论-基于左手材料的高增益双频带微带天线

合集下载

《2024年基于电磁超材料的微带天线与MIMO天线性能改善研究》范文

《2024年基于电磁超材料的微带天线与MIMO天线性能改善研究》范文

《基于电磁超材料的微带天线与MIMO天线性能改善研究》篇一一、引言近年来,电磁超材料技术的发展推动了无线通信领域的研究。

微带天线与MIMO(多输入多输出)天线作为无线通信的关键组件,其性能的改善对提升无线通信系统的整体性能至关重要。

本文将针对基于电磁超材料的微带天线与MIMO天线的性能改善进行研究,旨在提升天线的辐射效率、增益和带宽等关键性能指标。

二、电磁超材料技术概述电磁超材料是一种具有特殊电磁性质的人工复合材料,其电磁参数可通过设计进行调控。

通过合理设计电磁超材料的结构,可以实现对电磁波的特殊控制,如相位操控、极化转换等。

这些特性使得电磁超材料在微带天线与MIMO天线的性能改善中具有广阔的应用前景。

三、基于电磁超材料的微带天线性能改善研究(一)研究背景及意义微带天线作为一种常见的无线通信天线,具有体积小、重量轻、低剖面等优点。

然而,其辐射效率、增益和带宽等性能指标仍有待提高。

通过引入电磁超材料,可以有效改善微带天线的性能,提高其在实际应用中的竞争力。

(二)研究方法及实验设计本研究采用电磁超材料作为微带天线的覆层或基底材料,通过仿真和实验相结合的方法,研究其对微带天线性能的影响。

实验设计包括制备不同结构的电磁超材料样品,将其应用于微带天线,并测试天线的性能指标。

(三)实验结果及分析实验结果表明,引入电磁超材料后,微带天线的辐射效率、增益和带宽等性能指标均得到显著提高。

通过分析不同结构电磁超材料对微带天线性能的影响,发现特定结构的电磁超材料对微带天线的改善效果更佳。

四、基于电磁超材料的MIMO天线性能改善研究(一)研究背景及意义MIMO天线通过在发送端和接收端使用多个天线,可以有效提高无线通信系统的信道容量和传输速率。

然而,MIMO天线之间存在相互干扰的问题,影响了其性能的发挥。

通过引入电磁超材料,可以降低MIMO天线之间的相互干扰,提高其整体性能。

(二)研究方法及实验设计本研究通过在MIMO天线的各个天线之间引入电磁超材料隔离层,以降低相互干扰。

左手材料天线

左手材料天线

左手材料天线左手材料天线是一种新型的天线结构,它利用左手材料的特殊性质来实现对电磁波的辐射和接收。

左手材料是一种具有负折射率的材料,它具有一些非常奇特的电磁性质,例如负折射率、负抗性、负色散等。

利用这些特性,左手材料天线可以实现一些传统天线无法实现的功能,例如超宽带、宽角度辐射、多频段工作等。

因此,左手材料天线在通信、雷达、无线电等领域具有广阔的应用前景。

左手材料天线的工作原理是基于左手材料的负折射率特性。

在传统的天线设计中,通常使用正折射率的材料来实现对电磁波的辐射和接收。

而左手材料天线则采用具有负折射率的左手材料来实现对电磁波的控制。

当电磁波穿过左手材料时,由于其负折射率特性,电磁波的传播方向会发生反转,从而实现对电磁波的控制。

这种特性使得左手材料天线可以实现一些传统天线无法实现的功能,例如超宽带、宽角度辐射、多频段工作等。

左手材料天线具有许多优点。

首先,由于左手材料具有负折射率特性,可以实现对电磁波的精确控制,从而实现更高效的辐射和接收。

其次,左手材料天线可以实现超宽带、宽角度辐射、多频段工作等功能,具有更广泛的应用范围。

此外,左手材料天线的制作工艺相对简单,成本较低,适合大规模生产和应用。

在实际应用中,左手材料天线已经得到了广泛的研究和应用。

在通信领域,左手材料天线可以实现更高效的信号辐射和接收,提高通信质量和覆盖范围。

在雷达领域,左手材料天线可以实现更宽波束宽度和更高分辨率,提高雷达探测和跟踪性能。

在无线电领域,左手材料天线可以实现多频段工作,适应不同频率的信号传输和接收。

总之,左手材料天线是一种具有广阔应用前景的新型天线结构。

它利用左手材料的特殊性质,实现了对电磁波的精确控制,可以实现超宽带、宽角度辐射、多频段工作等功能,具有更高效的辐射和接收特性。

在通信、雷达、无线电等领域具有重要的应用价值,将为相关领域的发展带来新的机遇和挑战。

随着左手材料天线技术的不断进步和完善,相信它将在未来发挥越来越重要的作用。

左手材料在天线中的运用研究进展

左手材料在天线中的运用研究进展

2023左手材料在天线中的运用研究进展CATALOGUE 目录•左手材料与天线的概述•左手材料在天线中的应用研究•左手材料在天线中运用的发展趋势•左手材料在天线中运用的电磁仿真分析•左手材料在天线中运用的实验研究•结论与展望01左手材料与天线的概述左手材料是一种具有负折射率、零传播常数和正群速度传播特性的电磁材料。

左手材料的定义具有负的介电常数和磁导率,电磁波在这种材料中传播时,电场、磁场和波矢量三者构成左手定则的关系。

左手材料的特性左手材料的定义与特性天线的定义天线是一种用于发射或接收无线电波的设备,能将电路中的高频电流转换为无线电波,并向外辐射或接收电磁波。

天线的分类根据不同的标准,天线有多种分类方式,如线天线和面天线、全向天线和定向天线、单极天线和偶极天线等。

天线的定义与分类提高天线的性能左手材料具有高透射性、低损耗等特点,可以用来提高天线的辐射效率、增益和带宽等性能。

开发新天线技术左手材料具有特殊的电磁波传播特性,可以开发出一些传统天线难以实现的新技术,如超宽带天线、高隔离度天线等。

左手材料在天线的应用意义02左手材料在天线中的应用研究左手材料在天线结构设计中的应用左手材料具有负折射率特性,可以改变天线的辐射模式和方向图。

通过将左手材料应用于天线结构中,可以实现对天线性能的有效调控。

左手材料对天线性能改善的应用左手材料具有高导电性和高磁导率,可以用来增强天线的辐射效率和缩小天线的尺寸。

将左手材料与右手材料结合使用,可以进一步提高天线的性能。

左手材料在天线结构中的应用使用左手材料可以拓展天线的带宽,提高天线的频率响应。

通过结合使用左手材料和右手材料,可以实现天线的宽频带和多频带工作。

左手材料对天线增益提升的应用由于左手材料的负折射率特性,使用它可以提高天线的增益和辐射效率。

在某些情况下,左手材料甚至可以使天线的增益提高一倍以上。

左手材料在天线的极化方式调控中的应用通过使用左手材料,可以实现对天线极化方式的调控。

左手结构材料在天线中的应用

左手结构材料在天线中的应用

学号:P200702040密级:微波透波增强特性及在天线中的应用研究Research on characteristics of enhanced microwave transmission and application in theantenna姓名刘义学科专业电磁场与微波技术研究方向电磁散射与目标识别指导教师李民权教授完成时间2012年4月独创性声明本人声明所呈交的学位论文是本人在导师指导下进行的研究工作及取得的研究成果。

据我所知,除了文中特别加以标注和致谢的地方外,论文中不包含其他人已经发表或撰写过的研究成果,也不包含为获得或其他教育机构的学位或证书而使用过的材料。

与我一同工作的同志对本研究所做的任何贡献均已在论文中作了明确的说明并表示谢意。

学位论文作者签名:签字日期:年月日学位论文版权使用授权书本学位论文作者完全了解有关保留、使用学位论文的规定,有权保留并向国家有关部门或机构送交论文的复印件和磁盘,允许论文被查阅和借阅。

本人授权可以将学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存、汇编学位论文。

(保密的学位论文在解密后适用本授权书)学位论文作者签名:导师签名:签字日期:年月日签字日期:年月日学位论文作者毕业去向:工作单位:电话:通讯地址:邮编:摘要自Ebbesen等人发现透波增强现象以来,金属-介质界面的电磁特性、金属孔/缝和周期皱褶结构透射特性的研究迅速成为研究者们的研究热点。

从而使得研究光电器件及其光学材料进入了一个新的时代。

然而大多数研究都聚焦在光学范围的贵金属上,微波范围内却很少研究。

而微波段的透波增强研究,在微波性能调控、新型微波器件及超导薄膜微波非线性器件设计等方面具有重要的意义。

本文主要基于微波段的透波增强研究,把透波增强现象应用于天线设计中,在分析几种透波增强结构基础上,提出了一种新型的平板馈电天线,由亚波长环形孔周围环绕凹槽结构组成。

基于左手材料的高增益双频带微带天线

基于左手材料的高增益双频带微带天线

103254-1第27卷第10期强激光与粒子束V o l .27,N o .102015年10月H I G H P OW E R L A S E R A N D P A R T I C L E B E AM SO c t .,2015基于左手材料的高增益双频带微带天线*赵亚娟1,2, 王东红1,2, 李宝毅1,2, 王 蓬1,2, 周必成1,2, 江 波1,2(1.中国电子科技集团公司第三十三研究所,太原030006;2.电磁防护材料及技术山西省重点实验室,太原030006) 摘 要: 左手材料具有平板透镜聚焦效应,突破电磁波的衍射极限实现倏逝波的放大,其覆盖于微带天线上方,可以提高天线增益㊂设计了一种应用于UH F 和W L A N 的双频微带天线,通过在接地板上刻蚀 己 字形弯折缝隙的方法实现双频谐振㊂为了改善微带天线低频段的增益,设计了一种新型的哑铃型结构双频段左手材料,将其作为微带天线的覆层㊂测试结果表明,覆层左手材料微带天线的低频段和高频段的峰值增益分别为2.1d B i 和7.4d B i㊂ 关键词: 左手材料; 微带天线; 双频天线; 带宽; 增益中图分类号: T N 828.6 文献标志码: A d o i :10.11884/H P L P B 201527.103254微带天线由于具有结构简单㊁易于制作㊁重量轻㊁体积小㊁成本低等诸多优点,在军事与民用中得到广泛应用,包括雷达天线㊁空间科学㊁生物医学领域及各种无线通信系统㊂然而,微带天线损耗大㊁增益低降低了辐射效率,因此提高微带天线增益成为研究的热点[1-4]㊂目前,无线通信的快速发展促使多频段共用变得普遍,对天线的研究者来说,设计出同时工作在多个频段,兼容多种协议的天线尤为重要㊂因此,双频微带天线引起了诸多学者的广泛关注[5-9]㊂左手材料(l e f t -h a n d e d m e t a m a t e r i a l s ,L HM s ),是指同时具有负介电常数和负磁导率,电场㊁磁场和波矢三者构成左手关系的人工周期结构材料㊂左手材料表现出许多奇异特性,如负折射㊁逆D o p pl e r 效应㊁逆C e r e n k o v 辐射效应㊁完美透镜等物理现象㊂左手材料由于具有诸多奇异特性,在微波通信领域有着广泛的应用价值,特别是有效改善天线的性能[10-14]㊂文献[12]设计了基于左手材料的小型化雷达阵列天线,采用左手材料有效地减小了天线的体积㊂文献[13]将单层左手材料作为天线的覆层,天线的带宽明显得到改善㊂文献[14]通过覆层添加多层左手材料介质,微带天线的方向性和增益均大大提高㊂本文设计了一种应用于UH F 和W L A N 的双频微带天线,其低频段和高频段的增益值分别为-1.2d B i 和3.3d B i,不能满足无线通信的需求㊂为了改善天线低频段的增益,设计了一种新型的双频段左手材料㊂利用左手材料平板透镜聚焦效应,覆层左手材料的微带天线的低频段和高频段的增益值分别提高了3.3d B i 和4.1d B i㊂1 双频微带天线F i g .1 S t r u c t u r e o f d u a l -b a n dm i c r o s t r i p a n t e n n a 图1 双频微带天线结构示意图设计的双频微带天线的结构如图1所示㊂天线包括三层,上层是 己 字形缝隙的接地板,中间层为介质基板,下层为微带馈线㊂在接地板上开有四个对称 己 字结构的弯折形槽,用来实现微带天线的双频谐振㊂接地板边缘开缝,实现天线的小型化㊂其中,低频段谐振由缝隙s l o t 1和s l o t 2共同激励,l 1+l 2+l 3+l 4+l 5的总尺寸约为λ1/4(λ1表示低频段的导波波长);高频段谐振由s l o t 1激励,其中l 1+l 2的总尺寸约为λ2/2(λ2表示高频段的导波波长)㊂设计的双频微带天线工作频率为0.9G H z 和2.4G H z ,采用介电常数为4.4,损耗角正切值为0.02,厚度为1.524mm 的R F 4介质基板㊂通过三维电磁仿真软件C S T 进行模拟仿真,天线参数为:l g =60mm ,w g =55mm ,l 1=10mm ,l 2=9.5mm ,l 3=10mm ,l 4=11.5mm ,l 5=16mm ,a =1.5mm ,b =2mm ,c =26mm ㊂*收稿日期:2015-07-10; 修订日期:2015-09-07基金项目:中国电子科技集团公司山西省重点实验室专项资金项目(Z X 15Z S 391);国家重点基础研究发展计划项目(2013C B A 01700);国家国际科技合作专项资助课题(2014D F R 10020)作者简介:赵亚娟(1989 ),女,硕士,工程师,从事电磁防护材料及技术研究;798710363@q q.c o m ㊂103254-2图2为双频微带天线的反射系数图㊂仿真结果表明,天线的工作频率为0.9G H z 和2.4G H z,带宽分别为5.5%(0.88~0.93G H z )和8.3%(2.25~2.45G H z )㊂双频段的峰值增益分别为-1.2d B i 和3.3d B i ,由于低频段的增益为负数,不能满足通信系统需求㊂因此,在微带天线上方添加左手材料,通过改善微带天线的辐射特性提高增益㊂F i g .2 R e f l e c t i o n c o e f f i c i e n t s o fm i c r o s t r i p an t e n n a 图2双频微带天线的反射系数F i g.3 S t r u c t u r e o fL HM s u n i t c e l l 图3 左手材料单元结构示意图2 基于左手材料的双频天线2.1 左手材料单元设计了一种新型的同向双开口环金属线复合的左手材料单元,单元结构如图3所示㊂外环实现低频段0.9G H z 谐振,内环实现高频段2.4G H z 谐振㊂采用相对介电常数为2.2,厚度为0.762mm 的R o ge r s 5880介质板,周期单元为20mmˑ20mm ㊂其中,内外单元环的周长为对应工作频率的1/2波长㊂使用C S T 三维电磁仿真软件对该结构的电磁波反射和透射行为进行模拟㊂采用N i c o l s o n -R o s s -W e i r (N RW )方法[15],先通过C S T 得到S 参数,再采用反演程序得到等效介电常数和等效磁导率随频率的变化曲线,结果如图4所示㊂由图4可知,电谐振在较宽范围内具有负介电常数,磁谐振在0.9G H z 和2.4G H z 处实现负磁导率㊂因此,谐振单元在0.9G H z 和2.4G H z 处实现了双负特性,即左手特性㊂F i g .4 S -pa r a m e t e r s i n v e r s i o n r e s u l t 图4 S 参数反演结果2.2基于左手材料的微带天线F i g .5 S t r u c t u r e o f d u a l -b a n dm i c r o s t r i p a n t e n n ab a s e do nL HM s 图5 基于左手材料的双频微带天线结构图负折射率材料能突破电磁波衍射极限,倏逝波在负折射率介质中具有放大效应㊂因此将左手材料作为微带天线的覆层,利用负折射特性制作的左手材料平板透镜,可以改善天线辐射特性,提高天线增益㊂基于左手材料的双频微带天线的结构如图5所示㊂上层由间隔为20mm 的3ˑ3个左手单元组成的左手材料,下层为双频微带天线,优化后的上下两层的空气层间距h 为4.5mm ㊂左手材料和双频微带天线介质基板的尺寸均为60mmˑ60mm (0.36λg ˑ0.36λg ,λg 为强激光与粒子束103254-3天线低频段的导波波长)㊂3 测试和仿真结果分别加工了微带天线和覆层左手材料的双频微带天线(对应天线A 和天线B ),图6为天线A 和天线B 的实物图㊂微带天线印制在相对介电常数为4.4,损耗角正切值为0.02,厚度为1.6mm 的F R 4介质基板上,左手材料印制在相对介电常数为2.2,损耗角正切值为0.0009,厚度为0.8mm 的R o ge r s 5880介质基板上㊂F i g.6 P h o t o s o f a n t e n n a s 图6天线实物图F i g.7 R e f l e c t i o nc o e f f i c i e n t s o f a n t e n n a sAa n dB 图7 天线A 和B 的反射系数图7为微带天线和覆层左手材料的双频微带天线(对应天线A 和天线B )测试和仿真的反射系数㊂仿真结果表明,天线A ㊁天线B 的带宽分别为5.5%(0.88~0.93G H z ),8.3%(2.25~2.45G H z )和12.2%(0.84~0.95G H z ),9.6%(2.21~2.44G H z),与天线A 相比,天线B 的低频段和高频段带宽分别增加了60MH z 和30MH z ㊂测量结果表明,天线A ㊁天线B 的带宽分别为5.5%(0.89~0.94G H z ),8.3%(2.28~2.48G H z )和13.3%(0.84~0.96G H z ),9.6%(2.22~2.45G H z),与天线A 相比,天线B 的低频段和高频段带宽分别增加了70MH z 和30MH z ㊂测量与仿真结果相比,天线的谐振点均略微偏移,主要是由加工误差㊁测量误差㊁接头焊接误差所引起的㊂图8为天线A 和B 的测试增益曲线㊂由图8(a)可知,与天线A 相比,天线B 低频段的峰值增益提高了3.3d B i ㊂由图8(b )可知,与天线A 相比,天线B 高频段的峰值增益提高了4.1d B i㊂因此,在工作频段范围内,天线B 的增益均高于天线A 的增益,双频段的峰值增益分别提高了3.3d B i 和4.1d B i㊂F i g.8 G a i n s o f a n t e n n a sAa n dB 图8 天线A 和B 的增益4 结 论本文设计了一种应用于UH F 和W L A N 的双频微带天线,利用接地板开缝的方法实现双频谐振㊂通过在赵亚娟等:基于左手材料的高增益双频带微带天线强激光与粒子束天线覆层添加同向双开口环金属线复合周期结构的左手材料,改善了天线低频段的增益㊂结果表明:与未覆层的微带天线相比,覆层左手材料微带天线在低频段和高频段的增益分别提高了3.3d B i和4.1d B i㊂参考文献:[1] Y a n g L i u f e n g,W a n g T i n g.M E M S p a t c h a n t e n n a a r r a y w i t hb r o a d b a n d a n dh i g h-g a i n o n d o u b l e-l a y e r s i l i c o nw a f e r s[J].H i g hP o w e rL a s e ra n dP a r t i c l eB e a m s,2015,27:024129.[2] B j o r n i n e nT,S y d a n h e i m oL,U k k o n e nL,e t a l.A d v a n c e s i n a n t e n n a d e s i g n s f o rUH FR F I Dt a g sm o u n t a b l e o n c o n d u c t i v e i t e m s[J].I E E EA n t e n n a s a n dP r o p a g a t i o nM a g a z i n e,2014,56(1):79-103.[3]李建龙,邵文毅,曾冰,等.微谐振环结构体内太赫兹增强效应[J].强激光与粒子束,2013,25(6):1513-1518.(L i J i a n l o n g,S h a oW e n y i,Z e n g B i n g,e t a l.T e r a h e r t z e n h a n c e m e n t e f f e c t i nm i c r o-r i n g r e s o n a t o r s t r u c t u r e.H i g hP o w e rL a s e ra n dP a r t i c l eB e a m s,2013,25(6): 1513-1518)[4] R i v e r a-A l b i n oA,B a l a n i sC A.G a i ne n h a n c e m e n t i n m i c r o s t r i pp a t c ha n t e n n a su s i n g h y b r i ds u b s t r a t e s[J].I E E EA n t e n n a sa n d W i r e l e s sP r o p a g a t i o nL e t t e r s,2013,12:476-479.[5] L uJ u i h a n,H u a n g B i n g j a n g.P l a n a r c o m p a c t s l o t a n t e n n aw i t hm u l t i-b a n do p e r a t i o n f o rW i MA Xa p p l i c a t i o n[J].I E E ET r a n s o nA n t e n n a sa n dP r o p a g a t i o n,2013,61(3):1411-1414.[6] M o h a r a m z a d e hE,J a v a nA M.T r i p l e-b a n d f r e q u e n c y-s e l e c t i v e s u r f a c e s t o e n h a n c e g a i no fX-b a n d t r i a n g l e s l o t a n t e n n a[J].I E E EA n t e n n a sa n dW i r e l e s sP r o p a g a t i o nL e t t e r s,2014,12:1145-1148.[7] B o d M,H a s s a n iH R,S a m a d iT.C o m p a c tUW B p r i n t e d s l o t a n t e n n aw i t h e x t r a b l u e t o o t h,G S Ma n dG P Sb a n d s[J].I E E EA n t e n n a s a n dW i r e l e s sP r o p a g a t i o nL e t t e r s,2012,11:531-534.[8] S u nX u b a o,X i e J u n,C a oM a o y o n g.R F I D t a g a n t e n n a d e s i g nb a s e d o n a n i m p r o v e d c o u p l i n g s o u r c e s h a p e[J].I E E EA n t e n n a s a n d W i r e l e s sP r o p a g a t i o nL e t t e r s,2013,12:532-534.[9]李伟,耿友林.新型无线局域网双频段微带贴片天线设计[J].强激光与粒子束,2011,23(3):717-720.(L iW e i,G e n g Y o u l i n.D e s i g no fn o v e l d u a l-b a n dm i c r o s t r i p a n t e n n a f o rw i r e l e s s l o c a l a r e a n e t w o r k a p p l i c a t i o n s.H i g hP o w e rL a s e r a n dP a r t i c l eB e a m s,2011,23(3):717-720)[10]郑秋容,袁乃昌,付云起.紧凑型电磁带隙结构在短路微带天线中的应用[J].电子与信息学报,2007,29(6):1500-1502.(Z h e n g Q i-u r o n g,Y u a nN a i c h a n g,F uY u n q i.A p p l i c a t i o no f c o m p a c t e l e c t r o m a g n e t i c b a n d-g a p s t r u c t u r e t o s h o r t e dm i c r o-s t r i p a n t e n n a.J o u r n a l o fE l e c t r o n i c s a n dI n f o r m a t i o nT e c h n o l o g y,2007,29(6):1500-1502)[11]杨欢欢,曹祥玉,高军,等.一种超薄吸波材料及其在缝隙天线中的应用[J].电子与信息学报,2012,34(11):2790-2794.(Y a n g H u a n-h u a n,C a oX i a n g y u,G a o J u n,e t a l.A nu l t r a-t h i nm e t a m a t e r i a l a b s o r b e r a n d i t s a p p l i c a t i o n i n r e d u c i n g R C So f s l o t a n t e n n a.J o u r n a l o fE l e c t r o n i c s a n dI n f o r m a t i o nT e c h n o l o g y,2012,34(11):2790-2794)[12]刘海文,朱爽爽,文品,等.基于发卡式开口谐振环的柔性双频带超材料[J].物理学报,2015,64:038101.(L i u H a i w e n,Z h uS h u a n g-s h u a n g,W e nP i n,e t a l.A f l e x i b l e d u a l-b a n dm e t a m a t e r i a l b a s e d o n h a i r p i n s p l i t-r i n g r e s o n a t o r s.A c t a P h y s i c aS i n i c a,2015,64:038101) [13]田子建,陈文超,樊京.基于双Σ形金属条的双向左手材料[J].物理学报,2013,62:074102.(T i a nZ i J i a n,C h e n W e n C h a o,F a nJ i n g.T w o-d i m e n s i o n a l i n c i d e n t l e f t-h a n d e dm e t a m a t e r i a l c o m p o s e do f d o u b l eΣs h a p e dm e t a l s t r i p s.A c t aP h y s i c aS i n i c a,2013,62:074102) [14] X uH e x i u,W a n g G u a n g m i n g,L i uQ u.A m e t a m a t e r i a lw i t h m u f t i-b a n d l e f th a n d e dc h a r a c t e r i s t i c[J].A p p l i e dP h y s i c s,2012,107(2):261-268.[15]S m i t hDR,V i e rDC,K o s c h n y T,e t a l.E l e c t r o m a g n e t i c p a r a m e t e r r e t r i e v a l f r o mi n h o m o g e n e o u sm e t a m a t e r i a l s[J].A p p l i e dP h y s i c s,2005,71:036617.E n h a n c e m e n t o f g a i n f o r d u a l-b a n dm i c r o s t r i p a n t e n n ab a s e do n l e f t-h a n d e dm a t e r i a l sZ h a oY a j u a n1,2, W a n g D o n g h o n g1,2, L i B a o y i1,2, W a n g P e n g1,2, Z h o uB i c h e n g1,2,J i a n g B o1,2(1.N o.33R e s e a r c h I n s t i t u t e o f C h i n aE l e c t r o n i c sT e c h n o l o g y G r o u p C o r p o r a t i o n,T a i y u a n030006,C h i n a;2.E l e c t r o m a g n e t i c P r o t e c t i o n M a t e r i a l s a n dT e c h n o l o g y K e y L a b o r a t o r y o f S h a n x iP r o v i n c e,T a i y u a n030006,C h i n a)A b s t r a c t: L e f t-h a n d e dm a t e r i a l s(L HM s)p r e s e n t f l a t l e n se f f e c tw h i c hc a ne n h a n c ee v a n e s c e n tw a v eb y b r e a k i n g t h ed i f-f r a c t i o n l i m i t o f e l e c t r o m a g n e t i cw a v e.A n dm i c r o s t r i p a n t e n n a g a i nc a nb e i m p r o v e db a s e do nL HM s.I n t h e p a p e r,ad u a l-f r e-q u e n c y m i c r o s t r i p a n t e n n a i sm e n t i o n e d.M e a n d e r s l o t s a r e e t c h e do n t h e g r o u n d p l a n e t o p r o v i d e t h e d u a l-b a n do p e r a t i o n.I no r-d e r t o i m p r o v e g a i no f t h e a n t e n n a a t t h e l o w e r f r e q u e n c y,an o v e l p e r i o d i c s t r u c t u r eo fL HM s i sd e s i g n e d t oc o v e r t h e a n t e n n a. T h em e a s u r e m e n t r e s u l t s s h o wt h a t t h e g a i n o fm i c r o s t r i p a n t e n n aw i t hL HM s i s2.1dB i a n d7.4d B i a t t h e t w o b a n d s r e s p e c t i v e-l y.K e y w o r d s:l e f t-h a n d e dm a t e r i a l s; m i c r o s t r i p a n t e n n a;d u a l-b a n da n t e n n a;b a n d;g a i nP A C S:41.20.J b;42.25.B s;78.67.P t;84.40.B a103254-4。

基于左手材料的微带贴片天线

基于左手材料的微带贴片天线
t h a t t h e e l e c t r i c p e r f o r ma n c e o f t h e p r o p o s e d a n t e n n a i s b e t t e r t h a n t h e c o n v e n t i o n a l p a t c h a n t e n n a ,a n d t h e p r o p o s e d a n t e n n a s i z e i s o n l y 6 7 . 5 o f t h e c o n v e n t i o n a l a n t e n n a . Ke y wo r d s : l e f t - h a n d e d ma t e r i a l ;p h a s e c o mp e n s a t i o n;mi c r o s t r i p a n t e n n a !mi n i a t u r i z a t i o n
Wu Yi we i .L i S i mi n
( S c h o o l o f I n f o r ma t i o n a n d C o mmu n i c a t i o n E n g i n e e i r n g,Gu i l i n Un i v e r s i t y o f El e c t r o n i c T e c h n o l o g y,Gu i l i n 5 4 1 0 0 4 ,Ch i n a )
左手结构 , 利 用 左 手 材 料 的相 位 补 偿 特 性 , 突 破 了传 统 微 带 天 线 的 半 波 长 限制 , 实 现 了 微 带 天 线 的 小 型 化 设 计 。利 用 电磁 仿 真 和 实 验分 析 了 天 线 的 性 能 , 实验结果表 明 , 加载左手材料结构 的微带贴 片天线 的电性能优于传 统贴片天线 , 且 尺 寸仅 为传 统 天 线 的 6 7 . 5 。

《基于电磁超材料的微带天线与MIMO天线性能改善研究》范文

《基于电磁超材料的微带天线与MIMO天线性能改善研究》范文

《基于电磁超材料的微带天线与MIMO天线性能改善研究》篇一一、引言随着无线通信技术的快速发展,天线作为无线通信系统中的关键部分,其性能的优劣直接影响到整个系统的性能。

微带天线因其体积小、重量轻、低剖面等优点被广泛应用于无线通信领域。

然而,其带宽窄、效率低等问题也限制了其应用范围。

近年来,电磁超材料的发展为改善微带天线的性能提供了新的思路。

本文旨在研究基于电磁超材料的微带天线与MIMO(多输入多输出)天线的性能改善,以提高无线通信系统的整体性能。

二、电磁超材料与微带天线的结合电磁超材料是一种具有特殊电磁性质的人工复合材料,其具有负介电常数和负磁导率等特性,能够有效改变电磁波的传播行为。

将电磁超材料与微带天线结合,可以改善微带天线的辐射性能,提高其带宽和效率。

本文提出了一种基于电磁超材料的微带天线结构。

在该结构中,将电磁超材料置于微带天线的辐射贴片与接地平面之间,利用电磁超材料的特殊性质,有效调整电磁波的传播路径,从而改善微带天线的辐射性能。

通过仿真和实验验证,该结构能够有效提高微带天线的带宽和效率,降低天线的高度。

三、MIMO天线性能改善研究MIMO技术通过在发送端和接收端使用多个天线,能够提高无线通信系统的传输速率和可靠性。

然而,MIMO天线系统中存在的信道间干扰问题会影响其性能。

本文将基于电磁超材料的微带天线应用于MIMO天线系统中,以改善其性能。

在MIMO天线系统中,采用基于电磁超材料的微带天线作为天线单元。

通过合理布局和优化天线单元的间距、极化方式等参数,可以有效降低信道间干扰,提高MIMO天线的传输速率和可靠性。

同时,利用电磁超材料的特殊性质,还可以进一步优化MIMO天线的辐射性能,提高其整体性能。

四、实验结果与分析本文通过仿真和实验验证了基于电磁超材料的微带天线与MIMO天线的性能改善效果。

在微带天线方面,通过将电磁超材料与微带天线结合,有效提高了天线的带宽和效率,降低了天线的高度。

在MIMO天线方面,通过优化天线单元的布局和参数,降低了信道间干扰,提高了传输速率和可靠性。

(整理)左手材料在天线中的应用研究进展

(整理)左手材料在天线中的应用研究进展

左手材料在天线中的应用研究进展摘要:首先从理论上解释了左手材料用于天线设计时实现天线高指向性、高效率、小型化以及大的扫描范围的原因,然后重点介绍了基于金属谐振结构和复合左/右手传输线(CRLH TL)结构的左手材料用于天线设计时的研究进展,显示了金属谐振结构在提高天线方向性、增大天线增益、减小天线体积等方面具有很大优势,而CRLH TL 结构在提高天线带宽、增加天线频带、增大漏波天线扫描范围等方面具有潜在应用价值。

关键词:左手材料;天线;金属谐振结构;复合左/右手传输线结构0 引言左手材料(Left-Handed Material ,LHM)又被称为双负介质,它是一类在一定的频率下同时具有负磁导率和负介电常数的新型人工电磁结构材料。

1968年,前苏联物理学家Veselago[1]首次从理论上研究了电磁波在介电常数和磁导率同时为负的物质中传播的奇异特性,如负折射率等。

20世纪90年代,英国物理学家Pendry 等人相继提出了用周期性金属棒结构(Rod )[2]和金属谐振环结构(SRR )[3]分别来实现负介电常数和负磁导率的设想,为左手材料的实现提供了基础。

依据Pendry 的设计思想,2000年Smith 等人[4]把以上两种结构有规律地排列在一起,首次制出了在微波段同时具有负介电常数和负磁导率的材料。

而Pendry [5]关于双负介质平板可以放大或恢复倏逝波来实现完美聚焦成像的建议为左手材料的研究起到了进一步的推动作用。

2002年,美国加州大学的Itoh 教授[6]提出了一种新的设计左手材料的方法—左手传输线,它是用串联交指电容来实现的。

几乎同时加拿大多伦多大学的Eleftheriades 教授[7]提出了周期加载串联电容和并联电感组成的平面一维左手传输线结构。

2004年,Itoh 等人[8]又提出了复合左/右手传输线(CRLH TL )概念,这开创了一个全新的研究领域,复合左/右手传输线是最有可能首先得到应用的左手材料。

单环SRR型左手材料对微带天线增益提高的研究

单环SRR型左手材料对微带天线增益提高的研究

单环SRR型左手材料对微带天线增益提高的研究摘要:本文以左手材料为研究背景,研究其应用于微带天线对增益特性的影响。

通过分析矩形微带天线的特性参数得出要求设计的微带贴片尺寸。

又在其上加载单环SRR型左手材料天线罩并对其进行仿真,分析其对天线增益的提高效果。

关键词:左手材料微带天线增益提高作为一种新型的电磁材料,左手材料具有独特的电磁特性,如负折射率,负多普勒效应,逆楔伦可夫辐射等。

虽然左手材料仅在最近十年才得到深入研究,但国内外众多科研小组在这个领域已开展了大量的研究工作,并取得了丰硕的成果。

与传统天线相比,利用左手材料及单负材料设计出的新型天线具有性能和结构上的双重优势,在商业和军事上均有广阔的应用前景。

本文首先分析了矩形微带天线的特性参数,以此设计矩形微带天线。

并设计了单环SRR型左手材料的天线罩并对其进行仿真。

得出加载该SRR环的天线罩一定程度上提高了天线增益。

1、微带天线概述1.1 微带辐射贴片尺寸设介质基板的介电常数为,对于工作频率的矩形微带天线,其高效率辐射贴片的宽度W为:其中c为光速。

辐射贴片的长度一般取是介质的导波波长,即:考虑边缘缩短效应,实际辐射单元长度L为:式中为有效介电常数,为等效辐射缝隙长度。

它们可分别用下式计算:1.2 频带宽度和增益微带天线的设计过程中,带宽和增益都影响其应用的重要指标。

天线的频带宽度以驻波系数小于某个给定值,对应的频率范围来确定,即其中Q为微带天线的品质因数。

工程实践中,由于实际的,故品质因数可由近似估计,即根据微带天线尺寸,可以近似得到天线的增益G可由下式计算:其中,为天线的效率,D为天线的方向系数。

2、加载天线罩前矩形微带天线参数2.1 加载前矩形微带天线的HFSS仿真按上述求解对矩形微带天线的参数进行变量定义,见表1。

表1 变量定义图1 矩形微带天线模型图2 矩形微带天线S11参数图3 矩形微带天线3D增益方向图图4 矩形微带天线的远场主极化面方向图(E面、H面)由图2可见,矩形微带天线的频点在2.45G,回波损耗-26.7dB,说明天线谐振特性很好,满足工程上的要求。

探讨左手材料在通信系统的应用

探讨左手材料在通信系统的应用

探讨左手材料在通信系统的应用1 概述在通信领域,传统天线的尺寸受制于谐振频率,并且效率和信噪比较低,将左手材料和右手材料按一定的比例和结构分布在传输线中,可以得到具有超强电磁波聚焦特性的左右手复合材料,通过改变其本构关系参数,可以实现天线的小型化,减小插入损耗,增强天线增益和实现更宽的工作带宽,具有较好的通带特性。

本文通过分析左手材料对通信系统各个器件性能的改善,论述了左手材料在通信系统的应用前景。

2 左手材料在微波器件中的应用2.1 定向耦合器传统的微带天线采用电容间隙耦合,其尺寸由偶、奇模阻抗确定,而左右手复合材料具有负谐振特性,能够制成平行耦合滤波器,通过在普通耦合器中加载具有相位超前特性的左右手复合材料,可以消除耦合端与直通端之间存在的90°的相移,使耦合端与直通端输出相移相等。

由于左手传输线的相速和群速方向相反,左手传输线可以对右手传输线的相位滞后进行补偿,通过调整左右手复合传输线与右手传输线之间的距离,可以实现在一定频率范围内无相差,从而实现分功率分配器的功能。

2.2 新型滤波器由于左手材料中不可避免地会引入右手寄生参量,所以一般的左手材料均为左右手复合材料,当二者处于平衡状态时,就构成了一个左手高通网络和右手低通网络的复合结构,通过调节其本构参数,就可以获得超带宽滤波器。

左右手复合传输线与普通传输线掺杂时,具有良好的耦合性,可以拓宽滤波器的通频带,这种滤波器是通过贴片电容和贴片电感来实现的。

3 左手材料在天线中的应用3.1 天线小型化对于普通的贴片天线,在贴片两端电场相位相反,这相当于一个水平放置的偶极子,远场的主瓣沿垂直于贴片的方向辐射。

由于左手材料具有后向波特性,贴片两端辐射的电场几乎同相位,根据边缘场的叠加性原理,这等效于一个垂直放置的单极子,远场的主瓣沿两侧向外辐射。

传统的天线主要是在牺牲天线效率、带宽和增益的前提下,利用集总参数元件或较大的介电常数来实现天线的小型化。

左手材料在天线中的运用

左手材料在天线中的运用

左手材料在无线通信领域的应用前景
总结词
详细描述
左手材料在无线通信领域具有广泛的应用前 景,将为无线通信技术的发展带来革命性的 变革。
左手材料的特殊电磁特性使其在无线通信领 域具有广泛的应用价值,例如在提高无线通 信设备的灵敏度、信号传输速度和抗干扰能
力等方面,都将发挥重要作用。
左手材料在雷达系统中的应用前景
左手材料的特性
这种材料具有负的折射率,对电磁波的传播方向与电场和磁场的 方向都与常规右手材料相反。
左手材料的分类
根据左手材料的特性,可以将其分为活性左手材料和被动左手材料。
02
左手材料在天线设计中的优势
提高天线效率
左手材料的高电导率和磁导率可以减少电磁波在传播过程中的能量损失,提高电 磁波的传输效率,从而提高天线的效率。
• 制造方法:目前常用的制造方法包括真空蒸发沉积、纳米压印、化学气 相沉积等,但这些方法普遍存在效率低、成本高的问题。
• 尺寸控制:制造过程中对左手材料尺寸的控制也是一大挑战,尤其是对 于纳米级别的材料。
• 解决策略:研究者们正在开发新的制造工艺,以提高加工效率并降低成 本。例如,利用先进的纳米压印和化学气相沉积技术,可以更精确地控 制材料的尺寸和形状。此外,通过引入新型设备,也能提高生产效率。
通过利用左手材料的特殊性质,可以将电磁波聚集在特定 的方向上,提高天线的发射效率和接收灵敏度。
降低天线的雷达散射截面
左手材料可以改变电磁波的传播方向 ,使电磁波散射到各个方向,从而降 低天线的雷达散射截面。
VS
降低天线的雷达散射截面可以减少被 敌方雷达发现的可能性,提高天线的 隐蔽性和生存能力。
03
THANK S感谢观看
左手材料的特殊性质可以改变电磁波的相位和振幅,使天线更加高效地发射和接 收电磁波。

基于微带结构双左手频带左手材料的研究

基于微带结构双左手频带左手材料的研究


则 ,传播 的群 速度 和相速 度方 向相反 ,从 而 呈 现 出许
多反 常 的物 理 现 象 ,如 逆 D p lr 移 、逆 C rn o o pe 频 ee k v 辐射 、逆 S e 折射 ,完美透镜 现象 。 nl l
普 通 的混合 左右 手材 料 只有一个 左 手频 带 ,文 中 研究 的左 手材料 具有 双左 手频 带 ,可 以应用 于 制成 双
无损耗传统 传输 线 模 型 ,可 以用 一 个 串联 电感 和
K e wo d c mp st i h l f— a d d; d a e a d y rs o o i rg t e h n e e / t u ll f b n s; d f c e r u d sr c u e t e e t d g o n tu t r s
左 手材 料 ( e —h n e tm t il,L L f a dd Me ae as HMs 是 t a r )
频甚 至 四频器件 。双左手 频带 左手 材料 的研 究 对左 手
材料 的发 展 以及 器 件性 能 的提高具 有重 要 的意 义 。
图 1 左 手传 输 线等 效 模 型
z 『 一一 一一 一一 一一 一一 一一 一一一 一 一一 ・
。 I
1 复 合 左 右 手 材 料 的 设 计 原 理

的同时 ,不可 避 免地 存 在 右 手材 料 的 寄生 串联 电感 £
和并 联 电容 C的效应 。 因此用 来表 示 左手 材 料更 为一
种介 电常数 和磁导 率 同时为 负数 的人 工 周期 材 。电场 分 量 、磁 场 分 量 与 波 矢 量 满 足 左 手 定

般 的模 型是混合 左右手传输线 模型 ,如图 2所示

左手材料在天线中的运用研究进展(doc 12页)

左手材料在天线中的运用研究进展(doc 12页)

左手材料在天线中的运用研究进展(doc 12页)左手材料在天线中的应用研究进展摘要:首先从理论上解释了左手材料用于天线设计时实现天线高指向性、高效率、小型化以及大的扫描范围的原因,然后重点介绍了基于金属谐振结构和复合左/右手传输线(CRLH TL)结构的左手材料用于天线设计时的研究进展,显示了金属谐振结构在提高天线方向性、增大天线增益、减小天线体积等方面具有很大优势,而CRLH TL结构在提高天线带宽、增加天线频带、增大漏波天线扫描范围等方面具有潜在应用价值。

关键词:左手材料;天线;金属谐振结构;复合左/右手传输线结构0引言左手材料(Left-Handed Material,LHM)又被称为双负介质,它是一类在一定的频率下同时能首先得到应用的左手材料。

左手材料在微波平板聚焦透镜、带通滤波器、耦合器、天线以及隐身衣等方面具有广泛的应用前景。

特别是在天线上的应用更具吸引力,因为它具有传统天线无法比拟的优点,它可以提高天线的方向性系数和增益、增大天线辐射效率、增加天线带宽、减小天线系统尺寸等。

1 左手材料天线1.1 高指向性利用左手材料奇异的电磁特性,可以实现左手材料平板透镜聚焦效应,从而可以改善天线辐射特性,提高天线的方向性,进而增大辐射增益。

Enoch等人[9]最早研究了具有零折射特性的左手材料在天线定向辐射上的应用。

他们指出在适当的条件下,嵌入到平板左手材料的全向天线向自由空间辐射的电磁波会被聚集在法线方向附近,从而减小了天线的半波瓣宽度,提高了天线的方向性,增大了其增益。

他们考虑了一种最简单的左手材料:薄金属网孔的线介质。

实验和理论的研究表明这种连续的线介质具有等离子频率的特性,在微波频段其等效介电常数为:221peff ωωε=-(1)当ω很接近ωp 时,可以看到其等效介电常数接近于0,从而实现了零折射特性。

下图给出了简单的几何光学原理解释:图1 等效折射率接近零的左手材料平板中源的辐射示意图Fig.1 The emission of a source inside a slab of LHM whose optical index is close to zero.把一辐射源嵌入到折射率接近于零的左手材料平板中,其周围为均匀各向同性的介质,可以看到所有的折射光线基本上都是沿着法线方向出去,这一现象可以用斯奈尔定律解释[10]:meta inout vac n sin sin n θθ=(2)在这里θout 为折射角,θin 为入射角。

“巨”型左手材料微带天线优化设计研究的开题报告

“巨”型左手材料微带天线优化设计研究的开题报告

“巨”型左手材料微带天线优化设计研究的开题报告一、研究背景及意义微波天线在通信、雷达等领域中具有重要作用,其性能的优化设计是天线工程师和科学家不断探索的课题。

在微带天线中,由于其具有小型化、低成本等优点,越来越受到研究者的关注。

近年来,随着5G通信的到来,对天线功率和频率响应等方面的要求更高,因此对微带天线的优化设计更为迫切。

本课题基于对巨型左手材料(metamaterials)的研究,旨在研究巨型左手材料微带天线的优化设计。

巨型左手材料是一种人工制造的材料,其具有一些传统材料不具备的性质,例如负折射率(negative refraction index)和负阻抗(negative impedance)。

巨型左手材料微带天线的设计涉及到天线几何结构、材料特性和天线性能等多个因素,因此具有研究的重要性和实用性。

二、研究方法本课题将通过仿真分析和试验验证相结合的方法,对巨型左手材料微带天线进行优化设计。

1.仿真分析采用有限元方法(FEM)对巨型左手材料微带天线进行电磁仿真分析。

通过改变不同参数对巨型左手材料微带天线的性能进行研究,例如天线长度、宽度、厚度、介电常数、磁导率等参数。

并利用仿真软件对天线的频率响应、天线增益、辐射特性等进行仿真分析。

2.试验验证采用标准微带天线实验仿真测试平台,制作巨型左手材料微带天线的样品,并对其进行实验测试和验证。

通过改变不同参数,对巨型左手材料微带天线进行性能测试和优化。

三、研究内容1.巨型左手材料微带天线的设计原理和性能分析2.巨型左手材料微带天线的优化设计方法的研究3.仿真分析和试验验证结果对比分析四、预期结果本研究将优化设计一种巨型左手材料微带天线,达到在5G通信等领域中具有更高的性能和应用效果。

五、研究难点1.如何确定巨型左手材料微带天线的几何结构,并针对不同参数进行设计优化?2.巨型左手材料的制备技术和加工难度?3.如何优化巨型左手材料微带天线的性能,使其更加适合于实际应用?六、研究进度安排1.文献综述与分析(2周)2.巨型左手材料微带天线设计原理与性能分析(3周)3.巨型左手材料微带天线优化设计方法研究(5周)4.仿真分析与试验验证(6周)5.数据处理与结果分析(3周)6.论文撰写与答辩准备(6周)七、参考文献1. Agrawal, A. K., & Devesh Kumar, P. (2013). Design of Meta Material Antenna for Selected Frequency Range. International Journal of Scientific & Engineering Research, 4(8): 198-202.2. Dyab, H. A., & Hussein, T. Y. (2012). Design of Fractal Slotted Printed Wideband Microstrip Antenna with LHM material for microwave imaging applications. International Journal of Engineering Research and Technology, 1(10): 1-8.3. Zhang, L., & Sievenpiper, D. (2005). Investigation of a broad-band dipole antenna constructed from left-handed materials. IEEE Transactions on Antennas and Propagation, 53(8): 2563-2571.。

《2024年基于电磁超材料的微带天线与MIMO天线性能改善研究》范文

《2024年基于电磁超材料的微带天线与MIMO天线性能改善研究》范文

《基于电磁超材料的微带天线与MIMO天线性能改善研究》篇一一、引言近年来,电磁超材料技术作为一门新兴的技术,以其独特的物理特性引起了广大研究者的广泛关注。

随着无线通信技术的飞速发展,对天线技术的要求也日益提高。

在无线通信系统中,微带天线与MIMO(Multiple-Input Multiple-Output)天线因其小尺寸、低剖面等优势,在通信、雷达和遥测系统中有着广泛的应用。

然而,在面对复杂的电磁环境时,微带天线与MIMO天线的性能往往受到一定程度的限制。

因此,如何利用电磁超材料技术来改善微带天线与MIMO天线的性能,成为了当前研究的热点问题。

二、电磁超材料技术概述电磁超材料是一种通过设计具有特殊排列和特性的元材料结构来实现的,能够在特定的频段和特定的传播条件下对电磁波产生显著影响的一类新型人工复合材料。

它的特殊物理性质为改进无线通信系统的天线技术提供了新的可能。

三、微带天线的性能改善研究1. 微带天线存在的问题:微带天线的缺点包括效率低、带宽窄、损耗大等。

针对这些问题,本文将通过引入电磁超材料的方法,以实现其性能的改善。

2. 电磁超材料与微带天线的结合:通过在微带天线的基板中嵌入电磁超材料,可以有效地改变电磁波的传播路径和分布,从而提高微带天线的辐射效率和增益。

此外,电磁超材料还可以减小微带天线的尺寸,使其更加适应现代无线通信系统的需求。

四、MIMO天线的性能改善研究1. MIMO天线存在的问题:MIMO天线在多径传播和多用户干扰等复杂环境中,其性能会受到一定程度的限制。

为了解决这些问题,本文将探讨如何利用电磁超材料来改善MIMO天线的性能。

2. 电磁超材料在MIMO天线中的应用:通过在MIMO天线的各个单元之间引入电磁超材料,可以有效地控制各个单元之间的耦合程度,从而提高MIMO天线的隔离度和信道容量。

此外,电磁超材料还可以减小MIMO天线的尺寸和重量,提高其便携性和实用性。

五、实验结果与分析1. 实验设计:本文设计并制作了基于电磁超材料的微带天线和MIMO天线样品,通过实验测试其性能并进行对比分析。

基于左手介质的新型微波器件研究

基于左手介质的新型微波器件研究

Y,1019553分类号——一一——密级U D C编号淅江大学博士后研究工作报告基于左手介质的新型微波器件研究Study on novel microwav e devices based on left—handed materials李九生工作完成时间:2006年6月提交报告时间:2006年6月浙江大学(浙江)2006年6月摘要摘要左手介质是一种重要的新型人工合成介质,它的介电常数£和磁导率U同时为负值。

它在微波与光学领域有着巨大的应用前景,从而得到越来越广泛的关注,成为当前非常前沿和热门的研究领域之一。

微波波段的左手介质由于加工工艺简单,易于实现,而格外受到重视。

目前利用LC网络和平面微带线实现左手介质,进而实现新型微波器件被广泛的关注,成为当前研究的热点。

由于左手介质所具有的独特性能,利用其特性实现新型器件成为广大科研工作者的追求。

目前左手介质的理论和应用研究刚起步,在理论分析,数值计算和实际应用等诸多方面均有待深入。

本研究论文主要集中于探索微波段的左手介质的实现及其应用。

本论文的主要工作可以概括为:提出了几种新型的LC网络结构来实现左手介质,利用这些新型的LC网络结构设计了微波陷波器、微波功分器、微波滤波器等新型微波器件,同时还分别对它们进行了ADS仿真分析和实验验证。

本论文还提出了一种新型的平面微带线结构来实现左手介质,并利用该新型左手介质结构设计了‘种新型微波滤波器,通过有限元法对该新型微波滤波器进行了仿真分析,最后进行了实验测试。

通过利用新型LC网络和平面微带线结构实现左手介质,并利用这些新型结构设计基于左手介质的新型微波器件,最后进行了仿真分析和实验验证。

从仿真和实验的结果,总结出了一些有益的启示。

关键词:左手介质,微波滤波器,微波集成电路,陷波器,功分器摘要ABSTRACTLeft-handed material(LHM)is a n im portant kin d of synthetic medium.In such materials,both the permittivity(s)and permeability(∥)are negative simultane ously.Prese ntl y’lemhanded materials are paid mo re an d m ore att entio n,and be come a h ot research interests for t he y h av e int en siv el y po ten ti al app li cat io ns in the fields of microwave and optics.L eft—han ded ma teri als for microwave are pai d more attention for its easy fabrication and test.At present,leR—handed materials reali zed us ing L C network or planar microstrip st ruc ture s a r e attracted significant attention in their applications.LeR-handed materials which exhibit many extra ordi nary prop erti es c a n be used to design novel microwave devices.However, the i nve st iga ti on o n t he th eory and applica tion o f such ma terial is at its initial stage,Gre at efforts should be put into the rese arch o n the theoretical analysis,numerical method s an d actual appli cation s ofthe left-handed materials.In this thesis,the realization and applica tio ns of the l eft-h anded m ateri als in t he microwave frequency arc inv esti gate d.T he work is mainly focused on:Several novel kinds of LC network are pro posed to realize the le ft-ha nded m ater ials.Using th e proposed LC netwo rk,s om e n ew mic ro wav e d ev ice s ha ve be en de sig ne d s uc h a smi c r ow a v e notch filter,microwavepower di vi d e r,a n d microwave filter.T he propert ies of these designed microwave devices were analyzed numerically by using the A D S soft and w ere also tested experimentally.A n e w kind o f planar microstr ip str uc tu re is also proposed to realize the left-handed materials.Then,a novel microwave filter is developed utilizing the propo sed plan ar microstr ip str uctures.The finite el em en t me th od is em ployed tO si mulate the novel filter in theoretically.At last,the designed filter is tested in experimentally.The le ft-ha nded mate rials a r e realiz ednetwork and planarby using novel LCmicrostri p structu res.Then,sever al micro wave devi ces are d esig ned utilizing th enetwork and pla nar m icr ostr ip structures.We st udy t heor etic ally and proposed LCn摘要experimentally o n the de velope d mi crowa ve compo nents.From the simulated and expe rim en tal r esu lts,w e dr aw som e useful conclusion.Keywords:Left-handed materials,microwave filter,microwave integ rat ed circuit,notch filte r'power divid er111第五章左手介质的平面微带线微波滤波器5A结论利用左手介质成功设计、制作双模带通微波滤波器并进行了实验测试。

《基于电磁超材料的微带天线与MIMO天线性能改善研究》范文

《基于电磁超材料的微带天线与MIMO天线性能改善研究》范文

《基于电磁超材料的微带天线与MIMO天线性能改善研究》篇一一、引言随着无线通信技术的快速发展,天线作为无线通信系统中的关键部件,其性能的优劣直接影响到整个系统的性能。

微带天线和MIMO(多输入多输出)天线是现代无线通信系统中常用的两种天线。

然而,这两种天线在应用过程中都存在一些性能上的问题,如微带天线的辐射效率低、带宽窄,MIMO天线的多径效应和信道间干扰等。

为了解决这些问题,本文提出了一种基于电磁超材料的微带天线与MIMO天线性能改善的研究方法。

二、电磁超材料在天线设计中的应用电磁超材料是一种具有特殊电磁性质的人工复合材料,其独特的电磁特性使得它在天线设计中具有广泛的应用前景。

通过合理设计电磁超材料的结构,可以有效地改善天线的性能。

在微带天线设计中,利用电磁超材料可以提高天线的辐射效率和带宽。

通过在微带天线的辐射部分引入电磁超材料,可以改变其表面的电流分布,从而提高辐射效率。

同时,电磁超材料可以有效地吸收和散射电磁波,从而扩展天线的带宽。

在MIMO天线设计中,电磁超材料可以用于减少多径效应和信道间干扰。

通过在MIMO天线的各个元素之间引入电磁超材料,可以有效地隔离不同元素之间的信号,从而减少多径效应和信道间干扰对系统性能的影响。

三、基于电磁超材料的微带天线性能改善研究针对微带天线的性能问题,本文提出了一种基于电磁超材料的微带天线设计方法。

该方法通过在微带天线的辐射部分引入具有特定电磁特性的超材料结构,改变其表面的电流分布,从而提高天线的辐射效率和带宽。

同时,通过对超材料结构的优化设计,可以进一步改善天线的其他性能指标,如增益、方向性等。

四、基于电磁超材料的MIMO天线性能改善研究针对MIMO天线的多径效应和信道间干扰问题,本文提出了一种基于电磁超材料的MIMO天线设计方法。

该方法通过在MIMO天线的各个元素之间引入具有特定电磁特性的超材料结构,有效地隔离不同元素之间的信号。

同时,通过对超材料结构的优化设计,可以进一步提高MIMO天线的系统性能,如提高信道容量、降低误码率等。

基于微带结构的双左手频带左手材料的研究的开题报告

基于微带结构的双左手频带左手材料的研究的开题报告

基于微带结构的双左手频带左手材料的研究的开题报告1. 研究背景和意义随着无线通信、雷达、生物医学等领域的不断发展,对于新型材料的需求也越来越高。

相比传统材料,频带左手材料(left-handed materials,LHMs)能够呈现出反常的电磁波传播特性,具有负折射、反相位和等效空间电容等性质,是当前材料研究领域的热点之一。

而双左手频带左手材料(dual-band LHMs)则具有两个反常区间,能够适用于不同频段的应用,具有更广泛的应用前景。

微带结构被广泛用于射频和微波器件中,其具有结构简单、体积小、低成本等优点。

因此,将微带结构应用于双左手频带左手材料的研究具有重要的理论和实际意义。

2. 研究现状目前,国内外学者在双左手频带左手材料的研究方面取得了一系列进展。

一些学者提出了多种基于微带结构的双频带左手材料,如双线层结构、双同轴结构、双缝隙结构等。

这些结构均能够实现所需频段的负折射和反相位。

同时,一些研究者也在此基础上研究了双频带左手材料在微波器件、天线、滤波器等方面的应用。

3. 研究内容和方法本文拟基于微带结构,设计制备一种新型的双左手频带左手材料,主要研究内容包括:(1)构建双线层微带结构,设计适合的微带线形状和间隙距离,实现所需频段的双左手性能;(2)制备和表征样品,使用电磁仿真软件和相关测试设备进行电学参数的测试和优化;(3)验证双左手频带左手材料的双频带效应,探究其应用于微波器件与通信系统所带来的优越性;(4)基于实验数据,进一步优化微带结构的设计,提高双频带左手材料的性能。

本文将主要采用理论分析和实验室测试相结合的方法,通过电磁仿真软件和相关测试设备,对所设计制备的双左手频带左手材料的电学性能进行测试和优化,验证其应用于微波器件和通信系统中的可行性。

4. 预期成果和意义本文的预期成果包括:(1)成功构建一种双线层微带结构的双左手频带左手材料并进行表征;(2)实现所需频段的负折射和反相位,验证双频带效应;(3)探究该材料在微波器件与通信系统应用方面所带来的优越性;(4)提高微带结构的设计及制备水平,为相关领域的研究提供新的方法和思路。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

103254-1第27卷第10期强激光与粒子束V o l .27,N o .102015年10月H I G H P OW E R L A S E R A N D P A R T I C L E B E AM SO c t .,2015基于左手材料的高增益双频带微带天线*赵亚娟1,2, 王东红1,2, 李宝毅1,2, 王 蓬1,2, 周必成1,2, 江 波1,2(1.中国电子科技集团公司第三十三研究所,太原030006;2.电磁防护材料及技术山西省重点实验室,太原030006) 摘 要: 左手材料具有平板透镜聚焦效应,突破电磁波的衍射极限实现倏逝波的放大,其覆盖于微带天线上方,可以提高天线增益㊂设计了一种应用于UH F 和W L A N 的双频微带天线,通过在接地板上刻蚀 己 字形弯折缝隙的方法实现双频谐振㊂为了改善微带天线低频段的增益,设计了一种新型的哑铃型结构双频段左手材料,将其作为微带天线的覆层㊂测试结果表明,覆层左手材料微带天线的低频段和高频段的峰值增益分别为2.1d B i 和7.4d B i㊂ 关键词: 左手材料; 微带天线; 双频天线; 带宽; 增益中图分类号: T N 828.6 文献标志码: A d o i :10.11884/H P L P B 201527.103254微带天线由于具有结构简单㊁易于制作㊁重量轻㊁体积小㊁成本低等诸多优点,在军事与民用中得到广泛应用,包括雷达天线㊁空间科学㊁生物医学领域及各种无线通信系统㊂然而,微带天线损耗大㊁增益低降低了辐射效率,因此提高微带天线增益成为研究的热点[1-4]㊂目前,无线通信的快速发展促使多频段共用变得普遍,对天线的研究者来说,设计出同时工作在多个频段,兼容多种协议的天线尤为重要㊂因此,双频微带天线引起了诸多学者的广泛关注[5-9]㊂左手材料(l e f t -h a n d e d m e t a m a t e r i a l s ,L HM s ),是指同时具有负介电常数和负磁导率,电场㊁磁场和波矢三者构成左手关系的人工周期结构材料㊂左手材料表现出许多奇异特性,如负折射㊁逆D o p pl e r 效应㊁逆C e r e n k o v 辐射效应㊁完美透镜等物理现象㊂左手材料由于具有诸多奇异特性,在微波通信领域有着广泛的应用价值,特别是有效改善天线的性能[10-14]㊂文献[12]设计了基于左手材料的小型化雷达阵列天线,采用左手材料有效地减小了天线的体积㊂文献[13]将单层左手材料作为天线的覆层,天线的带宽明显得到改善㊂文献[14]通过覆层添加多层左手材料介质,微带天线的方向性和增益均大大提高㊂本文设计了一种应用于UH F 和W L A N 的双频微带天线,其低频段和高频段的增益值分别为-1.2d B i 和3.3d B i,不能满足无线通信的需求㊂为了改善天线低频段的增益,设计了一种新型的双频段左手材料㊂利用左手材料平板透镜聚焦效应,覆层左手材料的微带天线的低频段和高频段的增益值分别提高了3.3d B i 和4.1d B i㊂1 双频微带天线F i g .1 S t r u c t u r e o f d u a l -b a n dm i c r o s t r i p a n t e n n a 图1 双频微带天线结构示意图设计的双频微带天线的结构如图1所示㊂天线包括三层,上层是 己 字形缝隙的接地板,中间层为介质基板,下层为微带馈线㊂在接地板上开有四个对称 己 字结构的弯折形槽,用来实现微带天线的双频谐振㊂接地板边缘开缝,实现天线的小型化㊂其中,低频段谐振由缝隙s l o t 1和s l o t 2共同激励,l 1+l 2+l 3+l 4+l 5的总尺寸约为λ1/4(λ1表示低频段的导波波长);高频段谐振由s l o t 1激励,其中l 1+l 2的总尺寸约为λ2/2(λ2表示高频段的导波波长)㊂设计的双频微带天线工作频率为0.9G H z 和2.4G H z ,采用介电常数为4.4,损耗角正切值为0.02,厚度为1.524mm 的R F 4介质基板㊂通过三维电磁仿真软件C S T 进行模拟仿真,天线参数为:l g =60mm ,w g =55mm ,l 1=10mm ,l 2=9.5mm ,l 3=10mm ,l 4=11.5mm ,l 5=16mm ,a =1.5mm ,b =2mm ,c =26mm ㊂*收稿日期:2015-07-10; 修订日期:2015-09-07基金项目:中国电子科技集团公司山西省重点实验室专项资金项目(Z X 15Z S 391);国家重点基础研究发展计划项目(2013C B A 01700);国家国际科技合作专项资助课题(2014D F R 10020)作者简介:赵亚娟(1989 ),女,硕士,工程师,从事电磁防护材料及技术研究;798710363@q q.c o m ㊂103254-2图2为双频微带天线的反射系数图㊂仿真结果表明,天线的工作频率为0.9G H z 和2.4G H z,带宽分别为5.5%(0.88~0.93G H z )和8.3%(2.25~2.45G H z )㊂双频段的峰值增益分别为-1.2d B i 和3.3d B i ,由于低频段的增益为负数,不能满足通信系统需求㊂因此,在微带天线上方添加左手材料,通过改善微带天线的辐射特性提高增益㊂F i g .2 R e f l e c t i o n c o e f f i c i e n t s o fm i c r o s t r i p an t e n n a 图2双频微带天线的反射系数F i g.3 S t r u c t u r e o fL HM s u n i t c e l l 图3 左手材料单元结构示意图2 基于左手材料的双频天线2.1 左手材料单元设计了一种新型的同向双开口环金属线复合的左手材料单元,单元结构如图3所示㊂外环实现低频段0.9G H z 谐振,内环实现高频段2.4G H z 谐振㊂采用相对介电常数为2.2,厚度为0.762mm 的R o ge r s 5880介质板,周期单元为20mmˑ20mm ㊂其中,内外单元环的周长为对应工作频率的1/2波长㊂使用C S T 三维电磁仿真软件对该结构的电磁波反射和透射行为进行模拟㊂采用N i c o l s o n -R o s s -W e i r (N RW )方法[15],先通过C S T 得到S 参数,再采用反演程序得到等效介电常数和等效磁导率随频率的变化曲线,结果如图4所示㊂由图4可知,电谐振在较宽范围内具有负介电常数,磁谐振在0.9G H z 和2.4G H z 处实现负磁导率㊂因此,谐振单元在0.9G H z 和2.4G H z 处实现了双负特性,即左手特性㊂F i g .4 S -pa r a m e t e r s i n v e r s i o n r e s u l t 图4 S 参数反演结果2.2基于左手材料的微带天线F i g .5 S t r u c t u r e o f d u a l -b a n dm i c r o s t r i p a n t e n n ab a s e do nL HM s 图5 基于左手材料的双频微带天线结构图负折射率材料能突破电磁波衍射极限,倏逝波在负折射率介质中具有放大效应㊂因此将左手材料作为微带天线的覆层,利用负折射特性制作的左手材料平板透镜,可以改善天线辐射特性,提高天线增益㊂基于左手材料的双频微带天线的结构如图5所示㊂上层由间隔为20mm 的3ˑ3个左手单元组成的左手材料,下层为双频微带天线,优化后的上下两层的空气层间距h 为4.5mm ㊂左手材料和双频微带天线介质基板的尺寸均为60mmˑ60mm (0.36λg ˑ0.36λg ,λg 为强激光与粒子束103254-3天线低频段的导波波长)㊂3 测试和仿真结果分别加工了微带天线和覆层左手材料的双频微带天线(对应天线A 和天线B ),图6为天线A 和天线B 的实物图㊂微带天线印制在相对介电常数为4.4,损耗角正切值为0.02,厚度为1.6mm 的F R 4介质基板上,左手材料印制在相对介电常数为2.2,损耗角正切值为0.0009,厚度为0.8mm 的R o ge r s 5880介质基板上㊂F i g.6 P h o t o s o f a n t e n n a s 图6天线实物图F i g.7 R e f l e c t i o nc o e f f i c i e n t s o f a n t e n n a sAa n dB 图7 天线A 和B 的反射系数图7为微带天线和覆层左手材料的双频微带天线(对应天线A 和天线B )测试和仿真的反射系数㊂仿真结果表明,天线A ㊁天线B 的带宽分别为5.5%(0.88~0.93G H z ),8.3%(2.25~2.45G H z )和12.2%(0.84~0.95G H z ),9.6%(2.21~2.44G H z),与天线A 相比,天线B 的低频段和高频段带宽分别增加了60MH z 和30MH z ㊂测量结果表明,天线A ㊁天线B 的带宽分别为5.5%(0.89~0.94G H z ),8.3%(2.28~2.48G H z )和13.3%(0.84~0.96G H z ),9.6%(2.22~2.45G H z),与天线A 相比,天线B 的低频段和高频段带宽分别增加了70MH z 和30MH z ㊂测量与仿真结果相比,天线的谐振点均略微偏移,主要是由加工误差㊁测量误差㊁接头焊接误差所引起的㊂图8为天线A 和B 的测试增益曲线㊂由图8(a)可知,与天线A 相比,天线B 低频段的峰值增益提高了3.3d B i ㊂由图8(b )可知,与天线A 相比,天线B 高频段的峰值增益提高了4.1d B i㊂因此,在工作频段范围内,天线B 的增益均高于天线A 的增益,双频段的峰值增益分别提高了3.3d B i 和4.1d B i㊂F i g.8 G a i n s o f a n t e n n a sAa n dB 图8 天线A 和B 的增益4 结 论本文设计了一种应用于UH F 和W L A N 的双频微带天线,利用接地板开缝的方法实现双频谐振㊂通过在赵亚娟等:基于左手材料的高增益双频带微带天线强激光与粒子束天线覆层添加同向双开口环金属线复合周期结构的左手材料,改善了天线低频段的增益㊂结果表明:与未覆层的微带天线相比,覆层左手材料微带天线在低频段和高频段的增益分别提高了3.3d B i和4.1d B i㊂参考文献:[1] Y a n g L i u f e n g,W a n g T i n g.M E M S p a t c h a n t e n n a a r r a y w i t hb r o a d b a n d a n dh i g h-g a i n o n d o u b l e-l a y e r s i l i c o nw a f e r s[J].H i g hP o w e rL a s e ra n dP a r t i c l eB e a m s,2015,27:024129.[2] B j o r n i n e nT,S y d a n h e i m oL,U k k o n e nL,e t a l.A d v a n c e s i n a n t e n n a d e s i g n s f o rUH FR F I Dt a g sm o u n t a b l e o n c o n d u c t i v e i t e m s[J].I E E EA n t e n n a s a n dP r o p a g a t i o nM a g a z i n e,2014,56(1):79-103.[3]李建龙,邵文毅,曾冰,等.微谐振环结构体内太赫兹增强效应[J].强激光与粒子束,2013,25(6):1513-1518.(L i J i a n l o n g,S h a oW e n y i,Z e n g B i n g,e t a l.T e r a h e r t z e n h a n c e m e n t e f f e c t i nm i c r o-r i n g r e s o n a t o r s t r u c t u r e.H i g hP o w e rL a s e ra n dP a r t i c l eB e a m s,2013,25(6): 1513-1518)[4] R i v e r a-A l b i n oA,B a l a n i sC A.G a i ne n h a n c e m e n t i n m i c r o s t r i pp a t c ha n t e n n a su s i n g h y b r i ds u b s t r a t e s[J].I E E EA n t e n n a sa n d W i r e l e s sP r o p a g a t i o nL e t t e r s,2013,12:476-479.[5] L uJ u i h a n,H u a n g B i n g j a n g.P l a n a r c o m p a c t s l o t a n t e n n aw i t hm u l t i-b a n do p e r a t i o n f o rW i MA Xa p p l i c a t i o n[J].I E E ET r a n s o nA n t e n n a sa n dP r o p a g a t i o n,2013,61(3):1411-1414.[6] M o h a r a m z a d e hE,J a v a nA M.T r i p l e-b a n d f r e q u e n c y-s e l e c t i v e s u r f a c e s t o e n h a n c e g a i no fX-b a n d t r i a n g l e s l o t a n t e n n a[J].I E E EA n t e n n a sa n dW i r e l e s sP r o p a g a t i o nL e t t e r s,2014,12:1145-1148.[7] B o d M,H a s s a n iH R,S a m a d iT.C o m p a c tUW B p r i n t e d s l o t a n t e n n aw i t h e x t r a b l u e t o o t h,G S Ma n dG P Sb a n d s[J].I E E EA n t e n n a s a n dW i r e l e s sP r o p a g a t i o nL e t t e r s,2012,11:531-534.[8] S u nX u b a o,X i e J u n,C a oM a o y o n g.R F I D t a g a n t e n n a d e s i g nb a s e d o n a n i m p r o v e d c o u p l i n g s o u r c e s h a p e[J].I E E EA n t e n n a s a n d W i r e l e s sP r o p a g a t i o nL e t t e r s,2013,12:532-534.[9]李伟,耿友林.新型无线局域网双频段微带贴片天线设计[J].强激光与粒子束,2011,23(3):717-720.(L iW e i,G e n g Y o u l i n.D e s i g no fn o v e l d u a l-b a n dm i c r o s t r i p a n t e n n a f o rw i r e l e s s l o c a l a r e a n e t w o r k a p p l i c a t i o n s.H i g hP o w e rL a s e r a n dP a r t i c l eB e a m s,2011,23(3):717-720)[10]郑秋容,袁乃昌,付云起.紧凑型电磁带隙结构在短路微带天线中的应用[J].电子与信息学报,2007,29(6):1500-1502.(Z h e n g Q i-u r o n g,Y u a nN a i c h a n g,F uY u n q i.A p p l i c a t i o no f c o m p a c t e l e c t r o m a g n e t i c b a n d-g a p s t r u c t u r e t o s h o r t e dm i c r o-s t r i p a n t e n n a.J o u r n a l o fE l e c t r o n i c s a n dI n f o r m a t i o nT e c h n o l o g y,2007,29(6):1500-1502)[11]杨欢欢,曹祥玉,高军,等.一种超薄吸波材料及其在缝隙天线中的应用[J].电子与信息学报,2012,34(11):2790-2794.(Y a n g H u a n-h u a n,C a oX i a n g y u,G a o J u n,e t a l.A nu l t r a-t h i nm e t a m a t e r i a l a b s o r b e r a n d i t s a p p l i c a t i o n i n r e d u c i n g R C So f s l o t a n t e n n a.J o u r n a l o fE l e c t r o n i c s a n dI n f o r m a t i o nT e c h n o l o g y,2012,34(11):2790-2794)[12]刘海文,朱爽爽,文品,等.基于发卡式开口谐振环的柔性双频带超材料[J].物理学报,2015,64:038101.(L i u H a i w e n,Z h uS h u a n g-s h u a n g,W e nP i n,e t a l.A f l e x i b l e d u a l-b a n dm e t a m a t e r i a l b a s e d o n h a i r p i n s p l i t-r i n g r e s o n a t o r s.A c t a P h y s i c aS i n i c a,2015,64:038101) [13]田子建,陈文超,樊京.基于双Σ形金属条的双向左手材料[J].物理学报,2013,62:074102.(T i a nZ i J i a n,C h e n W e n C h a o,F a nJ i n g.T w o-d i m e n s i o n a l i n c i d e n t l e f t-h a n d e dm e t a m a t e r i a l c o m p o s e do f d o u b l eΣs h a p e dm e t a l s t r i p s.A c t aP h y s i c aS i n i c a,2013,62:074102) [14] X uH e x i u,W a n g G u a n g m i n g,L i uQ u.A m e t a m a t e r i a lw i t h m u f t i-b a n d l e f th a n d e dc h a r a c t e r i s t i c[J].A p p l i e dP h y s i c s,2012,107(2):261-268.[15]S m i t hDR,V i e rDC,K o s c h n y T,e t a l.E l e c t r o m a g n e t i c p a r a m e t e r r e t r i e v a l f r o mi n h o m o g e n e o u sm e t a m a t e r i a l s[J].A p p l i e dP h y s i c s,2005,71:036617.E n h a n c e m e n t o f g a i n f o r d u a l-b a n dm i c r o s t r i p a n t e n n ab a s e do n l e f t-h a n d e dm a t e r i a l sZ h a oY a j u a n1,2, W a n g D o n g h o n g1,2, L i B a o y i1,2, W a n g P e n g1,2, Z h o uB i c h e n g1,2,J i a n g B o1,2(1.N o.33R e s e a r c h I n s t i t u t e o f C h i n aE l e c t r o n i c sT e c h n o l o g y G r o u p C o r p o r a t i o n,T a i y u a n030006,C h i n a;2.E l e c t r o m a g n e t i c P r o t e c t i o n M a t e r i a l s a n dT e c h n o l o g y K e y L a b o r a t o r y o f S h a n x iP r o v i n c e,T a i y u a n030006,C h i n a)A b s t r a c t: L e f t-h a n d e dm a t e r i a l s(L HM s)p r e s e n t f l a t l e n se f f e c tw h i c hc a ne n h a n c ee v a n e s c e n tw a v eb y b r e a k i n g t h ed i f-f r a c t i o n l i m i t o f e l e c t r o m a g n e t i cw a v e.A n dm i c r o s t r i p a n t e n n a g a i nc a nb e i m p r o v e db a s e do nL HM s.I n t h e p a p e r,ad u a l-f r e-q u e n c y m i c r o s t r i p a n t e n n a i sm e n t i o n e d.M e a n d e r s l o t s a r e e t c h e do n t h e g r o u n d p l a n e t o p r o v i d e t h e d u a l-b a n do p e r a t i o n.I no r-d e r t o i m p r o v e g a i no f t h e a n t e n n a a t t h e l o w e r f r e q u e n c y,an o v e l p e r i o d i c s t r u c t u r eo fL HM s i sd e s i g n e d t oc o v e r t h e a n t e n n a. T h em e a s u r e m e n t r e s u l t s s h o wt h a t t h e g a i n o fm i c r o s t r i p a n t e n n aw i t hL HM s i s2.1dB i a n d7.4d B i a t t h e t w o b a n d s r e s p e c t i v e-l y.K e y w o r d s:l e f t-h a n d e dm a t e r i a l s; m i c r o s t r i p a n t e n n a;d u a l-b a n da n t e n n a;b a n d;g a i nP A C S:41.20.J b;42.25.B s;78.67.P t;84.40.B a103254-4。

相关文档
最新文档