a a a a a a =+---+-=---.【总结升华】(1)本题属于混合运算题,计算顺序仍然是先乘除、后加减,先去括号等.混合运算的结果有同类项的需合并,从而得到最简结果.(2)单项式与多项式的每一项都要相乘,不能漏乘、多乘.(3)在确定积的每一项的符号时,一定要小心. 举一反三:【变式】(秋•台山市校级期中)化简:x (x ﹣1)+2x (x+1)﹣3x (2x ﹣5). 【答案】解:原式=x 2﹣x+2x 2+2x ﹣6x 2+15x=﹣3x 2+16x .3、(秋•德惠市期末)先化简,再求值3a (2a 2﹣4a+3)﹣2a 2(3a+4),其中a=﹣2. 【思路点拨】首先根据单项式与多项式相乘的法则去掉括号,然后合并同类项,最后代入已知的数值计算即可. 【答案与解析】解:3a (2a 2﹣4a+3)﹣2a 2(3a+4)=6a 3﹣12a 2+9a ﹣6a 3﹣8a 2=﹣20a 2+9a ,当a=﹣2时,原式=﹣20×4﹣9×2=﹣98. 【总结升华】本题考查了单项式乘以多项式以及整式的化简求值.整式的化简求值实际上就是去括号、合并同类项,这是各地中考的常考点. 举一反三:【变式】若20x y +=,求332()4x xy x y y +++的值. 【答案】解:332()4x xy x y y +++3223224x x y xy y =+++ 22(2)2(2)x x y y x y =+++,当20x y +=时,原式=220020x y +=.类型三、多项式与多项式相乘4、(秋•天水期中)若(x 2+nx +3)(x 2﹣3x +m )的展开式中不含x 2和x 3项,求m ,n 的值.【思路点拨】缺项就是多项式中此项的系数为零,此题中不含x 2和3x 项,也就是x 2和3x 项的系数为0,由此得方程组求解. 【答案与解析】解:原式的展开式中,含x 2的项是:mx 2+3x 2﹣3nx 2=(m +3﹣3n )x 2, 含x 3的项是:﹣3x 3+nx 3=(n ﹣3)x 3,由题意得:33030m n n +-=⎧⎨-=⎩,解得63m n =⎧⎨=⎩.【总结升华】解此类问题的常规思路是:将两个多项式乘法依据乘法法则展开,合并同类项,再根据题意由某些项的系数为零,通过解方程(组)求解. 举一反三:【变式】在()()22231x ax b x x ++-- 的积中,3x 项的系数是-5,2x 项的系数是-6,求a 、b .【答案】解:()()22231x ax b x x ++--因为3x 项的系数是-5,2x 项的系数是-6,所以235a -=-,2316b a --=-,解得14a b =-=-,.【巩固练习】 一.选择题1.(•台湾)计算(2x 2﹣4)(2x ﹣1﹣x )的结果,与下列哪一个式子相同?( ) A .﹣x 2+2 B .x 3+4 C .x 3﹣4x +4 D .x 3﹣2x 2﹣2x +4 2.下列各题中,计算正确的是( ).A.()()233266mn m n --= B.()()332299m n mn m n --=-C .()()232298m nmn m n --=- D.()()323321818m n m n ⎡⎤--=-⎢⎥⎣⎦3. 如果2x 与-22y 的和为m ,1+2y 与-22x 的差为n ,那么24m n -化简后为( )A.22684x y --- B.221084x y -- C.22684x y --+D.221084x y -+4. 如图,用代数式表示阴影部分面积为( ).A. abB. ac bc +C.()ac b c c +-D.()()a c b c --5.结果是31216x x -+的式子是( ). A .(x +4)( x +2)2B .(x +4)()22x x -+C .(x -4)()22x x ++ D .(x +4)()22x - 6. 已知:222440,23a b a b --=+=,则2122a b b +的值为( ) A.-1 B.0 C.12D.1 二.填空题7. 已知20m n +=,则332()48m mn m n n +++-=___________.8.(春•无锡校级期中)如果(x+1)(x 2﹣2ax+a 2)的乘积中不含x 2项,则a= .9. 322322(4235)(233)--+-+x x y xy y x xy y 之积中含32x y 项的系数为 .10.(春•莘县期末)若(a m+1b n+2)•(a 2n ﹣1b 2n )=a 5b 3,则m +n 的值为 . 11. 观察下列各式:22()()x y x y x y -+=-; 2233()()x y x xy y x y -++=-; 322344()()x y x x y xy y x y -+++=-; 43223455()()x y x x y x y xy y x y -++++=-根据这些式子的规律,归纳得到:123221()()n n n n n x y x x y x y xy y ------+++++=…… .12.把62)1(+-x x 展开后得0122101011111212......a x a x a x a x a x a ++++++,则=++++++024681012a a a a a a a三.解答题13.(春•聊城校级月考)计算 (1)(﹣2a 2b )2•(ab )3(2)已知a m =2,a n =3,求a 2m+3n 的值.14.先阅读后作答:我们已经知道,根据几何图形的面积关系可以说明完全平方公式,实际上还有一些等式也可以用这种方式加以说明,例如:()()2a b a b ++ =2223a ab b ++,就可以用图1的面积关系来说明.① 根据图2写出一个等式 ;② 已知等式:()()x p x q ++=()2x p q x pq +++,请你画出一个相应的几何图形加以说明.15.已知()()2283x px xx q ++-+的展开式中不含2x 和3x 项,求p q 、的值.【答案与解析】 一.选择题1. 【答案】D ;【解析】(2x 2﹣4)(2x ﹣1﹣x )=(2x 2﹣4)(x ﹣1)=x 3﹣2x 2﹣2x +4.故选:D . 2. 【答案】D ; 【解析】()()233266mn m n --=-;()()332299m n mnm n --=;()()232278m nmn m n --=-.3. 【答案】A ;【解析】22222,12x y m y x n -=++=,24m n -=22222224448684x y y x x y ----=---4. 【答案】C ;【解析】阴影部分面积为()()()2ab a c b c ab ab ac bc c ac c b c ---=-++-=+-.5. 【答案】D ;【解析】()()()()2242444x x x x x +-=+-+322344416161216x x x x x x x =-++-+=-+6. 【答案】A ;【解析】两式相减得2241b b +=-,将244a b =+代入2122a b b +得 ()214422412b b b b b ++=+=-. 二.填空题7. 【答案】-8;【解析】332()48m mn m n n +++-32232248m m n mn n =+++-22(2)2(2)88m m n n m n =+++-=-8. 【答案】;【解析】解:原式=x 3﹣2ax 2+a 2x+x 2﹣2ax+a 2=x 3+(1﹣2a )x 2+(a 2﹣2a )x+a 2, ∵不含x 2项, ∴1﹣2a=0,解得a=, 故答案为:.9. 【答案】12;【解析】用多项式的乘法展开式子,得32x y 项的系数为12. 10.【答案】;【解析】已知等式整理得:a m +2n b3n +2=a 5b 3,可得25323m n n +=⎧⎨+=⎩,解得:m =,n =,则m +n =,故答案为:.11.【答案】-nnx y ; 12.【答案】365; 【解析】∵展开后得∴当时,,①;当时,,②∴①+②=,∴.三.解答题13.【解析】 解:(1)原式=4a 4b 2•a 3b 3=a 7b 5;(2)a 2m+3n=(a m )2•(a n )3 =4×27 =108. 14.【解析】解:①()()2222252a b a b a ab b ++=++ ②如图所示:15.【解析】 解:()()2283x px xx q ++-+432322432338248(3)(38)248x x qx px px pqx x x q x p x q p x pqx x q=-++-++-+=+-+-++-+因为展开式中不含2x 和3x 项, 所以30p -=,380q p -+= 解得3p =,1q =.。