分式方程的特殊解法
八年级数学分式方程

工程优化问题
通过设定工程目标函数和 约束条件,建立分式方程 求解最优方案或最大效益。
行程问题
相遇问题
根据两物体相对运动的速 度、时间和距离,建立分 式方程求解相遇时间或相 对速度。
追及问题
根据两物体同向运动的速 度、时间和距离,建立分 式方程求解追及时间或速 度差。
航行问题
根据船在静水和流水中的 速度、时间和距离,建立 分式方程求解船速、水速 或航行时间。
预测未来情况
通过建立分式方程模型并求解,可以预测未来某些情况的 发生或变化趋势,为决策提供依据。
实际问题中分式方程解的意义
1 2
解释现象
通过求解分式方程得到的解可以解释实际问题的 现象或结果,如相遇时间、工作效率等。
指导实践
根据分式方程的解可以指导实践操作或决策制定, 如合理安排工作时间、选择最佳方案等。
利用高次方程的判别式,判断方程的根的情况,从而求解方程。
多元分式方程组解法
消元法
通过消去一个或多个未知数,将多元分式方程组转化为一元或低 元方程求解。
代入法
将一个方程的解代入另一个方程,逐步求解出所有未知数的值。
整体法
将方程组中的某些项看作一个整体,通过整体代入或整体消元的 方法求解方程组。
分式方程与函数关系探讨
分式函数定义域与值域
分析分式函数的定义域和值域,理解函数的基本性质。
分式函数图像与性质
通过绘制分式函数的图像,探讨函数的单调性、奇偶性等性质。
分式方程与函数零点
利用分式方程的解,确定分式函数的零点,进一步分析函数的性质。
分式方程在数学竞赛中应用
复杂分式方程求解
在数学竞赛中,常常遇到复杂的分式方程,需要灵活运用各种方法求解。
分式讲义

分式讲义【思想方法】 1.转化思想转化是一种重要的数学思想方法,应用非常广泛,运用转化思想能把复杂的问题转化为简单问题,把生疏的问题转化为熟悉问题,本章很多地方都体现了转化思想,如,分式除法、分式乘法;分式加减运算的基本思想:异分母的分式加减法、同分母的分式加减法;解分式方程的基本思想:把分式方程转化为整式方程,从而得到分式方程的解等. 2.建模思想本章常用的数学方法有:分解因式、通分、约分、去分母等,在运用数学知识解决实际问题时,首先要构建一个简单的数学模型,通过数学模型去解决实际问题,经历“实际问题———分式方程模型———求解———解释解的合理性”的数学化过程,体会分式方程的模型思想,对培养通过数学建模思想解决实际问题具有重要意义. 3.类比法本章突出了类比的方法,从分数的基本性质、约分、通分及分数的运算法则类比引出了分式的基本性质、约分、通分及分式的运算法则,从分数的一些运算技巧类比引出了分式的一些运算技巧,无一不体现了类比思想的重要性,分式方程解法及应用也可以类比一元一次方程.分式的运算【知识要点】1.分式的概念以及基本性质;2.与分式运算有关的运算法则3.分式的化简求值(通分与约分)4.幂的运算法则【主要公式】1.同分母加减法则:()0b c b ca a a a±±=≠2.异分母加减法则:()0,0b d bc da bc daa c a c ac ac ac±±=±=≠≠;3.分式的乘法与除法:b d bd a c ac ∙=,b c b d bda d a c ac÷=∙=4.同底数幂的加减运算法则:实际是合并同类项5.同底数幂的乘法与除法;am●a n =a m+n ; a m ÷ a n =a m -n6.积的乘方与幂的乘方:(ab)m= a mb n, (a m)n= amn7.负指数幂: a-p=1pa a 0=18.乘法公式与因式分解:平方差与完全平方式(a+b)(a-b)= a2- b 2 ;(a ±b)2= a 2±2ab+b 2一、分式定义题型一:考查分式的定义【例1】下列代数式中:y x yx y x y x ba b a y x x -++-+--1,,,21,22π,是分式的有:题型二:考查分式有意义的条件【例2】当x 有何值时,下列分式有意义(1)44+-x x (2)232+x x (3)122-x (4)3||6--x x(5)xx 11-题型三:考查分式的值为0的条件【例3】当x 取何值时,下列分式的值为0.(1)31+-x x(2)42||2--x x (3)653222----x x x x题型四:考查分式的值为正、负的条件【例4】(1)当x 为何值时,分式x -84为正; (2)当x 为何值时,分式2)1(35-+-x x 为负;(3)当x 为何值时,分式32+-x x 为非负数.二、分式的基本性质1.分式的基本性质:MB MA MB M A B A ÷÷=⨯⨯= 2.分式的变号法则:bab a b a b a =--=+--=-- 题型一:化分数系数、小数系数为整数系数【例1】不改变分式的值,把分子、分母的系数化为整数.(1)y x yx 41313221+- (2)ba ba +-04.003.02.0题型二:分数的系数变号【例2】不改变分式的值,把下列分式的分子、分母的首项的符号变为正号.(1)y x yx --+- (2)b a a --- (3)b a ---题型三:化简求值题【例3】已知:511=+y x ,求yxy x yxy x +++-2232的值.提示:整体代入,①xy y x 3=+,②转化出yx 11+.【例4】已知:21=-x x ,求221xx +的值.【例5】若0)32(|1|2=-++-x y x ,求yx 241-的值.练习:1.不改变分式的值,把下列分式的分子、分母的系数化为整数.(1)yx yx 5.008.02.003.0+-(2)b a ba 10141534.0-+2.已知:31=+x x ,求1242++x x x 的值.3.已知:311=-b a ,求aab b bab a ---+232的值.4.若0106222=+-++b b a a ,求ba ba 532+-的值.5.如果21<<x ,试化简x x --2|2|xx x x |||1|1+---.对应训练1.不改变分式的值,使分式115101139x yx y -+的各项系数化为整数,分子、分母应乘以(• ) A .10 B .9 C .45 D .90 2.下列等式:①()a b a b c c ---=-;②x y x y x x -+-=-;③a b a bc c-++=-; ④m n m nm m ---=-中,成立的是( ) A .①② B .③④ C .①③ D .②④ 3.不改变分式2323523x xx x -+-+-的值,使分子、分母最高次项的系数为正数,正确的是(• )A .2332523x x x x +++-B .2332523x x x x -++-C .2332523x x x x +--+D .2332523x x x x ---+4.分式434y x a +,2411x x --,22x xy y x y -++,2222a abab b +-中是最简分式的有( )A .1个B .2个C .3个D .4个5.约分:(1)22699x x x ++-; (2)2232m m m m-+-.6.通分:(1)26x ab ,29y a bc ; (2)2121a a a -++,261a -.7.已知13x x +=,求2421x x x ++的值.8.下列各式πa ,11x +,15x y +,22a b a b--,23x -,0•中,是分式的有___ ________;是整式的有_____ ______;是有理式的有___ ______. 9.下列分式,当x 取何值时有意义.(1)2132x x ++; (2)2323x x +-.3.下列各式中,无论x 取何值,分式都有意义的是( ) A .121x + B .21x x + C .231x x + D .2221x x +4.当x ______时,分式2134x x +-无意义.5.当x _______时,分式2212x x x -+-的值为零.6.当x ______时,分式435x x +-的值为1;当x _______时,分式435x x +-的值为1-.7.分式24xx -,当x _______时,分式有意义;当x _______时,分式的值为零. 8.有理式①2x ,②5x y +,③12a -,④1xπ-中,是分式的有( ) A .①② B .③④ C .①③ D .①②③④ 9.分式31x ax +-中,当x a =-时,下列结论正确的是( ) A .分式的值为零; B .分式无意义 C .若13a -≠时,分式的值为零; D .若13a ≠时,分式的值为零10.当x _______时,分式15x -+的值为正;当x ______时,分式241x -+的值为负. 11.下列各式中,可能取值为零的是( ) A .2211m m +- B .211m m -+ C .211m m +- D .211m m ++12.使分式||1xx -无意义,x 的取值是( )A .0B .1C .1-D .1± 13.已知123x y x-=-,x 取哪些值时:(1)y 的值是正数;(2)y 的值是负数;(3)y 的值是零;(4)分式无意义.三、分式的运算1.确定最简公分母的方法:①最简公分母的系数,取各分母系数的最小公倍数; ②最简公分母的字母因式取各分母所有字母的最高次幂.2.确定最大公因式的方法:①最大公因式的系数取分子、分母系数的最大公约数;②取分子、分母相同的字母因式的最低次幂. 题型一:通分【例1】将下列各式分别通分. (1)cb ac a b ab c 225,3,2--; (2)a b b b a a 22,--; (3)22,21,1222--+--x x xx xx x ; (4)aa -+21,2题型二:约分【例2】约分: (1)322016xy y x -;(3)n m m n --22;(3)6222---+x x x x .题型三:分式的混合运算【例3】计算: (1)42232)()()(abc ab c c b a ÷-⋅-;(2)22233)()()3(xy x y y x y x a +-÷-⋅+;(3)mn mn m n m n n m ---+-+22;(4)112---a a a ;(5)874321814121111x x x x x x x x +-+-+-+--;(6))5)(3(1)3)(1(1)1)(1(1+++++++-x x x x x x ;(7))12()21444(222+-⋅--+--x x x x x x x题型四:化简求值题【例4】先化简后求值(1)已知:1-=x ,求分子)]121()144[(48122x x x x -÷-+--的值;输入n 计算n (n+1)n>50 Yes No 输出结果m (2)已知:432zy x ==,求22232zy x xz yz xy ++-+的值;(3)已知:0132=+-a a ,试求)1)(1(22a a aa --的值.题型五:求待定字母的值【例5】若111312-++=--x Nx M x x ,试求N M ,的值.四、分式其他类型试题:例1:观察下面一列有规律的数:32,83,154,245,356,487,……. 根据其规律可知第n个数应是___(n 为正整数)例2: 观察下面一列分式:2345124816,,,,,...,x x x x x---根据你的发现,它的第8项是 ,第n 项是 。
分式方程的带无理数分母解法

分式方程的带无理数分母解法分式方程是代数中常见的一类方程,其中出现的未知数通常作为分式的分子或分母,而在解分式方程时,有时候会出现无理数在分母中的情况,这就需要采用特殊的解法来求解。
接下来,我们将详细介绍如何解决带有无理数分母的分式方程。
首先,我们来看一个简单的例子:求解方程$x + \frac{5}{\sqrt{3}}= 2$。
这里的分式方程中,分母$\sqrt{3}$是一个无理数。
要解决这个方程,首先我们需要将带有无理数分母的分式进行合理化,即通过有理化分母的方法将分母中的无理数转化为有理数。
Step 1: 有理化分母要有理化分母,我们需要将无理数分母的平方根引入到分母中,即用$\sqrt{3}$乘以$\sqrt{3}$,这样就可以将无理数转化为有理数。
将方程$x + \frac{5}{\sqrt{3}} = 2$乘以$\sqrt{3}$得到:$x\sqrt{3} + 5 = 2\sqrt{3}$Step 2: 化简方程将方程化简得到$x\sqrt{3} = 2\sqrt{3} - 5$。
Step 3: 求解方程通过进一步求解,得到$x = \frac{2\sqrt{3} - 5}{\sqrt{3}}$。
Step 4: 化简答案最后,我们可以进一步化简分式,得到$x = 2 - \frac{5}{\sqrt{3}}$,即$x = 2 - \frac{5\sqrt{3}}{3}$。
通过以上步骤,我们成功地解决了带有无理数分母的分式方程。
在解这类方程时,关键在于有理化分母,将无理数转化为有理数,进而得到最终的答案。
总结一下,解决带有无理数分母的分式方程需要将无理数分母有理化,然后逐步化简方程并求解,最终得到一个简洁的结果。
希望这个例子可以帮助大家更好地理解和解决分式方程中的无理数分母问题。
分式方程解题格式

分式方程解题格式分式方程解题格式是一种特殊的数学解题方法,用于求解具有多个分式的方程。
它通过将各个分式进行乘、除和加减运算来寻找方程的解。
在解决分式方程时,需要清楚地看清分式,理解分式的意思,然后正确地使用公式进行计算,以得出最终的解。
分式方程解题格式一般包括以下四个步骤:1)首先,需要确定方程两边的分子和分母,并将其表示为相应的分式形式,例如,将 x^2-3x+2 根据加减法可以表示为 (x-2)(x-1) 。
2)然后,需要把方程中的分式进行拉分或重组,以得到不同的形式,例如,将 (x-2)(x-1) 可以拆分为 x-2 + x-1 。
3)接下来,需要运用乘除法进行比较,以使分式两边的分母相等,例如,将 x-2 + x-1 可以改写为 (x-2)/1 + (x-1)/1 ,这样分子分母都相等,就可以进行比较了。
4)最后,需要运用加减法,将分子进行比较,以得到最终的解。
例如,将 (x-2)/1 + (x-1)/1 改写为 (x-2-x+1)/1 ,即可得到 x = 3 为最终解。
以上就是分式方程解题格式的具体步骤,在解决分式方程时,需要清楚地看清分式,然后正确地使用公式进行计算,以得出最终的解。
在实际操作时,需要根据问题的具体情况而定,因为每个分式方程都有自己独特的解法,所以有必要仔细分析问题,仔细思考,掌握好步骤,才能正确地解决问题。
在实际应用中,分式方程解题格式也被应用于许多其他领域,例如,在物理学中,可以使用分式方程解题格式来求解动量定理;在化学中,可以使用分式方程解题格式来求解化学方程式;在生物学中,可以使用分式方程解题格式来求解生物系统的变化规律等等。
总之,分式方程解题格式是一种有效的解题方法,它可以帮助我们解决许多问题,是一种有效的数学分析工具。
换元法解分式方程

三角函数
在处理三角函数相关的数学问题 时,换元法可以帮助我们将三角 函数转化为更易于处理的代数问
题。
换元法的历史与发展
历史
换元法的思想可以追溯到古代中国的数学家们。在《九章算术》等古代数学著作中,就已经出现了换 元法的思想。随着数学的发展,换元法逐渐成为一种重要的数学方法,被广泛应用于各种数学问题中 。
02
确定新变量与原方程中未知数的 关系。
替换原方程中的未知数
将原方程中的未知数用新变量表示出 来。
将所有含有未知数的项都替换为新变 量。
化简方程
对替换后的方程进行化简,以便更容易地解出新变量的值。 可以使用代数方法,如合并同类项、提取公因式等。
解出新变量的值
解出新变量的值,通常需要对方程进行因式分解或使用求根 公式。
实例三:二元一次方程组的换元法解法
总结词
通过换元法将二元一次方程组转化为更简单的形式,便于求解。
详细描述
对于形如 $begin{cases} x + y = a x - y = b end{cases}$ 的二元一次方程组,可以通 过换元法将其转化为 $begin{cases} t_1 + t_2 = a t_1 - t_2 = b end{cases}$ 的形式, 其中 $t_1 = x, t_2 = y$。这样可以将二元一次方程组转化为更简单的形式,便于求解。
考虑特殊情况
对于某些分式方程,需要考虑特殊情况或边 界条件,以确保解的完整性和准确性。例如, 当分母接近零或变量取极大/极小值时,可 能需要额外验证解的合理性。
பைடு நூலகம்5
换元法与其他解法的比 较
与因式分解法的比较
因式分解法适用于解整式方程,通过 将方程的左边和右边都化为0,然后 对左边或右边的多项式进行因式分解, 从而求解方程。而换元法主要用于解 分式方程,通过引入新的变量来简化 原方程,适用于无法直接因式分解或 化简的复杂分式方程。
第6讲分式方程(讲义)解析版

第6讲分式方程模块一:分式方程及其解法知识精讲1、分式方程的概念分母中含有未知数的方程叫做分式方程.2、解分式方程的方法通过去分母把分式方程转化为整式方程,再求解.3、增根的概念分式方程在化整式方程求解过程中,整式方程的解如果使得分式方程中的分母为0,那么这个解就是方程的增根.4、解分式方程的一般步骤(1)方程两边都乘以最简公分母,去分母,化成整式方程;(2)解这个整式方程,求出整式方程的根;(3)检验.有两种方法:①将求得的整式方程的根代入最简公分母,如果最简公分母等于0,则这个根为增根,方程无解;如果最简公分母不等于0,则这个根为原方程的根,从而解出原方程的解;②直接代入原方程中,看其是否成立.如果成立,则这个根为原方程的根,从而解出原方程的解;如果不成立,则这个根为增根,方程无解.5、分式方程组的概念由两个或两个以上的分式方程构成的方程组叫做分式方程组.6、解分式方程组的方法找出分式方程组中相同的分式进行换元,将分式方程组转化为整式方程组,解方程组,然后进行检验.例题解析例1.(1)下列方程中,是分式方程的为( )A .12x -=B 1=C 10-=D 1=【答案】C【分析】根据分式方程的定义:分母里含有字母的方程叫做分式方程进行判断.【详解】A. 是整式方程,故选项错误;B. 是整式方程,故选项错误;分母中含有未知数x ,所以是分式方程,故选项正确;D. 是整式方程,故选项错误.故选C.【点睛】此题考查分式方程的判定,掌握分式方程的定义是解题的关键.(2)在3253x +=;11(1)(1)432x x ++-=;21x -=;2371x x x ++=-;1(37)x x-中,分式方程有().A .1个B .2个C .3个D .4个【难度】★【答案】B【解析】根据分式方程的定义,分母中含有未知数的方程是分式方程,(1)(2)两个方程分 母中不含未知数,(5)不是方程,(3)(4)满足定义,故选B .【总结】考查分式方程的定义,注意前提是方程,且方程分母中必含有字母.例2.(1)用换元法解分式方程251x x +21x x+-+1=0,如果设21x x +=y ,那么原方程可以化为( )A .2+y y -5=0B .2y -5y+1=0C .25y y 10++=D .25y 10y +-=【答案】D【分析】直接把21xx +换成y ,整理即可.【详解】解:设21xy x =+,则原方程化为1510y y -+=,去分母得,25y 10y +-=,故选:D .【点睛】本题考查的是换元法解分式方程,换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化,变得容易处理.(2).用换元法解方程221165380x x x x æöæö+++-=ç÷ç÷èøèø,设1y x x =+,则方程变为()A .265380y y +-=B .265400y y +-=C .265260y y +-=D .265500y y +-=【难度】★【答案】D【解析】1y x x =+,则有22221122x x y x x æö+=+-=-ç÷èø,原方程即为()2625380y y -+-=,展开整理即为265500y y +-=,故选D .【总结】考查分式方程中换元法的应用,注意含有未知数部分的恒等变形转化.例3.分式方程2227381x x x x x +=+--的最简公分母是____________.【难度】★【答案】3x x -.【解析】分式方程中三个分母位置上分别为2x x +,2x x -,21x -,分解因式的结果分别为()1x x +,()1x x -,()()11x x +-,由此可得方程的最简公分母为()()311x x x x x +-=-.【总结】考查分式方程的最简公分母,将每个分母因式分解,取相同因式的最高次数乘积即为分式方程的最简公分母.例4.直接写出下列分式方程的根:(1)11211x x x -=---:_________________;(2)11111x x x -=---:_________________;(3)2121x x -=-:_________________;(4)2111x x -=-:_________________.【难度】★【答案】(1)2x =;(2)无解;(3)无解;(4)0x =.【解析】(1)根据等式性质,两边同时加上分式部分,即得2x =, 检验得2x =是原分式方程的根;(2)根据等式性质,两边同时加上分式部分,即得1x =,检验得1x =为方程的增根, 即方程无解;(3)约分得12x +=,解得1x =,检验得1x =为方程的增根,即方程无解;(4)约分得11x +=,解得0x =,检验得0x =是原分式方程的根.【总结】考查根据等式的性质求解简单的分式方程,注意求解结果是否是增根.例5.解方程:(1)3363142x x -=-+;(2)43252x xx x =++;(3)23312222x x x x x ++=--+-.【难度】★★【答案】(1)123x =,29x =-;(2)10x =,267x =-;(3)无解.【解析】(1)方程两边同乘()()43123x x -+,得()()()()42312831x x x x +--+=-,整理得2325180x x +-=,解得123x =,29x =-,经检验,123x =,29x =-都是原方程的根;(2)方程两边同乘()()3252x x ++,得()()52432x x x x +=+,整理得2760x x +=,解得:10x =,267x =-,经检验,10x =,267x =-都是原方程的根;(3)方程两边同乘()()212x x +-,得()()()63221x x x ++-=+,整理得220x x --=,解得:11x =-,22x =,经检验,11x =-,22x =都是原方程的增根,即原方程无解.例6.解方程:(1)2213211x x x x -=+--; (2)24221422x x x x =++--+;(3)23211214124x x x x++=+--.【难度】★★【答案】(1)13x =-;(2)6x =;(3)54x =.【解析】(1)方程两边同乘21x -,得()221213x x x x +=-+-,整理得23210x x --=, 解得:113x =-,21x =,经检验,21x =是原方程的增根,即原方程的根为13x =-;(2)方程两边同乘24x -,得()()2442222x x x x =--++-,整理得24120x x --=,解得:16x =,22x =-,经检验,22x =-是原方程的增根,即原方程的根为6x =;(3)两边同乘()2241x -,得()()()2621421241x x x x -+-+=-,整理得281450x x -+=,解得:112x =,254x =,经检验,112x =是原方程的增根,即原方程的根为54x =.【总结】考查分式方程的解法,注意检验所求是否为增根.例7.已知关于x 的方程22312x m x x x +-=-+-有增根,求m 的值.【难度】★★【答案】12m =或3m =.【解析】分式方程两边同乘22x x +-,得()223x m +=-,分式方程有增根,由220x x +-=,解得:11x =,22x =-,即为原分式方程的增根,代入相应整式方程得39m -=或30m -=,解得12m =或3m =.【总结】考查分式方程的增根,代入相应的整式方程可使得方程成立且使得分式分母为0的未知数的值.例8.已知关于x 的方程7155x m xx x--=---无解,求m 的值.【难度】★★【答案】3m =.【解析】分式方程两边同乘5x -,得()75x x m x -=---,整理解得:2x m =+,因为原分式方程无解,则相应解应为分式方程的增根,即得25x m =+=,解得3m =.【总结】考查分式方程的无解,即由相应整式方程求得的解是分式方程的增根.例9.已知关于x 的方程301a xx +-=+的根是负数,求a 的取值范围.【难度】★★【答案】3a <且1a ≠.【解析】分式方程两边同乘1x +,得()310a x x +-+=,整理解得:32a x -=,方程的根是 负数,则有302a x -=<,得3a <,同时分式方程的根不能为相应增根,即312a x -=≠-, 得1a ≠,由此即得3a <且1a ≠.【总结】考查分式方程的解满足条件的求解,注意方程的解不能为相应的增根.例10.解方程:(1)2220383x x x x+-=+;(2)2191502x x x x æöæö+-++=ç÷ç÷èøèø.【难度】★★【答案】(1)15x =-,22x =,31x =-,42x =-;(2)11x =,22x =,312x =.【解析】(1)令23x x a +=,原方程即为208a a-=,两边同乘a 整理得28200a a --=,解得:110a =,22a =-;由2310x x +=,解得:15x =-,22x =;由232x x +=-,解得:11x =-,22x =-;经检验,15x =-,22x =,31x =-,42x =-都是原方程的根;(2)令1x a x +=,原方程即为29502a a -+=,解得12a =,252a =;由12x x+=,整理得2210x x -+=,解得:121x x ==;由152x x +=,整理得22520x x -+=,解得12x =,212x =;经检验,11x =,22x =,312x =都是原方程的根.【总结】考查用换元法求解具有特殊形式的分式方程,注意对方法的总结.例11.解方程:(1)225(16(1)1711x x x x +++=++);(2)2216104()933x x x x+=-.【难度】★★【答案】(1)1x =2x =(2)13x =,23x =,32x =-,46x =.【解析】(1)令211x a x +=+,原方程即为6517a a +=,两边同乘a 整理得251760a a -+=,解得:125a =,23a =;由21215x x +=+,整理得25230x x -+=,方程无解;由2131x x +=+,整理得2320x x --=,解得:1x 2x =经检验,1x =2x = (2)令43x a x -=,则有2222164889333x x a x x æö+=-+=+ç÷èø,原方程即为281033a a +=,整理得231080a a -+=,解得:12a =,243a =;由423x x-=,整理得26120x x --=,解得:13x =,23x =;由4433x x -=,整理得24120x x --=,解得:12x =-,26x =;经检验,13x =+23x =-,32x =-,46x =都是原方程的根.【总结】考查用换元法求解有特殊形式的分式方程.例12.解方程组:(1)413538x y x y x y x y ì+=ï+-ïíï-=ï+-î;(2)132013251x y x y ì+=ï-ïíï-=-ï-î.【难度】★★【答案】(1)01x y =ìí=î;(2)565x y =ìïí=ïî.【解析】(1)令1a x y =+,1b x y =-,原方程组即为43538a b a b +=ìí-=î,解得:11a b =ìí=-î,由此可得11x y =+,11x y =--,由此得11x y x y +=ìí-=-î,解得:01x y =ìí=î,经检验,01x y =ìí=î是原分式方程的根;(2)令11a y =-,原方程组即为320235x a x a +=ìí-=-î,解得:55x a =ìí=î,由此可得:151y =-, 解得:65y =, ∴565x y =ìïí=ïî, 经检验,565x y =ìïí=ïî是原分式方程的根.【总结】考查利用换元法求分式方程组的解,注意解完之后要检验.例13.解方程组:(1)253489156x x x x +=+++++;(2)11212736x x x x x x ++-=-++++.【难度】★★【答案】(1)16x =,2334x =-;(2)92x =-.【解析】(1)对分式方程移项通分得()()()()()()()()21538495681569x x x x x x x x +-++-+=++++,展开即得2266231201554x x x x x x -+-+=++++,由此即得60x -+=或22231201554x x x x ++=++,解得:16x =,2334x =-, 经检验,16x =,2334x =-都是原分式方程的根; (2)对分式方程变形得1111112736x x x x --=--++++,由此得11112736x x x x +=+++++,两边分别通分即得222929914918x x x x x x ++=++++, 两边分母不同,则必有290x +=,解得92x =-,经检验,92x =-是原分式方程的根.【总结】考查特殊形式分式方程的解法,注意相应分母的关系,分组两边分别通分计算.例14.解方程:226205x x +-=+.【难度】★★【答案】11x =,21x =-.【解析】令25x a +=,则有25x a =-,原方程即为6520a a+--=,两边同乘a 整理,得2760a a -+=,解得:11a =,26a =;由251x +=,方程无解; 由256x +=,解得:11x =,21x =-;经检验,11x =,21x =-都是原方程的根.【总结】考查用换元法解分式方程,注意取值范围和增根.例15.a 为何值时,关于x 的方程211a a x +=+无解?【难度】★★【答案】12a =-或0a =.【解析】分式方程两边同乘1x +,得:()211a a x +=+,展开移项得1ax a =+,当0a =时,方程无解; 当0a ≠时,1a x a +=,方程无解,即得11a x a+==-,解得12a =-;综上,12a =-或0a =.【总结】考查分式方程的无解,即由相应整式方程求得的解是分式方程的增根,注意考虑未知项系数为0的情况.例16.已知关于x 的方程222022x x x k x x x x-+++=--只有一个解,求k 的值及这个解.【难度】★★★【答案】72k =-时,1212x x ==或4k =-时,1x =或8k =-时,1x =-.【解析】方程两边同乘22x x -,得()22220x x x k +-++=,展开整理得:22240x x k -++=,分式方程可能产生增根,即当相应整式方程有两解时,分式方程仅有一解,由此需进行 分类讨论:①当整式方程有两相等实数根时,()()224240k ∆=--⨯+=,解得:72k =-,此时方程为212202x x -+=,解得:1212x x ==,此时分式方程只有一个解,符合题意;②当整式方程有一根为分式方程增根0x =时,此时有40k +=,解得:4k =-,此时方程为2220x x -=,解得:10x =,21x =,此时分式方程只有一个解1x =,符合题意;③当整式方程有一根为分式方程增根2x =时,此时有2222240k ⨯-⨯++=,解得:8k =-,此时方程为22240x x --=,解得:12x =,21x =-,此时分式方程只有一个解1x =-,符合题意; 综上,72k =-或4k =-或8k =-.【总结】考查分式方程只有一个解的情况,方程为二次方程时,注意包含方程有一个根为分式方程的增根的情形.例17.解关于x 的方程:22112(3()1x x x x+-+= 【难度】★★★【答案】12x =,212x =.【解析】令1x a x +=,则有22221122x x a x x æö+=+-=-ç÷èø,原方程即为()22231a a --=,展开整理得22350a a --=,解得:11a =-,252a =;由11x x+=-,整理得210x x ++=,方程无解;由152x x +=,整理得22520x x -+=,解得:12x =,212x =; 经检验,12x =,212x =都是原方程的根.【总结】考查用换元法求解有特殊形式的分式方程,注意解完之后进行检验.例18.解关于x 的方程()()450b x a xa b b x a x+-=-+≠+-.【难度】★★★【答案】12a b x -=,245a bx -=.【解析】令a x kb x -=+,原方程即为45k k=-,两边同乘k 整理,得2540k k -+=,解得:11k =,24k =; 由1a x b x -=+,又0a b +≠,可解得:2a bx -=;由4a x b x -=+,又0a b +≠,可解得:45a bx -=;经检验,12a b x -=,245a bx -=都是原方程的根.【总结】考查用换元法求解有特殊形式的分式方程.例19.已知方程22222(1)21()x ax a a x a +-++=+有实数根,求实数a 的取值范围.【难度】★★★【答案】1122a -≤≤且0a ≠.【解析】展开得()()22222222121x ax a ax a a x a +--+++=+,根据等式性质移项得()()222220x ax a ax x a +-+=+,即为()20x a x a x a ⎡⎤+-=⎢⎥+⎣⎦,由此得()0xa x a x a+-=+, 移项得()2a x a x +=,展开整理得()223210ax a x a +-+=,当0a =时,方程有实数根0x =是分式方程的增根,应舍去;当0a ≠时,方程为一元二次方程,此时根据韦达定理可得2122112a x x a a a-+=-=-,可知1x 、2x 不可能同时为a -,分式方程有实数根,则相应的整式方程应满足()2232214410a a a a ∆=--⋅=-+≥,得1122a -≤≤;综上,实数a 的取值范围为:1122a -≤≤且0a ≠.【总结】考查分式方程有实数根的情形,对分式方程整理变形满足相应的条件即可.模块二分式方程应用题知识精讲1、列方程(组)解应用题时,如何找“相等关系”(1)利用题目中的关键语句寻找相等关系;(2)利用公式、定理寻找相等关系;(3)从生活、生产实际经验中寻找相等关系.例题解析例1.要在规定日期内完成一项工程,如甲队单独做,刚好按期完成;如乙队单独做,则要超过规定时间3天才能完成;甲、乙两队合作2天,剩下的工程由乙队单独做,则刚好按期完成.那么求规定日期为x天的方程是().A.2213xx x-+=+B.233x x=+C.2213xx x++=+D.213xx x+=+【难度】★【答案】D【解析】设工作总量为“1”,则甲工作量+乙工作量=1,根据工作总量=工作效率×工作天数,乙工作天数为x天,由此可知选D.【总结】考查工程问题中的单位“1”,注意分清对应的工作效率和工作时间.例2.某车间加工300个零件,在加工80个以后,改进了操作方法,每天能多加工15个,一共用6天完成了任务.如果设改进操作后每天加工x个零件,那么下列根据题意列出的方程中,错误的是()A.8030080615x x-+=-B.30080615x-=-C.80(6)8030015xx-+=-D.8015300806xx-=--【难度】★【答案】B 【解析】略【总结】考查根据题意列方程的应用,根据工作量和工作效率、工作时间之间的相互关系进行列方程的应用.例3.甲、乙两个工程队合做一项工程,6天可以完成.如果单独工作,甲队比乙队少用5天完成.两队单独工作各需多少天完成?【难度】★★【答案】甲单独需10天完成,乙单独需15天完成.【解析】设甲单独需用x天完成,则乙单独需用()5x+天完成,依题意可得11615x xæö+=ç÷+èø,整理得27300x x--=,解得:13x=-,210x=,经检验,13x=-,210x=都是原方程的根,但13x=-不合题意应舍去,即得10x=,即甲单独需10天完成,乙单独需10515+=天完成.【总结】考查工程问题中的列方程解应用题,把工作总量当作单位“1”解题.例4.登山比赛时,小明上山时的速度为a米/分,下山的速度是b米/分,已知上山和下山的路径是一样的,求小明在全程中的平均速度?【难度】★★【答案】2aba b+.【解析】设小明上山的路程为sm,则整个过程中小明总行程为2sm,根据平均速度=总行程÷总时间,即得平均速度22s abvs s a ba b==++.【总结】考查平均速度的求取,平均速度==总行程÷总时间,与行程远近无关,注意平均速度的求法.例5.甲、乙两人分别从相距9千米的A、B两地同时出发,相向而行,1小时后相遇.相遇后,各自继续以原有的速度前进,已知甲到B地比乙到A地早27分钟,求两人的速度各是多少?【难度】★★★【答案】甲速度为5/km h,乙速度为4/km h.【解析】设甲速度为/xkm h,则乙速度为()9/x km h-,927min20h=,依题意可得999920x x-=-,整理得2311800x x+-=,解得:136x=-,25x=,经检验,136x=-,25x=都是原方程的根,但136x=-不合题意应舍去,即得5x=,即甲速度为5/km h,乙速度为954/km h-=.【总结】考查行程问题中的列方程解应用题,根据相遇问题的基本关系一个条件作设一个条件列式进行求解.例6.甲、乙两辆车同时从A地出发开往距A地240千米的B地,结果甲车比乙车早到了60分钟;第二次,乙车提速30千米/时,结果比甲车早到了20分钟,求第一次甲、乙两车的速度各是多少?【难度】★★★【答案】甲速度为80/km h,乙速度为60/km h.【解析】设甲车xh到达B地,60min1h=,120min3h=,依题意可得24024030113xx-=+-,整理得232330x x+-=,解得1113x=-,23x=,经检验,111 3x=-,23x=都是原方程的根,但111 3x=-不合题意应舍去,即得3x=,可得甲速度为24080/3km h=,乙速度为24060/31km h=+.【总结】考查行程问题中的列方程解应用题,根据行程问题的基本等量关系一个条件作设一个条件列式进行求解,注意本题中用时间作设速度列式解题更方便.例7.某服装厂接到一宗生产13万套衣服的业务,在生产了4万套后,接到了买方急需货物的通知,为满足买方的要求,该厂改进了操作方法,每月能多生产1万套,一共5个月完成了这宗业务.求改进操作方案后每月能生产多少万套衣服?【难度】★★★【答案】3万套.【解析】设改进操作方案后每月能生产x 万套衣服,则改进之前每月生产()1x -万套,依题意可得413451x x -+=-,整理得251890x x -+=,解得:135x =,23x =,经检验,135x =,23x =都是原方程的根,但135x =不合题意应舍去,即得:3x =,即改进操作方案后每月能生产3万套衣服.【总结】考查工作总量问题,一个条件作设一个条件列式进行求解.随堂检测1.已知方程:(1)2412x x -=-;(2)221x x =-;(3)11x x x æö-=ç÷èø;(43x -=,其中是分式方程的有_____________.【难度】★【答案】(1)、(2)、(3).【解析】根据分式方程的定义,分母中含有未知数的方程是分式方程,(1)、(2)、(3)满足 条件,(4)方程中不含有分式,故答案为(1)、(2)、(3).【总结】考查分式方程的定义,注意前提是方程,且方程分母中必含有字母.2.当x 取何值时,分式方程1112x x x +=--的最简公分母的值等于0?【难度】★【答案】1x =或2x =.【解析】分式方程的最简公分母为()()12x x --,最简公分母值为0,即()()120x x --=,解得:1x =或2x =.【总结】考查分式方程的最简公分母,将每个分母因式分解,取相同因式的最高次数乘积即为分式方程的最简公分母.3.分式方程22228(2)331112x x x x x x +-+=-+,如果设2221x xy x +=-,那么原方程可以化为关于y 的整式方程为 .【难度】★【答案】281130y y -+=.【解析】2221x x y x +=-,则有22112x x x y-=+,原方程即为3811y y +=,整理化作关于y 的整式方 程即为281130y y -+=.【总结】考查利用换元法对复杂形式的分式方程进行转化,注意最终要化成整式方程的形式.4.解方程:(1)26531111x x x x =++--+;(2)22161242x x x x +-=--+; (3)243455121760x x x x x x --+=---+.【难度】★★【答案】(1)9x =;(2)5x =-;(3)12x =,29x =.【解析】(1)方程两边同乘21x -,得()()2615131x x x x =--++-,整理得2890x x --=,解得:11x =-,29x =,经检验,11x =-是原方程的增根,即原方程的根为9x =;(2)方程两边同乘24x -,得()22162x x +-=-,整理得23100x x +-=,解得:12x =,25x =-,经检验,12x =是原方程的增根,即原方程的根为5x =-;(3)两边同乘21760x x -+,得()()()4123545x x x x ----=-,整理得211180x x -+=,解得“”12x =,29x =,经检验,12x =,29x =都是原方程的根.【总结】考查分式方程的解法,注意检验所求是否为增根.5.解方程:221313x x x x ++=+.【难度】★★【答案】11x =,21x =+.【解析】令1x a x =+,原方程即为2133a a +=,整理即为231060a a -+=,解得:1a =2a =由1x x =+,解得:1x =;由1x x =+,解得:1x =+经检验11x =,21x =【总结】考查利用换元法解分式方程.6.解方程组311332412463324x y x y x y y x ì+=ï+-ïíï-=ï+-î【难度】★★【答案】1011711x y ì=ïïíï=ïî.【解析】令132a x y =+,14b x y =-,原方程组即为13312463a b a b ì+=ïíï+=î,解得:1413a b ì=ïïíï=ïî,由此可得113241143x y x y ì=ï+ïíï=ï-î, 去分母得32443x y x y +=ìí-=î,解得:1011711x y ì=ïïíï=ïî,经检验,1011711x y ì=ïïíï=ïî是原分式方程的根.【总结】考查用换元法解有特殊形式的分式方程组,注意验根.7.若分式方程22111x m x x x x x++-=++产生增根,求m 的值.【难度】★★【答案】2m =-或1m =.【解析】方程两边同乘2x x +,得()()22211x m x -+=+,展开整理得2220x x m ---=,分式方程产生增根,即当相应整式方程有两解时,分式方程仅有一解,由此需进行分类 讨论:①整式方程有一根为分式方程增根0x =时,此时有20m --=,解得:2m =-;②整式方程有一根为分式方程增根1x =-时,此时有()()212120m --⨯---=,解得:1m =;综上,2m =-或1m =.【总结】考查分式方程有增根的情况,即对应的整式方程有一个根为分式方程的增根.8.甲、乙两地间铁路长400千米,现将火车的行驶速度每小时比原来提高了45千米,因此,火车由甲地到乙地的行驶时间缩短了2小时.求火车原来的速度.【难度】★★【答案】75/km h .【解析】设火车原来的速度为/xkm h ,依题意可得400400245x x -=+,整理得24590000x x +-=,解得:1120x =-,275x =,经检验,1120x =-,275x =都是原方程的根,但1120x =-不合题意应舍去,即得75x =,即可得火车原来速度为75/km h .【总结】考查行程问题中的列方程解应用题,根据行程问题的基本等量关系一个条件作设一个条件列式进行求解.9.某市为了美化环境,计划在一定的时间内完成绿化面积200万亩的任务,后来市政府调整了原定计划,不但绿化面积要在原计划的基础上增加20%,而且要提前1年完成任务.经测算,要完成新的计划,平均每年的绿化面积必须比原计划多20万亩,求原计划平均每年的绿化面积.【难度】★★★【答案】原计划平均每年绿化面积40万亩.【解析】设原计划平均每年的绿化面积为x 万亩,则新计划每年()20x +万亩,依题意可得()200120%200120x x ⨯+-=+,整理得26040000x x +-=,解得:1100x =-,240x =,经检验,1100x =-,240x =都是原方程的根,但1100x =-不合题意应舍去,即得40x =,即原计划平均每年的绿化面积为40万亩.【总结】考查工作量的问题,根据相应的等量关系式列方程求解.10.解方程:221114(4)12()12433x x x -=-++.【难度】★★★【答案】11x =+,21x =,33x =+,43x =【解析】方程两边同乘12展开得22364881616x x x x-+=--+,根据等式的性质移项变形得2668120x x x x æöæö---+=ç÷ç÷èøèø,因式分解得:66260x x x x æöæö----=ç÷ç÷èøèø,由此可得620x x --=或660x x --=;由620x x--=,整理得2260x x --=,解得:11x =+21x =-;由660x x --=,整理得2660x x --=,解得:13x =+23x =经检验,11x =21x =-33x =43x =-都是原方程的根.【总结】考查用整体思想先对分式方程变形,然后求解分式方程的根,注意对方法的总结.11.解方程:596841922119968x x x x x x x x ----+=+----.【难度】★★★【答案】12314x =.【解析】对分式方程变形得1155514219968x x x x -++=++-----,根据等式的性质可变形得115519986x x x x -=-----,两边分别通分即得221010281711448x x x x =-+-+,由此可得22281711448x x x x -+=-+, 解得:12314x =,经检验,12314x =是原分式方程的根.【总结】考查特殊形式分式方程的解法,注意相应分母的关系,分组两边分别通分计算.12.已知关于x 的方程21221232a a x x x x ++=---+有增根,求a .【难度】★★★【答案】32a =-或2a =-.【解析】方程两边同乘232x x -+,得()2122x a x a -+-=+,展开整理得()134a x a +=+,当10a +≠,即1a ≠-时,得341a x a +=+,分式方程可能产生增根,由此进行分类讨论:①整式方程根为分式方程增根1x =时,此时有3411a a +=+,解得32a =-;②整式方程有一根为分式方程增根2x =时,此时有3421a a +=+,解得2a =-;综上,32a =-或2a =-.【总结】考查分式方程有增根的情况,即对应的整式方程根为分式方程的增根.13.已知:关于x 的方程227()72120a a x x a x x+--++=只有一个实数根,求a .【难度】★★★【答案】94a =或4a =.【解析】整理原方程得27120a a x x x x æöæö+-++=ç÷ç÷èøèø,因式分解得340a a x x x x æöæö+-+-=ç÷ç÷èøèø,由此可得30a x x +-=或40a x x +-=,分别整理得:230x x a -+=和240x x a -+=,两方程根的判别式分别为194a ∆=-,2164a ∆=-.因为方程仅有一实数根,所以940a -=或1640a -=,解得:94a =或4a =.【总结】考查分式方程的根与对应整式方程的根相结合的问题,根据实际题目进行问题的分析转化,解决问题.。
初中数学专题: 分式方程的解法

范围是(D )
A.a>1
B.a<1
C.a<1 且 a≠-2
D.a>1 且 a≠2
4.(黑龙江中考)已知关于 x 的分式方程3xx--3a=13的解是非负数,那
么 a 的取值范围是(C)
A.a>1
B.a≥1
C.a≥1 且 a≠9
D.a≤1
5.已知关于 x 的分式方程ax++21=1 的解是非正数,则 a 的取值范围
(3)x-1 2=12- -xx-3. 解:方程两边同乘(x-2),得 1=x-1-3x+6.解得 x=2. 检验:当 x=2 时,x-2=0. 因此 x=2 不是原分式方程的解, 所以原分式方程无解.
2.解分式方程: (1)x-x 1+x2-1 1=1; 解:方程两边同乘(x+1)(x-1),得 x(x+1)+1=(x+1)(x-1).解得 x=-2. 检验:当 x=-2 时,得(x+1)(x-1)≠0, 所以原分式方程的解为 x=-2.
是(B)
A.a≤-1
B.a≤-1 且 a≠-2
C.a≤1 且 a≠-2D来自a≤16.(眉山中考)已知关于 x 的分式方程x-x 3-2=x-k 3有一个正数解,
则 k 的取值范围为 k<6且k≠3 .
【易错提示】 求得的未知数不仅要满足所给出的范围,还要使分
式的分母不为零,两个条件必须同时具备,缺一不可.
类型 2 由分式方程无解确定字母的取值
7.若关于 x 的方程3xx+-12=2+x+m1无解,则 m 的值为(A)
A.-5
B.-8
C.-2
D.5
8.【分类讨论思想】若关于 x 的方程xa-x2=x-4 2+1 无解,则 a 的
值是 1或2 .
9.【分类讨论思想】若关于 x 的方程3x--23x-m3x--x2=-1 无解,则 m 的值是1 或53 . 【易错提示】 分式方程无解可能有两种情况:(1)由分式方程去分 母后化成的整式方程有解,但这个解使最简公分母为零;(2)由分式 方程去分母后化成的整式方程无解.
分式方程的几种特殊解法

分式方程的几种特殊解法白云中学:权兵解分式方程的一般步骤:(1)去分母,化分式方程为整式方程;(2)解整式方程;(3)检验,判断所求整式方程的解是否是原分式方程的解。
但在具体求解时却不能死搬硬套,尤其是在解某些特殊的分式方程时,应能根据方程的特点,采用灵活多变的解法,并施以适当的技巧,才能避繁就简,巧妙地将题目解出。
下面举例谈谈解分式方程的几种特殊技巧。
一、加减相消法。
例1、解方程:20172018112017201811222++-=++-+x x x x x 。
分析:若直接去分母固然可以求出该题的解,但并不是最佳解题方法。
如果我们发现方程两边都加上分式2017201812++x x ,则可以通过在方程两边都加上分式2017201812++x x ,就将原方程化简成112=+x ,从而轻松获解。
解:原方程两边都加上2017201812++x x ,则可得:112=+x 去分母,得:12+=x解得:1=x经检验,1=x 是原分式方程的解。
二、巧用合比性质法。
例2:解方程:781222++=++x x x x 。
分析:若我们能发现方程两边的分式的分子比分母都多1的话,则可以利用合比性质将分子化为1,从而可以轻易将方程的解求出。
解:由合比性质可得:77-811-2222+++=+++x x x x x x )()()()( ∴ 71112+=+x x 去分母并化简得:062=--x x ,即0)2)(3=+-x x (解得:23-==x x 或经检验,23-==x x 或是原分式方程的解。
三、巧用等比性质法。
例3、解方程:13242344++=++x x x x 。
分析:该方程两边的分式的分子之差和分母之差都是常数,故可考虑先用等比性质将原方程化简后再求解。
解:由等比性质可得:1324)13()23(2444++=+-++-+x x x x x x )()(。
∴ 13242++=x x 化简得: 02=x∴ 0=x经检验,0=x 是原分式方程的解。
分式方程的特殊解法举例

分式方程的特殊解法举例解分式方程的基本思想,是通过去分母,化分式方程为整式方程。
其常规解法有“去分母法”和“换元法”两种。
但对一些结构较特殊的分式方程,若仍用这两种常规方法求解,往往会使未知数的次数增高,或使运算变繁,增大解题难度,甚至无法解出。
因此,我们应针对题目的结构特征,研究一些非常规解法。
1. 分组通分例1 解方程65327621--+--=--+--x x x x x x x x 分析:通过移项,将方程两边变形为两分式的差,通分后的分子中含未知数的项可相互抵消,从而降低了解题难度。
解:移项,得21653276-----=-----x x x x x x x x 两边分别通分,得)2)(6(4)3)(7(4--=--x x x x 所以)2)(6()3)(7(--=--x x x x 解得29=x 经检验,知29=x 是原方程的根。
2. 用“带余除法”将分子降次例2 解方程x x x x x x x 211112323=+--++++ 分析:方程左边是两个假分式的和的形式,所以可将它们分别化成整式与真分式之和的形式,从而降低未知数的次数,简化运算。
解:原方程可化为x x x x x x x 212112122=⎪⎭⎫ ⎝⎛+--++⎪⎭⎫ ⎝⎛+++-所以121222+-=++x x x x 即1122+-=++x x x x所以002==x x ,经检验,知x=0是原方程的根。
3. 拆项相消例3 解方程 1011009900199165123112222=+++++++++++x x x x x x x x 分析:表面不易发现题目特点,但将各分母因式分解后,便发现各分式同时都具有AB A B -的形式。
因此,可用BA AB A B 11-=-将每个分式都拆成两个分式差的形式,这样除首末两项外,中间的项从左往右依次抵消。
解:将原方程变形,得101100)100)(99(1)3)(2(1)2)(1(1)1(1=+++++++++++x x x x x x x x 拆项得⎪⎭⎫ ⎝⎛+-+++⎪⎭⎫ ⎝⎛+-++⎪⎭⎫ ⎝⎛+-++⎪⎭⎫ ⎝⎛+-100199131212111111x x x x x x x x 101100= 化简得10110010011=+-x x 即01011002=-+x x 解得101121-==x x , 经检验,知11=x 和1012-=x 都是原方程的解。
特殊分式方程的几种特殊解法

特别分式方程的几种特别解法解分式方程最常用的方法是去分母法, 把分式方程化为整式方程, 以之求解的过程,但在一些详尽方程中,若用去分母的方法,其未知数的次数会增大,运算复杂,计算量加大,易出现错误,所以要擅长观察详尽方程的特色,对一些特分式方程,采纳特别方法,会简化解题过程。
一 . 比率法x 1 a b0)例 1. 解方程x1 a (bbAD分式:观察方程,形如: B C的形式,可依据比率“两外项之积等于两内项之积”而直接求解。
解:原方程化为( x 1)(a b)(a b)( x 1)整理得 2bx2aab 0, xb2 3x3 2 x例 2. 解方程:3x 1 2x 2解:原方程化为( 2 3x)(2x2) (3 2x)(3x 1)7整理得13x7,x13x713是原方程的根。
经检验二 . 换元法y 3 4 y8解方程y例 3. 2y 3A D解析:此题若移项,形如BC,假如用比率法规去分母后方程变成3y224y 7,对一元二次方程我们还不可以求解。
所以,经观察发现4y 8 4 y 2 y 2 y 3y 3y3,此中y3 与 y 2互为倒数关系,可利用换元法简易求解。
y3 A解:设 y2 ,则原方程变形为A4A整理得 A24 A2y 32 时,y2,解得y17 ;当A2y32y 21当A2 时,y33,解得y 17, y 213都是原方程的解。
经检验,例 4. 解方程组32 x yx5 (1)y14(2)y xx4y1 ,1 ,解析:方程( 1),( 2)中都含有x yx y所以可运用换元法,11b设 xa ,y x y则方程组变形为3b 2a 5 b 4a41 和1a 、b 的值,代入 x y x y中,即可解出解这个二元一次方程组,求出x ,y 的值。
三 . 倒数法x1 2 1,求 x 2 1____________。
例 5. 已知:x2x 2121 1 , 1222解析:已知条件中, x , x互为倒数 2,此中2 互为倒数关系,利用此关系,可有下边解法。
一元一次方程的分式方程_概述说明以及解释

一元一次方程的分式方程概述说明以及解释1. 引言1.1 概述一元一次方程是数学中常见的基础概念,它描述了未知数与已知数之间的线性关系。
而当一元一次方程中存在分式时,我们就称之为一元一次方程的分式方程。
本文将对一元一次分式方程进行全面的概述、说明和解释。
1.2 一元一次方程的基本概念在数学中,一元一次方程是指一个未知数的最高指数为1、系数为实常数或者有理数的代数方程。
这种类型的方程可以通过等式左右两边进行运算变换来求得未知数的值。
例如,形如ax + b = c 的表达式即为一元一次方程。
1.3 分式方程的含义与特点分式(也叫有理式)通常表示为两个整式(多项式)相除得到的商。
当一个分式成为一个等式,并且其中至少有一个未知数时,我们将其称之为分式方程。
在分式方程中,未知量可能出现在分子或者分母中,并且会带来许多特殊情况和解法。
2. 一元一次方程的分式方程2.1 什么是一元一次方程的分式方程一元一次方程是指只有一个未知数,并且未知数的最高次幂为1的方程。
而分式方程则是在方程中含有分式(即带有分子和分母)的形式。
因此,一元一次方程的分式方程就是在一个未知数上出现了带有分子和分母的表达式。
2.2 分式方程的解法步骤解决一元一次分式方程可以遵循以下步骤:步骤1:将所有含有未知数的项移至等号左边,将常数项移到等号右边,以便将所有项集中到一个侧。
步骤2:利用乘法逆元素原理消去分母。
将整个等式两边都乘以除了含有未知数所在项之外的那个不含未知数的因子,从而消除掉等号两侧中带有分母的表达式。
步骤3:合并同类项并简化表达式。
整理等号两边得到一个简化后的方程。
步骤4:通过移项、合并同类项或者代入已知值,求解未知数。
步骤5:将求得的未知数代入原分式方程中,验证所得解是否符合原方程,同时检查是否存在约束条件。
2.3 解答实例和应用为了更好地理解和掌握一元一次分式方程的解法步骤,以下是一个实际问题的例子:例题:某商店原价200元的商品打8折出售后价格为160元,请问该商品的折扣率是多少?解答过程:步骤1:设折扣率为x,则根据折扣计算公式可得200 * (1 - x) = 160。
分式的方程

分式的方程引言分式的方程是指含有分式表达式的方程,即方程中包含有形如a/b的表达式,其中a和b为多项式。
解分式方程是高中数学中的一个重要内容,也是学习代数方程的基础。
本文将详细讨论分式的方程的概念、性质以及解题方法。
分式的概念分式是两个多项式相除的结果,通常写成a/b的形式,其中a和b分别为多项式。
分式中有两个重要的概念:分子和分母。
分子是除号上方的多项式,分母是除号下方的多项式。
分式的值可以通过将分子除以分母来计算。
分式的性质1.分式可以化简:当分子和分母有公因式时,可以进行约分,化简分式,使其形式更简单。
2.分式可以相加相减:当分母相同的时候,可以直接对分子进行加减运算得到结果,分母保持不变。
3.分式可以相乘相除:将两个分式相乘时,将分子乘以分子,分母乘以分母;将一个分式除以另一个分式时,将分子乘以除数的倒数,分母乘以除数。
4.分式的倒数:将分式的分子与分母互换位置得到分式的倒数,倒数的值等于原分式的倒数。
分式方程的定义分式方程是一个等式,其中至少有一个变量出现在分式的分子或分母中。
分式方程的解是使得方程两边相等的变量的值。
一次分式方程的解法对于一次分式方程,可以使用以下方法进行解题: 1. 清除分母:将分式方程两边的分母消去,得到一个代数方程。
2. 收集同类项:将方程中的同类项进行整理,使方程变得更简洁。
3. 求解代数方程:解代数方程得到变量的值。
4. 检验解的合法性:将解代入原方程中,检验等式是否成立。
高次分式方程的解法对于高次的分式方程,可以使用以下方法进行解题: 1. 清除所有分母:将所有分母消去,得到一个高次方程。
2. 求解高次方程:可以使用因式分解、配方法等等进行求解。
3. 检验解的合法性:将解代入原方程中,检验等式是否成立。
分式方程的应用分式方程在实际问题中有广泛的应用,特别是在物理、化学等领域中。
以下是一些常见的应用场景: 1. 比例问题:分式方程可以用来描述一种比例关系。
特殊分式方程的几种特殊解法

特殊分式方程的几种特殊解法解分式方程最常用的方法是去分母法,把分式方程化为整式方程,以之求解的过程,但在一些具体方程中,若用去分母的方法,其未知数的次数会增大,运算复杂,计算量加大,易出现错误,因此要善于观察具体方程的特点,对一些特分式方程,采用特殊方法,会简化解题过程。
一. 比例法例1. 解方程x x a b a b b -+=-+≠110()分式:观察方程,形如:A B D C =的形式,可根据比例“两外项之积等于两内项之积”而直接求解。
解:原方程化为()()()()x a b a b x -+=-+11整理得22bx a = b x a b ≠∴=0, 例2. 解方程:23313222--=-+x x x x解:原方程化为()()()()23223231-+=--x x x x 整理得137x =,∴=x 713 经检验x =713是原方程的根。
二. 换元法例3. 解方程y y y y -+-+-=324830分析:本题若移项,形如A B D C =,如果用比例法则去分母后方程变为324702y y ++=,对一元二次方程我们还不能求解。
因此,经观察发现483423y y y y +-=⋅+-,其中y y +-23与y y -+32互为倒数关系,可利用换元法简便求解。
解:设y y A -+=32,则原方程变形为 A A -=40 整理得A 24= ∴=±A 2当A =2时,y y -+=322,解得y 17=-;当A =-2时,y y -+=-332,解得y 213=- 经检验,y y 12713=-=-,都是原方程的解。
例4. 解方程组 32511442x y x y y x x y --+=--+=-⎧⎨⎪⎪⎩⎪⎪()()分析:方程(1),(2)中都含有11x yx y -+,,因此可运用换元法, 设11x y a x y b +=-=, 则方程组变形为32544b a b a -=+=⎧⎨⎩ 解这个二元一次方程组,求出a 、b 的值,代入11x yx y +-和中,即可解出x ,y 的值。
分式方程题型重难点最新总结

分式方程重难点题型一、知识梳理一:分式方程的基本解法1.分式方程的定义:分母中含有未知数的方程叫作分式方程.2.分式方程的解法:(1)解分式方程的基本思想是:把分式方程转化为整式方程.(2)解可化为一元一次方程的分式方程的一般方法和步骤:①去分母,即在方程的两边同时乘以最简公分母,把原方程化为整式方程;②去括号;③移项;④合并同类项;⑤系数化为1;⑥验根:把整式方程的根代入最简公分母中,使最简公分母不等于零的值是原方程的根;使最简公分母等于零的值是原方程的增根.注意:解分式方程一定要验根.二:分式方程的增根和无解1.分式方程的增根(1)产生增根的原因增根的产生是在解分式方程的第一步“去分母”时造成的,根据方程的同解原理,方程的两边都乘以(或除以)同一个不为0的数,所得的方程是原方程的同解方程,如果方程的两边都乘以的数是0,那么所得的方程与原方程不是同解方程,这时求得的根就是原方程的增根.(2)分式方程增根的应用如果说某个含参数的分式方程无解,但是去分母以后的整式方程是有解的,说明那个解应该是增根.只要把增根求出来(也就是令原来的分母为零),代入整式方程就可以解出参数的值.2.分式方程无解:不论未知数取何值,都不能使方程两边的值相等.它包含两种情形:(1)原方程去分母后的整式方程无解;(2)原方程去分母后的整式方程有解,但这个解使原方程的分母为0,它是原方程的增根,从而原方程无解.3.分式方程无解与增根的区别:分式方程无解时,不一定有增根;分式方程有增根时,不一定无解.二、 例题分析题型一 分式方程的概念与基本解法【例1】 下列方程中哪些是分式方程?(1)3(1)0x x -+= (2)11(1)923x x +-=(3)1371x x-=+(4)22133x x +=(5)2973x x +=-(6)3731y y -+(7)13x x += (8)31=3x x- (9)2927=01x xa a-++(a 为字母系数) (10)2133a a x x ++=-(a 为字母系数) 【解析】 思路与技巧:分式方程首先应为方程,然后还必须满足有分母,并且分母中含有未知数.其中分式方程有(3)、(5)、(7)、(8)、(10)【例2】 解下列分式方程:(1)324x --2x x -1=2(2)2242111x x x x x -+=-+ (3)311(1)(2)x x x x -=++- 【解析】 (1)53x =;(2)12x =-;(3)两边同时乘以(1)(2)x x +-,得(2)(1)(2)3x x x x --+-=. 解这个方程,得1x =-.,检验:1x =-时(1)(2)0x x +-=,1x ∴=-不是原分式方程的解,原分式方程无解.【变1】 解下列分式方程:(1)21622=422x x x x x -++-+- (2)22252571061268x x x x x x x x x --+=+----+ 【解析】 (1)原方程化为1622=(2)(2)22x x x x x x -+++-+- 方程两边同时乘以(2)(2)x x +-,约去分母,得2216(2)=(2)x x -+-+,整理得22412=44x x x x --++,解这个整式方程,得=2x -, 检验:把=2x -代入(2)(2)x x +-,得(22)(22)0-+--= 所以=2x -是原方程的增根,原分式方程无解. (2)原方程可变形为:525710(2)(3)(3)(4)(2)(4)x x x x x x x x x --+=-++---方程两边都乘以(2)(3)(4)x x x -+-,得5(4)(25)(2)(710)(3)x x x x x x -+--=-+,整理,得4040x -=-,∴1x =, 检验,当1x =时,(2)(3)(4)0x x x -+-≠∴原方程的解是1x =.【变2】 设实数k 满足01k <<,解关于x 的分式方程:221211k k x x x x+-=--. 【解析】 由题意得,21(21)(1)kx k x -=+-,即21(21)21kx k x k -=+--,解得2x k =, I .如果12k =,即1x =,则2x k =为原方程的增根; II .如果01k <<且12k ≠,则2x k =为原方程的根. 题型二 分式方程的增根、无解及解范围问题【例3】 (1)若关于x 的方程4122ax x x =+--无解,则a 的值是___________. (2)若关于x 的分式方程311x a x x --=-无解,则a =___________. (3)若关于x 的方程1221(1)(2)x x ax x x x x ++-=+--+无解,求a 的值. 【解析】 (1)1或2;(2)1或2-;原方程化为(2)3a x +=,1x =、0x =、20a +=时,原方程均无解. (3)原方程化为(2)3a x +=-,①∵原方程无解,∴20a +=或10x -=,20x +=,得1x =,2x =-分别代入①,得5a =-,12a =-,综上知2a =-,5-或12-.【例4】 (1)若关于x 的方程2102x mx ++=-的根为正数,则m 取值范围为________. (2)若关于x 的分式方程32122x a x x =---的解是非负数,则a 取值范围是________. (3)若关于x 的方程1101ax x +-=-的解为正数,则a 取值范围为_______. 【解析】 (1)去分母,得:2(2)0x m x ++-=,化简可得:23mx -=, 由题意得:0x >且2x ≠,即:203m ->且223m-≠,解得:2m <且4m ≠-. (2)43a ≥-且23a ≠.(3)1a <且1a ≠-.【例5】 (1)若关于x 的分式方程26111mx x -=--有增根,则增根是________. (2)如果分式方程8877x kx x--=--出现了增根,那么k 的值为________. (3)若分式方程22111x m x x x x x++-=++产生增根,则m 的值为________. (4)如果解方程2251224m x x x x +-=-+-时出现增根,则m 的取值为________. 【解析】 (1)1x =;去分母,得:26(1)1m x x -+=-,移项,得:27(1)m x x -+=,当1x =-时,原方程无解,(分母为0的两种情况讨论),当1x =时为原方程的增根.(2)1;(3)2-或1;(4)12m =±.【变3】 ⑴若分式方程:11222kx x x-+=--有增根,则k 的值为__________ ⑵若关于x 的分式方程2213m x x x+-=-无解,则m 的值为_________ ⑶若分式方程212x ax +=--的解是正数,求a 的取值范围. ⑷解关于x 的方程()0x a cc d b x d-=+≠- 【解析】 ⑴解分式方程得:22x k =-,由于有增根,则2x =,∴222k =-,∴1k = ⑵解分式方程得:621x m =-+,由于方程无解,则0x =或3 当0x =时,m 无解,当3x =时,32m =-⑶解分式方程得:203ax -=>且2x ≠,∴2a <且4a ≠- ⑷∵0c d +≠∴ad bcx c d+=+ 题型三 8大技巧解分式方程对于某些特殊类型的分式方程,如果采用常规方法来解,往往会带来繁琐的运算。
方程与不等式综合复习—知识讲解及经典例题解析

中考总复习:方程与不等式综合复习—知识讲解及经典例题解析【考纲要求】1.会从定义上判断方程(组)的类型,并能根据定义的双重性解方程(组)和研究分式方程的增根情况;2.掌握解方程(组)的方法,明确解方程组的实质是“消元降次”、“化分式方程为整式方程”、“化无理式为有理式”;3.理解不等式的性质,一元一次不等式(组)的解法,在数轴上表示解集,以及求特殊解集;4.列方程(组)、列不等式(组)解决社会关注的热点问题;5. 解方程或不等式是中考的必考点,运用方程思想与不等式(组)解决实际问题是中考的难点和热点.【知识网络】【考点梳理】考点一、一元一次方程1.方程含有未知数的等式叫做方程.2.方程的解能使方程两边相等的未知数的值叫做方程的解.3.等式的性质(1)等式的两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式.(2)等式的两边都乘以(或除以)同一个数(除数不能是零),所得结果仍是等式.4.一元一次方程只含有一个未知数,并且未知数的最高次数是1的整式方程叫做一元一次方程,其中方程)为未知数,(0a x 0≠=+b ax 叫做一元一次方程的标准形式,a 是未知数x 的系数,b 是常数项. 5.一元一次方程解法的一般步骤整理方程 —— 去分母—— 去括号—— 移项—— 合并同类项——系数化为1——(检验方程的解).6.列一元一次方程解应用题(1)读题分析法:多用于“和,差,倍,分问题”仔细读题,找出表示相等关系的关键字,例如:“大,小,多,少,是,共,合,为,完成,增加,减少,配套”,利用这些关键字列出文字等式,并且根据题意设出未知数,最后利用题目中的量与量的关系填入代数式,得到方程.(2)画图分析法:多用于“行程问题”利用图形分析数学问题是数形结合思想在数学中的体现,仔细读题,依照题意画出有关图形,使图形各部分具有特定的含义,通过图形找相等关系是解决问题的关键,从而取得布列方程的依据,最后利用量与量之间的关系(可把未知数看作已知量),填入有关的代数式是获得方程的基础. 要点诠释:列方程解应用题的常用公式:(1)行程问题: 距离=速度×时间 时间距离速度= 速度距离时间=; (2)工程问题: 工作量=工效×工时 工时工作量工效=工效工作量工时=; (3)比率问题: 部分=全体×比率 全体部分比率= 比率部分全体=;(4)顺逆流问题: 顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度; (5)商品价格问题: 售价=定价·折·101,利润=售价-成本, %100⨯-=成本成本售价利润率;(6)周长、面积、体积问题:C 圆=2πR ,S 圆=πR 2,C 长方形=2(a+b),S 长方形=ab , C 正方形=4a ,S 正方形=a 2,S 环形=π(R 2-r 2),V 长方体=abh ,V 正方体=a 3,V 圆柱=πR 2h ,V 圆锥=31πR 2h.考点二、一元二次方程 1.一元二次方程含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程. 2.一元二次方程的一般形式)0(02≠=++a c bx ax ,它的特征是:等式左边是一个关于未知数x 的二次多项式,等式右边是零,其中2ax 叫做二次项,a 叫做二次项系数;bx 叫做一次项,b 叫做一次项系数;c 叫做常数项. 3.一元二次方程的解法(1)直接开平方法利用平方根的定义直接开平方求一元二次方程的解的方法叫做直接开平方法.直接开平方法适用于解形如b a x =+2)(的一元二次方程.根据平方根的定义可知,a x +是b 的平方根,当0≥b 时,b a x ±=+,b a x ±-=,当b<0时,方程没有实数根.(2)配方法配方法是一种重要的数学方法,它不仅在解一元二次方程上有所应用,而且在数学的其他领域也有着广泛的应用.配方法的理论根据是完全平方公式2222()a ab b a b ±+=±,把公式中的a 看做未知数x ,并用x 代替,则有222)(2b x b bx x ±=+±.(3)公式法公式法是用求根公式求一元二次方程的解的方法,它是解一元二次方程的一般方法.一元二次方程)0(02≠=++a c bx ax 的求根公式:21,240)2b x b ac a-±=-≥ (4)因式分解法因式分解法就是利用因式分解的手段,求出方程的解的方法,这种方法简单易行,是解一元二次方程最常用的方法.4.一元二次方程根的判别式一元二次方程)0(02≠=++a c bx ax 中,ac b 42-叫做一元二次方程)0(02≠=++a c bx ax 的根的判别式,通常用“∆”来表示,即ac b 42-=∆. 5.一元二次方程根与系数的关系如果方程)0(02≠=++a c bx ax 的两个实数根是21x x ,,那么ab x x -=+21,a cx x =21.也就是说,对于任何一个有实数根的一元二次方程,两根之和等于方程的一次项系数除以二次项系数所得的商的相反数;两根之积等于常数项除以二次项系数所得的商. 要点诠释:一元二次方程的解法中直接开平方法和因式分解法是特殊方法,比较简单,但不是所有的一元二次方程都能用这两种方法去解,配方法和公式法是普通方法,一元二次方程都可以用这两种方法去解.(1)判断一个方程是不是一元二次方程,应把它进行整理,化成一般形式后再进行判断,注意一元二次方程一般形式中0≠a .(2)用公式法和因式分解的方法解方程时要先化成一般形式. (3)用配方法时二次项系数要化1.(4)用直接开平方的方法时要记得取正、负.考点三、分式方程 1.分式方程分母里含有未知数的方程叫做分式方程. 2.解分式方程的一般方法解分式方程的思想是将“分式方程”转化为“整式方程”.它的一般解法是:①去分母,方程两边都乘以最简公分母;②解所得的整式方程;③验根:将所得的根代入最简公分母,若等于零,就是增根,应该舍去;若不等于零,就是原方程的根.口诀:“一化二解三检验”.3.分式方程的特殊解法换元法:换元法是中学数学中的一个重要的数学思想,其应用非常广泛,当分式方程具有某种特殊形式,一般的去分母不易解决时,可考虑用换元法.要点诠释:解分式方程时,有可能产生增根,增根一定适合分式方程转化后的整式方程,但增根不适合原方程,可使原方程的分母为零,因此必须验根.增根的产生的原因:对于分式方程,当分式中,分母的值为零时,无意义,所以分式方程,不允许未知数取那些使分母的值为零的值,即分式方程本身就隐含着分母不为零的条件.当把分式方程转化为整式方程以后,这种限制取消了,换言之,方程中未知数的值范围扩大了,如果转化后的整式方程的根恰好是原方程未知数的允许值之外的值,那么就会出现增根.考点四、二元一次方程(组)1.二元一次方程含有两个未知数,并且未知项的最高次数是1的整式方程叫做二元一次方程,它的一般形式是ax+by=c(a≠0,b≠0).2.二元一次方程的解使二元一次方程左右两边的值相等的一对未知数的值,叫做二元一次方程的一个解.3.二元一次方程组两个(或两个以上)二元一次方程合在一起,就组成了一个二元一次方程组.4.二元一次方程组的解使二元一次方程组的两个方程左右两边的值都相等的两个未知数的值,叫做二元一次方程组的解.5.二元一次方程组的解法①代入消元法;②加减消元法.6.三元一次方程(组)(1)三元一次方程把含有三个未知数,并且含有未知数的项的次数都是1的整式方程叫三元一次方程.(2)三元一次方程组由三个(或三个以上)一次方程组成,并且含有三个未知数的方程组,叫做三元一次方程组.要点诠释:二元一次方程组的解法:消元:将未知数的个数由多化少,逐一解决的想法,叫做消元思想.(1)代入消元法:将一个未知数用含有另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解,这种方法叫做代入消元法,简称代入法.(2)加减消元法:当两个方程中同一未知数的系数相反或相等时,将两个方程的两边分别相加或相减,就能消去这个未知数,这种方法叫做加减消元法,简称加减法.(3)二元一次方程组的解有三种情况,即有唯一解、无解、无限多解.教材中主要是研究有唯一解的情况,对于其他情况,可根据学生的接受能力给予渗透.考点五、不等式(组)1.不等式的概念(1)不等式用不等号表示不等关系的式子,叫做不等式.(2)不等式的解集对于一个含有未知数的不等式,任何一个适合这个不等式的未知数的值,都叫做这个不等式的解.对于一个含有未知数的不等式,它的所有解的集合叫做这个不等式的解的集合,简称这个不等式的解集.求不等式的解集的过程,叫做解不等式.2.不等式基本性质(1)不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变;(2)不等式两边都乘以(或除以)同一个正数,不等号的方向不变;(3)不等式两边都乘以(或除以)同一个负数,不等号的方向改变.3.一元一次不等式(1)一元一次不等式的概念一般地,不等式中只含有一个未知数,未知数的次数是1,且不等式的两边都是整式,这样的不等式叫做一元一次不等式.(2)一元一次不等式的解法解一元一次不等式的一般步骤:①去分母;②去括号;③移项;④合并同类项;⑤将x项的系数化为1.4.一元一次不等式组(1)一元一次不等式组的概念几个一元一次不等式合在一起,就组成了一个一元一次不等式组.几个一元一次不等式的解集的公共部分,叫做它们所组成的一元一次不等式组的解集.求不等式组的解集的过程,叫做解不等式组.当任何数x都不能使不等式同时成立,我们就说这个不等式组无解或其解为空集.(2)一元一次不等式组的解法①分别求出不等式组中各个不等式的解集;②利用数轴求出这些不等式的解集的公共部分,即这个不等式组的解集.由两个一元一次不等式组成的一元一次不等式组的解集的四种情况如下表.注:不等式有等号的在数轴上用实心圆点表示.要点诠释:用符号“<”“>”“≤ ”“≥”“≠”表示不等关系的式子,叫做不等式.(1)不等式的其他性质:①若a >b ,则b <a ;②若a >b ,b >c ,则a >c ;③若a ≥b ,且b ≥a ,•则a=b ;④若a 2≤0,则a=0;⑤若ab >0或0a b >,则a 、b 同号;⑥若ab <0或0ab<,则a 、b 异号. (2)任意两个实数a 、b 的大小关系:①a -b >O ⇔a >b ;②a -b=O ⇔a=b ;③a-b <O ⇔a <b .不等号具有方向性,其左右两边不能随意交换:但a <b 可转换为b >a ,c ≥d 可转换为d ≤c .【典型例题】类型一、方程的综合运用1.如图所示,是在同一坐标系内作出的一次函数y 1、y 2的图象1l 、2l ,设111y k x b =+,222y k x b =+,则方程组111222,y k x b y k x b =+⎧⎨=+⎩的解是( )不等式组 (其中a >b )图示 解集 口诀x ax b >⎧⎨>⎩ bax a > (同大取大)x ax b <⎧⎨<⎩ b ax b <(同小取小) x ax b <⎧⎨>⎩ bab x a << (大小取中间)x ax b >⎧⎨<⎩ba无解 (空集) (大大、小小找不到)A .2,2x y =-⎧⎨=⎩ B .2,3x y =-⎧⎨=⎩ C .3,3x y =-⎧⎨=⎩ D .3,4x y =-⎧⎨=⎩【思路点拨】图象1l 、2l 的交点的坐标就是方程组的解. 【答案】B ;【解析】由图可知图象1l 、2l 的交点的坐标为(-2,3),所以方程组111222,y k x b y k x b =+⎧⎨=+⎩的解为2,3.x y =-⎧⎨=⎩【总结升华】方程组与函数图象结合体现了数形结合的数学思想,这也是中考所考知识点的综合与相互渗透.2.近年来,由于受国际石油市场的影响,汽油价格不断上涨.请你根据下面的信息,帮小明计算今年5月份汽油的价格.如图所示.【思路点拨】根据“用150元给汽车加油今年比去年少18.75升”列方程. 【答案与解析】解:设今年5月份汽油价格为x 元/升,则去年5月份的汽油价格为(x-1.8)元/升.根据题意,得15015018.751.8x x-=-,整理,得21.814.40x x --=.解这个方程,得x 1=4.8,x 2=-3.经检验两根都为原方程的根,但x 2=-3不符合实际意义,故舍去. 【总结升华】解题的关键是从对话中挖掘出有效的数学信息,构造数学模型,从而解决问题,让同学们更进一步地体会到数学就在我们身边.类型二、解不等式(组)3.已知A =a+2,B =a 2-a+5,C =a 2+5a-19,其中a >2. (1)求证:B-A >0,并指出A 与B 的大小关系; (2)指出A 与C 哪个大?说明理由. 【思路点拨】计算B-A 结果和0比大小,从而判断A 与B 的大小;同理计算C-A ,根据结果来比较A 与C 的大小. 【答案与解析】(1)证明:B-A =a 2-2a+3=(a-1)2+2.∵ a >2,∴ (a-1)2>0,∴ (a-1)2+2>0.∴ a 2-2a+3>0,即B-A >0. 由此可得B >A .(2)解:C-A =a 2+4a-21=(a+7)(a-3). ∵ a >2,∴ a+7>0.当2<a <3时,a-3<0, ∴ (a+7)(a-3)<0.∴ 当2<a <3时,A 比C 大;当a =3时,a-3=0, ∴ (a+7)(a-3)=0.∴ 当a =3时,A 与C 一样大;当a >3时,a-3>0, ∴ (a+7)(a-3)>0.∴ 当a >3时,C 比A 大. 【总结升华】比较大小通常用作差法,结果和0比大小,此时常常用到因式分解或配方法. 本题考查了整式的减法、十字相乘法分解因式,渗透了求差比较大小的思路及分类讨论的思想. 举一反三:【变式1】已知:A=222+-a a ,B=2, C=422+-a a ,其中1>a .(1)求证:A-B>0; (2)试比较A 、B 、C 的大小关系,并说明理由. 【答案】(1)A-B=222222(21)a a a a a a -+-=-=- ∵1>a ,∴0,210a a >-> ∴A-B>0(2) ∵C-B=22224222(1)10a a a a a -+-=-+=-+> ∴C>B∵A-C=22222242(2)(1)a a a a a a a a -+-+-=+-=+- ∵1>a ,∴20,10a a +>-> ∴A>C>B【变式2】如图,要使输出值y 大于100,则输入的最小正整数x 是______.【答案】解:设n 为正整数,由题意得 ⎩⎨⎧>+⨯>-.1001342,100)12(5n n 解得⋅>887n 则n 可取的最小正整数为11.若x 为奇数,即x =21时,y =105; 若x 为偶数,即x =22时,y =101. ∴满足条件的最小正整数x 是21.类型三、方程(组)与不等式(组)的综合应用4.宏志高中高一年级近几年来招生人数逐年增加,去年达到550名,其中有面向全省招收的“宏志班”学生,也有一般普通班的学生.由于场地、师资等限制,今年招生最多比去年增加100人,其中普通班学生可多招20%,“宏志班”学生可多招10%,问今年最少可招收“宏志班”学生多少名? 【思路点拨】根据招生人数列等式,根据今年招生最多比去年增加100人列不等式. 【答案与解析】设去年招收“宏志班”学生x 名,普通班学生y 名,由条件得550,10%20%100.x y x y +=⎧⎨+≤⎩将y =550-x 代入不等式,可解得x ≥100,于是(1+10%)x ≥110. 故今年最少可招收“宏志班”学生110名. 【总结升华】本题属于列方程与不等式组综合题. 举一反三:【变式】为了加强学生的交通安全意识,某中学和交警大队联合举行了“我当一日小交警”活动,星期天选派部分学生到交通路口值勤,协助交通警察维持交通秩序,若每一个路口安排4人,那么还剩下78人;若每个路口安排8人,那么最后一个路口不足8人,但不少于4人.求这个中学共选派值勤学生多少人?共有多少个交通路口安排值勤?【答案】设这个学校选派值勤学生x 人,共到y 个交通路口值勤.根据题意得478,48(1)8.x y x y -=⎧⎨≤--<⎩①②由①可得x =4y+78,代入②,得4≤78+4y-8(y-1)<8,解得19.5<y ≤20.5.根据题意y 取20,这时x 为158,即学校派出的是158名学生,分到了20个交通路口安排值勤.5.已知关于x 的一元二次方程 2(2)(1)0m x m x m ---+=.(其中m 为实数) (1)若此方程的一个非零实数根为k , ① 当k = m 时,求m 的值;② 若记1()25m k k k+-+为y ,求y 与m 的关系式;(2)当14<m <2时,判断此方程的实数根的个数并说明理由. 【思路点拨】(1)由于k 为此方程的一个实数根,故把k 代入原方程,即可得到关于k 的一元二次方程,①把k=m 代入关于k 的方程,即可求出m 的值;②由于k 为原方程的非零实数根,故把方程两边同时除以k ,便可得到关于y 与m 的关系式; (2)先求出根的判别式,再根据m 的取值范围讨论△的取值即可. 【答案与解析】(1)∵ k 为2(2)(1)0m x m x m ---+=的实数根,∴ 2(2)(1)0m k m k m ---+=.※① 当k = m 时,∵ k 为非零实数根,∴ m ≠ 0,方程※两边都除以m ,得(2)(1)10m m m ---+=.整理,得 2320m m -+=.解得 11m =,22m =.∵ 2(2)(1)0m x m x m ---+=是关于x 的一元二次方程, ∴ m ≠ 2. ∴ m= 1.② ∵ k 为原方程的非零实数根,∴ 将方程※两边都除以k ,得(2)(1)0mm k m k---+=. 整理,得 1()21m k k m k +-=-.∴ 1()254y m k k m k=+-+=+.(2)解法一:22[(1)]4(2)3613(2)1m m m m m m m ∆=----=-++=--+ .当14<m <2时,m >0,2m -<0.∴ 3(2)m m -->0,3(2)1m m --+>1>0,Δ>0.∴ 当14<m <2时,此方程有两个不相等的实数根.解法二:直接分析14<m <2时,函数2(2)(1)y m x m x m =---+的图象,∵ 该函数的图象为抛物线,开口向下,与y 轴正半轴相交,∴ 该抛物线必与x 轴有两个不同交点.∴ 当14<m <2时,此方程有两个不相等的实数根.解法三:222[(1)]4(2)3613(1)4m m m m m m ∆=----=-++=--+.结合23(1)4m ∆=--+关于m 的图象可知,(如图)当14<m ≤1时,3716<∆≤4; 当1<m <2时,1<∆<4.∴ 当14<m <2时,∆>0.∴ 当14<m <2时,此方程有两个不相等的实数根. 【总结升华】和一元二次方程的根有关的问题往往可以借助于二次函数图象解决,数形结合使问题简化. 举一反三:【变式1】已知关于x 的一元二次方程2x 2+4x+k ﹣1=0有实数根,k 为正整数.(1)求k 的值(2)当此方程有两个非零的整数根时,将关于x 的二次函数y=2x 2+4x+k ﹣1的图象向右平移1个单位,向下平移2个单位,求平移后的图象的解析式.【答案】解:(1)∵方程2x 2+4x+k ﹣1=0有实数根,∴△=42﹣4×2×(k ﹣1)≥0,∴k≤3.又∵k 为正整数,∴k=1或2或3.(2)当此方程有两个非零的整数根时,当k=1时,方程为2x 2+4x=0,解得x 1=0,x 2=﹣2;不合题意,舍去.当k=2时,方程为2x 2+4x+1=0,解得x 1=﹣1+,x 2=﹣1﹣;不合题意,舍去. 当k=3时,方程为2x 2+4x+2=0,解得x 1=x 2=﹣1;符合题意.因此y=2x 2+4x+2的图象向右平移1个单位,向下平移2个单位,得出y=2x 2﹣2.【变式2】已知:关于x 的方程()0322=-+-+k x k x (1)求证:方程()0322=-+-+k x k x 总有实数根;(2)若方程()0322=-+-+k x k x 有一根大于5且小于7,求k 的整数值; (3)在⑵的条件下,对于一次函数b x y +=1和二次函数2y =()322-+-+k x k x ,当71<<-x 时,有21y y >,求b 的取值范围.【答案】⑴证明:∵△=(k -2)2-4(k -3)=k 2-4k +4-4k +12= k 2-8k +16=(k -4)2≥0∴此方程总有实根。
分式方程解法及增根问题例题

分式方程解法及增根问题例题分式方程解法及增根问题例题在代数学中,分式方程是指方程中含有分式的方程。
在解分式方程时,通常需要使用增根和减根的方法。
本文将介绍分式方程的解法以及增根问题,并提供一些例题进行讲解。
一、分式方程的解法解分式方程的一般步骤如下:1. 化简分式:将分式方程中的分式进行化简,使方程变得更加简单。
2. 通分:将方程中的分式通分,使得方程中的分母相同,便于计算和化简。
3. 求解:利用通分后的方程,进行运算和求解,得出方程的解。
对于分式方程 3/(x+2) = 1/(x-1),首先可以将分式进行通分,得到3(x-1) = (x+2)。
然后进行计算和求解,得出 x 的值。
二、增根问题在解分式方程时,经常会遇到增根问题。
增根指的是在解出方程的根之外,还需要添加一些特殊的值,以满足方程的条件。
解决增根问题的一般步骤如下:1. 求解得到普通根:按照正常的解方程方法,求解得到方程的普通根。
2. 分析增根条件:分析方程中是否存在增根的条件,例如分式方程中的分母不能为零等条件。
3. 添加增根:根据增根的条件,添加符合条件的增根,让方程能够满足所有条件。
对于分式方程 1/(x-3) = 2/(x+2),首先可以求解得到普通根 x=4。
然后分析发现,当 x=3 时,方程中的分母为零,因此需要添加增根 x=3,才能满足方程的条件。
三、例题讲解现在,我们通过一些例题来具体讲解分式方程的解法和增根问题。
例题1:解方程 2/(x-1) - 3/(x+2) = 1/(x-3)解题步骤:1. 化简得到通分形式:2(x+2) - 3(x-1) = (x-3)2. 化简得到普通根:2x+4 - 3x+3 = x-33. 求解得到普通根:-x+7 = x-3,得到 x=54. 分析增根条件:当 x=1 时,分式中的分母为零。
5. 添加增根:添加增根 x=1,使得方程满足所有条件。
例题2:解方程 1/(x-2) + 2/(x+1) = 3/(x-3)解题步骤:1. 化简得到通分形式:(x-2) + 2(x-3) = 3(x+1)2. 化简得到普通根:x-2 + 2x-6 = 3x+33. 求解得到普通根:3x-8 = 3x+3,得到矛盾4. 分析增根条件:由于方程中出现了矛盾,需要分析增根条件。
分式方程拓展训练培优提高

分式方程拓展训练培优提高分式方程拓展训练一、分式方程的特殊解法1.交叉相乘法例1:解方程:$\frac{1}{x}=\frac{3}{x+2}$解法:交叉相乘得到$x(x+2)=3$,化简后得到$x^2+2x-3=0$,解得$x=1$或$x=-3$,但$x=-3$不符合原方程的定义域,所以解为$x=1$。
2.化归法例2:解方程:$\frac{12}{x-1}-\frac{2}{x-1}=\frac{1}{x-1}$解法:通分得到$\frac{10}{x-1}=\frac{1}{x-1}$,解得$x=11$。
3.左边通分法例3:解方程:$\frac{x-8}{x-7}-\frac{1}{x+7-x}=\frac{8}{x-7-x}$解法:左边通分得到$\frac{(x-8)-(x+7)}{(x-7)(x+7)}=\frac{8}{-2x}$,化简得到$-x^2+2x-15=0$,解得$x=3$或$x=-5$,但$x=-5$不符合原方程的定义域,所以解为$x=3$。
4.分子对等法例4:解方程:$\frac{1}{a}+\frac{1}{a-1}=\frac{b}{x}+\frac{1}{x-1}$,其中$a\neq b$解法:分子对等得到$\frac{x-1+a-1}{ax(a-1)}=\frac{bx+1+abx-ab}{x(x-1)ax(a-1)}$,化简得到$abx^2+(a+b-2)bx+a-1=0$,由于$a\neq b$,所以系数$a+b-2=0$,解得$a=1$,代入原方程得到$x=2$。
5.观察比较法例5:解方程:$\frac{4x}{5x-2}+\frac{17}{5x-2}=\frac{5x+24}{4x}$解法:观察到分母都含有$5x-2$,设$5x-2=t$,则原方程化为$\frac{4}{t}+\frac{17}{t}=\frac{t+24}{4(t+2)}$,化简得到$t^2-50t+76=0$,解得$t=2$或$t=48$,代回得到$x=\frac{4}{5}$或$x=\frac{50}{9}$,但$x=\frac{50}{9}$不符合原方程的定义域,所以解为$x=\frac{4}{5}$。
可化为一元一次方程的分式方程分式方程及其解法

物体加热或冷却的过程。
工程问题
01
02
03
建筑设计
在建筑设计领域,分式方 程可以用来优化设计方案, 例如,计算建筑物的最佳 尺寸和比例。
机械设计
在机械设计中,分式方程 可以用来分析机器的性能 和效率,例如,计算齿轮 的转速和扭矩等。
电子工程
在电子工程中,分式方程 可以用来描述电路的工作 状态,例如,计算电流、 电压和电阻等。
解的验证
验证解的有效性
在得到分式方程的解后,应进行验证,确保解是有效的并且满足原方程。
考虑特殊情况
在验证解的过程中,应考虑特殊情况,如分母为零、无穷大等情况,以确保解 的全面性和准确性。
THANKS FOR WATCHING
感谢您的观看
分子有理化的方法是将分子与适当的表达式相乘,以消去根号或使分数形式简化。
分子有理化有助于简化方程,使其更容易求解。
03 可化为一元一次方程的分 式方程
方程的转化
1 2
将分式方程化为整式方程
通过通分、消去分母,将分式方程转化为整式方 程。
展开整式方程
将整式方程展开,整理成标的解
02
对代回后的分式方程进行化简,得到最终的分式方程的解。
检查解的合理性
03
对求出的分式方程的解进行检验,确保其满足原分式方程的定
义域和值域条件。
04 分式方程的解法
公式法
定义
公式法是一种通过对方程进行整 理,将其转化为标准的一元二次 方程,然后利用一元二次方程的 解公式来求解分式方程的方法。
定义域问题
确定分母不为零的解
在解分式方程时,需要特别注意定义 域问题,确保分母不为零,否则会导 致无解或解不合法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分式方程的特殊解法
四川省攀枝花市第二中学 617000 王琨
分式方程的解法除常规的去分母法和换元法之外,还有许多特殊的解法。
一、 分组通分法:
例1、 解方程 3
2411423---=---x x x x 分析:要整个方程一起通分,计算量大又易出错。
观察方程中分母的特点可联想分组通分求解。
略解:方程两边分别通分,相减得
)
3)(4(5)1)(2(5---=---x x x x x x 当05≠-x 时,)3)(4()1)(2(--=--x x x x ,解得2
51=
x 当05=-x 时,解得52=x 经检验,2
51=
x 52=x 都是原方程的解 二、 分离分式法:
例2、解方程43325421+++++=+++++x x x x x x x x 分析:每个分式的分母与分子相差1,利用这特点可采用分离分式法求解
略解:原方程可变形为
4
11311511211+-++-=+-++-x x x x 整理得
)4)(3(72)5)(2(72+++=+++x x x x x x 当072=+x 时,解得2
7-
=x 当072≠+x 时,方程无解 经检验2
7-
=x 是原方程的解 三、 韦达定理法: 例3、解方程71
)1(31)1(222=+++++x x x x 分析:该方程的常规解法是换元法,但通过进一步观察会发现含有未知数的两个代数式的和或积都等于常数,故联想韦达定理求解。
略解:设 1)1(22++=x x u 1
)1(32++=x x v 则易知u ,v 是方程0672=+-y y 的两个解,
解这个方程得1=u 6=v 或1 6==v u
⎪⎪⎩⎪⎪⎨⎧=++=++∴ (2) 61)1(3)1( 11)1(2 2
2x x x x 或⎪⎪⎩⎪⎪⎨⎧=++=++(4) 11)13((3) 61)1(222x x x x 由(2) 1)(得 方程无解
由(4) (3)得 2
1732 1±=x 经检验,它们满足原方程。
故原方程的解是
2173 1+=x 2
1732-=x 四、 配方法:
例4、解方程 )32(49422x
x x x -=+ 分析:观察发现方程左边恰好是
2x 与x 3的平方和,而右边又含有式子x
x 32-,故可通过配方的方法把左边写成2x 与x 3差的完全平方的形式,进而把原方程看作是以x x 32-为未知数的一元二次方程去求解。
略解:原方程可变形为
03)32(4)32(2=+---x
x x x 解之得132=-x
x 或 332=-x x 当132=-x
x 时,解之得712 1±=x 当332=-x
x 时,解之得1534 3±=x 经检验,它们都满足原方程。
故原方程的解是
71 1+=x 712-=x 1533+=x 1534-=x
五、 运用方程c b c x b x +=+
的解求解 方程c
b c x b x +=+的解不难通过去分母法求得为c x =1,c b x =2运用这一结论可以使具备此方程特征的这类方程的解法简捷。
例5、解方程 25991=+++
x x x
略解:原方程可变形为
21299+=+++x x x
x ∴ 29=+x
x 或 219=+x x 解 29=+x
x 得 31=x 解
219=+x x 得 122-=x 经检验,31=x ,122-=x 都是原方程的解。
六、 运用比例的性质求解
例6、解方程 3
23233332222-+=+--+x x x x x x 分析:方程左边的分子和分母中的二次项系数相同,一次项和常数项均为相反数;方程右边的二次项系数相同,常数项互为相反数,根据上述特点运用比例中的合分比性质来求解使解题过程大大简化。
略解:应用合分比性质得
6
46622
2x x x =- 去分母整理得 03223=-x x
∴0)32(2=-x x
∴01=x 2
32=x 经检验,它们都是原方程的解。