八年级数学上册轴对称图形轴对称的性质教案
八年级数学上册 13.1 轴对称 13.1.1 轴对称教学设计 (新版)新人教版
八年级数学上册 13.1 轴对称 13.1.1 轴对称教学设计(新版)新人教版一. 教材分析《新人教版八年级数学上册》第13.1节介绍了轴对称的概念和性质。
本节内容是学生对几何图形变换的一次重要学习,它不仅巩固了学生对平面几何图形的认识,而且为后续学习其他几何变换打下基础。
教材通过丰富的实例,引导学生认识轴对称,探索轴对称的性质,提高学生的空间想象能力和抽象思维能力。
二. 学情分析八年级的学生已经掌握了基本的几何知识,具备一定的观察、分析和推理能力。
但轴对称概念较为抽象,学生可能难以理解。
因此,在教学过程中,教师应注重引导学生通过具体实例去发现和探索轴对称的性质,让学生在实践中掌握知识。
三. 教学目标1.让学生了解轴对称的概念,理解轴对称的性质。
2.培养学生观察、分析和推理的能力。
3.引导学生运用轴对称的性质解决实际问题。
四. 教学重难点1.轴对称的概念及性质。
2.如何运用轴对称的性质解决实际问题。
五. 教学方法采用问题驱动法、实例教学法和小组合作学习法。
通过生动有趣的实例,引导学生发现轴对称的性质,激发学生的学习兴趣。
在小组合作学习中,培养学生团队合作精神和沟通能力。
六. 教学准备1.准备与轴对称相关的实例图片和练习题。
2.准备课件,展示轴对称的性质和应用。
3.准备黑板,用于板书重要知识点。
七. 教学过程1. 导入(5分钟)利用生活中常见的实例,如剪纸、折纸等,引导学生发现这些实例中存在一种对称现象。
提问:“这种现象叫做什么?”让学生回答,引出本节课的主题——轴对称。
2. 呈现(10分钟)展示轴对称的定义和性质。
通过PPT呈现轴对称的图片,让学生观察并总结轴对称的性质。
同时,教师在黑板上画出轴对称的图形,标注出对称轴,让学生更直观地理解轴对称。
3. 操练(15分钟)让学生分组讨论,每组找出生活中的一个实例,运用轴对称的性质进行解释。
讨论结束后,每组选代表进行分享。
教师对每组的分享进行点评,指出优点和需要改进的地方。
人教版八年级数学上册 《轴对称》教案
义务教育基础课程初中教学资料《轴对称》优秀教学设计【教学目标】1.知识与能力(1)理解轴对称图形,两个图形关于某直线对称的概念。
(2)了解轴对称图形与两个图形关于某直线对称的区别和联系。
(3)了解轴对称的性质。
2.过程与方法通过轴对称图形和两个图形成轴对称的学习以及动手操作,让学生关注生活,学会观察,增强交流。
3.情感、态度与价值观通过轴对称图形和两个图形成轴对称的学习,激发学生学习欲望,主动参与数学学习活动中,体会图形的美,同时感悟数学来源于生活又用于生活。
【教学重点】轴对称图形和两个图形关于某直线对称的概念以及区别和联系。
【教学难点】轴对称的性质。
【教学方法】创设情境-主体探究-合作交流-应用提高.【教学用具】多媒体课件、直尺、剪刀和彩纸等【教学过程】一、创设情境,欣赏图片,感受生活中的轴对称现象和轴对称图形我们生活在图形的世界中,利用图形的某种特征我们想像和创造了许多美丽的事物.问题:观察下列几幅图片,大家观察后回答下列问题:(出示世博建筑物、奥运会开幕式鸟巢烟火、飞机、蝴蝶、窗花等图片).(1)这些图形有什么共同的特征?对称给人以平衡与和谐的美感,我们生活在一个充满对称的世界里,你平时有注意到吗?(2)你能举出几个生活中具有对称特征的物体,并与同伴进行交流吗?(3)你能利用手中的彩纸,剪出具有对称特征的图案吗?二、动手操作,教师组织,合作交流,归纳轴对称和轴对称图形的概念师生互动操作设计:教师走到学生中去,与学生一起观察图形,讨论其具有的共同特征,并利用“对折”的方法剪出各种美丽对称的图案,展示出来,可以发现这些图形沿一条直线对折(我们把这条直线看作轴),直线两旁的部分可以互相重合,比如在生活中具有这种特征的物体有:飞机、风筝、汽车等.1.经过学生讨论,找到特征后,引导学生归纳轴对称图形的概念.归纳:如果一个图形沿一条直线对折,直线两旁的部分能够互相重合,这个图形就是轴对称图形,这条直线叫做这个图形的对称轴.2.出示教材图片,下面的每对图形有什么共同特点?你能概括这些特点吗?学生观察图片,在独立思考的基础上进行交流,共同总结每对图形所具有的特征,学生可能发现:沿某条直线对折,两个图形能够完全重合.在学生交流的基础上,引导学生对轴对称的概念进行归纳.把一个图形沿着某条直线对折,如果能够和另一个图形完全重合,那么就说这两个图形关于这条直线对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点.3.观察,类比轴对称图形和成轴对称的两个图形的特点,教师引导学生对轴对称和轴对称图形的区别和联系进行讨论交流,加深理解:轴对称是说两个图形的位置关系.而轴对称图形是说一个具有特殊形状的图形.轴对称的两个图形和轴对称图形都有一条直线,都要沿这条直线折叠重合;如果把轴对称图形沿对称轴分成两部分,那么这两个图形就是关于这条直线成轴对称;反过来,如果把两个成轴对称的图形看成一个整体,那么它就是一个轴对称图形.三、主体探索、教师引导,探究轴对称图形的性质和线段垂直平分线的概念1. 如图,△ABC和△A′B′C′关于直线MN对称,点A′、B′、C′分别是A、B、C的对称点,线段AA′、BB′、CC′和直线MN有什么关系?学生自行分析操作过程,从操作过程中发现数量关系,点A和A′是对称点,可以设AA′与对称轴的交点为P,将△ABC沿MN对折后A与A′重合于是有AP=PA′、∠MPA=∠MPA′=90°对于其他的点也有类似的情况,于是可以发现,对称轴所在直线经过对称点所连线段的中点并且垂直于这条线段.2. 鼓励学生经过独立思考,发现数量关系并进行交流,同时给出线段垂直平分线的定义:“经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线”3. 进而引导学生进行归纳:轴对称的性质:“如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线”.类似的“轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线”.四、师生合作,应用提高,拓展创新1.出示生活中各种美丽的标志,如汽车标志,交通标志,数字,字母等等先判断哪些是轴对称图形,你能找出每个轴对称图形中的对称点吗?你还能找出它们的对称轴吗?学生交流动手操作,标出一组对称点,找出每一个轴对称图形的对称轴.并将学生交流的结果展示在黑板上,师生交流心得和方法.对称轴是任何一对对应点所连线段的垂直平分线。
新人教版八年级上册初中数学 13.1.1 轴对称 教案(教学设计)
第十三章轴对称13.1轴对称13.1.1 轴对称【知识与技能】(1)理解轴对称图形和两个图形关于某条直线对称的概念.(2)了解轴对称图形的对称轴,两个图形关于某条直线对称的对应点.(3)掌握线段垂直平分线的概念.(4)理解和掌握轴对称的性质.【过程与方法】通过已知图形画对称轴及画轴对称图形,让学生体会轴对称图形的性质和轴对称在实际生活中的应用.【情感态度与价值观】通过对轴对称图形和轴对称的认识,增强学生对对称美的认识,使学生感受数学带来的美.轴对称图形和两个图形关于某条直线对称的概念.轴对称图形和两个图形关于某条直线对称的区别和联系.多媒体课件、剪刀、长方形纸片教师引入:我们生活在一个充满对称的世界中,许多建筑物都设计成对称形,艺术作品的创作往往也从对称的角度考虑,自然界的许多动植物也按照对称形生长,中国的方块字中有些也具有对称性,(教师利用投影出示一些图片,如图13-1.1-1)……对称给我们带来很多美的感受!其中轴对称是对称中重要的一种,那么这节课我们就学习轴对称.(教师板书课题)探究1:轴对称教师提出问题:把一张长方形纸片对折,剪出一个图案,再打开,就剪出了美丽的窗花,你能剪出什么样的窗花呢?教师先把长方形纸片对折,用剪刀剪出一个图案,再打开这个图案,让学生欣赏,然后学生自己动手按要求剪纸.学生在观察、互相交流的基础上描述图形的特征,教师归纳轴对称图形及轴对称的概念,并板书概念:如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫作轴对称图形,这条直线就是它的对称轴.这时,我们也说这个图形关于这条直线(成轴)对称.然后教师让学生举出一些轴对称图形的例子.教师出示例题:例1在如图13-1.1-2所示的图形中,轴对称图形的个数是(B).学生先独立思考,再口答哪些是轴对称图形,教师进行点评.然后教师让学生完成:教材P60练习第1题.(学生口答,并在书上画出对称轴,标注它们的一对对称点)探究2:两个图形成轴对称教师提出问题:在教材P59图13.1-3中,每对图形有什么共同特征?你们能类比前面的内容概括出它们的共同特征吗?学生观察思考,并互相交流,发现其共同特征——每一对图形沿着虚线折叠,左边的图形都能与右边的图形重合.教师进一步说明:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线(成轴)对称,这条直线叫作对称轴,折叠后重合的点是对应点,叫作对称点.然后教师让学生举出一些两个图形成轴对称的例子.教师提出问题:(1)将教材P58-59图13.1-2和图13.1-3进行比较,轴对称图形与两个图形成轴对称有什么区别?(2)如果把一个轴对称图形沿对称轴分成两个图形,那么这两个图形成轴对称吗?如果把两个成轴对称的图形看成一个整体,它是一个轴对称图形吗?学生独立思考后,进行交流,然后学生代表发言.教师根据学生回答的情况进行点评,最后师生共同归纳得出:把成轴对称的两个图形看成一个整体,它就是一个轴对称图形;把一个轴对称图形沿对称轴分成两个图形,这两个图形关于这条轴对称.接着,教师继续提出问题:(1)成轴对称的两个图形全等吗?全等的两个图形一定成轴对称吗?为什么?(2)在教材图13.1-3中,你能标出A,B,C的对称点吗?学生独立思考后,再展开讨论,教师参与学生的讨论,并及时指导.然后教师让学生完成:教材P60练习第2题.(学生口答,并在书上画出对称轴,标注它们的一对对称点)最后教师总结:探究3:垂直平分线教师出示问题:(1)观察教材P59图13.1-4,线段AA′,BB′,CC′与直线MN有什么关系?(2)在教材图13.1-5中,你能测量出线段AA′,BB′与直线l的夹角吗?它们与直线l垂直吗?点A与点A′到直线l的距离相等吗?点B与点B′到直线l的距离呢?教师提出问题,学生独立思考,然后小组交流,学生汇报交流结果.教师接着引导学生从观察三条线段与直线MN的位置关系,利用投影动画展示点A与点A′等重合的情形,并指出:经过线段中点并垂直于这条线段的直线,叫作这条线段的垂直平分线.最后师生共同归纳:如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.类似地,轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线.1.概念:轴对称图形、两个图形关于某条直线对称、对称轴、对称点.2.找轴对称图形的对称点.3.垂直平分线.【正式作业】教材P64习题13.1第1-5题。
八年级数学教案:轴对称的性质(全2课时)
课时NO: 主备人:审核人用案时间:年月日星期教学课题 2.2 轴对称的性质(2)教学目标1.会画已知点关于已知直线l的对称点,已知线段的对称线段,已知三角形的对称三角形;让学生先从“做数学”中体会“获取知识”的快乐;2.让学生们感受分类讨论的思想,体会方法的多样性和知识的丰富性.教学重点作已知图形的轴对称图形的一般步骤教学难点怎样确定已知图形的关键点并根据这些点作出对称图形.教学方法教具准备教学课件教学过程个案补充一. 自主先学:思考:如图,A、B、C 3点都在方格纸的格点位置上.请你再找一个格点D,使图中的4点组成一个轴对称图形.二.探究交流实践探索一以其中的个别对应点为例,去掉网格线,你能找出点C关于直线AB的对应点么?点A关于直线AB的对应点有吗?(分类讨论点在线上与点在线外作对应点的方法).AC关于直线AB的对称图形实践探索二你能画出线段AB关于直线l的对称图形么?如果直线l 外有线段AB ,那么怎样画出线段AB 关于直线l 的对称线段A 'B '?怎样画已知线段关于某直线对称的线段?怎样画已知三角形关于某直线对称的三角形?说说你的想法和根据,展开讨论,踊跃回答,并动手去做一做.实践探索三画出△ABC 关于直线MN 的对称图形实践探索四在图中,四边形ABCD 与四边形EFGH 关于直线l 对称.连接AC 、BD .设它们相交于点P .怎样找出点P 关于l 的对称点Q ?提示:成轴对称的两个图形的对应点也成轴对称.BCN问题1 在图2-11中连接AC、BD,画出它们的交点P,你能用折纸、扎孔的方法画出点P关于直线l的对称的点Q吗?问题2 你能用直尺和三角尺,根据“画点A关于直线l的对称的点A ”的方法画出点P关于直线l的对称的点Q.问题3 为什么EG和FH的交点就是与点P对称的点Q?三.交流展示请同学们用自己的语言再来复述一下画轴对称图形的方法.(1)先画对称轴,再画已知点关于对称轴的对称的点;(2)先画已知三角形的各顶点的对称的点,再画出关于对称轴对称的三角形;成轴对称的两个图形的对应点也成轴对称.四.小结与反思:课外作业:布置作业板书设计教后札记。
人教版数学八年级上册13.2用坐标表示轴对称教案
举例:在讲解轴对称的定义时,可以通过折纸等实际操作,让学生直观感受轴对称图形的特点。在坐标表示方面,可以结合具体图形,如矩形、正方形等,让学生学会如何找到对称轴并给出其坐标方程。
2.教学难点
-对称轴的确定:对于一些复杂的轴对称图形,如何准确地找到对称轴是学生学习的难点。
6.引导学生感悟数学的对称美,培养审美情趣和创新义:轴对称图形的基本概念是本节课的核心,教师需通过生动的实例,使学生理解轴对称图形的特征,明确对称轴在图形中的关键作用。
-掌握坐标表示轴对称的方法:教会学生如何利用坐标表示轴对称图形,以及如何通过坐标关系找到对称轴,这是本节课的重点。
在实践活动中,学生分组讨论的环节比较活跃,他们能够提出一些很有见地的观点。不过,我也观察到有些小组在讨论时,个别成员参与度不高,我适时地给予了鼓励和指导,让他们都能融入到讨论中来。
小组讨论后,学生们的成果展示让我感到惊喜。他们不仅能够理解轴对称在实际生活中的应用,还能创造性地设计出一些具有轴对称特点的图案。这一点说明学生们已经能够将所学知识内化并运用到实际中。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了轴对称的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对轴对称的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
五、教学反思
在今天的课堂中,我发现学生们对轴对称的概念和坐标表示的理解程度参差不齐。我尝试通过引入日常生活中的实例来激发他们的兴趣,比如折纸和设计图案,这样做的效果还不错,大部分学生都能积极参与进来。
八(上)数学第2章《轴对称图形》教案(含答案)
八(上)数学第2章《轴对称图形》教案(含答案)一.轴对称图形二.镜面对称三.轴对称的性质四.作图-轴对称变换五.翻折变换(折叠问题)六.利用轴对称设计图案七.角平分线的性质八.线段垂直平分线的性质九.等腰三角形的性质十.等腰三角形的判定十一.等腰三角形的判定与性质十二.等边三角形的性质十三.等边三角形的判定十四.等边三角形的判定与性质十五.含30度角的直角三角形十六.直角三角形斜边上的中线一.轴对称图形(共6小题)(1)轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,这时,我们也可以说这个图形关于这条直线(成轴)对称.(2)轴对称图形是针对一个图形而言的,轴对称图形的对称轴可以是一条,也可以是多条甚至无数条.(3)常见的轴对称图形:等腰三角形,矩形,正方形,等腰梯形,圆等等.1.下列图形中,不是轴对称图形的是()A.B.C.D.2.下列银行的标识中,是轴对称图形的是()A.中国建设银行B.招商银行C.交通银行D.中国农业银行3.下列四个图形中,是轴对称图形的有()A.4个B.3个C.2个D.1个4.线段、正三角形,平行四边形、菱形中,只是轴对称图形的是.5.平行四边形,长方形,等边三角形,半圆这几个几何图形中,对称轴最多的是.6.如图,3×3方格图中,将其中一个小方格的中心画上半径相等的圆,使整个图形为轴对称图形,这样的轴对称图形共有个.二.镜面对称(共4小题)1、镜面实质上是无数对对应点的对称,连接对应点的线段与镜面垂直并且被镜面平分,即镜面上有每一对对应点的对称轴.2、关于镜面问题动手实验是最好的办法:写在透明纸上,从反面看到的结果就是镜面反射的结果.1.如图,课间休息时,小新将镜子放在桌面上,无意间看到镜子中有一串数字,原来是桌旁墙面上张贴的同学手机号码中的几个数字,请问镜子中的数字对应的实际数字是.2.如图,从镜子中看到一钟表的时针和分针,此时的实际时刻是.3.开车时,从后视镜中看到后面一辆汽车车牌号的后四位数是“”,则该车号牌的后四位应该是.4.室内墙壁上挂一平面镜,小明在平面镜内看到他背后墙上时钟的示数如图所示,则这时的实际时间应是()A.3:20B.3:40C.4:40D.8:20三.轴对称的性质(共10小题)(1)如果两个图形关于某直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.由轴对称的性质得到一下结论:①如果两个图形的对应点的连线被同一条直线垂直平分,那么这两个图形关于这条直线对称;②如果两个图形成轴对称,我们只要找到一对对应点,作出连接它们的线段的垂直平分线,就可以得到这两个图形的对称轴.(2)轴对称图形的对称轴也是任何一对对应点所连线段的垂直平分线.1.下列说法错误的是()A.关于某直线成轴对称的两个图形一定能完全重合B.线段是轴对称图形C.全等的两个三角形一定关于某直线成轴对称D.轴对称图形的对称轴至少有一条2.如图,△ABC中,∠ABC的平分线与∠ACB的外角平分线相交于点D,点E,F分别在线段BD、CD上,点G 在EF的延长线上,△EFD与△EFH关于直线EF对称,若∠A=60°,∠BEH=84°,∠HFG=n°,则n=.3.如图,在Rt△ABC中,∠BAC=90°,∠B=50°,AD⊥BC,垂足为D,△ADB与△ADB'关于直线AD对称,点B的对称点是点B',则∠CAB'的度数为()A.10°B.20°C.30°D.40°4.如图,△ABC和△ADE关于直线l对称,已知AB=15,DE=10,∠D=70°.求∠B的度数及BC、AD的长度.5.如图,△ABC与△DEF关于直线l对称,BE交l于点O,则下列说法不一定正确的是()A.AC=DF B.BO=EO C.AD⊥l D.AB∥EF第5题第6题第7题第8题6.如图,在3×3的网格中,与△ABC成轴对称,顶点在格点上,且位置不同的三角形有()A.5个B.6个C.7个D.8个7.如图,P为∠AOB内一点,分别画出点P关于OA,OB的对称点P1,P2,连接P1P2.交OA于点M,交OB于点N.若P1P2=5cm,则△PMN的周长为.8.如图,在△ABC中,∠A=45°,∠B=60°,AB=4,P是BC边上的动点(不与B,C重合),点P关于直线AB,AC的对称点分别为M,N,则线段MN长的取值范围是.9.如图,点P在∠AOB的内部,点C和点P关于OA对称,点P关于OB对称点是D,连接CD交OA于M,交OB于N.(1)①若∠AOB=60°,则∠COD=°;②若∠AOB=α,求∠COD的度数.(2)若CD=4,则△PMN的周长为.10.如图,分别以△ABC的边AB,AC所在直线为对称轴作△ABC的对称图形△ABD和△ACE,∠BAC=150°,线段BD与CE相交于点O,连接BE、ED、DC、OA,有如下结论:①∠EAD=90°;②∠BOE=60°;③OA 平分∠BOC;其中正确的结论个数是()A.0个B.3个C.2个D.1个四.作图-轴对称变换(共6小题)几何图形都可看做是由点组成,我们在画一个图形的轴对称图形时,也是先从确定一些特殊的对称点开始的,一般的方法是:①由已知点出发向所给直线作垂线,并确定垂足;②直线的另一侧,以垂足为一端点,作一条线段使之等于已知点和垂足之间的线段的长,得到线段的另一端点,即为对称点;③连接这些对称点,就得到原图形的轴对称图形.1.如图,在平面直角坐标系中,A(2,4),B(3,1),C(﹣2,﹣1).(1)在图中作出△ABC关于x轴的对称图形△A1B1C1,并写出点A1,B1,C1的坐标;(2)求△ABC的面积.2.已知,在10×10网格中建立如图所示的平面直角坐标系,△ABC是格点三角形(三角形的顶点是网格线的交点).(1)画出△ABC关于y轴对称的△A1B1C1;(2)画出△A1B1C1向下平移5个单位长度得到的△A2B2C2;(3)若点B的坐标为(4,2),请写出点B经过两次图形变换的对应点B2的坐标.3.如图,方格纸上每个小正方形的边长均为1个单位长度,点A、B都在格点上(两条网格线的交点叫格点).(1)作出三角形ABC关于直线MN对称的三角形A1B1C1.(2)说明三角形A2B2C2可以由三角形A1B1C1经过怎样的变换而得到?(要说明变换过程)4.已知:如图,方格图中每个小正方形的边长为1,点A、B、C、M、N都在格点上.(1)画出△ABC关于直线MN对称的△A1B1C1.(2)在直线MN上找点P,使|PB﹣P A|最大,在图形上画出点P的位置,并直接写出|PB﹣P A|的最大值.5.△ABC在平面直角坐标系中的位置如图所示,其中每个小正方形的边长为1个单位长度.△ABC关于y轴对称图形为△A1B1C1,画出△A1B1C1.6.在平面直角坐标系xOy中,△ABC的位置如图所示.(1)顶点A关于x轴对称的点的坐标A'(,),顶点C先向右平移3个单位,再向下平移2个单位后的坐标C'(,);(2)将△ABC的纵坐标保持不变,横坐标分别乘﹣1得△DEF,请你直接画出图形;(3)在平面直角坐标系xOy中有一点P,使得△ABC与△PBC全等,这样的P点有个.(A点除外)五.翻折变换(折叠问题)(共8小题)1、翻折变换(折叠问题)实质上就是轴对称变换.2、折叠的性质:折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.3、在解决实际问题时,对于折叠较为复杂的问题可以实际操作图形的折叠,这样便于找到图形间的关系.解题时,我们常常设要求的线段长为x,然后根据折叠和轴对称的性质用含x的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案.我们运用方程解决时,应认真审题,设出正确的未知数.1.将一张长方形纸片按如图所示折叠,如果∠1=65°,那么∠2等于.2.如图,E是AB边上的中点,将△ABC沿过E的直线折叠,使点A落在BC上F处,折痕交边AC于点D,若△ABC的周长为8,则△DEF的周长等于()A.4+B.8C.4D.6第2题第3题第4题3.将一张长方形纸条折成如图所示的形状,BC为折痕,若∠DBA=80°,则∠ABC等于()A.40°B.50°C.60°D.70°4.如图,将矩形纸条ABCD折叠,折痕为EF,折叠后点C,D分别落在点C′,D′处,D′E与BF交于点G.已知∠BGD′=30°,则∠α的度数是()A.30°B.45°C.74°D.75°5.如图1,在长方形纸片ABCD中,E点在边AD上,F、G分别在边AB、CD上,分别以EF、EG为折痕进行折叠并压平,点A、D的对应点分别是点A′和点D′,若ED′平分∠FEG,且ED′在∠A′EF内部,如图2,设∠A′ED'=n°,则∠FEG的度数为(用含n的代数式表示).32.如图,图①是一个四边形纸条ABCD,其中AB∥CD,E,F分别为边AB,CD上的两点,且∠BEF=27°,将纸条ABCD沿EF所在的直线折叠得到图②,再将图②中的四边形BCFM沿DF所在直线折叠得到图③,则图③中∠EFC的度数为.6.如图已知,把一张长方形纸片ABCD沿EF折叠后ED与BC的交点为G,D、C分别在M、N的位置上.有下列结论:①EF平分∠MED;②∠2=2∠3;③∠1+∠3=90°;④∠1+2∠3=180°其中一定正确的结论有.(填序号)7.如图,∠ACB=90°,AC=6,BC=8,将边AC沿CE翻折,使点A落在AB上的点D处;再将边BC沿CF翻折,使点B落在CD的延长线上的点B′处,两条折痕与斜边AB分别交于点E、F,则线段B′F的长为()A.B.C.D.六.利用轴对称设计图案(共6小题)利用轴对称设计图案关键是要熟悉轴对称的性质,利用轴对称的作图方法来作图,通过变换对称轴来得到不同的图案.1.如图,在4×4的正方形网格中,有4个小正方形已经涂黑,若再涂黑任意1个白色的小正方形(每个白色小正方形被涂黑的可能性相同),使新构成的黑色部分图形是轴对称图形的概率是.2.如图,在等边三角形网格中,已有两个小等边三角形被涂黑,若再将图中其余小等边三角形涂黑一个,使涂色部分构成一个轴对称图形,则有种不同的涂法.3.如图所示,在4×4的正方形网格中,我们称每个小正方形的顶点为“格点”,以格点为顶点的三角形叫做“格点三角形”.△ABC是一个格点三角形,请你在图1,图2,图3中分别画出一个与△ABC成轴对称的格点三角形,并将所画三角形涂上阴影.(注:所画的三个图不能重复.)4.如图所示的图形是一个轴对称图形,且每个角都是直角,小明用n个这样的图形,按照如图(2)所示的方法玩拼图游戏,两两相扣,相互间不留空隙.(1)用含a、b的式子表示c;(2)当n=2时,求小明拼出来的图形总长度;(用含a、b的式子表示)(3)当a=4,b=3时,小明用n个这样的图形拼出来的图形总长度为28,求n的值.5.如图,是由4×4个大小完在一样的小正方形组成的方格纸,其中有两个小正方形是涂黑的,请再选择三个小正方形并涂黑,使图中涂黑的部分成为轴对称图形.并画出它的一条对称轴(如图例.画对一个得1分)6.如图,在4×4正方形网格中,将图中的2个小正方形涂上阴影,若再从其余小正方形中任选一个也涂上阴影,使得整个阴影部分组成的图形是轴对称图形,那么符合条件的小正方形共有()A.7个B.8个C.9个D.10个七.角平分线的性质(共11小题)角平分线的性质:角的平分线上的点到角的两边的距离相等.注意:①这里的距离是指点到角的两边垂线段的长;②该性质可以独立作为证明两条线段相等的依据,有时不必证明全等;③使用该结论的前提条件是图中有角平分线,有垂直角平分线的性质语言:如图,∵C在∠AOB的平分线上,CD⊥OA,CE⊥OB∴CD=CE1.在正方形网格中,∠AOB的位置如图所示,则点P、Q、M、N中在∠AOB的平分线上是()A.P点B.Q点C.M点D.N点第1题第2题第3题第4题2.如图,在△ABC中,∠ACB的外角平分线与∠ABC的外角平分线相交于点D.则下列结论正确的是()A.AD平分BC B.AD平分∠CAB C.AD平分∠CDB D.AD⊥BC3.如图,AD∥BC,∠ABC的平分线BP与∠BAD的平分线AP相交于点P,作PE⊥AB于点E,若PE=2.5,则两平行线AD与BC间的距离为()A.3B.4C.5D.64.已知:DA平分∠CAB,DB平分∠ABC,DE⊥AB于点E,△ABC的周长是12,面积是6,则DE的长是.5.如图,△ABC中,∠ACB=90°,AB=10cm,BC=6cm,若点P从点A出发以每秒1cm的速度向点C运动,设运动时间为t秒(t>0).(1)若点P恰好在∠ABC的角平分线上,求出此时t的值;(2)若点P使得PB+PC=AC时,求出此时t的值.6.已知:如图,BP、CP分别是△ABC的外角平分线,PM⊥AB于点M,PN⊥AC于点N.求证:P A平分∠MAN.7.如图,△ABC中,AB=2.5cm,AC=6cm,BC=6.5cm,∠ABC与∠ACB的角平分线相交于点P,过点P作PD ⊥BC,垂足为点D,则线段PD的长为cm.8.如图,△AOB的外角∠CAB,∠DBA的平分线AP,BP相交于点P,PE⊥OC于E,PF⊥OD于F,下列结论:(1)PE=PF;(2)点P在∠COD的平分线上;(3)∠APB=90°﹣∠O,其中正确的有()A.0个B.1个C.2个D.3个9.如图,在Rt△ABC中,∠C=90°,AD是∠BAC的平分线,若AC=3,BC=4,则S△ABD:S△ACD为()A.5:4B.5:3C.4:3D.3:410.如图,AB∥CD,BE和CE分别平分∠ABC和∠BCD,AD过点E,且与AB互相垂直,点P为线段BC上一动点,连接PE.若AD=8,则PE的最小值为()A.8B.6C.5D.411.在△ABC中,∠ABC与∠ACB的平分线相交于点P.(1)如图①,若∠BPC=α,则∠A=;(用α的代数式表示,请直接写出结论)(2)如图②,作△ABC外角∠MBC、∠NCB的角平分线交于点Q,试探究∠Q与∠BPC之间的数量关系,并说明理由;(3)如图③,延长线段CP、QB交于点E,△CQE中,存在一个内角等于另一个内角的2倍,求∠A的度数.八.线段垂直平分线的性质(共12小题)(1)定义:经过某一条线段的中点,并且垂直于这条线段的直线,叫做这条线段的垂直平分线(中垂线)垂直平分线,简称“中垂线”.(2)性质:①垂直平分线垂直且平分其所在线段.②垂直平分线上任意一点,到线段两端点的距离相等.③三角形三条边的垂直平分线相交于一点,该点叫外心,并且这一点到三个顶点的距离相等.1.如图,点E,F,G,Q,H在一条直线上,且EF=GH,我们知道按如图所作的直线l为线段FG的垂直平分线.下列说法正确的是()A.l是线段EH的垂直平分线B.l是线段EQ的垂直平分线C.l是线段FH的垂直平分线D.EH是l的垂直平分线2.若P是△ABC所在平面内的点,且P A=PB=PC,则下列说法正确的是()A.点P是△ABC三边垂直平分线的交点B.点P是△ABC三条角平分线的交点C.点P是△ABC三边上高的交点D.点P是△ABC三边中线的交点3.在正方形网格中,△ABC的位置如图所示,且顶点在格点上,在△ABC内部有E、F、G、H四个格点,到△ABC 三个顶点距离相等的点是()A.点E B.点F C.点G D.点H第3题第4题第5题4.如图,在△ABC中,AC=10,AB的垂直平分线交AB于点M,交AC于点D,△BDC的周长为18,则BC的长为()A.4B.6C.8D.105.如图,在△ABC中,DE是边AB的垂直平分线,垂足为E,交BC边于D点,若AC=5cm,△ADC的周长为17cm,则BC的长为()A.7cm B.10cm C.12cm D.22cm6.如图,在△ABC中,∠BAC=80°,AB边的垂直平分线交AB于点D,交BC于点E,AC边的垂直平分线交AC 于点F,交BC于点G,连接AE,AG.则∠EAG的度数为()A.15°B.20°C.25°D.30°7.如图,在△ABC中,BD平分∠ABC,BC的垂直平分线交BD于点E,连接CE,若∠A=60°,∠ACE=24°,则∠ABE的度数为()A.24°B.30°C.32°D.48°8.如图,在直角△ABC中,已知∠ACB=90°,AB边的垂直平分线交AB于点E,交BC于点D,且∠BAD=15°,BD=18cm,则AC的长是cm.9.如图,△ABC中,∠ABC=30°,∠ACB=50°,DE、FG分别为AB、AC的垂直平分线,E、G分别为垂足.(1)直接写出∠BAC的度数;(2)求∠DAF的度数,并注明推导依据;(3)若△DAF的周长为20,求BC的长.10.已知如图,点A、点B在直线l异侧,以点A为圆心,AB长为半径作弧交直线l于C、D两点.分别以C、D 为圆心,AB长为半径作弧,两弧在l下方交于点E,连结AE.(1)根据题意,利用直尺和圆规补全图形;(2)证明:l垂直平分AE.11.如图,直线l与m分别是△ABC边AC和BC的垂直平分线,l与m分别交边AB,BC于点D和点E.(1)若AB=10,则△CDE的周长是多少?为什么?(2)若∠ACB=125°,求∠DCE的度数.12.如图,线段AB、BC的垂直平分线l1、l2相交于点O,若∠1=39°,则∠AOC=.九.等腰三角形的性质(共6小题)(1)等腰三角形的概念:有两条边相等的三角形叫做等腰三角形.(2)等腰三角形的性质①等腰三角形的两腰相等②等腰三角形的两个底角相等.【简称:等边对等角】③等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.【三线合一】(3)在①等腰;②底边上的高;③底边上的中线;④顶角平分线.以上四个元素中,从中任意取出两个元素当成条件,就可以得到另外两个元素为结论.1.如果等腰三角形两边长是4cm和8cm,那么它的周长是()A.16 cm B.20cm C.21 cm D.16或20cm2.如图,为了让电线杆垂直于地面,工程人员的操作方法通常是:从电线杆DE上一点A往地面拉两条长度相等的固定绳AB与AC,当固定点B,C到杆脚E的距离相等,且B,E,C在同一直线上时,电线杆DE就垂直于BC.工程人员这种操作方法的依据是()A.等边对等角B.垂线段最短C.等腰三角形“三线合一”D.线段垂直平分线上的点到这条线段两端点的距离相等3.等腰三角形的两边长分别为a、b,且a、b满足|2a﹣3b﹣7|+(2a+3b﹣13)2=0,等腰三角形的周长为()A.7B.11或7C.11D.7或104.如图,△ABC是等腰三角形,点O是底边BC上任意一点,OE、OF分别与两边垂直,等腰三角形的腰长为6,面积为15,则OE+OF的值为()A.5B.7.5C.9D.105.已知,等腰三角形的一边是3,另一边是方程+=1的解,则这个三角形的周长是()A.10B.11C.10或11D.7或86.如果等腰三角形的一个内角为50°,那么其它两个内角为()A.50°,80°B.65°,65°C.50°,65°D.50°,80°或65°,65°十.等腰三角形的判定(共11小题)判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等.【简称:等角对等边】说明:①等腰三角形是一个轴对称图形,它的定义既作为性质,又可作为判定办法.②等腰三角形的判定和性质互逆;③在判定定理的证明中,可以作未来底边的高线也可以作未来顶角的角平分线,但不能作未来底边的中线;④判定定理在同一个三角形中才能适用.1.如图所示的方格纸中,每个方格均为边长为1的小正方形,我们把每个小正方形的顶点称为格点,现已知A、B、C、D都是格点,则下列结论中正确的是()A.△ABC、△ABD都是等腰三角形B.△ABC、△ABD都不是等腰三角形C.△ABC是等腰三角形,△ABD不是等腰三角形D.△ABC不是等腰三角形,△ABD是等腰三角形2.如图,在△ABC中,∠BAC=120°,∠B=40°,边AB的垂直平分线与边AB交于点E,与边BC交于点D.(1)求∠ADC的度数;(2)求证:△ACD为等腰三角形.3.如图,在△ABC中,AB=AC=8,AB的垂直平分线交AB于点D,交AC于点E.(1)若BE﹣EC=2,求CE的长;(2)若∠A=36o,求证:△BEC是等腰三角形.4.下面叙述不可能是等腰三角形的是()A.有两个内角分别为75°,75°的三角形B.有两个内角分别为110°和40°的三角形C.有一个外角为100°,一个内角为50°的三角形D.有一个外角为140°,一个内角为100°的三角形5.如图,∠AOB=60°,OC平分∠AOB,如果射线OA上的点E满足△OCE是等腰三角形,那么∠OEC的度数不可能为()A.120°B.75°C.60°D.30°35.在证明等腰三角形的判定定理“等角对等边”,即“如图,已知:∠B=∠C,求证:AB=AC”时,小明作了如下的辅助线,下列对辅助线的描述正确的有()①作∠BAC的平分线AD交BC于点D②取BC边的中点D,连接AD③过点A作AD⊥BC,垂足为点D④作BC边的垂直平分线AD,交BC于点DA.1个B.2个C.3个D.4个36.Rt△ABC中,∠ACB=90°,∠A=60°,在直线BC上取一点P使得△P AB是等腰三角形,则符合条件的点P 有个.37.如图,在△ABC中,AB=AC,点D是BC边上的中点,G是AC边上一点,过G作EF⊥BC,交BC于点E,交BA的延长线于点F.(1)求证:AD∥EF;(2)求证:△AFG是等腰三角形.38.如图是5×5的正方形方格图,点A,B在小方格的顶点上,要在小方格的项点确定一点C,连接AC和BC,使△ABC是等腰三角形,则方格图中满足条件的点C的个数是()A.4B.5C.6D.739.如图,关于△ABC,给出下列四组条件:①△ABC中,AB=AC;②△ABC中,∠B=56°,∠BAC=68°;③△ABC中,AD⊥BC,AD平分∠BAC;④△ABC中,AD⊥BC,AD平分边BC.其中,能判定△ABC是等腰三角形的条件共有()A.1组B.2组C.3组D.4组40.如图,已知∠MON,在边ON上顺次取点P1,P3,P5…,在边OM上顺次取点P2,P4,P6…,使得OP1=P1P2=P2P3=P3P4=P4P5…,得到等腰△OP1P2,△P1P2P3,△P2P3P4,△P3P4P5…(1)若∠MON=30°,可以得到的最后一个等腰三角形是;(2)若按照上述方式操作,得到的最后一个等腰三角形是△P3P4P5,则∠MON的度数α的取值范围是.十一.等腰三角形的判定与性质(共15小题)1、等腰三角形提供了好多相等的线段和相等的角,判定三角形是等腰三角形是证明线段相等、角相等的重要手段.2、在等腰三角形有关问题中,会遇到一些添加辅助线的问题,其顶角平分线、底边上的高、底边上的中线是常见的辅助线【“三线合一”】,3、等腰三角形性质问题都可以利用三角形全等来解决,但要注意纠正不顾条件,一概依赖全等三角形的思维定势,凡可以直接利用等腰三角形的问题,应当优先选择简便方法来解决.1.用一条长为18的绳子围成一个等腰三角形.(1)若等腰三角形有一条边长为4,它的其它两边是多少?(2)若等腰三角形的三边长都为整数,请直接写出所有能围成的等腰三角形的腰长.2.在Rt△ABC中,∠ACB=90°,以△ABC的一边为边画等腰三角形,使得它的第三个顶点在△ABC的其他边上,则可以画出的不同的等腰三角形的个数最多可画几个?()A.9个B.7个C.6个D.5个3.如图,△ABC是等腰三角形,AB=AC,∠A=20°,BP平分∠ABC;点D是射线BP上一点,如果点D满足△BCD是等腰三角形,那么∠BDC的度数是.4.如图,点G在CA的延长线上,AF=AG,AD⊥BC,GE⊥BC.求证:AD平分∠BAC.证明:∵AF=AG(已知),∴∠AGF=∠AFG().∵AD⊥BC,GE⊥BC(已知),∴∠ADC=∠GEC=90°().∴AD∥GE().∴∠CAD=(两直线平行,同位角相等).∠BAD=∠AFG().∴∠CAD=∠BAD(等量代换).∴AD平分∠BAC().5.如图,在△ABC中,AB=AC,D是BC边上的中点,连结AD,BE平分∠ABC交AC于点E,过点E作EF∥BC 交AB于点F.(1)若∠C=36°,求∠BAD的度数.(2)求证:FB=FE.6.如图,在△ABC中,AB=AC,BO、CO分别平分∠ABC、∠ACB,DE经过点O,且DE∥BC,DE分别交AB、AC于D、E,则图中等腰三角形的个数为()A.2B.3C.4D.57.如图,△ABC中,∠ABC与∠ACB的平分线交于点F,过点F作DE∥BC交AB于点D,交AC于点E,那么下列结论,其中正确的有()①△BDF是等腰三角形;②DE=BD+CE;③若∠A=50°,则∠BFC=115°;④DF=EF.A.1个B.2个C.3个D.4个8.如图,在△ABC中,AB=AC,∠A=36°,BD平分∠ABC交AC于点D,点E是AB的中点,连结DE.(1)求证:△ABD是等腰三角形;(2)求∠BDE的度数.9.如图,在△ABC中,AB=AC,BD平分∠ABC交AC于点D,BE⊥BD,DE∥BC,BE与DE交于点E,DE交AB于点F.(1)若∠A=56°,求∠E的度数;(2)求证:BF=EF.10.(1)如图①,△ABC中,∠ABC、∠ACB的平分线交于O点,过O点作EF∥BC交AB、AC于点E、F,试猜想EF、BE、CF之间有怎样的关系,并说明理由;(2)如图,若将图①中∠ACB的平分线改为外角∠ACD的平分线,其它条件不变,请直接写出EF、BE、CF 之间的关系.11.如图,在△ABC中,AB=AC,∠BAC=36°,BD是∠ABC的平分线,交AC于点D,E是AB的中点,连接ED并延长,交BC的延长线于点F,连接AF,求证:(1)EF⊥AB;(2)△ACF为等腰三角形.12.如图,在四边形ABCD中,AB∥CD,∠ABC的平分线交CD的延长线于点E,F是BE的中点,连接CF并延长交AD于点G.(1)求证:CG平分∠BCD.(2)若∠ADE=110°,∠ABC=52°,求∠CGD的度数.13.在△ABC中,点E,点F分别是边AC,AB上的点,且AE=AF,连接BE,CF交于点D,∠ABE=∠ACF.(1)求证:△BCD是等腰三角形.(2)若∠A=40°,BC=BD,求∠BEC的度数.14.如图,在△ABC中,AB=AC,点D、E、F分别在AB、BC、AC边上,且BE=CF,BD=CE.(1)求证:△DEF是等腰三角形;(2)当∠A=40°时,求∠DEF的度数.15.如图,△ABC中,∠C=90°,AB=5cm,BC=3cm,若动点P从点C开始,按C→A→B→C的路径运动,且速度为每秒1cm,设出发的时间为t秒.(1)出发2秒后,求△ABP的周长.(2)问t为何值时,△BCP为等腰三角形?(3)另有一点Q,从点C开始,按C→B→A→C的路径运动,且速度为每秒2cm,若P、Q两点同时出发,当P、Q中有一点到达终点时,另一点也停止运动.当t为何值时,直线PQ把△ABC的周长分成相等的两部分?十二.等边三角形的性质(共7小题)(1)等边三角形的定义:三条边都相等的三角形叫做等边三角形,等边三角形是特殊的等腰三角形.①它可以作为判定一个三角形是否为等边三角形的方法;②可以得到它与等腰三角形的关系:等边三角形是等腰三角形的特殊情况.(2)等边三角形的性质:等边三角形的三个内角都相等,且都等于60°.等边三角形是轴对称图形,它有三条对称轴;它的任意一角的平分线都垂直平分对边,三边的垂直平分线是对称轴.1.如图,在△ABC中,点D,E在边上,DE∥BC,若△ADE是等边三角形,AD=2,BD=3,则△ABC的周长为()A.6B.9C.15D.182.如图,已知等边△ABC的周长是12,点P是三角形内的任意一点,PD∥AB,PE∥BC,PF∥AC,则PD+PE+PF 的值是()A.12B.8C.4D.33.如图,直线l1∥l2,等边△ABC的顶点C在直线l2上,若边AB与直线l1的夹角∠1=40°,则边AC与直线l2的夹角∠2=°.第3题第4题第5题4.如图,在四边形ABCD中,AB=BC=CD,∠ABC=160°,∠BCD=80°,△PDC为等边三角形,则∠ADC的度数为()A.70°B.75°C.80°D.85°5.如图,在Rt△ABC中,∠ACB=90°,AB=4,以AC为边在△ABC外作等边三角形△ACD,连接BD.则BD 的最大值是.6.如图,△ABC是等边三角形,BC=BD,∠BAD=20°,则∠BCD的度数为()A.50°B.55°C.60°D.65°7.如图,在等边△ABC中,BD=2DC,DE⊥BE,CE,AD相交于点P,则()A.AP>AE>EP B.AE>AP>EP C.AP>EP>AE D.EP>AE>AP十三.等边三角形的判定(共9小题)(1)由定义判定:三条边都相等的三角形是等边三角形.(2)判定定理1:三个角都相等的三角形是等边三角形.(3)判定定理2:有一个角是60°的等腰三角形是等边三角形.说明:若已知或能求得三边相等则用定义来判定;若已知或能求得三个角相等则用判定定理1来证明;若已知等腰三角形且有一个角为60°,则用判定定理2来证明.1.如图,在△ABC中,∠A=120°,AB=AC,D是BC的中点,DE⊥AB,DF⊥AC,点E,F为垂足,求证:△DEF是等边三角形.2.如图,△ABC中,∠A=60°,分别以A,B为圆心,大于AB长的一半为半径画弧交于两点,过两点的直线交AC于点D,连结BD,则△ABD是三角形.3.已知,在△ABC中,AB=AC,如图,(1)分别以B,C为圆心,BC长为半径作弧,两弧交于点D;(2)作射线AD,连接BD,CD.根据以上作图过程及所作图形,下列结论中错误的是()A.∠BAD=∠CAD B.△BCD是等边三角形C.AD垂直平分BC D.S四边形ABDC=AD•BC4.下列三角形中:①有两个角等于60°的三角形;②有一个角等于60°的等腰三角形;③三个角都相等的三角形;④三边都相等的三角形.其中是等边三角形的有(填序号).5.已知a、b、c是△ABC的三边的长,且满足a2+2b2+c2﹣2b(a+c)=0,则此三角形的形状为.6.如果三角形的三边a、b、c适合(a2﹣2ac)(b﹣a)=c2(a﹣b),则a、b、c之间满足的关系是;有同学分析后判断△ABC是等边三角形,你的判断是.7.下列三角形:①有两个角等于60°的三角形;②有一个角等于60°的等腰三角形;③三个外角(每个顶点处各取一个外角)都相等的三角形;④一腰上的中线也是这条腰上的高的等腰三角形.其中是等边三角形的有()A.①②③④B.①②④C.①③D.②③④8.等边△ABC中,点P在△ABC内,点Q在△ABC外,且∠ABP=∠ACQ,BP=CQ,问△APQ是什么形状的三角形?试说明你的结论.9.如图,点O是等边△ABC内一点,∠AOB=110°,∠BOC=α.将△BOC绕点C顺时针旋转60°得△ADC,。
初中数学《轴对称与轴对称图形》教案设计:轴对称图形的对称中心及性质
本教案旨在帮助初中学生掌握轴对称与轴对称图形的概念,并深入了解轴对称图形的对称中心及其性质,从而提高学生的数学素养和综合能力。
【教学目标】1.学习轴对称与轴对称图形的概念。
2.进一步了解轴对称图形的对称中心及其性质。
3.掌握轴对称图形的复合对称和单纯对称。
4.练习绘制轴对称图形和根据已知的轴对称图形画出其对称轴。
【教学重难点】1.轴对称与轴对称图形的概念。
2.理解对称中心的概念和作用。
3.绘制对称图形和找出其对称轴的能力。
【教学内容】一、轴对称与轴对称图形1.轴对称的定义:轴对称是指将一个图形绕着某一条直线对称,使得对称前后的图形重合的变换。
2.轴对称的特点:两侧的图形是完全对称的,且对称轴将图形分成两个完全相同的部分。
3.轴对称图形的定义:轴对称图形是指可以利用轴对称变换得到重合的图形。
4.轴对称图形的特点:轴对称图形的两侧是完全对称的,且轴对称图形在对称轴上的投影也是对称的。
二、对称中心及其性质1.对称中心的定义:对称中心是指轴对称变换中的对称轴上的一个点,通过将该点作为对称点,使得对称前后的图形重合。
2.对称中心的性质:(1)在轴对称图形中,轴对称图形上的每个点都和对称中心对称。
(2)对称中心在线段的中垂线上。
(3)图形中一个对称中心可以对应多个对称轴,但一个对称轴只能对应一个对称中心。
三、轴对称图形的复合对称和单纯对称1.复合对称:指将轴对称图形绕两条不同的轴对称。
2.单纯对称:指将轴对称图形绕同一条轴对称。
四、绘制轴对称图形和找出其对称轴1.绘制轴对称图形的步骤:(1)构造一条直线作为对称轴。
(2)在对称轴上选择一个点作为对称中心。
(3)以对称轴为中心,对称中心为半径,绘制出对称图形的一半。
(4)将所画部分沿对称轴对称得到完整的图形。
2.找出轴对称图形的对称轴的步骤:(1)选择图形中的一个点作为对称中心。
(2)连接这个点和它的副本所在位置上的点,所连接的线段即为对称轴。
【教学过程】一、简单的轴对称图形展示1.教师展示几个简单的轴对称图形,并让学生讨论对称中心和对称轴的位置。
初中数学八年级上册《轴对称》教案(二十四)
轴对称第一课时★新课标要求一、知识与技能1.在生活实例中认识轴对称图形.2.分析轴对称图形,理解轴对称的概念.3.了解两个图形成轴对称性的性质,了解轴对称图形的性质.二、过程与方法通过丰富的生活实例认识轴对称,能识别简单的轴对称图形及其对称轴.观察生活中的轴对称,探索轴对称现象的特征.三、情感、态度与价值观1.从观察、实验、操作等活动中激发学生的兴趣,增强他们对数学美感的体会.2.在与同学老师的讨论交流中,培养学生团结协作的精神.★教学重点轴对称图形的概念.★教学难点轴对称图形和关于某条直线对称的区别和联系.★教学方法教师搜集图片投影给学生,学生观察,阅读,总结交流.★教学过程一、引入新课我们生活在一个充满对称的世界中,许多建筑物都设计成对称形,艺术作品的创作往往也从对称角度考虑,自然界的许多动植物也按对称形生长,中国的方块字中有些也具有对称性……对称给我们带来多少美的感受!初步掌握对称的奥妙,不仅可以帮助我们发现一些图形的特征,还可以使我们感受到自然界的美与和谐.轴对称是对称中重要的一种,从这节课开始,我们来学习轴对称.今天我们来研究第一节,认识什么是轴对称图形,什么是对称轴.二、进行新课1.轴对称图形的有关概念.对称现象无处不在,从自然景观到分子结构,从建筑物到艺术作品,•甚至日常生活用品,人们都可以找到对称的例子.现在同学们就从我们生活周围的事物中来找一些具有对称特征的例子.我们的黑板、课桌、椅子等.我们的身体,还有飞机、汽车、枫叶等都是对称的.教师活动:指导学生阅读下面一段内容.了解轴对称图形和对称轴的概念.像窗花一样,如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线就是它的对称轴.这时,我们也说这个图形关于这条直线(成轴)对称.观察下图中的图片是否是轴对称图形,如果是,指出它们的对称轴.学生活动:阅读下面内容,找出图中的轴对称图形和它的对称轴.图中的每一对图形,如果沿着虚线折叠,左边的图形能与右边的图形重合.2.关于某条直线对称的有关概念.了解了轴对称图形及其对称轴的概念后,我们来做一做.取一张质地较硬的纸,将纸对折,并用小刀在纸的中央随意刻出一个图案,•将纸打开后铺平,你得到两个成轴对称的图案了吗?与同伴进行交流.结论:位于折痕两侧的图案是对称的,它们可以互相重合.由此可以得到轴对称图形的特征:一个图形沿一条直线折叠后,折痕两侧的图形完全重合.接下来我们来探讨一个有关对称轴的问题.有些轴对称图形的对称轴只有一条,但有的轴对称图形的对称轴却不止一条,有的轴对称图形的对称轴甚至有无数条。
八年级数学上册轴对称教案
八年级数学上册轴对称教案八年级数学上册轴对称教案作为一名教师,常常需要准备教案,借助教案可以更好地组织教学活动。
快来参考教案是怎么写的吧!下面是小编收集整理的八年级数学上册轴对称教案,欢迎大家借鉴与参考,希望对大家有所帮助。
八年级数学上册轴对称教案1教学内容:人教版《义务教育课程标准实验教科书·数学(二年级上册)》第五单元“观察物体”第二课时(第68页内容)教学目标:1、知识目标:使学生通过观察、操作,初步认识轴对称现象,并能在方格纸上画出简单的轴对称图形。
2、能力目标:发展学生的空间观念,培养学生的观察能力和动手操作能力,学会欣赏数学美。
3、情感、态度、价值观:通过探究活动,激发学生学习的热情,培养主动探究的能力;让学生感受对称图形的美,学会欣赏数学美。
教学重点:理解对称图形的概念,能正确找、画对称轴。
教学难点:准确找对称轴。
教学具准备:1、教具:图片、剪刀、彩纸、课件2、学具:蝴蝶几何图片、剪刀、白纸教学过程:一创设情境、激趣感知课件出示动画呈现:在绿草如茵的草地上,对称的房子、蝴蝶、蜻蜓、树叶、花朵……,一片迷人的景色。
师:谁来说说蝴蝶和蜻蜓怎么说?蜻蜓说:“:蝴蝶姐姐,你为什么总是绕着我飞呀?”蝴蝶说:“你不知道吧!在图形王国里我们都是对称图形呢!”蜻蜓说:“我才不信呢!”师:你们想知道对称图形的那些知识?生1:什么样的图形是对称图形?生2:对称图形有什么特点?[设计理念:充分体现了“数学来源于生活,又服务于生活”的理念,让学生感受对称图形的美,提出问题。
]二师生互动、探究新知(一)教学对称图形现在请同学们认真观察这些图形(出示对称和不对称图形,如下图),看看有什么发现?生1:我发现蝴蝶的左右两边是一样的。
生2:我发现年年有鱼的纸花的左右两边是不一样的。
生3:我发现京剧脸谱的左右两边是一样的。
让学生动手折一折、比一比、画一画,蜻蜓、树叶、蝴蝶、京剧脸谱的实物图共同的特点。
[设计理念:教学对称图形,引导学生仔细观察、动手折一折、比一比、画一画,在观察发现的基础上进行分类。
初中数学轴对称教案
初中数学轴对称教案初中数学轴对称教案(精选10篇)作为一名优秀的教育工作者,有必要进行细致的教案准备工作,借助教案可以提高教学质量,收到预期的教学效果。
那么大家知道正规的教案是怎么写的吗?下面是小编整理的初中数学轴对称教案,欢迎阅读与收藏。
初中数学轴对称教案篇1教学目的1.使学生对整章的学习内容做一回顾,系统地把握全章的知识要点和基本技能。
2.通过例题和练习,使学生能较好地运用本章知识和技能解决有关问题。
重点、难点判断图形是否是轴对称图形,线段的垂直平分线、角平分线的性质、等腰三角形的性质和判定及其应用是教学重点,而灵活运用上述性质解决问题、轴对称图案的设计是教学难点。
教学过程一、知识回顾问题1:轴对称图形的定义是什么?它是判断图形是否是轴对称图形的依据。
问题2:是否会画轴对称图形的对称轴?找出轴对称图形的任一组对称点,连结对称点,画对称点所连线段的垂直平分线,即得到该图形对称轴。
问题3:轴对称图形对称点的连线与对称轴有什么关系?轴对称图形对称点的连线被对称轴垂直平分。
问题4:线段垂直平分线、角平分线具有什么性质?线段垂直平分线上的点到线段两端的距离相等;角平分线上的点到角两边的距离相等。
问题5:等腰三角形有什么性质?等腰三角形底边的中线、高线、顶角的平分线互相重合,等腰三角形的两个底角相等(等边对等角),等边三角形的三个角都等于60。
问题6:如何判断三角形是等腰三角形?等边三角形?如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边);有两个角是60的三角形是等边三角形,有一个角是60的等腰三角形是等边三角形。
二、例题1.书本中下列是轴对称图形的有( )A.1个 D.2个 C.3个 D.4个2.所示,已知,OC平分AOB,D是OC上一点,DEOA,DFOB,垂足为E、F点,那么(1)DEF与DFE相等吗?为什么?(2)OE与OF相等吗?为什么?三、巩固练习所示,已知AB=AC,DE垂直平分AB交AC、AB于D、E两点,若AB=12cm,BC=l0cm,A=491454.求△BCD的周长和DBC度数。
新人教版教材八年级数学上册第13章《轴对称》全章教案
§13.1 轴对称(1)教学目标:1.了解轴对称图形和两个图形成轴对称的概念,知道轴对称图形和两个图形成轴对称的区别与联系.2.探索成轴对称的两个图形的性质和轴对称图形的性质,体会由具体到抽象认识问题的过程,感悟类比方法在研究数学问题中的作用.3.了解线段垂直平分线的概念.教学重、难点:轴对称的概念和性质教学过程:一、问题导入:引言对称现象无处不在,从自然景观到艺术作品,从建筑物到交通标志,甚至日常生活用品,都可以找到对称的例子,对称给我们带来美的感受!二、课本精讲:问题1 如图,把一张纸对折,剪出一个图案(折痕处不要完全剪断),再打开这张对折的纸,就得到了美丽的窗花.观察得到的窗花,你能发现它们有什么共同的特点吗?如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线就是它的对称轴.这时,我们也说这个图形关于这条直线(成轴)对称.教师:你能举出一些轴对称图形的例子吗?问题2观察下面每对图形(如图),你能类比前面的内容概括出它们的共同特征吗?共同特征:每一对图形沿着虚线折叠,左边的图形都能与右边的图形重合.把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线(成轴)对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点.教师:你能再举出一些两个图形成轴对称的例子吗?教师:你能结合具体的图形说明轴对称图形和两个图形成轴对称有什么区别与联系吗?两者的联系:把成轴对称的两个图形看成一个整体,它就是一个轴对称图形.把一个轴对称图形沿对称轴分成两个图形,这两个图形关于这条轴对称.两者的区别:轴对称图形指的是一个图形沿对称轴折叠后这个图形的两部分能完全重合,而两个图形成轴对称指的是两个图形之间的位置关系,这两个图形沿对称轴折叠后能够重合.问题3 如图,△ABC 和△A′B′C′关于直线MN 对称,点A′,B′,C′分别是点A,B,C的对称点,线段AA′,BB′,CC′与直线MN 有什么关系?教师:你能说明其中的道理吗?上面的问题说明“如果△ABC 和△A′B′C′关于直线MN 对称,那么,直线MN 垂直线段AA′,BB′和CC′,并且直线MN 还平分线段AA′,BB′和CC′”.如果将其中的“三角形”改为“四边形”“五边形”…其他条件不变,上述结论还成立吗?问题3 如图,△ABC 和△A′B′C′关于直线MN 对称,点A′,B′,C′分别是点A,B,C的对称点,线段AA′,BB′,CC′与直线MN 有什么关系?经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线.教师:你能用数学语言概括前面的结论吗?成轴对称的两个图形的性质:如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.即对称点所连线段被对称轴垂直平分;对称轴垂直平分对称点所连线段.问题4 下图是一个轴对称图形,你能发现什么结论?能说明理由吗?结论:直线l 垂直线段AA′,BB′,直线l平分线段AA′,BB′(或直线l 是线段AA′,BB′的垂直平分线).教师:你能用数学语言概括前面的结论吗?轴对称图形的性质:轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线.三、巩固提高:教科书60页练习1、2四、课堂小结:(1)本节课学习了哪些主要内容?(2)轴对称图形和两个图形成轴对称的区别与联系是什么?(3)成轴对称的两个图形有什么性质?轴对称图形有什么性质?我们是怎么探究这些性质的?五、课后作业:教科书习题13.1第1、2、3、4、5题课后反思:13.1 轴对称(2)教学目标:1.理解线段垂直平分线的性质和判定.2.能运用线段垂直平分线的性质和判定解决实际问题.3.会用尺规经过已知直线外一点作这条直线的垂线,了解作图的道理.教学重、难点:线段垂直平分线的性质.教学过程:一、问题导入:探索并证明线段垂直平分线的性质如图,直线l 垂直平分线段AB,P1,P2,P3,…是l 上的点,请猜想点P1,P2,P3,…到点A 与点B 的距离之间的数量关系.教师:你能用不同的方法验证这一结论吗?二、课本精讲:请在图中的直线l 上任取一点,那么这一点与线段AB 两个端点的距离相等吗?线段垂直平分线上的点与这条线段两个端点的距离相等.证明:“线段垂直平分线上的点到线段两端点的距离相等.”已知:如图,直线l⊥AB,垂足为C,AC =CB,点P 在l 上.求证:PA =PB.用符号语言表示为:∵CA =CB,l⊥AB,∴PA =PB线段垂直平分线的性质:线段垂直平分线上的点与这条线段两个端点的距离相等.教师:反过来,如果PA =PB,那么点P 是否在线段AB 的垂直平分线上呢?点P 在线段AB 的垂直平分线上.已知:如图,PA =PB.求证:点P 在线段AB 的垂直平分线上.用数学符号表示为:∵PA =PB,∴点P 在AB 的垂直平分线上.与一条线段两个端点距离相等的点,在这条线段的垂直平分线上.教师:你能再找一些到线段AB 两端点的距离相等的点吗?能找到多少个到线段AB 两端点距离相等的点?这些点能组成什么几何图形?在线段AB 的垂直平分线l 上的点与A,B 的距离都相等;反过来,与A,B 的距离相等的点都在直线l上,所以直线l 可以看成与两点A、B 的距离相等的所有点的集合.教师:如何用尺规作图的方法经过直线外一点作已知直线的垂线?三、巩固提高:教科书62页练习1、2.四、课堂小结:(1)本节课学习了哪些内容?(2)线段垂直平分线的性质和判定是如何得到的?两者之间有什么关系?(3)如何判断一条直线是否是线段的垂直平分线?五、课后作业:教科书习题13.1第6、9题课后反思:13.1 轴对称(3)教学目标:1.能用尺规作线段的垂直平分线.2.进一步了解作图的一般步骤和作图语言,了解作图的依据.3.运用尺规作图的方法解决简单的作图问题.教学重点:作线段的垂直平分线.教学难点:作线段的垂直平分线.教学过程:一、问题导入:有时我们感觉两个平面图形是轴对称的,如何验证呢?不折叠图形,你能准确地作出轴对称图形的对称轴吗?二、课本精讲:作线段的垂直平分线我们已能用尺规完成:(1)作一条线段等于已知线段;(2)作一个角等于已知角;(3)作一个角的平分线;(4)经过已知直线外一点作这条直线的垂线.教师:那么利用尺规还能解决什么作图问题呢?例1 如图,点A 和点B 关于某条直线成轴对称,你能作出这条直线吗?教师:怎样作线段AB 的垂直平分线呢?作法:如图.(1)分别以点A,B 为圆心,以大于AB的为半径作弧,两弧相交于C,D 两点;(2)作直线CD.CD 就是所求作的直线.教师:这种作法的依据是什么?教师:这种作图方法还有哪些作用?确定线段的中点.教师:如果两个图形成轴对称,怎样作出图形的对称轴?如果两个图形成轴对称,其对称轴是任何一对对应点所连线段的垂直平分线.因此,只要找到任意一组对应点,作出对应点所连线段的垂直平分线,就得到此图形的对称轴.如图中的五角星,请作出它的一条对称轴.你能作出这个五角星的其他对称轴吗?它共有几条对称轴?三、巩固提高:教科书64页练习1、2、3四、课堂小结:(1)本节课学习了哪些内容?(2)作线段的垂直平分线的依据是什么?举例说明这种作法有哪些运用?(3)如何用尺规作轴对称图形的对称轴?五、课后作业:教科书习题13.1第10、12题.课后反思:13.2 画轴对称图形(1)教学目标:1.理解图形轴对称变换的性质.2.能按要求画出一个平面图形关于某直线对称的图形.教学重点:画轴对称图形.教学难点:画轴对称图形.教学过程:一、问题导入:在一张半透明纸张的左边部分,画出左脚印,如何由此得到相应的右脚印?二、课本精讲:请动手在一张纸上画一个你喜欢的图形,将这张纸折叠,描图,再打开纸,看看你得到了什么?由一个平面图形得到与它关于一条直线对称的图形.一个平面图形和与它成轴对称的另一个图形之间有什么关系?由一个平面图形可以得到与它关于一条直线l 对称的图形,这个图形与原图形的形状、大小完全相同;新图形上的每一点都是原图形上的某一点关于直线l 的对称点;连接任意一对对应点的线段被对称轴垂直平分.教师:如果有一个图形和一条直线,如何作出这个图形关于这条直线对称的图形呢?例1 如图,已知△ABC 和直线l,画出与△ABC关于直线l 对称的图形.画法:(1)如图,过点A 画直线l 的垂线,垂足为点O,在垂线上截取OA′=OA,点A′就是点A 关于直线l 的对称点;(2)同理,分别画点B,C 关于直线l 的对称点B′,C′;(3)连接A′B′,B′C′,C′A′,得到的△A′B′C′即为所求.教师:如何验证画出的图形与△ABC 关于直线l 对称?已知一个几何图形和一条直线,说一说画一个与该图形关于这条直线对称的图形的一般方法.几何图形都可以看作由点组成.对于某些图形,只要画出图形中的一些特殊点(如线段端点)的对称点,连接这些对称点,就可以得到原图形的轴对称图形.三、巩固提高:教科书68页练习1、2四、课堂小结:(1)本节课学习了哪些内容?(2)一个平面图形和与它成轴对称的另一个图形之间有什么关系?(3)画轴对称图形的一般方法是什么?依据是什么?五、课后作业:教科书习题13.2第1题.课后反思:13.2 画轴对称图形(2)教学目标:1.理解在平面直角坐标系中,已知点关于x 轴或y 轴对称的点的坐标的变化规律.2.掌握在平面直角坐标系中作出一个图形的轴对称图形的方法.教学重、难点:在平面直角坐标系中关于x 轴或y轴对称的点的变化规律和作出与一个图形关于x 轴或y轴对称的图形.教学过程:一、问题导入:如图,如果以天安门为原点,分别以长安街和中轴线为x轴和y 轴建立平面直角坐标系,对应于东直门的坐标,你能找到西直门的位置,说出西直门的坐标吗?二、课本精讲:探究并归纳已知点关于坐标轴对称的点的坐标变化规律对于平面直角坐标系中任意一点,你能找出其关于x 轴或y 轴对称的点的坐标吗?它们之间有什么规律?在平面直角坐标系中,画出下列已知点及其关于x 轴对称的点,把它们的坐标填入表格中.教师:观察下图中关于x 轴对称的每对对称点的坐标有怎样的变化规律?关于x 轴对称的每对对称点的横坐标相等,纵坐标互为相反数.教师:观察关于y 轴对称的每对对称点的坐标有怎样的变化规律?关于y 轴对称的每对对称点的横坐标互为相反数,纵坐标相等.教师:请你再找几个点,分别画出它们的对称点,检验一下你发现的规律.点(x,y)关于x 轴对称的点的坐标为(___,____);点(x,y)关于y 轴对称的点的坐标为(___,____).例如图,四边形ABCD 的四个顶点的坐标分别为A(-5,1),B(-2,1),C(-2,5),D(-5,4),分别画出与四边形ABCD 关于x 轴和y 轴对称的图形.教师:归纳画一个图形关于x 轴或y 轴对称的图形的方法和步骤.先求出已知图形中一些特殊点(多边形的顶点)的对称点的坐标,描出并连接这些点,就可以得到这个图形的轴对称图形.步骤简述为:(1)求特殊点的坐标;(2)描点;(3)连线.三、巩固提高:教科书70页练习1、2、3四、课堂小结:(1)本节课学习了哪些内容?(2)在平面直角坐标系中,已知点关于x 轴或y 轴的对称点的坐标有什么变化规律,如何判断两个点是否关于x 轴或y 轴对称?(3)说一说画一个图形关于x 轴或y 轴对称的图形的方法和步骤.五、课后作业:教科书习题13.2第2、4、5题.课后反思:13.3 等腰三角形(1)教学目标:1.探索并证明等腰三角形的两个性质.2.能利用性质证明两个角相等或两条线段相等.3.结合等腰三角形性质的探索与证明过程,体会轴对称在研究几何问题中的作用.教学重、难点:探索并证明等腰三角形性质.教学过程:一、问题导入:如图所示,把一张长方形的纸按图中虚线对折,并剪去阴影部分,再把它展开,得到的△ABC 有什么特点?教师:仔细观察自己剪出的等腰三角形纸片,你能发现这个等腰三角形有什么特征吗?教师:同学们剪下的等腰三角形纸片大小不同,形状各异,是否都具有上述所概括的特征?二、课本精讲:教师:在练习本上任意画一个等腰三角形,把它剪下来,折一折,上面得出的结论仍然成立吗?由此你能概括出等腰三角形的性质吗?等腰三角形的特征:(1)等腰三角形的两个底角相等;(2)等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合.教师:利用实验操作的方法,我们发现并概括出等腰三角形的性质1和性质2.对于性质1,你能通过严格的逻辑推理证明这个结论吗?(1)你能根据结论画出图形,写出已知、求证吗?(2)结合所画的图形,你认为证明两个底角相等的思路是什么?(3)如何在一个等腰三角形中构造出两个全等三角形呢?从剪图、折纸的过程中你能获得什么启发?已知:如图,△ABC 中,AB =AC.求证:∠B = ∠C.你还有其他方法证明性质1吗?可以作底边的高线或顶角的角平分线.教师:性质2可以分解为三个命题,本节课证明“等腰三角形的底边上的中线也是底边上的高和顶角平分线”.教师:在等腰三角形性质的探索过程和证明过程中,“折痕”“辅助线”发挥了非常重要的作用,由此,你能发现等腰三角形具有什么特征?等腰三角形是轴对称图形,底边上的中线(顶角平分线、底边上的高)所在直线就是它的对称轴.三、巩固提高:教科书77页练习1、2四、课堂小结:(1)本节课学习了哪些主要内容?(2)我们是怎么探究等腰三角形的性质的?(3)本节课你学到了哪些证明线段相等或角相等的方法?五、课后作业:教科书习题13.3第1、2、4、6题.课后反思:13.3 等腰三角形(2)教学目标:1.探索等腰三角形判定定理.2.理解等腰三角形的判定定理,并会运用其进行简单的证明.3.了解等腰三角形的尺规作图.教学重、难点:理解和运用等腰三角形的判定定理教学过程:一、问题导入:问题等腰三角形性质定理的内容是什么?这个命题的题设和结论分别是什么?性质定理的条件是:一个三角形中有两条边相等.结论:这两条边所对的角相等.二、课本精讲:思考性质定理证明方法是什么?作顶角的平分线或底边上的高或底边的中线,将一个三角形的问题转化为两个全等三角形来证明两个角相等.问题一个三角形满足什么条件是等腰三角形?思考1 如果一个三角形有两个角相等,那么这两个角所对的边有什么关系?这两个角所对的边相等.思考2 这个命题的题设和结论又分别是什么呢?如何证明这个命题?题设:一个三角形有两个角相等.结论:这两个角所对的边相等.问题类比等腰三角形性质定理的证明方法,你能选择一种来证明这个命题吗?已知:如图,在△ABC 中,∠B =∠C. 求证:AB =AC.教师:你还有其他证明方法吗?思考能作底边BC 上的中线吗?等腰三角形的判定方法:如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”).符号语言:∵在△ABC 中,∠B =∠C,∴AB =AC.思考与等腰三角形性质进行比较看有什么区别?例1 求证:如果三角形一个外角的平分线平行于三角形的一边,那么这个三角形是等腰三角形.已知:∠CAE 是△ABC 的外角,∠1 =∠2,AD∥BC.求证:AB =AC.例2 已知等腰三角形底边长为a ,底边上的高的长为h ,求作这个等腰三角形.作法:(1)作线段AB =a;(2)作线段AB 的垂直平分线MN,与AB 相交于点D;(3)在MN上取一点C,使DC =h;(4)连接AC,BC,则△ABC 就是所求作的等腰三角形.三、巩固提高:教科书79页练习1、2、3、4四、课堂小结:(1)本节课学习了哪些内容?(2)等腰三角形的判定方法有哪几种?(3)结合本节课的学习,谈谈等腰三角形性质和判定的区别和联系.五、课后作业:教科书习题13.3第2、5题.课后反思:13.3 等腰三角形(3)教学目标:1.探索等边三角形的性质和判定.2.能运用等边三角形的性质和判定进行计算和证明.教学重、难点:探索等边三角形的性质与判定.教学过程:一、问题导入:问题满足什么条件的三角形是等边三角形?三条边都相等的三角形是等边三角形.二、课本精讲:请分别画出一个等腰三角形和等边三角形,结合你画的图形说出它们有什么区别和联系?联系:等边三角形是特殊的等腰三角形;区别:等边三角形有三条相等的边,而等腰三角形只有两条.问题等腰三角形有哪些特殊的性质呢?从边的角度:两腰相等;从角的角度:等边对等角;从对称性的角度:轴对称图形、三线合一.思考将等腰三角形的性质用于等边三角形,你能得到什么结论?结合等腰三角形的性质,你能填出等边三角形对应的结论吗?对“等边三角形的三个内角都相等,并且每一个角都等于60°”这一结论进行证明.已知:△ABC 是等边三角形求证:∠A =∠B =∠C =60°.证明:∵△ABC 是等边三角形,∴BC =AC,BC =AB.∴∠A =∠B,∠A =∠C.∴∠A =∠B =∠C .∵∠A +∠B +∠C =180°,∴∠A =60°.∴∠A =∠B =∠C =60°.等边三角形的性质:等边三角形的三个内角都相等,并且每一个角都等于60°.符号语言:∵△ABC 是等边三角形,∴∠A =∠B =∠C =60°思考利用所学知识判断,等边三角形是轴对称图形吗?若是轴对称图形,请画出它的对称轴.问题等边三角形除了用定义(即用边)来判定以外,能否利用角来判定呢?思考1 一个三角形的三个内角满足什么条件是等边三角形?思考2 一个等腰三角形满足什么条件是等边三角形?三个角都相等的三角形或者一个角为60°的等腰三角形.请你将得到的这两个命题进行证明.等边三角形的判定定理1:三个角都相等的三角形是等边三角形.符号语言:在△ABC 中,∵∠A=∠B =∠C ,∴△ABC 是等边三角形.等边三角形的判定定理2:有一个角为60°的等腰三角形是等边三角形.符号语言:在△ABC 中,∵BC =AC,∠A =60°,∴△ABC 是等边三角形.判定等边三角形的方法:从边的角度:等边三角形的定义;从角的角度:等边三角形的两条判定定理.等边三角形的判定定理1:三个角都相等的三角形是等边三角形.等边三角形的判定定理2:有一个角为60°的等腰三角形.例1 如图,△ABC 是等边三角形,DE∥BC, 分别交AB,AC 于点D,E.求证:△ADE 是等边三角形.三、巩固提高:教科书80页练习1、2四、课堂小结:(1)本节课学习了等边三角形的性质和判定;(2)等边三角形与等腰三角形相比有哪些特殊的性质?共有几种判定等边三角形的方法?(3)结合本节课的学习,谈谈研究三角形的方法.五、课后作业:教科书习题13.3第12、14题.课后反思:13.3 等腰三角形(4)教学目标:1.探索含30°角的直角三角形的性质.2.理解含30°角的直角三角形的性质,并会应用它进行有关的证明和计算.教学重、难点:探索并理解含30°角的直角三角形的性质.教学过程:一、问题导入:问题已知△ABC 中,∠A =60°,().请你在括号内补充一个条件,使△ABC 能成为等边三角形.二、课本精讲:思考1 等边三角形是轴对称图形,若沿着其中一条对称轴折叠,能产生什么特殊图形?思考2 这个特殊的直角三角形相比一般的直角三角形有什么不同之处,它有什么特殊性质?活动用两个全等的含30°角的直角三角尺,你能拼出怎样的三角形?能拼出等边三角形吗?请说说你的理由.问题你能借助这个图形,找到含30°角的直角△ABC 的直角边BC 与斜边AB 之间有什么数量关系吗?猜想在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.问题请说一说你猜想的命题中,条件和结论分别是什么?并结合图形,用符号语言表述出来.思考这个命题是真命题吗?请进行证明.已知:如图,在Rt△ABC 中,∠C =90°,∠A =30°.求证:BC = AB.在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.符号语言:∵在Rt△ABC 中,∠C =90°,∠A =30°,∴BC = AB.例如图是屋架设计图的一部分,点D 是斜梁AB的中点,立柱BC、DE 垂直于横梁AC,AB =7.4 cm,∠A =30°,立柱BC、DE 要多长?三、巩固提高:教科书81页练习四、课堂小结:(1)本节课学习了哪些内容?(2)在应用含30°角的直角三角形的性质时,能解决哪些问题?需要注意哪些问题?五、课后作业:教科书习题13.3第15题.课后反思:。
人教版数学八年级上册第十三章《轴对称》教案
第十三章轴对称轴对称教课目的:1.认识轴对称图形和两个图形成轴对称的观点,知道轴对称图形和两个图形成轴对称的差别与联系.2.研究成轴对称的两个图形的性质和轴对称图形的性质,领会由详细到抽象认识问题的过程,感悟类比方法在研究数学识题中的作用.3.认识线段垂直均分线的观点.教课重、难点:轴对称的观点和性质教课过程:一、问题导入:前言对称现象无处不在,从自然景观到艺术作品,从建筑物到交通标记,甚至平时生活用品,都能够找到对称的例子,对称给我们带来美的感觉!二、课本精讲:问题 1 如图,把一张纸对折,剪出一个图案(折痕处不要完整剪断),再翻开这张对折的纸,就获取了漂亮的窗花.察看获取的窗花,你能发现它们有什么共同的特色吗?假如一个平面图形沿一条直线折叠,直线两旁的部分能够相互重合,这个图形就叫做轴对称图形,这条直线就是它的对称轴.这时,我们也说这个图形对于这条直线(成轴)对称.教师:你能举出一些轴对称图形的例子吗?问题 2察看下边每对图形(如图),你能类比前方的内容归纳出它们的共同特色吗?共同特色:每一对图形沿着虚线折叠,左侧的图形都能与右侧的图形重合.把一个图形沿着某一条直线折叠,假如它能够与另一个图形重合,那么就说这两个图形对于这条直线(成轴)对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点.教师:你能再举出一些两个图形成轴对称的例子吗?教师:你能联合详细的图形说明轴对称图形和两个图形成轴对称有什么差别与联系吗?二者的联系:把成轴对称的两个图形当作一个整体,它就是一个轴对称图形.把一个轴对称图形沿对称轴分红两个图形,这两个图形对于这条轴对称.二者的区:称形指的是一个形沿称折叠后个形的两部分能完整重合,而两个形成称指的是两个形之的地点关系,两个形沿称折叠后能重合.3如,△ ABC和△ A′ B′ C′对于直MN 称,点 A′,B ′,C′分是点 A, B, C 的称点,段 AA ′, BB ′, CC ′与直 MN 有什么关系?教:你能明此中的道理?上边的明“假如△ ABC 和△ A′ B′ C′对于直MN 称,那么,直 MN 垂直段 AA ′, BB ′和 CC ′,而且直 MN 均分段 AA ′, BB ′和 CC ′”.假如将此中的“三角形”改“四形”“五形”⋯其余条件不,上述成立?3 点 A,B, C 如,△ ABC 的称点,段和△ A′ B ′ C′对于直MNAA ′, BB ′, CC ′与直称,点 A′,B ′,C′分是MN 有什么关系?段中点而且垂直于条段的直,叫做条段的垂直均分.教:你能用数学言归纳前方的?成称的两个形的性:假如两个形对于某条直称,那么称是任何一点所段的垂直均分.即称点所段被称垂直均分;称垂直均分称点所段.4下是一个称形,你能什么?能明原因?:直 l 垂直段 AA′,BB ′,直 l 均分段 AA ′,BB′(或直 l 是段 AA ′, BB ′的垂直均分).教:你能用数学言归纳前方的?称形的性:称形的称,是任何一点所段的垂直均分.三、稳固提升:教科 601、2 。
人教版八年级上册《轴对称》数学教学完整设计
人教版八年级上册《轴对称》数学教学完整设计1. 教学目标1.1 知识与技能- 学生能够理解轴对称的概念,识别轴对称图形。
- 学生能够找到对称轴,并理解对称轴的意义。
- 学生能够运用轴对称的性质解决实际问题。
1.2 过程与方法- 学生通过观察、操作、思考、交流等活动,培养空间想象能力和逻辑思维能力。
- 学生能够运用轴对称的性质,进行图形的变换和设计。
1.3 情感态度与价值观- 学生感受数学与生活的联系,增强对数学的兴趣和自信心。
- 学生培养合作、交流、探究的学习态度,提高解决问题的能力。
2. 教学内容2.1 教材分析- 《轴对称》是人民教育出版社八年级上册数学教材的一部分,位于第三单元。
- 教材通过丰富的实例和活动,引导学生认识和理解轴对称的概念,探索轴对称的性质和运用。
2.2 学情分析- 学生已经学习了平面图形的认识,具备一定的观察和操作能力。
- 学生通过生活经验和前面的学习,对轴对称有一定的感知和认识。
3. 教学过程3.1 导入- 通过展示一些生活中的轴对称图形,如剪刀、飞机模型等,引起学生的兴趣。
- 引导学生观察和描述这些图形的对称性质,为学生提供直观的感受。
3.2 探究活动- 学生通过观察和操作,探索和发现对称轴的存在,理解对称轴的定义。
- 学生通过实际操作,找到常见图形的对称轴,并交流分享。
3.3 知识讲解- 引导学生通过观察和操作,发现轴对称的性质,如对称点的连线垂直于对称轴等。
- 讲解对称轴的意义和应用,如在实际问题中寻找对称轴解决问题。
3.4 巩固练习- 提供一些实际问题,让学生运用轴对称的性质解决,如剪裁纸张、设计图案等。
- 学生通过练习,巩固对轴对称的理解和运用。
3.5 总结拓展- 引导学生总结轴对称的概念、性质和应用,加深对知识的理解。
- 提供一些拓展问题,激发学生的思考和探究欲望。
4. 教学评价- 通过课堂观察、练习答案和学生的参与度,评价学生对轴对称的理解和运用能力。
- 通过学生的交流和分享,了解学生对轴对称的认识和感受。
数学八年级上册-《轴对称》全章教学设计-人教版
数学八年级上册-《轴对称》全章教学设计-人教版教学目标1. 了解轴对称的概念和性质。
2. 掌握判断图形是否具有轴对称性的方法。
3. 能够找到图形的轴对称线,并进行标记。
教学内容1. 轴对称的概念和性质介绍。
2. 轴对称的判断方法。
3. 找到图形的轴对称线并进行标记。
教学步骤步骤一:导入新知1. 引入轴对称的概念,与学生一起讨论日常生活中具有轴对称性质的例子,如人的面孔、心形等。
2. 引导学生思考轴对称的特点和性质,如图形的两侧镜像对称等。
步骤二:学习判断轴对称性的方法1. 教师通过示例图形,引导学生观察图形的特点,判断是否具有轴对称性。
2. 介绍判断轴对称性的方法,如将图形对折、观察是否重合等。
3. 给学生一些练习题,帮助他们巩固判断轴对称性的方法。
步骤三:找到图形的轴对称线并进行标记1. 教师给学生展示一些图形,要求学生找出图形的轴对称线。
2. 引导学生通过观察图形的特点,找到轴对称线的位置,并进行标记。
3. 给学生一些练习题,让他们自己找出图形的轴对称线。
教学评价1. 在学习过程中观察学生的参与度和理解程度。
2. 对学生完成的练习题进行评价,检查他们对轴对称性的理解和判断能力。
拓展延伸1. 引导学生思考,日常生活中还有哪些具有轴对称性的例子。
2. 给学生一些更复杂的图形,让他们进一步掌握判断轴对称性和找到轴对称线的能力。
参考资源1. 《数学八年级上册》课本2. 《数学八年级上册》教师用书3. 网络资源:轴对称的相关教学视频、练习题等。
轴对称的教案八年级
八年级数学《轴对称》教案本教案旨在帮助八年级学生掌握轴对称的概念、性质和应用,培养学生的几何直观能力和解题能力。
下面是本店铺为大家精心编写的5篇《八年级数学《轴对称》教案》,供大家借鉴与参考,希望对大家有所帮助。
《八年级数学《轴对称》教案》篇1一、教学目标1. 知识与技能目标:理解轴对称的概念,掌握轴对称的性质和应用,能运用轴对称解决简单的几何问题。
2. 过程与方法目标:通过观察、操作、讨论等方式,培养学生的几何直观能力和解题能力。
3. 情感态度和价值观目标:培养学生对数学的兴趣,提高学生的审美观念和学习兴趣。
二、教学重点和难点1. 教学重点:理解轴对称的概念和性质,掌握轴对称的应用。
2. 教学难点:运用轴对称解决简单的几何问题。
三、教学准备1. 教师准备:课件、方格纸、彩色笔。
2. 学生准备:笔记本、笔。
四、教学过程1. 导入新课 (5 分钟)教师通过图片或视频的形式,向学生展示一些具有轴对称性的事物,如飞机、鸟巢、雪花等,引导学生观察并思考这些事物的共同特点。
2. 学习新知 (30 分钟)(1) 教师通过课件向学生介绍轴对称的概念,引导学生理解轴对称的定义和特点。
(2) 教师通过实例讲解轴对称的性质,如对称轴、对称点、对称线等,引导学生掌握轴对称的性质。
(3) 教师通过例题讲解轴对称的应用,如求解线段中点、求解面积等,引导学生掌握轴对称的应用。
3. 巩固练习 (20 分钟)教师通过课件出示一些练习题,让学生运用轴对称的概念和性质解决实际问题。
4. 小组讨论 (15 分钟)教师将学生分成小组,让他们讨论轴对称的一些应用问题,如“如果一个长方形有一条对称轴,那么它是否一定是矩形?”、“如果一个正方形有一条对称轴,那么它是否一定是菱形?”等。
5. 总结反思 (5 分钟)教师引导学生总结本节课所学的知识点,反思自己的学习过程,检查是否达到教学目标。
五、教学评价1. 课堂练习:学生能熟练运用轴对称的概念和性质解决实际问题。
数学《轴对称图形的性质》教案
数学《轴对称图形的性质》教案一、教学目标:1.掌握轴对称图形的定义,能够判断一个图形是否是轴对称图形;2.了解轴对称图形的种类及特点;3.能够通过画出轴线来找到图形的轴对称轴;4.能够在平面直角坐标系上进行轴对称变换。
二、教学重难点:轴对称轴的确定、平面直角坐标系上轴对称变换的理解和应用。
三、教学过程:1.导入新知识:请同学们参考书上的图片,思考一下,什么是轴对称图形?怎么判断一个图形是不是轴对称图形?2.课堂讲解:通过介绍和讨论,引导同学们了解一些基本概念和几何知识,如轴对称图形,轴对称轴等。
3.实例演示:通过举例,让同学们更加清晰地理解各种轴对称图形的定义和特点,以及如何画出轴对称轴等。
4.练习:让同学们尝试画出各种轴对称图形的轴对称轴,并在平面直角坐标系上进行一些简单的轴对称变换。
5.总结:通过总结,让同学们更加深入地理解轴对称图形的性质,并巩固所学知识。
6.作业:布置一些练习题,让同学们在课后练习和巩固所学知识。
四、教学方法:通过导入新知识、课堂讲解、实例演示、练习和总结等多种教学方法,使学生更加深入地理解和掌握轴对称图形的性质。
五、板书设计:轴对称图形轴对称轴轴对称变换六、教学反思:本节课采用了多种教学方法,让同学们在学习轴对称图形的性质时,更加深入地理解相关知识。
同时,采用了讨论、演示和练习等方式,增强了同学们的课堂参与度和学习兴趣。
但在实际教学中,也面临一些问题,如时间安排上不够充分,教学重点难以突出等,需要今后进行进一步的改进和完善。
对于学习成绩较差的同学,可以增加一些巩固训练和个别辅导。
《轴对称》教案范文
本文将围绕着《轴对称》这一数学知识点的教学展开讨论,结合教案的编写和实施,探究如何推动学生对于数学知识的发掘和应用。
一、教学目标1、了解轴对称的概念和性质,能够正确识别轴对称的图形。
2、能够在平面直角坐标系中确定图形的轴对称中心,进行轴对称图形的绘制。
3、掌握轴对称的基本变换思想和方法,能够利用轴对称将图形转化为重合的形式。
二、教学内容1、轴对称的概念及性质轴对称是指以某一条直线为轴线,将图形对称复制另一侧的运算。
即在一侧能找到一条直线,若经过这条直线将物体上下或左右对称,物体是轴对称的。
轴对称的性质包括:对称轴上的点对图形的对称点在轴上,轴对称保持图形的面积和形状不变。
2、轴对称的基本变换思想和方法轴对称是一种基本的几何变换,在许多数学问题中具有重要意义。
通过轴对称对图形进行变换,可以充分利用轴对称的性质,将图形转化为重合的形式,进而解决许多实际问题。
3、轴对称的绘制和应用在平面直角坐标系中,可以通过作出轴对称图形的对称轴,确定轴对称中心,并将图形沿着轴对称中心移动到另一侧,得到轴对称的图形。
对于一些实际的问题,可以通过轴对称将问题进行转化和简化。
三、教学策略1、引导学生发现和掌握轴对称的基本性质,以及轴对称变换的基本特点和思想。
2、引导学生根据不同的图形和问题,利用轴对称的方法将问题进转化和简化,实现优化求解。
3、引导学生在实际问题中,能够准确地找出轴对称中心,并将图形进行移动,得出轴对称的图形。
四、教学过程1、引入环节通过组织学生的先验知识,激活学生对于几何变换和数学图形的兴趣和思考,为的学习做好准备。
2、讲解环节通过教师的讲解和示范,引领学生逐步认识轴对称的概念和性质,以及轴对称变换的基本特点和方法。
3、演练环节通过不同难度的轴对称练习题目,检验学生掌握轴对称的技能和运用能力。
4、交流环节引导学生进行分组讨论和互动交流,学生能够相互学习和提高,在多方位交流中达到提高的效果。
5、练习环节通过集体讨论和个人实践操作,巩固轴对称的知识体系,为以后的学习打好良好的基础。
初中数学教案轴对称图形的性质与计算
初中数学教案轴对称图形的性质与计算轴对称图形,指的是在平面上存在一个直线,使得图形能够在这条直线上对称,即对于任意一点A在图形中,与它关于对称轴相对应的另一点A'也在图形中。
在初中数学中,学生需要了解轴对称图形的性质,并学会计算相关问题。
本教案将介绍轴对称图形的性质以及如何进行计算。
一、轴对称图形的性质1. 图形的对称性:轴对称图形具有镜像对称的性质,即通过对称轴可以将图形分为两个互为镜像的部分。
2. 对称轴的特点:a. 对称轴是图形的一条直线,位于图形的中心或者图形的一条边上。
b. 对称轴上的任意一点与它关于对称轴对称的点,具有相等的距离。
3. 图形的性质:a. 轴对称图形上的任意两点关于对称轴对称,因此它们的坐标也互为相反数。
b. 轴对称图形上的任意一点与对称轴的交点,其坐标在对称轴上。
二、轴对称图形的计算问题1. 判断图形是否为轴对称图形:a. 观察图形是否关于某条直线对称,如果是,则为轴对称图形。
b. 找出轴对称图形的对称轴,并验证图形上的点是否关于对称轴对称。
2. 寻找对称点的坐标:a. 如果已知一个点关于对称轴的对称点,可以通过对称轴上的点坐标与对称轴的距离计算出其他点的坐标。
b. 对称轴为x轴或y轴时,计算对称点的坐标非常简单;对称轴不平行于坐标轴时,需要利用几何关系进行计算。
3. 计算轴对称图形的面积和周长:a. 对于常见的轴对称图形,可以先计算出一个亚图形的面积或周长,再通过对称性求得整个图形的面积或周长。
b. 对称图形的面积和周长计算可以通过代数方法或几何关系来求解。
三、应用示例:例1:判断图形是否为轴对称图形已知图形ABCD,E为AB的中点,连接DE,判断图形ABCD是否为轴对称图形。
解:首先找出图形的对称轴,由于点A和点C关于点E对称,所以直线AE是图形ABCD的对称轴。
接下来,我们验证其他点关于对称轴的对称性。
- 点B关于对称轴AE的对称点为B',根据对称性,可以得到B'的坐标为(-4, 8)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.2轴对称的性质(1)
教学目标:
1、理解并掌握线段垂直平分线的概念;
2、通过探索理解掌握轴对称的性质,并能熟练的应用轴对称的性质进行解题。
教学重点:掌握线段垂直平分线的概念;轴对称性质的理解。
教学难点:轴对称的性质理解与应用。
教学方式:新授 一、课前准备:
1. 一个图形沿着某一条直线折叠,如果它能够与另一个图形______,那么就说这两个图形成轴对称.这条直线就是______.两个图形中的对应点叫做对称点.
2. 一个图形沿着某条直线对折,如果直线两旁的部分能够完全_____,那么就称这个图形是轴对称图形. 二、合作探究:
1.实验一:见课本第10页操作,在纸上任意画一点A ,把纸对折,用针在点A 处穿孔,再把纸展开,并连接两针孔A 、A ′.两针孔A 、A ′与折痕 l 之间有什么关系?线段AA ′呢?
得到定义:垂直并且平分一条线段的直线,叫做线段的垂直平分线。
2.实验二:如图,在纸上再任画一点B ,同样地,折纸、穿孔、展开,并连接AB 、A ′B ′、BB ′.线段AB 与A ′B ′有什么关系?线段BB ′与 l 有什么关系?(配合几何画板演示)
3.实验三:如图,再在纸上任画一点C ,并仿照上面进行操作, 线段AC 与A ′C ′有什么关系? BC 与B ′C ′呢?线段CC ′与 l 有什么关系?∠A 与∠A 与∠B ′呢?△ABC 与△A ′B ′C 说一说:你从上面的活动中能得出什么结论? 轴对称的性质:
1.成轴对称的两个图形全等.
2.成轴对称的两个图形,对称点所连的线段平行(或在同一条直线上).
3.成轴对称的两个图形,对称点所连的线段被对称轴垂直平分.
4.实验四:在一张重叠的纸上剪下一个三角形,然后将纸打开后 铺平,
将两个三角形的对应顶点分别标上A 、A ′,B 、B ′,C 、C ′,将边AB 和A ′B ′所在直线画出,如果它们相交,你能发现交点在什么地方?
请将另外两对对应线段所在直线也画出,你刚才发现的结论仍然成立吗? 三、个性展示
1.如图,图形ABCDE 和另一个图形关于MN 成轴对称: (1)找出点A 、D 、E 点的对称点. (2)找出线段AB 、CD 、DE 的对应线段. (3)找出∠ABC 和∠CDE 的对应角.
2.如图,两个三角形成轴对称,不用折叠的方法你能画出对称轴吗?与同伴交流你的做法. 3. 课本练习:P.44第1,2题 四、整合提升:
1.如图,EFGH 是矩形的台球桌面,有两球分别位于A 、B 两点的位置,试问怎样撞击A 球,才能使A 球先碰撞台边EF 反弹后再击中B 球?
2.如图,在俯南河m 边的空地上,房屋开发商准备建一个三角形住宅小区,A 、B 两幢建筑物恰好建在三角形住宅小区的两个顶点处,现要求小区大门C 建在河边且小区周边最短。
如果你是这个项目的总设计师,请确定出小区大门C 的最佳位置。
并在图中标出。
3.如图,∠MON 内有一点P ,点P 与P1关于OM 对称、点P 与P2关于ON 对称,P1P2与OM 、ON 分别交于点A 、B. 若P1P2=10厘米,则△PAB 的周长为( )
(A )6厘米 (B )8厘米 (C )10厘米 (D )12厘米
五、课堂小结: 今天你学到了什么? 六、反馈训练
:
m
A
1.下列轴对称图形中,对称轴最多的是().
C.正方形 D.圆
2.下列说法中,正确的是()
A.关于某直线对称轴的两个三角形是全等三角形;
B.全等三角形是关于某直线对称的;
C.两个图形关于某直线对称,则这两个图形一定分别位于这条直线的两侧;
D.若A、B关于直线MN对称,则AB垂直平分MN;
3、下面的一些虚线,哪些是图形的对称轴,哪些不是?
4.补充习题 2.2轴对称的性质(1)。