八年级初二数学 数学勾股定理的专项培优练习题(及解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级初二数学 数学勾股定理的专项培优练习题(及解析

一、选择题

1.如图:在△ABC 中,∠B=45°,D 是AB 边上一点,连接CD ,过A 作AF ⊥CD 交CD 于G ,交BC 于点F .已知AC=CD ,CG=3,DG=1,则下列结论正确的是( )

①∠ACD=2∠FAB ②27ACD S ∆= ③272CF =- ④ AC=AF

A .①②③

B .①②③④

C .②③④

D .①③④

2.如图,AB =AC ,∠CAB =90°,∠ADC=45°,AD =1,CD =3,则BD 的长为( )

A .3

B .11

C .23

D .4 3.如图所示,在中,

.分别以

为直径作

半圆(以

为直径的半圆恰好经过点,则图中阴影部分的面积是( )

A .4

B .5

C .7

D .6

4.如图,菱形ABCD 的对角线AC ,BD 的长分别为6cm ,8cm ,则这个菱形的周长为

( )

A .5cm

B .10cm

C .14cm

D .20cm

5.如图,在四边形ABCD 中,∠DAB =30°,点E 为AB 的中点,DE ⊥AB ,交AB 于点E ,

DE=3,BC=1,CD=13,则CE的长是()

A.14B.17C.15D.13

6.如图,正方形ABCD的边长为8,M在DC上,且DM=2,N是AC上的一动点,则

DN+MN的最小值是()

A.8 B.9 C.10 D.12

7.如图,已知直线a∥b,且a与b之间的距离为4,点A到直线a的距离为2,点B到直 .试在直线a上找一点M,在直线b上找一点N,满足

线b的距离为3,AB230

MN⊥a且AM+MN+NB的长度和最短,则此时AM+NB=()

A.6 B.8 C.10 D.12

8.下列四组数中不能构成直角三角形的一组是()

A.1,26B.3,5,4 C.5,12,13 D.3,213

9.下列结论中,矩形具有而菱形不一定具有的性质是()

A.内角和为360°B.对角线互相平分C.对角线相等D.对角线互相垂直10.下列说法不能得到直角三角形的()

A.三个角度之比为 1:2:3 的三角形B.三个边长之比为 3:4:5 的三角形C.三个边长之比为 8:16:17 的三角形D.三个角度之比为 1:1:2 的三角形

二、填空题

11.我国汉代数学家赵爽为了证明勾股定理,创制了一副“弦图”,后人称其为“赵爽弦图”(如图1).图2由弦图变化得到,它是由八个全等的直角三角形拼接而成.记图中正方形ABCD,正方形EFGH,正方形MNKT的面积分别为S1,S2,S3,若S1+S2+S3=10,则S2的值是_________.

12.如图,在四边形ABCD 中,AB =AD ,BC=DC ,点E 为AD 边上一点,连接BD 、CE ,CE 与BD 交于点F ,且CE ∥AB ,若∠A =60°,AB=4,CE=3,则BC 的长为_______.

13.如图,在四边形ABCD 中,22AD =,3CD =,

45ABC ACB ADC ∠=∠=∠=︒,则BD 的长为__________.

14.如图,ACB △和ECD 都是等腰直角三角形,CA CB =,CE CD =,ABC 的顶点A 在ECD 的斜边上.若3AE =,7AD =

,则AC 的长为_________

15.在ABC ∆中,90BAC ∠=︒,以BC 为斜边作等腰直角BCD ∆,连接DA ,若

22AB =42AC =DA 的长为______.

16.如图在三角形纸片ABC 中,已知∠ABC =90º,AC =5,BC=4,过点A 作直线l 平行于BC ,折叠三角形纸片ABC ,使直角顶点B 落在直线l 上的点P 处,折痕为MN ,当点P 在直线l 上移动时,折痕的端点M 、N 也随之移动,若限定端点M 、N 分别在AB 、BC 边上(包括端点)移动,则线段AP 长度的最大值与最小值的差为________________.

17.在Rt △ABC 中,直角边的长分别为a ,b ,斜边长c ,且a +b =35,c =5,则ab 的值为______.

18.已知a 、b 、c 是△ABC 三边的长,且满足关系式2

2

22

()0c a b a b --+-=,则

△ABC 的形状为___________

19.如图所示,圆柱体底面圆的半径是

2

π

,高为1,若一只小虫从A 点出发沿着圆柱体的外侧面爬行到C 点,则小虫爬行的最短路程是______

20.已知:如图,等腰Rt OAB ∆的直角边OA 的长为1,以AB 边上的高1OA 为直角边,按逆时针方向作等腰11Rt OA B ∆,11A B 与OB 相交于点2A ,若再以2OA 为直角边按逆时针方向作等腰22Rt OA B ∆,22A B 与1OB 相交于点3A ,按此作法进行下去,得到33OA B ∆,

44OA B ∆,…,则66OA B ∆的周长是______.

三、解答题

21.如图,△ABC 和EDC ∆都是等边三角形,7,3,2AD BD CD ===求:(1)AE

长;(2)∠BDC 的度数:(3)AC 的长.

22.如图,一架长25米的梯子,斜靠在竖直的墙上,这时梯子底端离墙7米.

(1)此时梯子顶端离地面多少米?

(2)若梯子顶端下滑4米,那么梯子底端将向左滑动多少米?

23.如图,△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,点D在边AB上,点E在边AC的左侧,连接AE.

(1)求证:AE=BD;

(2)试探究线段AD、BD与CD之间的数量关系;

(3)过点C作CF⊥DE交AB于点F,若BD:AF=1:2,CD36,求线段AB 的长.

24.如图,△ABC中AC=BC,点D,E在AB边上,连接CD,CE.

(1)如图1,如果∠ACB=90°,把线段CD逆时针旋转90°,得到线段CF,连接BF,

①求证:△ACD≌△BCF;

②若∠DCE=45°,求证:DE2=AD2+BE2;

(2)如图2,如果∠ACB=60°,∠DCE=30°,用等式表示AD,DE,BE三条线段的数量关系,说明理由.

相关文档
最新文档