高中数学 线性规划(一)

合集下载

第1章 线性规划

第1章 线性规划
投资项目 1 2 3 4 5 6 风险(%) 18 6 10 4 12 8 红利(%) 4 5 9 7 6 8 增长(%) 22 7 12 8 15 8 信用度 4 10 2 10 4 6
1.1 线性规划问题及其数学模型
线性规划
该公司想达到的目标为:投资 风险最小,每年红利至少为6.5万 元,最低平均增长率为12%,最低 平均信用度为7。请用线性规划方 法求解该问题。
1.1 线性规划问题及其数学模型
解:
(1)决策变量
线性规划
本问题的决策变量是在每种投资项目上的投 资 额 。 设 xi 为 项 目 i 的 投 资 额 ( 万 元 ) ( i=1,2,,6)
(2)目标函数
本问题的目标为总投资风险最小,即
Min z 0.18x1 0.06x2 0.10x3 0.04x4 0.12x5 0.08x6
线性规划
运筹学
线性规划
线性规划
本章内容要点
线性规划问题及其数学模型;
线性规划的电子表格建模; 线性规划的多解分析。
线性规划
本章内容
1.1 线性规划问题及其数学模型
1.2 线性规划问题的图解法
1.3 用Excel“规划求解”功能求解线性规划问题
1.4 线性规划问题求解的几种可能结果
本章主要内容框架图
1.4 线性规划问题求解的 几种可能结果
线性规划
唯一解 无穷多解 无解 可行域无界(目标值不收敛)
1.4 线性规划问题求解的 几种可能结果
线性规划
唯一解
线性规划问题具有 唯一解是指该规划 问题有且仅有一个 既在可行域内、又 使目标值达到最优 的解。例1.1就是一 个具有唯一解的规 划问题
(1-1)

江苏省泰兴市第一高级中学苏教版必修五数学《3.3.3 简单的线性规划问题(1)》教学设计

江苏省泰兴市第一高级中学苏教版必修五数学《3.3.3 简单的线性规划问题(1)》教学设计

3.3。

3简单的线性规划问题(1)江苏省泰兴市第一高级中学陈燕教学目标:1.让学生了解线性规划的意义,以及线性约束条件、线性目标函数、可行解、可行域、最优解等概念.2.让学生掌握线性规划的图解法,并会用图解法求线性目标函数的最大值与最小值.教学重点:用图解法求线性规划问题的最优解.教学难点:对用图解法求解简单线性规划问题的最优解这一方法的理解和掌握.教学方法:1.在学生的独立探究和师生的双边活动中完成简单的线性规划的数学理论的构建,在实践中掌握求解简单的线性规划问题的方法—-图解法.2.渗透数形结合的思想,培养分析问题、解决问题的能力.教学过程:一、问题情境1.情境:我们先考察生产中遇到的一个问题:(投影)某工厂生产甲、乙两种产品,生产1t甲种产品需要A种原料4t 、B 种原料12t,产生的利润为2万元;生产1t 乙种产品需要A 种原料1t 、B 种原料9t ,产生的利润为1万元.现有库存A 种原料10t ,B 种原料60t ,问如何安排才能使利润最大?为理解题意,可以将已知数据整理成下表:(投影)x 、y ,根据题意,A 、B 两种原料分别不得超过10t 和60t ,即41012960x y x y +≤⎧⎨+≤⎩,,,即4104320x y x y +≤⎧⎨+≤⎩,..这是一个二元一次不等式组,此外,产量不可能是负数,所以0,0≥≥y x ③于是上述问题转化为如下的一个数学问题:在约束条件410432000x y x y x y +≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩,,,.④下,求出x ,y ,使利润(万元)y x P +=2达到最大.2.问题:上述问题如何解决? 二、学生活动①①让学生探究解决这个问题分几个步骤;②让学生分组讨论:如何在不等式组确定的区域中找到y=2取P+x得最大值的数对(x,y);③由学生整理解决这个问题的思路.(投影)首先,作出约束条件所表示的区域.其次,考虑yP+=2变x=2的几何意义,将yxP+形为P=2,它表示斜率为-2,在y轴上截距为P-y+x的一条直线.平移直线P34=x与20+yx的-xy+=2,当它经过两直线104=+y交点A(1.25,5)时,直线在y轴上的截距P最大.因此,当5x=2取得最大值5.7x时,yP+=y25,.1=+⨯,即甲、乙两2=525.1种产品分别生产1.25t和5t时,可获得最大利润7。

高中线性规划

高中线性规划

高中线性规划高中线性规划是高中数学课程中的一部分,是线性代数的重要内容之一。

线性规划是一种优化问题的数学建模方法,通过线性规划可以求解出一组满足一定约束条件的最优解。

线性规划的基本形式是在一组线性约束条件下,求解一个线性目标函数的最大值或最小值。

线性规划的目标函数和约束条件都是线性的,这使得线性规划问题能够用简洁的数学模型来描述。

线性规划的数学模型可以用如下的标准格式来表示:最大化(或最小化)目标函数:Z = c₁x₁ + c₂x₂ + ... + cₙxₙ约束条件:a₁₁x₁ + a₁₂x₂ + ... + a₁ₙxₙ ≤ b₁a₂₁x₁ + a₂₂x₂ + ... + a₂ₙxₙ ≤ b₂...aₙ₁x₁ + aₙ₂x₂ + ... + aₙₙxₙ ≤ bₙ非负约束条件:x₁ ≥ 0, x₂ ≥ 0, ..., xₙ ≥ 0其中,Z表示目标函数的值,c₁、c₂、...、cₙ为目标函数的系数,x₁、x₂、...、xₙ为决策变量,a₁₁、a₁₂、...、aₙₙ为约束条件的系数,b₁、b₂、...、bₙ为约束条件的常数项。

线性规划的求解过程一般分为以下几个步骤:1. 确定决策变量:根据实际问题确定需要优化的变量,将其表示为x₁、x₂、...、xₙ。

2. 建立目标函数:根据实际问题确定需要最大化或最小化的目标函数,并将其表示为Z = c₁x₁ + c₂x₂ + ... + cₙxₙ。

3. 建立约束条件:根据实际问题确定约束条件,并将其表示为线性不等式的形式,即a₁₁x₁ + a₁₂x₂ + ... + a₁ₙxₙ ≤ b₁,a₂₁x₁ + a₂₂x₂ + ... + a₂ₙxₙ ≤ b₂,...,aₙ₁x₁ + aₙ₂x₂ + ... + aₙₙxₙ ≤ bₙ。

4. 确定非负约束条件:由于线性规划问题的解必须满足变量的非负性,即x₁≥ 0, x₂ ≥ 0, ..., xₙ ≥ 0。

5. 求解最优解:将线性规划问题转化为数学模型后,可以利用线性规划的求解方法,如单纯形法、对偶理论等,求解出目标函数的最大值或最小值,以及相应的决策变量的取值。

高一数学复习学案:第6课时 简单的线性规划问题(1)

高一数学复习学案:第6课时  简单的线性规划问题(1)

【学习目标】1. 巩固二元一次不等式和二元一次不等式组所表示的平面区域;2. 体会线性规划的基本思想,借助几何直观解决一些简单的线性规划问题。

【学习重点】体会线性规划的基本思想,借助几何直观解决一些简单的线性规划问题。

【学习难点】培养学生问题转化的能力。

【预习内容】1、判断下列求法是否正确若实数 x, y 满足 ① 求2x+y 的取值范围. ② 解:由①、②同向相加可得:6≤2x ≤10 ③由②得:-4≤y-x ≤-2将上式与①式同向相加得 0≤y ≤2 ④③+④得 6≤2x+y ≤12如果错误错在哪?如何来解决这个问题呢?【新知学习】 本题即求在满足 的前提下,求2x+y 的最大和最小值 问:求2x+y 的最大、最小值x 、y 要满足什么条件?问题1:在坐标系中代表哪部分平面区域?问题2:在这个区域中,如何取到2x+y 的最大最小值?令Z=2x+y ,得到y=-2x+Z,斜率是 ,纵坐标上截距是 要求Z 的最大(最小)值就是使直线y=-2x+Z 的 最大(最小)问题:3:如何作出这条直线?【新知深化】1.方法总结:在确定线性约束条件和线性目标函数的前提下,用图解法求最优解的步骤概括为:2.概念剖析:⑴线性目标函数:关于 x 、y 的一次式 z =2x +y 是欲达到最大值或最小值所涉及的变量x 、y 的解析式,叫线性目标函数.⑵线性规划问题:一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题. ⑶可行解、可行域和最优解:①满足线性约束条件的解(x , y ) 叫可行解.②由所有可行解组成的集合叫做可行域.③使目标函数取得最大或最小值的可行解叫线性规划问题的最优解.⎩⎨⎧≤-≤≤+≤.42,64y x y x ⎩⎨⎧≤-≤≤+≤.42,64y x y x练习 1.:求 z = 2 x + y 的最大值,其中x 、 y 满足约束条件11y x x y y ≤⎧⎪-≤⎨⎪≥-⎩变式训练:已知实数x 、y 满足2203x y x y y +≥⎧⎪-≤⎨⎪≤≤⎩,求2Z x y =-的取值范围【新知巩固】1、 已知x 、 y 满足约束条件5003x y x y x -+≥⎧⎪+≥⎨⎪≤⎩求z = 2x + 4 y 的最小值2、 已知31<+<-b a 且42<+<b a ,求b a 32+的取值范围。

高一数学线性规划试题答案及解析

高一数学线性规划试题答案及解析

高一数学线性规划试题答案及解析1.若实数、满足约束条件则的最大值是_________【答案】3【解析】画出可行域如下图所示,为目标函数在轴上的截距,画出的图像如图中虚线部分,平移直线过点时有最大值3.故答案为3.【考点】线性规划的应用.2.在直角坐标系中,已知点,,,点在三边围成的区域(含边界)上,且.(Ⅰ)若,求;(Ⅱ)用表示,并求的最小值.【答案】(1),(2)的最小值-1.【解析】(1)向量的坐标运算主要是利用加、减、数乘运算法则进行的.若已知有向线段两端点的的坐标,则应先求出向量的坐标,解题过程中要注意方程的思想的运用及运算法则的正确使用;(2)利用线性规划求目标函数的最值一般步骤:一画、二移、三求,其关键是准确的作出可行域,理解目标函数的意义;(3)在线性约束条件下,线性目标函数只有在可行域的顶点或者边界上取得最值.在解答选择题和填空题时可以根据可行域的顶点直接进行检验.试题解析:解(Ⅰ),∴....................5分由,,,8分设,直线过点时,取得最小值-1,即的最小值-1【考点】(1)向量的坐标表示;(2)线性目标函数的最值.3.已知点(3,1)和(- 4,6)在直线3x-2y+a=0的两侧,则a的取值范围是()A.a<-7或 a>24B.a="7" 或 a=24C.-7<a<24D.-24<a<7【答案】C【解析】由线性规划相关知识:两点位于直线的两侧,则一侧使得直线方程大于零,一侧使得直线方程小于零.即有,故选C.【考点】线性规划.4.实数满足,如果目标函数的最小值为,则实数b的值为_____ .【答案】8【解析】绘制平面区域可得:要使由最小值-2,则直线,在轴上有最大截距为2,且经过点B,由,又因B也在上,故有.【考点】线性规划.5.已知变量满足约束条件,若的最大值为,则实数.【答案】-1或.【解析】作出约束条件所对应的可行域:,由于的最大值为,所以直线必过点A(-2,3)或点B(4,3),因此有解得或,故应填入:-1或.【考点】线性规划.6.设动点满足,则的最大值是.【答案】100【解析】先画出可行域,根据目标函数可知最优解为C(20,0),带入目标函数得最大者为100【考点】线性规划问题7.已知变量,满足约束条件,则的最小值为()A.B.C.D.【答案】B.【解析】依题意可画出不等式组所表示的的可行域,可知直线与的交点,作出直线:,平移直线,则可知当,时,的最小值为.【考点】线性规划.8.设变量、满足约束条件,则z=2x+3y的最大值为【答案】18【解析】变量x,y满足约束条件,表示的可行域为如图,所以z=2x+3y的最大值就是经过M即的交点(3,4)时,所以最大值为:3×2+4×3=18.故答案为:18.【考点】线性规划的应用.9.不等式组表示的平面区域的面积为 .【答案】9【解析】由题意得:平面区域为一个三角形及其内部,其中因此面积为【考点】线性规划求面积10.某公司生产甲、乙两种桶装产品.已知生产甲产品1桶需耗A原料1千克、B原料2千克;生产乙产品1桶需耗A原料2千克,B原料1千克.每桶甲产品的利润是300元,每桶乙产品的利润是400元.公司在生产这两种产品的计划中,要求每天消耗A、B原料都不超过12千克.求该公司从每天生产的甲、乙两种产品中,可获得的最大利润.【答案】该公司从每天生产的甲、乙两种产品中,可获得的最大利润为2800元.【解析】设公司每天生产甲种产品x桶,乙种产品y桶,公司共可获得利润为z元/天,则由已知,得z=300x+400y.且画可行域如图所示,目标函数z=300x+400y可变形为解方程组得,即A(4,4).所以,Z=1200+1600=2800.所以,该公司从每天生产的甲、乙两种产品中,可获得的最大利润为2800元. 9分【考点】简单线性规划的应用点评:中档题,作为应用问题,解简单线性规划问题,要遵循“审清题意,设出变量,布列不等式组,画,移,解,答”等步骤。

高中线性规划

高中线性规划

高中线性规划引言概述:线性规划是数学中的一种优化方法,用于解决最大化或者最小化目标函数的问题。

在高中数学中,线性规划是一个重要的概念,它可以应用于各种实际问题,如资源分配、生产计划等。

本文将详细介绍高中线性规划的概念、应用以及解题方法。

一、线性规划的基本概念1.1 目标函数:线性规划的目标是最大化或者最小化一个线性函数,该函数称为目标函数。

目标函数通常表示为Z = c1x1 + c2x2 + ... + cnxn,其中ci为常数,xi 为变量。

1.2 约束条件:线性规划的解必须满足一组约束条件,这些条件通常表示为一组线性不等式或者等式。

例如,Ax ≤ b,其中A是一个矩阵,x和b是向量。

1.3 可行解和最优解:满足所有约束条件的解称为可行解。

在可行解中,使目标函数达到最大或者最小值的解称为最优解。

二、线性规划的应用领域2.1 生产计划:线性规划可以用于确定最佳的生产计划,以最大化利润或者最小化成本。

通过考虑资源约束和市场需求,可以确定每种产品的生产量。

2.2 资源分配:线性规划可以用于确定资源的最佳分配方式,以最大化资源利用率或者最小化浪费。

例如,可以确定每一个部门的资源分配,以满足不同项目的需求。

2.3 运输问题:线性规划可以用于解决运输问题,即确定如何将货物从供应地点运送到需求地点,同时最小化运输成本。

三、线性规划的解题方法3.1 图形法:对于二维问题,可以使用图形法来解决线性规划问题。

通过绘制目标函数和约束条件的图形,可以确定最优解所在的区域。

3.2 单纯形法:对于多维问题,单纯形法是一种常用的解题方法。

该方法通过迭代计算,逐步接近最优解。

3.3 整数规划:在某些情况下,变量的值必须是整数。

这种情况下,可以使用整数规划方法来解决问题。

整数规划通常比线性规划更复杂,需要使用特定的算法进行求解。

四、线性规划的局限性4.1 线性假设:线性规划假设目标函数和约束条件都是线性的,但实际问题中往往存在非线性因素。

高中数学 必修5 26.简单的线性规划问题(一)

高中数学 必修5  26.简单的线性规划问题(一)

26.简单的线性规划问题(一)教学目标 班级______ 姓名____________1.了解线性规划的基本概念.2.掌握简单的线性规划问题的一般解法.教学过程一、线性规划的相关概念.1.线性规划的相关概念.(1)约束条件:关于变量x ,y 的不等式组.(2)线性约束条件:关于x ,y 的一次不等式组.(3)目标函数:要求最值的关于x ,y 的函数解析式.(4)线性目标函数:关于x ,y 的一次解析式.(5)可行解:满足线性约束条件的解),(y x . (6)可行域:由所有可行解组成的集合.(7)最优解:使目标函数取最值的可行解.(8)线性规划问题:在线性约束条件下求线性目标函数的最值问题.2.注意事项.(1)线性约束条件必须是关于x ,y 的二元一次不等式(或等式).(2)在线性约束条件下,最优解可能不唯一.(3)最优解一定是可行解,但可行解不一定是最优解.(4)线性规划问题不一定存在可行解.二、线性规划问题.1.用线性规划求最值的一般步骤:(1)画可行域;(2)分析几何意义;(3)找最优解,求最值.2.常用几何公式:(1)截距:直线b kx y +=(斜截式)与y 轴交点的纵坐标,即当0=x 时,y 的值b .(2)斜率:2121x x y y k --=,表示),(11y x ,),(22y x 两点连线的斜率. (3)两点间的距离:221221)()(y y x x d -+-=,表示),(11y x ,),(22y x 两点间的距离. (4)点到直线的距离:2200||B A C By Ax d +++=,点),(00y x 到直线0=++C By Ax 的距离.三、例题分析:1.用线性规划求最值.32≤+y x ,例1:设变量x ,y 的线性约束条件为 32≤+y x ,求分别目标函数y x z +=1, 0≥x ,0≥y .12+=x y z ,322223+-++=y x y x z 的最大值.02≥-+y x , 作业:若实数x ,y 满足 4≤x , 求x y S -=的最小值.5≤y ,。

高中线性规划

高中线性规划

高中线性规划引言概述:高中线性规划是数学中的一个重要概念,它是一种用于解决最优化问题的数学方法。

线性规划可以应用于各种实际情况,如资源分配、生产计划和投资决策等。

本文将详细介绍高中线性规划的基本概念、解决方法和实际应用。

一、线性规划的基本概念1.1 目标函数:线性规划中的目标函数是需要最小化或最大化的线性表达式。

它通常表示为一系列变量的线性组合。

1.2 约束条件:线性规划中的约束条件是限制变量取值范围的条件。

这些条件可以是等式或不等式,用于限制解的可行域。

1.3 可行解:满足所有约束条件的解称为可行解。

线性规划的目标是找到一个最优可行解,使目标函数达到最小值或最大值。

二、线性规划的解决方法2.1 图形法:对于二维线性规划问题,可以通过绘制约束条件的图形来求解最优解。

最优解通常出现在可行域的顶点上。

2.2 单纯形法:对于多维线性规划问题,可以使用单纯形法进行求解。

该方法通过迭代计算,逐步接近最优解。

单纯形法是一种高效且广泛使用的线性规划求解算法。

2.3 整数规划:当问题要求变量取整数值时,可以使用整数规划方法求解。

整数规划是线性规划的扩展,它在求解过程中限制变量取值为整数。

三、线性规划的实际应用3.1 资源分配:线性规划可以用于优化资源的分配,如生产线上的机器分配、员工排班和原材料采购等。

通过合理安排资源的使用,可以最大化效益并降低成本。

3.2 生产计划:线性规划可以应用于生产计划中,如确定产品的生产数量和生产时间。

通过最优化生产计划,可以提高生产效率和产品质量。

3.3 投资决策:线性规划可以帮助进行投资决策,如确定投资的资金分配和投资组合。

通过最优化投资决策,可以实现最大化回报和降低风险。

四、线性规划的局限性和发展方向4.1 非线性问题:线性规划只适用于目标函数和约束条件均为线性的问题。

对于非线性问题,需要采用其他数学方法进行求解。

4.2 多目标优化:线性规划只能处理单一目标的优化问题。

对于多目标优化问题,需要引入多目标规划方法进行求解。

高中数学课件归纳必修5第三章不等式3.3.2简单线性规划(第1课时)课件

高中数学课件归纳必修5第三章不等式3.3.2简单线性规划(第1课时)课件
3.3.2 简单线性规划问题
(1课时)
y
o
x
一、问题引入
问题1:
某工厂用A,B两种配件生产甲,乙两种产品,每生产 一件甲种产品使用4个A配件耗时1h,每生产一件乙种产 品使用4个B配件耗时2h,该厂每天最多可从配件厂获得 16个A配件和12个B配件,按每天工作8小时计算,该厂所 有可能的日生产安排是什么?
3.线性规划
在线性约束下求线性目标函数的最值问题, 统称为线性规划.
4.可行解 5.可行域 6.最优解
满足线性约束的解(x,y)叫做可行解. 所有可行解组成的集合叫做可行域.
使目标函数取得最值的可行解叫做这个问 题的最优解.
变式:若生产一件甲产品获利1万元,生产一件乙 产品获利3万元,采用哪种生产安排利润最大?
B组 3
把z=2x+3y变形为y=-
2 3
x+
z 3
,这是斜率为-
2 3
,
在y轴上的截距为
z 3
的直线,
当点P在可允 许的取值范 围内

z 的最值 3

z的最值.
ቤተ መጻሕፍቲ ባይዱ 问题:求利润z=2x+3y的最大值.
y
x 2 y 8,
4
44
x y

16, 12,
3

x

0,
0
y 0.
Zmax 4 2 2 3 14.
(2)移:在线性目标函数所表示的一组平行线 中,利用平移的方法找出与可行域有公共点且纵 截距最大或最小的直线;
(3)求:通过解方程组求出最优解;
(4)答:作出答案。
体 验:
一、先定可行域和平移方向,再找最优解. 二、最优解一般在可行域的顶点处取得.

高中数学 同步教学 简单的线性规划问题

高中数学 同步教学 简单的线性规划问题

x (1)
2
率的 2 倍,
因为 kQA= 7 ,kQB= 3 ,所以 z 的取值范围是[ 3 , 7 ].
48
42
方法技巧 与二元一次不等式(组)表示的平面区域有关的非线性目标函数 的最值问题的求解,一般要结合给定代数式的几何意义来完成.
常 见 代 数 式 的 几 何 意 义 :(1) x2 y2 表 示 点 (x,y) 与 原 点 (0,0) 的 距
4.给定下列命题:在线性规划中,
①最优解指的是使目标函数取得最大值的变量x或y的值;
②最优解指的是目标函数的最大值或最小值;
③最优解指的是使目标函数取得最大值或最小值的可行域;
④最优解指的是使目标函数取得最大值或最小值的可行解.
其中正确命题的序号是
.
解析:因为最优解是使目标函数取得最大值或最小值的可行解,即满足 线性约束条件的解(x,y),它是一个有序实数对,所以①②③均错,④正确. 故填④. 答案:④
变式探究:在本例的约束条件下,求z=x2+y2+2x的最大值与最小值.
解:z=x2+y2+2x=(x+1)2+y2-1 表示可行域内任意一点(x,y)与点 D(-1,0)距离的平方减去 1,
如图所示,过 D 作 AB 的垂线 DP,垂足为 P,所以|DP|= | 1 0 4 | = 5 = 5 2 ,
(2)简单线性规划问题的解法 在确定线性约束条件和线性目标函数的前提下,用图解法求最优解的步骤 可概括为“画、移、求、答”,即: ① 画 : 在 平 面 直 角 坐 标 系 中 , 画 出 可 行 域 和 直 线 ax+by=0( 目 标 函 数 为 z=ax+by); ②移:平行移动直线ax+by=0,确定使z=ax+by取得最大值或最小值的点; ③求:求出使z取得最大值或最小值的点的坐标(解方程组)及z的最大值或 最小值; ④答:给出正确答案.

第1章 线性规划

第1章 线性规划

第1章线性规划本章介绍了什么是线性规划,线性规划数学模型的概念及其建立数学模型方法;阐述了线性规划的图解法、解的概念及解的形式;详细介绍了普通单纯形法、人工变量单纯形法及单纯形法计算公式。

1.考核知识点(1) 基本概念:数学模型、决策变量、目标函数、约束条件、标准型、图解法、基矩阵、基变量、非基变量、可行解、基解、基可行解、最优解、基最优解、唯一解、多重解、无界解、无可行解、单纯形法、最小比值、入基变量、出基变量、解的判断、大M法、两阶段法、改进单纯形法。

(2) 建立简单的线性规划数学模型。

(3) 求解线性规划的图解法。

(4) 基、可行基及最优基的定义。

(5) 可行解、基本解、基可行解、最优解、基本最优解的定义及其相互关系。

(6) 有唯一解、有无穷多解、无界解、无可行解的判断。

(7) 求解线性规划的单纯形法。

(8) 求解线性规划的人工变量法。

(9) 单纯形法中的5个计算公式。

2.学习要求(1) 深刻领会线性规划的各种基与解的基本概念,它们之间的相互关系。

(2)掌握图解法的计算步骤,注意怎样将目标函数表达成一条直线,这条直线如何平移使得目标函数值上升或下降。

(3) 熟练掌握单纯形法计算的全过程,特别应注意如何列出单纯形表,如何由一个基可行解换到另一个基可行解,基可行解是最优解、无界解或多重解的判断准则。

(4) 理解在什么情况下加入人工变量,人工变量起何作用,用大M法计算时目标函数的变化,两阶段法计算时目标函数的构成,掌握这两种计算方法的全过程,在什么情形下线性规划无可行解。

(5) 理解用矩阵形式代替单纯形表,并用矩阵公式求解线性规划。

3.重点建立线性规划数学模型,有关线性规划解的概念、解的形式,单纯形法计算、大M法、两阶段法。

4.难点解析(1)建立线性规划数学模型建立数学模型是学习线性规划的第一步也是关键的一步。

建立正确的数学模型要掌握3个要素:研究的问题是求什么,即设置决策变量;问题要达到的目标是什么即建立目标函数,目标函数一定是决策变量的线性函数并且求最大值或求最小值;限制达到目标的条件是什么,即建立约束条件。

第1章 线性规划问题

第1章  线性规划问题

7连续加工问题
一工厂在第一车间用一单位M可加工成3单位产品 A,2单位产品B,A可以按每单位售价8元出售, 也可以在第二车间继续加工,每单位生产费用增 加6元,加工后每单位售价为16元;B可以按每 单位售价7元出售,也可以在第三车间继续加工, 每单位生产费用增加4元,加工后每单位售价为 12元.原料M的单位购入价为2元。上述生产费用 不包括工资在内.三个车间每月最多有20万工时, 每工时工资0.5元.每加工一单位M需1.5工时,如 A继续加工,每单位需3工时;如B继续加工,每 单位需1工时。每月最多能得到的原料M为10万 单位。问如何安排生产,使工厂获利最大?
23





三、线性规划标准型及解的概念
• 线性规划的一般形式 max (min) z = c1 x1 + c2 x2 + … + cn xn s.t. a11 x1 + a12 x2 + … + a1n xn ≤ ( =, ≥ )b1 a21 x1 + a22 x2 + … + a2n xn ≤ ( =, ≥ )b2
xj 0
x j ; j 1,2,...,n
c (c1 , c 2 , , c n )
( j 1,2, , n)
为待定的决策变量,
为价值向量, c j ; j 1, 2,...,n 为价值系数,
b ( b1 , b 2 ,...,b m ) 为右端向量,
矩阵
a 11 a 21 A a m1 a 12 a 22 am2 a mn a1n a 2n
线性规划理论与模型应用
授课人 葛金辉

【湖南师大内部资料】高中数学精美可编辑课件:高一数学(简单的线性规划问题(1))

【湖南师大内部资料】高中数学精美可编辑课件:高一数学(简单的线性规划问题(1))

x+2y=8
2 3 x
经过对应的平面区域,并平行移动.
探究新知
6.从图形来看,当直线l运动到什么位 置时,它在y轴上的截距取最大值?
y
经过点M(4,2) M
O y=3 x x+2y=8
x=4
探究新知
7. 工厂应采用哪种生产安排才能使 利润最大?其最大利润为多少? y
y=3
M(4,2)
x
O x=4
课堂小结
2.对于直线l:z=Ax+By,若B>0, 则当直线l在y轴上的截距最大(小)时, z取最大(小)值;若B<0,则当直线l 在y轴上的截距最大(小)时,z取最小 (大)值.
布置作业
P91练习:1,2.
(4)作答。
典例讲评
例2
求z=2x+y的最大值.
ìy £ x ï ï ï ï ïx + y 已知x、y满足:í ï ï ï y ? 3x ï ï î
y 2x+y=0
2 6
y=x
M
最优解(3,3), 最大值9.
O
x
x+y=2
y=3x-6
课堂小结
1.在线性约束条件下求目标函数的最 大值或最小值,是一种数形结合的数 学思想,它将目标函数的最值问题转 化为动直线在y轴上的截距的最值问 题来解决.
探究新知
1.设每天分别生产甲、乙两种产品x、 y件,则该厂所有可能的日生产安排 应满足的基本条件是什么?
x 2y 8 4 x 16 4 y 12 x 0 y 0
x 2y 8 即 0 x 4 0 y 3
探究新知
采用哪种生产安排利润最大?
探究新知
4.将z=2x+3y看作是直线l 的方程, 那么z有什么几何意义? 直线l在y轴上的截距的三倍.

第一章 线性规划

第一章 线性规划
对于标准形式的线性规划问题若约束方程系数矩阵中不存在现成的初始可行基则不能简单的用上述单纯形法而通常采用所谓的人工变量法
第一章 线性规划
(Linear Programming, LP)
概述
• 线性规划问题的提出最早是1939年由前苏联 数学家康托洛维奇在研究铁路运输的组织问题、 工业生产的管理问题时提出来的。
(5)若bi < 0,则-bi > 0
举例: 化下列线性规划为标准形
max z=2x1+2x2-4x3 x1 + 3x2-3x3 ≥30 x1 + 2x2-4x3≤80 x1、x2≥0,x3无限制
max z=2x1+2x2-4x3’+4x3” x1 + 3x2-3x3’+3x3” –x4 = 30 x1 + 2x2-4x3+ 4x3” + x5 = 80 x1、x2 、x3’、x3” 、x4、x5 ≥0
称X0为该线性规划对应与基B的一个基本解。
同样,在A中任选m个线性无关的列向量都可以组成一个基, 对应基一个基本解。对于一个LP最多有多少呢?从n个中 选m个进行组合,即:
Cnm=n!/[(n-m)!m!] 因此,基本解是有限的。
举例:找出下列LP所有的基及其对应的基本解 max z=6x1+4x2 2x1 + 3x2≤100 4x1 + 2x2≤120 x1、x2≥0
资源
产品

乙 资源限制
A
1
B
2
C
0
单位产品利润(元/件) 50
1
300kg
1
400kg
1
250kg
100
• 决策变量:x1、x2——分别代表甲、乙两

高中数学:简单线性规划(1)-可行域上的最优解

高中数学:简单线性规划(1)-可行域上的最优解

14
解线性规划应用问题的一般步骤:
1)理清题意,列出表格:
2)设好变元并列出不等式组和目标函数
3)由二元一次不等式表示的平面区域作出可行域;
画出线性约束条件所表示的可行域,画图力保准确;
4)在可行域内求目标函数的最优解 法1:移-在线性目标函数所表示的一组平行线中,利用平移的方 法找出与可行域有公共点且纵截距最大或最小的直线; 法2:算-线性目标函数的最大(小)值一般在可行域的顶点处 取得,也可能在边界处取得(当两顶点的目标函数值相等时最优解 落在一条边界线段上)。此法可弥补作图不准的局限。 5)还原成实际问题 (准确作图,准确计算)
x 1
时,求z的最大值和最小值.
3
思考:还可以运用怎样的方法得到目标函数
的最大、最小值?
点的可目以y标通函过数比值较大可小行得域到边。界顶
x 4 y 3 1.先作出3x 5 y 25
x 1
A: (5.00, 2.00) B: (1.00, 1.00)
C C: (1.00, 4.40)
5
x-4y+3=0
所 表 示 的 区 域. 2.作直线l0 : 2x y 0
3.作 一 组 与 直 线l 0 平 行 的 直线l : 2x y t, t R
A B
直线L越往右平移,t 随之增大.
O1
x 以经过点A(5,2)的
5
3x+5y-25=0
直线所对应的t值
x=1
最大;经过点B(1,1)
2x+y=300
A 125
O
300x+900y=112500
C x+2y=250
150 B 250
答案:当x=0,y=0时,z=300x+900y有最小值0.

高中数学 3.3.2简单的线性规划(一)新人教A版必修5

高中数学 3.3.2简单的线性规划(一)新人教A版必修5

3.3.2简单的线性规划【教学过程】 2.讲授新课1.引例:某工厂有A 、B 两种配件生产甲、乙两种产品,每生产一件甲产品使用4个A 配件耗时1h,每生产一件乙产品使用4个B 配件耗时2h ,该厂每天最多可从配件厂获得16个A 配件和12个B 配件,按每天8h 计算,该厂所有可能的日生产安排是什么? (1)用不等式组表示问题中的限制条件:设甲、乙两种产品分别生产x 、y 件,又已知条件可得二元一次不等式组:2841641200x y x y x y +≤⎧⎪≤⎪⎪≤⎨⎪≥⎪≥⎪⎩ ……………………….(1) (2)画出不等式组所表示的平面区域:如图,图中的阴影部分的整点(坐标为整数的点)就代表所有可能的日生产安排。

(3)提出新问题:进一步,若生产一件甲产品获利2万元,生产一件乙产品获利3万元,采用哪种生产安排利润最大?(4)尝试解答:设生产甲产品x 件,乙产品y 件时,工厂获得的利润为z ,则z=2x+3y .这样,上述问题就转化为:当x,y 满足不等式(1)并且为非负整数时,z 的最大值是多少?把z=2x+3y 变形为233z y x =-+,这是斜率为23-,在y 轴上的截距为3z的直线。

当z 变化时,可以得到一族互相平行的直线,如图,由于这些直线的斜率是确定的,因此只要给定一个点,(例如(1,2)),就能确定一条直线(2833y x =-+),这说明,截距3z可以由平面内的一个点的坐标唯一确定。

可以看到,直线233zy x =-+与不等式组(1)的区域的交点满足不等式组(1),而且当截距3z最大时,z 取得最大值。

因此,问题可以转化为当直线233zy x =-+与不等式组(1)确定的平面区域有公共点时,在区域内找一个点P ,使直线经过点P 时截距3z最大。

(5)获得结果:由上图可以看出,当实现233zy x =-+经过直线x=4与直线x+2y-8=0的交点M (4,2)时,截距3z 的值最大,最大值为143,这时2x+3y=14.所以,每天生产甲产品4件,乙产品2件时,工厂可获得最大利润14万元。

线性规划模型(1)

线性规划模型(1)

线性规划模型简介线性规划(Linear Programming, LP)是数学规划的一种重要分支,它旨在寻找一组线性方程的最佳解。

线性规划模型广泛应用于运筹学、经济学、管理学等领域,具有较强的实践意义。

基本概念目标函数在线性规划模型中,目标函数是线性方程组中的一个方程,用于表示要优化的目标。

通常情况下,线性规划问题有两类目标:最小化目标和最大化目标。

最小化目标函数的线性规划问题称为“最小化问题”,最大化目标函数的线性规划问题称为“最大化问题”。

约束条件线性规划的约束条件是一个线性方程组,用于限制解的可行域。

约束条件可以是等式约束或不等式约束。

等式约束要求线性方程组的解满足给定的等式关系,不等式约束要求线性方程组的解满足给定的不等式关系。

可行解在线性规划问题中,可行解是满足所有约束条件的解。

可行解是问题的解空间中的一个点。

最优解最优解是在线性规划模型中要求得的解,它是使目标函数取得最大(或最小)值的可行解。

线性规划问题的一般形式线性规划问题可以用以下一般形式表示:max/min Z = c^T * xsubject to:Ax <= bx >= 0其中,Z是目标函数的值,c是目标函数的系数向量,x是决策变量向量。

A是约束条件矩阵,b是约束条件的右侧常数列。

线性规划模型的求解方法线性规划模型可以通过多种方法来求解,常见的方法有: 1. 单纯形法(Simplex Method):单纯形法是一种迭代求解线性规划问题的方法。

该方法通过逐步移动顶点来搜索可行解空间,直到找到最优解。

2. 内点法(Interior Point Method):内点法是一种直接求解线性规划问题的方法。

该方法利用内点理论,在可行解空间内搜索最优解。

3. 分支定界法(Branch-and-Bound Method):分支定界法将线性规划问题划分为多个子问题,并通过剪枝策略逐步缩小搜索范围,直到找到最优解。

4. 整数规划算法(Integer Programming Algorithms):当线性规划问题的决策变量要求为整数时,可以使用整数规划算法进行求解。

a第一章_线性规划

a第一章_线性规划

运筹学
(2)线性规划问题如果有最优解,由图解法推断可行 域的某个顶点对应目标函数的最优解(证明见教材P16P20)。 可行域的顶点至多有Cmn 个,目标函数最优解问题就 转化为寻找可行域顶点的问题。 ①将所有顶点找出来,计算相应的目标函数的值,最 大者即为最优解。 ②先计算可行域某个顶点处的目标函数值,再考察它 周围相邻顶点的目标函数值是否比这个值更优,如果 为否,则该顶点就是最优解(或最优解之一),否则 转到比这个点的目标函数值更优的另一顶点,重复上 述过程,直到找出对应最优解的顶点(这是由 LP 问题 可行域为凸集所决定的)。
图解法的启示和知识要点: ( 1 ) LP 问题的可行域是一个多边形(多面体)。图解法仅 适用于两个变量的线性规划问题,求解时按原来题目对目标 函数的优化要求去求解即可,不必将求极小值化为求极大值。 三个变量的线性规划问题用图解法求解时,可行域是三 维空间的多面体,很难用平面上的图形画得清晰准确;目标 函数对应的是三维空间中的平面,难以通过平面上画出的立 体图形求出最优解。所以,从理论上讲,三个变量的线性规 划也有图解法,但实际上不可行。多于三个变量的线性规划 涉及到在高于三维的向量空间中求解优化问题,而三维以上 的空间已无直观的几何意义,故不存在相应的图解法。
原料A约束: 4X1
非负约束:
<=16
一般形式 Max CX s.t. AX<=b X>=0
原料B约束: 4X2<=12 X1 , X2 >=0
运筹学
建立模型实例:发电厂燃煤混合问题
问题:某电厂可用燃煤甲、乙、丙,主要指标有含硫量、发热量、 价格,列表如下:
含硫量 甲 乙 丙 0.01 0.05 0.03 发热量(MJ/KG) 价格(元/T) 16 20 18 830 800 815
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课题:线性规划
引例 例题1 例题2 课堂练习 课堂总结
课题引入
例:若实数x,y满足: 4≤x+y≤6 ① 2≤x-y≤4 ② 求2x+y的取值范围。 解:由①、②同向相加可求得:6≤2x≤10 由②得:-4≤y-x≤2 将上式与①同向相加,得:0≤y≤2 ③ + ④得 : 6≤2x+y≤12. 以上解法正确吗? 不正确,因为要使2x+y=12,必须 x=5,y=2,x+y=7 ③ ④
x-y=2 x+y=4
解得:
x=3
即E(3,1) y=1 Zmax=25+1=11
同理可求得G(5,1),
∴Zmin=23+1=7,
Z [7,11]
线性规划问题可以按照下列步骤求解:




返回ห้องสมุดไป่ตู้
例题分析 2
进入
返回
课堂练习
进入
返回
课堂总结
(1)线性规划问题的有关概念; ( 2 )线性规划问题的图解法及几个步骤; (3)注意事项。
不满足条件①
返回
例题分析 1
例1:设z=2x+y,且实数x,y满足: 4≤x+y≤6 ①
2≤x-y≤4 ②
求z的取值范围. 分析:通过上节课的学习我们知道,二元一次不等式表示平面
区域,上述不等式组表示一个平面区域,我们不妨先画出图形。
观察图形
返回
例1解答
解:画出以上不等式组表示的平面区域, 作直线l0:2x+y=0, 作直线2x+y=z (z∈R), 在经过不等式组 当直线向上平移时,z随之增大, 表示的平面区域内的点并且平行于l0的直线中, 经过G点的直线 经过E点的直线所对应的z最小, 所对应的z最大, 由方程组
作业:教材第65页第2题
返回
返回
相关文档
最新文档