湖南省湘潭市2021届新高考数学最后模拟卷含解析

合集下载

湖南省湘潭市2021届新高考数学模拟试题含解析

湖南省湘潭市2021届新高考数学模拟试题含解析

湖南省湘潭市2021届新高考数学模拟试题一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.方程2(1)sin 10x x π-+=在区间[]2,4-内的所有解之和等于( )A .4B .6C .8D .10 【答案】C【解析】【分析】画出函数sin y x =π和12(1)y x =--的图像,sin y x =π和12(1)y x =--均关于点()1,0中心对称,计算得到答案.【详解】 2(1)sin 10x x π-+=,验证知1x =不成立,故1sin 2(1)x x π=--, 画出函数sin y x =π和12(1)y x =--的图像, 易知:sin y x =π和12(1)y x =--均关于点()1,0中心对称,图像共有8个交点, 故所有解之和等于428⨯=.故选:C .【点睛】本题考查了方程解的问题,意在考查学生的计算能力和应用能力,确定函数关于点()1,0中心对称是解题的关键.2.已知集合A {x x 0}︱=>,2B {x x x b 0}=-+=︱,若{3}A B ⋂=,则b =( ) A .6- B .6 C .5 D .5-【答案】A【解析】【分析】由{}3A B ⋂=,得3B ∈,代入集合B 即可得b .【详解】{}3A B ⋂=Q ,3B ∴∈,930b ∴-+=,即:6b =-,故选:A【点睛】本题考查了集合交集的含义,也考查了元素与集合的关系,属于基础题.3.从集合{}3,2,1,1,2,3,4---中随机选取一个数记为m ,从集合{}2,1,2,3,4--中随机选取一个数记为n ,则在方程221x y m n +=表示双曲线的条件下,方程221x y m n+=表示焦点在y 轴上的双曲线的概率为( )A .917B .817C .1735D .935【答案】A【解析】【分析】设事件A 为“方程221x y m n +=表示双曲线”,事件B 为“方程221x y m n+=表示焦点在y 轴上的双曲线”,分别计算出(),()P A P AB ,再利用公式()(/)()P AB P B A P A =计算即可. 【详解】 设事件A 为“方程221x y m n +=表示双曲线”,事件B 为“方程221x y m n+=表示焦点在y 轴上 的双曲线”,由题意,334217()7535P A ⨯+⨯==⨯,339()7535P AB ⨯==⨯,则所求的概率为 ()9(/)()17P AB P B A P A ==. 故选:A.【点睛】 本题考查利用定义计算条件概率的问题,涉及到双曲线的定义,是一道容易题.4.已知实数x 、y 满足不等式组2102100x y x y y -+≥⎧⎪--≤⎨⎪≥⎩,则3z x y =-+的最大值为( )A .3B .2C .32- D .2-【答案】A【解析】【分析】 画出不等式组所表示的平面区域,结合图形确定目标函数的最优解,代入即可求解,得到答案.【详解】画出不等式组2102100x y x y y -+≥⎧⎪--≤⎨⎪≥⎩所表示平面区域,如图所示,由目标函数3z x y =-+,化为直线3y x z =+,当直线3y x z =+过点A 时,此时直线3y x z =+在y 轴上的截距最大,目标函数取得最大值,又由2100x y y -+=⎧⎨=⎩,解得(1,0)A -, 所以目标函数的最大值为3(1)03z =-⨯-+=,故选A .【点睛】本题主要考查简单线性规划求解目标函数的最值问题.其中解答中正确画出不等式组表示的可行域,利用“一画、二移、三求”,确定目标函数的最优解是解答的关键,着重考查了数形结合思想,及推理与计算能力,属于基础题.5.曲线312ln 3y x x =+上任意一点处的切线斜率的最小值为( ) A .3B .2C .32D .1【答案】A【解析】【分析】 根据题意,求导后结合基本不等式,即可求出切线斜率3k ≥,即可得出答案.【详解】解:由于312ln 3y x x =+,根据导数的几何意义得:()()2221130k f x x x x x x x '==+=++≥=>, 即切线斜率3k ≥,当且仅当1x =等号成立, 所以312ln 3y x x =+上任意一点处的切线斜率的最小值为3. 故选:A.【点睛】本题考查导数的几何意义的应用以及运用基本不等式求最值,考查计算能力.6.已知正项等比数列{}n a 满足76523a a a =+,若存在两项m a ,n a ,使得219m n a a a ⋅=,则19m n+的最小值为( ).A .16B .283C .5D .4【答案】D【解析】【分析】由76523a a a =+,可得3q =,由219m n a a a ⋅=,可得4m n +=,再利用“1”的妙用即可求出所求式子的最小值.【详解】设等比数列公比为(0)q q >,由已知,525523a a q a q =+,即223q q =+,解得3q =或1q =-(舍),又219m n a a a ⋅=,所以211111339m n a a a --⋅=, 即2233m n +-=,故4m n +=,所以1914m n +=1919()()(10)4n m m n m n m n++=++ 1(1044≥+=,当且仅当1,3m n ==时,等号成立. 故选:D.【点睛】本题考查利用基本不等式求式子和的最小值问题,涉及到等比数列的知识,是一道中档题.7.已知函数31,0()(),0x x f x g x x ⎧+>=⎨<⎩是奇函数,则((1))g f -的值为( )A .-10B .-9C .-7D .1【答案】B【解析】【分析】根据分段函数表达式,先求得()1f -的值,然后结合()f x 的奇偶性,求得((1))g f -的值.【详解】因为函数3,0()(),0x x x f x g x x ⎧+≥=⎨<⎩是奇函数,所以(1)(1)2f f -=-=-,((1))(2)(2)(2)10g f g f f -=-=-=-=-.故选:B【点睛】本题主要考查分段函数的解析式、分段函数求函数值,考查数形结合思想.意在考查学生的运算能力,分析问题、解决问题的能力.8.已知等差数列{}n a 的前n 项和为n S ,且282,10a a =-=,则9S =( )A .45B .42C .25D .36 【答案】D【解析】【分析】由等差数列的性质可知1928a a a a +=+,进而代入等差数列的前n 项和的公式即可.【详解】由题,192899()9()9(210)36222a a a a S ++⨯-+====. 故选:D【点睛】本题考查等差数列的性质,考查等差数列的前n 项和.9.已知半径为2的球内有一个内接圆柱,若圆柱的高为2,则球的体积与圆柱的体积的比为( ) A .43 B .916 C .34 D .169【答案】D【解析】【分析】分别求出球和圆柱的体积,然后可得比值.【详解】设圆柱的底面圆半径为r ,则r ,所以圆柱的体积2126V =π⋅⨯=π.又球的体积32432233V =π⨯=π,所以球的体积与圆柱的体积的比213216369V V ππ==,故选D. 【点睛】本题主要考查几何体的体积求解,侧重考查数学运算的核心素养.10.设椭圆E :()222210x y a b a b+=>>的右顶点为A ,右焦点为F ,B 、C 为椭圆上关于原点对称的两点,直线BF 交直线AC 于M ,且M 为AC 的中点,则椭圆E 的离心率是( )A .23B .12C .13D .14【答案】C【解析】【分析】连接OM ,OM 为ABC ∆的中位线,从而OFM AFB ∆∆:,且12OF FA =,进而12c a c =-,由此能求出椭圆的离心率.【详解】如图,连接OM ,Q 椭圆E :()222210x y a b a b +=>>的右顶点为A ,右焦点为F , B 、C 为椭圆上关于原点对称的两点,不妨设B 在第二象限,直线BF 交直线AC 于M ,且M 为AC 的中点∴OM 为ABC ∆的中位线,∴OFM AFB ∆∆:,且12OFFA =, 12c a c ∴=-, 解得椭圆E 的离心率13c e a ==. 故选:C【点睛】本题考查了椭圆的几何性质,考查了运算求解能力,属于基础题.11.已知集合{2,3,4}A =,集合{},2B m m =+,若{2}A B =I ,则m =( )A .0B .1C .2D .4 【答案】A【解析】【分析】根据2m =或22m +=,验证交集后求得m 的值.【详解】因为{2}A B =I ,所以2m =或22m +=.当2m =时,{2,4}A B =I ,不符合题意,当22m +=时,0m =.故选A.【点睛】本小题主要考查集合的交集概念及运算,属于基础题.12.设()f x 为定义在R 上的奇函数,当0x ≥时,22()log (1)1f x x ax a =++-+(a 为常数),则不等式(34)5f x +>-的解集为( )A .(,1)-∞-B .(1,)-+∞C .(,2)-∞-D .(2,)-+∞【答案】D【解析】【分析】由(0)0f =可得1a =,所以22()log (1)(0)f x x x x =+≥+,由()f x 为定义在R 上的奇函数结合增函数+增函数=增函数,可知()y f x =在R 上单调递增,注意到(2)(2)5f f -=-=-,再利用函数单调性即可解决.【详解】因为()f x 在R 上是奇函数.所以(0)0f =,解得1a =,所以当0x ≥时,22()log (1)f x x x =++,且[0,)x ∈+∞时,()f x 单调递增,所以()y f x =在R 上单调递增,因为(2)5(2)5f f =-=-,,故有342x +>-,解得2x >-.故选:D.【点睛】本题考查利用函数的奇偶性、单调性解不等式,考查学生对函数性质的灵活运用能力,是一道中档题.二、填空题:本题共4小题,每小题5分,共20分。

湖南省湘潭市2021届新第四次高考模拟考试数学试卷含解析

湖南省湘潭市2021届新第四次高考模拟考试数学试卷含解析

湖南省湘潭市2021届新第四次高考模拟考试数学试卷一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.如图,将两个全等等腰直角三角形拼成一个平行四边形ABCD ,将平行四边形ABCD 沿对角线BD 折起,使平面ABD ⊥平面BCD ,则直线AC 与BD 所成角余弦值为( )A .223B .63C .33D .13【答案】C 【解析】 【分析】利用建系,假设AB 长度,表示向量AC u u u r 与BD u u u r,利用向量的夹角公式,可得结果.【详解】由平面ABD ⊥平面BCD ,AB BD ⊥平面ABD ⋂平面BCD BD =,AB Ì平面ABD 所以AB ⊥平面BCD ,又DC ⊂平面BCD 所以AB DC ⊥,又DB DC ⊥所以作z 轴//AB ,建立空间直角坐标系B xyz - 如图设1AB =,所以1,1,2BD DC BC ===则()()()()0,1,1,0,1,0,1,0,0,0,0,0A B C D所以()()1,1,1,0,1,0AC BD =---u u u r u u u r所以cos ,3AC BD AC BD AC BD⋅===u u u r u u u ru u u r u u u r u u u r u u u r 故选:C 【点睛】本题考查异面直线所成成角的余弦值,一般采用这两种方法:(1)将两条异面直线作辅助线放到同一个平面,然后利用解三角形知识求解;(2)建系,利用空间向量,属基础题. 2.已知数列{}n a 是公差为()d d ≠0的等差数列,且136,,a a a 成等比数列,则1a d=( ) A .4 B .3 C .2 D .1【答案】A 【解析】 【分析】根据等差数列和等比数列公式直接计算得到答案. 【详解】由136,,a a a 成等比数列得2316a a a =⋅,即()()211125a d a a d +=+,已知0d ≠,解得14a d=. 故选:A . 【点睛】本题考查了等差数列,等比数列的基本量的计算,意在考查学生的计算能力. 3.已知在ABC ∆中,角,,A B C 的对边分别为,,a b c ,若函数()3222111()324f x x bx a c ac x =+++-存在极值,则角B 的取值范围是( )A .0,3π⎛⎫⎪⎝⎭B .,63ππ⎛⎫ ⎪⎝⎭C .,3π⎛⎫π ⎪⎝⎭D .,6π⎛⎫π ⎪⎝⎭【答案】C 【解析】 【分析】求出导函数()f x ',由()0f x '=有不等的两实根,即>0∆可得不等关系,然后由余弦定理可及余弦函数性质可得结论. 【详解】()3222111()324f x x bx a c ac x =+++-Q ,()2221()4f x x bx a c ac '∴=+++-.若()f x 存在极值,则()2221404b ac ac -⨯⨯+->,222a c b ac ∴+-<又2221cos ,cos 22a cb B B ac +-=∴<.又()0,,3B B π∈π∴<<πQ . 故选:C . 【点睛】本题考查导数与极值,考查余弦定理.掌握极值存在的条件是解题关键.4.已知抛物线22(0)y px p =>上一点(5,)t 到焦点的距离为6,P Q 、分别为抛物线与圆22(6)1x y -+=上的动点,则PQ 的最小值为( )A 1B .25-C .D .1【答案】D 【解析】 【分析】利用抛物线的定义,求得p 的值,由利用两点间距离公式求得PM ,根据二次函数的性质,求得minPM ,由PQ 取得最小值为min1PM -,求得结果.【详解】由抛物线2:2(0)C y px p =>焦点在x 轴上,准线方程2p x =-, 则点(5,)t 到焦点的距离为562pd =+=,则2p =, 所以抛物线方程:24y x =,设(,)P x y ,圆22:(6)1M x y -+=,圆心为(6,1),半径为1,则PM ===,当4x =时,PQ 11=, 故选D. 【点睛】该题考查的是有关距离的最小值问题,涉及到的知识点有抛物线的定义,点到圆上的点的距离的最小值为其到圆心的距离减半径,二次函数的最小值,属于中档题目.5.设曲线(1)ln y a x x =--在点()1,0处的切线方程为33y x =-,则a =( ) A .1 B .2C .3D .4【答案】D 【解析】 【分析】利用导数的几何意义得直线的斜率,列出a 的方程即可求解 【详解】 因为1y a x'=-,且在点()1,0处的切线的斜率为3,所以13a -=,即4a =. 故选:D 【点睛】本题考查导数的几何意义,考查运算求解能力,是基础题6.已知双曲线C :22221x y a b-=(0,0a b >>)的左、右焦点分别为12,F F ,过1F 的直线l 与双曲线C的左支交于A 、B 两点.若22,120=∠=oAB AF BAF ,则双曲线C 的渐近线方程为( )A .y =±B .y x =C .=±y x D .)1=±y x【答案】D 【解析】 【分析】设2AF m =,利用余弦定理,结合双曲线的定义进行求解即可. 【详解】设22,AB AF m BF ==∴==,由双曲线的定义可知:12,AF m a =-因此12,BF a =再由双曲线的定义可知:122BF BF a m -=⇒=,在三角形12AF F 中,由余弦定理可知:222212222222112cos120(5(5F F AF AF AF AF c a a b a ︒=+-⋅⋅⇒=-⇒+=-2222(4(41b bb a a a⇒=-⇒=-⇒=,因此双曲线的渐近线方程为:)1=±y x .故选:D 【点睛】本题考查了双曲线的定义的应用,考查了余弦定理的应用,考查了双曲线的渐近线方程,考查了数学运算能力.7.射线测厚技术原理公式为0t I I e ρμ-=,其中0I I ,分别为射线穿过被测物前后的强度,e 是自然对数的底数,t 为被测物厚度,ρ为被测物的密度,μ是被测物对射线的吸收系数.工业上通常用镅241(241Am )低能γ射线测量钢板的厚度.若这种射线对钢板的半价层厚度为0.8,钢的密度为7.6,则这种射线的吸收系数为( )(注:半价层厚度是指将已知射线强度减弱为一半的某种物质厚度,ln 20.6931≈,结果精确到0.001) A .0.110 B .0.112C .0.114D .0.116【答案】C 【解析】 【分析】根据题意知,010.8,7.6,2I t I ρ===,代入公式0t I I e ρμ-=,求出μ即可. 【详解】由题意可得,010.8,7.6,2I t I ρ===因为0t I I e ρμ-=, 所以7.60.812e μ-⨯⨯=,即ln 20.69310.1147.60.8 6.08μ==≈⨯. 所以这种射线的吸收系数为0.114. 故选:C 【点睛】本题主要考查知识的迁移能力,把数学知识与物理知识相融合;重点考查指数型函数,利用指数的相关性质来研究指数型函数的性质,以及解指数型方程;属于中档题. 8.要得到函数sin 23y x π⎛⎫=+ ⎪⎝⎭的图象,只需将函数sin 2y x =的图象( ) A .向右平移6π个单位 B .向右平移3π个单位 C .向左平移3π个单位 D .向左平移6π个单位 【答案】D 【解析】 【分析】直接根据三角函数的图象平移规则得出正确的结论即可; 【详解】解:函数sin 2sin 236y x x ππ⎡⎤⎛⎫⎛⎫=+=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦, ∴要得到函数sin 23y x π⎛⎫=+ ⎪⎝⎭的图象,只需将函数sin 2y x =的图象向左平移6π个单位. 故选:D .本题考查三角函数图象平移的应用问题,属于基础题. 9.已知()3,0A -,()3,0B,P 为圆221x y +=上的动点,AP PQ =u u u r u u u r,过点P 作与AP 垂直的直线l 交直线QB 于点M ,若点M 的横坐标为x ,则x 的取值范围是( )A .1x ≥B .1x >C .2x ≥D .2x ≥【答案】A 【解析】 【分析】由题意得2MB MA BQ OP -==,即可得点M 的轨迹为以A ,B 为左、右焦点,1a =的双曲线,根据双曲线的性质即可得解. 【详解】如图,连接OP ,AM ,由题意得22MB MA BQ OP -===,∴点M 的轨迹为以A ,B 为左、右焦点,1a =的双曲线, ∴1x ≥.故选:A.【点睛】本题考查了双曲线定义的应用,考查了转化化归思想,属于中档题.10.现有甲、乙、丙、丁4名学生平均分成两个志愿者小组到校外参加两项活动,则乙、丙两人恰好参加同一项活动的概率为 A .12B .13C .16D .112【答案】B 【解析】求得基本事件的总数为222422226C C n A A =⨯=,其中乙丙两人恰好参加同一项活动的基本事件个数为2222222m C C A ==,利用古典概型及其概率的计算公式,即可求解.【详解】由题意,现有甲乙丙丁4名学生平均分成两个志愿者小组到校外参加两项活动,基本事件的总数为222422226C C n A A =⨯=, 其中乙丙两人恰好参加同一项活动的基本事件个数为2222222m C C A ==,所以乙丙两人恰好参加同一项活动的概率为13m p n ==,故选B. 【点睛】本题主要考查了排列组合的应用,以及古典概型及其概率的计算问题,其中解答中合理应用排列、组合的知识求得基本事件的总数和所求事件所包含的基本事件的个数,利用古典概型及其概率的计算公式求解是解答的关键,着重考查了运算与求解能力,属于基础题. 11.设复数z =213ii-+,则|z|=( )A .13B .3C .12D .2【答案】D 【解析】 【分析】先用复数的除法运算将复数z 化简,然后用模长公式求z 模长. 【详解】 解:z =213i i -+=(2)(13)(13)(13)i i i i --+-=1710i --=﹣110﹣710i ,则|z|2. 故选:D. 【点睛】本题考查复数的基本概念和基本运算,属于基础题.12.若函数()ln f x x x h =-++,在区间1,e e ⎡⎤⎢⎥⎣⎦上任取三个实数a ,b ,c 均存在以()f a ,()f b ,()f c 为边长的三角形,则实数h 的取值范围是( )A .11,1e ⎛⎫-- ⎪⎝⎭B .11,3e e ⎛⎫--⎪⎝⎭C .11,e ⎛⎫-+∞⎪⎝⎭D .()3,e -+∞【答案】D 【解析】 【分析】利用导数求得()f x 在区间1,e e ⎡⎤⎢⎥⎣⎦上的最大值和最小,根据三角形两边的和大于第三边列不等式,由此求得h 的取值范围. 【详解】()f x 的定义域为()0,∞+,()'111x f x x x-=-+=,所以()f x 在1,1e ⎛⎫⎪⎝⎭上递减,在()1,e 上递增,()f x 在1x =处取得极小值也即是最小值,()1ln111f h h =-++=+,1111ln 1f h h e e e e ⎛⎫=-++=++ ⎪⎝⎭,()ln 1f e e e h e h =-++=-+,()1f f e e ⎛⎫< ⎪⎝⎭, 所以()f x 在区间1,e e ⎡⎤⎢⎥⎣⎦上的最大值为()1f e e h =-+.要使在区间1,e e⎡⎤⎢⎥⎣⎦上任取三个实数a ,b ,c 均存在以()f a ,()f b ,()f c 为边长的三角形,则需()()()f a f b f c +>恒成立,且()10f >,也即()()()max min f a f b f c +>⎡⎤⎣⎦,也即当1a b ==、c e =时,()()21e f f >成立, 即()211h e h +>-+,且()10f >,解得3h e >-.所以h 的取值范围是()3,e -+∞. 故选:D 【点睛】本小题主要考查利用导数研究函数的最值,考查恒成立问题的求解,属于中档题. 二、填空题:本题共4小题,每小题5分,共20分。

湖南省湘潭市2021届新高考适应性测试卷数学试题(2)含解析

湖南省湘潭市2021届新高考适应性测试卷数学试题(2)含解析

湖南省湘潭市2021届新高考适应性测试卷数学试题(2)一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合{}2(,)|A x y y x ==,{}22(,)|1B x y xy =+=,则A B I 的真子集个数为( )A .1个B .2个C .3个D .4个【答案】C 【解析】 【分析】求出A B I 的元素,再确定其真子集个数. 【详解】由2221y x x y ⎧=⎨+=⎩,解得x y ⎧⎪=⎪⎨⎪=⎪⎩或x y ⎧⎪=⎪⎨⎪=⎪⎩,∴A B I 中有两个元素,因此它的真子集有3个. 故选:C. 【点睛】本题考查集合的子集个数问题,解题时可先确定交集中集合的元素个数,解题关键是对集合元素的认识,本题中集合,A B 都是曲线上的点集. 2.已知函数()0,1ln ,1x f x x x <⎧=⎨≥⎩,若不等式()≤-f x x k 对任意的x ∈R 恒成立,则实数k 的取值范围是( ) A .(],1-∞ B .[)1,+∞C .[)0,1D .(]1,0-【答案】A 【解析】 【分析】先求出函数()f x 在(1,0)处的切线方程,在同一直角坐标系内画出函数()0,1ln ,1x f x x x <⎧=⎨≥⎩和()g x x k =-的图象,利用数形结合进行求解即可.【详解】当1x ≥时,()''1ln ,()(1)1f x x f x f x=⇒=⇒=,所以函数()f x 在(1,0)处的切线方程为:1y x =-,令()g x x k =-,它与横轴的交点坐标为(,0)k .在同一直角坐标系内画出函数()0,1ln ,1x f x x x <⎧=⎨≥⎩和()g x x k =-的图象如下图的所示:利用数形结合思想可知:不等式()≤-f x x k 对任意的x ∈R 恒成立,则实数k 的取值范围是1k ≤. 故选:A 【点睛】本题考查了利用数形结合思想解决不等式恒成立问题,考查了导数的应用,属于中档题.3.已知斜率为2-的直线与双曲线()2222:10,0x y C a b a b-=>>交于,A B 两点,若()00,M x y 为线段AB 中点且4OM k =-(O 为坐标原点),则双曲线C 的离心率为( ) A 5B .3 C 3D 32【答案】B 【解析】 【分析】设1122(,),(,)A x y B x y ,代入双曲线方程相减可得到直线AB 的斜率与中点坐标之间的关系,从而得到,a b 的等式,求出离心率. 【详解】4OM y k x ==-,设1122(,),(,)A x y B x y ,则22112222222211x y a b x y a b ⎧-=⎪⎪⎨⎪-=⎪⎩, 两式相减得1212121222()()()()0x x x x y y y y a b +-+--=,∴2121221212()()ABy y b x x k x x a y y -+==-+220220124b x b a y a ⎛⎫==⋅-=- ⎪⎝⎭,228,3b e a ∴=∴==.故选:B . 【点睛】本题考查求双曲线的离心率,解题方法是点差法,即出现双曲线的弦中点坐标时,可设弦两端点坐标代入双曲线方程相减后得出弦所在直线斜率与中点坐标之间的关系.4.已知双曲线()222210,0x y a b a b-=>>的焦距是虚轴长的2倍,则双曲线的渐近线方程为( )A.y =±B.y = C .12y x =±D .2y x =±【答案】A 【解析】 【分析】根据双曲线的焦距是虚轴长的2倍,可得出2c b =,结合22224c b a b ==+,得出223a b =,即可求出双曲线的渐近线方程. 【详解】解:由双曲线()222210,0x y a b a b-=>>可知,焦点在x 轴上,则双曲线的渐近线方程为:by x a=±, 由于焦距是虚轴长的2倍,可得:2c b =, ∴22224c b a b ==+, 即:223a b =,3b a =,所以双曲线的渐近线方程为:y x =. 故选:A. 【点睛】本题考查双曲线的简单几何性质,以及双曲线的渐近线方程.5.曲线312ln 3y x x =+上任意一点处的切线斜率的最小值为( ) A .3 B .2C .32D .1【答案】A 【解析】 【分析】根据题意,求导后结合基本不等式,即可求出切线斜率3k ≥,即可得出答案. 【详解】 解:由于312ln 3y x x =+,根据导数的几何意义得:()()2221130k f x x x x x x x '==+=++≥=>, 即切线斜率3k ≥, 当且仅当1x =等号成立, 所以312ln 3y x x =+上任意一点处的切线斜率的最小值为3. 故选:A. 【点睛】本题考查导数的几何意义的应用以及运用基本不等式求最值,考查计算能力.6.双曲线1C :22221x y a b-=(0a >,0b >)的一个焦点为(c,0)F (0c >),且双曲线1C 的两条渐近线与圆2C :222()4c x c y -+=均相切,则双曲线1C 的渐近线方程为( )A .0x ±=B .0y ±=C 0y ±=D .0x =【答案】A 【解析】 【分析】 根据题意得到2cd ==,化简得到223a b =,得到答案. 【详解】根据题意知:焦点(c,0)F 到渐近线b y xa =的距离为2c d ==,故223a b =,故渐近线为30x y ±=. 故选:A . 【点睛】本题考查了直线和圆的位置关系,双曲线的渐近线,意在考查学生的计算能力和转化能力.7.《易经》包含着很多哲理,在信息学、天文学中都有广泛的应用,《易经》的博大精深,对今天 的几何学和其它学科仍有深刻的影响.下图就是易经中记载的几何图形——八卦田,图中正八 边形代表八卦,中间的圆代表阴阳太极图,八块面积相等的曲边梯形代表八卦田.已知正八边 形的边长为10m ,阴阳太极图的半径为4m ,则每块八卦田的面积约为( )A .247.79mB .254.07mC .257.21mD .2114.43m【答案】B 【解析】 【分析】由图利用三角形的面积公式可得正八边形中每个三角形的面积,再计算出圆面积的18,两面积作差即可求解. 【详解】由图,正八边形分割成8个等腰三角形,顶角为360458=oo ,设三角形的腰为a ,由正弦定理可得10135sin 45sin 2a =o o,解得1351022a =o , 所以三角形的面积为:)211351cos135102sin 455022521222S ⎛⎫-=⨯== ⎪⎝⎭o o o ,所以每块八卦田的面积约为:)212521454.078π-⨯⨯≈.故选:B 【点睛】本题考查了正弦定理解三角形、三角形的面积公式,需熟记定理与面积公式,属于基础题. 8.已知三棱锥,2,1,P ABC AC BC AC BC -==⊥且2,PA PB PB =⊥平面ABC ,其外接球体积为( ) A .43π B .4π C .323πD .43π【答案】A 【解析】 【分析】由AC BC ⊥,PB ⊥平面ABC ,可将三棱锥P ABC -还原成长方体,则三棱锥P ABC -的外接球即为长方体的外接球,进而求解. 【详解】 由题,因为2,1,AC BC AC BC ==⊥,所以223AB AC BC =+=,设PB h =,则由2PA PB =,可得232h h +=,解得1h =, 可将三棱锥P ABC -还原成如图所示的长方体,则三棱锥P ABC -的外接球即为长方体的外接球,设外接球的半径为R ,则22221(2)12R =++=,所以1R =,所以外接球的体积34433V R ππ==. 故选:A 【点睛】本题考查三棱锥的外接球体积,考查空间想象能力. 9.下列四个图象可能是函数35log |1|1x y x +=+图象的是( )A .B .C .D .【答案】C 【解析】 【分析】首先求出函数的定义域,其函数图象可由35log ||x y x=的图象沿x 轴向左平移1个单位而得到,因为35log ||x y x=为奇函数,即可得到函数图象关于(1,0)-对称,即可排除A 、D ,再根据0x >时函数值,排除B ,即可得解. 【详解】∵35log |1|1x y x +=+的定义域为{}|1x x ≠-,其图象可由35log ||x y x=的图象沿x 轴向左平移1个单位而得到,∵35log ||x y x=为奇函数,图象关于原点对称,∴35log |1|1x y x +=+的图象关于点(1,0)-成中心对称.可排除A 、D 项. 当0x >时,35log |1|01x y x +=>+,∴B 项不正确.故选:C 【点睛】本题考查函数的性质与识图能力,一般根据四个选择项来判断对应的函数性质,即可排除三个不符的选项,属于中档题.10.已知三棱锥D ABC -的外接球半径为2,且球心为线段BC 的中点,则三棱锥D ABC -的体积的最大值为( ) A .23B .43C .83D .163【答案】C 【解析】 【分析】由题可推断出ABC V 和BCD V 都是直角三角形,设球心为O ,要使三棱锥D ABC -的体积最大,则需满足h OD =,结合几何关系和图形即可求解 【详解】先画出图形,由球心到各点距离相等可得,OA OB OC ==,故ABC V 是直角三角形,设,AB x AC y ==,则有22242x y xy +=≥,又12ABC S xy ∆=,所以142ABC S xy ∆=≤,当且仅当22x y ==时,ABC S ∆取最大值4,要使三棱锥体积最大,则需使高2h OD ==,此时11842333ABC D ABC V S h -∆=⋅=⨯⨯=,故选:C 【点睛】本题考查由三棱锥外接球半径,半径与球心位置求解锥体体积最值问题,属于基础题 11.已知数列{}n a 满足11a =,1n n a a n --=(2n ≥),则数列{}n a 的通项公式n a =( ) A .()112n n + B .()1312n n - C .2n n 1-+ D .222n n -+【答案】A 【解析】 【分析】利用数列的递推关系式,通过累加法求解即可. 【详解】数列{}n a 满足:11a =,*1(2,)n n a a n n n N --=∈…, 可得11a =212a a -= 323a a -= 434a a -=⋯1n n a a n --=以上各式相加可得:1123(1)2n a n n n =+++⋯+=+, 故选:A . 【点睛】本题考查数列的递推关系式的应用,数列累加法以及通项公式的求法,考查计算能力.12.已知直线l :310kx y k --+=与椭圆22122:1(0)x yC a b a b+=>>交于A 、B 两点,与圆2C :()()22311x y -+-=交于C 、D 两点.若存在[]2,1k ∈--,使得AC DB =u u u r u u u r,则椭圆1C 的离心率的取值范围为( ) A.⎣⎦B. C. D. 【答案】A 【解析】 【分析】由题意可知直线过定点即为圆心,由此得到,A B 坐标的关系,再根据点差法得到直线的斜率k 与,A B 坐标的关系,由此化简并求解出离心率的取值范围. 【详解】设()()1122,,,A x y B x y ,且线:310l kx y k --+=过定点()3,1即为2C 的圆心, 因为AC DB =u u u r u u u r,所以1212236212C D C D x x x x y y y y +=+=⨯=⎧⎨+=+=⨯=⎩,又因为2222221122222222b x a y a b b x a y a b ⎧+=⎨+=⎩,所以()()2222221212b x x a y y -=--, 所以2121221212y y x x b x x a y y -+=-⋅-+,所以[]2232,1b k a=-∈--,所以2212,33b a ⎡⎤∈⎢⎥⎣⎦,所以22212,33a c a -⎡⎤∈⎢⎥⎣⎦,所以()2121,33e ⎡⎤-∈⎢⎥⎣⎦,所以e ∈⎣⎦. 故选:A. 【点睛】本题考查椭圆与圆的综合应用,着重考查了椭圆离心率求解以及点差法的运用,难度一般.通过运用点差法达到“设而不求”的目的,大大简化运算.二、填空题:本题共4小题,每小题5分,共20分。

湖南省湘潭市2021届高三模拟第三次考试数学试题与答案

湖南省湘潭市2021届高三模拟第三次考试数学试题与答案

=:Rli-t ,I~,i,*-Rli-tCtl::-::st~rf-R,-R~
rt--t) ,Jlltl.frt'c,i,*J,J
A. li-t
B. =Rli-t
c. .=:Rli-t
D. llYRli-t
6. 2020 ~ 11 ~ 24 s 4 at 30 :fr,~OOtE::t~M:*~M~ffl
10. B~el§!J& f(x) =2aln x+x2 +b.
A.~ a=-1 flt,J(x)a'9flVJv(EL~7'JCl,l+b)
10 ffiq=r*1f:mffitf:\M~1J\~. ~1J7!-,=~:Pi~ffitf:\-~Jl~l't9ffi$:5HJtlic7'J P1 fll P2 ,JJ!tl
A. P1<P2
B. P1 =pz
c.~>~
n~_t~fififflRm~~n
*· =,~tt•=*•:1t 4 ,1,~ .•,1,m s ~.:1t 20 ~.1£fij,J,mtt1±11¥-J~IPiq:i,~~IPi~~•l§j~ ~$~x,f1¥-Jffl 5 ~, ~~ffil¥-Jffl O~, $~~x,f1¥-Jffl 2 ~-
D. 6825 m/s
1
* 2
2
7. P 7'J~lil!~ C: ; 2-fz=Ha>O,b>O)_t-,~ ,F1 ,F2 :5HJtl7'J::ttti:,tf~.~ ,O 7'J*flr-ffi.~.
IOPI =b,ii sinLPF2F1 =3sinLPF1F2 ,JJ!tl C l'J'9~,G,$7'J

2021年湖南省高考数学试题真卷(新高考Ⅰ卷,含答案及详细解析)word可修改版

2021年湖南省高考数学试题真卷(新高考Ⅰ卷,含答案及详细解析)word可修改版

绝密★启用前湖南省2021年普通高等学校招生全国统一考试新高考Ⅰ卷数学本试卷共4页,22小题,满分150分,考试用时120分钟。

注意事项:1. 答卷前,考生务必将自己的姓名、考生号、考场号和座位号与写在答题卡上,用2B铅笔将试卷类型(B)填涂在答题卡相应位置上,将条形码横贴在答题卡右上角“条形妈粘贴处”.2. 作答选择题时,选出每小题答案后,用2B铅笔在答题卡上对应题目选项的答案信息点涂黑:如需改动,用橡皮擦干净后,再选涂其他答案。

答案不能答在试卷上。

3. 非连择题必须用黑色字连的钢笔或法字笔作答,答案必须写在答题卡各题目指定区域内相应位置上:如需改动,先划掉原来的答案,然后再写上新答案:不准使用铅笔和涂改液,不按以上要求作答无效。

4. 考生必须保持答题卡的整洁,考试结束后,将试卷和答题卡一并交回。

一、选择题:本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设集合A= {x| - 2 < x < 4},B = (2,3,4,5),则A∩B =A .{2}B. {2.3}C. {3.4}D. {2,3,4}2.已知z = 2 –i,则z(z + i) =A . 6 - 2 i B.4 - 2i C.6 + 2 i D.4 + 2 i3. 已知圆锥底面半径为√2,其侧面展开图为一个半圆,则该圆锥的母线长为A. 2B.2√2C. 4D.4√24. 下列区间中,函数f(x) = 7sin(x - 56)单调递减的区间是A.(0.π2)B.(π2,x)C.(π.3π2)D.(3π2,2π)5. 已知F1,F2是椭圆C: x29+ y24= 1的两个焦点,点M在C上,则︱MF1︱ ·︱MF2︱的地大值为A. 13B. 12C. 9D. 66. 若tanθ = -2,则sinθ(1+sin2θ)sinθ+cosθ=A. - 65 B. -25 c .25 D .657. 若过点(a,b)可以作曲线y = e'的两条切线,则A. e' < aB. e < bC.0 < a < eD.0 < b < e8. 有6个相同的球,分别标有数字1,2,3,4,5,6,从中有放回的随机取两次,每次取1个球.甲表示事件“第一次取出的球的数字是1”,乙表示事件“第二次取出的球的数字是2”,丙表示事件“两次取出的球的数字之和是8”,丁表示事件“两次取出的球的数字之和是7”,则A. 甲与丙相互独立B. 甲与丁相互独立C. 乙与丙相互独立D. 丙与丁相互独立二、选择题:本题共4小题,每小题5分,共20分。

湖南省湘潭市2021届新高考第二次质量检测数学试题含解析

湖南省湘潭市2021届新高考第二次质量检测数学试题含解析

湖南省湘潭市2021届新高考第二次质量检测数学试题一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知向量(1,4)a =r ,(2,)b m =-r ,若||||a b a b +=-r r r r,则m =( ) A .12-B .12C .-8D .8【答案】B 【解析】 【分析】先求出向量a b +r r ,a b -r r的坐标,然后由||||a b a b +=-r r r r 可求出参数m 的值.【详解】由向量(1,4)a =r ,(2,)b m =-r,则()1,4a b m +=-+r r ,()3,4a b m -=-r r()22||1+4a b m +=+r r ,()22||3+4a b m -=-r r又||||a b a b +=-r r r r ,则()()22221+4=3+4m m +-,解得12m =.故选:B 【点睛】本题考查向量的坐标运算和模长的运算,属于基础题.2.某市气象部门根据2018年各月的每天最高气温平均数据,绘制如下折线图,那么,下列叙述错误的是( )A .各月最高气温平均值与最低气温平均值总体呈正相关B .全年中,2月份的最高气温平均值与最低气温平均值的差值最大C .全年中各月最低气温平均值不高于10°C 的月份有5个D .从2018年7月至12月该市每天最高气温平均值与最低气温平均值呈下降趋势 【答案】D 【解析】 【分析】根据折线图依次判断每个选项得到答案. 【详解】由绘制出的折线图知:在A 中,各月最高气温平均值与最低气温平均值为正相关,故A 正确;在B 中,全年中,2月的最高气温平均值与最低气温平均值的差值最大,故B 正确;在C 中,全年中各月最低气温平均值不高于10℃的月份有1月,2月,3月,11月,12月,共5个,故C 正确;在D 中,从2018年7月至12月该市每天最高气温平均值与最低气温平均值,先上升后下降,故D 错误. 故选:D. 【点睛】本题考查了折线图,意在考查学生的理解能力.3.定义在R 上的函数()()f x x g x =+,()22(2)g x x g x =--+--,若()f x 在区间[)1,-+∞上为增函数,且存在20t -<<,使得(0)()0f f t ⋅<.则下列不等式不一定成立的是( ) A .()2112f t t f ⎛⎫++>⎪⎝⎭B .(2)0()f f t ->>C .(2)(1)f t f t +>+D .(1)()f t f t +>【答案】D 【解析】 【分析】根据题意判断出函数的单调性,从而根据单调性对选项逐个判断即可. 【详解】由条件可得(2)2(2)2()22()()f x x g x x g x x g x x f x --=--+--=--+++=+=∴函数()f x 关于直线1x =-对称;()f x Q 在[1-,)+∞上单调递增,且在20t -<<时使得(0)()0f f t <g ;又(2)(0)f f -=Q()0f t ∴<,(2)(0)0f f -=>,所以选项B 成立;223112()0224t t t ++-=++>Q ,21t t ∴++比12离对称轴远, ∴可得21(1)()2f t t f ++>,∴选项A 成立;22(3)(2)250t t t +-+=+>Q ,|3||2|t t ∴+>+,∴可知2t +比1t +离对称轴远 (2)(1)f t f t ∴+>+,选项C 成立;20t -<<Q ,22(2)(1)23t t t ∴+-+=+符号不定,|2|t ∴+,|1|t +无法比较大小, (1)()f t f t ∴+>不一定成立.故选:D . 【点睛】本题考查了函数的基本性质及其应用,意在考查学生对这些知识的理解掌握水平和分析推理能力. 4.设函数()f x 的定义域为R ,满足(2)2()f x f x +=,且当2(]0,x ∈时,()(2)f x x x =--.若对任意(,]x m ∈-∞,都有40()9f x ≤,则m 的取值范围是( ). A .9,4⎛⎤-∞ ⎥⎝⎦B .19,3⎛⎤-∞ ⎥⎝⎦C .(,7]-∞D .23,3⎛⎤-∞ ⎥⎝⎦【答案】B 【解析】 【分析】求出()f x 在(2,22]x n n ∈+的解析式,作出函数图象,数形结合即可得到答案. 【详解】当(2,22]x n n ∈+时,2(0,2]x n -∈,()2(2)2(2)(22)n nf x f x n x n x n =-=----,max ()2n f x =,又40489<<,所以m 至少小于7,此时3()2(6)(8)f x x x =---, 令40()9f x =,得3402(6)(8)9x x ---=,解得193x =或233x =,结合图象,故193m ≤. 故选:B. 【点睛】本题考查不等式恒成立求参数的范围,考查学生数形结合的思想,是一道中档题.5.某设备使用年限x (年)与所支出的维修费用y (万元)的统计数据(),x y 分别为()2,1.5,()3,4.5,()4,5.5,()5,6.5,由最小二乘法得到回归直线方程为ˆˆ1.6yx a +=,若计划维修费用超过15万元将该设备报废,则该设备的使用年限为( )A .8年B .9年C .10年D .11年【答案】D 【解析】 【分析】根据样本中心点(,)x y 在回归直线上,求出$a ,求解$15y >,即可求出答案.【详解】 依题意 3.5, 4.5,(3.5,4.5)x y==在回归直线上,$$ˆ4.5 1.6 3.5, 1.1, 1.6 1.1a a y x =⨯+=-∴-=,由1ˆ 1.6 1.115,1016yx x ->>=, 估计第11年维修费用超过15万元. 故选:D. 【点睛】本题考查回归直线过样本中心点、以及回归方程的应用,属于基础题. 6.设复数z 满足12z zz +=+,z 在复平面内对应的点的坐标为(),x y 则( ) A .221x y =+ B .221y x =+ C .221x y =- D .221y x =-【答案】B 【解析】 【分析】根据共轭复数定义及复数模的求法,代入化简即可求解. 【详解】z 在复平面内对应的点的坐标为(),x y ,则z x yi =+,z x yi =-,∵12z zz +=+,1x =+, 解得221y x =+. 故选:B. 【点睛】本题考查复数对应点坐标的几何意义,复数模的求法及共轭复数的概念,属于基础题.7.如图,四边形ABCD 为平行四边形,E 为AB 中点,F 为CD 的三等分点(靠近D )若AF x AC yDE =+u u u r u u u r u u u r,则y x -的值为( )A .12-B .23-C .13-D .1-【答案】D 【解析】 【分析】使用不同方法用表示出AF u u u r,结合平面向量的基本定理列出方程解出. 【详解】解:13AF AD DF AB AD =+=+u u u r u u u r u u u r u u u r u u u r,又11()()()()22AF xAC yDE x AB AD y AB AD x y AB x y AD =+=++-=++-u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u ur u u u r1231y x x y ⎧+=⎪∴⎨⎪-=⎩解得5949x y ⎧=⎪⎪⎨⎪=-⎪⎩,所以1y x -=- 故选:D 【点睛】本题考查了平面向量的基本定理及其意义,属于基础题. 8.已知随机变量X 的分布列是X12 3P1213a则()2E X a +=( ) A .53B .73C .72D .236【答案】C 【解析】 【分析】利用分布列求出a ,求出期望()E X ,再利用期望的性质可求得结果. 【详解】由分布列的性质可得11123a ++=,得16a =,所以,()11151232363E X =⨯+⨯+⨯=,因此,()()11517222266362E X a E X E X ⎛⎫+=+=+=⨯+= ⎪⎝⎭. 故选:C. 【点睛】本题考查离散型随机变量的分布列以及期望的求法,是基本知识的考查.9.设,m n 是两条不同的直线,,αβ是两个不同的平面,下列命题中正确的是( ) A .若//m α,//m β,则//αβ B .若m α⊥,m n ⊥,则n α⊥ C .若m α⊥,//m n ,则n α⊥ D .若αβ⊥,m α⊥,则//m β【答案】C 【解析】 【分析】在A 中,α与β相交或平行;在B 中,//n α或n ⊂α;在C 中,由线面垂直的判定定理得n α⊥;在D 中,m 与β平行或m β⊂. 【详解】设,m n 是两条不同的直线,,αβ是两个不同的平面,则: 在A 中,若//m α,//m β,则α与β相交或平行,故A 错误; 在B 中,若m α⊥,m n ⊥,则//n α或n ⊂α,故B 错误;在C 中,若m α⊥,//m n ,则由线面垂直的判定定理得n α⊥,故C 正确; 在D 中,若αβ⊥,m α⊥,则m 与β平行或m β⊂,故D 错误. 故选C . 【点睛】本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,是中档题. 10.已知定义在R 上的函数()f x 满足()()f x f x =-,且在(0,)+∞上是增函数,不等式()()21f ax f +≤-对于[]1,2x ∈恒成立,则a 的取值范围是A .3,12⎡⎤--⎢⎥⎣⎦B .11,2⎡⎤--⎢⎥⎣⎦C .1,02⎡⎤-⎢⎥⎣⎦D .[]0,1【答案】A 【解析】 【分析】根据奇偶性定义和性质可判断出函数为偶函数且在(),0-∞上是减函数,由此可将不等式化为121ax -≤+≤;利用分离变量法可得31a x x-≤≤-,求得3x -的最大值和1x-的最小值即可得到结果. 【详解】()()f x f x =-Q ()f x ∴为定义在R 上的偶函数,图象关于y 轴对称又()f x 在()0,∞+上是增函数 ()f x ∴在(),0-∞上是减函数()()21f ax f +≤-Q 21ax ∴+≤,即121ax -≤+≤121ax -≤+≤Q 对于[]1,2x ∈恒成立 31a xx∴-≤≤-在[]1,2上恒成立312a ∴-≤≤-,即a 的取值范围为:3,12⎡⎤--⎢⎥⎣⎦本题正确选项:A 【点睛】本题考查利用函数的奇偶性和单调性求解函数不等式的问题,涉及到恒成立问题的求解;解题关键是能够利用函数单调性将函数值的大小关系转化为自变量的大小关系,从而利用分离变量法来处理恒成立问题.11.已知椭圆()222210x y a b a b+=>>的左、右焦点分别为1F 、2F ,过1F 的直线交椭圆于A ,B 两点,交y 轴于点M ,若1F 、M 是线段AB 的三等分点,则椭圆的离心率为( )A .12B .C D 【答案】D 【解析】 【分析】根据题意,求得,,A M B 的坐标,根据点在椭圆上,点的坐标满足椭圆方程,即可求得结果. 【详解】由已知可知,M 点为1AF 中点,1F 为BM 中点, 故可得120F A M x x x +==,故可得A x c =;代入椭圆方程可得22221c y a b +=,解得2b y a =±,不妨取2A b y a=,故可得A 点的坐标为2,b c a ⎛⎫⎪⎝⎭,则202b M a ⎛⎫ ⎪⎝⎭,,易知B 点坐标22,2b c a ⎛⎫-- ⎪⎝⎭,将B 点坐标代入椭圆方程得225a c =,所以离心率为5, 故选:D. 【点睛】本题考查椭圆离心率的求解,难点在于根据题意求得,,A B M 点的坐标,属中档题.12.函数1()1xxe f x e+=-(其中e 是自然对数的底数)的大致图像为( ) A . B . C .D .【答案】D 【解析】由题意得,函数点定义域为x ∈R 且0x ≠,所以定义域关于原点对称, 且()1111()1111xx x xx x e e e f x f x e e e ----+++-===-=----,所以函数为奇函数,图象关于原点对称, 故选D.二、填空题:本题共4小题,每小题5分,共20分。

湖南省湘潭市2021届新高考数学模拟试题(1)含解析

湖南省湘潭市2021届新高考数学模拟试题(1)含解析

湖南省湘潭市2021届新高考数学模拟试题(1)一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知α为锐角,且3sin 22sin αα=,则cos2α等于( ) A .23B .29C .13-D .49-【答案】C 【解析】 【分析】由3sin 22sin αα=可得3cos α=,再利用2cos 22cos 1αα=-计算即可. 【详解】因为23sin cos 2sin ααα=,sin 0α≠,所以3cos 3α=, 所以221cos22cos 1133αα=-=-=-. 故选:C. 【点睛】本题考查二倍角公式的应用,考查学生对三角函数式化简求值公式的灵活运用的能力,属于基础题. 2.明代数学家程大位(1533~1606年),有感于当时筹算方法的不便,用其毕生心血写出《算法统宗》,可谓集成计算的鼻祖.如图所示的程序框图的算法思路源于其著作中的“李白沽酒”问题.执行该程序框图,若输出的y 的值为2,则输入的x 的值为( )A .74B .5627C .2D .16481【答案】C 【解析】 【分析】根据程序框图依次计算得到答案. 【详解】34y x =-,1i =;34916y y x =-=-,2i =;342752y y x =-=-,3i =;3481160y y x =-=-,4i =;34243484y y x =-=-,此时不满足3i ≤,跳出循环,输出结果为243484x -,由题意2434842y x =-=,得2x =. 故选:C 【点睛】本题考查了程序框图的计算,意在考查学生的理解能力和计算能力.3.已知函数2,0()2,0x xx f x e x x x ⎧>⎪=⎨⎪--≤⎩若函数1()()()2g x f x k x =-+在R 上零点最多,则实数k 的取值范围是( ) A .2(0,)3eB .2(,0)3e-C .(,0)2e-D .(0,)2e【答案】D 【解析】 【分析】将函数的零点个数问题转化为函数()y f x =与直线1()2y k x =+的交点的个数问题,画出函数()y f x =的图象,易知直线1()2y k x =+过定点1(,0)2-,故与()f x 在0x <时的图象必有两个交点,故只需与()f x 在0x >时的图象有两个交点,再与切线问题相结合,即可求解.【详解】由图知()y f x =与1()2y k x =+有4个公共点即可,即()0,k k ∈切,当设切点()00,x y ,则000011()2x x x k e x k x e -⎧=⎪⎪⎨⎪+=⎪⎩,0122x k e ⎧=⎪⎪∴⎨⎪=⎪⎩k ∴∈.故选:D. 【点睛】本题考查了函数的零点个数的问题,曲线的切线问题,注意运用转化思想和数形结合思想,属于较难的压轴题.4.已知实数ln333,33ln 3(n ),l 3a b c ==+=,则,,a b c 的大小关系是( ) A .c b a << B .c a b <<C .b a c <<D .a c b <<【答案】B 【解析】 【分析】 根据41ln33<<,利用指数函数对数函数的单调性即可得出. 【详解】 解:∵41ln33<<, ∴33ln36b =+>,43336a <<<,34643327c ⎛⎫<=< ⎪⎝⎭. ∴c a b <<. 故选:B . 【点睛】本题考查了指数函数对数函数的单调性,考查了推理能力与计算能力,属于基础题. 5.在等差数列{}n a 中,25a =-,5679a a a ++=,若3n nb a =(n *∈N ),则数列{}n b 的最大值是( )A .3-B .13- C .1 D .3【答案】D 【解析】 【分析】在等差数列{}n a 中,利用已知可求得通项公式29n a n =-,进而3293n n b a n =-=,借助()329f x x =-函数的的单调性可知,当5n =时, n b 取最大即可求得结果. 【详解】因为5679a a a ++=,所以639a =,即63a =,又25a =-,所以公差2d =,所以29n a n =-,即329n b n =-,因为函数()329f x x =-,在 4.5x <时,单调递减,且()0f x <;在 4.5x >时,单调递减,且()0f x >.所以数列{}n b 的最大值是5b ,且5331b ==,所以数列{}n b 的最大值是3.故选:D. 【点睛】本题考查等差数列的通项公式,考查数列与函数的关系,借助函数单调性研究数列最值问题,难度较易. 6.已知m ,n 是两条不重合的直线,α,β是两个不重合的平面,则下列命题中错误的是( ) A .若m //α,α//β,则m //β或m β⊂B .若m //n ,m //α,n α⊄,则n //αC .若m n ⊥,m α⊥,n β⊥,则αβ⊥D .若m n ⊥,m α⊥,则n //α 【答案】D 【解析】 【分析】根据线面平行和面面平行的性质,可判定A ;由线面平行的判定定理,可判断B ;C 中可判断α,β所成的二面角为090;D 中有可能n ⊂α,即得解. 【详解】选项A :若m //α,α//β,根据线面平行和面面平行的性质,有m //β或m β⊂,故A 正确;选项B :若m //n ,m //α,n α⊄,由线面平行的判定定理,有n //α,故B 正确; 选项C :若m n ⊥,m α⊥,n β⊥,故α,β所成的二面角为090,则αβ⊥,故C 正确; 选项D ,若m n ⊥,m α⊥,有可能n ⊂α,故D 不正确. 故选:D 【点睛】本题考查了空间中的平行垂直关系判断,考查了学生逻辑推理,空间想象能力,属于中档题. 7.在区间[1,1]-上随机取一个数k ,使直线(3)y k x =+与圆221x y +=相交的概率为( )A .12B .13C .4D .3【答案】C 【解析】 【分析】根据直线与圆相交,可求出k 的取值范围,根据几何概型可求出相交的概率. 【详解】因为圆心(0,0),半径1r =,直线与圆相交,所以1d =≤,解得44k -≤≤所以相交的概率224P ==,故选C.【点睛】本题主要考查了直线与圆的位置关系,几何概型,属于中档题.8.若62a x x ⎛⎫+ ⎪⎝⎭的展开式中6x 的系数为150,则2a =( )A .20B .15C .10D .25【答案】C 【解析】 【分析】通过二项式展开式的通项分析得到22666150C a x x =,即得解.【详解】由已知得()62123166()rrrr r rr a T C xC a xx --+⎛⎫== ⎪⎝⎭, 故当2r =时,1236r -=,于是有226663150T C a x x ==,则210a =. 故选:C 【点睛】本题主要考查二项式展开式的通项和系数问题,意在考查学生对这些知识的理解掌握水平.9.设a r ,b r ,c r 是非零向量.若1()2a c b c a b c ⋅=⋅=+⋅r r r r r r r,则( )A .()0a b c ⋅+=r r rB .()0a b c ⋅-=r r rC .()0a b c +⋅=r r rD .()0a b c -⋅=r r r【答案】D 【解析】试题分析:由题意得:若a c b c ⋅=⋅r r r r ,则()0a b c -⋅=r r r ;若a c b c ⋅=-⋅r r r r ,则由1()2a c b c a b c⋅=⋅=+⋅r r r r r r r 可知,0a c b c ⋅=⋅=r r r r ,故()0a b c -⋅=r r r 也成立,故选D.考点:平面向量数量积.【思路点睛】几何图形中向量的数量积问题是近几年高考的又一热点,作为一类既能考查向量的线性运算、坐标运算、数量积及平面几何知识,又能考查学生的数形结合能力及转化与化归能力的问题,实有其合理之处.解决此类问题的常用方法是:①利用已知条件,结合平面几何知识及向量数量积的基本概念直接求解(较易);②将条件通过向量的线性运算进行转化,再利用①求解(较难);③建系,借助向量的坐标运算,此法对解含垂直关系的问题往往有很好效果.10.函数()32f x x x x =-+的图象在点()()1,1f 处的切线为l ,则l 在y 轴上的截距为( )A .1-B .1C .2-D .2【答案】A 【解析】 【分析】求出函数在1x =处的导数后可得曲线在()()1,1f 处的切线方程,从而可求切线的纵截距. 【详解】()2321f x x x '=-+,故()12f '=,所以曲线()y f x =在()()1,1f 处的切线方程为:()()21121y x f x =-+=-. 令0x =,则1y =-,故切线的纵截距为1-. 故选:A. 【点睛】本题考查导数的几何意义以及直线的截距,注意直线的纵截距指直线与y 轴交点的纵坐标,因此截距有正有负,本题属于基础题.11.已知向量a r ,b r满足4a =r ,b r 在a r 上投影为2-,则3a b -r r 的最小值为( )A .12B .10CD .2【答案】B 【解析】 【分析】根据b r 在a r 上投影为2-,以及[)cos ,1,0a b <>∈-rr ,可得min 2b =r ;再对所求模长进行平方运算,可将问题转化为模长和夹角运算,代入minbr即可求得min3a b -r r.b r 在a r 上投影为2-,即cos ,2b a b <>=-r rr 0b >r Q cos ,0a b∴<><r r又[)cos ,1,0a b <>∈-rr min2b ∴=r 2222223696cos ,9964a b a a b b a a b a b b b -=-⋅+=-<>+=+r r r r rr r r r r r r rmin3946410a b∴-=⨯+=r r本题正确选项:B 【点睛】本题考查向量模长的运算,对于含加减法运算的向量模长的求解,通常先求解模长的平方,再开平方求得结果;解题关键是需要通过夹角取值范围的分析,得到b r的最小值.12.函数的图象可能是下列哪一个?( )A .B .C .D .【答案】A 【解析】 【分析】 由排除选项;排除选项;由函数有无数个零点,排除选项,从而可得结果. 【详解】 由,可排除选项,可排除选项;由可得,即函数有无数个零点,可排除选项,故选A.本题通过对多个图象的选择考查函数的图象与性质,属于中档题.这类题型也是近年高考常见的命题方向,该题型的特点是综合性较强、考查知识点较多,但是并不是无路可循.解答这类题型可以从多方面入手,根据函数的定义域、值域、单调性、奇偶性、特殊点以及时函数图象的变化趋势,利用排除法,将不合题意的选项一一排除. 二、填空题:本题共4小题,每小题5分,共20分。

2021年湖南省新高考数学模拟试卷解析版

2021年湖南省新高考数学模拟试卷解析版

2021年湖南省新高考数学模拟试卷解析版
一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个
选项中,只有一项是符合题目要求的.
1.已知集合A={﹣1,0,1,2},B={x|x2=x},则A∩B=()A.{0}B.{1}C.{0,1}D.{0,1,2}【分析】求出集合A,B,由此能求出A∩B.
【解答】解:∵集合A={﹣1,0,1,2},
B={x|x2=x}={0,1},
∴A∩B={0,1}.
故选:C.
【点评】本题考查交集的求法,考查交集定义、不等式性质等基础知识,考查运算求解能力,是基础题.
2.(1+i)2=()
A.2i B.﹣2i C.2D.﹣2
【分析】直接展开两数和的平方求解.
【解答】解:(1+i)2=1+2i+i2=2i.
故选:A.
【点评】本题考查复数代数形式的乘除运算,是基础题.
3.下列命题中的假命题是()
A.∃x∈R,lgx=0B.∃x∈R,tan x=1
C.∀x∈R,x2>0D.∀x∈R,3x>0
【分析】由x=1计算可判断A;由x =时,计算可判断B;由完全平方数非负可判断C;由指数函数的值域可判断D.
【解答】解:当x=1时,lgx=0,故A正确;
当x =时,tan x=1,故B正确;
∀x∈R,x2≥0,故C错误;
由指数函数的值域可得,3x>0恒成立,故D正确.
故选:C.
第1 页共24 页。

2021届湖南省湘潭市新高考数学模拟试卷及答案解析

2021届湖南省湘潭市新高考数学模拟试卷及答案解析
A.直线B.圆C.椭圆D.抛物线
二.填空题(共7小题,满分36分)
11.(6分)lg(3x)+lgy=lg(x+y+1),则x+y的取值范围是.
12.(6分)若x2020=a0+a1(x﹣1)+a2(x﹣1)2+…+a2020(x﹣1)2020,则 .
13.(6分)已知实数x,y满足约束条件 ,则z=x+2y的最大值为.
所以由题意可得: 3,
所以离心率e ,
故选:A.
4.“a=1”是“直线a2x﹣y+1=0与直线x+y=0互相垂直”的( )
A.充分而不必要条件B.必要而不充分条件
C.充要条件D.既不充分也不必要条件
【解答】解:当a=1时,直线a2x﹣y+1=0,
即为x﹣y+1=0,斜率为k1=1,
直线x+y=0,斜率为k2=﹣1,
所以“a=1”是“直线a2x﹣y+1=0与直线x+y=0互相垂直”的充分不必要条件.
故选:A.
5.某几何体的三视图如图所示,则该几何体的体积是( )
A.6B.4C.3D.2
【解答】解:根据几何体的三视图转换为几何体为:该几何体为四棱锥体,底面为直角梯形,高为2.
17.如图,已知等腰梯形ABCD中,AB=2DC=4, ,E是DC的中点,F是线段BC上的动点,则 的最小值是
三.解答题(共5小题,满分74分)
18.(14分)如图,在四边形ABCD中,∠CAB=45°,AB=2,∠ACD=90°,BC=3.
(Ⅰ)求cos∠ACB的值;
(Ⅱ)若DC ,求对角线BD的长度.
A. B.
C. D.
8.已知函数f(x)=xsinx+ln|x|,则y=f(x)的大致图象为( )

湖南省湘潭市2021届新高考数学四模试卷含解析

湖南省湘潭市2021届新高考数学四模试卷含解析

湖南省湘潭市2021届新高考数学四模试卷一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.以下四个命题:①两个随机变量的线性相关性越强,相关系数的绝对值越接近1;②在回归分析中,可用相关指数2R 的值判断拟合效果,2R 越小,模型的拟合效果越好; ③若数据123,,,,n x x x x L 的方差为1,则1232+1,2+1,2+1,,2+1n x x x x L 的方差为4;④已知一组具有线性相关关系的数据()()()11221010,,,,,,x y x y x y L ,其线性回归方程ˆˆˆybx a =+,则“()00,x y 满足线性回归方程ˆˆˆy bx a =+”是“1210010x x x x +++=L ,1210010y y y y ++=L ”的充要条件;其中真命题的个数为( ) A .4B .3C .2D .1 【答案】C【解析】【分析】①根据线性相关性与r 的关系进行判断,②根据相关指数2R 的值的性质进行判断,③根据方差关系进行判断,④根据点()00,x y 满足回归直线方程,但点()00,x y 不一定就是这一组数据的中心点,而回归直线必过样本中心点,可进行判断.【详解】①若两个随机变量的线性相关性越强,则相关系数r 的绝对值越接近于1,故①正确;②用相关指数2R 的值判断模型的拟合效果,2R 越大,模型的拟合效果越好,故②错误;③若统计数据123,,,,n x x x x L 的方差为1,则1232+1,2+1,2+1,,2+1n x x x x L 的方差为224=,故③正确; ④因为点()00,x y 满足回归直线方程,但点()00,x y 不一定就是这一组数据的中心点,即1210010x x x x +++=L ,1210010y y y y ++=L 不一定成立,而回归直线必过样本中心点,所以当1210010x x x x +++=L ,1210010y y y y ++=L 时,点 ()00,x y 必满足线性回归方程 ˆˆˆy bx a =+;因此“()00,x y 满足线性回归方程ˆˆˆy bx a =+”是“1210010x x x x +++=L ,1210010y y y y ++=L ”必要不充分条件.故 ④错误; 所以正确的命题有①③.故选:C.【点睛】本题考查两个随机变量的相关性,拟合性检验,两个线性相关的变量间的方差的关系,以及两个变量的线性回归方程,注意理解每一个量的定义,属于基础题.2.已知0a >且1a ≠,函数()1log ,031,0a x x a x f x x ++>⎧=⎨-≤⎩,若()3f a =,则()f a -=( ) A .2B .23C .23-D .89- 【答案】C【解析】【分析】 根据分段函数的解析式,知当0x ≤时,()131,x f x +=-且()3f x <,由于()3f a =,则()log 3a f a a a =+=,即可求出a .【详解】由题意知:当0x ≤时,()131,x f x +=-且()3f x <由于()3f a =,则可知:0a >,则()log 3a f a a a =+=,∴2a =,则2a -=-,则()()122313f a f --=-=-=-. 即()23f a -=-. 故选:C.【点睛】 本题考查分段函数的应用,由分段函数解析式求自变量.3.已知n S 是等差数列{}n a 的前n 项和,若312S a S +=,46a =,则5S =( ) A .5B .10C .15D .20 【答案】C【解析】【分析】利用等差通项,设出1a 和d ,然后,直接求解5S 即可【详解】令()11n a a n d +-=,则11113232d a a a a d ⨯⨯++=++,136a d +=,∴13a =-,3d =,∴()55310315S =⨯-+⨯=.【点睛】本题考查等差数列的求和问题,属于基础题4.若函数()ln f x x x h =-++,在区间1,e e ⎡⎤⎢⎥⎣⎦上任取三个实数a ,b ,c 均存在以()f a ,()f b ,()f c 为边长的三角形,则实数h 的取值范围是( )A .11,1e ⎛⎫-- ⎪⎝⎭ B .11,3e e ⎛⎫-- ⎪⎝⎭ C .11,e ⎛⎫-+∞ ⎪⎝⎭ D .()3,e -+∞【答案】D【解析】【分析】利用导数求得()f x 在区间1,e e⎡⎤⎢⎥⎣⎦上的最大值和最小,根据三角形两边的和大于第三边列不等式,由此求得h 的取值范围.【详解】 ()f x 的定义域为()0,∞+,()'111x f x x x-=-+=, 所以()f x 在1,1e ⎛⎫⎪⎝⎭上递减,在()1,e 上递增,()f x 在1x =处取得极小值也即是最小值,()1ln111f h h =-++=+,1111ln 1f h h e e e e ⎛⎫=-++=++ ⎪⎝⎭,()ln 1f e e e h e h =-++=-+,()1f f e e ⎛⎫< ⎪⎝⎭, 所以()f x 在区间1,e e⎡⎤⎢⎥⎣⎦上的最大值为()1f e e h =-+. 要使在区间1,e e ⎡⎤⎢⎥⎣⎦上任取三个实数a ,b ,c 均存在以()f a ,()f b ,()f c 为边长的三角形, 则需()()()f a f b f c +>恒成立,且()10f >,也即()()()max min f a f b f c +>⎡⎤⎣⎦,也即当1a b ==、c e =时,()()21e f f >成立,即()211h e h +>-+,且()10f >,解得3h e >-.所以h 的取值范围是()3,e -+∞.故选:D【点睛】本小题主要考查利用导数研究函数的最值,考查恒成立问题的求解,属于中档题.5.执行程序框图,则输出的数值为( )A .12B .29C .70D .169【答案】C【解析】【分析】 由题知:该程序框图是利用循环结构计算并输出变量b 的值,计算程序框图的运行结果即可得到答案.【详解】0a =,1b =,1n =,022b =+=,5n <,满足条件,2012a -==,2n =,145b =+=,5n <,满足条件, 5122a -==,3n =,21012b =+=,5n <,满足条件, 12252a -==,4n =,52429b =+=,5n <,满足条件, 295122a -==,5n =,125870b =+=,5n =,不满足条件, 输出70b =.故选:C【点睛】本题主要考查程序框图中的循环结构,属于简单题.6.已知||23z z i =-(i 为虚数单位,z 为z 的共轭复数),则复数z 在复平面内对应的点在( ). A .第一象限B .第二象限C .第三象限D .第四象限 【答案】D【解析】【分析】设i,(,)z a b a b R =+∈,由||23z z i =-,得222i=(2)i=3a b z a b +--+,利用复数相等建立方程组即可.【详解】设i,(,)z a b a b R =+∈,则2i=(z a b --+,所以20a b ⎧⎪=⎨⎪+=⎩,解得22a b ⎧=⎪⎨⎪=-⎩,故2i z =-,复数z在复平面内对应的点为(2)2-,在第四象限. 故选:D.【点睛】本题考查复数的几何意义,涉及到共轭复数的定义、复数的模等知识,考查学生的基本计算能力,是一道容易题.7.已知函数()()3sin f x x ωϕ=+,()0,0πωϕ><<,若03f π⎛⎫-= ⎪⎝⎭,对任意x ∈R 恒有()3f x f π⎛⎫≤ ⎪⎝⎭,在区间ππ,155⎛⎫ ⎪⎝⎭上有且只有一个1x 使()13f x =,则ω的最大值为( ) A .1234 B .1114 C .1054 D .1174【答案】C【解析】【分析】根据()f x 的零点和最值点列方程组,求得,ωϕ的表达式(用k 表示),根据()1f x 在ππ,155⎛⎫ ⎪⎝⎭上有且只有一个最大值,求得ω的取值范围,求得对应k 的取值范围,由k 为整数对k 的取值进行验证,由此求得ω的最大值.【详解】 由题意知1122ππ,3,πππ+,32k k k Z k ωϕωϕ⎧-+=⎪⎪∈⎨⎪+=⎪⎩,则()()321,421π,4k k ωϕ⎧+=⎪⎪⎨='+⎪⎪⎩其中12k k k =-,21k k k '=+.又()1f x 在ππ,155⎛⎫ ⎪⎝⎭上有且只有一个最大值,所以ππ2π251515T -=≤,得030ω<≤,即()321304k +≤,所以19.5k ≤,又k Z ∈,因此19k ≤.①当19k =时,1174ω=,此时取3π4ϕ=可使12ππ,3πππ+,32k k ωϕωϕ⎧-+=⎪⎪⎨⎪+=⎪⎩成立,当ππ,155x ⎛⎫∈ ⎪⎝⎭时,()1173π 2.7π,6.6π44x +∈,所以当11173π 4.5π44x +=或6.5π时,()13f x =都成立,舍去; ②当18k =时,1114ω=,此时取π4ϕ=可使12ππ,3πππ+,32k k ωϕωϕ⎧-+=⎪⎪⎨⎪+=⎪⎩成立,当ππ,155x ⎛⎫∈ ⎪⎝⎭时,()111π 2.1π,5.8π44x +∈,所以当1111π 2.5π44x +=或4.5π时,()13f x =都成立,舍去; ③当17k =时,1054ω=,此时取3π4ϕ=可使12ππ,3πππ+,32k k ωϕωϕ⎧-+=⎪⎪⎨⎪+=⎪⎩成立,当ππ,155x ⎛⎫∈ ⎪⎝⎭时,()1053π 2.5π,6π44x +∈,所以当11053π 4.5π44x +=时,()13f x =成立; 综上所得ω的最大值为1054. 故选:C【点睛】本小题主要考查三角函数的零点和最值,考查三角函数的性质,考查化归与转化的数学思想方法,考查分类讨论的数学思想方法,属于中档题.8.设正项等比数列{}n a 的前n 项和为n S ,若23S =,3412a a +=,则公比q =( )A .4±B .4C .2±D .2【答案】D【解析】【分析】由23S =得123a a +=,又23412()12a a a a q +=+=,两式相除即可解出q . 【详解】解:由23S =得123a a +=,又23412()12a a a a q +=+=,∴24q =,∴2q =-,或2q =,又正项等比数列{}n a 得0q >,∴2q =,故选:D .【点睛】本题主要考查等比数列的性质的应用,属于基础题.9.已知水平放置的△ABC 是按“斜二测画法”得到如图所示的直观图,其中B′O′=C′O′=1,A′O′=3,那么原△ABC 的面积是( )A 3B .2C .32D .34【答案】A【解析】 【分析】先根据已知求出原△ABC 的高为AO 3△ABC 的面积. 【详解】由题图可知原△ABC 的高为AO 3 ∴S △ABC =12×BC×OA =12×2×33 A 【点睛】本题主要考查斜二测画法的定义和三角形面积的计算,意在考察学生对这些知识的掌握水平和分析推理能力.10.已知集合{}2,1,0,1A =--,{}22*|,B x x a a N =≤∈,若A B ⊆,则a 的最小值为( )A .1B .2C .3D .4 【答案】B【解析】【分析】 解出22x a ≤,分别代入选项中a 的值进行验证.【详解】解:22x a ≤Q ,a x a ∴-≤≤.当1a = 时,{}1,0,1B =-,此时A B ⊆不成立.当2a = 时,{}2,1,0,1,2B =--,此时A B ⊆成立,符合题意.故选:B.【点睛】本题考查了不等式的解法,考查了集合的关系.11.已知全集{},1,2,3,4,U Z A ==()(){}130,B x x x x Z =+->∈,则集合()U A C B ⋂的子集个数为( )A .2B .4C .8D .16 【答案】C【解析】【分析】先求B.再求U C B ,求得()U A C B ⋂则子集个数可求【详解】由题()(){}{}130,1x 3,U C B x x x x Z x x Z =+-≤∈=-≤≤∈={}1,0,1,2,3=-, 则集合(){}1,2,3U A C B ⋂=,故其子集个数为328=故选C【点睛】此题考查了交、并、补集的混合运算及子集个数,熟练掌握各自的定义是解本题的关键,是基础题12.若将函数()2sin 16f x x π⎛⎫=+- ⎪⎝⎭的图象上各点横坐标缩短到原来的12(纵坐标不变)得到函数()g x 的图象,则下列说法正确的是( )A .函数()g x 在0 6π⎛⎫ ⎪⎝⎭,上单调递增 B .函数()g x 的周期是2π C .函数()g x 的图象关于点 012π⎛⎫- ⎪⎝⎭,对称 D .函数()g x 在0 6π⎛⎫ ⎪⎝⎭,上最大值是1 【答案】A【解析】【分析】根据三角函数伸缩变换特点可得到()g x 解析式;利用整体对应的方式可判断出()g x 在0,6π⎛⎫ ⎪⎝⎭上单调递增,A 正确;关于点,112π⎛⎫-- ⎪⎝⎭对称,C 错误;根据正弦型函数最小正周期的求解可知B 错误;根据正弦型函数在区间内值域的求解可判断出最大值无法取得,D 错误.【详解】将()f x 横坐标缩短到原来的12得:()2sin 216g x x π⎛⎫=+- ⎪⎝⎭ 当0,6x π⎛⎫∈ ⎪⎝⎭时,2,662x πππ⎛⎫+∈ ⎪⎝⎭sin x Q 在,62ππ⎛⎫ ⎪⎝⎭上单调递增 ()g x ∴在0,6π⎛⎫ ⎪⎝⎭上单调递增,A 正确; ()g x 的最小正周期为:22T ππ== 2π∴不是()g x 的周期,B 错误; 当12x π=-时,206x π+=,112g π⎛⎫-=- ⎪⎝⎭()g x ∴关于点,112π⎛⎫-- ⎪⎝⎭对称,C 错误; 当0,6x π⎛⎫∈ ⎪⎝⎭时,2,662x πππ⎛⎫+∈ ⎪⎝⎭()()0,1g x ∴∈ 此时()g x 没有最大值,D 错误.本题正确选项:A【点睛】本题考查正弦型函数的性质,涉及到三角函数的伸缩变换、正弦型函数周期性、单调性和对称性、正弦型函数在一段区间内的值域的求解;关键是能够灵活应用整体对应的方式,通过正弦函数的图象来判断出所求函数的性质.二、填空题:本题共4小题,每小题5分,共20分。

2021年湖南省高考压轴试卷数学(文)Word版含答案解析(四).doc

2021年湖南省高考压轴试卷数学(文)Word版含答案解析(四).doc

由全国各地一线教师精心编制,对近十年全国各地高考试题的全方位精确分析,把握命题规律,找出命题趋势。

全网首发!百位名师呕血专研,只为高考最后一搏!注意事项:1.答题前,考生务必将自己的姓名、准考证号写在答题卡上。

2.考生作答时,选择题、填空题、解答题均须做在答题卡上,在本试卷上答题无效。

考生在答题卡上按答题卡中注意事项的要求答题。

3.考试结束后,将本试题卷和答题卡一并收回。

4.本试题卷共4页,如有缺页,考生须声明,否则后果自负。

湖南省高考压轴试卷数学(文)Word 版含答案解析本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分. 时量:120分钟.第Ⅰ卷(选择题 共45分)一、选择题:本大题共9小题,每小题5分,共计45分,在每小题给出的四个选项中,只有一项符合题目要求,请把正确答案的代号填在答题卡上. 1.复数(1)z i i =-+(i 为虚数单位)的共轭复数是 A .1i + B .1i -C . 1i -+D .1i --2.下列命题中的假命题是 A. 1,20x x R -∀∈>B. ()2*,10x N x ∀∈->C. ,ln 1x R x ∃∈<D. ,tan 2x R x ∃∈=3.已知随机变量,x y 的值如右表所示,如果x 与y 线性相关 且回归直线方程为9ˆ2y bx,则实数b 的值为 A.12- B. 12 C. 16- D. 164.已知命题:44p x a -<-<,命题:(1)(3)0q x x --<,且q 是p 的充分而不必要条件,则a 的取值范围是A. []1,5-B. [)1,5-C. (]1,5-D.()1,5-5.圆柱形容器内盛有高度为6cm 的水,若放入三个相同的球 (球的半径与圆柱的底面半径相同)后,水恰好淹没最上面 的球(如右图所示),则球的半径是A.67cm B. 2cm C. 3cmD. 4cm6.已知O 是坐标原点,点()2,1A -,若点(),M x y 为平面区域212x y x y +≥⎧⎪≤⎨⎪≤⎩上的一个动点,则OA OM ⋅第15题图的取值范围是A.[]1,0-B.[]1,2-C. []0,1D. []0,2 7.按照如图的程序运行,已知输入x 的值为22log 3+, 则输出y 的值为 A. 7 B. 11C. 12D. 248.如图,1F 、2F 是椭圆1C 与双曲线2C :2212x y -=的公 共焦点,A 、B 分别是1C 与2C 在第二、四象限的公共点. 若四边形12AF BF 为矩形,则1C 的离心率是A.12 B. 22 C. 32 D. 139.若()f x 是定义在R 上的函数,且对任意实数x ,都有(2)f x +≤()2f x +,(3)f x +≥()3f x +,且(1)2f =,(2)3f =,则(2015)f 的值是 A. 202X B.C. 202XD. 2021第Ⅱ卷(非选择题 共105分)二、填空题:本大题共6小题,每小题5分,共30分. 把答案填在答题卡上的相应横线上.10.以直角坐标系的原点为极点,x 轴的正半轴为极轴,并在两种坐标系中取相同的长度单位.已知圆的极坐标方程为4sin ρθ=,直线的参数方程为3x ty t⎧=⎪⎨=⎪⎩(t 为参数),则圆心到直线的距离是 .11.若(cos )cos 2f x x =,则(sin 75)f = . 12.某校共有学生2000名,各年级男、女生人数如下表.已知在全校学生中随机抽取1名,抽到二年级女生的概率是0.19. 现用分层抽样的方法在全校抽取64名学生,则应在三年级抽取的学生人数为 .13.已知向量(,8)a x =,(4,)b y =,(,)c x y =(0,0)x y >>,若//a b ,则c 的最小值 为 .14.已知某几何体的三视图(如下图),其中俯视图和侧视图都是腰长为4的等腰直角三角形,正视图为直角梯形,则此几何体的体积V 的大小为 .15.两千多年前,古希腊毕达哥拉斯学派的数学家曾经在沙滩上研究数学问题,他们在沙滩上画点或用小石子来表示数,按照点或小石子能排列的形状对第8题图第14题图数进行分类,如下图中的实心点个数1,5,12,22,…, 被称为五角形数,其中第1个五角形数记作11a =,第2个五角形数记作25a =,第3个五角形数记作312a =,第4个五角形数记作422a =,……,若按此规律继续下去,(1) 5a =_________;(2) 若117n a =,则n .三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤. 16.(本小题满分12分)在ABC ∆中,已知3c =1b =,30B =(Ⅰ)求角C 和角A ; (Ⅱ)求ABC ∆的面积S .17.(本小题满分12分)甲、乙、丙三人中要选一人去参加唱歌比赛,于是他们制定了一个规则,规则为:(如图)以O 为起点,再从12345,,,,,A A A A A 这5个点中任取两点分别为终点得到两个向量,记这两个向量的数量积为X ,若0X >就让甲去;若0X =就让乙去;若0X <就是丙去. (Ⅰ)写出数量积X 的所有可能取值; (Ⅱ)求甲、乙、丙三人去参加比赛的概率, 并由求出的概率来说明这个规则公平吗?18.(本小题满分12分)如图,四边形ABCD 为正方形,PD ⊥平面ABCD ,//PD QA ,12QA AB PD ==. (Ⅰ)证明:平面PQC ⊥平面DCQ ; (Ⅱ)求二面角D PQ C --的余弦值.19.(本小题满分13分)已知等差数列{}n a 的前n 项和为n S ,公差0d ≠,且3550S S +=,1413,,a a a 成等比数列. (Ⅰ)求数列{}n a 的通项公式; (Ⅱ)设{}nnb a 是首项为1公比为2 的等比数列,求数列{}n b 前n 项和n T .20.(本小题满分13分)已知椭圆C : 22221(0)x y a b a b+=>>的四个顶点恰好是一边长为2,一内角为60的菱形的四个顶点.(Ⅰ)求椭圆C 的方程;(Ⅱ)若直线y kx =交椭圆C 于,A B 两点,在直线:30l x y +-=上存在点P ,使得PAB ∆为等边三角形,求k 的值.21.(本小题满分13分)已知函数c x b ax x f ++=ln )((c b a ,,是常数)在e x =处的切线方程为0)1(=-+-e ey x e ,且(1)0f =. (Ⅰ)求常数c b a ,,的值;(Ⅱ)若函数)()(2x mf x x g +=(R m ∈)在区间)3,1(内不是单调函数,求实数m 的取值范围.参考答案与评分标准一、选择题(//4595=⨯)二、填空题(//3065=⨯)10 11 12.16; 13.8; 14.403; 15.(1)35;(2)9. 三、解答题:16解: (Ⅰ)∵bcB C =sin sin ⇒3sin 30C ==, ∵b c >,∴C B >, ∴60C =,90A = 或120C =,30A =……………………6分 注:只得一组解给5分.(Ⅱ)当90A =时,23sin 21==A bc S ; 当30A =时, 43sin 21==A bc S ,所以S=23或43……………………………12分注:第2问只算一种情况得第2问的一半分3分.17解: (Ⅰ)12(1,0)(1,1)1OA OA =-= 13(1,0)(0,1)0OA OA =-= 14(1,0)(0,1)0OA OA == 15(1,0)(1,1)1OA OA =-=- 23(1,1)(0,1)1OA OA =--= 24(1,1)(0,1)1OA OA =-=-25(1,1)(1,1)2OA OA =--=- 34(0,1)(0,1)1OA OA =-=- 35(0,1)(1,1)1OA OA =--=- 45(0,1)(1,1)1OA OA =-= …………………………3分X 的所有可能取值为2,1,0,1--…………………………5分(Ⅱ)P (甲去)=310 …………………………7分 P (乙去)= 210 …………………………9分P (丙去)= 510…………………………11分甲乙丙去的概率不相同,所以这个规则不公平…………………………12分18证明: (Ⅰ)∵⊥PD 面ABCD , ∴CD PD ⊥,又D DP AD AD CD =⊥ ,, 所以⊥CD 面ADPQ ,∴PQ CD ⊥, 在直角梯形ADPQ 中,设a AQ =,则a DP a PQ a DQ 2,2,2===,所以PQ DQ ⊥,又D DQ CD = ,所以⊥PQ 面DCQ ,又⊂PQ 面PQC , ∴平面PQC ⊥平面DCQ ………………6分 (Ⅱ)由(1)知⊥PQ 面DCQ∴DQC ∠就是二面角C PQ D --的平面角………………9分 在Rt DQC ∆中a CQ a DQ 3,2==,所以=∠DQC cos 36……………12分 19解: (Ⅰ)依题得1121113254355022(3)(12)a d a d a d a a d ⨯⨯⎧+++=⎪⎨⎪+=+⎩………………2分解得132a d =⎧⎨=⎩………………4分 1(1)32(1)21n a a n d n n ∴=+-=+-=+,即21n a n ∴=+……………6分(Ⅱ)1112,2(21)2n n n nn n nb b a n a ---==⋅=+⋅………………7分 0121325272(21)2n n T n -∴=⨯+⨯+⨯+⋅⋅⋅++ ①12312325272(21)2(21)2n n n T n n -=⨯+⨯+⨯+⋅⋅⋅+-++ ②…………9分两式相减得:12(12)32(21)212n n n T n --=--⨯++- 1(21)2nn =+- ………………13分20解:(Ⅰ)因为椭圆C :22221(0)x y a b a b+=>>的四个顶点恰好是一边长为2,一内角为60的菱形的四个顶点, 所以3,1a b ==,椭圆C 的方程为2213x y +=……………… 4分 (Ⅱ)设()11,A x y ,则()11,B x y --(i )当直线AB 的斜率为0时,AB 的垂直平分线就是y 轴,y 轴与直线:30l x y +-=的交点为(0,3)P ,又3,3AO PO ==||||||23AB PA PB ⇒===所以PAB ∆是等边三角形,所以0k =满足条件;………………6 分 (ii)当直线AB 的斜率存在且不为0时,设AB 的方程为y kx =所以2213x y y kx⎧+=⎪⎨⎪=⎩,化简得22(31)3k x += 解得12331x k =+所以222233313131k AO k k k +=+=++ 8分 又AB 的中垂线为1y x k=-,它l 的交点记为00(,)P x y 由301x y y x k +-=⎧⎪⎨=-⎪⎩解得003131k x k y k ⎧=⎪⎪-⎨-⎪=⎪-⎩则2299(1)k PO k +=-……………… 10分 因为PAB ∆为等边三角形, 所以应有3PO AO ==,解得0k =(舍),1k =- 综上可知,0k = 或1k =- ……………… 13分21解: (Ⅰ)由题设知,)(x f 的定义域为),0(+∞,xba x f +=)(', 因为)(x f 在e x =处的切线方程为0)1(=-+-e ey x e , 所以'1()e f e e -=-,且()2f e e =-,即1b e a e e-+=-,且2ae b c e ++=-, 又0)1(=+=c a f ,解得1-=a ,1=b ,1=c ………………5分 (Ⅱ)由(Ⅰ)知)0(1ln )(>++-=x x x x f因此,22()()ln (0)g x x mf x x mx m x m x =+=-++> 所以)0)(2(12)(2'>+-=+-=x m mx x xx m m x x g ………………7分 令2()2(0)d x x mx m x =-+>.(ⅰ)当函数)(x g 在)3,1(内有一个极值时,0)('=x g 在)3,1(内有且仅有一个根,即02)(2=+-=m mx x x d 在)3,1(内有且仅有一个根,又因为(1)20d =>,当0)3(=d ,即9=m 时,02)(2=+-=m mx x x d 在)3,1(内有且仅有一个根32x =,当0)3(≠d 时,应有0)3(<d ,即03322<+-⨯m m ,解得9>m ,所以有9m ≥.(ⅱ)当函数)(x g 在)3,1(内有两个极值时,0)('=x g 在)3,1(内有两个根,即二次函数02)(2=+-=m mx x x d 在)3,1(内有两个不等根,所以22420(1)20(3)2330134m m d m m d m m m ⎧∆=-⨯⨯>⎪=-+>⎪⎪⎨=⨯-+>⎪⎪<<⎪⎩,解得98<<m .综上,实数m 的取值范围是),8(+∞ ………………13分。

2022届湖南省湘潭市重点中学高三最后一模数学试题含解析

2022届湖南省湘潭市重点中学高三最后一模数学试题含解析

2021-2022高考数学模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上,写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知数列{}n a 是以1为首项,2为公差的等差数列,{}n b 是以1为首项,2为公比的等比数列,设n n b c a =,12n n T c c c =+++()*n ∈N ,则当2020n T <时,n 的最大值是( )A .8B .9C .10D .112.由曲线y =x 2与曲线y 2=x 所围成的平面图形的面积为( ) A .1B .13C .23D .433.2019年10月1日,中华人民共和国成立70周年,举国同庆.将2,0,1,9,10这5个数字按照任意次序排成一行,拼成一个6位数,则产生的不同的6位数的个数为 A .96B .84C .120D .3604.已知集合{}1,0,1,2A =-,()(){}120B x x x =+-<,则集合A B 的真子集的个数是( )A .8B .7C .4D .35.已知复数z 满足i z11=-,则z =( ) A .1122i + B .1122i - C .1122-+iD .1122i --6.函数()sin()(0)4f x A x πωω=+>的图象与x 轴交点的横坐标构成一个公差为3π的等差数列,要得到函数()cos g x A x ω=的图象,只需将()f x 的图象( )A .向左平移12π个单位 B .向右平移4π个单位 C .向左平移4π个单位 D .向右平移34π个单位 7.已知n S 是等差数列{}n a 的前n 项和,若312S a S +=,46a =,则5S =( )A .5B .10C .15D .208.以下三个命题:①在匀速传递的产品生产流水线上,质检员每10分钟从中抽取一件产品进行某项指标检测,这样的抽样是分层抽样;②若两个变量的线性相关性越强,则相关系数的绝对值越接近于1;③对分类变量X 与Y 的随机变量2k 的观测值k 来说,k 越小,判断“X 与Y 有关系”的把握越大;其中真命题的个数为( ) A .3B .2C .1D .09.一场考试需要2小时,在这场考试中钟表的时针转过的弧度数为( ) A .3π B .3π-C .23π D .23π-10.已知函数()cos 221f x x x =++,则下列判断错误的是( ) A .()f x 的最小正周期为π B .()f x 的值域为[1,3]-C .()f x 的图象关于直线6x π=对称D .()f x 的图象关于点,04π⎛⎫-⎪⎝⎭对称 11.命题p :存在实数0x ,对任意实数x ,使得()0sin sin x x x +=-恒成立;q :0a ∀>,()ln a xf x a x+=-为奇函数,则下列命题是真命题的是( ) A .p q ∧B .()()p q ⌝∨⌝C .()p q ∧⌝D .()p q ⌝∧12.已知ABC ∆的内角,,A B C 的对边分别是,,,a b c 且444222222a b c a b c a b+++=+,若c 为最大边,则a b c +的取值范围是( )A .1⎛ ⎝⎭B .(C .1⎛ ⎝⎦D .二、填空题:本题共4小题,每小题5分,共20分。

湖南省湘潭市2021届新高考数学考前模拟卷(1)含解析

湖南省湘潭市2021届新高考数学考前模拟卷(1)含解析

湖南省湘潭市2021届新高考数学考前模拟卷(1)一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设{1,0,1,2}U =-,集合2{|1,}A x x x U =<∈,则U C A =( ) A .{0,1,2} B .{1,1,2}-C .{1,0,2}-D .{1,0,1}-【答案】B 【解析】 【分析】先化简集合A,再求U C A . 【详解】由21x < 得: 11x -<< ,所以{}0A = ,因此{}1,1,2U A =-ð ,故答案为B 【点睛】本题主要考查集合的化简和运算,意在考查学生对这些知识的掌握水平和计算推理能力. 2.执行如下的程序框图,则输出的S 是( )A .36B .45C .36-D .45-【答案】A 【解析】 【分析】列出每一步算法循环,可得出输出结果S 的值. 【详解】18i =≤满足,执行第一次循环,()120111S =+-⨯=-,112i =+=; 28i =≤成立,执行第二次循环,()221123S =-+-⨯=,213i =+=;38i =≤成立,执行第三次循环,()323136S =+-⨯=-,314i =+=; 48i =≤成立,执行第四次循环,()4261410S =-+-⨯=,415i =+=; 58i =≤成立,执行第五次循环,()52101515S =+-⨯=-,516i =+=; 68i =≤成立,执行第六次循环,()62151621S =-+-⨯=,617i =+=; 78i =≤成立,执行第七次循环,()72211728S =+-⨯=-,718i =+=; 88i =≤成立,执行第八次循环,()82281836S =-+-⨯=,819i =+=; 98i =≤不成立,跳出循环体,输出S 的值为36,故选:A.【点睛】本题考查算法与程序框图的计算,解题时要根据算法框图计算出算法的每一步,考查分析问题和计算能力,属于中等题.3.新闻出版业不断推进供给侧结构性改革,深入推动优化升级和融合发展,持续提高优质出口产品供给,实现了行业的良性发展.下面是2012年至2016年我国新闻出版业和数字出版业营收增长情况,则下列说法错误的是( )A .2012年至2016年我国新闻出版业和数字出版业营收均逐年增加B .2016年我国数字出版业营收超过2012年我国数字出版业营收的2倍C .2016年我国新闻出版业营收超过2012年我国新闻出版业营收的1.5倍D .2016年我国数字出版营收占新闻出版营收的比例未超过三分之一 【答案】C 【解析】 【分析】通过图表所给数据,逐个选项验证. 【详解】根据图示数据可知选项A 正确;对于选项B :1935.5238715720.9⨯=<,正确;对于选项C :16635.3 1.523595.8⨯>,故C 不正确;对于选项D :123595.878655720.93⨯≈>,正确.选C. 【点睛】本题主要考查柱状图是识别和数据分析,题目较为简单. 4.执行如图所示的程序框图,则输出的结果为( )A .40322017B .20152016C .20162017D .20151008【答案】D 【解析】循环依次为1111,1,2;3,1,3;6,1,4;336s t i s t i s t i =====+===++=L直至1111,2016;12123122015t i =++++=++++++L L 结束循环,输出1111111112(1)1212312201522320152016t =++++=-+-++-++++++L L L120152(1)20161008=-=,选D.点睛:算法与流程图的考查,侧重于对流程图循环结构的考查.先明晰算法及流程图的相关概念,包括选择结构、循环结构、伪代码,其次要重视循环起点条件、循环次数、循环终止条件,更要通过循环规律,明确流程图研究的数学问题,是求和还是求项. 5.在三角形ABC 中,1a =,sin sin sin sin b c a bA AB C++=+-,求sin b A =( ) A 3B .23C .12D .62【答案】A 【解析】 【分析】利用正弦定理边角互化思想结合余弦定理可求得角B 的值,再利用正弦定理可求得sin b A 的值. 【详解】sin sin sin sin b c a b A A B C ++=+-Q,由正弦定理得b c a ba ab c++=+-,整理得222a c b ac +-=, 由余弦定理得2221cos 22a cb B ac +-==,0B Q π<<,3B π∴=.由正弦定理sin sin a b A B =得3sin sin 1sin 3b A a B π==⨯=. 故选:A.本题考查利用正弦定理求值,涉及正弦定理边角互化思想以及余弦定理的应用,考查计算能力,属于中等题.6.已知函数()1ln 11xf x x x+=++-且()()12f a f a ++>,则实数a 的取值范围是( ) A .11,2⎛⎫--⎪⎝⎭B .1,02⎛⎫-⎪⎝⎭C .10,2⎛⎫ ⎪⎝⎭D .1,12⎛⎫ ⎪⎝⎭【答案】B 【解析】 【分析】构造函数()()1F x f x =-,判断出()F x 的单调性和奇偶性,由此求得不等式()()12f a f a ++>的解集. 【详解】构造函数()()11ln1x F x f x x x +=-=+-,由101xx+>-解得11x -<<,所以()F x 的定义域为()1,1-,且()()111lnln ln 111x x x F x x x x F x x x x +--⎛⎫-=-=--=-+=- ⎪-++⎝⎭,所以()F x 为奇函数,而()12lnln 111x F x x x x x +⎛⎫=+=-++ ⎪--⎝⎭,所以()F x 在定义域上为增函数,且()0ln100F =+=.由()()12f a f a ++>得()()1110f a f a -++->,即()()10F a F a ++>,所以1011102111a a a a a ++>⎧⎪-<<⇒-<<⎨⎪-<+<⎩.故选:B 【点睛】本小题主要考查利用函数的单调性和奇偶性解不等式,属于中档题.7.已知点(3,0),(0,3)A B -,若点P在曲线y =PAB △面积的最小值为( ) A .6 B .3C.92D.92+【答案】B 【解析】 【分析】求得直线AB 的方程,画出曲线表示的下半圆,结合图象可得P 位于(1,0)-,结合点到直线的距离公式和两点的距离公式,以及三角形的面积公式,可得所求最小值.解:曲线21y x =--表示以原点O 为圆心,1为半径的下半圆(包括两个端点),如图, 直线AB 的方程为30x y -+=,可得||32AB =,由圆与直线的位置关系知P 在(1,0)-时,P 到直线AB 距离最短,即为22=, 则PAB △的面积的最小值为132232⨯⨯=. 故选:B.【点睛】本题考查三角形面积最值,解题关键是掌握直线与圆的位置关系,确定半圆上的点到直线距离的最小值,这由数形结合思想易得.8.在ABC ∆中,“sin sin A B >”是“tan tan A B >”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】D 【解析】 【分析】通过列举法可求解,如两角分别为2,63ππ时【详解】当2,36A B ππ==时,sin sin A B >,但tan tan A B <,故充分条件推不出; 当2,63A B ππ==时,tan tan A B >,但sin sin A B <,故必要条件推不出;所以“sin sin A B >”是“tan tan A B >”的既不充分也不必要条件. 故选:D. 【点睛】本题考查命题的充分与必要条件判断,三角函数在解三角形中的具体应用,属于基础题9.已知复数21aibi i-=-,其中a ,b R ∈,i 是虚数单位,则a bi +=( )A .12i -+B .1C .5D 【答案】D 【解析】试题分析:由21aibi i-=-,得()21,1,2ai i bi b i a b -=-=+∴=-=,则12,12a bi i a bi i +=-+∴+=-+== D.考点:1、复数的运算;2、复数的模.10.已知平面α,β,直线l 满足l α⊂,则“l β⊥”是“αβ⊥”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .即不充分也不必要条件【答案】A 【解析】 【分析】α,β是相交平面,直线l ⊂平面α,则“l β⊥” ⇒ “αβ⊥”,反之αβ⊥,直线l 满足l α⊂,则l β⊥或l //β或l ⊂平面β,即可判断出结论. 【详解】解:已知直线l ⊂平面α,则“l β⊥” ⇒ “αβ⊥”,反之αβ⊥,直线l 满足l α⊂,则l β⊥或l //β或l ⊂平面β,∴ “l β⊥”是“αβ⊥”的充分不必要条件.故选:A. 【点睛】本题考查了线面和面面垂直的判定与性质定理、简易逻辑的判定方法,考查了推理能力与计算能力.11.已知椭圆()222210x y a b a b+=>>的左、右焦点分别为1F 、2F ,过1F 的直线交椭圆于A ,B 两点,交y 轴于点M ,若1F 、M 是线段AB 的三等分点,则椭圆的离心率为( )A .12B .C D 【答案】D 【解析】 【分析】根据题意,求得,,A M B 的坐标,根据点在椭圆上,点的坐标满足椭圆方程,即可求得结果. 【详解】由已知可知,M 点为1AF 中点,1F 为BM 中点, 故可得120F A M x x x +==,故可得A x c =;代入椭圆方程可得22221c y a b +=,解得2b y a =±,不妨取2A b y a=,故可得A 点的坐标为2,b c a ⎛⎫⎪⎝⎭,则202b M a ⎛⎫ ⎪⎝⎭,,易知B 点坐标22,2b c a ⎛⎫-- ⎪⎝⎭,将B 点坐标代入椭圆方程得225a c =,所以离心率为5故选:D. 【点睛】本题考查椭圆离心率的求解,难点在于根据题意求得,,A B M 点的坐标,属中档题.12.二项式732x x ⎛⎫- ⎪⎝⎭展开式中,1x 项的系数为( ) A .94516-B .18932-C .2164-D .28358【答案】D 【解析】 【分析】写出二项式的通项公式,再分析x 的系数求解即可. 【详解】二项式732x x ⎛⎫- ⎪⎝⎭展开式的通项为777217731(3)22rr rr r r r r x T C C x x ---+⎛⎫⎛⎫⎛⎫=-=- ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭,令721r -=-,得4r =,故1x 项的系数为7444712835(3)28C -⎛⎫-=⎪⎝⎭. 故选:D 【点睛】本题主要考查了二项式定理的运算,属于基础题. 二、填空题:本题共4小题,每小题5分,共20分。

湖南省湘潭市2021届新高考数学第四次押题试卷含解析

湖南省湘潭市2021届新高考数学第四次押题试卷含解析

湖南省湘潭市2021届新高考数学第四次押题试卷一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知a>0,b>0,a+b =1,若 α=11a b a bβ+=+,,则αβ+的最小值是( ) A .3 B .4C .5D .6【答案】C 【解析】 【分析】根据题意,将a 、b 代入αβ+,利用基本不等式求出最小值即可. 【详解】∵a>0,b>0,a+b=1,∴211111152a b a bab a b αβ+=+++=+≥+=+⎛⎫⎪⎝⎭, 当且仅当12a b ==时取“=”号. 答案:C 【点睛】本题考查基本不等式的应用,“1”的应用,利用基本不等式求最值时,一定要正确理解和掌握“一正,二定,三相等”的内涵:一正是首先要判断参数是否为正;二定是其次要看和或积是否为定值(和定积最大,积定和最小);三相等是最后一定要验证等号能否成立,属于基础题.2.设复数z 满足31ii z=+,则z =( )A .1122i + B .1122-+i C .1122i - D .1122i -- 【答案】D 【解析】 【分析】根据复数运算,即可容易求得结果. 【详解】3(1)1111(1)(1)222i i i i z i i i i ----====--++-.故选:D. 【点睛】本题考查复数的四则运算,属基础题.3.根据党中央关于“精准”脱贫的要求,我市某农业经济部门派四位专家对三个县区进行调研,每个县区至少派一位专家,则甲,乙两位专家派遣至同一县区的概率为( ) A .16B .14C .13D .12【答案】A 【解析】 【分析】每个县区至少派一位专家,基本事件总数36n =,甲,乙两位专家派遣至同一县区包含的基本事件个数6m =,由此能求出甲,乙两位专家派遣至同一县区的概率.【详解】派四位专家对三个县区进行调研,每个县区至少派一位专家基本事件总数:234336n C A ==甲,乙两位专家派遣至同一县区包含的基本事件个数:2122326m C C A ==∴甲,乙两位专家派遣至同一县区的概率为:61366m p n === 本题正确选项:A 【点睛】本题考查概率的求法,考查古典概型等基础知识,考查运算求解能力,是基础题. 4.已知圆224210x yx y +-++=关于双曲线()2222:10,0x y C a b a b-=>>的一条渐近线对称,则双曲线C 的离心率为( )A B .5C D .54【答案】C 【解析】 【分析】将圆224210x y x y +-++=,化为标准方程为,求得圆心为()21-,.根据圆224210x y x y +-++=关于双曲线()2222:10,0x y C a b a b-=>>的一条渐近线对称,则圆心在渐近线上,12b a =.再根据c e a ==.【详解】已知圆224210x y x y +-++=,所以其标准方程为:()()22214x y -++=,所以圆心为()21-,. 因为双曲线()2222:10,0x y C a b a b-=>>,所以其渐近线方程为by x a=±, 又因为圆224210x yx y +-++=关于双曲线()2222:10,0x y C a b a b-=>>的一条渐近线对称, 则圆心在渐近线上, 所以12b a =. 所以2512c b e a a ⎛⎫==+= ⎪⎝⎭. 故选:C 【点睛】本题主要考查圆的方程及对称性,还有双曲线的几何性质 ,还考查了运算求解的能力,属于中档题. 5.在ABC ∆中,H 为BC 上异于B ,C 的任一点,M 为AH 的中点,若AM AB AC λμ=+u u u u v u u u v u u u v,则λμ+等于( )A .12B .23C .16D .13【答案】A 【解析】 【分析】根据题意,用,AB AC u u u r u u u r 表示出,AH BH u u u r u u u r 与AM u u u u r,求出,λμ的值即可.【详解】解:根据题意,设BH xBC =u u u r u u u r,则11111()()()22222AM AH AB BH AB xBC AB x AC AB ==+=+=+-u u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r 11(1)22x AB xAC =-+u u u r u u u r ,又AM AB AC λμ=+u u u u r u u u r u u u r,11(1),22x x λμ∴=-=,111(1)222x x λμ∴+=-+=,故选:A. 【点睛】本题主要考查了平面向量基本定理的应用,关键是要找到一组合适的基底表示向量,是基础题. 6.若某几何体的三视图如图所示,则该几何体的表面积为( )A .240B .264C .274D .282【答案】B 【解析】 【分析】将三视图还原成几何体,然后分别求出各个面的面积,得到答案. 【详解】由三视图可得,该几何体的直观图如图所示, 延长BE 交DF 于A 点,其中16AB AD DD ===,3AE =,4AF =, 所以表面积()3436536246302642S ⨯=⨯+⨯+⨯+⨯+=. 故选B 项.【点睛】本题考查三视图还原几何体,求组合体的表面积,属于中档题7.甲、乙、丙、丁四位同学利用暑假游玩某风景名胜大峡谷,四人各自去景区的百里绝壁、千丈瀑布、原始森林、远古村寨四大景点中的一个,每个景点去一人.已知:①甲不在远古村寨,也不在百里绝壁;②乙不在原始森林,也不在远古村寨;③“丙在远古村寨”是“甲在原始森林”的充分条件;④丁不在百里绝壁,也不在远古村寨.若以上语句都正确,则游玩千丈瀑布景点的同学是( ) A .甲B .乙C .丙D .丁【答案】D 【解析】 【分析】根据演绎推理进行判断. 【详解】由①②④可知甲乙丁都不在远古村寨,必有丙同学去了远古村寨,由③可知必有甲去了原始森林,由④可知丁去了千丈瀑布,因此游玩千丈瀑布景点的同学是丁. 故选:D . 【点睛】本题考查演绎推理,掌握演绎推理的定义是解题基础.8.如图所示,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的体积是( )A .83B .163C .43D .8【答案】A 【解析】 【分析】由三视图还原出原几何体,得出几何体的结构特征,然后计算体积. 【详解】由三视图知原几何体是一个四棱锥,四棱锥底面是边长为2的正方形,高为2, 直观图如图所示,1822233V =⨯⨯⨯=. 故选:A .【点睛】本题考查三视图,考查棱锥的体积公式,掌握基本几何体的三视图是解题关键.9.已知平行于x 轴的直线分别交曲线2ln 21,21(0)y x y x y =+=-≥于,A B 两点,则4AB 的最小值为( )A .5ln 2+B .5ln 2-C .3ln 2+D .3ln 2-【答案】A 【解析】 【分析】设直线为1122(0),(,)(,)y a a A x y B x y =>,用a 表示出1x ,2x ,求出4||AB ,令2()2ln f a a a =+-,利用导数求出单调区间和极小值、最小值,即可求出4||AB 的最小值. 【详解】解:设直线为1122(0),(,)(,)y a a A x y B x y =>,则1ln 21a x =+,11(ln 1)2x a ∴=-, 而2x 满足2221a x =-,2212a x +∴= 那么()()22211144()4ln 122ln 22a AB x x a a a ⎡⎤+=-=--=+-⎢⎥⎣⎦设2()2ln f a a a =+-,则221()a f a a -'=,函数()f a 在20,2⎛⎫ ⎪ ⎪⎝⎭上单调递减,在2,2⎛⎫+∞ ⎪ ⎪⎝⎭上单调递增,所以min min 242()25ln 22AB f a f ⎛⎫===+ ⎪ ⎪⎝⎭故选:A . 【点睛】本题考查导数知识的运用:求单调区间和极值、最值,考查化简整理的运算能力,正确求导确定函数的最小值是关键,属于中档题.10.如图,圆O 是边长为23的等边三角形ABC 的内切圆,其与BC 边相切于点D ,点M 为圆上任意一点,BM xBA yBD =+u u u u v u u u v u u u v(,)x y ∈R ,则2x y +的最大值为( )A 2B 3C .2D .2【答案】C 【解析】【分析】建立坐标系,写出相应的点坐标,得到2x y +的表达式,进而得到最大值. 【详解】以D 点为原点,BC 所在直线为x 轴,AD 所在直线为y 轴,建立坐标系,设内切圆的半径为1,以(0,1)为圆心,1为半径的圆; 根据三角形面积公式得到011sin 6022l r S AB AC ⨯⨯==⨯⨯⨯周长, 可得到内切圆的半径为1; 可得到点的坐标为:()()()()()3,0,3,0,0,3,0,0,cos ,1sin B CA D M θθ-+ ()cos 3,1sin ,BM θθ=+u u u u v )()3,3,3,0BD BA ==u u u ru u u v故得到 ())cos 3,1sin 33,3x BM x θθ=++=u u u u v故得到cos 333,sin 31x x θθ=+=-1sin 3sin 2333x y θθ+⎧=⎪⎪⇒⎨⎪=-+⎪⎩,()sin 4242sin 2.33333x y θθϕ+=+=++≤ 故最大值为:2. 故答案为C. 【点睛】这个题目考查了向量标化的应用,以及参数方程的应用,以向量为载体求相关变量的取值范围,是向量与函数、不等式、三角函数等相结合的一类综合问题.通过向量的运算,将问题转化为解不等式或求函数值域,是解决这类问题的一般方法. 11.函数2|sin |2()61x f x x=-+ )A .B .C .D .【答案】A 【解析】 【分析】用偶函数的图象关于y 轴对称排除C ,用()0f π<排除B ,用()42f π>排除D .故只能选A .【详解】 因为22|sin()||sin |22()66()1()1x x f x f x x x--===+-+ ,所以函数()f x 为偶函数,图象关于y 轴对称,故可以排除C ;因为2|sin |242()61111f πππππ==++11101122<-=-=+,故排除B , 因为2|sin |22()2()621()2f ππππ==+426164ππ+42616444>-+46662425=>-=-=由图象知,排除D . 故选:A 【点睛】本题考查了根据函数的性质,辨析函数的图像,排除法,属于中档题.12. “十二平均律” 是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于122若第一个单音的频率为f ,则第八个单音的频率为 A 32 B 322 C .1252 D .1272【答案】D【解析】分析:根据等比数列的定义可知每一个单音的频率成等比数列,利用等比数列的相关性质可解. 详解:因为每一个单音与前一个单音频率比为122,所以1212(2,)n na a n n N-+=≥∈,又1a f=,则127771281(2)2a a q f f===故选D.点睛:此题考查等比数列的实际应用,解决本题的关键是能够判断单音成等比数列. 等比数列的判断方法主要有如下两种:(1)定义法,若1nnaqa+=(*0,q n N≠∈)或1nnaqa-=(*0,2,q n n N≠≥∈),数列{}na是等比数列;(2)等比中项公式法,若数列{}n a中,0na≠且212n n na a a--=⋅(*3,n n N≥∈),则数列{}na是等比数列.二、填空题:本题共4小题,每小题5分,共20分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

湖南省湘潭市2021届新高考数学最后模拟卷一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.一个封闭的棱长为2的正方体容器,当水平放置时,如图,水面的高度正好为棱长的一半.若将该正方体绕下底面(底面与水平面平行)的某条棱任意旋转,则容器里水面的最大高度为( )A .1B .2C 3D .2【答案】B【解析】【分析】 根据已知可知水面的最大高度为正方体面对角线长的一半,由此得到结论.【详解】 正方体的面对角线长为2,又水的体积是正方体体积的一半,且正方体绕下底面(底面与水平面平行)的某条棱任意旋转,所以容器里水面的最大高度为面对角线长的一半, 2,故选B.【点睛】本题考查了正方体的几何特征,考查了空间想象能力,属于基础题.2.已知复数z 满足:((1)11)i z i +-=-,则z 的共轭复数为( )A .12i -B .1i +C .1i -+D .12i + 【答案】B【解析】【分析】转化()(1)11i z i +-=-,为111i z i--=+,利用复数的除法化简,即得解 【详解】复数z 满足:()(1)11i z i +-=- 所以()211112i i z i i ---===-+1z i ⇒=-1z i ∴=+故选:B【点睛】本题考查了复数的除法和复数的基本概念,考查了学生概念理解,数学运算的能力,属于基础题. 3.已知3log 5a =,0.50.4b =,2log 5c =,则a ,b ,c 的大小关系为( ) A .c b a >>B .b c a >>C .a b c >>D .c a b >>【答案】D【解析】【分析】与中间值1比较,,a c 可用换底公式化为同底数对数,再比较大小.【详解】 0.50.41<,3log 51>,又550log 2log 3<<,∴5511log 2log 3>,即23log 5log 5>, ∴c a b >>.故选:D.【点睛】本题考查幂和对数的大小比较,解题时能化为同底的化为同底数幂比较,或化为同底数对数比较,若是不同类型的数,可借助中间值如0,1等比较.4.如图所示,已知双曲线2222:1(0,0)x y C a b a b-=>>的右焦点为F ,双曲线C 的右支上一点A ,它关于原点O 的对称点为B ,满足120AFB ∠=︒,且||2||BF AF =,则双曲线C 的离心率是( ).A .33B .72C 3D 7【答案】C【解析】【分析】易得||2AF a =,||4BF a =,又1()2FO FB FA =+u u u r u u u r u u u r ,平方计算即可得到答案. 【详解】设双曲线C 的左焦点为E ,易得AEBF 为平行四边形,所以||||||||2BF AF BF BE a -=-=,又||2||BF AF =,故||2AF a =,||4BF a =,1()2FO FB FA =+u u u r u u u r u u u r , 所以2221(41624)4c a a a a =+-⨯,即223c a =,故离心率为e =故选:C.【点睛】本题考查求双曲线离心率的问题,关键是建立,,a b c 的方程或不等关系,是一道中档题.5.已知函数()ln(1)f x x ax =+-,若曲线()y f x =在点(0,(0))f 处的切线方程为2y x =,则实数a 的取值为( )A .-2B .-1C .1D .2 【答案】B【解析】【分析】求出函数的导数,利用切线方程通过f′(0),求解即可;【详解】f (x )的定义域为(﹣1,+∞),因为f′(x )11x =-+a ,曲线y =f (x )在点(0,f (0))处的切线方程为y =2x , 可得1﹣a =2,解得a =﹣1,故选:B .【点睛】本题考查函数的导数的几何意义,切线方程的求法,考查计算能力.6.复数12i i--的共轭复数对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限 【答案】A【解析】【分析】【详解】 试题分析:由题意可得:131255i i i -=--. 共轭复数为3155i +,故选A. 考点:1.复数的除法运算;2.以及复平面上的点与复数的关系7.已知函数()()3sin f x x ωϕ=+,()0,0πωϕ><<,若03f π⎛⎫-= ⎪⎝⎭,对任意x ∈R 恒有()3f x f π⎛⎫≤ ⎪⎝⎭,在区间ππ,155⎛⎫ ⎪⎝⎭上有且只有一个1x 使()13f x =,则ω的最大值为( ) A .1234 B .1114 C .1054 D .1174【答案】C【解析】【分析】根据()f x 的零点和最值点列方程组,求得,ωϕ的表达式(用k 表示),根据()1f x 在ππ,155⎛⎫ ⎪⎝⎭上有且只有一个最大值,求得ω的取值范围,求得对应k 的取值范围,由k 为整数对k 的取值进行验证,由此求得ω的最大值.【详解】 由题意知1122ππ,3,πππ+,32k k k Z k ωϕωϕ⎧-+=⎪⎪∈⎨⎪+=⎪⎩,则()()321,421π,4k k ωϕ⎧+=⎪⎪⎨='+⎪⎪⎩其中12k k k =-,21k k k '=+. 又()1f x 在ππ,155⎛⎫ ⎪⎝⎭上有且只有一个最大值,所以ππ2π251515T -=≤,得030ω<≤,即()321304k +≤,所以19.5k ≤,又k Z ∈,因此19k ≤.①当19k =时,1174ω=,此时取3π4ϕ=可使12ππ,3πππ+,32k k ωϕωϕ⎧-+=⎪⎪⎨⎪+=⎪⎩成立,当ππ,155x ⎛⎫∈ ⎪⎝⎭时,()1173π 2.7π,6.6π44x +∈,所以当11173π 4.5π44x +=或6.5π时,()13f x =都成立,舍去; ②当18k =时,1114ω=,此时取π4ϕ=可使12ππ,3πππ+,32k k ωϕωϕ⎧-+=⎪⎪⎨⎪+=⎪⎩成立,当ππ,155x ⎛⎫∈ ⎪⎝⎭时,()111π 2.1π,5.8π44x +∈,所以当1111π 2.5π44x +=或4.5π时,()13f x =都成立,舍去; ③当17k =时,1054ω=,此时取3π4ϕ=可使12ππ,3πππ+,32k k ωϕωϕ⎧-+=⎪⎪⎨⎪+=⎪⎩成立,当ππ,155x ⎛⎫∈ ⎪⎝⎭时,()1053π 2.5π,6π44x +∈,所以当11053π 4.5π44x +=时,()13f x =成立; 综上所得ω的最大值为1054. 故选:C【点睛】本小题主要考查三角函数的零点和最值,考查三角函数的性质,考查化归与转化的数学思想方法,考查分类讨论的数学思想方法,属于中档题.8.要得到函数2sin 26y x π⎛⎫=+ ⎪⎝⎭的图象,只需将函数2cos2y x =的图象 A .向左平移3π个单位长度 B .向右平移3π个单位长度 C .向左平移6π个单位长度 D .向右平移6π个单位长度 【答案】D【解析】【分析】 先将2sin 26y x π⎛⎫=+ ⎪⎝⎭化为2cos 26π⎡⎤⎛⎫=- ⎪⎢⎥⎝⎭⎣⎦y x ,根据函数图像的平移原则,即可得出结果. 【详解】 因为2sin 22cos 22cos 2636y x x x πππ⎡⎤⎛⎫⎛⎫⎛⎫=+=-=- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦, 所以只需将2cos2y x =的图象向右平移6π个单位. 【点睛】本题主要考查三角函数的平移,熟记函数平移原则即可,属于基础题型.9.函数22cos x xy x x--=-的图像大致为( ).A .B .C .D .【答案】A【解析】【分析】本题采用排除法:由5522f f ππ⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭排除选项D ; 根据特殊值502f π⎛⎫> ⎪⎝⎭排除选项C; 由0x >,且x 无限接近于0时, ()0f x <排除选项B ;【详解】对于选项D:由题意可得, 令函数()f x = 22cos x x y x x --=-, 则5522522522f ππππ--⎛⎫-= ⎪⎝⎭,5522522522f ππππ--⎛⎫= ⎪⎝⎭; 即5522f f ππ⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭.故选项D 排除; 对于选项C :因为55225220522f ππππ--⎛⎫=> ⎪⎝⎭,故选项C 排除;对于选项B:当0x >,且x 无限接近于0时,cos x x -接近于10-<,220x x -->,此时()0f x <.故选项B 排除;故选项:A【点睛】本题考查函数解析式较复杂的图象的判断;利用函数奇偶性、特殊值符号的正负等有关性质进行逐一排除是解题的关键;属于中档题.10.设i 为虚数单位,则复数21z i =-在复平面内对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限 【答案】A【解析】【分析】利用复数的除法运算化简z ,求得z 对应的坐标,由此判断对应点所在象限.【详解】 ()()()2121111i z i i i i +===+--+Q ,∴对应的点的坐标为()1,1,位于第一象限. 故选:A.【点睛】本小题主要考查复数除法运算,考查复数对应点所在象限,属于基础题.11.已知实数x ,y 满足约束条件2211x y y x y kx +≥⎧⎪-≤⎨⎪+≥⎩,若2z x y =-的最大值为2,则实数k 的值为( )A .1B .53C .2D .73 【答案】B【解析】【分析】画出约束条件的可行域,利用目标函数的几何意义,求出最优解,转化求解k 即可.【详解】 可行域如图中阴影部分所示,22,111B k k ⎛⎫+ ⎪--⎝⎭,421,2121k C k k -⎛⎫ ⎪++⎝⎭,要使得z 能取到最大值,则1k >,当12k <≤时,x 在点B 处取得最大值,即2221211k k ⎛⎫⎛⎫-+= ⎪ ⎪--⎝⎭⎝⎭,得53k =;当2k >时,z 在点C 处取得最大值,即421222121k k k -⎛⎫⎛⎫-= ⎪ ⎪++⎝⎭⎝⎭,得76k =(舍去).故选:B.【点睛】本题考查由目标函数最值求解参数值,数形结合思想,分类讨论是解题的关键,属于中档题.12.《九章算术》勾股章有一“引葭赴岸”问题“今有饼池径丈,葭生其中,出水两尺,引葭赴岸,适与岸齐,问水深,葭各几何?”,其意思是:有一个直径为一丈的圆柱形水池,池中心生有一颗类似芦苇的植物,露出水面两尺,若把它引向岸边,正好与岸边齐,问水有多深,该植物有多高?其中一丈等于十尺,如图若从该葭上随机取一点,则该点取自水下的概率为( )A .1213B .1314C .2129D .1415【答案】C【解析】【分析】由题意知:2BC =,'5B C =,设AC x =,则2AB AB x '==+,在Rt ACB 'V 中,列勾股方程可解得x ,然后由P 2x x =+得出答案. 【详解】 解:由题意知:2BC =,'5B C =,设AC x =,则2AB AB x '==+在Rt ACB 'V 中,列勾股方程得:()22252x x +=+,解得214x = 所以从该葭上随机取一点,则该点取自水下的概率为21214P 2122924x x ===++ 故选C.【点睛】本题考查了几何概型中的长度型,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。

相关文档
最新文档