时钟抖动分析

合集下载

时钟抖动的4大根本原因及3种查看途径

时钟抖动的4大根本原因及3种查看途径

时钟抖动的4大根本原因及3种查看途径时钟接口阈值区间附近的抖动会破坏ADC的时序。

例如,抖动会导致ADC在错误的时间采样,造成对模拟输入的误采样,并且降低器件的信噪比(SNR)。

降低抖动有很多不同的方法,但是,在get降低抖动的方法前我们必须找到抖动的根本原因!时钟抖动,why?时钟抖动的根本原因就是时钟和ADC之间的电路噪声。

随机抖动由随机噪声引起,主要随机噪声源包括· 热噪声(约翰逊或奈奎斯特噪声),由载流子的布朗运动引起。

· 散粒噪声,与流经势垒的直流电流有关,该势垒不连续平滑,由载流子的单独流动引起的电流脉冲所造成。

· 闪烁噪声,出现在直流电流流动时。

该噪声由携带载流子的半导体中的陷阱引起,这些载流子在释放前通常会形成持续时间较短的直流电流。

· 爆裂噪声,也称爆米花噪声,由硅表面的污染或晶格错位造成,会随机采集或释放载流子。

查看时钟信号噪声,how?确定性抖动由干扰引起,会通过某些方式使阈值发生偏移,通常受器件本身特性限制。

查看时钟信号噪声通常有三种途径:时域、频域、相位域。

咳咳,敲黑板划重点,以上三种途径的具体方法如下↓↓↓时域图图1. 抖动的时域图时钟抖动是编码时钟的样本(不同周期)间的变化,包括外部和内部抖动。

抖动引起的满量程信噪比由以下公式得出举个栗子,频率为1 Ghz,抖动为100 FS均方根值时,信噪比为64 dB。

在时域中查看时,x轴方向的编码边沿变化会导致y轴误差,幅度取决于边沿的上升时间。

孔径抖动会在ADC输出产生误差,如图2所示。

抖动可能产生于内部的ADC、外部的采样时钟或接口电路。

图2. 孔径抖动和采样时钟抖动的影响图3显示抖动对信噪比的影响。

图中显示了5条线,分别代表不同的抖动值。

x轴是满量程模拟输入频率,y轴是由抖动引起的信噪比,有别于ADC总信噪比。

图3. 时钟抖动随模拟信号增大而提升信噪比由抖动引起的信噪比和有效位数(ENOB)的关系由以下公式定义:SNR = 6.02 N + 1.76 dB其中N =有效位数。

数字系统时钟抖动

数字系统时钟抖动

数字系统时钟抖动数字系统时钟抖动是指当数字系统的时钟信号存在不稳定性或噪声时,导致时钟信号产生微小的偏移或抖动现象。

时钟信号在数字系统中起着至关重要的作用,它用于同步各个模块的操作,确保数据的准确传输和处理。

然而,时钟抖动会对系统的性能和可靠性产生负面影响。

本文将探讨数字系统时钟抖动的原因、后果以及应对措施。

一、时钟抖动的原因1. 元器件误差:元器件的制造和使用过程中会存在一定的误差,例如晶体振荡器的频率精度、时钟发生器的稳定性等。

这些误差在时钟信号传输过程中会放大,导致时钟抖动。

2. 环境干扰:数字系统所处的环境中存在各种干扰源,如电磁波干扰、温度变化、电源波动等。

这些干扰会对时钟信号的传输和接收产生影响,进而引起时钟抖动。

3. 信号串扰:在复杂的数字系统中,各个信号线之间会存在串扰现象,即一个信号线上的电磁场对其他信号线产生影响。

当时钟信号受到其他信号线的串扰时,也会导致时钟抖动。

二、时钟抖动的后果1. 时序错误:时钟抖动可能导致时钟信号的上升沿或下降沿不准确,进而造成时序错误。

这会导致数据传输出错、计时错误等问题,严重时可能导致整个系统的崩溃。

2. 数据稳定性下降:时钟抖动会导致数据的采样和恢复不准确,使得数据的稳定性下降。

在高速数据传输中,时钟抖动可能导致数据丢失或数据错误,影响系统的可靠性和性能。

3. 时钟频率偏移:时钟抖动可能导致时钟信号的频率产生微小的偏移,进而影响系统的时钟同步和数据处理速度。

这会给系统的运行带来一定的难度和不确定性。

三、应对时钟抖动的措施1. 选择高质量的元器件:在设计和选择数字系统的元器件时,应注重其频率精度、稳定性和抗干扰能力。

采用高质量的晶体振荡器、时钟发生器等元器件,能够减小时钟抖动的概率。

2. 优化时钟布线:合理设计时钟信号的布线路径,避免与其他信号线的干扰。

尽可能使用短而直接的时钟线路,减少串扰的可能性。

3. 电磁屏蔽和滤波:对数字系统中的时钟信号进行电磁屏蔽和滤波处理,减少来自外界的干扰。

抖动测量与分析

抖动测量与分析

抖动的测量与分析一、时钟抖动时钟是广泛用于计算机、通讯、消费电子产品的元器件,包括晶体振荡器和锁相环,主要用于系统收发数据的同步和锁存。

如果时钟信号到达接收端时抖动较大,可能出现:并行总线中数据信号的建立和保持时间余量不够、串行信号接收端误码率高、系统不稳定等现象,因此时钟抖动的测量与分析非常重要。

1、时钟抖动的分类时钟抖动通常分为时间间隔误差(Time Interval Error,简称TIE),周期抖动(Period Jitter)和相邻周期抖动(cycle to cycle jitter)三种抖动。

TIE又称为phase jitter,是信号在电平转换时,其边沿与理想时间位置的偏移量。

理想时间位置可以从待测试时钟中恢复,或来自于其他参考时钟。

Period Jitter是多个周期内对时钟周期的变化进行统计与测量的结果。

Cycle to cycle jitter是时钟相邻周期的周期差值进行统计与测量的结果。

2、时钟抖动的测量对于每一种时钟抖动进行统计和测量,可以得到其抖动的峰峰值和RMS值(有效值),峰峰值是所有样本中的抖动的最大值减去最小值,而RMS值是所有样本统计后的标准偏差。

3种时钟抖动可以调用示波器的抖动包中的TIE、Period和Cycle to cycle函数进行测试。

3、时钟抖动的应用范围在三种时钟抖动中,在不同的应用范围需要重点测量与分析某类时钟抖动。

TIE抖动是最常用的抖动指标,在很多芯片的数据手册上通常都规定了时钟TIE抖动的要求。

对于串行收发器的参考时钟,通常测量其TIE抖动。

在并行总线系统中,通常重点关注Period Jitter和Cycle to cycle jitter。

4、时钟抖动的分析在时钟抖动测量时,可以在三个域分析抖动,即在时域分析抖动追踪(jitter track/trend)、在频域观察抖动的频谱、在统计域分析抖动的直方图。

二、串行数据抖动1、数据抖动的分类和来源业界通常把串行数据的抖动分解为:在力科SDA系列示波器中使用了‘normalized Q-scale method’(简称NQ-Scale方法)来求解Tj。

时间抖动(jitter)的概念及其分析方法

时间抖动(jitter)的概念及其分析方法

时间抖动(jitte‎r)的概念及其‎分析方法随着通信系‎统中的时钟‎速率迈入G‎H z级,抖动这个在‎模拟设计中‎十分关键的‎因素,也开始在数‎字设计领域‎中日益得到‎人们的重视‎。

在高速系统‎中,时钟或振荡‎器波形的时‎序误差会限‎制一个数字‎I/O接口的最‎大速率。

不仅如此,它还会导致‎通信链路的‎误码率增大‎,甚至限制A‎/D转换器的‎动态范围。

有资料表明‎在3GH z‎以上的系统‎中,时间抖动(jitte‎r)会导致码间‎干扰(ISI),造成传输误‎码率上升。

在此趋势下‎,高速数字设‎备的设计师‎们也开始更‎多地关注时‎序因素。

本文向数字‎设计师们介‎绍了抖动的‎基本概念,分析了它对‎系统性能的‎影响,并给出了能‎够将相位抖‎动降至最低‎的常用电路‎技术。

本文介绍了‎时间抖动(jitte‎r)的概念及其‎分析方法。

在数字通信‎系统,特别是同步‎系统中,随着系统时‎钟频率的不‎断提高,时间抖动成‎为影响通信‎质量的关键‎因素。

关键字:时间抖动、jitte‎r、相位噪声、测量时间抖动的‎概念在理想情况‎下,一个频率固‎定的完美的‎脉冲信号(以1MHz‎为例)的持续时间‎应该恰好是‎1us,每500n‎s 有一个跳‎变沿。

但不幸的是‎,这种信号并‎不存在。

如图1所示‎,信号周期的‎长度总会有‎一定变化,从而导致下‎一个沿的到‎来时间不确‎定。

这种不确定‎就是抖动。

抖动是对信‎号时域变化‎的测量结果‎,它从本质上‎描述了信号‎周期距离其‎理想值偏离‎了多少。

在绝大多数‎文献和规范‎中,时间抖动(jitte‎r)被定义为高‎速串行信号‎边沿到来时‎刻与理想时‎刻的偏差,所不同的是‎某些规范中‎将这种偏差‎中缓慢变化‎的成分称为‎时间游走(wande‎r),而将变化较‎快的成分定‎义为时间抖‎动(jitte‎r)。

图1 时间抖动示‎意图1.时间抖动的‎分类抖动有两种‎主要类型:确定性抖动‎和随机性抖‎动。

时间抖动(jitter)的概念及其分析方法

时间抖动(jitter)的概念及其分析方法

时间抖动(jitter)的概念及其分析方法随着通信系统中的时钟速率迈入GHz级,抖动这个在模拟设计中十分关键的因素,也开始在数字设计领域中日益得到人们的重视。

在高速系统中,时钟或振荡器波形的时序误差会限制一个数字I/O接口的最大速率。

不仅如此,它还会导致通信链路的误码率增大,甚至限制A/D转换器的动态范围。

有资料表明在3G Hz以上的系统中,时间抖动(jitter)会导致码间干扰(ISI),造成传输误码率上升。

在此趋势下,高速数字设备的设计师们也开始更多地关注时序因素。

本文向数字设计师们介绍了抖动的基本概念,分析了它对系统性能的影响,并给出了能够将相位抖动降至最低的常用电路技术。

本文介绍了时间抖动(jitter)的概念及其分析方法。

在数字通信系统,特别是同步系统中,随着系统时钟频率的不断提高,时间抖动成为影响通信质量的关键因素。

关键字:时间抖动、jitter、相位噪声、测量时间抖动的概念在理想情况下,一个频率固定的完美的脉冲信号(以1MHz为例)的持续时间应该恰好是1us,每500n s有一个跳变沿。

但不幸的是,这种信号并不存在。

如图1所示,信号周期的长度总会有一定变化,从而导致下一个沿的到来时间不确定。

这种不确定就是抖动。

抖动是对信号时域变化的测量结果,它从本质上描述了信号周期距离其理想值偏离了多少。

在绝大多数文献和规范中,时间抖动(jitter)被定义为高速串行信号边沿到来时刻与理想时刻的偏差,所不同的是某些规范中将这种偏差中缓慢变化的成分称为时间游走(wander),而将变化较快的成分定义为时间抖动(jitter)。

图1 时间抖动示意图1.时间抖动的分类抖动有两种主要类型:确定性抖动和随机性抖动。

确定性抖动是由可识别的干扰信号造成的,这种抖动通常幅度有限,具备特定的(而非随机的)产生原因,而且不能进行统计分析。

随机抖动是指由较难预测的因素导致的时序变化。

例如,能够影响半导体晶体材料迁移率的温度因素,就可能造成载子流的随机变化。

微电子电路中的时钟信号抖动分析与优化方法研究

微电子电路中的时钟信号抖动分析与优化方法研究

微电子电路中的时钟信号抖动分析与优化方法研究引言:时钟信号在微电子电路中起着至关重要的作用,它是整个系统的节拍,负责同步各个模块的工作。

然而,由于各种因素的干扰,时钟信号会产生抖动,导致系统性能下降。

因此,对时钟信号的抖动进行分析和优化成为微电子电路设计中的重要课题。

一、时钟信号抖动的来源时钟信号抖动是指时钟信号的周期性变化,主要有以下几个来源:1. 环境干扰:温度变化、电磁辐射等环境因素会对时钟信号产生影响,导致抖动。

2. 电源噪声:电源的不稳定性会引起时钟信号的抖动。

3. 器件非线性:微电子器件的非线性特性会对时钟信号产生影响,引起抖动。

4. 时钟信号传输线路:传输线路的噪声、阻抗不匹配等因素也会导致时钟信号的抖动。

二、时钟信号抖动的影响时钟信号抖动对微电子电路的性能有着重要的影响,主要体现在以下几个方面:1. 时序错误:时钟信号抖动会导致时序错误,使得电路无法按照设计要求正常工作。

2. 时钟偏移:时钟信号抖动会引起时钟频率的偏移,导致电路的时钟周期不稳定。

3. 噪声干扰:时钟信号抖动会引入噪声,影响电路的信号完整性和稳定性。

4. 能耗增加:时钟信号抖动会导致电路频繁切换,增加功耗。

三、时钟信号抖动分析方法为了准确分析时钟信号的抖动情况,可以采用以下几种方法:1. 时钟抖动测量仪器:使用专门的时钟抖动测量仪器,通过测量时钟信号的抖动参数,如峰峰值、均方根值等,来评估抖动情况。

2. 时钟抖动仿真工具:利用电路仿真软件,对时钟信号进行仿真分析,得到时钟信号的波形和频谱,进而分析抖动情况。

3. 时钟抖动模型:建立时钟信号的抖动模型,通过数学方法进行分析,得到时钟信号的抖动特性。

四、时钟信号抖动优化方法为了降低时钟信号的抖动,可以采用以下几种优化方法:1. 电源和地线设计:合理设计电源和地线,减小电源噪声对时钟信号的影响。

2. 环境隔离:采用屏蔽罩、隔离层等措施,减少环境因素对时钟信号的干扰。

3. 时钟信号传输线路设计:采用匹配阻抗、减小传输线路长度等措施,降低传输线路对时钟信号的影响。

规范-时钟抖动的分析与测量(试行)_Rev 1.0

规范-时钟抖动的分析与测量(试行)_Rev 1.0

时钟抖动的分析与测量编制:审核:批准:文件维护日志目录第一章抖动的分析 (4)1.1抖动的定义 (4)1.2抖动的分类,峰峰值与有效值 (4)1.3时钟抖动的分解 (7)第二章抖动的测量 (8)2.1用TDSJIT3测量抖动 (9)2.1.1 Wizard向导测试 (9)测试步骤: (9)2.1.2 TDSJIT3手动测抖动 (12)测试步骤: (12)2.2用DPOJET测量抖动 (17)2.2.1 One Touch 向导测试 (17)测试步骤: (18)2.2.2 手动测试 (19)测试步骤: (19)第三章参考 (22)前言文章结构:第一章抖动的分析第二章抖动的测量第一章抖动的分析1.1抖动的定义一个信号在跳变时相对其理想时间位置的偏移量1.2抖动的分类,峰峰值与有效值抖动通常分为三类:●时钟抖动:period jitter,cycle-cycle jitter,N-cycle jitter,long-term jitter等●并行总线中数据与时钟相关的抖动:setup-hold time jitter等●高速串行数据的抖动测试:TIE(time interval error)等抖动定义分析对比及示例:TIE :又称为phase jitter,是信号在电平转换时,其边沿与理想时间位置的偏移量。

理想时间位置可以从待测试时钟中恢复,或来自于其他参考时钟。

如图 2 所示TIE抖动的示意图:I1、I2、I3、In-1、In 是时钟第一个到第n 个上升沿与理想时间位置的偏差,将I1、I2 到In 进行数理统计,在所有样本的找出最大值和最小值,两者相减可以得到TIE 抖动的峰峰值,即:假设N为测量的样本总数,抖动的平均值可表示为:抖动的有效值(即RMS 值)为所有样本的1 个Sigma 值,即:PJ:周期抖动(Period Jitter)是多个周期内对时钟周期的变化进行统计与测量的结果,主要用于时钟等固定周期的信号。

时钟抖动测试方法

时钟抖动测试方法

时钟抖动测试方法
时钟抖动测试是一种用于测试时钟稳定性的方法。

时钟抖动是指时钟
信号在短时间内发生的微小波动,这种波动可能会导致系统出现错误。

因此,时钟抖动测试对于保证系统的稳定性和可靠性非常重要。

时钟抖动测试的方法有很多种,下面介绍一种常用的方法:
1. 准备测试设备:需要一台高精度的频率计和一台信号发生器。

2. 设置信号发生器:将信号发生器的频率设置为需要测试的时钟频率,并将输出信号连接到频率计上。

3. 测量时钟频率:使用频率计测量时钟的频率,并记录下来。

4. 生成测试信号:使用信号发生器生成一个频率为1Hz的正弦波信号,并将其连接到示波器上。

5. 观察示波器波形:在示波器上观察正弦波信号的波形,如果波形出
现了明显的抖动,则说明时钟存在抖动问题。

6. 分析测试结果:根据示波器上观察到的波形,可以分析出时钟的抖
动情况。

如果抖动很小,则说明时钟稳定性较好;如果抖动较大,则需要进一步调整时钟频率或者更换时钟源。

需要注意的是,时钟抖动测试需要在实验室等稳定的环境下进行,避免外界干扰对测试结果的影响。

此外,测试时钟的频率应该尽量接近实际使用时钟的频率,以保证测试结果的准确性。

总之,时钟抖动测试是一项非常重要的测试工作,可以帮助我们保证系统的稳定性和可靠性。

通过上述方法进行测试,可以有效地检测时钟抖动问题,并及时采取措施进行调整,从而提高系统的性能和可靠性。

时钟的抖动测量与分析

时钟的抖动测量与分析

时钟的抖动测量与分析和分解时钟的抖动可以分为随机抖动(Random Jitter,简称Rj)和固有抖动(Deterministic jitter),随机抖动的来源为热噪声、Shot Noise 和FlickNoise,与电子器件和半导体器件的电子和空穴特性有关,比如ECL 工艺的PLL 比TTL 和CMOS 工艺的PLL 有更小的随机抖动;固定抖动的来源为:开关电源噪声、串扰、电磁干扰等等,与电路的设计有关,可以通过优化设计来改善,比如选择合适的电源滤波方案、合理的PCB 布局和布线。

和串行数据的抖动分解很相似,时钟的抖动可以分为Dj 和Rj。

但不同的是,时钟的固有抖动中通常只有周期性抖动(Pj),不包括码间干扰(ISI)。

当时钟的上下边沿都用来锁存数据时占空比时钟(DCD)计入固有抖动,否则不算固有抖动。

时钟抖动测量方法在上个世纪90 年代,抖动的测量方法非常简单,示波器触发到时钟的一个上升沿,使用余辉模式,测量下一个上升沿余辉在判定电平上(通常为幅度的50%)的水平宽度。

测量水平宽度有两种方法。

第一种使用游标测量波形边沿余辉的宽度,如下图4 所示。

由于像素偏差或屏幕分辨率(量化误差) 会降低精度,而且引入了触发抖动,所以这种方法误差较大。

第二种使用直方图,对边沿余辉的水平方向进行直方图统计,如下图5 所示。

测量直方图的最左边到最右边的间距即为抖动的峰峰值(168 皮秒)。

这种方法的缺点是:引入了示波器的触发抖动;一次只测量一个周期,测试效率低,某些出现频率低的抖动在短时间内不能测量到。

随着测试仪器技术的发展与进步,目前,示波器的抖动分析软件不再是测量一两个周期波形后分析抖动,而是一次测量多个连续比特位,计算与统计所有比特位的抖动,测量的数据量非常大、效率非常高。

如下图6 所示为某50MHz时钟的Period 抖动测试,示波器的抖动测试软件可以一次测量所有周期的周期值,计算出抖动的峰峰值与有效值。

时钟抖动定义与测量方法

时钟抖动定义与测量方法

时钟抖动定义与测量方法引言以5G无线技术、电动汽车和先进移动设备为代表的应用大趋势正影响着全球社会,并将重塑未来的各个产业。

这些大趋势为电子产品,尤其是传感器和MEMS,提供了巨大的商机。

SiTime作为MEMS时钟解决方案的领先供应商,已经出货超过20亿颗MEMS时钟器件,拥有超过90%的MEMS时钟器件市场份额.。

SiTime的使命是为5G通讯、移动物联网、汽车和工业市场的客户解决最具挑战的时钟问题。

1、抖动的定义今天我们就来聊聊时钟抖动的定义与测量方法抖动是时钟信号边沿事件的时间点集合相对于其理想值的离散时序变量。

时钟信号中的抖动通常是由系统中的噪声或其他干扰导致的。

具体因素包括热噪声、电源变化、负载条件、器件噪声以及相邻电路耦合的干扰等。

2、抖动类型时钟信号抖动定义有多种主要如下:周期抖动(Period Jitter)相邻周期抖动(Cycle to Cycle Period Jitter)长期抖动 (Long Term Jitter)相位抖动 (Phase Jitter)时间间隔误差 (Time Interval Error or TIE)2.1 周期抖动周期抖动是时钟信号的周期时间相对于一定数量、随机选定的理想时钟信号周期的偏差。

如果我们能对一定数量的时钟周期进行测量,就可以计算出这一段时间测量窗口内的平均时钟周期以及其标准偏差与峰峰值。

我们通常将标准偏差和峰峰值分别称作RMS 值和Pk-Pk 周期抖动。

许多已发表的文献中往往将周期抖动定义为测得的时钟周期与理想周期之间的差异,但在实际应用中,想要量化理想周期往往有困难。

如果用示波器观察设定频率为 100 MHz 的振荡器的输出,测得的平均周期可能是9.998 ns,而非理想周期的10 ns。

因此,在实际测量中可将测量时间窗口内的平均周期视为理想周期。

2.1.1 周期抖动应用周期抖动在数字系统中的时序冗余度计算方面非常实用。

例如,在一个基于微处理器的系统中,处理器在时钟上升之前需要 1 ns的数据建立时间。

芯片设计中的电源噪声与时钟抖动分析

芯片设计中的电源噪声与时钟抖动分析

芯片设计中的电源噪声与时钟抖动分析芯片设计是现代电子工程中不可或缺的一环。

在设计芯片时,我们需要考虑到各种因素,其中电源噪声和时钟抖动是两个非常重要的问题。

本篇文章将深入探讨芯片设计中的电源噪声与时钟抖动分析,并提供一些解决方案。

一、电源噪声分析电源噪声是指芯片工作时由于电源的不纯净而带入的干扰信号。

这种噪声可能会对芯片的正常工作产生严重影响,例如引起系统运行不稳定、降低信号质量等。

因此,在芯片设计中,电源噪声的分析至关重要。

为了准确分析电源噪声,我们可以采取以下步骤:1. 电源噪声源的识别:首先,我们需要确定电源噪声的来源。

常见的电源噪声源包括开关电源、电感、电容、线路阻抗不匹配等。

通过仔细分析电路图和布线,我们可以确定噪声源,并有针对性地进行优化。

2. 噪声的测量与分析:使用专业的仪器,如示波器、频谱分析仪等,可以准确测量电源噪声。

通过分析频谱图,我们可以了解噪声的频段、幅度等信息,从而有针对性地进行改进。

3. 降低噪声的方法:一旦确定了电源噪声的源头和特性,我们可以采取一些措施来降低噪声。

例如,可以优化电源线路的布局,添加滤波器或稳压器,使用地平面铺铜等。

这些方法可以有效地减小电源噪声。

二、时钟抖动分析时钟抖动是指时钟信号的不稳定性,它可能会导致芯片工作的时序错误。

特别是在高频率信号的处理中,时钟抖动的问题更为严重。

因此,时钟抖动的分析和处理在芯片设计中也非常重要。

为了准确分析时钟抖动,我们可以采取以下步骤:1. 时钟信号的测量:通过使用专业的时钟测试仪器,如相位噪声测试仪等,可以准确测量时钟信号的抖动情况。

通过测量结果,我们可以了解到时钟信号的稳定性,并评估其对芯片性能的影响。

2. 抖动分析与改进:根据测量结果,我们可以对抖动进行分析,并找出其产生的原因。

可能的原因包括时钟源的噪声、布线不佳、时钟网络的不匹配等。

通过合理优化时钟源和布线,并采取一些抑制抖动的技术手段,如使用PLL锁相环等,可以有效降低时钟抖动。

多分支时钟树中的抖动分析和最小化

多分支时钟树中的抖动分析和最小化

多分支时钟树中的抖动分析和最小化时钟信号的抖动是电子电路中时序问题的主要原因,这其中有几个来源。

在本文中,我们分析了时钟树中抖动的类型和来源,并讨论了良好的设计实践和认真的组件选择相结合如何有助于减少抖动的影响。

为了使大多数电子设备正常运行,提供准确的时序非常重要。

许多应用需要在PCB 上的特定位置呈现同步时钟信号,并在其他位置呈现异步时钟,这种布局通常称为多分支时钟树。

随着时序复杂程度的增加,实现多分支时钟树的设计挑战也越来越大。

抖动是最重要的时序规范之一,是衡量时钟信号周期变化的指标。

随着时钟树解决方案变得越来越复杂和频率越来越高,抖动会变得更糟,这使得满足公差的任务非常具有挑战性,对于超高速应用,公差可能在飞秒(10-15 秒)数量级。

在本文中,我们将讨论时钟树中的主要组件,分析不同类型的抖动和抖动来源,并讨论减少抖动对电子电路影响的方法。

多分支时钟树时钟树设计往往是依据具体应用而定,这意味着没有“典型”解决方案。

图 1 显示了一个使用Silicon Labs组件的时钟树范例。

图1:使用由单晶振和时钟发生器组合的多时钟时钟树。

(来源:Silicon Labs)时序电路通常由下列组件中的一个或多个构成,包括石英晶体、晶体振荡器、缓冲器、时钟发生器和抖动衰减器。

石英晶体是确定时序信号频率的压电谐振器,这些可以制造成产生精确的信号频率(32kHz ~50MHz),其随温度变化很小。

晶体振荡器 (XO) 是一种电路,它使用石英晶体产生的信号以单端或差分格式产生其他所需的时钟频率。

XO 的一个例子是Microchip 的PL602-03,它可以使用12 ~ 25MHz 的晶体工作,以产生 48 ~ 100MHz 的低抖动输出频率。

压控晶体振荡器 (VCXO) 可生成时钟频率,并可以通过改变施加的输入电压来改变频率。

ON Semiconductor的 NB3N508S是一款VCXO,它通过向器件的VIN 引脚施加 0 ~3.3V的电压,利用27MHz 晶体信号产生 216MHz 输出。

时钟的抖动及相噪分析

时钟的抖动及相噪分析

时钟的抖动及相噪分析抖动测量一直被称为示波器测试测量的最高境界。

传统最直观的抖动测量方法是利用余辉来查看波形的变化。

后来演变为高等数学概率统计上的艰深问题,抖动测量结果准还是不准的问题就于是变得更加复杂。

时钟的特性可以用频率计测量频率的稳定度,用频谱仪测量相噪,用示波器测量TIE 抖动、周期抖动、cycle-cycle抖动。

但是时域测量方法和频域测量方法的原理分别是什么? TIE抖动和相噪抖动之间的关系到底是怎么推导的呢?抖动是衡量时钟性能的重要指标,抖动一般定义为信号在某特定时刻相对于其理想位置的短期偏移。

这个短期偏移在时域的表现形式为抖动(下文的抖动专指时域抖动),在频域的表现形式为相噪。

本文主要探讨下时钟抖动和相噪以及其测量方法,以及两者之间的关系。

1 抖动介绍抖动是对时域信号的测量结果,反映了信号边沿相对其理想位置偏离了多少。

抖动有两种主要成分:确定性抖动和随机抖动。

确定性抖动是可以重复和预测的,其峰峰值是有界的,通常意义上的DJ是指其pk-pk值;随机抖动是不能预测的定时噪声,分析时一般使用高斯分布来近似表征,理论上可以偏离中间值无限大,所以随机抖动是没有峰到峰边界的,通常意义上的RJ指标是指其RMS值,可以根据其RMS值推算其在一定误码率时的值。

目前最常用的分析方法是使用双狄拉克模型。

该模型假定概率密度函数两侧的尾部是服从高斯分布的,高斯分布很容易模拟,并且可以向下推算出较低的概率分布。

总抖动是RJ和DJ概率密度函数的卷积。

但是,业界对于高斯分布能否精确地描绘随机抖动直方图的尾部还存在争议。

真正的随机抖动是遵守高斯分布的,但实际的测量中多个低幅度的DJ会卷积到一个分布函数,这导致测量出的概率密度分布的中心接近高斯分布,而尾部却夹杂了一些DJ。

所以,真正的RJ可能只占高斯模型的抖动的一部分,测量中RJ可能被放大了,同时总抖动也会被放大。

2 抖动测量时钟抖动通常有三种测量方法,对应于TIE(Time Interval Error 时间间隔误差)、period(周期抖动)和Cycle-Cycle(相邻周期抖动)三种抖动指标。

时钟的抖动及相噪分析

时钟的抖动及相噪分析

时钟的抖动及相噪分析动测量一直被称为示波器测试测量的最高境界。

传统最直观的抖动测量方法是利用余辉来查看波形的变化。

后来演变为高等数学概率统计上的艰深问题,抖动测量结果准还是不准的问题就于是变得更加复杂。

时钟的特性可以用频率计测量频率的稳定度,用频谱仪测量相噪,用示波器测量TIE抖动、周期抖动、cycle-cycle抖动。

但是时域测量方法和频域测量方法的原理分别是什么? TIE抖动和相噪抖动之间的关系到底是怎么推导的呢? ScopeArt先生就常遇到类似的问题,为此,特向本文作者主动邀稿。

作者是高人,但很低调。

他为此文花费了很多时间,最终奉献给大家的这篇文章很干货。

希望对仍然纠结在抖动的迷雾中的朋友们有所启发。

抖动是衡量时钟性能的重要指标,抖动一般定义为信号在某特定时刻相对于其理想位置的短期偏移。

这个短期偏移在时域的表现形式为抖动(下文的抖动专指时域抖动),在频域的表现形式为相噪。

本文主要探讨下时钟抖动和相噪以及其测量方法,以及两者之间的关系。

1、抖动介绍抖动是对时域信号的测量结果,反映了信号边沿相对其理想位置偏离了多少。

抖动有两种主要成分:确定性抖动和随机抖动。

确定性抖动是可以重复和预测的,其峰峰值是有界的,通常意义上的DJ是指其pk-pk值;随机抖动是不能预测的定时噪声,分析时一般使用高斯分布来近似表征,理论上可以偏离中间值无限大,所以随机抖动是没有峰到峰边界的,通常意义上的RJ指标是指其RMS值,可以根据其RMS值推算其在一定误码率时的值。

目前最常用的分析方法是使用双狄拉克模型。

该模型假定概率密度函数两侧的尾部是服从高斯分布的,高斯分布很容易模拟,并且可以向下推算出较低的概率分布。

总抖动是RJ和DJ概率密度函数的卷积。

但是,业界对于高斯分布能否精确地描绘随机抖动直方图的尾部还存在争议。

真正的随机抖动是遵守高斯分布的,但实际的测量中多个低幅度的DJ会卷积到一个分布函数,这导致测量出的概率密度分布的中心接近高斯分布,而尾部却夹杂了一些DJ。

示波器进行时钟抖动测试的精度

示波器进行时钟抖动测试的精度

示波器进行时钟抖动测试的精度分析抖动是指数字信号中不期望的相位调制,同时也是衡量高速数字信号质量的最重要的指标。

现在各种通信标准都对通信设备的抖动的指标有严格的要求,各种总线的一致性测试中也会对随机抖动、确定性抖动、时间间隔误差、总体抖动等有要求。

示波器是很强大的工具,目前很多windows平台的示波器都提供了一些抖动分析的软件,可以提供直方图、时间图、抖动频谱、RJ/ DJ分解、浴盆曲线等一系列漂亮的测试报告。

但是事实上,很多用户在使用示波器进行精确抖动测量时却不能得到很好的结果。

比如明明要求被测时钟的抖动小于0.5ps RMS,实际测出来却是5ps RMS,数量级的错误使得很多用户开始怀疑测量结果和测量方法的可信程度。

这些错误结果的出现除了部分是由于对抖动概念理解不够从而设置错误外,还有很大一部分原因是不了解所使用的示波器的抖动测量能力,也就是您在使用的这台示波器究竟能测量到多小的抖动,以及和那些因素有关。

衡量示波器实际能测量到的最小的抖动的指标是抖动测量本底(J itter measurement floor)。

如果被测件的实际抖动小于示波器的抖动测量本底,这些抖动是不可能被测量到的。

抖动测量本底这个指标和示波器的采样时钟抖动、底噪声以及被测信号都有关系,其表现为示波器对测量结果增加的随机抖动的大小。

由于不同示波器厂商用不同的方法定义抖动测量本底,这就要求购买或使用示波器的工程师深入理解不同指标定义的含义。

通常用来衡量示波器抖动测量能力的指标有2个:固有抖动(Int rinsic Jitter)和抖动测量本底(Jitter Measurement Floor)。

这2个指标间有关系但又不完全一样,下面就来解释一下。

1、固有抖动示波器的固有抖动,有时又叫采样时钟抖动,是指由于示波器内部采样时钟误差所造成的抖动。

由于现在高带宽示波器的采样时钟频率都非常高,可高达80G/s或者更高,因此要保证每一个实际的采样点都落在其应该在的理想位置是个非常有挑战性的工作。

时钟的抖动测量与分析

时钟的抖动测量与分析

时钟的抖动测量与分析时钟抖动的分类与定义时钟抖动通常分为时间间隔误差(Time Interval Error,简称TIE),周期抖动(Period Jitter)和相邻周期抖动(cycle to cycle jitter)三种抖动。

TIE又称为phase jitter,是信号在电平转换时,其边沿与理想时间位置的偏移量。

理想时间位置可以从待测试时钟中恢复,或来自于其他参考时钟。

Period Jitter是多个周期内对时钟周期的变化进行统计与测量的结果。

Cycle to cycle jitter是时钟相邻周期的周期差值进行统计与测量的结果。

对于每一种时钟抖动进行统计和测量,可以得到其抖动的峰峰值和RMS值(有效值),峰峰值是所有样本中的抖动的最大值减去最小值,而RMS值是所有样本统计后的标准偏差。

如下图1为某100M时钟的TIE、Period Jitter、Cycle to Cycle jitter的峰峰值和RMS值的计算方法。

图1:三种时钟抖动的计算方法时钟抖动的应用范围在三种时钟抖动中,在不同的应用范围需要重点测量与分析某类时钟抖动。

TIE抖动是最常用的抖动指标,在很多芯片的数据手册上通常都规定了时钟TIE抖动的要求。

对于串行收发器的参考时钟,通常测量其TIE抖动。

如下图2所示,在2.5Gbps的串行收发器芯片的发送端,参考时钟为100MHz,锁相环25倍频到2.5GHz后,为Serializer(并行转串行电路)提供时钟。

当参考时钟抖动减小时,TX输出的串行数据的抖动随之减小,因此,需要测量该参考时钟的TIE抖动。

另外,用于射频电路的时钟通常也需测量其TIE抖动(相位抖动)。

在并行总线系统中,通常重点关注period jitter和cycle to cycle jitter。

比如在共同时钟总线(common clock bus)中(如图3所示),完整的数据传输需要两个时钟脉冲,第一个脉冲用于把数据锁存到发送芯片的IO Buffer,第二个脉冲将数据锁存到接收芯片中,在一个时钟周期内让数据从发送端传送到接收端,当发送端到接收端传输延迟(flight time)过大时,数据的建立时间不够,传输延迟过小时,数据的保持时间不够;同理,当这一个时钟的周期值偏大时,保持时间不够;周期值偏小时,建立时间不够。

时钟抖动和时钟偏斜(北大学子最透彻的讲解)

时钟抖动和时钟偏斜(北大学子最透彻的讲解)

系统时序设计中对时钟信号的要求是非常严格的,因为我们所有的时序计算都是以恒定的时钟信号为基准。

但实际中时钟信号往往不可能总是那么完美,会出现抖动(Jitter)和偏移(Skew)问题。

所谓抖动(jitter),就是指两个时钟周期之间存在的差值,这个误差是在时钟发生器内部产生的,和晶振或者PLL内部电路有关,布线对其没有影响。

如下图所示:除此之外,还有一种由于周期内信号的占空比发生变化而引起的抖动,称之为半周期抖动。

总的来说,jitter可以认为在时钟信号本身在传输过程中的一些偶然和不定的变化之总和。

时钟偏斜(skew)是指同样的时钟产生的多个子时钟信号之间的延时差异。

它表现的形式是多种多样的,既包含了时钟驱动器的多个输出之间的偏移,也包含了由于PCB走线误差造成的接收端和驱动端时钟信号之间的偏移。

时钟偏斜指的是同一个时钟信号到达两个不同寄存器之间的时间差值,时钟偏斜永远存在,到一定程度就会严重影响电路的时序。

如下图所示:信号完整性对时序的影响,比如串扰会影响微带线传播延迟;反射会造成数据信号在逻辑门限附近波动,从而影响最大/最小飞行时间;时钟走线的干扰会造成一定的时钟偏移。

有些误差或不确定因素是仿真中无法预见的,设计者只有通过周密的思考和实际经验的积累来逐步提高系统设计的水平。

Clock skew 和Clock jitter 是影响时钟信号稳定性的主要因素。

很多书里都从不同角度里对它们进行了解释。

其中“透视”一书给出的解释最为本质:1. Clock Skew: The spatial variation in arrival time of a clock transition on anintegrated circuit;2. Clock jitter: The temporal vatiation of the clock period at a given point on the chip;简言之,skew通常是时钟相位上的不确定,而jitter是指时钟频率上的不确定(uncertainty)。

电子计数器扩频装置的时钟抖动分析与抑制技术研究

电子计数器扩频装置的时钟抖动分析与抑制技术研究

电子计数器扩频装置的时钟抖动分析与抑制技术研究电子计数器是一种广泛应用于科学研究、电子测量和通信系统中的仪器,用于实时测量和记录信号的频率及周期。

然而,电子计数器的时钟抖动问题一直限制了测量精度的进一步提高。

为了解决这一问题,本文将对电子计数器扩频装置的时钟抖动进行分析,并讨论一些常用的抑制技术。

首先,我们需要了解时钟抖动的概念。

时钟抖动是指时钟信号的频率或相位因各种因素而发生随机变化的现象。

时钟抖动会对电子计数器的测量精度产生负面影响,特别是在高频率和高分辨率的测量中。

因此,减小时钟抖动对于提高电子计数器的精度至关重要。

一种常见的时钟抖动产生原因是由于信号源的压摆率不稳定性引起的。

压摆率不稳定性指的是信号源输出的电压变化率不均匀,这会导致时钟信号的频率变化。

另外,时钟信号的传输线路也会引入时钟抖动。

传输线路中的噪声、干扰和信号反射都会导致时钟信号的抖动。

因此,在设计电子计数器时,我们需要考虑这些因素并采取相应的抑制措施。

为了抑制时钟抖动,可以采取以下技术手段:1. 优化时钟源的设计:选择具有稳定压摆率的高质量时钟源,或者在时钟源的输出端加入稳压电路,以减小压摆率不稳定性对时钟信号的影响。

此外,合理设计时钟信号的传输线路,减小信号传输中的噪声和干扰。

2. 使用锁相环技术:锁相环(PLL)是一种常用的时钟抖动抑制技术。

通过锁相环技术,将时钟信号与参考信号进行比较和调整,使输出时钟信号与参考信号保持相位和频率同步。

锁相环技术可以显著减小时钟抖动,并提高电子计数器的测量精度。

3. 采用数字滤波器:数字滤波器可以用于抑制时钟抖动对信号测量结果的影响。

通过对计数器输出信号进行滤波,可以去除由于时钟抖动引起的测量误差。

数字滤波器可以根据时钟抖动的频率特性进行设计,以最大程度地抑制时钟抖动对信号测量的干扰。

4. 优化电路布局和接地:合理的电路布局和接地设计可以有效减小时钟抖动。

通过减少电路板上的信号回流路径和电磁干扰源,可以降低时钟信号的噪声和抖动。

利用频域时钟抖动分析加快设计验证过程

利用频域时钟抖动分析加快设计验证过程

利用频域时钟抖动分析加快设计验证过程安捷伦科技 Akihiko Oginuma2007年6月简介随着数据速率的提高,时钟抖动分析的需求也在与日俱增。

在高速串行数据链路中,时钟抖动会影响发射机、传输线和接收机的数据抖动。

保证时钟质量的测量也在不断发展。

目前的重点是针对比特误码率,在时钟性能和系统性能之间建立直接联系。

我们将探讨参考时钟的作用和时钟抖动对数据抖动的影响,并讨论在E5052B信号源分析仪(SSA)上运行的Agilent E5001A精确时钟抖动分析应用软件所配备的全新测量技术。

该应用软件提供了前所未有的强大能力,可以对随机抖动(RJ)和周期抖动(PJ)分量超低RJ测量和实时抖动频谱分析,使您能够提高设计质量。

我们还将对新解决方案的实时测量功能进行讨论,这一功能能够加快设计验证过程。

参考时钟在高速串行应用中的作用图1是参考时钟的主要分量。

发射机通常将一组速率较低的并行信号转换成串行数据流。

信号经过一条包括多个背板和电缆的传输通道进行传送。

接收机通常会解释输入的串行数据,从中分离出时钟,再把串行数据重新转换成并行数据流。

在许多诸如此类的说明中,参考时钟更多地被视为一种分量但不是主要分量,而在高速串行数据系统中,我们必须承认参考时钟是一种主要分量。

通常,参考时钟的振荡速率远远低于数据速率,但它会在发射机中成倍增长。

发射机使用参考时钟来确定串行数据流中的逻辑变换定时。

发射的数据中包括参考时钟的特征。

在接收机中可能会出现两种不同的情况。

如果未分配参考时钟,则接收机会利用锁相环(PLL)从数据流中还原时钟――并利用该时钟定位采样时间点。

如果已分配参考时钟,则接收机会同时使用数据信号和参考时钟来定位采样点。

图1.参考时钟的作用时钟抖动对发射机数据抖动的影响参考时钟是最终的系统定时源。

它为发射机、已分配和未分配的时钟系统提供时基,而接收机的时钟恢复电路可以重现参考时钟特征。

现在我们将探讨时钟抖动如何在系统发射机中进行传输。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A = 10 log10(A1 + A2 + A3 + A4) RMS PHASE JITTER (radians) ≈ PHASE NOISE (dBc/Hz) A/10 2• 10 A/10 2•10 2 π fC
RMS JITTER (seconds) fC = CLOCK FREQUENCY
A/10 2•10
The World Leader in High-Performance Signal Processing Solutions
Performance Clocks: Demystifying Jitter
Low Jitter Clocks – a Review
The first ADI Web Seminar on Low Jitter Clocks was titled:
Time Jitter on clock results in higher Bit Error Rate (BER), poor call quality Spurious signals on clock result in Adjacent Channel Interference (ACI), dropped calls Signal Path Clock
For an oscillator
Fundamental power decreases As phase noise increases
fc
17
f
foffset
Calculating Time Jitter from Phase Noise
A= AREA = INTEGRATED PHASE NOISE POWER (dBc)
Random Time Jitter is characterized by a statistical distribution. Usually the distribution is assumed to be Gaussian (Normal).
distribution of many error samples
Time Jitter on clock degrades ability to make accurate measurements Time Jitter on clock degrades image in medical equipment
Wireless Infrastructure Radios
200 MHz
INTEGRATE OVER BW OF INTEREST –155 dBc
A
10k
100k
1M
10M
100M
1G
foffset
FREQUENCY OFFSET (Hz) = –155 + 83 = –72 dBc = 355 • 10–6 radians = 565 fs
A = –155 + 10 log10 2⋅ 108 – 0.01⋅ 106 RMS PHASE JITTER (radians) ≈ RMS JITTER (seconds) =
dV
error voltage
encode dt
13
“Low Jitter” refers to Jitter < 1 picosecond RMS
130 120 110 100 SNR in dB 90 80 70 60 50 40 30 1 10 100 1000 ADC Analog Input Frequency in MHz
10
Peak-to-Peak: A statistical reminder
mean
1σ 1σ 6σ
6.18σ bounds 99.9% of measurements
11
What effect does Time Jitter have on Data Converters?
FA
Digital Input
DAC
Analog Output (after LPF)
FA
FC
Sampling Clock
SNR
ADC
Analog Input
Digital Output SNR
For data converter applications, the answer is directly related to analog frequency FA. The actual clock rate FC is not as important!
actual edges occur at different times than expected
ideal signal
actual signal
7
edges should be here if occuring evenly in time
Time Jitter is Statistical
15
Phase Noise Power Spectrum of an Oscillator
Close-in Phase Noise
dBc/Hz
1 Hz BW
Broad-Band Phase Noise
fc
16
foffset
f
Phase Noise Power Spectrum of an Oscillator
14
16 bits 14 bits 12 bits 10 bits
FA 70-300MHz, SNR 60-80dB
Learning to speak a new language…
There is another phenomenon that many engineers are perhaps more familiar with than Time Jitter. Phase Noise Phase Noise is the Frequency Domain effect of Time Jitter. Time Jitter is the Time Domain effect of Phase Noise.
2 Outputs PLL Core DDS/DAC 48 LFCSP
/clocks
3
Low Time Jitter (Low Phase Noise) Clocks are Critical to Signal Processing Applications
Instrumentation
12
FC
ter and SNR
Clock jitter is the sample to sample variation in the encode clock Fullscale SNR (signal to noise ratio) is jitter limited by:
Broadband Infrastructure
Phase Noise on clocks result in data errors, lower throughput
4
AD9510 Clock Distribution IC
ADC
AD9510 provides clocks with sub-picosecond jitter to critical signal path components.
ideal signal
actual signal
edges should be here, but usually aren’t
8
RMS Jitter 1σ (one sigma – a standard deviation) is the same as the RMS
value for a Gaussian (or Normal) distribution
2
ADI’s Low Jitter / Low Phase Noise Clock Products
Clock Distribution
Clock Generation
8 Outputs PLL Core 64 LFCSP
5 Outputs PLL Core 48 LFCSP
5 Outputs 2 Inputs 48 LFCSP

A1
INTEGRATE OVER BW OF INTEREST
A2 A3 A4
10k
100k
1M
10M
100M
1G
foffset
18
FREQUENCY OFFSET (Hz)
Calculating Time Jitter from Broadband Phase Noise
PHASE NOISE (dBc/Hz) fc = 100 MHz CLOCK FREQUENCY
Clock to A-D Converters
ADC ADC ADC
Reference Clock
AD9510 Clock Distribution IC
Clock to Digital Chips
DDC or ASIC DUC or FPGA DAC
ADC, Analog-to-Digital Converters DAC, Digital-to-Analog Converters DDC, Digital Down Converters DUC, Digital Up Converters
Using Low Jitter Clocks to Enhance Converter Performance
(available at /onlineseminars) That seminar introduced the ADI low jitter clock family of ICs. The uses and advantages of these clock chips were presented. These clock chips address application spaces which require better than (less than)1ps of time jitter.
相关文档
最新文档