二元一次方程鸡兔同笼PPT课件

合集下载

应用二元一次方程组——鸡兔同笼ppt

应用二元一次方程组——鸡兔同笼ppt

03
鸡兔同笼问题简介
鸡兔同笼问题的起源
源自中国古代的数学趣题,鸡兔同笼问题最早出现在《孙子 算经》中,当时是为了解决两个农夫的年龄问题。
随着时间的推移,该问题逐渐传播至世界各地,成为数学教 育中的经典问题之一。
鸡兔同笼问题的应用
鸡兔同笼问题可以应用于现实生活中,例如城市交通管理 、人口管理、物资调配等方面。
3
了解了鸡兔同笼问题的数学模型和求解方法
学习收获及感受
通过学习二元一次方程组,提 高了数学应用能力
学会了如何将实际问题转化为 数学问题,并使用数学方法解

掌握了解决鸡兔同笼问题的方 法,并能够解决类似问题
对未来学习的展望
希望进一步深入学习数学建模和算法相关的知识 加强实际应用能力的培养,提高解决实际问题的能力
求解方程
• 将第一个方程乘以2,得到 • 2x + 2y = 2n • 将第二个方程减去第一个方程,得到 • 2y = m - 2n • 解得 • y = (m - 2n) / 2 • 将解得的y的值代入第一个方程,解得 • x = n - y = n - (m - 2n) / 2 = (3n - m) / 2 • · 将第一个方程乘以2,得到 • · ``` • · 2x + 2y = 2n • · ``` • · 将第二个方程减去第一个方程,得到
交流沟通
团队成员之间需要交流沟通,分 享思路和方法,避免重复劳动, 节省时间。
团队协作
通过团队协作,能够更全面地分 析问题,提出更多解决方案,提 高解决问题的质量。同时培养团 队协作能力,增强团队凝聚力。
06
结论与反思
本课程总结
1
理解了二元一次方程组的基本概念和解题方法

八年级数学上册 第五章 二元一次方程组 3 应用二元一次方程组—鸡兔同笼教学课件

八年级数学上册 第五章 二元一次方程组 3 应用二元一次方程组—鸡兔同笼教学课件
教学 课件 (jiāo xué)
数学(shùxué) 八年级上册 北师大版
第一页,共十七页。
第五章 二元一次方程组
3 应用(yìngyòng)二元一次方程组——鸡兔同笼
第二页,共十七页。
《孙子算经》是我国古代(gǔdài)一部较为普及的算书, 许多问题浅显有趣,其中下卷第31题“雉兔同笼”流传 尤为广泛,飘洋过海流传到了日本等国.
B
{5y+10=5x,
A. 4y=6x
{5x+10=5y,
C. 4x=6y
{B. 5x=5y+10, 4x=6y
{5y=5x+10,
D. 4y=6x
第十五页,共十七页。
小结 通过对“题目中的已知量、未知量是什么”,“各个(gègè)量
之间的关系是什么”等问题的分析,形成解决实际问题的 一般性策略:
解:设铅笔(qiānbǐ)x支,圆珠笔y支. x+y=100 , 0.5x+y=80.
x=40, y=60.
第十三页,共十七页。
当堂检测
1:设甲数为x,乙数为y,则甲数的2倍与 乙数的3倍的和为15 ,
列出方程为
.2x+3y=15
2:一只蛐蛐6条腿,一只蜘蛛8条腿,现有蛐蛐和蜘蛛共10
只,共有68条腿,若设蛐蛐有x只,蜘蛛有y只,
审、设、列、解、答 1.审题
2.设未知数
3.列方程 4.解方程 5.检查(jiǎnchá),作答
第十六页,共十七页。
内容(nèiróng)总结
教学课件。《孙子算经》是我国古代一部较为普及的算书,许多问题浅显有趣,其中下卷第31题“雉兔同 笼”流传尤为广泛,飘洋过海流传到了日本等国.。答:笼中有鸡23只、兔12只.。(1)“将绳三折测之,绳多五 尺”,什么意思。(2)“若将绳四折测之,绳多一尺(yī chǐ)”,又是什么意思。用绳子测量水井的深度.如果将绳 子折成三等份,一份绳长比井深多5尺。如果将绳子折成四等份,一份绳长比井深多1尺.绳长、井深各是多 少尺。5.检查,作答

鸡兔同笼(共24张PPT)

鸡兔同笼(共24张PPT)

5 3a 4b 7;
6 2x 10 0.
练一练:
2.如果方程 2 xm1 3 y 2mn 1 是二元一
次方程,那么m= 2 ,n= -3 .
方程 x+y=8 和 5x+3y=34中,x的含义相同吗?y呢?
x,y的含义分别相同,因而x,y必须同时满足方程 x+y=8 和
每张成人票5元,每 张儿童票3元.他们 到底去了几个成人、 几个儿童呢?
设他们中有 x个成人, y个儿童.由此你能得到 怎样的方程?
x y 8

5 x 3 y 34
想一想
x-y=2 x+y=8
x+1=2(y-1)
5x+ 3y=34
上面所列方程各含有几个未知数? 2个未知数 含有未知数的项的次数是多少? 次数是1
老牛驮的包裹数比小马驮的多2个,由此你能得到怎样的方程 呢? 老牛的包裹数-小马的包裹数=2个 x-y=2 若老牛从小马的背上拿来1个包裹,这时它们各有几个包裹?由 此你又能得到怎样的方程呢? 老牛的包裹+1=(小马驮的包裹数-1)×2 x+1=2(y-1)
昨天,我们8个人 去红山公园玩,买门 票花了34元.
解:设长为x厘米,宽为y厘米,则

解得
x-y=3 2(x+y)=14
x=5
{ y=2
当堂检测
1.在下列四组数值中,哪些是二元一次方程 的解?
x 3y 1
( A)
x 2, y 3;
(B)
(C)
x 10, y 3;
( D)
x 4, y 1; x 5, y 2.

x=6 y=2
x=5 ,y =3 是否为方程 x+y =8

鸡兔同笼课件(共18张PPT)

鸡兔同笼课件(共18张PPT)
兔的脚的数量×鸡 兔的总数量-实际脚的数量)÷(每只 兔的脚的数量-每只鸡的脚的数量) 兔的数量=鸡兔的总数量-鸡的数量
返回
数学广角——鸡兔同笼 鸡兔同笼
方法四:抬腿法—鸡抬起一只脚 (1)假如让鸡抬起一只脚,兔子抬起两只脚,
还有 26÷2=13只脚。 (2)脚的总数-头的总数=兔子的只数。13-8=5(只)
(26-8×2)÷(4-2) = (26-16)÷2 =10÷2 =5 (只) 鸡的数量:8-5=3 (只) 答:5只兔子,3只鸡。
返回
数学广角——鸡兔同笼 鸡兔同笼
方法三:假设法
假设笼子里全是兔
笼子里脚的数量是:8×4=32(只)
与实际相差32-26=6(只)
每只鸡多算了2 只,6÷2=3 (只)就是鸡的数量。
返回
数学广角——鸡兔同笼 鸡兔同笼
课后作业 课本: 第105页第2题
返回
(8×4-26)÷(4-2) =(32-26)÷2 =6÷2 =3(只) 兔子的数量:8-3=5(只) 答:5只兔子,3只鸡。
返回
数学广角——鸡兔同笼 鸡兔同笼
方法三:假设法
假设笼子里全是鸡
兔的数量=(实际脚的数量-每只鸡 的脚的数量×鸡兔总数)÷(每只兔 的脚的数量-每只鸡的脚的数量) 鸡的数量=鸡兔的总数量-兔的数量
课堂练习
有龟和鹤共40只,龟的腿和鹤的腿共有112条。龟、 鹤各有多少只?
理解题意 ① 如果都是龟,就有40×4=160条
腿,比题目中多160-112=48条腿。 ② 那么需要用鹤换龟,换上一只鹤, 腿的总数就少2条,有48÷2=24只鹤。 ③ 所以有40-24=16只龟。
返回
数学广角——鸡兔同笼 鸡兔同笼
已知条件:有35个头, 有94只脚。

《鸡兔同笼》PPT课件

《鸡兔同笼》PPT课件

在数学中的应用
代数运算
鸡兔同笼问题可以通过代数运算进行求解,涉及到方程的建立和求解等数学知识。通过这类问题的训练, 可以提高学生的代数运算能力和数学思维能力。
数学建模
鸡兔同笼问题可以看作是一个简单的数学建模问题。在数学建模中,需要将实际问题抽象成数学模型,并 运用数学方法进行求解。通过鸡兔同笼问题的学习,可以引导学生初步了解数学建模的思想和方法。
方程法
一元一次方程
设鸡为x只,兔为y只。根据题目中给出的头数和脚数,可以列出一个包含x和y的一 元一次方程,然后解方程求出x和y的值。
二元一次方程组
同样地,也可以设鸡为x只,兔为y只,但是列出两个包含x和y的二元一次方程组。 通过解这个方程组,可以求出x和y的值。
列表法
逐一列举
根据题目中给出的头数和脚数的范围,可以逐一列举出所有可 能的鸡和兔的组合,并计算每种组合下的脚数。然后与实际脚 数进行比较,找出符合条件的组合。
示例
一个笼子里有鸡、兔和猪, 共有35个头和94只脚,求 鸡、兔和猪各有多少只?
不同数量级动物同笼问题
描述
笼子里的动物数量级相差 较大,例如鸡的数量远多 于兔。
解决方法
可以通过合理的估算和假 设,简化问题求解的难度。
示例
一个笼子里有大量的鸡和 少量的兔,共有1000个头 和2700只脚,求鸡和兔各 有多少只?
《鸡兔同笼》问题在现代教育中仍然具有重要意义,被广泛应用于小学数学、初中 数学等课程中。
课件目的
帮助学生理解《鸡兔同笼》问 题的背景、意义和解法,提高 学生的数学素养和解决问题的 能力。
通过对该问题的深入剖析和多 种解法的探讨,培养学生的数 学思维和创新能力。
引导学生体会数学在解决实际 问题中的应用价值,激发学生 学习数学的兴趣和动力。

鸡兔同笼问题课件(共8张PPT)

鸡兔同笼问题课件(共8张PPT)
点拨:(观察题目)
1、一共运了多少天?210÷21=10(天)
2、假设全是雨天,能运多少吨?15×10=150(吨); 比实际少运多少吨? 210-150=60(吨) 晴天与雨天每天运的相差多少吨? 25-15=10(吨)
3、结论:
晴天有几天?60÷10=6(天)
综合算式: 【210-15×(210÷21)】÷(25-15)
比实际多了多少分? 150-99=51(分)
综合算式: 1、一共运了多少天?210÷21=10(天) 32、 、结假论设鸡:全鸡是的有雨多天只少,只能数? 运多:9少6÷(吨(?47-125)4×=1×40=84(15只-0()吨2)0;0)÷(4-2) =(296-200)÷2 例2:30枚硬币由2分和5分组成,共值9角9分。
点拨:(观察题目)
1、假设全是5分硬币,共值多少分?30×5=150(分);
答2、:这假几设天当全中有是6天5分是晴硬天。币,共值多少分?30×5=150(分) 请同学比们实想一际想多,假了设多全是少,该分怎?么办?150-99=51(分)
2比、实假际1设多枚2了0道5多题分少全分硬做?对币,15与应0-得一9多9枚=少5分12(?分分20)硬×5=币10相0(差分)多少分? 5-2=3(分) 2鸡3、兔、假数设结量全相论是等兔:时,共有则有共脚多有多脚少少多只枚少?只24?4分-48硬×=7346币=(29只?6()只5)1÷(5-2)=17(枚) 做错一道少几分?有5多+4少=9枚(分5)分硬币? 30-17=13(枚);
第2页,共8页。
例1:今有一笼子,里面有鸡也有兔,数了数共有74个头,
200只脚。问:鸡和兔各有多少只?
点拨:(观察题目) 1、假设笼子里全是兔子; 2、假设全是兔,则共有脚多少只? 4×74=296(只) 例晴兔1天有:有 多比1今几少只有实天只一鸡??际笼63多子06多÷÷,16了0=几里=66(多面(只只有少天)鸡脚)只也?有脚兔?,数4了-22数9=共6有-27(24个0只头0,=)29060只(脚只。 ) =一3【、只4鸡4结-与8论一】只:÷6兔鸡共有有几多只脚少?只2?+4=69(6只÷)(4-2)=48(只) 请做同错学 一们道想少一几想分兔,?假有5设+多全4=是少9,(只该分怎?)么办7?4-48=26(只);

鸡兔同笼问题的几种解法(共12张PPT)

鸡兔同笼问题的几种解法(共12张PPT)
• 我们仔细观察会发现它的计算过程和假设法中先把所有 的都看成鸡的做法是一样的。只不过这种说法 (shuōfǎ),我们理解起来更容易而已
第六页,共12页。
3、方程法
例题同上例。今有鸡、兔共居一笼,已知鸡头和 兔头共35个,鸡脚与兔脚共94只。问鸡、兔各 有多少只?
①一元(yī yuán)一次方程
解:设兔有x只,则鸡有(35-x)只。
10只兔的腿数,为第三步做准备。 • 通过第一、二步的计算,我们发现了兔子只数减少一只时,腿
数减少2。兔子要减少多少只,腿才能(cáinéng)减少到32条 :44-32=12(条) 12÷2=6 (只) • 此时我们可以先把第三步的腿数32填在表中,这样上面计算时 的所有数据,从表中就能清楚找到:12是44与32的差,我们把 它叫做后差,2是46与44的差,我们把它叫做前差,6是后差与 前差的商。说明兔子要减少6只,那么鸡就增加6只,因此在第 三步的表中,鸡数就是2+6=8,兔子数就是10-6=4,
解析:让兔子和鸡同时抬起两只脚,这样笼子里 的脚就减少了头数×2只,(35×2=70只 )由 于鸡只有2只脚,所以笼子里只剩下兔子的两 只脚,总共剩下94-70=24只 再除以2就是兔子 数(每只兔子还有2只脚站着)24÷2=12只 鸡 35-12=23只
假设(jiǎshè)鸡和兔子都抬起一只脚,笼中站
4x+2(35-x)=94
x=12
则鸡有 35-12=23(只)
②二元一次方程
第七页,共12页。
解题(jiě tí)步骤:
1、认真审题,找准条件和问题
2、列出关系式: 【分析与解答】鸡兔同笼问题往往用假设法来解答,即假设全是鸡或全是兔,脚的总数必然与条件(tiáojiàn)矛盾,根据数量上出现的矛盾适当

八年级数学上册教学课件《应用二元一次方程组——鸡兔同笼》

八年级数学上册教学课件《应用二元一次方程组——鸡兔同笼》

x+y=35

2x+4y=94

解法二: (代入消元法)
由①得,x =35- y ③
把③代入②,得2(35- y)+4y=94, y=12.
把y=12代入①,得x=23
所以原方程组的解为
x=23 y=12
所以鸡有23只,兔子有12只.
探究新知
5.3 应用二河元源一市次正德方中程学组——鸡兔同笼
归纳: 审:弄清题意和题目中的数量关系,找出题目中的等量关系; 设:用字母表示题目中的两个未知数; 列:根据找出的等量关系列出方程组; 解:解方程组,求得未知数的值; 验:检验所得的解是否是方程组的解,并且要检验其是否符 合实际问题的意义,不符合要舍去; 答:写出答案,包括单位名称.
探究新知
5.3 应用二元一次方程组——鸡兔同笼

方法2 横着画,把宽分成两段,则长不变

D
200m
C 解:过点E作EF⊥BC,交BC

x 甲种作物 200x 于点F. 设DE=xm,AE=ym.
E
100m
F
根据题意列方程组为
y 乙种作物 200y
x+y=100
A
B
200x:400y=3:4
解得
x=60 y=40
x+y=35

2x+4y=94

解法一: (加减消元法)
①×2 得: 2x+2y=70 ③ ②-③得:2y=24,y=12. 把 y=12 代入①,得:x=23 原方程组的解是 x=23
y=12 所以有鸡23只,兔12只.
探究新知
5.3 应用二元一次方程组——鸡兔同笼

鸡兔同笼ppt教学课件

鸡兔同笼ppt教学课件

思维点拨:这题跟鸡兔同笼类似,可以将大船、小船分别看成是兔子和鸡,
大小船的只数就是鸡兔的头数,每只大船能坐的人数是就是兔子的脚数,
每只小船能坐的人数就是鸡的脚数,总人数就是总脚数,接着就可用鸡兔
同笼的方法解决了。
假设全是小船,则一共能坐:3×11=33(人) 比实际的人数少:48-33=15(人) 每只大船比小船能多坐:6-3=3(人) 大船的只数:15÷3=5(只) 小船的只数:11-5=6(只)。
教材分析 设计思路
《鸡兔同笼》
实际问题的提出,多种解法 的比较,说明引入方程组模型
的必要性。
通过丰富的问题情境,形成 用方程组解决实际问题的一
般性策略和方法。
教学策略
教学过程 教学评价
合理解释相应的 数学模型
树立用二元一次方程组 构建数学模型解决实际问
题的思想
教材分析 设计思路 教学策略 教学过程 教学评价
思维点拨:假设小明全部做对了,他应得6×10=120(分),但实际上他只 得了96分,他少得了120-96=24(分),少得的原因是他没有全对,做 错一题少得6+2=8(分)。
假设小明全部做对了,他应得6×10=120(分),但实际上他只得了96分, 他少得了120-96=24(分),少得的原因是他没有全对,做错一题少得6 +2=8(分),所以他做错了24÷8=3(题),做对了20-3=17(题)。
地发挥主观能动性和创造性,并从中学习探
索的方法,体验成功的乐趣,激起学习数学
的兴趣。
教材分析 设计思路 教学策略 教学过程 教学评价
1.教法
《鸡兔同笼》
⑴创设生动具体的教学情境,使学生
在愉快的情景中学习数学知识。
⑵鼓励学生独立思考、自主探索和合
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
有一群鸽子,其中一部分在树上欢 歌,另一部分在地上觅食。树上的一只 鸽子对地上觅食的鸽子说:“若从你们
中群上飞的、上树13来下;一鸽若只子从,就树则一上树样飞下多下的了去鸽。一子”只是你,整知则个道树鸽树
上、树下各有多少只鸽子吗?
想一想
某商场计划拨款9万元从厂家购进50台电视机, 已知该厂家生产三种不同型号的电视机,出厂价 分别为:甲种每台1500元,乙种每台2100元,丙 种每台2500元。 (1)若商场同时购进其中两种不同型号电视机共 50台,用去9万元请你研究一下商场的进货方案.
鸡兔同笼
今有鸡兔同笼 上有三十五头 下有九十四足 问鸡兔各几何
你能解决这个有趣的鸡兔同笼问题吗?
鸡头数兔头数35 鸡脚数兔脚数94
解:设鸡有x只,兔有y只,则
x+y=35
2x+4y=94
列方今程组有解牛古算五题、:羊二,
直金十两。牛二、羊 五,直金八两。牛、 羊各直几何?
松鼠妈妈采松子,晴天 每天可采20个,雨天每 天可采12个,一共采了 112个,平均每天采14 个,问几天晴天、几天 雨天?
2100y+2500z=90000
x
z
x+z=50
1500x+2500z的步 骤:
1、审题;2、设未知数;3、列 方程组;
4、解方程组;5、检验;6、答。
2020
演讲完毕 谢谢观看
瓷器商店委托搬运店运送
800只花瓶,双方商定每只运 费0.35元,若打破一只,不但 不计运费,而且赔偿2.50元。 结果,到了目的地,搬运站一 共得费用268.6元,问打破了 几个花瓶?
例1 以绳测井。若将绳三折测之,绳 多五尺;若将绳四折测之,绳多一尺, 绳长、井深各几何?
《一千零一夜》故事:
(2)若商场销售一台甲种电视机可获利150元, 销售一台乙种电视机可获利200元,销售一台丙 种电视机可获利250元。在同时购进两种不同型 号电视机的方案中,为使销售时获利最多,你选 择哪种进货方案?
甲x(台)乙y(台)丙z(台)
xy
x+y=50 1500x+2100y=90000
y
z
y+z=50
相关文档
最新文档