三角函数练习题(附详细解答过程)

合集下载

三角函数大题专项(含答案)

三角函数大题专项(含答案)

三角函数专项训练1.在△ABC中,角A、B、C对应边a、b、c,外接圆半径为1,已知2(sin2A﹣sin2C)=(a﹣b)sin B.(1)证明a2+b2﹣c2=ab;(2)求角C和边c.2.在△ABC中,内角A,B,C所对的边分别为a,b,c.已知b sin A=a cos(B﹣).(Ⅰ)求角B的大小;(Ⅱ)设a=2,c=3,求b和sin(2A﹣B)的值.3.已知α,β为锐角,tanα=,cos(α+β)=﹣.(1)求cos2α的值;(2)求tan(α﹣β)的值.4.在平面四边形ABCD中,∠ADC=90°,∠A=45°,AB=2,BD=5.(1)求cos∠ADB;(2)若DC=2,求BC.5.已知函数f(x)=sin2x+sin x cos x.(Ⅰ)求f(x)的最小正周期;(Ⅱ)若f(x)在区间[﹣,m]上的最大值为,求m的最小值.6.在△ABC中,内角A,B,C所对的边分别为a,b,c.已知a sin A=4b sin B,ac=(a2﹣b2﹣c2)(Ⅰ)求cos A的值;(Ⅱ)求sin(2B﹣A)的值7.设函数f(x)=sin(ωx﹣)+sin(ωx﹣),其中0<ω<3,已知f()=0.(Ⅰ)求ω;(Ⅱ)将函数y=f(x)的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),再将得到的图象向左平移个单位,得到函数y=g(x)的图象,求g(x)在[﹣,]上的最小值.8.在△ABC中,内角A,B,C所对的边分别为a,b,c.已知a>b,a=5,c=6,sin B=.(Ⅰ)求b和sin A的值;(Ⅱ)求sin(2A+)的值.9.△ABC的内角A,B,C的对边分别为a,b,c,已知△ABC的面积为.(1)求sin B sin C;(2)若6cos B cos C=1,a=3,求△ABC的周长.10.△ABC的内角A,B,C的对边分别为a,b,c,已知sin(A+C)=8sin2.(1)求cos B;(2)若a+c=6,△ABC的面积为2,求b.11.已知函数f(x)=cos(2x﹣)﹣2sin x cos x.(I)求f(x)的最小正周期;(II)求证:当x∈[﹣,]时,f(x)≥﹣.12.已知向量=(cos x,sin x),=(3,﹣),x∈[0,π].(1)若,求x的值;(2)记f(x)=,求f(x)的最大值和最小值以及对应的x的值.13.在△ABC中,∠A=60°,c=a.(1)求sin C的值;(2)若a=7,求△ABC的面积.14.已知函数f(x)=2sinωx cosωx+cos2ωx(ω>0)的最小正周期为π.(1)求ω的值;(2)求f(x)的单调递增区间.15.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知b+c=2a cos B.(1)证明:A=2B;(2)若cos B=,求cos C的值.16.设f(x)=2sin(π﹣x)sin x﹣(sin x﹣cos x)2.(Ⅰ)求f(x)的单调递增区间;(Ⅱ)把y=f(x)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把得到的图象向左平移个单位,得到函数y=g(x)的图象,求g()的值.17.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知a sin2B=b sin A.(1)求B;(2)已知cos A=,求sin C的值.18.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知b+c=2a cos B.(Ⅰ)证明:A=2B;(Ⅱ)若△ABC的面积S=,求角A的大小.19.在△ABC中,角A,B,C所对的边分别是a,b,c,且+=.(Ⅰ)证明:sin A sin B=sin C;(Ⅱ)若b2+c2﹣a2=bc,求tan B.20.在△ABC中,AC=6,cos B=,C=.(1)求AB的长;(2)求cos(A﹣)的值.21.已知函数f(x)=4tan x sin(﹣x)cos(x﹣)﹣.(1)求f(x)的定义域与最小正周期;(2)讨论f(x)在区间[﹣,]上的单调性.22.△ABC的内角A,B,C的对边分别为a,b,c,已知2cos C(a cos B+b cos A)=c.(Ⅰ)求C;(Ⅱ)若c=,△ABC的面积为,求△ABC的周长.参考答案1.在△ABC中,角A、B、C对应边a、b、c,外接圆半径为1,已知2(sin2A﹣sin2C)=(a﹣b)sin B.(1)证明a2+b2﹣c2=ab;(2)求角C和边c.【解答】证明:(1)∵在△ABC中,角A、B、C对应边a、b、c,外接圆半径为1,∴由正弦定理得:=2R=2,∴sin A=,sin B=,sin C=,∵2(sin2A﹣sin2C)=(a﹣b)sin B,∴2()=(a﹣b)•,化简,得:a2+b2﹣c2=ab,故a2+b2﹣c2=ab.解:(2)∵a2+b2﹣c2=ab,∴cos C===,解得C=,∴c=2sin C=2•=.2.在△ABC中,内角A,B,C所对的边分别为a,b,c.已知b sin A=a cos(B﹣).(Ⅰ)求角B的大小;(Ⅱ)设a=2,c=3,求b和sin(2A﹣B)的值.【解答】解:(Ⅰ)在△ABC中,由正弦定理得,得b sin A=a sin B,又b sin A=a cos(B﹣).∴a sin B=a cos(B﹣),即sin B=cos(B﹣)=cos B cos+sin B sin=cos B+,∴tan B=,又B∈(0,π),∴B=.(Ⅱ)在△ABC中,a=2,c=3,B=,由余弦定理得b==,由b sin A=a cos(B﹣),得sin A=,∵a<c,∴cos A=,∴sin2A=2sin A cos A=,cos2A=2cos2A﹣1=,∴sin(2A﹣B)=sin2A cos B﹣cos2A sin B==.3.已知α,β为锐角,tanα=,cos(α+β)=﹣.(1)求cos2α的值;(2)求tan(α﹣β)的值.【解答】解:(1)由,解得,∴cos2α=;(2)由(1)得,sin2,则tan2α=.∵α,β∈(0,),∴α+β∈(0,π),∴sin(α+β)==.则tan(α+β)=.∴tan(α﹣β)=tan[2α﹣(α+β)]==.4.在平面四边形ABCD中,∠ADC=90°,∠A=45°,AB=2,BD=5.(1)求cos∠ADB;(2)若DC=2,求BC.【解答】解:(1)∵∠ADC=90°,∠A=45°,AB=2,BD=5.∴由正弦定理得:=,即=,∴sin∠ADB==,∵AB<BD,∴∠ADB<∠A,∴cos∠ADB==.(2)∵∠ADC=90°,∴cos∠BDC=sin∠ADB=,∵DC=2,∴BC===5.5.已知函数f(x)=sin2x+sin x cos x.(Ⅰ)求f(x)的最小正周期;(Ⅱ)若f(x)在区间[﹣,m]上的最大值为,求m的最小值.【解答】解:(I)函数f(x)=sin2x+sin x cos x=+sin2x=sin(2x﹣)+,f(x)的最小正周期为T==π;(Ⅱ)若f(x)在区间[﹣,m]上的最大值为,可得2x﹣∈[﹣,2m﹣],即有2m﹣≥,解得m≥,则m的最小值为.6.在△ABC中,内角A,B,C所对的边分别为a,b,c.已知a sin A=4b sin B,ac=(a2﹣b2﹣c2)(Ⅰ)求cos A的值;(Ⅱ)求sin(2B﹣A)的值【解答】(Ⅰ)解:由,得a sin B=b sin A,又a sin A=4b sin B,得4b sin B=a sin A,两式作比得:,∴a=2b.由,得,由余弦定理,得;(Ⅱ)解:由(Ⅰ),可得,代入a sin A=4b sin B,得.由(Ⅰ)知,A为钝角,则B为锐角,∴.于是,,故.7.设函数f(x)=sin(ωx﹣)+sin(ωx﹣),其中0<ω<3,已知f()=0.(Ⅰ)求ω;(Ⅱ)将函数y=f(x)的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),再将得到的图象向左平移个单位,得到函数y=g(x)的图象,求g(x)在[﹣,]上的最小值.【解答】解:(Ⅰ)函数f(x)=sin(ωx﹣)+sin(ωx﹣)=sinωx cos﹣cosωx sin﹣sin(﹣ωx)=sinωx﹣cosωx=sin(ωx﹣),又f()=sin(ω﹣)=0,∴ω﹣=kπ,k∈Z,解得ω=6k+2,又0<ω<3,∴ω=2;(Ⅱ)由(Ⅰ)知,f(x)=sin(2x﹣),将函数y=f(x)的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),得到函数y =sin(x﹣)的图象;再将得到的图象向左平移个单位,得到y=sin(x+﹣)的图象,∴函数y=g(x)=sin(x﹣);当x∈[﹣,]时,x﹣∈[﹣,],∴sin(x﹣)∈[﹣,1],∴当x=﹣时,g(x)取得最小值是﹣×=﹣.8.在△ABC中,内角A,B,C所对的边分别为a,b,c.已知a>b,a=5,c=6,sin B=.(Ⅰ)求b和sin A的值;(Ⅱ)求sin(2A+)的值.【解答】解:(Ⅰ)在△ABC中,∵a>b,故由sin B=,可得cos B=.由已知及余弦定理,有=13,∴b=.由正弦定理,得sin A=.∴b=,sin A=;(Ⅱ)由(Ⅰ)及a<c,得cos A=,∴sin2A=2sin A cos A=,cos2A=1﹣2sin2A=﹣.故sin(2A+)==.9.△ABC的内角A,B,C的对边分别为a,b,c,已知△ABC的面积为.(1)求sin B sin C;(2)若6cos B cos C=1,a=3,求△ABC的周长.【解答】解:(1)由三角形的面积公式可得S△ABC=ac sin B=,∴3c sin B sin A=2a,由正弦定理可得3sin C sin B sin A=2sin A,∵sin A≠0,∴sin B sin C=;(2)∵6cos B cos C=1,∴cos B cos C=,∴cos B cos C﹣sin B sin C=﹣=﹣,∴cos(B+C)=﹣,∴cos A=,∵0<A<π,∴A=,∵===2R==2,∴sin B sin C=•===,∴bc=8,∵a2=b2+c2﹣2bc cos A,∴b2+c2﹣bc=9,∴(b+c)2=9+3cb=9+24=33,∴b+c=∴周长a+b+c=3+.10.△ABC的内角A,B,C的对边分别为a,b,c,已知sin(A+C)=8sin2.(1)求cos B;(2)若a+c=6,△ABC的面积为2,求b.【解答】解:(1)sin(A+C)=8sin2,∴sin B=4(1﹣cos B),∵sin2B+cos2B=1,∴16(1﹣cos B)2+cos2B=1,∴16(1﹣cos B)2+cos2B﹣1=0,∴16(cos B﹣1)2+(cos B﹣1)(cos B+1)=0,∴(17cos B﹣15)(cos B﹣1)=0,∴cos B=;(2)由(1)可知sin B=,∵S△ABC=ac•sin B=2,∴ac=,∴b2=a2+c2﹣2ac cos B=a2+c2﹣2××=a2+c2﹣15=(a+c)2﹣2ac﹣15=36﹣17﹣15=4,∴b=2.11.已知函数f(x)=cos(2x﹣)﹣2sin x cos x.(I)求f(x)的最小正周期;(II)求证:当x∈[﹣,]时,f(x)≥﹣.【解答】解:(Ⅰ)f(x)=cos(2x﹣)﹣2sin x cos x,=(co2x+sin2x)﹣sin2x,=cos2x+sin2x,=sin(2x+),∴T==π,∴f(x)的最小正周期为π,(Ⅱ)∵x∈[﹣,],∴2x+∈[﹣,],∴﹣≤sin(2x+)≤1,∴f(x)≥﹣12.已知向量=(cos x,sin x),=(3,﹣),x∈[0,π].(1)若,求x的值;(2)记f(x)=,求f(x)的最大值和最小值以及对应的x的值.【解答】解:(1)∵=(cos x,sin x),=(3,﹣),∥,∴﹣cos x=3sin x,当cos x=0时,sin x=1,不合题意,当cos x≠0时,tan x=﹣,∵x∈[0,π],∴x=,(2)f(x)==3cos x﹣sin x=2(cos x﹣sin x)=2cos(x+),∵x∈[0,π],∴x+∈[,],∴﹣1≤cos(x+)≤,当x=0时,f(x)有最大值,最大值3,当x=时,f(x)有最小值,最小值﹣2.13.在△ABC中,∠A=60°,c=a.(1)求sin C的值;(2)若a=7,求△ABC的面积.【解答】解:(1)∠A=60°,c=a,由正弦定理可得sin C=sin A=×=,(2)a=7,则c=3,∴C<A,∵sin2C+cos2C=1,又由(1)可得cos C=,∴sin B=sin(A+C)=sin A cos C+cos A sin C=×+×=,∴S△ABC=ac sin B=×7×3×=6.14.已知函数f(x)=2sinωx cosωx+cos2ωx(ω>0)的最小正周期为π.(1)求ω的值;(2)求f(x)的单调递增区间.【解答】解:f(x)=2sinωx cosωx+cos2ωx,=sin2ωx+cos2ωx,=,由于函数的最小正周期为π,则:T=,解得:ω=1.(2)由(1)得:函数f(x)=,令(k∈Z),解得:(k∈Z),所以函数的单调递增区间为:[](k∈Z).15.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知b+c=2a cos B.(1)证明:A=2B;(2)若cos B=,求cos C的值.【解答】(1)证明:∵b+c=2a cos B,∴sin B+sin C=2sin A cos B,∵sin C=sin(A+B)=sin A cos B+cos A sin B,∴sin B=sin A cos B﹣cos A sin B=sin(A﹣B),由A,B∈(0,π),∴0<A﹣B<π,∴B=A﹣B,或B=π﹣(A﹣B),化为A=2B,或A=π(舍去).∴A=2B.(II)解:cos B=,∴sin B==.cos A=cos2B=2cos2B﹣1=,sin A==.∴cos C=﹣cos(A+B)=﹣cos A cos B+sin A sin B=+×=.16.设f(x)=2sin(π﹣x)sin x﹣(sin x﹣cos x)2.(Ⅰ)求f(x)的单调递增区间;(Ⅱ)把y=f(x)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把得到的图象向左平移个单位,得到函数y=g(x)的图象,求g()的值.【解答】解:(Ⅰ)∵f(x)=2sin(π﹣x)sin x﹣(sin x﹣cos x)2 =2sin2x﹣1+sin2x =2•﹣1+sin2x=sin2x﹣cos2x+﹣1=2sin(2x﹣)+﹣1,令2kπ﹣≤2x﹣≤2kπ+,求得kπ﹣≤x≤kπ+,可得函数的增区间为[kπ﹣,kπ+],k∈Z.(Ⅱ)把y=f(x)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),可得y =2sin(x﹣)+﹣1的图象;再把得到的图象向左平移个单位,得到函数y=g(x)=2sin x+﹣1的图象,∴g()=2sin+﹣1=.17.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知a sin2B=b sin A.(1)求B;(2)已知cos A=,求sin C的值.【解答】解:(1)∵a sin2B=b sin A,∴2sin A sin B cos B=sin B sin A,∴cos B=,∴B=.(2)∵cos A=,∴sin A=,∴sin C=sin(A+B)=sin A cos B+cos A sin B==.18.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知b+c=2a cos B.(Ⅰ)证明:A=2B;(Ⅱ)若△ABC的面积S=,求角A的大小.【解答】(Ⅰ)证明:∵b+c=2a cos B,∴sin B+sin C=2sin A cos B,∴sin B+sin(A+B)=2sin A cos B∴sin B+sin A cos B+cos A sin B=2sin A cos B∴sin B=sin A cos B﹣cos A sin B=sin(A﹣B)∵A,B是三角形中的角,∴B=A﹣B,∴A=2B;(Ⅱ)解:∵△ABC的面积S=,∴bc sin A=,∴2bc sin A=a2,∴2sin B sin C=sin A=sin2B,∴sin C=cos B,∴B+C=90°,或C=B+90°,∴A=90°或A=45°.19.在△ABC中,角A,B,C所对的边分别是a,b,c,且+=.(Ⅰ)证明:sin A sin B=sin C;(Ⅱ)若b2+c2﹣a2=bc,求tan B.【解答】(Ⅰ)证明:在△ABC中,∵+=,∴由正弦定理得:,∴=,∵sin(A+B)=sin C.∴整理可得:sin A sin B=sin C,(Ⅱ)解:b2+c2﹣a2=bc,由余弦定理可得cos A=.sin A=,=+==1,=,tan B=4.20.在△ABC中,AC=6,cos B=,C=.(1)求AB的长;(2)求cos(A﹣)的值.【解答】解:(1)∵△ABC中,cos B=,B∈(0,π),∴sin B=,∵,∴AB==5;(2)cos A═﹣cos(π﹣A)=﹣cos(C+B)=sin B sin C﹣cos B cos C=﹣.∵A为三角形的内角,∴sin A=,∴cos(A﹣)=cos A+sin A=.21.已知函数f(x)=4tan x sin(﹣x)cos(x﹣)﹣.(1)求f(x)的定义域与最小正周期;(2)讨论f(x)在区间[﹣,]上的单调性.【解答】解:(1)∵f(x)=4tan x sin(﹣x)cos(x﹣)﹣.∴x≠kπ+,即函数的定义域为{x|x≠kπ+,k∈Z},则f(x)=4tan x cos x•(cos x+sin x)﹣=4sin x(cos x+sin x)﹣=2sin x cos x+2sin2x﹣=sin2x+(1﹣cos2x)﹣=sin2x﹣cos2x=2sin(2x﹣),则函数的周期T=;(2)由2kπ﹣<2x﹣<2kπ+,k∈Z,得kπ﹣<x<kπ+,k∈Z,即函数的增区间为(kπ﹣,kπ+),k∈Z,当k=0时,增区间为(﹣,),k∈Z,∵x∈[﹣,],∴此时x∈(﹣,],由2kπ+<2x﹣<2kπ+,k∈Z,得kπ+<x<kπ+,k∈Z,即函数的减区间为(kπ+,kπ+),k∈Z,当k=﹣1时,减区间为(﹣,﹣),k∈Z,∵x∈[﹣,],∴此时x∈[﹣,﹣),即在区间[﹣,]上,函数的减区间为∈[﹣,﹣),增区间为(﹣,].22.△ABC的内角A,B,C的对边分别为a,b,c,已知2cos C(a cos B+b cos A)=c.(Ⅰ)求C;(Ⅱ)若c=,△ABC的面积为,求△ABC的周长.【解答】解:(Ⅰ)∵在△ABC中,0<C<π,∴sin C≠0已知等式利用正弦定理化简得:2cos C(sin A cos B+sin B cos A)=sin C,整理得:2cos C sin(A+B)=sin C,即2cos C sin(π﹣(A+B))=sin C2cos C sin C=sin C∴cos C=,∴C=;(Ⅱ)由余弦定理得7=a2+b2﹣2ab•,∴(a+b)2﹣3ab=7,∵S=ab sin C=ab=,∴ab=6,∴(a+b)2﹣18=7,∴a+b=5,∴△ABC的周长为5+.。

高三复习——三角函数练习题(附详细解答过程)

高三复习——三角函数练习题(附详细解答过程)

高三复习——三角函数练习题(附详细解答过程)一、选择题1.下列命题中正确的是( )(A) 第一象限角必是锐角 (B) 终边相同的角相等 (C) 相等的角终边必相同 (D) 不相等的角其终边必不相同 2.若tan110,a =则cot 20的值是( ) (A) a - (B) a (C)1a (D) 1a- 3.cos24°cos36°-cos66°cos54°的值等于( ) (A) 0 (B)21 (C) 23 (D) -214.已知角α终边上一点()a a P 43-,,则下列关系中一定正确的是( ) (A) 54sin -=α (B)53cos =α(C)34tan =α (D) 43cot -=α5.在ΔABC 中,“A>30º”是“sinA>21”的( )(A) 充分而不必要条件 (B) 必要而不充分条件(C) 充分必要条件 (D) 既不充分也不必要条件6.已知3sin(),45x π-=则sin 2x 的值为 ( )(A) 1925 (B)1625 (C)1425 (D) 7257.在△ABC 中,如果sin A =2sin C cos B .那么这个三角形是( ) (A)锐角三角形 (B)直角三角形 (C)等腰三角形 (D)等边三角形8.tan θ和tan(4π-θ)是方程x 2+px +q =0的两根,则p 、q 之间的关系是( ) (A)p +q +1=0 (B)p -q -1=0 (C)p +q -1=0 (D) p -q +1=09.已知θ是第三象限角,若95cos sin 44=+θθ,那么θ2sin 等于( )(A)32 (B) 322- (C) 322 (D) 32-10.设2132tan131cos50cos6sin 6,,,221tan 13a b c -=-==+则有( ) (A)a b c >> (B)a b c << (C) b c a << (D) a c b <<11.定义在R 上的函数)(x f 既是偶函数又是周期函数,若)(x f 的最小正周期是π,且当]2,0[π∈x 时,x x f sin )(=,则)35(πf 的值为( ) (A) 21-(B)23 (C) 23- (D) 21 12.在锐角三角形ABC 中,下列式子成立的是( )(A) 0cos sin log cos >B A C (B)0cos cos log sin >B AC(C)0sin sin log sin >B A C (D) 0sin cos log sin >BAC二、填空题13.在角集合⎭⎬⎫⎩⎨⎧∈+==Z ,43k k M ππαα,终边位于π4-到π2-之间的角为_______14.设扇形的周长为8cm ,面积为24cm ,则扇形的圆心角的弧度数是 15.已知,32cos sin -=-βα32sin cos -=-βα,则=+)sin(βα 16.设角35,6απ=-则222sin()cos()cos()1sin sin()cos ()παπαπααπαπα+--+++--+的值等于______________.17.已知21)4tan(=+απ,(1)求αtan 的值;(2)求αα2cos 1cos 2sin 2+-a 的值。

三角函数练习题及解析

三角函数练习题及解析

三角函数练习题及解析一、单选题1. 已知直角三角形ABC,角A的对边BC=5,斜边AC=13,则角B 的邻边AB等于:A) 5B) 12C) 4D) 3解析:根据勾股定理,$AB=\sqrt{AC^2-BC^2}=\sqrt{13^2-5^2}=\sqrt{144}=12$,因此选项B) 12.2. 在单位圆上,点A的坐标为$(\frac{\sqrt{3}}{2}, \frac{1}{2})$,则角A的度数为:A) 45°B) 60°C) 90°D) 120°解析:单位圆上的点A的坐标$(\frac{\sqrt{3}}{2}, \frac{1}{2})$对应的角A的度数为$60^\circ$,因此选项B) 60°.3. $\sin^2 30^\circ + \cos^2 60^\circ$的值等于:A) 0B) 1C) $\frac{3}{4}$D) $\frac{1}{2}$解析:$\sin^2 30^\circ = (\frac{1}{2})^2 = \frac{1}{4}$,$\cos^2 60^\circ = (\frac{1}{2})^2 = \frac{1}{4}$,因此$\sin^2 30^\circ + \cos^2 60^\circ = \frac{1}{4} + \frac{1}{4} = \frac{1}{2}$,因此选项D)$\frac{1}{2}$.二、填空题4. 对于任意角θ,$\sin(90^\circ - \theta)$的值等于 __________。

答案:$\cos \theta$解析:根据“余角公式”,$\sin (90^\circ - \theta) = \cos \theta$.5. $\cos(\frac{3\pi}{4})$的值等于 __________。

答案:$-\frac{\sqrt{2}}{2}$解析:根据单位圆上角度为 $\frac{3\pi}{4}$ 的点坐标为 $(\frac{-\sqrt{2}}{2}, \frac{\sqrt{2}}{2})$,因此 $\cos(\frac{3\pi}{4}) = \frac{-\sqrt{2}}{2}$.三、解答题6. 解方程 $\sin x = \frac{1}{2}$,其中 $0 \leq x < 2\pi$。

三角函数10道大题(带答案)

三角函数10道大题(带答案)

三角函数10道大题(带答案)三角函数1.已知函数$f(x)=4\cos x\sin(x+\frac{\pi}{6})+\sin(2x-\frac{\pi}{4})+2\cos2x-1,x\in R$。

Ⅰ)求$f(x)$的最小正周期;Ⅱ)求$f(x)$在区间$[-\frac{\pi}{4},\frac{\pi}{4}]$上的最大值和最小值。

2.已知函数$f(x)=\tan(2x+\frac{\pi}{4}),x\in R$。

Ⅰ)求$f(x)$的定义域与最小正周期;II)设$\alpha\in(\frac{\pi}{4},\frac{\pi}{2})$,若$f(\alpha+\frac{\pi}{4})=2\cos2\alpha$,求$\alpha$的大小。

3.已知函数$f(x)=\frac{(sinx-cosx)\sin2x}{\sin x}$。

1)求$f(x)$的定义域及最小正周期;2)求$f(x)$的单调递减区间。

4.设函数$f(x)=\frac{2\pi\cos(2x+\frac{\pi}{4})+\sin2x}{24}$。

Ⅰ)求函数$f(x)$的最小正周期;II)设函数$g(x)$对任意$x\in R$,有$g(x+\pi)=g(x)$,且当$x\in[0,\frac{\pi}{2}]$时,$2\pi g(x)=1-f(x)$,求函数$g(x)$在$[-\pi,0]$上的解析式。

5.函数$f(x)=A\sin(\omega x-\frac{\pi}{6})+1(A>0,\omega>\frac{\pi}{6})$的最大值为3,其图像相邻两条对称轴之间的距离为$\frac{\pi}{2}$。

1)求函数$f(x)$的解析式;2)设$\alpha\in(0,\frac{\pi}{2})$,则$f(\alpha)=2$,求$\alpha$的值。

6.设$f(x)=4\cos(\omega x-\frac{\pi}{6})\sin\omegax+\cos2\omega x$,其中$\omega>0$。

三角函数练习题100题(Word版,含解析)

三角函数练习题100题(Word版,含解析)

三角函数习题100题练兵(1-20题为三角函数的基本概念及基本公式,包括同角三角函数关系,诱导公式等,21-40题三角函数的图象与性质,41-55题为三角恒等变形,56-70为三角函数基本关系及角度制与弧度制等,包括象限角弧长与扇形面积公式等,71-90题为三角函数的综合应用,91-100为高考真题。

其中1-55为选择题,56-70为填空题,71-100为解答题。

)1.函数且的图象恒过点,且点在角的终边上,则A. B. C. D.【解答】解:函数且的图象恒过定点,角的终边经过点,,,.故选B2.已知角的终边上有一点,则A. B. C. D.【解答】解:角的终边上有一点,,则.故选C.3.若,且,则角的终边位于A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:,则角的终边位于一二象限,由,角的终边位于二四象限,角的终边位于第二象限.故选择.4.已知是第二象限角,为其终边上一点且,则的值A. B. C. D.【解答】解:是第二象限角,为其终边上一点且,,解得,,.故选A.5.已知角的终边过点,且,则的值为A. B. C. D.【解答】解:由题意,角的终边过点,可得,,,所以,解得,故选A.6.若点在角的终边上,则A. B. C. D.【解析】解:点在角的终边上,,则,,.故选B.7.在平面直角坐标系中,,点位于第一象限,且与轴的正半轴的夹角为,则向量的坐标是A. B. C. D.【解答】解:设,则,,故故选C.8.的大小关系为A. B. C. D.【解答】解:,,,,.故选C.9.已知角的终边上有一点,则的值为A. B. C. D.【解答】解:根据三角函数的定义可知,根据诱导公式和同角三角函数关系式可知,故选A.10.已知角的顶点为坐标原点,始边与轴的非负半轴重合,若角的终边过点,,且,则A. B. C. D.【解答】解:因为角的终边过点,所以是第一象限角,所以,,因为,,所以为第一象限角,,所以,所以,故选:.11.若角的终边经过点,则A. B. C. D.【解答】解:由题意,,,因为的正负不确定,则正负不确定.故选C.12.下列结论中错误的是A.B.若是第二象限角,则为第一象限或第三象限角C.若角的终边过点,则D.若扇形的周长为,半径为,则其圆心角的大小为弧度【解答】解:.,故A正确;B.因为为第二象限角,,所以,当为偶数时,为第一象限的角,当为奇数时,为第三象限角,故B正确;C.当时,,此时,故C错误;D.若扇形的周长为,半径为,则弧长为,其圆心角的大小为弧度,故正确.故选C.13.我国古代数学家赵爽利用弦图巧妙地证明了勾股定理,弦图是由四个全等直角三角形与一个小正方形拼成的一个大正方形如图如果内部小正方形的内切圆面积为,外部大正方形的外接圆半径为,直角三角形中较大的锐角为,那么A. B. C. D.【解答】解:因为内部小正方形的内切圆面积为,所以内部小正方形的内切圆的半径为,所以内部小正方形的边长为,外部大正方形的外接圆半径为,所以大正方形的边长为,设大直角三角形中长直角边为,斜边为,则,则,所以,所以大直角三角形中短直角边为,所以,,则.故选D.14.己知是第四象限角,化简为A. B. C. D.【解答】解:是第四象限角,故,又,,则.故选B.15.函数的最小正周期为A. B. C. D.【解答】解:,所以的最小正周期.故选C.16.函数的值域是A. B. C. D.【解答】解:,令,,则,,由二次函数的性质可得函数在上单调递减,在上单调递增,当时取的最小值,其最小值为,当时取得最大值,其最大值为.故函数的值域为.故选B.17.已知,,且,,则A. B. C. D.【解答】解:由题可知,,,所以,所以,又,所以,所以,当时,.因为,所以,不符合题意,当时,同理可得,故选:.18.已知,则的值为A. B. C. D.【解答】解:因为,所以,所以,所以,所以.故选A.19.在中,角、、的对边分别是、、,若,则的最小值为A. B. C. D.【解答】解:,由正弦定理化简得:,整理得:,,;则.当且仅当时等号成立,可得的最小值为.故选:.20.若的内角满足,则的值为.A. B. C. D.【解答】解:因为为的内角,且,所以为锐角,所以.所以,所以,即.所以.故选A.21.已知函数给出下列结论:①的最小正周期为;②是的最大值;③把函数的图象上的所有点向左平移个单位长度,可得到函数的图象.其中所有正确结论的序号是A.①B.①③C.②③D.①②③【解答】解:因为,①由周期公式可得,的最小正周期,故①正确;②,不是的最大值,故②错误;③根据函数图象的平移法则可得,函数的图象上的所有点向左平移个单位长度,可得到函数的图象,故③正确.故选:.22.将函数的图象先向右平移个单位长度,再将该图象上各点的横坐标缩短到原来的一半纵坐标不变,然后将所得图象上各点的纵坐标伸长到原来的倍横坐标不变,得函数的图象,则解析式是A. B.C. D.【解答】解:由题意函数的图象上各点向右平移个单位长度,得到新函数解析式为,再把所得函数的图象上各点横坐标缩短为原来的一半,得到新函数解析式为,再把所得函数的图象上各点纵坐标伸长为原来的倍,得到新函数解析式为.故选A.23.如图函数的图象与轴交于点,在轴右侧距轴最近的最高点,则不等式的解集是A.,B.,C.,D.,【解答】解:由在轴右边到轴最近的最高点坐标为,可得.再根据的图象与轴交于点,可得,结合,.由五点法作图可得,求得,不等式,即,,,求得,,故选:.24.函数的图像的一条对称轴是A. B. C. D.【解答】解:令,解得,函数图象的对称轴方程为,时,得为函数图象的一条对称轴.故选C25.已知函数,若相邻两个极值点的距离为,且当时,取得最小值,将的图象向左平移个单位,得到一个偶函数图象,则满足题意的的最小正值为A. B. C. D.【解答】解:函数,所以,,相邻两个极值点的横坐标之差为,所以,所以,又,所以,当时,取得最小值,所以,,而,所以,所以,将的图象向左平移个单位得为偶函数,所以,,即.所以的最小正值为.故选A.26.函数的定义域为A. B.C. D.【解答】解:根据对数的真数大于零,得,可知:当时,,故函数的定义域为.故选A.27.设函数若是偶函数,则A. B. C. D.【解答】解:,因为为偶函数,所以当时,则,,所以,,又,所以.故选B.28.函数的部分图像如图所示,则A. B. C. D.【解答】解:由题意,因为,所以,,由时,可得,所以,结合选项可得函数解析式为.故选A.29.已知函数,给出下列命题:①,都有成立;②存在常数恒有成立;③的最大值为;④在上是增函数.以上命题中正确的为A.①②③④B.②③C.①②③D.①②④【解答】解:对于①,,,①正确;对于②,,由,即存在常数恒有成立,②正确;对于③,,令,,则设,,令,得,可知函数在上单调递减,在上单调递增,在上单调递减,且,,则的最大值为,③错误;对于④,当时,,所以在上为增函数,④正确.综上知,正确的命题序号是①②④.故选:.30.已知,,直线和是函数图象的两条相邻的对称轴,则A. B. C. D.【解答】解:由题意得最小正周期,,即,直线是图象的对称轴,,又,,故选A.31.已知函数向左平移半个周期得的图象,若在上的值域为,则的取值范围是A. B. C. D.【解答】解:函数向左平移半个周期得的图象,由,可得,由于在上的值域为,即函数的最小值为,最大值为,则,得.综上,的取值范围是.故选D.32.若,则实数的取值范围是A. B. C. D.解:,,,.,,.33.如图,过点的直线与函数的图象交于,两点,则等于A. B. C. D.【解答】解:过点的直线与函数的图象交于,两点,根据三角函数的对称性得出;,,,,.是的中点,,.故选B.34.已知函数,若函数恰有个零点,,,,且,为实数,则的取值范围为A. B. C. D.解:画出函数的图象,如图:结合图象可知要使函数有个零点,则,因为,所以,所以,因为,所以,且,可设,其中,所以,所以,所以的取值范围是.故选A.35.函数的部分图象如图所示,现将此图象向左平移个单位长度得到函数的图象,则函数的解析式为A. B. C. D.【解答】解:根据函数的部分图象,则:,,所以:,解得:,当时,,即:解得:,,因为,当时,,故:,现将函数图象上的所有点向左平移个单位长度得到:函数的图象.故选C.36.已知曲线:,:,则下面结论正确的是A.把上各点的横坐标伸长到原来的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线B.把上各点的横坐标伸长到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C.把上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线D.把上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线【解答】解:把上各点的横坐标缩短到原来的倍,纵坐标不变,得到函数图象,再把得到的曲线向左平移个单位长度,得到函数的图象,即曲线,故选D.37.设,则函数的取值范围是A. B. C. D.【解答】解:,因为,所以,所以故选A.38.人的心脏跳动时,血压在增加或减少.血压的最大值、最小值分别称为收缩压和舒张压,血压计上的读数就是收缩压和舒张压,读数为标准值设某人的血压满足函数式,其中为血压单位:,为时间单位:,则下列说法正确的是A.收缩压和舒张压均高于相应的标准值B.收缩压和舒张压均低于相应的标准值C.收缩压高于标准值、舒张压低于标准值D.收缩压低于标准值、舒张压高于标准值【解答】解:某人的血压满足函数式,其中为血压单位:,为时间单位:则此人收缩压;舒张压,所以此人的收缩压高于标准值、舒张压低于标准值.故选C.39.设函数,下述四个结论:①的图象的一条对称轴方程为;②是奇函数;③将的图象向左平移个单位长度可得到函数的图象;④在区间上单调递增.其中所有正确结论的编号是A.①②B.②③C.①③D.②③④【解答】解:由题意.对①,的对称轴为,即,故是的对称轴故①正确;对②,,故为偶函数,故②错误;对③,将的图象向左平移个单位长度得到故③正确;对④,当时,,因为是的减区间,故④错误.综上可得①③正确.故选C.40.如图,某港口一天时到时的水深变化曲线近似满足函数,据此可知,这段时间水深单位:的最大值为A. B. C. D.【解答】解:由图象知.因为,所以,解得,所以这段时间水深的最大值是.故选C.41.若,且,则等于A. B. C. D.【解答】解:,,则,又,,则.故选:.42.若,则A. B. C. D.【解答】解:,且,,,两边同时平方得,解得或舍去,,故选B.43.,,则的值为.A. B. C. D.【解答】解:,,,,.故选:.44.若,均为锐角,,,则A. B. C.或 D.【解答】解:为锐角,,,且,,且,,,.45.在中,已知,那么的内角,之间的关系是A. B. C. D.关系不确定【解答】解:由正弦定理,即,所以,即,所以,则,所以.故选B.46.设,,则A. B. C. D.【解答】解:根据二倍角公式可得,解得,由,可得,所以,故选A.47.设,,且,则下列结论中正确的是A. B. C. D.【解答】解:,因为,所以.故选A.48.已知是锐角,若,则A. B. C. D.【解答】解:已知是锐角,,若,,则.故选A.49.化简的值等于A. B. C. D.【解答】解:,,.故选A.50.已知,,则的值为A. B. C. D.【解答】解:,,由得..故选B.51.已知函数,若函数在上单调递减,则实数的取值范围是A. B. C. D.【解答】解:函数,由函数在上单调递减,且,得解得,又,,实数的取值范围是.故选A.52.函数的最大值为A. B. C. D.【解答】解:函数,其中,函数的最大值为,故选C.53.计算:等于A. B. C. D.【解答】解:,,.故选A.54.在中,角,,的对边分别为,,,已知,,则的值为A. B. C. D.【解答】解:,,即,即,,由正弦定理可得,又,所以由余弦定理可得,故选D.55.函数取最大值时,A. B. C. D.【解答】解:,其中由确定.由与得.若,则,,,此时.所以,最大值时,,,.故选.56.已知点在第一象限,且在区间内,那么的取值范围是___________.【解答】解:由题意可知,,,借助于三角函数线可得角的取值范围为.故答案为.57.已知角的终边经过点,则实数的值是【解答】解:设,由于正切函数周期为,则,又终边经过点,所以,解得,故答案为.58.在平面直角坐标系中,角的顶点是,始边是轴的非负半轴,,若点是角终边上的一点,则的值是____.【解答】解:因为点是角终边上的一点,所以,由,,则在第一象限,又,所以.故答案为.59.已知,,则____________.【解答】解:,,,,.故答案为.60.已知角的终边与单位圆交于点,则的值为__________.【解答】解:由题意可得,则.故答案为.61.若扇形的圆心角为,半径为,则扇形的面积为__________.【解答】解:因为,所以扇形面积公式.故答案为.62.如果一扇形的弧长变为原来的倍,半径变为原来的一半,则该扇形的面积为原扇形面积的________.【解答】解:由于,若,,则.63.某中学开展劳动实习,学生加工制作零件,零件的截面如图所示,为圆孔及轮廓圆弧所在圆的圆心,是圆弧与直线的切点,是圆弧与直线的切点,四边形为矩形,,垂足为,,到直线和的距离均为,圆孔半径为,则图中阴影部分的面积为___________.【解答】解:设上面的大圆弧的半径为,连接,过作交于,交于,交于,过作于,记扇形的面积为,由题中的长度关系易知,同理,又,可得为等腰直角三角形,可得,,,,,解得,,故答案为.64.已知相互啮合的两个齿轮,大轮有齿,小轮有齿.当小轮转动两周时,大轮转动的角度为______________写正数值:如果小轮的转速为转分,大轮的半径为,则大轮周上一点每秒转过的弧长为______________.【解答】解:因为大轮有齿,小轮有齿,当小轮转动两周时,大轮转动的角为,如果小轮的转速为转分,则每秒的转速为转秒,由于大轮的半径为,那么大轮周上一点每转过的弧长是.故答案为.65.终边在直线上的所有角的集合是____________.【解答】解:由终边相同的角的定义,终边落在射线的角的集合为,终边落在射线的角的集合为:,终边落在直线的角的集合为:.故答案为.66.已知直四棱柱的棱长均为,以为球心,为半径的球面与侧面的交线长为________.【解答】解:如图:取的中点为,的中点为,的中点为,因为,直四棱柱的棱长均为,所以为等边三角形,所以,,又四棱柱为直四棱柱,所以平面,所以,因为,所以侧面,设为侧面与球面的交线上的点,则,因为球的半径为,,所以,所以侧面与球面的交线上的点到的距离为,因为,所以侧面与球面的交线是扇形的弧,因为,所以,所以根据弧长公式可得.故答案为.67.用弧度制表示终边落在如图所示阴影部分内的角的集合是_________________________.【解答】解:由题意,得与终边相同的角可表示为,与终边相同的角可表示为,故角的集合是,故答案为.68.给出下列命题:第二象限角大于第一象限角三角形的内角是第一象限角或第二象限角不论是用角度制还是用弧度制度量一个角,它们与扇形的半径的大小无关若,则与的终边相同若,则是第二或第三象限的角.其中正确的命题是填序号【解答】解:①是第二象限角,是第一象限角,但,①错误;②三角形内角有的直角,但它不是象限角,不属于任何象限,②错误;③角的度量是角所在扇形中它所对的弧长与相应半径的比值,与扇形半径无关,③正确④与的正弦值相等,但它们终边关于轴对称,④错误;⑤余弦值小于零,的终边在第二或第三象限或非正半轴上,⑤错误.故答案为③69.已知扇形的圆心角为,周长为,则扇形的面积为______ .解:设扇形的半径为,圆心角为,弧长,此扇形的周长为,,解得:,则扇形的面积为.故答案为.70.地球的北纬线中国段被誉为中国最美风景走廊,东起舟山东经,西至普兰东经,“英雄城市”武汉东经也在其中,假设地球是一个半径为的标准球体,某旅行者从武汉出发,以离普兰不远的冷布岗日峰东经为目的地,沿纬度线前行,则该行程的路程为__________用含的代数式表示【解答】解:地球半径为,所以北纬的纬度圈半径为,因为武汉和冷布岗日峰的经度分别为东经和东经,相差,即,所以两地在北纬的纬线长是.故答案为.71.如图,在平面直角坐标系中,以轴正半轴为始边的锐角的终边与单位圆交于点,且点的纵坐标是.求的值;若以轴正半轴为始边的钝角的终边与单位圆交于点,且点的横坐标为,求的值.【参考答案】解:因为锐角的终边与单位圆交于点,且点的纵坐标是,所以由任意角的三角函数的定义可知.从而.,.因为钝角的终边与单位圆交于点,且点的横坐标是,所以,从而.于是.因为为锐角,为钝角,所以,从而.72.如图,有一块扇形草地,已知半径为,,现要在其中圈出一块矩形场地作为儿童乐园使用,其中点、在弧上,且线段平行于线段若点为弧的一个三等分点,求矩形的面积;当在何处时,矩形的面积最大?最大值为多少?【参考答案】解:如图,作于点,交线段于点,连接、,,,,,,设,则,,,,,,即时,,此时在弧的四等分点处.73.如图,圆的半径为,,为圆上的两个定点,且,为优弧的中点,设,在右侧为优弧不含端点上的两个不同的动点,且,记,四边形的面积为.求关于的函数关系;求的最大值及此时的大小.解:如下图所示:圆的半径为,,为圆上的两个定点,且,,到的距离,若,则,到的距离,故令则,,的图象是开口朝上,且以直线为对称的抛物线,故当,即时,取最大值.74.如图,在中,,,为,,所对的边,于,且.求证:;若,求的值.【参考答案】证明:,,,,,在直角三角形中,,在直角三角形中,,则,即,,,由此即得证.解:,,,则,由知,,故的值为.75.已知角的终边经过点.求的值;求的值.【参考答案】解:Ⅰ因为角终边经过点,设,,则,所以,,..Ⅱ.76.已知向量,.当时,求的值;若,且,求的值.【参考答案】解:首先,.当时,.由知,.因为,得,所以.所以.77.如图,在平面直角坐标系中,以轴为始边做两个锐角,它们的终边分别与单位圆相交于、两点,已知、的横坐标分别为求的值;求的值.【参考答案】解:由已知得,,,因为为锐角,故,从而,同理可得,因此,,所以,,又,,,得.78.已知化简若是第二象限角,且,求的值.【参考答案】解:.是第二象限角,且,,是第二象限角,.79.如图,某市拟在长为的道路的一侧修建一条运动赛道,赛道的前一部分为曲线段,该曲线段为函数的图象,且图象的最高点为;赛道的后一部分为折线段,为保证参赛运动员的安全,限定.求,的值和,两点间的距离;应如何设计,才能使折线段最长?【参考答案】解:因为图象的最高点为,所以,由图象知的最小正周期,又,所以,所以,所以,,故,两点间的距离为,综上,的值为,的值为,,两点间的距离为;在中,设,因为,故,由正弦定理得,所以,.设折线段的长度为,则,所以的最大值是,此时的值为.故当时,折线段最长.80.已知函数.Ⅰ求的最小正周期;Ⅱ求在区间上的最大值和最小值.【参考答案】解:Ⅰ,所以的最小正周期为.Ⅱ因为,所以.于是,当,即时,取得最大值;当,即时,取得最小值.81.已知函数求函数的最小正周期;若函数对任意,有,求函数在上的值域.【参考答案】解:,的最小正周期;函数对任意,有,,当时,则,则,即,解得.综上所述,函数在上的值域为:.82.已知向量,.当时,求的值;设函数,且,求的最大值以及对应的的值.【参考答案】解:因为,所以,因为否则与矛盾,所以,所以;,因为,所以,所以当,即时,函数的最大值为.83.已知函数.求的值;从①;②这两个条件中任选一个,作为题目的已知条件,求函数在上的最小值,并直接写出函数的一个周期.【参考答案】解:Ⅰ由函数,则;Ⅱ选择条件①,则的一个周期为;由;,因为,所以;所以,所以;当,即时,在取得最小值为.选择条件②,则的一个周期为;由;因为,所以;所以当,即时,在取得最小值为.,,84.已知函数.求函数的最小正周期和单调递增区间;若存在满足,求实数的取值范围.【参考答案】解:,函数的最小正周期.由,得,的单调递增区间为.当时,可得:,令.所以若存在,满足,则实数的取值范围为.85.已知函数.求函数的单调减区间;将函数的图象向左平移个单位,再将所得的图象上各点的横坐标缩短为原来的倍,纵坐标不变,得到函数的图象,求在上的值域.【参考答案】解:函数,当,解得:,因此,函数的单调减区间为;将函数的图象向左平移个单位,得的图象,再将所得的图象上各点的横坐标缩短为原来的倍,纵坐标不变,得到函数的图象,,,故的值域为.86.函数的部分图象如图所示.求的解析式;设,求函数在上的最大值,并确定此时的值.【参考答案】解:由图知,,则,,,,,,,,的解析式为;由可知:,,,,当即时,.87.已知函数的一系列对应值如下表:根据表格提供的数据求函数的一个解析式.根据的结果,若函数周期为,当时,方程恰有两个不同的解,求实数的取值范围.【参考答案】解:设的最小正周期为,则,由,得.又由解得令,即,解得,.函数的最小正周期为,且,.令.,,的图像如图.在上有两个不同的解时,,方程在时恰有两个不同的解,则,即实数的取值范围是.88.已知函数的部分图象如图所示.求函数的解析式;求函数在区间上的最大值和最小值.【参考答案】解:由题意可知,,,得,解得.,即,,,所以,故;当时,,得;当时,即有时,函数取得最小值;当时,即有时,函数取得最大值.故,;89.已知函数.求的值;当时,不等式恒成立,求实数的取值范围.【参考答案】解:Ⅰ,.Ⅱ,..由不等式恒成立,得,解得.实数的取值范围为.90.设函数,.已知,函数是偶函数,求的值;求函数的值域.【参考答案】解:由,得,为偶函数,,,或,,,,,函数的值域为:.高考真题91.(2016山东)设.求的单调递增区间;把的图象上所有点的横坐标伸长到原来的倍纵坐标不变,再把得到的图象向左平移个单位,得到函数的图象,求的值.【参考答案】解:由,由,得,所以的单调递增区间是.由知,把的图象上所有点的横坐标伸长到原来的倍纵坐标不变,得到的图象,再把得到的图象向左平移个单位,得到的图象,即.所以.92.(2020安徽)在平面四边形中,,,,.求;若,求.解:,,,.由正弦定理得:,即,,,,.,,,.93.(2105重庆)已知函数求的最小正周期和最大值;讨论在上的单调性.【参考答案】解:.所以的最小正周期,当时,最大值为.当时,有,从而时,即时,单调递增,时,即时,单调递减,综上所述,单调增区间为,单调减区间为94.(2020上海)已知.求的值求的值.【解答】解:原式原式.95.(2017山东)设函数,其中,已知.Ⅰ求;Ⅱ将函数的图象上各点的横坐标伸长为原来的倍纵坐标不变,再将得到的图象向左平移个单位,得到函数的图象,求在上的最小值.解:Ⅰ函数,又,,,解得,又,Ⅱ由Ⅰ知,,,将函数的图象上各点的横坐标伸长为原来的倍纵坐标不变,得到函数的图象;再将得到的图象向左平移个单位,得到的图象,函数当时,,,当时,取得最小值是.96(2019上海)已知等差数列的公差,数列满足,集合.若,求集合;若,求使得集合恰好有两个元素;若集合恰好有三个元素:,是不超过的正整数,求的所有可能的值.【参考答案】解:等差数列的公差,数列满足,集合.当,集合,数列满足,集合恰好有两个元素,如图:根据三角函数线,①等差数列的终边落在轴的正负半轴上时,集合恰好有两个元素,此时,②终边落在上,要使得集合恰好有两个元素,可以使,的终边关于轴对称,如图,,此时,综上,或者.①当时,,数列为常数列,仅有个元素,显然不符合条件;②当时,,,数列的周期为,中有个元素,显然不符合条件;③当时,,集合,情况满足,符合题意.④当时,,,,,或者,,当时,集合,符合条件.⑤当时,,,,,或者,,因为,取,,集合满足题意.⑥当时,,,所以,,或者,,,取,,,满足题意.⑦当时,,,所以,,或者,,,故取,,,,当时,如果对应着个正弦值,故必有一个正弦值对应着个点,必然存在,有,,,,,不符合条件.当时,如果对应着个正弦值,故必有一个正弦值对应着个点,必然存在,有,,不是整数,不符合条件.当时,如果对应着个正弦值,故必有一个正弦值对应着个点,必然存在,有或者,,或者,此时,均不是整数,不符合题意.综上,,,,.97.(2017全国)已知集合是满足下列性质的函数的全体:存在非零常数,对任意,有成立.函数是否属于集合?说明理由;设函数,且的图象与的图象有公共点,证明:;若函数,求实数的取值范围.【参考答案】解:对于非零常数,,.因为对任意,不能恒成立,所以;因为函数且的图象与函数的图象有公共点,所以方程组:有解,消去得,显然不是方程的解,所以存在非零常数,使.于是对于有故;当时,,显然.当时,因为,所以存在非零常数,对任意,有成立,即.因为,且,所以,,。

三角函数经典练习题(含详细答案)

三角函数经典练习题(含详细答案)

三角函数典型例题(含详解答案)一、选择题1.函数)y x ωϕ=+其中(0,0π)ωϕ><<,的图象的一部分如图所示,则( )A. π3π,84ωϕ== B. ππ,84ωϕ== C. ππ,42ωϕ== D. π3π,44ωϕ==2.+( ) A.1sin 2 B.1cos 2C.112sin cos 22- D.112cos sin 22-3.若sin 2α=,sin()βα-=,且π,π4α⎡⎤∈⎢⎥⎣⎦,3ππ,2β⎡⎤∈⎢⎥⎣⎦,则αβ+的值是( ) A.7π4 B.9π4 C.5π4或7π4 D.5π4或9π44.已知1tan 2α=-求2212sin cos sin cos αααα+-的值是( ) A.13 B.3 C.13- D.-35.已知函数()sin()f x A x ωϕ=+(其中π0,2A ϕ><)的部分图象如右图所示,为了得到()sin 2g x x =的图象,则只需将()f x 的图象( )A.向右平移π6个长度单位B.向右平移π12个长度单位C .向左平移π6个长度单位 D.向左平移π12个长度单位 二、填空题6.计算:1tan151tan15+-= ___________. 三、解答题7.已知π0,cos sin 2ααα<<-=,求1tan cos2cos21ααα--+的值. 8.已知函数21()1sin 2sin sin tan 44f x x x x x ππ⎛⎫⎛⎫⎛⎫=+-+⋅- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. (1)若tan 2α=,求()f α;(2)若,122x ππ⎡⎤∈⎢⎥⎣⎦,求()f x 的值域.9.已知函数2π()sin()sin 2f x x x x =-. (I )求()f x 的最小正周期和最大值;(II )讨论()f x 在π2π[,]63上的单调性. 10.已知ABC △内角,,A B C 的对边分别为,,,a b c 向量(cos ,2),(2,1)m A a b n c =-=,且m n ⊥.(1).求角C ;(2).若2c =,ABC △ 求ABC △的周长.参考答案一、选择题1.答案:B解析:如图根据函数的图象可得:函数的周期为()62416-⨯=,又∵0ω>, ∴2ππ8T ω==,当2x =时取最大值,即π28ϕ⎛⎫⨯+= ⎪⎝⎭可得:ππ22π,Z 82k k ϕ⨯+=+∈, ∴π2π,Z 4k k ϕ=+∈, ∵0<πϕ<, ∴π4ϕ=, 故选:B .先利用图象中求得函数的周期,求得ω,最后根据2x =时取最大值,求得ϕ,即可得解.本题主要考查了由()sin()f x A x ωϕ=+的部分图象确定其解析式,考查了学生基础知识的运用和图象观察能力,属于基本知识的考查.2.答案:B解析:原式1111cos sin sin cos 2222=-+=. 3.答案:A解析:因为π,π4α⎡⎤∈⎢⎥⎣⎦,所以π2,2π2α⎡⎤∈⎢⎥⎣⎦.又sin 2α=,故π2,π2α⎡⎤∈⎢⎥⎣⎦,所以ππ,42α⎡⎤∈⎢⎥⎣⎦,所以cos 2α=.又3ππ,2β⎡⎤∈⎢⎥⎣⎦,所以π5π,24βα⎡⎤-∈⎢⎥⎣⎦,且5π,2π4αβ⎡⎤+∈⎢⎥⎣⎦,于是cos()βα-=所以cos()cos[2()]αβαβα+=+-cos2cos()sin 2sin()αβααβα=---⎛== ⎝⎭,故7π4αβ+=. 4.答案:C解析:5.答案:A解析:二、填空题6.解析:三、解答题7.答案:1tan cos2cos21ααα--+ 2cos sin cos (sin 22sin )ααααα-=+ cos sin sin 2(cos sin )ααααα-=+由cos sin αα-=两边平方得4sin 25α=, 29(cos sin )1sin 25ααα+=+= 而π02α<<,cos sin αα∴+=,故原式512== 解析:8.答案:(1)由题意,知2()sin sin cos cos 2f x x x x x =++ 1cos2111sin 2cos2(sin 2cos2)2222x x x x x -=++=++. 有tan 2α=,得2222sin cos 2tan 4sin 2sin cos tan 15ααααααα===++, 222222cos sin 1tan 3cos2sin cos tan 15ααααααα--===-++, 所以14313()25525f α⎛⎫=-+= ⎪⎝⎭. (2)由(1),得111()(sin 2cos 2)22242f x x x x π⎛⎫=++=++ ⎪⎝⎭.由,122x ππ⎡⎤∈⎢⎥⎣⎦,得552,4124x πππ⎡⎤+∈⎢⎥⎣⎦,所以sin 24x ⎡⎤π⎛⎫+∈⎢⎥ ⎪⎝⎭⎣⎦.从而()f x 的值域为⎡⎢⎣⎦. 解析:9.答案:(Ⅰ)函数2π()sin()sin 2f x x x x =-cos sin cos2)x x x =+1sin 22x x =πsin(2)2x =-故函数的周期为2ππ2=,最大值为1- (Ⅱ)当π2π[,]63x ∈时,π2[0,π]3x -∈, 故当ππ0232x ≤-≤时,即π5π[,]612x ∈时,()f x 为增函数; 当ππ2π23x ≤-≤时,即5π2π[,]123x ∈时,()f x 为减函数. 解析:10.答案:(1).由m n ⊥得2cos 2c A b a =-, 由正弦定理2sin 2sin cos 2sin sin CcsoA A C C A =+-,2sin cos sin A C A ∴= 在ABC △中,0πA <<,sin 0A ≠,1cos 2C ∴=,0πC <<,π3C ∴=. (2).4ab = 由余弦定理,22π42cos 3a b ab ab +-==,2()43a b ab ∴+-=,从而4a b += 2a b ==,周长为6解析:。

三角函数经典题目(带答案)

三角函数经典题目(带答案)

三角函数经典题目练习1.已知α1231、已知角2、P (x ,5则sin 1、已知2、函数(f3、已知 象限1. 已知π22.设0≤α是 .sin αtan x 若<0___.53sin +-=m m θ,524cos +-=m m θ(πθπ<<2),则=θ________.1tan tan αα,是关于x 的方程2230x kx k -+-=的个实根,且παπ273<<,则ααsin cos +的值 .0)13(22=++-m x x 的两根为()πθθθ2,0,cos ,sin ∈,求(1)m =_______(2)θθθθtan 1cos cot 1sin -+-=________.α )415tan(325cos ππ-+= . θθθθcos sin cos sin -+=2,则sin(θ-5π)·sin ⎪⎭⎫⎝⎛-θπ23= α终边上P (-4,3),)29sin()211cos()sin()2cos(απαπαπαπ+---+= .已知锐角α终边上一点P 的坐标是(2sin2,-2cos2),α= . sin163°·sin223°+sin253°·sin313°= . =-+θθtan 1tan 1_________tan 20tan 4020tan 40︒+︒︒⋅︒= α∈(0,2π),若sin α=53,则2cos(α+4π)= . 336cos =⎪⎭⎫ ⎝⎛-απ,则⎪⎭⎫ ⎝⎛+απ65cos =______,)65απ--=_____..【知二求多】1、已知cos ⎪⎭⎫ ⎝⎛-2βα= -54,sin ⎪⎭⎫ ⎝⎛-2αβ=135,且0<β<2π<α<π,则cos 2βα+=____.2已知tan α=43,cos(α+β)=-1411, α、β为锐角,则cos β=______.【方法套路】1、设21sin sin =+βα,31cos cos =+βα,则)cos(βα-=___ .2.已知ββαcos 5)2cos(8++=0,则αβαtan )tan(+= .3,41)sin(,31)sin(=-=+βαβα则___tan tan =βα【给值求角】1tan α=71,tan β=31,α,β均为锐角,则α+2β= .2、若sinA=55,sinB=1010,且A,B 均为钝角, 则A+B= .【半角公式】1α是第三象限,2524sin -=α,则tan 2α= . 2、已知01342=+++a ax x (a >1)的两根为αtan ,βtan ,且α,∈β ⎝⎛-2π,⎪⎭⎫2π,则2tan βα+=______3若cos 22π2sin 4αα=-⎛⎫- ⎪⎝⎭,则cos sin αα+= . 4、若⎥⎦⎤⎢⎣⎡∈27,25ππα,则ααsin 1sin 1-++=5x 是第三象限角xx xx x x x x cos sin 1cos sin 1cos sin 1cos sin 1-++++++-+=______ 【公式链】1=+++ 89sin 3sin 2sin 1sin 2222_______ 2sin10o sin30o sin50o sin70o=_______ 3(1+tan1o )(1+tan2o )…(1+tan45o )=_______六、给值求角 已知31sin -=x ,写出满足下列关系x 取值集合 ]3,5[)3()2(]2,0[)1(πππ--∈∈∈x R x x七、函数性质 【定义域问题】 1. x x y sin 162+-=定义域为_________2、1)32tan(--=πx y 定义域为_________【值域】1、函数y =2sin ⎝⎛⎭⎫πx 6-π3(0≤x ≤9)的最大值与最小值之和为__________2、若函数g (x )=2a sin x +b 的最大值和最小值分别为6和2,则|a |+b 的值为________3、函数x xy sin 2sin 1+-=的值域4、函数xxy cos 1sin 21+-=的值域5、函数x x y sin 2cos -=的值域【解析式】1、已知函数f (x )=3sin 2ωx -cos 2ωx 的图象关于直线x =π3对称,其中ω∈⎝⎛⎭⎫-12,52.函数f (x )的解析式为________.2、已知函数f (x )=A sin(ωx +φ)(A >0,ω>0,|φ|<π2)的图象在y 轴上的截距为1,在相邻两最值点(x 0,2),⎝⎛⎭⎫x 0+32,-2(x 0>0)上f (x )分别取得最大值和最小值.则所得图像的函数解析式是________ 3.将函数sin y x =的图像上所有的点右移10π个单位长度,再把所得各点的横坐标伸长到原来的2倍(纵坐标不变),所得图像的函数解析式是___________4、()()sin f x A x h ωϕ=++(0,0,)2A πωϕ>>< 的图象如图所示,求函数)(x f 的解析式;【性质】1、已知ω>0,函数f (x )=sin ⎝⎛⎭⎫ωx +π4在⎝⎛⎭⎫π2,π递减,则ω的取值范围是( )A.⎣⎡⎦⎤12,54B.⎣⎡⎦⎤12,34C.⎝⎛⎦⎤0,12 D.(0,2] 2、若函数()sin (0)f x x ωω=>在区间π0,3⎡⎤⎢⎥⎣⎦递增,在区间ππ,32⎡⎤⎢⎥⎣⎦上单调递减,则ω=3、sin(2)3y x π=+图像的对称轴方程可能是A .6x π=- B .12x π=- C .6x π= D .4、已知函数x a x x f 2cos 2sin )(+=关于x 称,则a =_______5.()2sin()f x x ωϕ=++m 对任意x 有()6f x f π+=若()6f π=3,则m=________【图象】1、为了得到函数sin(2)3y x π=-sin(2)6y x π=+的图像向____移动____2、为了得到函数sin(2)3y x π=-y=cos2x 图像向____移动____个长度单位 3.将函数sin(2)y x ϕ=+的图象沿x 个单位后,得到一个偶函数的图象,则ϕ取值为 (A)34π (B) 4π(C)0 (D) 4π-【综合练习】1、已知定义在R 上的函数f (x )满足:当sin x f (x )=cos x ,当sin x >cos x 时,f (x )=sin x .下结论:①f (x )是周期函数;②f (x )③当且仅当x =2k π(k ∈Z)时,f (x )当且仅当2k π-π2<x <(2k +1)π(k ∈Z)时,f (⑤f (x )的图象上相邻两个最低点的距离是正确的结论序号是________.f(x)=sin(2x+x x 2cos 2)62sin()6+-+ππ)求f(x)的最小值及单调减区间; )求使f(x)=3的x 的取值集合。

三角函数公式练习题及答案详解

三角函数公式练习题及答案详解

三角函数公式1. 同角三角函数基本关系式sin 2α+cos 2α=1sin αcos α=tan α tan αcot α=12. 诱导公式 (奇变偶不变,符号看象限)(一) sin(π-α)=___________ sin(π+α)= ___________cos(π-α)=___________ cos(π+α)=___________tan(π-α)=___________ tan(π+α)=___________sin(2π-α)=___________ sin(2π+α)=___________cos(2π-α)=___________ cos(2π+α)=___________tan(2π-α)=___________ tan(2π+α)=___________(二) sin(π2 -α)=____________ sin(π2+α)=____________ cos(π2 -α)=____________ cos(π2+α)=_____________ tan(π2 -α)=____________ tan(π2+α)=_____________ sin(3π2 -α)=____________ sin(3π2+α)=____________ cos(3π2 -α)=____________ cos(3π2+α)=____________ tan(3π2 -α)=____________ tan(3π2+α)=____________ sin(-α)=-sin α cos(-α)=cos α tan(-α)=-tan α公式的配套练习sin(7π-α)=___________ cos(5π2-α)=___________ cos(11π-α)=__________ sin(9π2+α)=____________ 3. 两角和与差的三角函数cos(α+β)=cos αcos β-sin αsin βcos(α-β)=cos αcos β+sin αsin βsin (α+β)=sin αcos β+cos αsin βsin (α-β)=sin αcos β-cos αsin βtan(α+β)= tan α+tan β1-tan αtan βtan(α-β)=tan α-tan β1+tan αtan β 4. 二倍角公式sin2α=2sin αcos αcos2α=cos 2α-sin 2α=2 cos 2α-1=1-2 sin 2αtan2α=2tan α1-tan 2α5. 公式的变形(1) 升幂公式:1+cos2α=2cos 2α 1—cos2α=2sin 2α(2) 降幂公式:cos 2α=1+cos2α2 sin 2α=1-cos2α2(3) 正切公式变形:tan α+tan β=tan(α+β)(1-tan αtan β)tan α-tan β=tan(α-β)(1+tan αtan β)(4) 万能公式(用tan α表示其他三角函数值)sin2α=2tan α1+tan 2α cos2α=1-tan 2α1+tan 2α tan2α=2tan α1-tan 2α6. 插入辅助角公式asinx +bcosx=a 2+b 2 sin(x+φ) (tan φ= b a) 特殊地:sinx ±cosx = 2 sin(x ±π4) 7. 熟悉形式的变形(如何变形)1±sinx ±cosx 1±sinx 1±cosx tanx +cotx1-tan α1+tan α 1+tan α1-tan α若A 、B 是锐角,A+B =π4 ,则(1+tanA )(1+tanB)=2 cos αcos2αcos22α…cos2 n α= sin2 n+1α 2 n+1sin α8. 在三角形中的结论(如何证明)若:A +B +C=π A+B+C 2 =π2tanA +tanB +tanC=tanAtanBtanCtan A 2 tan B 2 +tan B 2 tan C 2 +tan C 2 tan A 2=19.求值问题(1)已知角求值题如:sin555°(2)已知值求值问题常用拼角、凑角如:1)已知若cos(π4 -α)=35 ,sin(3π4 +β)=513, 又π4 <α<3π4 ,0<β<π4,求sin(α+β)。

三角函数练习题集(含答案解析)

三角函数练习题集(含答案解析)

三角函数练习题及答案(一)选择题1、在直角三角形中,各边都扩大2倍,则锐角A 的正弦值与余弦值都( )A 、缩小2倍B 、扩大2倍C 、不变D 、不能确定12、在Rt △ABC 中,∠C=900,BC=4,sinA=,则AC=( ) A 、3 B 、4 C 、5 D 、63、若∠A 是锐角,且sinA=,则( ) A 、00<∠A<300 B 、300<∠A<450 C 、450<∠A<600 D 、600<∠A<9004、若cosA= ,则A A AA tan 2sin 4tan sin 3+-=( ) A 、B 、C 、D 、0 5、在△ABC 中,∠A :∠B :∠C=1:1:2,则a :b :c=( )A 、1:1:2B 、1:1:C 、1:1:D 、1:1:6、在Rt △ABC 中,∠C=900,则下列式子成立的是( )A 、sinA=sinB B 、sinA=cosBC 、tanA=tanBD 、cosA=tanB7.已知Rt △ABC 中,∠C=90°,AC=2,BC=3,那么下列各式中,正确的是( )A .sinB=B .cosB=C .tanB=D .tanB=8.点(-sin60°,cos60°)关于y 轴对称的点的坐标是( ) A .(32,12) B .(-32,12) C .(-32,-12) D .(-12,-32)9.每周一学校都要举行庄严的升国旗仪式,让我们感受到了国旗的神圣.某同学站在离旗杆12米远的地方,当国旗升起到旗杆顶时,他测得视线的仰角为30°,若这位同学的目高1.6米,则旗杆的高度约为( )A .6.9米B .8.5米C .10.3米D .12.0米10.王英同学从A 地沿北偏西60º方向走100m 到B 地,再从B 地向正南方向走200m 到C 地,此时王英同学离A 地 ( )(A )350m (B )100 m (C )150m (D )3100m11、如图1,在高楼前D 点测得楼顶的仰角为300,向高楼前进60米到C 点,又测得仰角为450,则该高楼的高度大约为( )A.82米B.163米C.52米D.70米12、一艘轮船由海平面上A 地出发向南偏西40º的方向行驶40海里到达B 地,再由B 地向北偏西10º的方向行驶40海里到达C 地,则A 、C 两地相距( ).(A )30海里 (B )40海里 (C )50海里 (D )60海里(二)填空题1.在Rt △ABC 中,∠C=90°,AB=5,AC=3,则sinB=_____.2.在△ABC 中,若BC=2,AB=7,AC=3,则cosA=________.3.在△ABC 中,AB=2,AC=2,∠B=30°,则∠BAC 的度数是______.4.如图,如果△APB 绕点B 按逆时针方向旋转30°后得到△A 'P 'B ,且BP=2,那么PP '的长为________. (不取近似值. 以下数据供解题使用:sin15°=,cos15°=624 )5.如图,在甲、乙两地之间修一条笔直的公路,从甲地测得公路的走向是北偏东48°.甲、乙两地间同时开工,若干天后,公路准确接通,则乙地所修公路的走向是南偏西___________度.6.如图,机器人从A点,沿着西南方向,行了个42单位,到达B点后观察到原点O在它的南偏东60°的方向上,则原来A的坐标为___________结果保留根号).7.求值:sin260°+cos260°=___________.90,BC=13,AB=12,那么tan B8.在直角三角形ABC中,∠A=0___________.9.根据图中所给的数据,求得避雷针CD的长约为_______m(结果精确的到0.01m).(可用计算器求,也可用下列参考数据求:sin43°≈0.6802,sin40°≈0.6428,cos43°≈0.7341,cos40°≈0.7660,tan43°≈0.9325,tan40°≈0.8391)10.如图,自动扶梯AB段的长度为20米,倾斜角A为α,高度BC为___________米(结果用含α的三角比表示).11.如图2所示,太阳光线与地面成60°角,一棵倾斜的大树与地面成30°角,这时测得大树在地面上的影子约为10米,则大树的高约为________米.(保留两个有效数字,2≈1.41,3≈1.73)三、简答题:1,计算:sin cos cot tan tan 3060456030︒+︒-︒-︒⋅︒分析:可利用特殊角的三角函数值代入直接计算;2计算:22459044211(cos sin )()()︒-︒+-︒+--π分析:利用特殊角的三角函数值和零指数及负整数次幂的知识求解。

三角函数练习题附答案

三角函数练习题附答案

三角函数练习题附答案一、填空题1.已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .角B 为钝角.设△ABC 的面积为S ,若()2224bS a b c a =+-,则sin A +sin C 的最大值是____________.2.赵爽是我国古代数学家,大约在公元222年,他为《周髀算经》一书作序时,介绍了"勾股圆方图",亦称"赵爽弦图"(以弦为边长得到的正方形由4个全等的直角三角形再加上中间的一个小正方形组成).类比"赵爽弦图",可构造如图所示的图形,它是由3个全等的三角形与中间一个小等边三角形拼成的一个较大的等边三角形,设 ,AD AB AC λμ=+若4AD AF =,则λ-μ的值为___________3.已知三棱锥P ABC -中,23APB ∠=π,3PA PB ==,5AC =,4BC =,且平面PAB ⊥平面ABC ,则该三棱锥的外接球的表面积为_________.4.已知单位向量1e ,2e 与非零向量a 满足12322e e +≤()120a e e ⋅-≤,则()1232a e e a⋅+的最大值是______.5.如图,某城市准备在由ABC 和以C 为直角顶点的等腰直角三角形ACD 区域内修建公园,其中BD 是一条观赏道路,已知1AB =,3BC =BD 长度的最大值为______.6.在锐角△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若2cos b a a C -=,则ac的取值范围是______.7.在ABC 中,AB BC ≠,O 为ABC 的外心,且有23AB BC AC +=,sin (cos 3)cos sin 0C A A A +=,若AO x AB y AC =+,,x y R ∈,则2x y -=________.8.在角1θ,2θ,3θ,…,29θ的终边上分别有一点1P ,2P ,3P ,…,29P ,如果点k P 的坐标为()()()sin 15,sin 75k k-+,129k ≤≤,k ∈N ,则12329cos cos cos cos θθθθ+++⋅⋅⋅+=______9.关于函数()()33cos sin f x x x x =+①其表达式可写成()cos 26f x x π⎛⎫=+ ⎪⎝⎭;②直线12x π=-是曲线()y f x =的一条对称轴;③()f x 在区间,63ππ⎡⎤⎢⎥⎣⎦上单调递增;④存在0,2πα⎛⎫∈ ⎪⎝⎭使()()3f x f x αα+=+恒成立.其中正确的是______(填写正确的番号).10.已知O 为△ABC 外接圆的圆心,D 为BC 边的中点,且4BC =,6AO AD ⋅=,则△ABC 面积的最大值为___________.二、单选题11.在△ABC 中,24CA CB ==,F 为△ABC 的外心,则CF AB ⋅=( ) A .-6B .-8C .-9D .-1212.已知1F ,2F 分别是椭圆2222:1(0)x yE a b a b+=>>的左、右焦点,若在椭圆E 上存在点M ,使得12MF F △的面积等于2122sin b F MF ∠,则椭圆E 的离心率e 的取值范围为( )A .3⎡⎫⎪⎢⎪⎣⎭B .3⎛ ⎝⎦C .122⎛ ⎝⎦D .2⎡⎫⎪⎢⎪⎣⎭13.若函数()f x 同时满足:①定义域内任意实数x ,都有()()110f x f x ++-=;②对于定义域内任意1x ,2x ,当12x x ≠时,恒有()()()12120x x f x f x -⋅->⎡⎤⎣⎦;则称函数()f x 为“DM 函数”.若“DM 函数”满足()()2sin cos 0f f αα-+>,则锐角α的取值范围为( ) A .0,4π⎛⎫ ⎪⎝⎭B .0,3π⎛⎫ ⎪⎝⎭C .,43ππ⎛⎫ ⎪⎝⎭D .2,43ππ⎛⎫ ⎪⎝⎭14.已知ABC 的内角分别为,,A B C ,23cos 1sin 26A A =-,且ABC 的内切圆面积为π,则AB AC ⋅的最小值为( ) A .6B .8C .10D .1215.设函数()211f x x =-,()122x f e x --=,()31sin 23f x x π=,99i ia =,0i =、1、2、、99.记()()()()()()10219998k k k k k k k I f a f a f a f a f a f a =-+-++-,1k =、2、3,则( ) A .123I I I << B .321I I I << C .132I I I << D .213I I I <<16.在ABC 中,60BAC ∠=,3BC =,且有2CD DB =,则线段AD 长的最大值为( ) A .132B .2C .31+D .2317.如图,长方形ABCD 中,152AB =,1AD =,点E 在线段AB (端点除外)上,现将ADE 沿DE 折起为A DE '.设ADE α∠=,二面角A DE C '--的大小为β,若π2αβ+=,则四棱锥A BCDE '-体积的最大值为( )A .14B .23C 151-D 51-18.在ABC 中,BAC ∠的平分线交BC 于点,2,6D BD DC BC ==,则ABC ∆的面积的最大值为( ) A .6B .62C .12D .12219.函数()sin()(0)6f x x πωω=+>在区间52[,]63ππ-上单调递增,且存在唯一05[0,]6x π∈,使得0()1f x =,则ω的取值范围为( )A .11[,]52B .21[,]52C .14[,]55D .24[,]5520.已知函数22sin sin ,[1,1]()22,(1,)x x a a x f x x ax a x ⎧++-∈-=⎨-+∈+∞⎩若关于x 的不等式()0f x 对任意[1,)x ∈-+∞恒成立,则实数a 的范围是( )A .[0,2]B .(,0][2,)-∞+∞C .(,0][1,2]-∞D .[0,1][2,)⋃+∞三、解答题21.已知函数()()sin 06f x x πωω⎛⎫=-> ⎪⎝⎭的图象向左平移2π个单位长度后与函数()()cos 22g x x πϕϕ⎛⎫=+< ⎪⎝⎭图象重合.(1)求ω和ϕ的值;(2)若函数()88h x f x g x ππ⎛⎫⎛⎫=++- ⎪ ⎪⎝⎭⎝⎭,求函数()h x 的单调递减区间及图象的对称轴方程.22.已知函数()()2sin 24sin 206x x x f πωωω⎛⎫=--+> ⎪⎝⎭,其图象与x 轴相邻的两个交点的距离为2π. (1)求函数()f x 的解析式;(2)若将()f x 的图象向左平移()0m m >个长度单位得到函数()g x 的图象恰好经过点,03π⎛-⎫ ⎪⎝⎭,求当m 取得最小值时,()g x 在7,612ππ⎡⎤-⎢⎥⎣⎦上的单调区间. 23.如图,某景区内有一半圆形花圃,其直径AB 为6,O 是圆心,且OC ⊥AB .在OC 上有一座观赏亭Q ,其中∠AQC =23π,.计划在BC 上再建一座观赏亭P ,记∠POB =θ(0)2πθ<<.(1)当θ=3π时,求∠OPQ 的大小; (2)当∠OPQ 越大时,游客在观赏亭P 处的观赏效果越佳,求游客在观赏亭P 处的观赏效果最佳时,角θ的正弦值.24.已知函数()2sin cos cos2x x x x f =+. (1)求()f x 的最小正周期及单调递减区间;(2)求()f x 在区间0,4π⎡⎤⎢⎥⎣⎦上的最大值和最小值.25.函数211()sin 2sin cos cos sin 222f x x x πϕϕϕ⎛⎫=⋅+⋅-+ ⎪⎝⎭,22ππϕ⎛⎫-<< ⎪⎝⎭其图像过定点1,64π⎛⎫⎪⎝⎭(1)求ϕ值;(2)将()y f x =的图像左移8π个单位后得到()y g x =,求()g x 在,44ππ⎡⎤-⎢⎥⎣⎦上的最大和最小值及此时对应的x 的取值是多少?26.为丰富市民的文化生活,市政府计划在一块半径为200m ,圆心角为0120的扇形地上建造市民广场,规划设计如图:内接梯形ABCD 区域为运动休闲区,其中A ,B 分别在半径OP ,OQ 上,C ,D 在圆弧PQ 上,CD //AB ;上,CD //AB ;OAB ∆区域为文化展区,AB 长为3域,且CD 长不得超过200m.(1)试确定A ,B 的位置,使OAB ∆的周长最大?(2)当OAB ∆的周长最长时,设2DOC θ∠=,试将运动休闲区ABCD 的面积S 表示为θ的函数,并求出S 的最大值.27.已知函数()f x a b =⋅,其中()3sin ,1a x =-,()1,cos b x =,x ∈R .(1)求函数()y f x =的单调递增区间; (2)求()f x 在区间0,2π⎡⎤⎢⎥⎣⎦上的最值.28.已知等差数列{}n a 的公差(0,]d π∈,数列{}n b 满足sin()n n b a =,集合*{|,}n S x x b n ==∈N .(1)若10a =,23d π=,求集合S ; (2)若12a π=,求d 使得集合S 恰有两个元素;(3)若集合S 恰有三个元素,n T n b b +=,T 是不超过5的正整数,求T 的所有可能值,并写出与之相应的一个等差数列{}n a 的通项公式及集合S . 29.已知函数2133()sin 24f x x x =+(1)求()f x 的最小正周期T 和[0,]π上的单调增区间:(2)若2()(1)0n f x m +-⋅>对任意的,34x ππ⎡⎤∈-⎢⎥⎣⎦和*n N ∈恒成立,求实数m 的取值范围.30.在锐角△ABC 中,a 、b 、c 分别为角A 、B 、C 所对的边,且32sin a c A = (Ⅰ)确定角C 的大小: (Ⅱ)若c =,且△ABC 的面积为,求a +b 的值.【参考答案】一、填空题1.982.473.28π 4535616.32⎝⎭7.4333-8.09.②③10.2二、单选题 11.A 12.A 13.A 14.A 15.D 16.C 17.A 18.C19.B 20.C 三、解答题21.(1)2ω=,3πϕ=;(2)减区间为()7,1212k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦,对称轴方程为()212k x k Z ππ=+∈ 【解析】 【分析】(1)先根据平移后周期不变求得2ω=,再根据三角函数的平移方法求得3πϕ=即可.(2)根据(1)中()sin 26f x x π⎛⎫=- ⎪⎝⎭,()cos 23g x x π⎛⎫=+ ⎪⎝⎭代入可得()h x ,利用辅助角公式求得()23h x x π⎛⎫=+ ⎪⎝⎭,再代入调递减区间及图象的对称轴方程求解即可.【详解】(1)因为函数()()sin 06f x x πωω⎛⎫=-> ⎪⎝⎭的图象向左平移2π个单位长度后与函数()()cos 22g x x πϕϕ⎛⎫=+< ⎪⎝⎭图象重合,所以2ω=.5sin 2sin 2cos 222663f x x x x πππππ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫+=+-=+=+ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦ 所以()cos 2cos 23x x πϕ⎛⎫+=+ ⎪⎝⎭,因为2πϕ<,所以3πϕ=.(2)由(1)()sin 26f x x π⎛⎫=- ⎪⎝⎭,()cos 23g x x π⎛⎫=+ ⎪⎝⎭,所以()88h x f x g x ππ⎛⎫⎛⎫=++- ⎪ ⎪⎝⎭⎝⎭,sin 2cos 2212123x x x πππ⎛⎫⎛⎫⎛⎫=+++=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.令()3222232k x k k Z πππππ+≤+≤+∈,解得()71212k x k k Z ππππ+≤≤+∈ 所以函数的单调递减区间为()7,1212k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦. 令()232x k k Z πππ+=+∈,可得图象的对称轴方程为()212k x k Z ππ=+∈. 【点睛】本题主要考查了三角函数的平移运用以及辅助角公式.同时也考查了根据三角函数的解析式求解单调区间以及对称轴等方法.属于中档题.22.(1)()23f x x π⎛⎫=+ ⎪⎝⎭(2)单调增区间为,612ππ⎡⎤--⎢⎥⎣⎦,57,1212ππ⎡⎤⎢⎥⎣⎦;单调减区间为5,1212ππ⎡⎤-⎢⎥⎣⎦. 【解析】 【分析】(1)利用两角差的正弦公式,降幂公式以及辅助角公式化简函数解析式,根据其图象与x 轴相邻的两个交点的距离为2π,得出周期,利用周期公式得出1ω=,即可得出该函数的解析式;(2)根据平移变换得出()223m x x g π⎛⎫=++ ⎪⎝⎭,再由函数()g x 的图象经过点,03π⎛⎫- ⎪⎝⎭,结合正弦函数的性质得出m 的最小值,进而得出()223g x x π⎛⎫=+ ⎪⎝⎭,利用整体法结合正弦函数的单调性得出该函数在7,612ππ⎡⎤-⎢⎥⎣⎦上的单调区间.【详解】解:(1)()2sin 24sin 26x x x f πωω⎛⎫=--+ ⎪⎝⎭11cos22cos24222xx x ωωω-=--⨯+32cos22x x ωω=+23x πω⎛⎫=+ ⎪⎝⎭由已知函数()f x 的周期T π=,22ππω=,1ω=∴()23f x x π⎛⎫=+ ⎪⎝⎭.(2)将()f x 的图象向左平移()0m m >个长度单位得到()g x 的图象∴()223m x x g π⎛⎫=++ ⎪⎝⎭,∵函数()g x 的图象经过点,03π⎛⎫- ⎪⎝⎭22033m ππ⎡⎤⎛⎫⨯-++= ⎪⎢⎥⎝⎭⎣⎦,即sin 203m π⎛⎫-= ⎪⎝⎭∴23m k ππ-=,k Z ∈∴26k m ππ=+,k Z ∈∵0m >,∴当0k =,m 取最小值,此时最小值为6π此时,()223g x x π⎛⎫=+⎪⎝⎭. 令7612x ππ-≤≤,则2112336x πππ≤+≤当22332x πππ≤+≤或32112236x πππ≤+≤,即当612x ππ-≤≤-或571212x ππ≤≤时,函数()g x 单调递增当232232x πππ≤+≤,即51212x ππ-≤≤时,函数()g x 单调递减. ∴()g x 在7,612ππ⎡⎤-⎢⎥⎣⎦上的单调增区间为,612ππ⎡⎤--⎢⎥⎣⎦,57,1212ππ⎡⎤⎢⎥⎣⎦;单调减区间为5,1212ππ⎡⎤-⎢⎥⎣⎦.【点睛】本题主要考查了由正弦函数的性质确定解析式以及正弦型函数的单调性,属于中档题.23.(1)6π.(2)sin θ=. 【解析】(1)设∠OPQ =α,在△POQ 中,用正弦定理sin sin OQ OPOPQ OQP=∠∠可得含α,θ的关系式,将其展开化简并整理后得tanαθ=3π代入得答案;(2)令f (θ)f (θ)的最大值,即此时的sin θ,由(1)可知tanα.【详解】(1)设∠OPQ =α,在△POQ 中,用正弦定理可得含α,θ的关系式. 因为∠AQC =23π,所以∠AQO =3π.又OA =OB =3,所以OQ 在△OPQ 中,OQOP =3,∠POQ =2π-θ,设∠OPQ =α,则∠PQO =2π-α+θ.由正弦定理,得3sin 2παθ⎛⎫-+ ⎪⎝⎭=cos (α-θ).展开并整理,得tanαθ∈0,2π⎛⎫⎪⎝⎭.此时当θ=3π时,tanα因为α∈(0,π),所以α=6π.故当θ=3π时,∠OPQ =6π.(2)设f (θ)θ∈0,2π⎛⎫ ⎪⎝⎭.则f ′(θ)令f ′(θ)=0,得sinθθ0满足0sin θ则0cos θ=,即()02f θ===列表如下:由(1)可知tanα=f (θ)>0,则0,2πα⎛⎫∈ ⎪⎝⎭, tanα单调递增则当tanα取最大值2时,α也取得最大值. 故游客在观赏亭P 处的观赏效果最佳时,sinθ 【点睛】本题考查三角函数和解三角形的实际应用,应优先建模,将实际问题转化为熟悉的数学问题,进而由正弦定理构建对应关系,还考查了利用导数求函数的最值,属于难题. 24.(1)最小正周期π;单调递减区间是5,88k k ππππ⎡⎤++⎢⎥⎣⎦,k Z ∈(2)最大值和最小值和1. 【解析】(1)利用二倍角的正弦公式的逆用公式以及两角和的正弦公式的逆用公式化简得()24f x x π⎛⎫+ ⎪⎝⎭,再根据周期公式可得周期,利用正弦函数的递减区间可得()f x 的递减区间;(2)利用正弦函数的性质可求得结果. 【详解】(1)因为()sin 2cos 224x f x x x π⎛⎫=+=+ ⎪⎝⎭.所以()f x 的最小正周期22T ππ==. 由3222242k x k πππππ+≤+≤+,得588k x k ππππ+≤≤+,所以()f x 的单调递减区间是5,88k k ππππ⎡⎤++⎢⎥⎣⎦,k Z ∈. (2)因为0,4x π⎡⎤∈⎢⎥⎣⎦,所以32,444x πππ⎡⎤+∈⎢⎥⎣⎦.所以当242x ππ+=,即8x π=当244x ππ+=或34π,即0x =或4x π=时,函数取得最小值1.所以()f x 在区间0,4⎡⎤⎢⎥⎣⎦π和1.【点睛】本题考查了二倍角的正弦公式,考查了两角和的正弦公式,考查了正弦型函数的周期公式,考查了求三角函数的单调区间和最值,属于基础题. 25.(1)0ϕ=(2)当4x π=时,min ()g x =;当8x π=-时,max 1()2g x =【解析】 【分析】(1)先将函数表达式结合降幂公式化简可得()1cos(2)2f x x ϕ=-,结合函数过点1,64π⎛⎫⎪⎝⎭和,22ππϕ⎛⎫∈- ⎪⎝⎭即可求解具体ϕ值;(2)根据函数图像平移法则先求得1()cos 224g x x π⎛⎫=+ ⎪⎝⎭,由,44x ππ⎡⎤∈-⎢⎥⎣⎦求得32,444x πππ⎡⎤+∈-⎢⎥⎣⎦,再结合余弦函数性质即可求解 【详解】(1)11cos 21()sin 2sin cos cos 222x f x x ϕϕϕ+=⋅+⋅- 11sin 2sin cos 2cos 22x x ϕϕ=⋅+⋅ 1cos(2)2x ϕ=- 又图像过点1,64π⎛⎫ ⎪⎝⎭,11cos 423πϕ⎛⎫∴=- ⎪⎝⎭233k ππϕπ∴-=+或2()3k k Z ππ-+∈又,22ππϕ⎛⎫∈- ⎪⎝⎭,0ϕ∴=(2)由(1)知 1()cos 22f x x =, 11()cos 2cos 22824g x x x ππ⎛⎫⎛⎫=+=+ ⎪ ⎪⎝⎭⎝⎭ 32,444x πππ⎡⎤+∈-⎢⎥⎣⎦当3244x ππ+=时,即4x π=时,min ()4g x = 当204x π+=时,即8x π=-时,max 1()2g x = 【点睛】本题考查三角函数表达式的化简求值,降幂公式的使用,两角差的余弦公式的逆用,在具体区间函数最值的求解,属于中档题26.(1)OA 、OB 都为50m ;(2)8sin 64sin cos S θθθθ=-+;0,6πθ⎛⎤∈ ⎥⎝⎦;最大值为2625(8m +. 【解析】 【分析】对于(1),设OA m =,OB n =,m ,n (0,200)∈,在△OAB 中,利用余弦定理可得22222cos3AB OA OB OA OB π=+-⋅⋅,整理得222m n mn =++,结合基本不等式即可得出结论;对于(2),当△AOB 的周长最大时,梯形ACBD 为等腰梯形,过O 作OF ⊥CD 交CD 于F ,交AB 于E ,则E 、F 分别为AB ,CD 的中点,利用已知可表示出相关线段;然后利用梯形的面积公式可知,8sin 64sin cos S θθθθ=-+ ,0,6πθ⎛⎤∈ ⎥⎝⎦,令()8sin 64sin cos f θθθθθ=-+0,6πθ⎛⎤∈ ⎥⎝⎦,,结合导数,确定函数的单调性,即可求出S 的最大值. 【详解】解:(1)设OA m =,OB n =,m ,n (0,200)∈,在OAB ∆中,22222cos3AB OA OB OA OB π=+-⋅⋅,即222m n mn =++.所以22222()3()()()44m n m n mn m n m n +=+-+-=+.所以m n 100+,当且仅当m n 50==时,m n +取得最大值, 此时OAB ∆周长取得最大值.答:当OA 、OB 都为50m 时,OAB ∆的周长最大. (2)当AOB ∆的周长最大时,梯形ABCD 为等腰梯形.如上图所示,过O 作OF CD ⊥交CD 于F ,交AB 于E ,则E 、F 分别为AB 、CD 的中点, 所以DOE θ∠=.由CD 200,得0,6πθ⎛⎤∈ ⎥⎝⎦.在ODF ∆中,DF 200sin θ=,OF 200cos θ=. 又在AOE ∆中,OE OAcos253π==,故EF 200cos 25θ=-.所以1(503400sin )(200cos 25)2S θθ=-625(38sin )(8cos 1)θθ=-625(838sin 64sin cos 3)θθθθ=-+,0,6πθ⎛⎤∈ ⎥⎝⎦.令()838sin 64sin cos 3f θθθθθ=-+0,6πθ⎛⎤∈ ⎥⎝⎦,()838cos 64cos 216sin 64cos 26f πθθθθθθ'⎛⎫=--+=-++ ⎪⎝⎭,0,6πθ⎛⎫∈ ⎪⎝⎭.又16sin 6y πθ⎛⎫=-+ ⎪⎝⎭及cos 2y θ=在0,6πθ⎛⎤∈ ⎥⎝⎦上均为单调递减函数,故()f θ'在0,6πθ⎛⎤∈ ⎥⎝⎦上为单调递减函数.因1()1640623f π⎫'=-⨯>⎪⎪⎝⎭,故()0f θ'>在0,6πθ⎛⎤∈ ⎥⎝⎦上恒成立, 于是,()f θ在0,6πθ⎛⎤∈ ⎥⎝⎦上为单调递增函数.所以当6πθ=时,()f θ有最大值,此时S 有最大值为625(8153)+. 答:当6πθ=时,梯形ABCD 面积有最大值,且最大值为2625(8153)m +.【点睛】本题主要考查了余弦定理、基本不等式以及导数的应用,在(2)中得到()838sin 64sin cos 3f θθθθθ=-+()16sin 64cos 26f πθθθ'⎛⎫=-++ ⎪⎝⎭,结合函数在公共区间上,减函数+减函数等于减函数,从而确定()f θ'在0,6πθ⎛⎤∈ ⎥⎝⎦上为单调递减函数.属于难题.27.(1)2[2,2],33k k k Z ππππ-++∈;(2)最小值为1- 【解析】 【分析】(1)先利用平面向量数量积的坐标运算律以及辅助角公式得出()2sin 6f x x π⎛⎫=- ⎪⎝⎭,然后解不等式()22262k x k k Z πππππ-+≤-≤+∈可得出函数()y f x =的单调递减区间;(2)由0,2x π⎡⎤∈⎢⎥⎣⎦得出6x π-的取值范围,然后再利用正弦函数的性质得出函数()y f x =的最大值和最小值. 【详解】 (1)()3sin ,1a x =-,()1,cos b x =,()1cos 2cos 2sin cos cos sin 266f x x x x x x x ππ⎫⎛⎫∴=-=-=-⎪ ⎪⎪⎝⎭⎝⎭2sin 6x π⎛⎫=- ⎪⎝⎭,解不等式()2222k x k k Z ππππ-+≤≤+∈,得()22233k x k k Z ππππ-+≤≤+∈, 因此,函数()y f x =的单调递增区间为2[2,2],33k k k Z ππππ-++∈; (2)02x π≤≤,663x πππ∴-≤-≤,所以,函数()y f x =在区间0,2π⎡⎤⎢⎥⎣⎦上单调递增,则()min 2sin 16f x π⎛⎫=-=- ⎪⎝⎭,()max 2sin 2sin 263f x πππ⎛⎫=-== ⎪⎝⎭因此,函数()y f x =在区间0,2π⎡⎤⎢⎥⎣⎦上的最小值为1-【点睛】本题考查三角函数的单调性与最值,考查平面数量积的坐标运算,解这类问题首先要利用三角三角恒等变换公式将三角函数解析式化简,并将角视为一个整体,利用正弦函数或余弦函数的基本性质求解,考查分析问题和解题问题的能力,属于中等题.28.(1)⎧⎫⎪⎪⎨⎬⎪⎪⎩⎭;(2)23π或π;(3)3T =或4,3T =时,23n a n π=,S ⎧⎫⎪⎪=⎨⎬⎪⎪⎩⎭;4T =时,2n a n π=,{}0,1,1S =-【解析】【分析】(1)根据等差数列的通项公式写出n a ,进而求出n b ,再根据周期性求解;(2)由集合S 的元素个数,分析数列{}n b 的周期,进而可求得答案;(3)分别令1T =,2,3,4,5进行验证,判断T 的可能取值,并写出与之相应的一个等差数列{}n a 的通项公式及集合S 【详解】(1)等差数列{}n a 的公差(0d ∈,]π,数列{}n b 满足sin()n n b a =, 集合{}*|,n S x x b n N ==∈. ∴当120,3a d π==, 所以集合3{2S =-,0,3}2. (2)12a π=,数列{}n b 满足sin()n n b a =,集合{}*|,n S x x b n N ==∈恰好有两个元素,如图:根据三角函数线,①等差数列{}n a 的终边落在y 轴的正负半轴上时,集合S 恰好有两个元素,此时d π=, ②1a 终边落在OA 上,要使得集合S 恰好有两个元素,可以使2a ,3a 的终边关于y 轴对称,如图OB ,OC ,此时23d π=, 综上,23d π=或者d π=.(3)①当3T =时,3n n b b +=,集合1{S b =,2b ,3}b ,符合题意. 与之相应的一个等差数列{}n a 的通项公式为23n a n π=,此时33S ⎧⎫⎪⎪=⎨⎬⎪⎪⎩⎭. ②当4T =时,4n n b b +=,sin(4)sin n n a d a +=,42n n a d a k π+=+,或者42n n a d k a π+=-,等差数列{}n a 的公差(0d ∈,]π,故42n n a d a k π+=+,2k d π=,又1k ∴=,2 当1k =时满足条件,此时{0S =,1,1}-. 与之相应的一个等差数列{}n a 的通项公式为2n a n π=,此时{}0,1,1S =-【点睛】本题考查等差数列的通项公式、集合元素的性质以及三角函数的周期性,是一道综合题. 29.(1) T=π,单调增区间为50,12π⎡⎤⎢⎥⎣⎦,11,12ππ⎡⎤⎢⎥⎣⎦(2) ∅ 【解析】 【分析】(1)化简函数得到1()sin 223f x x π⎛⎫=- ⎪⎝⎭,再计算周期和单调区间.(2)分情况n 的不同奇偶性讨论,根据函数的最值得到答案. 【详解】解:(1)函数2133()sin 24f x x x =131cos 23sin 242x x +=131sin 22sin 2423x x x π⎛⎫==- ⎪⎝⎭ 故()f x 的最小正周期22T ππ==. 由题意可知:222232k x k πππππ-+≤-≤+,k Z ∈解得:51212k x k ππππ-+≤≤+,k Z ∈ 因为[0,]x π∈,所以()g x 的单调增区间为50,12π⎡⎤⎢⎥⎣⎦,11,12ππ⎡⎤⎢⎥⎣⎦ (2)由(1)得1()sin 223f x x π⎛⎫=- ⎪⎝⎭∵,34x ππ⎡⎤∈-⎢⎥⎣⎦∴2,36x πππ⎡⎤-∈-⎢⎥⎣⎦,∴1sin 21,32x π⎛⎫⎡⎤-∈- ⎪⎢⎥⎝⎭⎣⎦,12()1,2f x ⎡⎤∈-⎢⎥⎣⎦若2()(1)0n f x m +-⋅>对任意的,34x ππ⎡⎤∈-⎢⎥⎣⎦和*n N ∈恒成立,则2()(1)n f x m +-⋅的最小值大于零. 当n 为偶数时,10m -+>,所以,1m 当n 为奇数时,10m -->,所以,1m <- 综上所述,m 的范围为∅. 【点睛】本题考查了三角函数化简,周期,单调性,恒成立问题,综合性强,意在考查学生的计算能力和综合应用能力. 30.(Ⅰ)3π(Ⅱ)5 【解析】 【详解】试题分析:(12sin sin A C A =即可得sin C =60C =︒(2)∵1sin 2S ab C ==a b + 试题解析: 解:(12sin sin A C A =,∵,A C 是锐角,∴sin C =60C =︒.(2)∵1sin 2S ab C ==6ab = 由余弦定理得222222cos ()3()187c a b ab C a b ab a b =+-=+-=+-= ∴5a b +=点睛:在解三角形问题时多注意正余弦定理的结合运用,正弦定理主要用在角化边和边化角上,而余弦定理通常用来求解边长。

(完整word版)精选三角函数解答题30道带答案

(完整word版)精选三角函数解答题30道带答案

三角函数综合练习三学校:___________姓名:___________班级:___________考号:___________一、解答题1(0ω>) (1)求()f x 在区间 (2)将函数()f x 图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将所得个单位,得到函数()g x 的图象,若关于x 的方程()0g x k +=在区上有且只有一个实数根,求实数k 的取值范围. 2.其中,m x R ∈.(1)求()f x 的最小正周期;(2)求实数m 的值,使函数()f x 的值域恰为并求此时()f x 在R 上的对称中心.3 (1)求)(x f 的最小正周期;(2. 4 (1)求()f x 的最小正周期;(2)求()f x 在区间 5.已知函数.(1)求最小正周期; (2)求在区间上的最大值和最小值.6 (1)求()f x 的最小正周期;(2)若将()f x 的图象向右平移个单位,得到函数()g x 的图象,求函数()g x 在区间[]0,π上的最大值和最小值.7 (Ⅰ)(Ⅱ)8(1)求()f x 的定义域与最小正周期;(2求α的大小.9, x R ∈(1)求函数()f x 的最小正周期及在区间 (2,求0cos 2x 的值。

10.(本小题满分12 (1)求()f x 单调递增区间;(2)求()f x 在.11 (Ⅰ)求)(x f 的最小正周期;(Ⅱ)求)(x f 在.12 (I )求()f x 的最小正周期及其图象的对称轴方程;(II )将函数()f x 的图象向右平移个单位长度,得到函数()g x 的图象,求()g x 在的值域.13 (1)求()f x 的最小正周期;(2)求()f x 在区间 14(其中x ∈R ),求: (1)函数()f x 的最小正周期;(2)函数()f x 的单调区间;15 (1)求函数()f x 的最小正周期和图象的对称轴方程;(2)求函数()f x 在区间16 (1及()f x 的单调递增区间; (2)求()f x 在闭区间17(1(2成立的x 的取值集合.18 (Ⅰ)求函数()f x 的单调递减区间;19 (Ⅰ)求函数)(x f 的最小正周期T 及在],[ππ-上的单调递减区间;(Ⅱ)若关于x 的方程0)(=+k x f ,在区间上且只有一个实数解,求实数k 的取值范围.20 (1)求函数)(x f 的最小正周期和单调递减区间;(2)若将函数)(x f 的图象向左平移)0(>m m 个单位后,得到的函数)(x g 的图象关于轴对称,求实数m 的最小值.21(x R ∈). (1)求函数()f x 的最小正周期和单调减区间;(2)将函数()f x 的图象向右平移个单位长度后得到函数()g x 的图象,求函数()g x22(1)求函数()f x 的最小正周期;(2)求函数()f x 取得最大值的所有x 组成的集合.23 (Ⅰ)求()f x 的最小正周期;(Ⅱ)求()f x 在. 24.已知函数()22sin 2sin cos cos f x x x x x =+-.(Ⅰ)求函数()f x 的最小正周期; 时,求函数()f x 的最大值和最小值. 25.已知函数()()cos sin cos f x x x x =-. (Ⅰ)求函数()f x 的最小正周期; 时,求函数()f x 的最大值和最小值.26(1)求()f x 的周期和单调递增区间;(2)若关于x 的方程()2f x m -=在m 的取值范围.27(1)求函数()y f x =的最大、最小值以及相应的x 的值;(2)若y >2,求x 的取值范围.28 (1)求函数()f x 的最大值;(2)若直线x m =是函数()f x 的对称轴,求实数m 的值.29.函数()2cos (sin cos )f x x x x =+.(1 (2)求函数()f x 的最小正周期及单调递增区间.30 (1)求()f x 的最小正周期和最大值;(2)讨论()f x 在参考答案1.(1(2或1k =-. 【解析】试题分析:(1时,()f x 为减函数⇒所以()f x 的减区间为(2()y g x =的图象与直线y k =-在区间上只有一个交点⇒或1k =-.试题解析:(1因为()f x 的最小正周期为时,()f x 为减函数, 所以()f x 的减区间为 (2)将函数()f x 的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),得到再将的图象向右平移个单位,得到若关于x 的方程()0g x k +=在区间 即函数()y g x =的图象与直线y k =-在区间上只有一个交点, 或1k -=,即或1k =-. 考点:三角函数的图象与性质.2.(1)T π=;(2,Z k ∈∈. 【解析】试题分析:(1)则最小正周期T π=;(2)时,)(x f 值域为]3,[m m +解得函数)(x f 对称中心为,Z k ∈∈. 试题解析:(1)最小正周期T π=;(2考点:三角函数图象的性质.3.(1)π=T ;(2)()f x 在【解析】试题分析:(1)根据正弦二倍角公式、余弦二倍角公式以及两角和的正弦公式可将)(x f 化可得)(x f 的最小正周期为π;(2)进而得)(x f . 试题解析:(1所以f(x)f(x)考点:1、正弦二倍角公式、余弦二倍角公式以及两角和的正弦公式;2、三角函数的周期性及单调性.4.(1)函数的最小正周期为π(2时,)(x f 取最大值2时,)(x f 取得最小值1-【解析】试题分析:(1最小正周期及其图象的对称中心的坐标;(2从而可求求f (x试题解析::(Ⅰ)因为f (x )=4cosxsin (-1=4cosx )-12x-1=2sin (, 所以f (x )的最小正周期为π,由于是,当2;当f (x )取得最小值-1 考点:三角函数的最值;三角函数中的恒等变换应用;三角函数的周期性及其求法【答案】(1)π=T ;(2【解析】试题分析:(1)借助题设条件和两角和的正弦公式化简求解;(2)借助题设条件及正弦函数的有界性求解.试题解析:(1)因()()2sin cos cos 2f x x x x =++考点:三角变换的有关知识及综合运用.6.(1)π;(2)2,1.【解析】试题分析:(1)利用二倍角公式、诱导公式、两角和的正弦函数化为一个角旳一个三角函数的形式,即可求()f x 的最小正周期;(2)将()f x 的图象向右平移求出函数()g x 的解析式, 然后根据三角函数有界性结合三角函数图象求()g x 在区间[]0,π上的最大值和最小值.考点:1、三角函数的周期性;2、三角函数的图象变换及最值.【方法点晴】本题主要考查三角函数的周期性、三角函数的图象变换及最值,属于难题.三角恒等变换的综合应用主要是将三角变换与三角函数的性质相结合,通过和、差、倍角公式的形式再研究其性质,解题时注意观察角、名、结构等特征,注意利用整体思想解决相关问题.7.(Ⅰ)2π(Ⅱ【解析】试题分析:(Ⅰ)先利用二倍角公式、配角公式将函数化为基本三角函数:()fx ,再根据正弦函数性质求周期(Ⅱ))的基础上,利用正弦函数性质求试题解析:(Ⅰ)(1)()f x 的最小正周期为(()f x 取得最小值为:考点:二倍角公式、配角公式8.(1(2 【解析】试题分析:(1)利用正切函数的性质,可求得()f x 的定义域,由其周期公式可求最小正周期;(2)利用同三角函数间的关系式及正弦、余弦的二倍角公式,,从而可求得α的大小. 试题解析:解:(1所以()f x 的定义域为.()f x 的最小正周期为考点:1、两角和与差的正切函数;2、二倍角的正切.9.(1)π=T,()[]2,1-∈xf;(2【解析】试题分析:(1)再利用周,,利用正弦函数图像可得值域;(2)先利用求出,再由角的关系.试题解析:(1所以π=T由函数图像知()[]2,1-∈xf.(2考点:三角函数性质;同角间基本关系式;两角和的余弦公式10.(1(2【解析】试题分析:(1)利用两角和的正弦公式、二倍角公式和辅助角公式,化简(2)试题解析:(1(2)由得f x在,因此,()考点:三角恒等变换,三角函数图象与性质. 11.(I )T π=;(II【解析】试题分析:(I )利用两角和的正弦公式,降次公式,辅助角公式,将函数化简为,由此可知函数最小周期T π=;(II)试题解析:∴()fx 的最小正周期考点:三角恒等变换.12.(I )π=T ,(II【解析】试题分析:(I )利用和差角公式对()x f 可化为:,解出x 可得对称轴方程;(II )由x 的范围可得x 2范围,从而得x 2cos 的范围,进而得()x g 的值域. 试题解析:(1)即函数()x g 在区间考点:(1)三角函数中恒等变换;(2)三角函数的周期;(3)复合函数的单调性.【方法点晴】本题考查三角函数的恒等变换、三角函数的周期及其求法、三角函数的图象变换等知识,熟练掌握有关基础知识解决该类题目的关键,高考中的常考知识点.于三角函数解答题中,当涉及到周期,单调性,单调区间以及最值等都属于三角函数的性质,首先都应把它化为三角函数的基本形式即()ϕω+=x A y sin ,然后利用三角函数u A y sin =的性质求解.13.(1)π=T ;(2) -2.【解析】 试题分析:(1)首先将函数进行化简,包括两角和的正弦公式展开,以及二倍角公式以及x x 2cos 1cos 22=-,然后合并同类项,最后利用辅助角公式(2. 试题解析:(1)由题意可得∴()f x 的最小正周期为T π=;(2∴()f x 在区间-2. 考点:1.三角函数的恒等变形;2.三角函数的性质.14.(1)π(2【解析】试题分析:f (x )的最小正周期.x 的范围,即可得到f (x )的单调增区间,同理可得减区间试题解析:(1所以()f x 的单调减区间为考点:三角函数中的恒等变换应用;三角函数的周期性及其求法;正弦函数的单调性15.(1)π,(2 【解析】试题分析:(1)先根据两角和与差的正弦和余弦公式将函数()f x 展开再整理, 可将函数化简为()sin y A x ωρ=+的形式, 根据可求出最小正周期, 令求出x 的值即可得到对称轴方程;(2)先根据x 的范围求出, 进而得到函数()f x 在区试题解析:(1(2时,()f x 取最大值1,时,()f x 取最小值所以函数()f x 在区间 考点:1、三角函数的周期性及两角和与差的正弦和余弦公式;2、正弦函数的值域、正弦函数的对称性.16.(1(2)最大值为1,最小值为 【解析】试题分析:(1)将原函数()f x 由倍角公式和辅助角公式,,利用正弦函数的单调递区间求得此函数的单调增区间;(2)先求出,再进一步得出对应的正弦值的取值,可得函数值的取值范围,可得函数最值. 试题解析:(1),则,(2)所以最大值为1,考点:1.三角恒等变换;2.三角函数性质.【知识点睛】本题主要考查辅助角公式及三角函数的性质.对于函数()()sin 0,0y A x A ωϕω=+>>的单调区间的确定,基本思路是把x ωϕ+视做一个整体,解出x 的范围所得区间即为增区间,由x 的范围,所得区间即为减区间.若函数中()0,0A ω><,可用诱导公式先将函数变为()()sin 0,0y A x A ωϕω=--->>,则()()sin 0,0y A x A ωϕω=-->>的增区间为原函数的减区间,减区间为原函数的增区间.17.(1)(2)【解析】试题分析:(1)直接代入解析式即可;(2)由两角差的余弦公式,及正余弦二倍角公式和辅,k Z ∈,从而求解.试题解析:(1(2)f (x )=cos xcos x因f (x )于是2k2x2kk ∈Z. 解得kx <kk ∈Z.故使f (xx 的取考点:1、二倍角公式;2、辅助角公式;3、余弦函数图象与性质. 18.,k Z ∈;(Ⅱ)()f x 取得最大值1,()f x 取得最小值 【解析】试题分析:,k Z ∈,可解得单调减区间;(Ⅱ)最小值.试题解析:,k Z ∈.,k Z ∈.时,()f x 取得最小值时,()f x 取得最大值1. 考点:(1)降幂公式;(2)辅助角公式;(3)函数()ϕω+=x A y sin 的性质.【方法点晴】本题主要考查了三角函数的化简,以及函数()ϕω+=x A y sin 的性质,属于基础题,强调基础的重要性,是高考中的常考知识点;对于三角函数解答题中,当涉及到周期,单调性,单调区间以及最值等都属于三角函数的性质,首先都应把它化为三角函数的基本形式即()ϕω+=x A y sin ,然后利用三角函数u A y sin =的性质求解.19. 【解析】试题分析:(Ⅰ)借助题设条件运用正弦函数的图象和性质求解;(Ⅱ)借助题设条件运用正弦函数的图象建立不等式求解. 试题解析:(Ⅰ)由已知又因为.当0=k 时 当1-=k 时∴函数)(x f 在[]ππ,-的单调递减区间为(Ⅱ) ,0)(=+k x f 在区与2--=∴k y 在区间考点:正弦函数的图象和性质等有关知识的综合运用.【易错点晴】三角函数的图象和性质是高中数学中重要内容,也高考和各级各类考试的重要内容和考点.用问题为背景,要求运用三角变换的公式将其化为k x A y ++=)sin(ϕω的形式,再借助正弦函数的图象和性质求解.解答本题时,首先要用二倍角公式将其化简为再运用正弦函数的图象即可获得答案.这里运用二倍角公式进行变换是解答本题的关键.20.(1)π,(2【解析】试题分析:(1)将展开后再次合并,化简得(2)先按题意平移,得到试题解析:∴函数)(x f 的最小正周期函数)(x f 单调递减.考点:三角函数图象与性质.21.(1)T π=,单调减区间(k Z ∈);(2【解析】试题分析:(1)利用降次公式和两角和的余弦公式,先展开后合并,化简函数,故周期T π=,代入余弦函数单调减区间[]2,2k k πππ-,可求(2)函数()f x 的图象向右平移试题解析:(1(k Z ∈).(2,()g x 在 考点:三角恒等变换、三角函数图象与性质.22.(1)π;(2【解析】试题分析:(1)利用降次公式,和辅助角公式,故周期等于π;(23.试题解析:(1)∴函数()f x 的最小正周期为(2)当()f x 取最大值时,考点:三角恒等变换.23.(I )π;(II )函数()f x 的单调递增区间是 【解析】试题分析:(I数的最小正周期;(II )函数2sin y z =的单调递增区间,即可求解函数的单调递增区间.试题解析:函数2sin y z =的单调递增区间是所以,,()f x . 考点:三角函数的图象与性质.【方法点晴】本题主要考查了三角函数的恒等变换、三角函数的图象与性质及三角函数的单调区间的求解,本题的解答中利用三角恒等变换的公式求解函数的解析式查了学生分析问题和解答问题的能力,以及学生的化简与运算能力. 24.(Ⅰ)π;,最小值1- 【解析】试题分析:(Ⅰ)化简函数解析式,可得最小正周期为π;(Ⅱ)可得()f x 在和1-试题解析:(Ⅰ)()22sin 2sin cos cos f x x x x x =+-sin 2cos2x x =-所以()f x 的最小正周期时,()f x 取得最大值,即0x =时,()f x 取得最小值1-所以()f x 在和1- 考点:三角函数求值.【思路点睛】本题主要考查三角函数恒等变换,考查了)sin(ϕω+=x A y 型函数的图象与性质,属中档题.通过展开三角函数关系式,利用正弦二倍角公式和降幂公式,辅助角公式,由x 的范围求得相位. 25.(Ⅰ)π;(Ⅱ)最大值0,最小值 【解析】试题分析:,可得最小正周期为π;,可得()f x 在最小值分别为0和 试题解析:(Ⅰ)因为()()cos sin cos f x x x x =-所以函数()f x 的最小正周期时,函数()f x 取得最大值0,时,函数()f x 取得最小值所以()f x 在0考点:三角函数求值.【思路点睛】本题主要考查三角函数恒等变换,考查了)sin(ϕω+=x A y 型函数的图象与性质,属中档题.通过展开三角函数关系式,利用正弦二倍角公式和降幂公式,将函数解析式化为y ,再用辅助角公式将函数化简为y ,由x 的范围求得相位的范围,进一.26.(1)周期为π,(2)[]0,1m ∈ 【解析】试题分析:(1)利用倍角公式,两角和的正余弦公式将函数转化为()sin()f x A x bωϕ=++的形式,进一步求函数的周期和单调性;(2得()f x 的取值范围,进一步得2m +的取值范围,可解得实数m 的取值范围.试题解析:(k ∈Z ). (2,所以()f x 的值域为[]2,3.而()2f x m =+,所以[]22,3m +∈,即[]0,1m ∈.考点:1.倍角公式;2.辅助角公式;3.函数()sin()f x A x b ωϕ=++的性质. 27.(1时有最大值3;时,取最小值1-;(2【解析】试题分析:(1)由函数()sin()f x A x k ωϕ=++的最值取值情况求所给函数的最值;(2)对于2y >,利用特殊角的三角函数值与正弦函数的单调性,可将不等式转化为关于x 的不等式,解不等式可得x 的取值范围. 试题解析:(1)设sin (1,此时函数f (x )=2sin (+1取最大值3.当u=2kπx=kπsin (-1,此时函数f (x )=2sin (+1取最小值-1.(2)∵y=2sin((k∈Z)(k∈Z)∴x (k∈Z) 考点:1.()sin()f x A x k ωϕ=++的性质;2.特殊角的三角函数性质.28.(1)最大值是2;(2 【解析】试题分析:(1)从而化简函数解析式,然后利用正弦函数的性质求出函数的最大值;(2)利用sin y x =的对称轴,列出关系式,解出x ,即可求得m 的值.试题解析:(1)所以()f x 的最大值是2.(2而直线x m =是函()y f x =的对称轴,所以 考点:1、诱导公式;2、正弦函数的图象与性质. 【方法点睛】三角函数的性质由函数的解析式确定,在解答三角形函数性质的综合试题时要抓住函数解析式这个关键,在函数解析式较为复杂时要注意使用三角恒等变换公式把函数解析式化为一个角的一个三角函数形式,然后利用正弦(余弦)函数的性质求解.29.(1)2;(2)π, 【解析】试题分析:(1)借助题设直接运用诱导公式化简求解;(2)借助题设条件和二倍角公式求解. 试题解析:(1(2所以()f x 的单调递增区间为 考点:三角函数的图象及诱导公式二倍角公式的运用.30.(1)π,1;(2)()f x 在 【解析】试题分析:(1)()f x 整理得由公式可求得()f x 的周期和最大值;(2)求函数()f x 在R 上的单调区间,分别与.(1)()f x 的最小正周期为π,最大值为1;(2)当()f x 递增时,()k Z ∈,当()f x ()k Z ∈所以,()f x 在 考点:两角的正弦公式;函数sin()y A x ωϕ=+的性质.。

三角函数练习题及解析

三角函数练习题及解析

三角函数练习题及解析19. 已知0?x??2,化简:x?lg?x?)]?lg.2解析:原式?lg?lg?lg2?0.16.已知函数f?sin2x?2sin2x求函数f的最小正周期。

求函数f的最大值及f取最大值时x的集合。

在△ABC中,角A、B、C所对的边分别为a,b,c,已知cos2C??1求sinC的值;当a=2,sinA=sinC时,求b及c的长.解析:本题主要考察三角变换、正弦定理、余弦定理等基础知识,同事考查运算求解能力。

解:因为cos2C=1-2sin2C=?1,及0<C<π所以ac?,得 sinAsinC解:当a=2,2sinA=sinC时,由正弦定理c=4由cos2C=2cos2C-1=?1,J及0<C<π得cosC=由余弦定理c2=a2+b2-2abcosC,得b2b-12=0解得或所以c=4或?ABC中,D为边BC上的一点,BD?33,sinB?53,cos?ADC?,求AD. 135本试题主要考查同角三角函数关系、两角和差公式和正弦定理在解三角形中的应用,考查考生对基础知识、基本技能的掌握情况.由cos∠ADC=>0,知B<.由已知得cosB=,sin∠ADC=.从而sin∠BAD=sin=sin∠ADCcosB-cos∠ADCsinB==. 由正弦定理得,所以=.三角函数与解三角形的综合性问题,是近几年高考的热点,在高考试题中频繁出现.这类题型难度比较低,一般出现在17或18题,属于送分题,估计以后这类题型仍会保留,不会有太大改变.解决此类问题,要根据已知条件,灵活运用正弦定理或余弦定理,求边角或将边角互化.17.在△ABC中,已知B=45°,D是BC边上的一点,AD=10,AC=14,DC=6,求AB的长.解在△ADC中,AD=10,AC=14,DC=6,由余弦定理得AD2?DC2?AC2100?36?1961??, cos?=2?10?622AD?DC??ADC=120°, ?ADB=60°在△ABD中,AD=10, ?B=45°, ?ADB=60°,由正弦定理得ABAD?, sin?ADBsinB?AB=AD?sin?ADB10sin60sinBsin45?10?在?ABC中,a、b、c分别为内角A、B、C的对边,且2asinA?sinB?sinC求A的大小;若sinB?sinC?1,试判断?ABC的形状.解:由已知,根据正弦定理得2a2?b?c即a2?b2?c2?bc 由余弦定理得a2?b2?c2?2bccosA 故cosA??1,A?120?由得sin2A?sin2B?sin2C?sinBsinC.又sinB?sinC?1,得sinB?sinC?因为0??B?90?,0??C?90?, 1故B?C所以?ABC是等腰的钝角三角形。

三角函数大题专项(含答案)

三角函数大题专项(含答案)

三角函数专项训练1.在△ABC中,角A、B、C对应边a、b、c,外接圆半径为1,已知2(sin2A﹣sin2C)=(a﹣b)sin B.(1)证明a2+b2﹣c2=ab;(2)求角C和边c.2.在△ABC中,内角A,B,C所对的边分别为a,b,c.已知b sin A=a cos(B﹣).(Ⅰ)求角B的大小;(Ⅱ)设a=2,c=3,求b和sin(2A﹣B)的值.3.已知α,β为锐角,tanα=,cos(α+β)=﹣.(1)求cos2α的值;(2)求tan(α﹣β)的值.4.在平面四边形ABCD中,∠ADC=90°,∠A=45°,AB=2,BD=5.(1)求cos∠ADB;(2)若DC=2,求BC.5.已知函数f(x)=sin2x+sin x cos x.(Ⅰ)求f(x)的最小正周期;(Ⅱ)若f(x)在区间[﹣,m]上的最大值为,求m的最小值.6.在△ABC中,内角A,B,C所对的边分别为a,b,c.已知a sin A=4b sin B,ac=(a2﹣b2﹣c2)(Ⅰ)求cos A的值;(Ⅱ)求sin(2B﹣A)的值7.设函数f(x)=sin(ωx﹣)+sin(ωx﹣),其中0<ω<3,已知f()=0.(Ⅰ)求ω;(Ⅱ)将函数y=f(x)的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),再将得到的图象向左平移个单位,得到函数y=g(x)的图象,求g(x)在[﹣,]上的最小值.8.在△ABC中,内角A,B,C所对的边分别为a,b,c.已知a>b,a=5,c=6,sin B=.(Ⅰ)求b和sin A的值;(Ⅱ)求sin(2A+)的值.9.△ABC的内角A,B,C的对边分别为a,b,c,已知△ABC的面积为.(1)求sin B sin C;(2)若6cos B cos C=1,a=3,求△ABC的周长.10.△ABC的内角A,B,C的对边分别为a,b,c,已知sin(A+C)=8sin2.(1)求cos B;(2)若a+c=6,△ABC的面积为2,求b.11.已知函数f(x)=cos(2x﹣)﹣2sin x cos x.(I)求f(x)的最小正周期;(II)求证:当x∈[﹣,]时,f(x)≥﹣.12.已知向量=(cos x,sin x),=(3,﹣),x∈[0,π].(1)若,求x的值;(2)记f(x)=,求f(x)的最大值和最小值以及对应的x的值.13.在△ABC中,∠A=60°,c=a.(1)求sin C的值;(2)若a=7,求△ABC的面积.14.已知函数f(x)=2sinωx cosωx+cos2ωx(ω>0)的最小正周期为π.(1)求ω的值;(2)求f(x)的单调递增区间.15.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知b+c=2a cos B.(1)证明:A=2B;(2)若cos B=,求cos C的值.16.设f(x)=2sin(π﹣x)sin x﹣(sin x﹣cos x)2.(Ⅰ)求f(x)的单调递增区间;(Ⅱ)把y=f(x)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把得到的图象向左平移个单位,得到函数y=g(x)的图象,求g()的值.17.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知a sin2B=b sin A.(1)求B;(2)已知cos A=,求sin C的值.18.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知b+c=2a cos B.(Ⅰ)证明:A=2B;(Ⅱ)若△ABC的面积S=,求角A的大小.19.在△ABC中,角A,B,C所对的边分别是a,b,c,且+=.(Ⅰ)证明:sin A sin B=sin C;(Ⅱ)若b2+c2﹣a2=bc,求tan B.20.在△ABC中,AC=6,cos B=,C=.(1)求AB的长;(2)求cos(A﹣)的值.21.已知函数f(x)=4tan x sin(﹣x)cos(x﹣)﹣.(1)求f(x)的定义域与最小正周期;(2)讨论f(x)在区间[﹣,]上的单调性.22.△ABC的内角A,B,C的对边分别为a,b,c,已知2cos C(a cos B+b cos A)=c.(Ⅰ)求C;(Ⅱ)若c=,△ABC的面积为,求△ABC的周长.参考答案1.在△ABC中,角A、B、C对应边a、b、c,外接圆半径为1,已知2(sin2A﹣sin2C)=(a﹣b)sin B.(1)证明a2+b2﹣c2=ab;(2)求角C和边c.【解答】证明:(1)∵在△ABC中,角A、B、C对应边a、b、c,外接圆半径为1,∴由正弦定理得:=2R=2,∴sin A=,sin B=,sin C=,∵2(sin2A﹣sin2C)=(a﹣b)sin B,∴2()=(a﹣b)•,化简,得:a2+b2﹣c2=ab,故a2+b2﹣c2=ab.解:(2)∵a2+b2﹣c2=ab,∴cos C===,解得C=,∴c=2sin C=2•=.2.在△ABC中,内角A,B,C所对的边分别为a,b,c.已知b sin A=a cos(B﹣).(Ⅰ)求角B的大小;(Ⅱ)设a=2,c=3,求b和sin(2A﹣B)的值.【解答】解:(Ⅰ)在△ABC中,由正弦定理得,得b sin A=a sin B,又b sin A=a cos(B﹣).∴a sin B=a cos(B﹣),即sin B=cos(B﹣)=cos B cos+sin B sin=cos B+,∴tan B=,又B∈(0,π),∴B=.(Ⅱ)在△ABC中,a=2,c=3,B=,由余弦定理得b==,由b sin A=a cos(B﹣),得sin A=,∵a<c,∴cos A=,∴sin2A=2sin A cos A=,cos2A=2cos2A﹣1=,∴sin(2A﹣B)=sin2A cos B﹣cos2A sin B==.3.已知α,β为锐角,tanα=,cos(α+β)=﹣.(1)求cos2α的值;(2)求tan(α﹣β)的值.【解答】解:(1)由,解得,∴cos2α=;(2)由(1)得,sin2,则tan2α=.∵α,β∈(0,),∴α+β∈(0,π),∴sin(α+β)==.则tan(α+β)=.∴tan(α﹣β)=tan[2α﹣(α+β)]==.4.在平面四边形ABCD中,∠ADC=90°,∠A=45°,AB=2,BD=5.(1)求cos∠ADB;(2)若DC=2,求BC.【解答】解:(1)∵∠ADC=90°,∠A=45°,AB=2,BD=5.∴由正弦定理得:=,即=,∴sin∠ADB==,∵AB<BD,∴∠ADB<∠A,∴cos∠ADB==.(2)∵∠ADC=90°,∴cos∠BDC=sin∠ADB=,∵DC=2,∴BC===5.5.已知函数f(x)=sin2x+sin x cos x.(Ⅰ)求f(x)的最小正周期;(Ⅱ)若f(x)在区间[﹣,m]上的最大值为,求m的最小值.【解答】解:(I)函数f(x)=sin2x+sin x cos x=+sin2x=sin(2x﹣)+,f(x)的最小正周期为T==π;(Ⅱ)若f(x)在区间[﹣,m]上的最大值为,可得2x﹣∈[﹣,2m﹣],即有2m﹣≥,解得m≥,则m的最小值为.6.在△ABC中,内角A,B,C所对的边分别为a,b,c.已知a sin A=4b sin B,ac=(a2﹣b2﹣c2)(Ⅰ)求cos A的值;(Ⅱ)求sin(2B﹣A)的值【解答】(Ⅰ)解:由,得a sin B=b sin A,又a sin A=4b sin B,得4b sin B=a sin A,两式作比得:,∴a=2b.由,得,由余弦定理,得;(Ⅱ)解:由(Ⅰ),可得,代入a sin A=4b sin B,得.由(Ⅰ)知,A为钝角,则B为锐角,∴.于是,,故.7.设函数f(x)=sin(ωx﹣)+sin(ωx﹣),其中0<ω<3,已知f()=0.(Ⅰ)求ω;(Ⅱ)将函数y=f(x)的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),再将得到的图象向左平移个单位,得到函数y=g(x)的图象,求g(x)在[﹣,]上的最小值.【解答】解:(Ⅰ)函数f(x)=sin(ωx﹣)+sin(ωx﹣)=sinωx cos﹣cosωx sin﹣sin(﹣ωx)=sinωx﹣cosωx=sin(ωx﹣),又f()=sin(ω﹣)=0,∴ω﹣=kπ,k∈Z,解得ω=6k+2,又0<ω<3,∴ω=2;(Ⅱ)由(Ⅰ)知,f(x)=sin(2x﹣),将函数y=f(x)的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),得到函数y =sin(x﹣)的图象;再将得到的图象向左平移个单位,得到y=sin(x+﹣)的图象,∴函数y=g(x)=sin(x﹣);当x∈[﹣,]时,x﹣∈[﹣,],∴sin(x﹣)∈[﹣,1],∴当x=﹣时,g(x)取得最小值是﹣×=﹣.8.在△ABC中,内角A,B,C所对的边分别为a,b,c.已知a>b,a=5,c=6,sin B=.(Ⅰ)求b和sin A的值;(Ⅱ)求sin(2A+)的值.【解答】解:(Ⅰ)在△ABC中,∵a>b,故由sin B=,可得cos B=.由已知及余弦定理,有=13,∴b=.由正弦定理,得sin A=.∴b=,sin A=;(Ⅱ)由(Ⅰ)及a<c,得cos A=,∴sin2A=2sin A cos A=,cos2A=1﹣2sin2A=﹣.故sin(2A+)==.9.△ABC的内角A,B,C的对边分别为a,b,c,已知△ABC的面积为.(1)求sin B sin C;(2)若6cos B cos C=1,a=3,求△ABC的周长.【解答】解:(1)由三角形的面积公式可得S△ABC=ac sin B=,∴3c sin B sin A=2a,由正弦定理可得3sin C sin B sin A=2sin A,∵sin A≠0,∴sin B sin C=;(2)∵6cos B cos C=1,∴cos B cos C=,∴cos B cos C﹣sin B sin C=﹣=﹣,∴cos(B+C)=﹣,∴cos A=,∵0<A<π,∴A=,∵===2R==2,∴sin B sin C=•===,∴bc=8,∵a2=b2+c2﹣2bc cos A,∴b2+c2﹣bc=9,∴(b+c)2=9+3cb=9+24=33,∴b+c=∴周长a+b+c=3+.10.△ABC的内角A,B,C的对边分别为a,b,c,已知sin(A+C)=8sin2.(1)求cos B;(2)若a+c=6,△ABC的面积为2,求b.【解答】解:(1)sin(A+C)=8sin2,∴sin B=4(1﹣cos B),∵sin2B+cos2B=1,∴16(1﹣cos B)2+cos2B=1,∴16(1﹣cos B)2+cos2B﹣1=0,∴16(cos B﹣1)2+(cos B﹣1)(cos B+1)=0,∴(17cos B﹣15)(cos B﹣1)=0,∴cos B=;(2)由(1)可知sin B=,∵S△ABC=ac•sin B=2,∴ac=,∴b2=a2+c2﹣2ac cos B=a2+c2﹣2××=a2+c2﹣15=(a+c)2﹣2ac﹣15=36﹣17﹣15=4,∴b=2.11.已知函数f(x)=cos(2x﹣)﹣2sin x cos x.(I)求f(x)的最小正周期;(II)求证:当x∈[﹣,]时,f(x)≥﹣.【解答】解:(Ⅰ)f(x)=cos(2x﹣)﹣2sin x cos x,=(co2x+sin2x)﹣sin2x,=cos2x+sin2x,=sin(2x+),∴T==π,∴f(x)的最小正周期为π,(Ⅱ)∵x∈[﹣,],∴2x+∈[﹣,],∴﹣≤sin(2x+)≤1,∴f(x)≥﹣12.已知向量=(cos x,sin x),=(3,﹣),x∈[0,π].(1)若,求x的值;(2)记f(x)=,求f(x)的最大值和最小值以及对应的x的值.【解答】解:(1)∵=(cos x,sin x),=(3,﹣),∥,∴﹣cos x=3sin x,当cos x=0时,sin x=1,不合题意,当cos x≠0时,tan x=﹣,∵x∈[0,π],∴x=,(2)f(x)==3cos x﹣sin x=2(cos x﹣sin x)=2cos(x+),∵x∈[0,π],∴x+∈[,],∴﹣1≤cos(x+)≤,当x=0时,f(x)有最大值,最大值3,当x=时,f(x)有最小值,最小值﹣2.13.在△ABC中,∠A=60°,c=a.(1)求sin C的值;(2)若a=7,求△ABC的面积.【解答】解:(1)∠A=60°,c=a,由正弦定理可得sin C=sin A=×=,(2)a=7,则c=3,∴C<A,∵sin2C+cos2C=1,又由(1)可得cos C=,∴sin B=sin(A+C)=sin A cos C+cos A sin C=×+×=,∴S△ABC=ac sin B=×7×3×=6.14.已知函数f(x)=2sinωx cosωx+cos2ωx(ω>0)的最小正周期为π.(1)求ω的值;(2)求f(x)的单调递增区间.【解答】解:f(x)=2sinωx cosωx+cos2ωx,=sin2ωx+cos2ωx,=,由于函数的最小正周期为π,则:T=,解得:ω=1.(2)由(1)得:函数f(x)=,令(k∈Z),解得:(k∈Z),所以函数的单调递增区间为:[](k∈Z).15.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知b+c=2a cos B.(1)证明:A=2B;(2)若cos B=,求cos C的值.【解答】(1)证明:∵b+c=2a cos B,∴sin B+sin C=2sin A cos B,∵sin C=sin(A+B)=sin A cos B+cos A sin B,∴sin B=sin A cos B﹣cos A sin B=sin(A﹣B),由A,B∈(0,π),∴0<A﹣B<π,∴B=A﹣B,或B=π﹣(A﹣B),化为A=2B,或A=π(舍去).∴A=2B.(II)解:cos B=,∴sin B==.cos A=cos2B=2cos2B﹣1=,sin A==.∴cos C=﹣cos(A+B)=﹣cos A cos B+sin A sin B=+×=.16.设f(x)=2sin(π﹣x)sin x﹣(sin x﹣cos x)2.(Ⅰ)求f(x)的单调递增区间;(Ⅱ)把y=f(x)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把得到的图象向左平移个单位,得到函数y=g(x)的图象,求g()的值.【解答】解:(Ⅰ)∵f(x)=2sin(π﹣x)sin x﹣(sin x﹣cos x)2 =2sin2x﹣1+sin2x =2•﹣1+sin2x=sin2x﹣cos2x+﹣1=2sin(2x﹣)+﹣1,令2kπ﹣≤2x﹣≤2kπ+,求得kπ﹣≤x≤kπ+,可得函数的增区间为[kπ﹣,kπ+],k∈Z.(Ⅱ)把y=f(x)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),可得y =2sin(x﹣)+﹣1的图象;再把得到的图象向左平移个单位,得到函数y=g(x)=2sin x+﹣1的图象,∴g()=2sin+﹣1=.17.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知a sin2B=b sin A.(1)求B;(2)已知cos A=,求sin C的值.【解答】解:(1)∵a sin2B=b sin A,∴2sin A sin B cos B=sin B sin A,∴cos B=,∴B=.(2)∵cos A=,∴sin A=,∴sin C=sin(A+B)=sin A cos B+cos A sin B==.18.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知b+c=2a cos B.(Ⅰ)证明:A=2B;(Ⅱ)若△ABC的面积S=,求角A的大小.【解答】(Ⅰ)证明:∵b+c=2a cos B,∴sin B+sin C=2sin A cos B,∴sin B+sin(A+B)=2sin A cos B∴sin B+sin A cos B+cos A sin B=2sin A cos B∴sin B=sin A cos B﹣cos A sin B=sin(A﹣B)∵A,B是三角形中的角,∴B=A﹣B,∴A=2B;(Ⅱ)解:∵△ABC的面积S=,∴bc sin A=,∴2bc sin A=a2,∴2sin B sin C=sin A=sin2B,∴sin C=cos B,∴B+C=90°,或C=B+90°,∴A=90°或A=45°.19.在△ABC中,角A,B,C所对的边分别是a,b,c,且+=.(Ⅰ)证明:sin A sin B=sin C;(Ⅱ)若b2+c2﹣a2=bc,求tan B.【解答】(Ⅰ)证明:在△ABC中,∵+=,∴由正弦定理得:,∴=,∵sin(A+B)=sin C.∴整理可得:sin A sin B=sin C,(Ⅱ)解:b2+c2﹣a2=bc,由余弦定理可得cos A=.sin A=,=+==1,=,tan B=4.20.在△ABC中,AC=6,cos B=,C=.(1)求AB的长;(2)求cos(A﹣)的值.【解答】解:(1)∵△ABC中,cos B=,B∈(0,π),∴sin B=,∵,∴AB==5;(2)cos A═﹣cos(π﹣A)=﹣cos(C+B)=sin B sin C﹣cos B cos C=﹣.∵A为三角形的内角,∴sin A=,∴cos(A﹣)=cos A+sin A=.21.已知函数f(x)=4tan x sin(﹣x)cos(x﹣)﹣.(1)求f(x)的定义域与最小正周期;(2)讨论f(x)在区间[﹣,]上的单调性.【解答】解:(1)∵f(x)=4tan x sin(﹣x)cos(x﹣)﹣.∴x≠kπ+,即函数的定义域为{x|x≠kπ+,k∈Z},则f(x)=4tan x cos x•(cos x+sin x)﹣=4sin x(cos x+sin x)﹣=2sin x cos x+2sin2x﹣=sin2x+(1﹣cos2x)﹣=sin2x﹣cos2x=2sin(2x﹣),则函数的周期T=;(2)由2kπ﹣<2x﹣<2kπ+,k∈Z,得kπ﹣<x<kπ+,k∈Z,即函数的增区间为(kπ﹣,kπ+),k∈Z,当k=0时,增区间为(﹣,),k∈Z,∵x∈[﹣,],∴此时x∈(﹣,],由2kπ+<2x﹣<2kπ+,k∈Z,得kπ+<x<kπ+,k∈Z,即函数的减区间为(kπ+,kπ+),k∈Z,当k=﹣1时,减区间为(﹣,﹣),k∈Z,∵x∈[﹣,],∴此时x∈[﹣,﹣),即在区间[﹣,]上,函数的减区间为∈[﹣,﹣),增区间为(﹣,].22.△ABC的内角A,B,C的对边分别为a,b,c,已知2cos C(a cos B+b cos A)=c.(Ⅰ)求C;(Ⅱ)若c=,△ABC的面积为,求△ABC的周长.【解答】解:(Ⅰ)∵在△ABC中,0<C<π,∴sin C≠0已知等式利用正弦定理化简得:2cos C(sin A cos B+sin B cos A)=sin C,整理得:2cos C sin(A+B)=sin C,即2cos C sin(π﹣(A+B))=sin C2cos C sin C=sin C∴cos C=,∴C=;(Ⅱ)由余弦定理得7=a2+b2﹣2ab•,∴(a+b)2﹣3ab=7,∵S=ab sin C=ab=,∴ab=6,∴(a+b)2﹣18=7,∴a+b=5,∴△ABC的周长为5+.。

三角函数练习题(附详细解答过程)(可编辑修改word版)

三角函数练习题(附详细解答过程)(可编辑修改word版)

三角函数1sin 2a - cos 2 1. 已知tan( 4+) = ,(1)求tan 的值;(2)求 的值。

2 1 + cos 22.求证: 1+ 2 s in x cos x =1+ tan xcos 2 x - sin 2 x 1- tan x3. 已知+1 2sin( 42) ⋅ sin( 4 - 2) = ,∈ ( , 4 4 ), 求2 s in 2+ tan - cot- 1 的值.4. 设m 为实数,且点 A (tan ,0), B (tan ,0)是二次函数 f (x ) = mx 2 + (2m - 3)⋅ x + m - 2图像上的点.(1) 确定 m 的取值范围(2) 求函数 y = tan (+) 的最小值.5. 已知+ = 1 ,(1)求 的值;(2)求sin 2 - cos 2 的值. tan( ) 4 2tan1 + cos 23 3 36. 设函数 f (x ) = a ⋅ (b + c ) ,其中 a =(sinx,-cosx), b =(sinx,-3cosx), c =(-cosx,sinx),x ∈R ;(1) 求函数 f(x)的最大值和最小正周期;(2) 将函数 y =f(x)的图象按向量 d 平移,使平移后的图象关于坐标原点成中心对称,求| d |最小的 d .7. 在△ABC 中,sinA(sinB +cosB)-sinC =0,sinB +cos2C =0,求角 A 、B 、C 的大小.8. 设 f (x)=cos2x +2 ⑴ 求 M 、T .sinxcosx 的最大值为 M ,最小正周期为 T .⑵ 若有 10 个互不相等的函数 x i 满足 f (x i )=M ,且 0<x i <10π,求 x 1+x 2+…+x 10 的值.9.已知 f (x)=2sin(x + )cos(x + )+2 cos 2(x +)- 。

222⑴ 化简 f (x)的解析式。

三角函数计算练习题及答案详解

三角函数计算练习题及答案详解

三角函数计算练习题及答案详解1.同角三角函数基本关系式sin2α+cos2α=1sinα=tanα cosαtanαcotα=12.诱导公式sin=___________ sin= ___________cos=___________ cos=___________tan=___________ tan=___________sin=___________ sin=___________cos=___________ cos=___________tan=___________ tan=___________ππ sin=____________sin=____________2ππcos=____________ +α)=_____________2ππtan=____________ +α)=_____________2 3π3πsin=____________ sin=____________2 3π3πcos=____________ +α)=____________2 3π3πtan=____________ +α)=____________ 2 sin=-sinα cos=cosα tan=-tanα公式的配套练习5π sin=___________cos=___________9πcos=__________ sin=____________3.两角和与差的三角函数cos=cosαcosβ-sinαsinβcos=cosαcosβ+sinαsinβsin =sinαcosβ+cosαsinβsin =sinαcosβ-cosαsinβtan= tanα+tanβ 1-tanαtanβtanα-tanβ 1+tanαtanβtan=4.二倍角公式sin2α=2sinαcosαcos2α=cos2α-sin2α=cos2α-1=1-sin2α2tanαtan2α= 1-tanα5.公式的变形升幂公式:1+cos2α=2cos2α1—cos2α=2sin2α降幂公式:cos2α=1+cos2α1-cos2α sin2α=2正切公式变形:tanα+tanβ=tantanα-tanβ=tan 万能公式2tanα1-tan2α2tanαsin2α= tan2α= cos2α=1+tanα1+tanα1-tanα6.插入辅助角公式basinx+a+b sin a特殊地:sinx±cosx=sin7.熟悉形式的变形1±sinx±cosx1±sinx 1±cosx tanx+cotx 1-tanα1+tanα1+tanα1-tanα若A、B是锐角,A+B=2π,则=2nsinn+1αcosαcos2αcos2α?cosα=2sinα8.在三角形中的结论若:A+B+C=π A+B+Cπ=2tanA+tanB+tanC=tanAtanBtanCABBCCAtantan +tan tan + tan=122222三角函数计算练习1.已知x∈,cosx=,则tan2x= B. C. D.2.cos240°=A. B. C. D.3.已知cosα=k,k∈R,α∈,则sin= C.± D.﹣k4.已知角α的终边经过点,则cosα=5.cos480°的值为6.已知7.已知sin=,则cos2α等于)为其终边上一点,且cosα=x,则x=.已知α是第二象限角,P=)=..)=,则cos,且sin,则tan2x===﹣.故选D点评:此题考查了同角三角函数间的基本关系,以及二倍角的正切函数公式.学生求sinx和tanx时注意利用x 的范围判定其符合.2.B考点:运用诱导公式化简求值.专题:计算题;三角函数的求值.分析:运用诱导公式及特殊角的三角函数值即可化简求值.解答:解:cos240°=cos=﹣cos60°=﹣,故选:B.点评:本题主要考查了诱导公式及特殊角的三角函数值在化简求值中的应用,属于基本知识的考查.3.A考点:同角三角函数基本关系的运用;运用诱导公式化简求值.专题:三角函数的求值.分析:由已知及同角三角函数基本关系的运用可求sinα,从而由诱导公式即可得解.解答:解:∵cosα=k,k∈R,α∈,∴sinα==,.∴sin=﹣sinα=﹣故选:A.点评:本题主要考查了同角三角函数基本关系的运用,运用诱导公式化简求值,属于基本知识的考查.4.D考点:任意角的三角函数的定义.专题:三角函数的求值.分析:由条件直接利用任意角的三角函数的定义求得cosα的值.解答:解:∵角α的终边经过点,∴x=﹣4,y=3,r=∴cosα==故选:D.点评:本题主要考查任意角的三角函数的定义,两点间的距离公式的应用,属于基础题.5.D考点:运用诱导公式化简求值.专题:三角函数的求值.分析:运用诱导公式即可化简求值.解答:解:cos480°=cos=cos120°=﹣cos60°=﹣.故选:D.点评:本题主要考查了运用诱导公式化简求值,属于基础题.6.C考点:诱导公式的作用.专题:三角函数的求值.分析:已知等式中的角变形后,利用诱导公式化简,即可求出cosα的值.解答:解:sin=sin=sin=cosα=. =﹣, =5.考点:二倍角的余弦.专题:计算题;三角函数的求值.分析:由sin=及诱导公式可得cosα=,由二倍角的余弦公式可得cos2α的+α)=, =﹣,借助于角的终边上的点,解关于x的方程,便可求得所求的横坐标.解答:解:∵cosα===x,或x=﹣.∴x=0或x=故选:D.点评:本题巧妙运用三角函数的定义,联立方程求出未知量,不失为一种好方法..考点:二倍角的余弦.专题:三角函数的求值.分析:由二倍角的余弦公式化简所求后代入已知即可求值.解答:解:∵sinα=,∴cos2α=1﹣2sinα=1﹣2×=.故答案为:.点评:本题主要考查了二倍角的余弦公式的应用,属于基本知识的考查. 10.考点:二倍角的余弦;两角和与差的余弦函数.专题:计算题;三角函数的求值.分析:由二倍角的余弦函数公式根据已知即可求值.解答:解:cos=2cos﹣1=2×﹣1=.点评:本题主要考查了二倍角的余弦函数公式的应用,属于基本知识的考查.11.﹣考点:二倍角的正切;两角和与差的正弦函数.专题:三角函数的求值.分析:依题意,可得sinθ﹣cosθ=①,sinθ+cosθ=②,联立①②得:sinθ=,cosθ=,于是可得cos2θ、sin2θ的值,从而可得答案.解答:解:∵sin==,,2sinθcosθ=),,>0,又=1+sin2θ=∴sinθ+cosθ=,②联立①②得:sinθ=,cosθ=,∴cos2θ=2cosθ﹣1=﹣2,三角函数公式练习题1.1.sin29??A.11.?C. D22C试题分析:由题可知,sin考点:任意角的三角函数.已知sin?sin??;662?4)?772,cos2??,sin??25104343B.? C.?D.555D 试题分析由?7sin??sin??cos??45①,77?cos2??sin2?? 52571所以?cos??sin???cos??sin???②,由①②可得cos??sin??? ③,2553由①③得,sin?? ,故选D5cos2??考点:本题考查两角和与差的三角函数,二倍角公式点评:解决本题的关键是熟练掌握两角和与差的三角函数,二倍角公式.cos690?A.1133B.?C. D.?222C试题分析:由cos690?cos2?360?30?cos??30??cos30?,故选C考点:本题考查三角函数的诱导公式点评:解决本题的关键是熟练掌握三角函数的诱导公式以及特殊角的三角函数值.tan16?的值为A.?B. C. D.?3C试题分析tanπ=tan=﹣tan=.考点:三角函数的求值,诱导公式.点评:本题考查诱导公式的应用,三角函数的化简求值..若??????1?cos? ???0???,cos?,cos?4243222A.33536B.? C. D.?399C.试题分析:因为????1??3?,且???0???,cos?,所以????2243444?22???;又因为cos?,且????0,所以??)?43422??????6??????,所以.又因为?????,且sin?24424234422cos?cos[?]?coscos?sinsin1322653.故应选C. ?????33339考点:1、同角三角函数的基本关系;2、两角差的余弦公式..若角?的终边在第二象限且经过点P?,那么sin2x=518247?? 252525258.已知cos?1??52524考点:二倍角公式,三角函数恒等变形5?1??)?,那么cos?? 52112A.?B.?C.D.55559.已知sin?=sin?cosa,所以选C.52考点:三角函数诱导公式的应用1,则cos2a的值为231177A. B.? C. D.?339910.已知sin?D试题分析:由已知得cos??1272,从而cos2??2cos??1??1??,故选D.99考点:诱导公式及余弦倍角公式.11.已知点P在第三象限,则角?在 A.第一象限B.第二象限 C.第三象限 D.第四象限B试题分析:由已知得,?考点:三角函数的符号.?tan??0,,故角?在第二象限.cos??0?5,则sin?? 121155A. B.? C. D.?55131312.已知?是第四象限角,tan???D22试题分析:利用切化弦以及sin??cos??1求解即可. tan??sin?5??cos?12,?sin2??cos2??1,?sin2??525sin??0,sin???,13,169又?是第四象限角,2?故选:D.考点:任意角的三角函数的定义 y?sin?xT?213.化简cos?sin2得到A.sin2?B.?sin2?C.cos2?D.?cos2? A 试题分析:cos2?sin2?cos2?sin2?cos2?cos?sin2?考点:三角函数的诱导公式和倍角公式. 14.已知cos?? 3???,0????,则tan?????4??A.11B.C.?1D.?57D3?44?0可知0???,因此sin??,tan??,25354??1tan??tan?由和角公式可知tan????7,故答案为D。

三角函数10道大题(带答案解析)

三角函数10道大题(带答案解析)

三角函数10道大题(带答案解析)1. 题目:已知sinA = 3/5,且A为锐角,求cosA的值。

答案解析:由sinA = 3/5可知,对边与斜边的比值为3/5。

根据勾股定理,我们可以求出邻边的长度,进而求出cosA的值。

设斜边长度为5,对边长度为3,则邻边长度为4。

因此,cosA = 4/5。

2. 题目:已知tanB = 2/3,且B为钝角,求sinB的值。

答案解析:由tanB = 2/3可知,对边与邻边的比值为2/3。

由于B为钝角,我们可以利用tanB = sinB/cosB的关系,结合勾股定理,求出sinB的值。

设邻边长度为3,对边长度为2(因为B为钝角,对边为负值),则斜边长度为根号13。

因此,sinB = 2/根号13。

3. 题目:已知cosC = 1/2,且C为锐角,求tanC的值。

答案解析:由cosC = 1/2可知,邻边与斜边的比值为1/2。

根据勾股定理,我们可以求出对边的长度,进而求出tanC的值。

设斜边长度为2,邻边长度为1,则对边长度为根号3。

因此,tanC = 根号3/1。

4. 题目:已知sinD = 1/2,且D为钝角,求cosD的值。

答案解析:由sinD = 1/2可知,对边与斜边的比值为1/2。

由于D为钝角,我们可以利用sinD = cos(90° D)的关系,结合勾股定理,求出cosD的值。

设斜边长度为2,对边长度为1(因为D为钝角,对边为负值),则邻边长度为根号3。

因此,cosD = 根号3/2。

5. 题目:已知tanE = 1,且E为锐角,求sinE的值。

答案解析:由tanE = 1可知,对边与邻边的比值为1。

根据勾股定理,我们可以求出斜边的长度,进而求出sinE的值。

设邻边长度为1,对边长度为1,则斜边长度为根号2。

因此,sinE = 1/根号2。

6. 题目:已知cosF = 1/2,且F为钝角,求tanF的值。

答案解析:由cosF = 1/2可知,邻边与斜边的比值为1/2。

三角函数50题精选题附答案

三角函数50题精选题附答案

1. 已知方程(a 为大于1的常数)的两根为,,且、,则的值是_________________.解析:属于易错题,由于限定了角的范围,所以最终答案只有一个,1>a ∴a 4tan tan -=+βα0<,o a >+=⋅13tan tan βα∴βαtan ,tan 是方程01342=+++a ax x 的两个负根 又⎪⎭⎫ ⎝⎛-∈2,2,ππβα ⎪⎭⎫⎝⎛-∈∴0,2,πβα 即⎪⎭⎫ ⎝⎛-∈+0,22πβα由tan ()βα+=βαβαtan tan 1tan tan ⋅-+=()1314+--a a =34可得.22tan -=+βα2.函数f(x)=的值域为______________。

解析:易错题,错因:令x x t cos sin +=后忽视1-≠t ,从而121)(-≠-=t t g ,得到错解:⎥⎦⎤⎢⎣⎡---2122,2122 正解:⎥⎦⎤ ⎝⎛--⋃⎪⎪⎭⎫⎢⎣⎡---2122,11,2122 3.在△ABC 中,2sinA+cosB=2,sinB+2cosA=,则∠C 的大小应为( )A .B .C .或D .或解析:遇到这类型题,首先排除两个答案,因为给定条件就是让我们去排除4.已知tana tanb 是方程x 2+3x+4=0的两根,若a ,b ∈(-),则a+b=( )A .B .或-C .-或D .-解析:tana .tanb=4;tana +tanb=-3,所以tana tanb 均为负,即a ,b 都属于四象限 5.在中,,则的大小为( )A. B. C.D.解析:由3s i n 463c o s 41A B A B +=+=⎧⎨⎩c o s s i n 平方相加得115sin()sin 2266A B C C ππ+=∴=∴=或若C =56π, 则A B +=π6113cos 4sin 0cos 3A B A -=>∴<又1312<5366A C C πππ∴>∴≠∴= ∴选A ,实际上首先排除两个答案的6.函数为增函数的区间是……………… ( ) A.B.C.D.解析:注意x 前面系数为负7.已知且,这下列各式中成立的是( ) A.B.C.D.解析:解法1sin β>-cos α=sin (3π/2-α),因为β、(3π/2-α)都在二象限,sinx 二象限为减函数,所以β<(3π/2-α)解法2:首先排除AC(为什么),由特殊值法排除B8.△ABC中,已知cosA=,sinB=,则cosC的值为()A、 B、 C、或 D、9.设cos1000=k,则tan800是()A、 B、 C、 D、10.函数的单调减区间是()A、()B、C、 D、11.在△ABC中,则∠C的大小为()A、30°B、150°C、30°或150°D、60°或150°12.若,且,则_______________.13、设ω>0,函数f(x)=2sinωx在上为增函数,那么ω的取值范围是_____14已知奇函数单调减函数,又α,β为锐角三角形内角,则()A、f(cosα)> f(cosβ)B、f(sinα)> f(sinβ)C、f(sinα)<f(cosβ)D、f(sinα)> f(cosβ)15.函数的值域是.16.若,α是第二象限角,则=__________17.已知定义在区间[-p,]上的函数y=f(x)的图象关于直线x= -对称,当xÎ[-,]时,函数f(x)=Asin(wx+j)(A>0, w>0,-<j<),其图象如图所示。

三角函数10道大题(带答案)

三角函数10道大题(带答案)

三角函数大题训练1.已知函数()4cos sin()16f x x x π=+-. (Ⅰ)求 ()f x 的最小正周期;(Ⅱ)求()f x 在区间[,]64ππ-上的最大值和最小值.2、已知函数.,1cos 2)32sin()32sin()(2R x x x x x f ∈-+-++=ππ(Ⅰ)求函数)(x f 的最小正周期;(Ⅱ)求函数)(x f 在区间]4,4[ππ-上的最大值和最小值.3、已知函数()tan(2),4f x x =+π(Ⅰ)求()f x 的定义域与最小正周期;(II )设0,4⎛⎫∈ ⎪⎝⎭πα,若()2cos 2,2f =αα求α的大小4、已知函数xx x x x f sin 2sin )cos (sin )(-=. (1)求)(x f 的定义域及最小正周期;(2)求)(x f 的单调递减区间.5、 设函数2()cos(2)sin 24f x x x π=++. (I )求函数()f x 的最小正周期;(II )设函数()g x 对任意x R ∈,有()()2g x g x π+=,且当[0,]2x π∈时, 1()()2g x f x =-,求函数()g x 在[,0]π-上的解析式.6、函数()sin()16f x A x πω=-+(0,0A ω>>)的最大值为3, 其图像相邻两条对称轴之间的距离为2π, (1)求函数()f x 的解析式;(2)设(0,)2πα∈,则()22f α=,求α的值.7、设426f (x )cos(x )sin x cos x π=ω-ω+ω,其中.0>ω (Ⅰ)求函数y f (x )= 的值域(Ⅱ)若y f (x )=在区间322,ππ⎡⎤-⎢⎥⎣⎦上为增函数,求 ω的最大值.8、函数2()6cos 3(0)2xf x x ωωω=->在一个周期内的图象如图所示,A 为图象的最高点,B 、C 为图象与x 轴的交点,且ABC ∆为正三角形.(Ⅰ)求ω的值及函数()f x 的值域;(Ⅱ)若0()f x =,且0102(,)33x ∈-,求0(1)f x +的值.9、已知,,a b c 分别为ABC ∆三个内角,,A B C 的对边,cos sin 0a C C b c --=(1)求A ; (2)若2a =,ABC ∆的面积为3;求,b c .10、在∆ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .已知cos A =23,sin B C .(Ⅰ)求tan C 的值; (Ⅱ)若a ∆ABC 的面积.三角函数大题训练答案1、【思路点拨】先利用和角公式展开,再利用降幂公式、化一公式转化为正弦型函数,最后求周期及闭区间上的最值.【精讲精析】(Ⅰ)因为()4cos sin()16f x x x π=+-14cos cos )12x x x =+-222cos 1x x =+-2cos 22sin(2)6x x x π=+=+,所以()f x 的最小正周期为π.(Ⅱ)因为64x ππ-≤≤,所以22663x πππ-≤+≤.于是,当262x ππ+=,即6x π=时,()f x 取得最大值2;当266x ππ+=-,即6x π=-时,()f x 取得最小值-1.2、【解析】 (1)2()=sin (2+)+sin(2)+2cos 133f x x x x ππ--2sin 2coscos 2)34x x x ππ=+=+ 函数()f x 的最小正周期为22T ππ==(2)32sin(2)11()4444424x x x f x ππππππ-≤≤⇒-≤+≤⇒-≤+≤⇔-≤≤当2()428x x πππ+==时,()m a xf x =,当2()444x x πππ+=-=-时,m i n ()1f x =- 【点评】该试题关键在于将已知的函数表达式化为=sin (+)y A x ωϕ的数学模型,再根据此三角模型的图像与性质进行解题即可.3、【思路点拨】1、根据正切函数的有关概念和性质;2、根据三角函数的有关公式进行变换、化简求值.【精讲精析】(I )【解析】由2,42+≠+∈x k k Z πππ, 得,82≠+∈k x k Z ππ. 所以()f x 的定义域为{|,}82∈≠+∈k x R x k Z ππ,()f x 的最小正周期为.2π (II )【解析】由()2cos 2,2f =αα得tan()2cos 2,4+=παα22sin()42(cos sin ),cos()4+=-+παααπα 整理得sin cos 2(cos sin )(cos sin ).cos sin +=+--αααααααα因为(0,)4∈πα,所以sin cos 0.+≠αα因此211(cos sin ),sin 2.22-==ααα即由(0,)4∈πα,得2(0,)2∈πα.所以2,.612==ππαα即 4、解(1):si n 0()x x k k Z π≠⇔≠∈得:函数()f x 的定义域为{,}x x k k Z π≠∈(sin cos )sin 2()(sin cos )2cos sin x x xf x x x xx-==-⨯sin 2(1cos 2))14x x x π=-+=--得:)(x f 的最小正周期为22T ππ==; (2)函数sin y x =的单调递增区间为[2,2]()22k k k Z ππππ-+∈ 则322224288k x k k x k πππππππππ-≤-≤+⇔-≤≤+得:)(x f 的单调递增区间为3[,),(,]()88k k k k k Z ππππππ-+∈ 5、本题考查两角和与差的三角函数公式、二倍角公式、三角函数的周期等性质、分段函数解析式等基础知识,考查分类讨论思想和运算求解能力. 【解析】211()co42f x x π=++11sin 222x =-, (I )函数()f x 的最小正周期22T ππ== (II )当[0,]2x π∈时,11()()sin 222g x f x x =-= 当[,0]2x π∈-时,()[0,]22x ππ+∈ 11()()sin 2()sin 22222g x g x x x ππ=+=+=- 当[,)2x ππ∈--时,()[0,)2x ππ+∈ 11()()sin 2()sin 222g x g x x x ππ=+=+=得函数()g x 在[,0]π-上的解析式为1sin 2(0)22()1sin 2()22x x g x x x πππ⎧--≤≤⎪⎪=⎨⎪-≤<⎪⎩.6、【解析】(1)∵函数()f x 的最大值是3,∴13A +=,即2A =.∵函数图像的相邻两条对称轴之间的距离为2π,∴最小正周期T π=,∴2ω=. 故函数()f x 的解析式为()2sin(2)16f x x π=-+.(2)∵()2f α2sin()126πα=-+=,即1sin()62πα-=,∵02πα<<,∴663πππα-<-<,∴66ππα-=,故3πα=.7、解:(1)()14sin sin cos 22f x x x x x ωωωω⎫=++⎪⎪⎝⎭222cos 2sin cos sin x x x x x ωωωωω=++-21x ω=+因1sin 21x ω-≤≤,所以函数()y f x =的值域为1⎡⎣(2)因sin y x =在每个闭区间()2,222k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦上为增函数, 故()21f x x ω=+()0ω>在每个闭区间(),44k k k Z ππππωωωω⎡⎤-+∈⎢⎥⎣⎦上为增函数. 依题意知3,22ππ⎡⎤-⊆⎢⎥⎣⎦,44k k ππππωωωω⎡⎤-+⎢⎥⎣⎦对某个k Z ∈成立,此时必有0k =,于是 32424ππωππω⎧-≥-⎪⎪⎨⎪≤⎪⎩,解得16ω≤,故ω的最大值为16. 8. 本题主要考查三角函数的图像与性质、同角三角函数的关系、两角和差公式,倍角公式等基础知识,考查基本运算能力,以及数形结合思想,化归与转化思想. [解析](Ⅰ)由已知可得:2()6cos3(0)2xf x x ωωω=+->=3cosωx+)3sin(32sin 3πωω+=x x又由于正三角形ABC 的高为23,则BC=4 所以,函数482824)(πωωπ===⨯=,得,即的周期T x f所以,函数]32,32[)(-的值域为x f .……………………6分 (Ⅱ)因为,由538)(0=x f (Ⅰ)有,538)34(sin 32)(00=+=ππx x f 54)34(s i n 0=+ππx 即 由x 0)2,2()34x (323100ππππ-∈+-∈),得,( 所以,53)54(1)34(cos 20=-=+ππx 即 故=+)1(0x f =++)344(sin 320πππx ]4)34(sin[320πππ++x)22532254(324sin)34cos(4cos )34([sin 3200⨯+⨯=+++=ππππππx x567=………………………………………………………12分 9..解:(1)由正弦定理得:cos sin 0sin cos sin sin sin a C C b c A C A C B C --=⇔=+sin cos sin sin()sin 1cos 1sin(30)2303060A C A C a C CA A A A A ︒︒︒︒⇔+=++⇔-=⇔-=⇔-=⇔=(2)1sin 42S bc A bc ==⇔=, 2222cos 4a b c bc A b c =+-⇔+= 10. 本题主要考查三角恒等变换,正弦定理,余弦定理及三角形面积求法等知识点.(Ⅰ)∵cos A =23>0,∴sin A,cos C =sin B =sin(A +C )=sin A cos C +sin C cos A=cos C +23sin C . 整理得:tan C.(Ⅱ)由图辅助三角形知:sin C=.又由正弦定理知:sin sin a cA C=,故c = (1)对角A 运用余弦定理:cos A =222223b c a bc +-=. (2)解(1) (2)得:b =or b舍去). ∴∆ABC 的面积为:S.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三角函数1.已知21)4tan(=+απ,(1)求αtan 的值;(2)求αα2cos 1cos 2sin 2+-a 的值。

2.求证:xxx x x x tan 1tan 1sin cos cos sin 2122-+=-+3.已知1cot tan sin 2),2,4(,41)24sin()24sin(2--+∈=-⋅+αααππααπαπ求的值.4.设m 为实数,且点()0tan ,αA ,()0tan ,βB 是二次函数()()2322-+⋅-+=m x m mx x f 图像上的点.(1)确定m 的取值范围(2)求函数()βα+=tan y 的最小值.5.已知21)4tan(=+απ,(1)求αtan 的值;(2)求ααα222cos 1cos sin +-的值.6.设函数)()(c b a x f +⋅=,其中a =(sinx,-cosx),b =(sinx,-3cosx),c =(-cosx,sinx),x ∈R ;(1) 求函数f(x)的最大值和最小正周期;(2) 将函数y =f(x)的图象按向量d 平移,使平移后的图象关于坐标原点成中心对称,求|d |最小的d .7.在△ABC 中,sinA(sinB +cosB)-sinC =0,sinB +cos2C =0,求角A 、B 、C 的大小.8.设f (x)=cos2x +23sinxcosx 的最大值为M ,最小正周期为T .⑴ 求M 、T .⑵ 若有10个互不相等的函数x i 满足f (x i )=M ,且0<x i <10π,求x 1+x 2+…+x 10的值.9.已知f (x)=2sin(x +2θ)cos(x +2θ)+23cos 2(x +2θ)-3。

⑴ 化简f (x)的解析式。

⑵ 若0≤θ≤π,求θ使函数f (x)为偶函数。

⑶ 在⑵成立的条件下,求满足f (x)=1,x ∈[-π,π]的x 的集合。

10.已知函数)(x f =2cos 2x +23sinx cosx +1.(1) 若x ∈[0,π]时,)(x f =a 有两异根,求两根之和;(2) 函数y =)(x f ,x ∈[6π,67π]的图象与直线y =4围成图形的面积是多少?11.已知函数2()4sin 2sin 22f x x x x R =+-∈,。

(1)求()f x 的最小正周期、()f x 的最大值及此时x 的集合; (2)证明:函数()f x 的图像关于直线8πx =-对称。

12.已知向量25(cos sin )(cos sin )||5a ααb ββa b =-=,,=,,, (1) 求cos()αβ-的值; (2) (2)若500sin sin 2213ππαββα<<-<<=-,,且,求的值。

13.已知函数2ππ()sin sin 2cos 662x f x x x x ωωω⎛⎫⎛⎫=++--∈ ⎪ ⎪⎝⎭⎝⎭R ,(其中0ω>) (I )求函数()f x 的值域;(II )若函数()y f x =的图象与直线1y =-的两个相邻交点间的距离为π2,求函数()y f x =的单调增区间.14. 已知函数y=21cos 2x+23sinx ·cosx+1 (x ∈R ),(1)当函数y 取得最大值时,求自变量x 的集合;(2)该函数的图像可由y=sinx(x ∈R)的图像经过怎样的平移和伸缩变换得到?15.在ABC 中,a 、b 、c 分别是角A 、B 、C 的对边,且cos 3cos C a cB b-=,(1)求sin B 的值;(2)若b =,且a=c ,求ABC 的面积。

16.设函数f(x)=cos(2x+3π)+sin 2x. (1)求函数f(x)的最大值和最小正周期. (2)设A,B,C 为∆ABC 的三个内角,若cosB=31,1()24c f =-,且C 为锐角,求sinA.17. 在∆ABC 中,sin()1C A -=, sinB=13.(I )求sinA 的值;(II)设,求∆ABC 的面积.18.已知函数()sin()(00π)f x A x A ϕϕ=+><<,,x ∈R 的最大值是1,其图像经过点π132M ⎛⎫ ⎪⎝⎭,.(1)求()f x 的解析式;(2)已知π02αβ⎛⎫∈ ⎪⎝⎭,,,且3()5f α=,12()13f β=,求()f αβ-的值.19.已知函数2π()2sin 24f x x x ⎛⎫=+-⎪⎝⎭,ππ42x ⎡⎤∈⎢⎥⎣⎦,. (I )求()f x 的最大值和最小值;(II )若不等式()2f x m -<在ππ42x ⎡⎤∈⎢⎥⎣⎦,上恒成立,求实数m 的取值范围.20.已知函数2π()cos 12f x x ⎛⎫=+⎪⎝⎭,1()1sin 22g x x =+. (I )设0x x =是函数()y f x =图象的一条对称轴,求0()g x 的值.(II )求函数()()()h x f x g x =+的单调递增区间.1 解:(1)αααπαπαπtan 1tan 1tan 4tan1tan 4tan)4tan(-+=-+=+,由21)4tan(=+απ,有21tan 1tan 1=-+αα,解得31tan -=α(2)1cos 21cos cos sin 22cos 1cos 2sin 222-+-=+-ααααααα65213121tan cos 2cos sin 2-=--=-=-=αααα2 证明:左边 = 2222cos 2sin cos sin cos sin αααααα-+- = 2(cos sin )(cos sin )(cos sin )αααααα--+ = cos sin cos sin αααα-+ =sin 1cos sin 1cos αααα-+= 1tan 1tan αα-+左边 = 右边 ∴ 原式成立。

3 解:由)24cos()24sin()24sin()24sin(απαπαπαπ+⋅+=-⋅+,414cos 21)42sin(21==+=ααπ 得 .214cos =α 又.125),2,4(παππα=∈所以于是 ααααααααααα2sin 2cos 22cos cos sin cos sin 2cos 1cot tan sin 2222-+-=-+-=--+ .325)3223()65cot 265(cos )2cot 22(cos =---=+-=+-=ππαα4解:由已知αtan ,βtan 必为方程()02322=-+⋅-+m x m mx 的两根,m m 23tan tan -=+βα,mm 2tan tan -=βα,故()βα+tan =3/2-m ,又由△≥0()0≠m ,得49≤m ()0≠m ,()βα+tan 的最小值是43-.5.解:(1) tan(4π+α)=ααtan 1tan 1-+=21解得tan α=-31(2)1cos 21cos cos sin 22cos 1cos 2sin 222-+-=+-ααααααα=6521tan cos 2cos sin 2-=-=-αααα6. 解:(1)由题意得f(x)=)(c b a +⋅ =(sinx ,-cosx)·(sinx -cosx ,sinx -3cosx) =sin 2x -2sinxcosx +3cos 2x =2+cos2x -sin2x =2+2sin(2x +43π) 故f(x)的最大值2+2,最小正周期为ππ=22 (2) 由sin(2x +43π)=0得2x +43π=k π 即x =2πk -83π,k ∈z 于是d =(83π-2πk ,-2)|d |=48322+⎪⎭⎫⎝⎛-ππk (k ∈z)因为k 为整数,要使| d |最小,则只有k =1,此时d =(-8π,-2)为所示. 7.∵ sinA(sinB +cosB)-sinC =0∴ sinA sinB +sinA cosB =sinA cosB +cosA sinB ∵ sinB > 0 sinA =cosA ,即tanA =1 又0 < A<π ∴ A =4π,从而C =43π-B 由sinB +cos2C =0,得sinB +cos2(43π-B)=0 即sinB(1-2cosB)=0 ∴cosB =21 B =3π C =125π 8.)(x f =2sin(2x +6π) (1) M =2 T =π(2) ∵)(i x f =2 ∴ sin(2x i +6π)=1 2x i +6π=2kπ+2πx i =2kπ+6π (k ∈z) 又0 < x i <10π ∴ k =0, 1, 2, (9)∴ x 1+x 2+…+x 10=(1+2+…+9)π+10×6π =3140π 9.解:(1) f (x)=sin(2x +θ)+3cos(2x +θ) =2sin(2x +θ+3π)(2) 要使f (x)为偶函数,则必有f (-x)=f (x) ∴ 2sin(-2x +θ+3π)=2sin(2x +θ+3π)∴ 2sin2x cos(θ+3π)=0对x ∈R 恒成立∴ cos(θ+3π)=0又0≤θ≤π θ=6π(3) 当θ=6π时f (x)=2sin(2x +2π)=2cos2x =1∴cos2x =21 ∵x ∈[-π,π] ∴x =-3π或3π10.)(x f =2sin(2x +6π)+2 由五点法作出y =)(x f 的图象(略) (1) 由图表知:0<a <4,且a≠3 当0<a <3时,x 1+x 2=34π 当3<a <4时,x 1+x 2=3π (2) 由对称性知,面积为21(67π-6π)×4=2π. 11、解:22()4sin 2sin 222sin 2(12sin )f x x x x x =+-=--2sin 22cos 2)4πx x x =-=-(1)所以()f x 的最小正周期T π=,因为x R ∈,所以,当2242ππx k π-=+,即38πx k π=+时,()f x 最大值为 (2)证明:欲证明函数()f x 的图像关于直线8πx =-对称,只要证明对任意x R ∈,有()()88ππf x f x --=-+成立,因为())]2)28842ππππf x x x x --=---=--=-,())]2)28842ππππf x x x x -+=-+-=-+=-,所以()()88ππf x f x --=-+成立,从而函数()f x 的图像关于直线8πx =-对称。

相关文档
最新文档