初中数学三角形经典测试题及解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学三角形经典测试题及解析
一、选择题
1.如图,长方形ABCD沿AE折叠,使D点落在BC边上的F点处,∠BAF=600,那么∠DAE等于()
A.45°B.30 °C.15°D.60°
【答案】C
【解析】
【分析】
先根据矩形的性质得到∠DAF=30°,再根据折叠的性质即可得到结果.
【详解】
解:∵ABCD是长方形,
∴∠BAD=90°,
∵∠BAF=60°,
∴∠DAF=30°,
∵长方形ABCD沿AE折叠,
∴△ADE≌△AFE,
∴∠DAE=∠EAF=1
2
∠DAF=15°.
故选C.
【点睛】
图形的折叠实际上相当于把折叠部分沿着折痕所在直线作轴对称,所以折叠前后的两个图形是全等三角形,重合的部分就是对应量.
2.如图,已知△ABC是等腰直角三角形,∠A=90°,BD是∠ABC的平分线,DE⊥BC于E,若BC=10cm,则△DEC的周长为()
A.8cm B.10cm C.12cm D.14cm
【答案】B
【解析】
【分析】
根据“AAS”证明ΔABD≌ΔEBD .得到AD=DE,AB=BE,根据等腰直角三角形的边的关系,求
【详解】
∵ BD 是∠ABC 的平分线,
∴ ∠ABD =∠EBD .
又∵ ∠A =∠DEB =90°,BD 是公共边,
∴ △ABD ≌△EBD (AAS),
∴ AD =ED ,AB =BE ,
∴ △DEC 的周长是DE +EC +DC
=AD +DC +EC
=AC +EC =AB +EC
=BE +EC =BC
=10 cm.
故选B.
【点睛】
本题考查了等腰直角三角形的性质,角平分线的定义,全等三角形的判定与性质. 掌握全等三角形的判定方法(即SSS 、SAS 、ASA 、AAS 和HL )和全等三角形的性质(即全等三角形的对应边相等、对应角相等)是解题的关键.
3.下列长度的三根小木棒能构成三角形的是( )
A .2cm ,3cm ,5cm
B .7cm ,4cm ,2cm
C .3cm ,4cm ,8cm
D .3cm ,3cm ,4cm
【答案】D
【解析】
【详解】
A .因为2+3=5,所以不能构成三角形,故A 错误;
B .因为2+4<6,所以不能构成三角形,故B 错误;
C .因为3+4<8,所以不能构成三角形,故C 错误;
D .因为3+3>4,所以能构成三角形,故D 正确.
故选D .
4.如图,在ABC V 中,AB AC =,30A ∠=︒,直线a b ∥,顶点C 在直线b 上,直线a 交AB 于点D ,交AC 与点E ,若1145∠=︒,则2∠的度数是( )
A .30°
B .35°
C .40°
D .45°
【答案】C
【分析】
先根据等腰三角形的性质和三角形内角和可得ACB ∠度数,由三角形外角的性质可得AED ∠的度数,再根据平行线的性质得同位角相等,即可求得2∠.
【详解】
∵AB AC =,且30A ∠=︒, ∴18030752
ACB ∠︒-︒=
=︒, 在ADE ∆中,∵1145A AED ∠∠∠=+=︒,
∴14514530115AED A ∠∠=︒-=︒-︒=︒,
∵//a b ,
∴2AED ACB ∠∠∠=+,
即21157540∠=︒-︒=︒,
故选:C .
【点睛】 本题考查综合等腰三角形的性质、三角形内角和定理、三角形外角的性质以及平行直线的性质等知识内容.等腰三角形的性质定理:等腰三角形两底角相等;三角形内角和定理:三角形三个内角的和等于180︒;三角形外角的性质:三角形的外角等于与它不相邻的两个内角之和;两直线平行,同位角相等.
5.如图,在Rt ABC ∆中,90BCA ∠=︒,CD 是高,BE 平分∠ABC 交CD 于点E ,EF ∥AC 交AB 于点F ,交BC 于点G .在结论:(1) EFD ∠=BCD ∠;(2) AD CD =;
(3)CG EG =;(4) BF BC =中,一定成立的有( )
A .1个
B .2个
C .3个
D .4个
【答案】B
【解析】
【分析】 根据两直线平行,同旁内角互补求出∠CGE=∠BCA=90°,然后根据等角的余角相等即可求出∠EFD=∠BCD ;只有△ABC 是等腰直角三角形时AD=CD ,CG=EG ;利用“角角边”证明△BCE 和△BFE 全等,然后根据全等三角形对应边相等可得BF=BC .
【详解】
∵EF ∥AC ,∠BCA=90°,
∴∠CGE=∠BCA=90°,
∴∠BCD+∠CEG=90°,
又∵CD 是高,
∴∠EFD+∠FED=90°,
∵∠CEG=∠FED (对顶角相等),
∴∠EFD=∠BCD ,故(1)正确;
只有∠A=45°,即△ABC 是等腰直角三角形时,AD=CD ,CG=EG 而立,故(2)(3)不一定成立,错误;
∵BE 平分∠ABC ,
∴∠EBC=∠EBF ,
在△BCE 和△BFE 中,
EFD BCD EBC EBF BE BE ∠∠∠∠⎧⎪⎨⎪⎩
===,
∴△BCE ≌△BFE (AAS ),
∴BF=BC ,故(4)正确,
综上所述,正确的有(1)(4)共2个.
故选:B .
【点睛】
本题主要考查了角平分线的性质,全等三角形的判定与性质,直角三角形的性质,等腰直角三角形的性质,综合题,但难度不大,熟记性质是解题的关键.
6.如图,在平面直角坐标系中,等腰直角三角形ABC 的顶点A 、B 分别在x 轴、y 轴的正半轴上,90ABC ∠=︒,CA x ⊥轴,点C 在函数
()0k y x x
=
>的图象上,若1AB =,则k 的值为( ) A .1
B 2
C 2
D .2
【答案】A
【解析】
【分析】 根据题意可以求得 OA 和 AC 的长,从而可以求得点 C 的坐标,进而求得 k 的
值,本题得以解决.