盐酸风险评价

合集下载

盐酸风险评估

盐酸风险评估

盐酸风险评估成分/组成信息化学品名称:硫酸(混合物)有害成分含量CASNO盐酸79647-01-0危险性概述危险性类别:20酸性腐蚀品侵入途径:吸入、食入、皮肤接触。

健康危害接触其蒸气或烟雾,引起眼结膜炎,鼻及口腔粘膜有烧灼感,鼻衄、齿龈出血、气管炎;刺激皮肤发生皮炎,慢性支气管炎等病变。

误服盐酸中毒,可引起消化道灼伤、溃疡形成,有可能胃穿孔、腹膜炎等。

皮肤接触:立即用水冲洗至少15分钟。

或用2%碳酸氢钠溶液冲洗。

若有灼伤,就医治疗。

眼睛接触:立即提起眼睑,用流动清水冲洗10分钟或用2%碳酸氢钠溶液冲洗。

吸入:迅速脱离现场至空气新鲜处。

呼吸困难时给输氧。

给予2-4%碳酸氢钠溶液雾化吸入。

就医。

食入:误服者立即漱口,给牛奶、蛋清、植物油等口服,不可催吐。

立即就医。

危险特性能与一些活性金属粉末发生反应,放出氢气。

遇氰化物能产生剧毒的氰化氢气体。

与碱发生中合反应,并放出大量的热。

具有强腐蚀性。

燃烧(分解)产物:氯化氢。

灭火方法:雾状水、砂土。

泄漏应急处理应急处理:疏散泄漏污染区人员至安全区,禁止无关人员进入污染区,建议应急处理人员戴好面罩,穿化学防护服。

不要直接接触泄漏物,禁止向泄漏物直接喷水。

更不要让水进入包装容器内。

用沙土、干燥石灰或苏打灰混合,然后收集运至废物处理场所处置。

也可以用大量水冲洗,经稀释的洗水放入废水系统。

如大量泄漏,利用围堤收容,然后收集、转移、回收或无害处理后废弃接触控制/个体防护最高容许浓度:中国(TJ36-79)车间空气中有害物质的最高容许浓度15mg/m3监测方法:1.现场应急监测方法:气体检测管法2.实验室监测方法:硫氰酸汞比色法呼吸系统防护:可能接触其蒸气或烟雾时,必须佩戴防毒面具或供气式头盔。

紧急事态抢救或逃生时,建议佩带自给式呼吸器。

眼睛防护:戴化学安全防护眼镜。

防护服:穿工作服(防腐材料制作)。

手防护:戴橡皮手套。

其它:工作后,淋浴更衣。

单独存放被毒物污染的衣服,洗后再用。

盐酸泄露环境风险评价

盐酸泄露环境风险评价

8环境风险评价8.1评价目的和评价重点环境风险是从事生产和社会活动时可能发生对环境有害后果的描述。

评估的目的就是通过分析建设项目运营期内可能发生的事故类型及其影响程度和范围,以确定开发建设及生产项目什么样的风险是社会可以承受的,从而为工程设计提供参考依据。

本项目具有一定的事故风险性,需要进行必要的环境事故风险分析,提出进一步降低事故风险措施,使得工厂在生产正常运转的基础上,确保生产区内外的环境质量,确保职工及周边影响区内人群生物的健康和生命安全。

本次评价主要以发生环境污染事故引起的大气和水环境污染而对周围居民的危害和环境质量影响程度为重点。

8.2项目物质及风险识别8.2.1项目原料辅料及产品危险源识别根据该厂所涉及的原料、辅料及产品,对照《重大危险源识别》(GB18218-2000) 标准规定,该厂主要危险源物质中被列入危险性物质的为:氯化氢(有毒物质),该危险物质在生产区、贮存区的实际量与临界量要求对比见表8.2.1-1。

表8.2.1-1 该厂主要危险源物质生产场所、贮存区临界量和实际量对照表*按盐酸的浓度核算HCL量因此,根据生产场所的实际使用量和贮存区的实际贮存量对照规定临界量,按规定,可确定该厂各生产区及贮存区没有物质构成重大危险源。

8.2.2物质风险因素识别根据《职业性接触毒物危害程度分级》,盐酸属于中度危害,可见,该厂所使用的化学品原料中有部分为危险化学品,存在着中毒、化学灼烫等危险有害因素。

主要危险因素为化学灼烫和中毒事故,主要风险类型为毒物泄漏中毒和化学灼烫,造成的危害主要是HCL通过呼吸道、皮肤对人员造成伤亡。

由此,本评价主要针对该原辅材料(HCL)的危险性及有毒危害性,计算分析事故状态下毒物泄漏对环境可能造成的影响程度、范围,从而提出事故应急措施。

HCL的危险性特征参数如下:形态特征:无色有刺激性气味的气体熔点:-114.2℃沸点:-85.0℃蒸汽压:4225.6kPa(20℃)(30%盐酸30.66kPa(21℃))毒理指标:LD50 400mg/kg(兔经口);LC50 4600mg/m3(大鼠吸入)8.3 评价等级及范围本项目无重大风险源且处于环境非敏感地区,根据《建设项目环境风险评价评价技术导则》(HJ/T169-2004)的相关规定,本项目环境风险评价等级确定为二级,评价范围以源点3km区域。

盐酸及废酸风险评价报告(lx改过)

盐酸及废酸风险评价报告(lx改过)

XXXXXXXXXXXXXXXXXXXXX 环境风险评价报告二〇一二年七月目录项目简介 (1)1、总论 (1)1.1编制依据 (1)2企业所在区域环境概况 (2)2.1自然环境状况 (2)2.2社会环境概况 (5)2.3环境质量现状 (6)3企业概况 (7)3.1企业基本情况 (7)3.2企业生产概况 (8)4、风险评价 (12)4.1环境风险评价的目的和重点 (12)4.2风险评价等级判别 (12)4.3评价工作内容 (19)4.4风险预测 (19)4.5风险值计算与评价 (30)4.6环境风险防治措施 (31)4.7应急预案 (34)5 结论 (42)6管理要求 (43)项目简介XXXXXXXXXXXXXXXXXXXXX成立于2004年11月,选址位于XXX市XXX区工业开发区,设计年产冷轧带钢4万吨,建设有冷轧车间、酸洗车间、退火车间,总投资2000万元,公司现有职工105人。

根据生产工艺需要,该公司建设有酸洗工序,年产生废酸1200t。

为进一步规范风险企业综合治理工作,根据环保部办公厅《关于开展全国重点行业企业环境风险及化学品检查工作的通知》(环发[2010]13号),省环保厅《关于开展全省重点行业企业环境风险及化学品检查工作的通知》(鲁环函[2010]271号),要求环境风险隐患企业进行环境风险评估,完善环境风险防范措施及突发环境事件应急预案。

根据要求,XXXXXXXXXXXXXXXXXXXXX委托我单位对其存在环境风险情况进行调查并编制环境风险评价专篇(章)。

我公司接受委托后,派技术人员到现场实地调查,收集相关技术资料,在全面了解公司目前生产情况后,组织编写了XXXXXXXXXXXXXXXXXXXXX环境风险评价报告,按照对事故风险多级防控要求,帮助企业进一步制订、完善、落实各种环境风险管理措施,建设防范工程。

本报告力求条理清楚、论据充分、内容全面、重点突出、客观的反应实际情况,评估结论科学准确,风险防范对策实用可行,可操作性强,从而使本次评估真正起到为企业环境风险管理服务的作用,把事故引起厂(场)界外人群的伤害、环境质量的恶化及对生态系统影响的预测和防护作为评价工作重点,体现“以人为本”的科学发展观。

盐酸储运项目环境风险评价探讨

盐酸储运项目环境风险评价探讨
的作 用及 其造成 的环 境变 化 和对人类 健康 的可能 影
响, 进行 系统 的分 析 和评估 , 提 出减 少 这些 影 响的 并
2 环 境 风 险评 价 方 法 与 内容
2 1 环 境 风 险 评 价 工 作 程 序 .
对 策措施 0 。本文 拟 通 过某 盐 酸 储 运项 目, J 以其 在 仓储 过程 中发生 泄 漏事 故 为重 点 , 其 环 境 风 险评 对 价过程 作一 探讨 。
w l a o d n n no d n y r c lrca i , n o o ne me s r sa e b o g t owa d F r e mo e i i ds u s d e l sla i g a d u l a ig h d o ho c d a d s mec u tr a u e r r u h r r . u t r r ,t s ic s e i f h
1 项 目概 述
本项 目为 盐酸仓 储物 流项 目, 建 3 盐酸 储 预 0个 罐, 每个 储罐 为 2 0 m , 储 能力 为 60 0 m , 目 0 仓 0 项 年 吞吐量 为 9 0 合 180 0 t仓 储 的盐 酸 为 60 0m , 8 , 1
盐 酸储 运项 目环境 风 险评 价 探讨
王金 梅 , 王伟 华 , 颖 田
( 内蒙 古 包钢钢 联 股份 有 限公 司技 术 中心 , 内蒙古 包头 04 1 ) 10 0

要: 文章 分析 了盐 酸储运项 目在储存 、 运输及装 卸过程 中可能存 在的环境 风险 , 并提 出相 关的 防范措施 , 对盐
第 3 第 6期 5卷 20 0 9年. 135, . No 6
S in e& T c n lg f a t t l G o p op rt n c c e e h o yo B o uSe ( ru )C roa o o o e i

盐酸风险评价

盐酸风险评价

20万吨/年胎圈钢丝盐酸库环境风险评价胎圈钢丝项目使用的盐酸属于危险化学品,储存过程中存在环境风险。

1、盐酸的性质简介氯化氢的水溶液即盐酸,纯盐酸无色,工业品因含有铁、氯等杂质,略带微黄色。

,有强烈的腐蚀性,能腐蚀金属,对动植物纤维和人体肌肤均有腐蚀作用。

浓盐酸在空气中发烟,触及氨蒸气会生成白色云雾。

氯化氢气体对动植物有害。

盐酸是极强的无机酸,与金属作用能生成金属氯化物并放出氯;与金属氧化物作用生成盐和水;与碱起中和反应生成盐和水;2、风险识别本项目所用酸不属于剧毒物质和一般毒物(属低毒类);酸属腐蚀,爆炸危险物质;根据重大危险源辨识(GB18218-2009)重规定,项目酸库储存酸的数量约70吨,超过临界量,构成重大危险源。

酸的使用是一个封闭的系统,对照《爆炸和火灾危险环境电力装置设计规范》(GB50058-92)规范标准,酸装置在正常运行时不会释放易燃物质;即使释放也是在酸泵的轴封处和阀门、法兰、管件接头等密封处偶尔的、短时的发生。

第二级释放源存在的区域,可划为2区。

2区的概念是在正常运行时不可能出现爆炸性气体混合物的环境。

正常运行是指正常的开车、运转、停车,易燃物质产品的装卸,密闭容器的开闭,安全阀、排放阀、以及所有设备都在其设计参数范围内工作的状态。

“当通风良好时,易燃物质可能出现的最高浓度不超过爆炸下限的10%”,可划为非爆炸危险区。

从上述分析中得知,出现最高浓度能超过爆炸下限10%的概率近似为零。

同时酸的比重很轻,因此,它难以聚集到爆炸极限的浓度。

因此,可以将酸系统作为非爆炸危险区看待。

同时,酸在正常工况下的自然损耗不会对环境造成污染影响。

发生酸泄漏的常见原因是由于管理不善,工人违章操作以及设备、容器陈旧,管道破裂,阀门损漏,或者运输不当等导致生产性事故或者意外事故所造成。

综上所述,本项目按库存环境风险来源酸泄漏。

酸泄漏因素主要有:1)管路系统漏泄(包括管道、阀门、连接法兰、泵的密封等设备及部位);2)储罐泄漏;3)自认因素,如地震、雷击等。

建设项目环境影响报告书盐酸泄露环境风险评价

建设项目环境影响报告书盐酸泄露环境风险评价

1.盐酸泄露的定量分析 1.1泄露流量的计算要估算盐酸的泄露范围,首先要确定其泄露流量,盐酸可以应用液体经小孔泄露的源模式计算泄露流量,其公式为:式中:Q —流量,kg/s ;C 0—孔流系数,取0.6; A —小孔的横截面积,m 2; ρ—流体密度;kg/m 3; P g —液体压力,Pa ; g —重力加速度,9.81m/s 2; A 0—储罐的横截面积,m 2; Z 0—储罐内液面距小孔高度,m ; t —泄露时间,s 1.2泄露参数本次盐酸罐泄露的相关计算参数见表13-1。

表13-1 盐酸罐泄露计算相关参数一览表1.3泄露速率本次工程盐酸储罐的容积为50m 3,尺寸为Ф3.6m ,高5m ,单罐最大储量为60t ,评价根据盐酸储罐泄露量的计算参数,确定本次盐酸罐事故泄露的速度为3.25kg/s ,根据盐酸储罐的储存量,则本次盐酸罐全部泄露完需5h 。

考虑0.5小时事故泄漏应急时间,则0.5h 内的盐酸的泄漏量为5.85t ,约占总储量总量的9.8%。

220o ogC A Q C A tA r =2.盐酸酸雾的产生量考虑0.5小时事故泄漏应急时间,则0.5h 内的盐酸的泄漏量为5.85t ,盐酸储罐围堰长:3.6m ,宽:9m ,高:2m ,考虑泄漏出口的盐酸闪蒸,则0.5h 盐酸泄漏量在围堤内形成0.15m 深的液池(除去单只盐酸贮罐罐脚所占面积后,液池有效面积22.23m 2)。

由于盐酸的沸点为-114.8℃,沸点远远低于液体贮存的常温,因此盐酸泄漏在围堤形成液池后,将产生闪蒸、热量蒸发和质量蒸发。

由于盐酸的沸点为-33.5℃,沸点远远低于液体贮存的常温,因此盐酸泄漏在围堤形成液池后,将产生闪蒸、热量蒸发和质量蒸发。

评价选择适用于硫酸、硝酸和盐酸等酸液蒸发量的计算公式来分析本次工程盐酸泄露后酸雾的产生量,计算公式如下: 式中:Gz ——酸雾量,kg/h ;M ——液体分子量;U ——蒸发液体表面上的空气流速(m/s),应以实测数据为 准。

盐酸应急预案

盐酸应急预案

盐酸应急预案引言概述:随着化学品的广泛应用,化学品事故频繁发生,给人们的生命财产安全带来了严重威胁。

其中,盐酸是一种常见的化学品,其事故可能导致严重后果。

为了应对盐酸事故,制定一份完善的盐酸应急预案至关重要。

本文将从盐酸的特性、事故原因、应急预案的制定、应急预案的执行以及事故后的处理等五个大点进行详细阐述。

正文内容:1. 盐酸的特性1.1 盐酸的化学性质盐酸是一种无色透明的液体,具有强烈的刺激性气味。

它具有强酸性,能与碱反应生成盐和水,并能与金属反应产生氢气。

1.2 盐酸的危害性盐酸具有强腐蚀性,对皮肤、眼睛和呼吸系统有刺激作用。

吸入盐酸蒸气或接触其溶液可能导致烧伤、溃疡等严重后果。

2. 盐酸事故的原因2.1 人为因素盐酸事故的发生与操作人员的不当操作、违反安全操作规程、缺乏安全意识等因素密切相关。

2.2 设备故障设备老化、维护不当、设备设计缺陷等因素可能导致盐酸事故的发生。

3. 盐酸应急预案的制定3.1 盐酸事故风险评估制定盐酸应急预案前,应进行全面的风险评估,确定事故可能发生的地点、程度和可能的后果,为应急预案的制定提供依据。

3.2 应急预案的编制应急预案应包括事故的预防措施、应急响应程序、人员组织与分工、应急设备与装备、应急培训与演练等内容,确保在事故发生时能够迅速、有效地应对。

4. 盐酸应急预案的执行4.1 应急响应组织在盐酸事故发生时,应成立应急响应组织,明确各成员的职责与权限,确保应急响应工作的有序进行。

4.2 应急设备与装备的使用应急预案中应明确应急设备与装备的使用方法与操作流程,确保在事故处理过程中能够安全有效地使用相关设备与装备。

5. 盐酸事故的处理5.1 事故现场的控制在事故发生后,应立即采取措施控制事故现场,封锁有害物质的扩散,确保周围环境和人员的安全。

5.2 伤员救治与疏散对于受伤人员,应迅速进行紧急救治,并进行疏散,避免二次伤害。

5.3 事故原因的调查与分析事故处理结束后,应进行事故原因的调查与分析,总结经验教训,完善应急预案,以提高事故应对能力。

某火电厂盐酸储罐泄漏的环境风险预测评价

某火电厂盐酸储罐泄漏的环境风险预测评价

第39卷第2期红水河Vol.39No.22020年4月HongShuiRiverApr.2020某火电厂盐酸储罐泄漏的环境风险预测评价范荣洋1,高何凤2(1.广西泰能工程咨询有限公司,广西㊀南宁㊀530023;2.广西壮族自治区环境保护科学研究院,广西㊀南宁㊀530022)摘㊀要:文章以某火电厂盐酸储罐泄漏引发液体蒸发的突发环境事件作为研究对象,在HJ169-2018‘建设项目环境风险评价导则“正式施行的背景下,根据该电厂现场储存盐酸的实际情况及危险特性,利用AFTOX模型对盐酸储罐发生泄漏引发液体蒸发的风险事故情形进行风险分析㊁预测与评价,为盐酸储罐泄漏环境风险事故的防范㊁应急与减缓措施提供技术支持,以使其突发环境事件的环境影响达到可接受水平㊂关键词:环境风险;AFTOX模型;盐酸储罐;泄漏;预测评价中图分类号:X820.4文献标识码:A文章编号:1001-408X(2020)02-0061-040㊀引言火电厂化水车间处理锅炉补给水时,盐酸可作为阳离子交换树脂的再生剂使用,锅炉补给水处理盐酸系统的主要设备有盐酸储罐㊁盐酸计量箱和连接管道等㊂为保证火电厂盐酸系统的安全运行,应从定期检修设备㊁防止盐酸储罐泄漏㊁减少酸雾(氯化氢气体)影响等方面着手[1]㊂本文以某火电厂发生盐酸储罐泄漏突发环境事件为切入点,通过对泄漏事故环境风险的定量计算,科学㊁准确㊁及时地评估盐酸泄漏导致液体蒸发产生氯化氢气体的影响范围㊁影响时间和影响程度,这不仅对企业的安全环保生产具有重要的指导意义,同时也有助于制定盐酸储罐泄漏突发环境事件应急预案,为政府及行业管理部门进行决策提供科学依据[2]㊂1㊀风险识别盐酸是氯化氢(HCl)的水溶液,属于一元无机强酸,工业用途广泛㊂盐酸的性状为无色透明的液体,有强烈的刺鼻气味,具有较高的腐蚀性㊂浓盐酸具有极强的挥发性,因此装有浓盐酸的储罐泄漏后会很容易发生质量蒸发产生氯化氢气体,氯化氢气体在常温常压下为具有刺激性臭味的无色有毒气体,气体扩散会对环境和人体造成污染和不可逆性损害㊂氯化氢为无色气体,有刺激性臭味,溶于水㊁乙醇㊁乙醚和苯,熔点-114.2ħ,沸点-85ħ㊂其毒性效应如下:低浓度的氯化氢能刺激眼㊁鼻㊁喉,空气中含有万分之一的氯化氢就会严重影响人的健康,会使呼吸道和皮肤粘膜中毒,轻度中毒时有灼热㊁压迫感,喉炎发痒,呼吸困难,眼睛刺激流泪;高浓度的氯化氢会引起人慢性中毒,产生鼻炎㊁支气管炎㊁肺气肿等,有的还会过敏,出现皮炎㊁湿疹等㊂氯化氢CAS号为7647-01-0,大气毒性终点浓度-1为150mg/m3㊁大气毒性终点浓度-2为33mg/m3[3],其中大气毒性终点浓度-2为人员短期暴露出现健康影响的大气污染物浓度,大气毒性终点浓度-1为人员短期暴露出现死亡的大气污染物浓度[4]㊂2㊀源项分析根据HJ169-2018‘建设项目环境风险评价技术导则“,环境风险评价的关注点是事故对厂界外环境的影响,最大可信事故指在所有预测的概率不为零的事故中,对环境(或健康)危害最严重的重大事故㊂因此某火电厂盐酸储罐可能发生的最大可信事故为储罐泄漏,泄漏的盐酸发生液体蒸发会产生有毒有害物质氯化氢,其发生大气扩散后会污染环境并影响人体健康㊂2.1㊀盐酸储罐泄漏源强液态物料泄漏量采用HJ169-2018‘建设项目环境风险评价技术导则“附录F推荐的方法进行计㊀㊀收稿日期:2019-12-03;修回日期:2019-12-05㊀㊀作者简介:范荣洋(1989),男,河南商城人,工程师,硕士,主要从事工作为环境影响评价及环保设计等,E-mail:tngsfry@163.com㊂16㊀红水河2020年第2期算,具体如下:液体泄漏速率采用伯努利方程计算:QL=CdAρ2(P-P0)ρ+2gh(1)式中:QL 液体泄漏速率,kg/s;Cd 液体泄漏系数,此值常用0.40 0.65,本次取0.65(最不利情况);A 裂口面积,m2,裂口直径取20mm,则裂口面积为0.0003m2;ρ 泄漏液体密度,kg/m3;P 容器内介质压力,盐酸罐区均为常压储罐,取101325Pa;P0 环境压力,取101325Pa;g 重力加速度,9.81m/s2;h 裂口之上液位高度,m,取5m㊂㊀㊀经上述计算,该电厂盐酸储罐泄漏速率为1.93kg/s,按应急响应时间30min计,则盐酸泄漏量约3.47t㊂2.2㊀盐酸储罐泄漏后蒸发量源强有毒化学物质泄漏后,液态物料部分蒸发进入大气,其余仍以液态形式存在,待收容等应急处置㊂泄漏液体的蒸发分为闪蒸蒸发㊁热量蒸发和质量蒸发三种,其蒸发总量为这三种蒸发之和㊂由于该电厂所涉及液体储罐均为常温常压储存,当泄漏事故发生后不会发生闪蒸蒸发,其液态物质沸点温度均高于贮存温度,因此泄漏后亦不会发生热量蒸发,所以泄漏后的质量蒸发量即为蒸发总量㊂质量蒸发速率按下式进行估算:Q3=αpMRT0u(2-n)(2+n)r(4+n)(2+n)(2)式中:Q3 质量蒸发速率,kg/s;p 液体表面蒸气压,Pa,设定盐酸浓度为28%,30ħ下蒸汽分压为9.9mmHg,即1320Pa;R 气体常数,J/(mol∙K),取值8.314J/(mol∙K);T0 环境温度,K,取值298K;M 物质的摩尔质量,kg/mol;盐酸的摩尔质量为36.46kg/mol;u 风速,m/s;r 液池半径,m;围堰面积为1037m2;α,n 大气稳定度系数,按HJ169-2018表F.3选取,分别为0.005285和0.3㊂㊀㊀通过计算盐酸储罐泄漏后,其质量蒸发速率为0.313kg/s,根据HJ169-2018,一般情况下,蒸发时间可按15 30min计,本次取30min,则蒸发量为56.34kg㊂3㊀环境风险分析㊁预测与评价该火电厂化水车间发生有毒有害物质大气扩散风险影响的情形主要设定为盐酸储罐泄漏后发生液体蒸发的HCl扩散㊂根据HJ169-2018‘建设项目环境风险评价技术导则“,需对风险情形对应的预测模型进行筛选判定㊂3.1㊀连续排放和瞬时排放判定根据HJ169-2018,判定是连续排放还是瞬时排放,可以通过排放时间Td和污染物到达最近受体点(网格点或敏感点)的时间T来确定㊂T=2X/Ur(3)式中:X 事故发生地与计算点的距离,m;Ur 10m高处风速,m/s㊂假设风速和风向在T时间段内保持不变㊂㊀㊀当Td>T时,可被认为是连续排放;当TdɤT时,可被认为是瞬时排放㊂该电厂距离最近敏感点A村为320m,网格点为每50m布设一个点,则将网格点定为最近受体点,则X为50m;最不利气象条件风速为1.5m/s㊂通过计算,污染物到达最近受体点的时间T为66.7s,小于排放时间Td=1800s,因此该电厂盐酸储罐泄漏后发生液体蒸发的HCl扩散属于连续排放㊂3.2㊀是否为重质气体判定根据HJ169-2018,判定烟团/烟羽是否为重质气体,取决于它相对于空气的 过剩密度 和环境条件等因素㊂通常采用理查德森数(Ri)作为标准进行判断㊂Ri的概念公式为Ri=烟团的势能环境的湍流动能㊀㊀Ri是个流体动力学参数㊂根据不同的排放性质,理查德森数的计算公式不同㊂一般地,依据排放类型,理查德森数的计算分连续排放㊁瞬时排放两种形式㊂本次选取连续排放计算公式:Ri=[g(Q/ρrel)Drelˑ(ρrel-ρaρa)]13Ur(4)式中:ρrel 排放物质进入大气的初始密度,kg/m3;ρa 环境空气密度,kg/m3;Q 连续排放烟羽的排放速率,kg/s;Drel 初始的烟团宽度,即源直径,m;26范荣洋,高何凤:某火电厂盐酸储罐泄漏的环境风险预测评价㊀Ur 10m高处风速,m/s㊂㊀㊀判断标准为:对于连续排放,Riȡ1/6为重质气体,Ri<1/6为轻质气体;对于瞬时排放,Ri>0.04为重质气体,Riɤ0.04为轻质气体㊂当Ri处于临界值附近时,说明烟团/烟羽既不是典型的重质气体扩散,也不是典型的轻质气体扩散㊂经过计算Ri为0.0192,属轻质气体,根据HJ169-2018附录G,适用于AFTOX风险预测模型㊂AFTOX模型适用于平坦地形下中性气体和轻质气体排放以及液池蒸发气体的扩散模拟,可模拟连续排放或瞬时排放,液体或气体,地面源或高架源,点源或面源的指定位置浓度㊁下风向最大浓度及其位置等[5]㊂预测选取最不利气象条件为:F类稳定度,1.5m/s风速,温度25ħ,相对湿度50%㊂对氯化氢气体扩散的污染范围及危害程度进行模拟计算,预测结果如表1所示㊂表1 某火电厂盐酸储罐泄漏后发生液体蒸发的氯化氢气体扩散事故最大浓度预测结果表距离/m浓度出现时间/min高峰浓度/(mg/m3)距离/m浓度出现时间/min高峰浓度/(mg/m3)距离/m浓度出现时间/min高峰浓度/(mg/m3)100.111.34171019.001.80341045.890.72600.67157.19176019.561.73346046.440.701101.2299.78181020.111.67351047.000.691601.7866.09186020.671.61356048.560.682102.3346.51191021.221.55361049.110.672602.8934.47196021.781.50366049.670.653103.4426.62201022.331.45371050.220.643604.0021.23206022.891.40376050.780.634104.5617.37211023.441.36381051.330.624605.1114.50216024.001.32386051.890.615105.6712.32221024.561.28391052.440.605606.2210.61226025.111.24396053.000.596106.789.24231025.671.21401053.560.586607.338.14236026.221.17406055.110.577107.897.23241026.781.14411055.670.567608.446.47246027.331.11416056.220.558109.005.83251027.891.08421056.780.548609.565.29256028.441.05426057.330.5391010.114.82261029.001.03431057.890.5396010.674.41266029.561.00436058.440.52101011.224.06271037.110.98441059.000.51106011.783.75276037.670.95446059.560.50111012.333.47281038.220.93451060.110.49116012.893.23286038.780.91456061.670.49121013.443.01291039.330.89461062.220.48126014.002.82296039.890.87466062.780.47131014.562.64301040.440.85471063.330.47136015.112.48306042.000.83476063.890.46141015.672.32311042.560.81481064.450.45146016.222.22316043.110.79486065.000.45151016.782.12321043.670.78491065.560.44156017.332.03326044.220.76496066.110.44161017.891.95331044.780.75501066.670.43166018.441.87336045.330.73506068.220.42㊀㊀根据预测结果分析,盐酸储罐泄漏后发生液体蒸发的氯化氢气体扩散事故情形,在最不利气象条件下,氯化氢预测浓度达到毒性终点浓度-1(150mg/m3)的最远距离约为60m,预测浓度达到毒性终点浓度-2(33mg/m3)的最远距离约为260m,该火电厂距离最近的敏感点为320m,可以满足氯化氢毒性终点浓度-1和毒性终点浓度-2的要求㊂由于泄漏时间和扩散时间持续较短,而且一旦发生事故后,会立即采取相关防护措施,及时启动应急预案,保护和减缓事故对厂区周边敏感点的影响,因此本次评价认为该电厂盐酸储罐泄漏对大气环境的影响是可接受的㊂36㊀红水河2020年第2期4㊀环境风险防范措施对于某火电厂盐酸储罐的泄漏引起的突发环境事件,设备失灵和人为操作失误是引发泄漏的主要原因,因此选用较好的设备㊁制定好应急措施㊁认真进行操作人员培训是减少泄漏事故的关键㊂具体防范和应急措施如下:1)建设单位首先应树立环境风险意识,并在管理过程当中强化环境风险意识,在实际工作与管理过程当中应落实环境风险防患措施㊂2)为防止设备泄漏事故时发生液体蒸发造成有毒有害气体扩散的影响,可在储罐上方安装喷淋设施进行气体吸收㊂3)储罐区安装安全淋浴器(带洗眼装置),受伤害人员可得到及时冲洗㊂4)定期对储罐外部检查,及时发现破损和漏处,设置储罐高液位报警器及其他自动安全措施,对储罐焊缝㊁垫片㊁铆钉或螺栓的泄漏及时采取必要措施㊂5)盐酸储罐㊁盐酸计量箱的进酸阀门应设置液位自动控制,当液位达到要求时进酸阀门能自动关闭[1]㊂6)储罐区内要设有安全照明设施和观察窗口㊂7)应设计有堵截泄漏的裙脚,地面与裙脚所围建的容积不低于堵截最大容器的最大储量或总储量的五分之一㊂5㊀结语依据HJ169-2018‘建设项目环境风险评价技术导则“,环境风险评价工作的重点为预测和防护事故引起的对厂界外人群的伤害和环境质量的恶化影响[6]㊂本文通过利用AFTOX模型对某火电厂盐酸储罐发生泄漏引发液体蒸发的风险事故情形进行风险分析㊁预测与评价,在不利气象条件下给出事故可能影响的范围㊁程度和发生时间,由此分析该电厂盐酸储罐泄漏事故的风险水平在可接受范围内,并可为盐酸泄漏环境风险事故的防范㊁应急与减缓措施提供技术支持,以减少环境污染事故的发生㊂参考文献:[1]㊀喻军,高文峰.保证火电厂盐酸系统安全运行[J].劳动保护,2007(5):88-89.[2]㊀陈婷婷,王晓艳,原媛.基于AFTOX模型预测煤焦油储罐火灾爆炸突发环境事件风险预测与后果分析[J].区域治理,2019(11):239.[3]㊀HJ169-2018,建设项目环境风险评价技术导则[S].[4]㊀徐静,寿幼平.散装液体化学品泄漏大气环境风险影响因素研究[J].绿色科技,2019(18):138-140.[5]㊀廉洁,刘军,王东香.建设项目化工环境风险评价存在问题的探讨[J].焦作大学学报,2009,23(1):94-96.[6]㊀王涛,刘慧.二噁英风险评价在垃圾焚烧发电项目环评中的应用[J].红水河,2017,36(3):28-30.EnvironmentalRiskPredictionandEvaluationofHydrochloricAcidTankLeakageinaThermalPowerPlantFANRongyang1 GAOHefeng21.GuangxiT-EnergyEngineeringConsultingCo. Ltd. Nanning Guangxi 5300232.ScientificResearchAcademyofGuangxiEnvironmentalProtection Nanning Guangxi 530022Abstract Inthispaper theemergencyenvironmentaleventofliquidevaporationcausedbyleakageofhydrochloricacidtankinathermalpowerplantistakenastheresearchobject underthebackgroundoftheformalimplementationof TechnicalGuidelinesforEnvironmentalRiskAssessmentonProjects HJ169-2018 theriskanalysis predictionandevaluationoftheriskaccidentofliquidevaporationcausedbyleakageofhydrochloricacidtankarecarriedoutbyusingAFTOXmodelaccordingtotheactualsituationandhazardouscharacteristicsofhydrochloricacidstoredinthepowerplant whichprovidestechnicalsupportforprevention emergencyandmitigationmeasuresofenvironmentalriskaccidentscausedbyleakageofhydrochloricacidtank soastomaketheenvironmentalimpactofemergencyenvironmentaleventsreachanacceptablelevel.Keywords environmentalrisk AFTOXmodel hydrochloricacidtank leakage predictionandevaluation46。

盐酸泄漏事故环境风险评价及管控措施

盐酸泄漏事故环境风险评价及管控措施
针对盐酸的化学特性,结合某化工企业实际情况,开展盐酸泄漏事故环境风险预测,并结合预测结果提出切实可行的风险防控措施,以
降低企业盐酸泄漏事故环境影响程度。
关键词:盐酸;泄漏;环境风险评价
doi:10.3969/j.issn.1008-553X.2020.01.024
中图分类号:X82
文献标识码:A
文章编号:1008-553X(2020)01-0080-03
80
第 46 卷,第 1 期
2020 年 2 月
Vol.46,No.1
Feb.2020
安 徽 化 工
ANHUI CHEMICAL INDUSTRY
盐酸泄漏事故环境风险评价及管控措施
吴 润,
卢茂骥
(安徽省化工研究院,安徽 合肥 230041)
摘要:盐酸广泛应用于企业生产中,由于其蒸气氯化氢毒性较高,在贮存、使用过程中一旦发生泄漏等环境风险事故,对环境影响较大。
浓度值(mg/m3)
毒性终点浓度-1
150
毒性终点浓度-2
33
氯 化 氢 初 始 密 度 大 于 空 气 密 度 ,根 据(HJ 1692018)选择 SLAB 模型,采用 EIAPro2018 软件进行预测,
由危险物质浓度达到评价标准时的最大影响范围可知,
在拟定事故情形条件下,盐酸泄漏事故产生的氯化氢在
8.62 t)。泄漏液体的蒸发分为闪蒸蒸发、热量蒸发和质
量蒸发三种,其蒸发总量为这三种蒸发之和。由于盐酸
沸点高于储存温度和环境温度,因此不考虑闪蒸蒸发和
热量蒸发。按照 HJ 169-2018《建设项目环境风险评价
技术导则》附录 F 中提供的质量蒸发计算公式:
Q=α×p×M/(R×T0)×u(2-n)/(2+n)×r(4+n)/(2+n)

盐酸

盐酸

盐酸风险评价盐酸库环境风险评价使用的盐酸属于危险化学品,储存过程中存在环境风险。

1、盐酸的性质简介氯化氢的水溶液即盐酸,纯盐酸无色,工业品因含有铁、氯等杂质,略带微黄色。

,有强烈的腐蚀性,能腐蚀金属,对动植物纤维和人体肌肤均有腐蚀作用。

浓盐酸在空气中发烟,触及氨蒸气会生成白色云雾。

氯化氢气体对动植物有害。

盐酸是极强的无机酸,与金属作用能生成金属氯化物并放出氯;与金属氧化物作用生成盐和水;与碱起中和反应生成盐和水;与盐类能起复分解反应生成新的盐和新的酸。

2、风险识别本项目所用酸不属于剧毒物质和一般毒物(属低毒类);酸属腐蚀,爆炸危险物质;根据重大危险源辨识(GB18218-2009)重规定,项目酸库储存酸的数量约70吨,超过临界量,构成重大危险源。

酸的使用是一个封闭的系统,对照《爆炸和火灾危险环境电力装置设计规范》(GB50058-92)规范标准,酸装置在正常运行时不会释放易燃物质;即使释放也是在酸泵的轴封处和阀门、法兰、管件接头等密封处偶尔的、短时的发生。

第二级释放源存在的区域,可划为2区。

2区的概念是在正常运行时不可能出现爆炸性气体混合物的环境。

正常运行是指正常的开车、运转、停车,易燃物质产品的装卸,密闭容器的开闭,安全阀、排放阀、以及所有设备都在其设计参数范围内工作的状态。

“当通风良好时,易燃物质可能出现的最高浓度不超过爆炸下限的10%”,可划为非爆炸危险区。

从上述分析中得知,出现最高浓度能超过爆炸下限10%的概率近似为零。

同时酸的比重很轻,因此,它难以聚集到爆炸极限的浓度。

因此,可以将酸系统作为非爆炸危险区看待。

同时,酸在正常工况下的自然损耗不会对环境造成污染影响。

发生酸泄漏的常见原因是由于管理不善,工人违章操作以及设备、容器陈旧,管道破裂,阀门损漏,或者运输不当等导致生产性事故或者意外事故所造成。

综上所述,本项目按库存环境风险来源酸泄漏。

酸泄漏因素主要有:1)管路系统漏泄(包括管道、阀门、连接法兰、泵的密封等设备及部位);2)储罐泄漏;3)自认因素,如地震、雷击等。

盐酸风险评价

盐酸风险评价

20万吨/年胎圈钢丝盐酸库环境风险评价胎圈钢丝项目使用的盐酸属于危险化学品,储存过程中存在环境风险。

1、盐酸的性质简介氯化氢的水溶液即盐酸,纯盐酸无色,工业品因含有铁、氯等杂质,略带微黄色。

,有强烈的腐蚀性,能腐蚀金属,对动植物纤维和人体肌肤均有腐蚀作用。

浓盐酸在空气中发烟,触及氨蒸气会生成白色云雾。

氯化氢气体对动植物有害。

盐酸是极强的无机酸,与金属作用能生成金属氯化物并放出氯;与金属氧化物作用生成盐和水;与碱起中和反应生成盐和水;与盐类能起复分解反应生成新的盐2、风险识别本项目所用酸不属于剧毒物质和一般毒物(属低毒类);酸属腐蚀,爆炸危险物质;根据重大危险源辨识(GB18218-2009)重规定,项目酸库储存酸的数量约70吨,超过临界量,构成重大危险源。

酸的使用是一个封闭的系统,对照《爆炸和火灾危险环境电力装置设计规范》(GB50058-92)规范标准,酸装置在正常运行时不会释放易燃物质;即使释放也是在酸泵的轴封处和阀门、法兰、管件接头等密封处偶尔的、短时的发生。

第二级释放源存在的区域,可划为2区。

2区的概念是在正常运行时不可能出现爆炸性气体混合物的环境。

正常运行是指正常的开车、运转、停车,易燃物质产品的装卸,密闭容器的开闭,安全阀、排放阀、以及所有设备都在其设计参数范围内工作的状态。

“当通风良好时,易燃物质可能出现的最高浓度不超过爆炸下限的10%”,可划为非爆炸危险区。

从上述分析中得知,出现最高浓度能超过爆炸下限10%的概率近似为零。

同时酸的比重很轻,因此,它难以聚集到爆炸极限的浓度。

因此,可以将酸系统作为非爆炸危险区看待。

同时,酸在正常工况下的自然损耗不会对环境造成污染影响。

发生酸泄漏的常见原因是由于管理不善,工人违章操作以及设备、容器陈旧,管道破裂,阀门损漏,或者运输不当等导致生产性事故或者意外事故所造成。

综上所述,本项目按库存环境风险来源酸泄漏。

酸泄漏因素主要有:1)管路系统漏泄(包括管道、阀门、连接法兰、泵的密封等设备及部位);2)储罐泄漏;3)自认因素,如地震、雷击等。

建设项目环境影响评价评价评价报告书盐酸泄露环境风险评价

建设项目环境影响评价评价评价报告书盐酸泄露环境风险评价

1.盐酸泄露的定量分析1.1泄露流量的计算要估算盐酸的泄露范围,首先要确定其泄露流量,盐酸可以应用液体经小孔泄露的源模式计算泄露流量,其公式为:2R22A r gC g0+2gzQ=CA r-t oor A o式中:Q—流量,kg/s;—孔流系数,取0.6; C 02;小孔的横截面积,m A—3;流体密度;kg/m ρ——液体压力,Pa;P g2;9.81m/s g—重力加速度,2m储罐的横截面积,—; A 0—储罐内液面距小孔高度,m;Z 0t—泄露时间,s1.2泄露参数本次盐酸罐泄露的相关计算参数见表13-1。

表13-1 盐酸罐泄露计算相关参数一览表1.3泄露速率3,尺寸为Ф3.6m,高5m,单罐最大储量为60t50m本次工程盐酸储罐的容积为,评价根据盐酸储罐泄露量的计算参数,确定本次盐酸罐事故泄露的速度为3.25kg/s,根据盐酸储罐的储存量,则本次盐酸罐全部泄露完需5h。

考虑0.5小时事故泄漏应急时间,则0.5h内的盐酸的泄漏量为5.85t,约占总储量总量的9.8%。

12.盐酸酸雾的产生量考虑0.5小时事故泄漏应急时间,则0.5h内的盐酸的泄漏量为5.85t,盐酸储罐围堰长3.6m,宽:9m ,高:2m,考虑泄漏出口的盐酸闪蒸,则0.5h盐酸泄漏量在围堤内:2)。

22.23m 形成0.15m深的液池(除去单只盐酸贮罐罐脚所占面积后,液池有效面积由于盐酸的沸点为-114.8℃,沸点远远低于液体贮存的常温,因此盐酸泄漏在围堤形成液池后,将产生闪蒸、热量蒸发和质量蒸发。

由于盐酸的沸点为-33.5℃,沸点远远低于液体贮存的常温,因此盐酸泄漏在围堤形成液池后,将产生闪蒸、热量蒸发和质量蒸发。

评价选择适用于硫酸、硝酸和盐酸等酸液蒸发量的计算公式来分析本次工程盐酸泄露后酸雾的产生量,计算公式如下:G=M(0.000352+0.000786V)PF z;——酸雾量,kg/h式中:Gz 液体分子量;M——,应以实测数据为蒸发液体表面上的空气流速(m/s) U——或查表计算;~0.5m/s准。

基于AFTOX模型预测盐酸泄漏的环境风险预测与评价

基于AFTOX模型预测盐酸泄漏的环境风险预测与评价

基于AFTOX模型预测盐酸泄漏的环境风险预测与评价作者简介:边长龙,男,陕西榆林人,工程师,硕士,主要从事环保工程设计及环境影响评价等工作。

摘要:盐酸在工业企业中广泛应用,盐酸易挥发有毒有害的HCl气体,在企业储存过程中一旦发生泄漏会对环境造成较大的影响。

本文以某企业盐酸储罐泄漏引发环境事件为研究对象,采取AFTOX模型对该企业盐酸储罐的环境风险进行预测评价,提出了切实可行的环境风险防范措施,以降低环境风险影响程度。

关键词:AFTOX模型;盐酸泄漏;环境风险;预测评价引言盐酸在医药合成、工业生产及水的消毒等行业中作为重要的工业原料而得到广泛应用于。

由于盐酸的用途广泛,近年来发生盐酸泄漏的事故也越来越多。

盐酸泄漏后挥发的HCl气体不仅对环境有产生危害,还可能会造成人员中毒、伤亡事件,因此降低盐酸储罐的泄漏风险是企业必须重视的问题。

本文以某企业盐酸储罐发生泄漏事故为源项,依据《建设项目环境风险评价技术导则》(HJ 169-2018),对盐酸储罐发生泄漏事故产生的环境风险进行预测,科学的预测盐酸泄漏事故产生HCl气体的影响范围和程度,并提出可行的环境风险防范措施和应急管理要求,以降低企业盐酸储罐发生泄漏事故对外环境的影响程度,不仅对企业的安全生产提供指导,同时也为应急管理部门的应急指挥提供科学的依据[1-4]。

1、风险识别盐酸具有强烈的刺激性气味,同时具有很强的腐蚀性,因此盐酸储罐泄漏后都会伴随发生质量蒸发而产生HCl气体。

HCl为无色有毒气体,有强烈的刺激性,扩散后会对环境造成污染甚至对人体造成危害。

HCl的大气毒性终点浓度-1的意义为人员短期暴露在HCl中发生死亡的浓度,大气毒性终点浓度-2的意义为人员短期暴露在HCl中影响人体健康的浓度[5]。

2、源项分析环境风险的关注重点是企业产生的环境事故对厂区外环境造成的影响,最大可信事故是在所有概率不为零的环境事件中对环境造成危害最严重的事故。

因此最大可信事故为储罐破裂导致盐酸泄漏,泄漏的盐酸挥发产生HCl随大气扩散造成污染环境并影响周围人群健康。

建设项目环境影响报告书盐酸泄露环境风险评价

建设项目环境影响报告书盐酸泄露环境风险评价

1.盐酸泄露的定量分析 1.1泄露流量的计算要估算盐酸的泄露范围,首先要确定其泄露流量,盐酸可以应用液体经小孔泄露的源模式计算泄露流量,其公式为:式中:Q —流量,kg/s ;C 0—孔流系数,取0.6; A —小孔的横截面积,m 2; ρ—流体密度;kg/m 3; P g —液体压力,Pa ; g —重力加速度,9.81m/s 2; A 0—储罐的横截面积,m 2; Z 0—储罐内液面距小孔高度,m ; t —泄露时间,s 1.2泄露参数本次盐酸罐泄露的相关计算参数见表13-1。

表13-1 盐酸罐泄露计算相关参数一览表1.3泄露速率本次工程盐酸储罐的容积为50m 3,尺寸为Ф3.6m ,高5m ,单罐最大储量为60t ,评价根据盐酸储罐泄露量的计算参数,确定本次盐酸罐事故泄露的速度为3.25kg/s ,根据盐酸储罐的储存量,则本次盐酸罐全部泄露完需5h 。

考虑0.5小时事故泄漏应急时间,则0.5h 内的盐酸的泄漏量为5.85t ,约占总储量总量的9.8%。

220o ogC A Q C A tA r =2.盐酸酸雾的产生量考虑0.5小时事故泄漏应急时间,则0.5h 内的盐酸的泄漏量为5.85t ,盐酸储罐围堰长:3.6m ,宽:9m ,高:2m ,考虑泄漏出口的盐酸闪蒸,则0.5h 盐酸泄漏量在围堤内形成0.15m 深的液池(除去单只盐酸贮罐罐脚所占面积后,液池有效面积22.23m 2)。

由于盐酸的沸点为-114.8℃,沸点远远低于液体贮存的常温,因此盐酸泄漏在围堤形成液池后,将产生闪蒸、热量蒸发和质量蒸发。

由于盐酸的沸点为-33.5℃,沸点远远低于液体贮存的常温,因此盐酸泄漏在围堤形成液池后,将产生闪蒸、热量蒸发和质量蒸发。

评价选择适用于硫酸、硝酸和盐酸等酸液蒸发量的计算公式来分析本次工程盐酸泄露后酸雾的产生量,计算公式如下: 式中:Gz ——酸雾量,kg/h ;M ——液体分子量;U ——蒸发液体表面上的空气流速(m/s),应以实测数据为 准。

盐酸事故应急预案范文

盐酸事故应急预案范文

盐酸事故应急预案范文一、前言盐酸是一种常见而重要的化学品,广泛应用于工业生产中。

然而,盐酸危险性较高,一旦发生事故,将会造成严重的人员伤亡和环境污染。

为了保障职工和公众的生命财产安全,提前制定盐酸事故应急预案是非常必要的。

二、风险分析盐酸是一种具有剧毒性和腐蚀性的化学品,其主要的危险性包括:1.眼睛和呼吸道的损害:接触盐酸会引起眼睛刺激和严重的眼睛损伤,同时还会对呼吸道造成刺激和损害,甚至引起肺水肿;2.皮肤腐蚀:盐酸能够刺激皮肤,造成腐蚀和灼伤;3.环境污染:盐酸将会对土壤和水体造成污染,对生物环境造成严重破坏。

三、应急预案的制定1.建立应急管理组织制定盐酸事故应急预案前,首先要成立一个应急管理组织,负责制定和执行应急预案,并进行实际应急演练。

应急管理组织应由专业人员组成,包括安全、环保、消防等相关领域的专家和技术人员。

2.盐酸存储和管理为了避免盐酸事故的发生,应制定严格的盐酸存储和管理规定,包括:(1)盐酸应储存在专用的储存仓库内,与其他化学品分开存放,并标明明显的警示标识;(2)盐酸应定期检查并维护,确保储存设施和容器的完好无损;(3)在操作和储存盐酸时,必须戴上防护手套、防护眼镜、防护面罩等个人防护装备。

3.事故应急预案(1)事故通报和报警在盐酸事故发生时,应立即通知相关人员,并向当地公安、消防、环保等部门报警,并详细说明事故的情况和发生地点,确保及时获得支持和救援。

(2)安全疏散和人员防护在事故发生时,应迅速启动疏散预案,确保职工和公众的安全。

具体措施包括:1)迅速疏散事故现场的人员,并引导他们到达安全区域;2)对被污染的人员进行迅速的衣物脱离和洗浴,防止进一步的伤害;3)对可能进一步接触盐酸的人员提供个人防护装备。

(3)事故区域隔离和环境保护在盐酸事故发生后,应迅速对事故区域进行隔离,避免事故扩散和进一步的伤害。

具体措施包括:1)设置警戒线,限制人员和车辆的进入事故区域;2)封闭漏出盐酸的泄露源,防止污染物继续泄漏;3)采取措施进行事故区域的浸染和污染物的清理,确保环境的保护。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

20万吨/年胎圈钢丝盐酸库环境风险评价胎圈钢丝项目使用的盐酸属于危险化学品,储存过程中存在环境风险。

1、盐酸的性质简介
氯化氢的水溶液即盐酸,纯盐酸无色,工业品因含有铁、氯等杂质,略带微黄色。

,有强烈的腐蚀性,能腐蚀金属,对动植物纤维和人体肌肤均有腐蚀作用。

浓盐酸在空气中发烟,触及氨蒸气会生成白色云雾。

氯化氢气体对动植物有害。

盐酸是极强的无机酸,与金属作用能生成金属氯化物并放出氯;与金属氧化物作用生成盐和水;与碱起中和反应生成盐和水;与盐类能起复分解反应生成新的盐和新的
酸。

表1 盐酸特性一览表
国标编号81013
CAS号7647-01-0
中文名称盐酸
英文名称Hydrochloric
别名氢氯酸
分子式HCl 外观与形状无色有刺激性和臭味的气味
分子量 36.46 蒸汽压
熔点-114.8℃溶解性易溶于水
密度稳定性
危险标记主要用途
2、风险识别
本项目所用酸不属于剧毒物质和一般毒物(属低毒类);酸属腐蚀,爆炸危险物质;根据重大危险源辨识(GB18218-2009)重规定,项目酸库储存酸的数量约70吨,超过临界量,构成重大危险源。

酸的使用是一个封闭的系统,对照《爆炸和火灾危险环境电力装置设计规范》(GB50058-92)规范标准,酸装置在正常运行时不会释放易燃物质;即使释放也是在酸泵的轴封处和阀门、法兰、管件接头等密封处偶尔的、短时的发生。

第二级释放源存在的区域,可划为2区。

2区的概念是在正常运行时不可能出现爆炸性气体混合物的环境。

正常运行是指正常的开车、运转、停车,易燃物质产品的装卸,密闭容器的开闭,安全阀、排放阀、以及所有设备都在其设计参数范围内工作的状态。

“当通风良好时,易燃物质可能出现的最高浓度不超过爆炸下限的10%”,可划为非爆炸危险区。

从上述分析中得知,出现最高浓度能超过爆炸下限10%的概率近似为零。

同时酸的比重很轻,因此,它难以聚集到爆炸极限的浓度。

因此,可以将酸系统作为非爆炸危险区看待。

同时,酸在正常工况下的自然损耗不会对环境造成污染影响。

发生酸泄漏的常见原因是由于管理不善,工人违章操作以及设备、容器陈旧,
管道破裂,阀门损漏,或者运输不当等导致生产性事故或者意外事故所造成。

综上所述,本项目按库存环境风险来源酸泄漏。

酸泄漏因素主要有:
1)管路系统漏泄(包括管道、阀门、连接法兰、泵的密封等设备及部位);
2)储罐泄漏;
3)自认因素,如地震、雷击等。

根据类比资料,酸泄漏一般产生酸储罐泄漏,本项目酸储罐酸量最大为70吨,根据统计资料,本次评价酸储罐发生事故时可能对周围环境造成的影响。

3、重大危险源识别
根据HJ/T169-2004《建设项目环境风险评价技术导则》附录A.1重爆炸性物质、易燃物质和有毒物质名称及临界量表,对项目涉及的危险化学品进行识别,本项目所涉及的危险物质为液酸。

名称
临界量t 现实储存量t 是否构成重大危险源生产场所储存区生产场所储存区生产场所储存区
盐酸0.01 5 0 0 否是
4、源强分析
对于高压(低温)液化储罐,当裂口处位于液相空间时,尽管液体流出并可能发生闪蒸,但由于液体的流出阻力大,内压下降速度缓慢,储罐内过热液体不会发生蒸气爆炸。

闪蒸所需能量来自过热液体中所储存的能量,即Q=mC p (To-Tb),m为过热液体的质量,Cp是液体的热容,To是降压前液体的温度,Tb是降压后液体的沸点。

当Q远远小于液体的蒸发热△Hv时可认为泄漏的液体不会发生闪蒸,此时的瞬时泄漏量可用流体力学的努利方程计算:
Ql=CdAp√2(P-Po)/P+2gh
式中: QL---液体泄漏速度,kg/s
Cd---液体泄漏系数,此值常用0.6-0.64
A----裂口面积,m2
P-------容器内介质压力,Pa
Po------环境压力,Pa
g -------重力加速度
h -------裂口之上液体高度,m。

本次评价考虑当酸储罐出现一个1cm2裂口时,此时容器内压力位1.4MPa,环境压力设定为1个标准大气压,由于酸储罐一般为卧式,考虑底部出现裂口,高度取1m,将上述数据代入得出此时的酸泄漏速度是 0.021Kg/S。

假设一个盐
酸储罐发生泄漏,10min内快速处理泄漏事故,则盐酸泄漏时间为10min。

5、泄漏事故对环境敏感点的影响
根据《工作场所有害因素职业接触限值》(GBZ2-2002)中的最高容许浓度为评价标准。

泄漏的盐酸被收集在防火堤之内,假定一个储罐发生泄漏,抢险在10min内完成,在不利气象条件(常风1.9m/s,F稳定度)对盐酸泄漏下风向不同时间氯化氢的浓度进行预测。

时间50 100 200 300 500 1000 1500 2000 3000
2 186.4592 132.4825 23.657
2
0.0003
3
0 0 0 0 0
5 186.4592 132.4825 72.016
6
45.242
6
6.6713
3
0 0 0 0
10 186.4592 132.4825 72.016
6
45.242
6
23.093
9
2.2149
9
0 0 0
12 0 0 48.359
4
45.242
2
23.093
9
8.2303
7
0.00
043
0 0
15 0 0 0 0 16.422
6
8.3271
6
1.22
2
0 0
20 0 0 0 0 6.1121
7
4.83
5
0 0
对泄漏控制的越及时,其浓度分布范围越小。

时间2min 4min 8min 15min 30min 45min 53.5min
最大落地浓度mg/m31871.41
6
1848.53
5
1848.53
5
113.248
8
11.7872 2.3007 0.9882
距离m 11 13 13 537 1553 2521 3057 短时间
接触浓
度控制
范围m3
115000 184000 334000 449000 451000 238000 0
表5 盐酸泄漏挥发的氯化氢对环境的最大影响及范围时间2min 5min 10min 12min 15min 20min 最大落地
浓度mg/m3
205.9422 205.9422 205.9422 60.2086 19.4448 7.1977 距离m 25 25 25 225 545 1081 短时间接
触浓度控
制范围m3
29800 68000 115000 101000 49700 0。

相关文档
最新文档