初中数学三角形经典测试题及解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学三角形经典测试题及解析

一、选择题

1.如图,长方形ABCD沿AE折叠,使D点落在BC边上的F点处,∠BAF=600,那么∠DAE等于()

A.45°B.30 °C.15°D.60°

【答案】C

【解析】

【分析】

先根据矩形的性质得到∠DAF=30°,再根据折叠的性质即可得到结果.

【详解】

解:∵ABCD是长方形,

∴∠BAD=90°,

∵∠BAF=60°,

∴∠DAF=30°,

∵长方形ABCD沿AE折叠,

∴△ADE≌△AFE,

∴∠DAE=∠EAF=1

2

∠DAF=15°.

故选C.

【点睛】

图形的折叠实际上相当于把折叠部分沿着折痕所在直线作轴对称,所以折叠前后的两个图形是全等三角形,重合的部分就是对应量.

2.如图,已知△ABC是等腰直角三角形,∠A=90°,BD是∠ABC的平分线,DE⊥BC于E,若BC=10cm,则△DEC的周长为()

A.8cm B.10cm C.12cm D.14cm

【答案】B

【解析】

【分析】

根据“AAS”证明ΔABD≌ΔEBD .得到AD=DE,AB=BE,根据等腰直角三角形的边的关系,求

【详解】

∵ BD 是∠ABC 的平分线,

∴ ∠ABD =∠EBD .

又∵ ∠A =∠DEB =90°,BD 是公共边,

∴ △ABD ≌△EBD (AAS),

∴ AD =ED ,AB =BE ,

∴ △DEC 的周长是DE +EC +DC

=AD +DC +EC

=AC +EC =AB +EC

=BE +EC =BC

=10 cm.

故选B.

【点睛】

本题考查了等腰直角三角形的性质,角平分线的定义,全等三角形的判定与性质. 掌握全等三角形的判定方法(即SSS 、SAS 、ASA 、AAS 和HL )和全等三角形的性质(即全等三角形的对应边相等、对应角相等)是解题的关键.

3.下列长度的三根小木棒能构成三角形的是( )

A .2cm ,3cm ,5cm

B .7cm ,4cm ,2cm

C .3cm ,4cm ,8cm

D .3cm ,3cm ,4cm

【答案】D

【解析】

【详解】

A .因为2+3=5,所以不能构成三角形,故A 错误;

B .因为2+4<6,所以不能构成三角形,故B 错误;

C .因为3+4<8,所以不能构成三角形,故C 错误;

D .因为3+3>4,所以能构成三角形,故D 正确.

故选D .

4.如图,在ABC V 中,AB AC =,30A ∠=︒,直线a b ∥,顶点C 在直线b 上,直线a 交AB 于点D ,交AC 与点E ,若1145∠=︒,则2∠的度数是( )

A .30°

B .35°

C .40°

D .45°

【答案】C

【分析】

先根据等腰三角形的性质和三角形内角和可得ACB ∠度数,由三角形外角的性质可得AED ∠的度数,再根据平行线的性质得同位角相等,即可求得2∠.

【详解】

∵AB AC =,且30A ∠=︒, ∴18030752

ACB ∠︒-︒=

=︒, 在ADE ∆中,∵1145A AED ∠∠∠=+=︒,

∴14514530115AED A ∠∠=︒-=︒-︒=︒,

∵//a b ,

∴2AED ACB ∠∠∠=+,

即21157540∠=︒-︒=︒,

故选:C .

【点睛】 本题考查综合等腰三角形的性质、三角形内角和定理、三角形外角的性质以及平行直线的性质等知识内容.等腰三角形的性质定理:等腰三角形两底角相等;三角形内角和定理:三角形三个内角的和等于180︒;三角形外角的性质:三角形的外角等于与它不相邻的两个内角之和;两直线平行,同位角相等.

5.如图,在Rt ABC ∆中,90BCA ∠=︒,CD 是高,BE 平分∠ABC 交CD 于点E ,EF ∥AC 交AB 于点F ,交BC 于点G .在结论:(1) EFD ∠=BCD ∠;(2) AD CD =;

(3)CG EG =;(4) BF BC =中,一定成立的有( )

A .1个

B .2个

C .3个

D .4个

【答案】B

【解析】

【分析】 根据两直线平行,同旁内角互补求出∠CGE=∠BCA=90°,然后根据等角的余角相等即可求出∠EFD=∠BCD ;只有△ABC 是等腰直角三角形时AD=CD ,CG=EG ;利用“角角边”证明△BCE 和△BFE 全等,然后根据全等三角形对应边相等可得BF=BC .

【详解】

∵EF ∥AC ,∠BCA=90°,

∴∠CGE=∠BCA=90°,

∴∠BCD+∠CEG=90°,

又∵CD 是高,

∴∠EFD+∠FED=90°,

∵∠CEG=∠FED (对顶角相等),

∴∠EFD=∠BCD ,故(1)正确;

只有∠A=45°,即△ABC 是等腰直角三角形时,AD=CD ,CG=EG 而立,故(2)(3)不一定成立,错误;

∵BE 平分∠ABC ,

∴∠EBC=∠EBF ,

在△BCE 和△BFE 中,

EFD BCD EBC EBF BE BE ∠∠∠∠⎧⎪⎨⎪⎩

===,

∴△BCE ≌△BFE (AAS ),

∴BF=BC ,故(4)正确,

综上所述,正确的有(1)(4)共2个.

故选:B .

【点睛】

本题主要考查了角平分线的性质,全等三角形的判定与性质,直角三角形的性质,等腰直角三角形的性质,综合题,但难度不大,熟记性质是解题的关键.

6.如图,在平面直角坐标系中,等腰直角三角形ABC 的顶点A 、B 分别在x 轴、y 轴的正半轴上,90ABC ∠=︒,CA x ⊥轴,点C 在函数

()0k y x x

=

>的图象上,若1AB =,则k 的值为( ) A .1

B 2

C 2

D .2

【答案】A

【解析】

【分析】 根据题意可以求得 OA 和 AC 的长,从而可以求得点 C 的坐标,进而求得 k 的

值,本题得以解决.

相关文档
最新文档