直线与方程基础练习题
(完整版)直线与方程练习题及答案详解
直线与方程练习题及答案详解一、选择题1.设直线0ax by c ++=的倾斜角为α,且sin cos 0αα+=,则,a b 满足( ) A .1=+b aB .1=-b aC .0=+b aD .0=-b a2.过点(1,3)P -且垂直于直线032=+-y x 的直线方程为( )A .012=-+y xB .052=-+y xC .052=-+y xD .072=+-y x 3.已知过点(2,)A m -和(,4)B m 的直线与直线012=-+y x 平行, 则m 的值为( )A .0B .8-C .2D .104.已知0,0ab bc <<,则直线ax by c +=通过( ) A .第一、二、三象限 B .第一、二、四象限C .第一、三、四象限D .第二、三、四象限5.直线1x =的倾斜角和斜率分别是( )A .045,1 B .0135,1- C .090,不存在 D .0180,不存在6.若方程014)()32(22=+--+-+m y m m x m m 表示一条直线,则实数m 满足( ) A .0≠m B .23-≠m C .1≠m D .1≠m ,23-≠m ,0≠m 二、填空题1.点(1,1)P - 到直线10x y -+=的距离是________________.2.已知直线,32:1+=x y l 若2l 与1l 关于y 轴对称,则2l 的方程为__________;若3l 与1l 关于x 轴对称,则3l 的方程为_________;若4l 与1l 关于x y =对称,则4l 的方程为___________; 3.若原点在直线l 上的射影为)1,2(-,则l 的方程为____________________。
4.点(,)P x y 在直线40x y +-=上,则22x y +的最小值是________________. 5.直线l 过原点且平分ABCD 的面积,若平行四边形的两个顶点为(1,4),(5,0)B D ,则直线l 的方程为________________。
高中数学基础训练测试题
直线与方程(1)一、选择题1.设直线0ax by c ++=的倾斜角为a ,且sin cos 0a a +=, 则,a b 满足( ) A .1=+b a B .1=-b aC .0=+b aD .0=-b a2.过点(1,3)P -且垂直于直线032=+-y x 的直线方程为( ) A .012=-+y x B .052=-+y x C .052=-+y x D .072=+-y x3.已知过点(2,)A m -和(,4)B m 的直线与直线012=-+y x 平行, 则m 的值为( )A .0B .8-C .2D .104.已知0,0ab bc <<,则直线ax by c +=通过( ) A .第一、二、三象限 B .第一、二、四象限C .第一、三、四象限D .第二、三、四象限 5.直线1x =的倾斜角和斜率分别是( ) A .045,1B .0135,1-C .090,不存在 D .0180,不存在6.若方程014)()32(22=+--+-+m y m m x m m 表示一条直线,则实数m 满足( )A .0¹mB .23-¹mC .1¹mD .1¹m ,23-¹m ,0¹m二、填空题1.点(1,1)P - 到直线10x y -+=的距离是________________. 2.已知直线,32:1+=x y l 若2l 与1l 关于y 轴对称,则2l 的方程为__________; 若3l 与1l 关于x 轴对称,则3l 的方程为_________; 若4l 与1l 关于x y =对称,则4l 的方程为___________; 3. 若原点在直线l 上的射影为)1,2(-,则l 的方程为____________________。
4.点(,)P x y 在直线40x y +-=上,则22x y +的最小值是________________. 5.直线l 过原点且平分ABCD 的面积,若平行四边形的两个顶点为(1,4),(5,0)B D ,则直线l 的方程为________________。
完整版)直线与方程测试题及答案解析
完整版)直线与方程测试题及答案解析1.若过点(1,2)和(4,5)的直线的倾斜角是多少?A。
30° B。
45° C。
60° D。
90°2.如果三个点A(3,1)。
B(-2,b)。
C(8,11)在同一直线上,那么实数b等于多少?A。
2 B。
3 C。
9 D。
-93.过点(1,2),且倾斜角为30°的直线方程是什么?A。
y + 2 = (3/√3)(x + 1) B。
y - 2 = 3/2(x - 1) C。
3x - 3y + 6 - 3 = 0 D。
3x - y + 2 - 3 = 04.直线3x - 2y + 5 = 0和直线x + 3y + 10 = 0的位置关系是?A。
相交 B。
平行 C。
重合 D。
异面5.直线mx - y + 2m + 1 = 0经过一定点,则该点的坐标是多少?A。
(-2,1) B。
(2,1) C。
(1,-2) D。
(1,2)6.已知ab < 0,bc < 0,则直线ax + by + c = 0通过哪些象限?A。
第一、二、三象限 B。
第一、二、四象限 C。
第一、三、四象限 D。
第二、三、四象限7.点P(2,5)到直线y = -3x的距离d等于多少?A。
√(23/2) B。
√(2/23) C。
√(23+5) D。
√(22)8.与直线y = -2x + 3平行,且与直线y = 3x + 4交于x轴上的同一点的直线方程是什么?A。
y = -2x + 4 B。
y = (1/2)x + 4 C。
y = -2x - 3 D。
y = (2/3)x - 39.如果直线y = ax - 2和直线y = (a+2)x + 1互相垂直,则a 等于多少?A。
2 B。
1 C。
-1 D。
-210.已知等腰直角三角形ABC的斜边所在的直线是3x - y + 2 = 0,直角顶点是C(3,-2),则两条直角边AC,BC的方程是什么?A。
3x - y + 5 = 0.x + 2y - 7 = 0 B。
高一数学必修2《第三章_直线与方程》基础测验(含答案)
小太阳英教中心高一数学《第三章 直线与方程》基础测验一、选择题(共10小题,每小题4.5分,共45分)1、若A (-2,3),B (3,-2),C (m ,21)三点共线,则m 的值为( ) A 、2 B 、-2 C 、21 D 、21-2、直线01025=--y x 与坐标轴围成的三角形的面积为( )A 、-5B 、5C 、-10D 、103、若直线04)2(=-+-y x m 的倾斜角是钝角,则m 的取值范围是( )A 、2- mB 、2 mC 、2- mD 、2 m4、如果直线04)2()52(=+-++y a x a 与直线01)3()2(=-++-y a x a 相互垂直,则a 的值等于( )A 、2B 、-2C 、2或-2D 、0或2或-25、过A (4,1)且在两坐标轴上的截距相等的直线方程是 ( )A 、05=-+y xB 、05=--y xC 、0405=-=-+y x y x 或D 、0405=+=--y x y x 或6、若A (-1,2),B (0,-1),直线A B ∥l 且l 过点 C (-2,3),则直线l 的方程为( )A 、033=-+y xB 、033=-+y xC 、033=++y xD 、033=+-y x7、点(-4,3)与直线024301032=-+=+-y x y x 和的交点的距离是( )A 、5B 、5C 、52D 、108、已知第一象限的点(a ,2)到直线03=+-y x 的距离为1,则a 为( )A 、2B 、22-C 、12+D 、12-9、若直线l :0433=-+-=y x kx y 和直线的交点位于第二象限,则直线l 的倾斜角的取值范围是( )A 、【ππ,2)B 、(ππ,2)C 、(32,2ππ)D 、(ππ,3) 10、两点A (m+2,n+2)和B (n-m ,-n )关于直线1134=+y x 对称,则m,n 的值为( )A 、m=-1,n=2B 、m=4,n=-2C 、m=2,n=4D 、m=4,n=2二、填空题(共6空,每空4分,共24分)11、若直线l与过(3-,9)与(326,-15)两点的直线平行,则l的倾斜角是0。
直线与方程 经典练习题
直线与方程复习题
1. 若直线过点()()
32421+,,,
则此直线的倾斜角是 2. 若直线06:1=++ay x l 与()0232:2=++-a y x a l 平行,则21l l 与的距离为
3. 不论a 为何实数,直线()()07123=+-++y a x a 恒过第______象限
4. 已知AB C ∆的三个顶点坐标为()()()32-C 2-1B 42A ,,,,,
,则BC 边上的高AD 所在直线的斜率为
5. 已知直线1l 经过点()()2,13A -m B m ,,直线2l 经过点()()22-D 21
C +m ,,, (1)当6=m 时,试判断直线21l l 与的位置关系
(2)若21l l ⊥,求实数m 的值
6. 直线032=+-y x 关于直线02=+-y x 对称的直线方程是
7. 已知()()1log 2+=x x f ,且0>>>c b a ,则
()()()c c f b b f a a f ,的大小关系 8. 函数84122+-++=x x x y 的最小值是
9. 根据下列条件求直线方程
(1)过点()4-5-A ,
作一直线l ,使它与两坐标轴相交且与两轴所围成的三角形面积为5 (2)经过直线0323:0532:21=--=-+y x l y x l ,的交点且平行于直线032=-+y x 的直线方程是
10. 已知直线33:+=x y l ,求:
(1)点()54P ,
关于l 对称的点的坐标 (2)直线l 关于点()23A ,
的对称直线的方程。
直线与直线方程-练习
索引
1.直线 x+ 3y+3=0 的倾斜角 α 为( D )
A.30° C.120°
B.60° D.150°
解析 由已知得斜率 k=- 33=tan α,
又倾斜角 0°≤α<180°,所以 α=150°.
1 2 3 4 5 6 7 8 9 10
2.直线ax2-by2=1 在 y 轴上的截距是( B )
1 2 3 4 5 6 7 8 9 10
(2)若直线l在x轴、y轴上的截距均不为0,点P(a,b)在直线l上,求3a+3b的最 小值. 解 由题意及(1)得l的方程为x+y-3=0, ∵点P(a,b)在直线l上, ∴a+b=3, ∴3a+3b≥2 3a·3b=2 3a+b=6 3, 当且仅当 a=b=32时等号成立.
∴3a+3b 的最小值是 6 3.
1 2 3 4 5 6 7 8 9 10
5.(多选)若方程(2m2+m-3)x+(m2-m)y-4m+1=0表示一条直线,则实数m
可以取下列哪些值( ACD )
A.0
B.1
C.2
D.3
解析 因为方程(2m2+m-3)x+(m2-m)y-4m+1=0表示一条直线,
所以2m2+m-3=0,m2-m=0不能同时成立,
两式同时成立时解得m=1,所以m≠1.故选ACD.
7.过点(1,3)且在x轴上的截距为2的直线方程是__3_x_+__y_-__6_=__0. 解析 由题意知直线过点(2,0)和点(1,3),由两点式可得3y--00=x1- -22, 整理得 3x+y-6=0.
1 2 3 4 5 6 7 8 9 10
8.若直线(2t-3)x+y+6=0不经过第一象限,则t的取值范围为___32_,__+__∞__ . 解析 方程可化为 y=(3-2t)x-6,因为直线不经过第一象限, 所以 3-2t≤0,得 t≥32.
直线与方程练习题
直线与方程练习题一、填空题1. 直线斜率为2,过点(-1, 3),则直线方程为__________。
2. 直线过点(2, -5)和点(4, 1),则直线方程为__________。
3. 直线过点(-3, 4)且与x轴垂直,则直线方程为__________。
4. 直线过点(0, 7)且平行于y轴,则直线方程为__________。
5. 直线过点(3, -2)且平行于直线2x + 3y = 1,则直线方程为__________。
二、选择题1. 斜率为3,过点(1, 2)的直线方程可能是:A. y = 3x + 1B. y = 3x - 1C. y = -3x + 1D. y = -3x - 12. 过原点(0, 0)且垂直于直线2x + 3y = 6的直线方程可能是:A. x = 2B. x = -2C. y = 2D. y = -23. 过点(2, -5)且平行于直线3x - 2y = 9的直线方程可能是:A. 3x - 2y = 19B. 3x - 2y = -19C. 3x - 2y = 4D. 3x - 2y = -44. 过点(3, 4)且平行于x轴的直线方程可能是:A. x = 3B. x = -3C. y = 3D. y = -35. 过点(-2, 1)且与直线4x + 5y = 10垂直的直线方程可能是:A. 5x - 4y = 10B. 5x - 4y = -10C. 4x + 5y = 2D. 4x + 5y = -2三、应用题1. 设直线L过点(1, 2)和点(4, 7),求直线L的斜率和截距,并写出直线L的方程。
2. 已知直线L过点(-3, 5)且与x轴垂直,求直线L的方程。
3. 直线L过点(1, -4)且平行于直线2x - 3y = 6,求直线L的方程。
4. 直线L过点(-2, -1)且平行于y轴,求直线L的方程。
5. 直线L过点(3, 2)且与直线3x - 4y = 5垂直,求直线L的方程。
直线与方程习题(带答案)
直线与方程习题(带答案)直线与方程题(带答案)一、选择题1.若直线x=1的倾斜角为α,则α().A。
等于0B。
等于π/2C。
等于πD。
不存在斜率2.图中的直线l1,l2,l3的斜率分别为k1,k2,k3,则().A。
k1<k2<k3B。
k3<k1<k2C。
k3<k2<k1D。
k1<k3<k23.已知直线l1经过两点(-1,-2)、(-1,4),直线l2经过两点(2,1)、(x,6),且l1∥l2,则x=().A。
2B。
-2C。
4D。
14.已知直线l与过点M(-3,2),N(2,-3)的直线垂直,则直线l的倾斜角是().A。
π/3B。
2π/3C。
π/4D。
3π/45.如果AC<0,且BC<0,那么直线Ax+By+C=0不通过().A。
第一象限B。
第二象限C。
第三象限D。
第四象限6.设A,B是x轴上的两点,点P的横坐标为2,且|PA|=|PB|,若直线PA的方程为x-y+1=0,则直线PB的方程是().A。
x+y-5=0B。
2x-y-1=0C。
2y-x-4=0D。
2x+y-7=07.过两直线l1:x-3y+4=0和l2:2x+y+5=0的交点和原点的直线方程为().A。
19x-9y=0,19y=0B。
9x+19y=0C。
19x-3y=0D。
3x+7y=08.直线l1:x+a2y+6=0和直线l2:(a-2)x+3ay+2a=0没有公共点,则a的值是().A。
3B。
-3C。
1D。
-19.将直线l沿y轴的负方向平移a(a>0)个单位,再沿x轴正方向平移a+1个单位得直线l',此时直线l'与l重合,则直线l'的斜率为().A。
a/(a+1)B。
-a/(a+1)C。
(a+1)/aD。
-(a+1)/a10.点(4,5)关于直线5x+4y+21=0的对称点是().A。
(-6,8)B。
(6,-8)C。
(-6,-8)D。
(6,8)二、填空题11.已知直线l1的倾斜角α1=15°,直线l1与l2的交点为A,把直线l2绕着点A按逆时针方向旋转到和直线l1重合时所转的最小正角为60°,则直线l2的斜率k2的值为tan(75°)或2+√3.12.若三点A(-2,3),B(3,-2),C(1,m)共线,则m的值为-1.13.已知长方形ABCD的三个顶点的坐标分别为A(0,1),B(1,0),C(3,2),求第四个顶点D的坐标为D(2,3)。
直线与直线方程复习试题
直线与直线方程复习试题知识网络①直线得倾斜角:01801、直线得倾斜角②直线得斜率:k tan90③已知两点求斜率:k y2y1x2x1x2x1①平行:l1//l2,则k1k2或k1、k2不存在2、两直线得平行与垂直②垂直:l1l2,则k1k21或k10且k2不存在①点斜式:y y0kx x0②斜截式:y kx b直线方程③两点式:y y1x x13、直线得五种方程y2y1x2x1④截距式:x y1a b⑤一般式:Ax By C0(A、B不可以同时为零)4、两直线得交点坐标联立两直线方程,求交点坐标①两点间距离:P1P2x2x12y2y125、距离公式②点P0x0、y0到直线l:Ax By C0距离d课堂学习题型1:直线得倾斜角与斜率Ax0 By0 C A2B2倾斜角00,909090,180取值00,不存在,0斜率增减性/递加/递加考点1:直线得倾斜角例、过点M(2,a)与N(a,4)得直线得斜率等于1,则a得值为()1A、1B、4C、1或3D、1或4直线与直线方程复习试题变式1:已知点A(1,3)、B(1,3 3),则直线AB 得倾斜角就是()A 、60B、30C、120D、150变式2:已知两点A 3,2 ,B 4,1 ,求过点C0,1 得直线l 与线段AB 有公共点求直线l 得斜率k 得取值范围考点2:直线得斜率及应用斜率公式ky 2y 1与两点次序没关,即两点得横纵坐标在公式中得前后次序同样;x 2 x 1斜率变化分两段,就是分界线,碰到斜率要特别慎重2例1:已知R ,则直线xsin3y10得倾斜角得取值范围就是()A 、0,30B、150,180 C、0,30 150,180D、30,150例2、三点共线——若三点A2,2、Ba,0、C0,b,ab0 共线,则11 得值等于a b变式2:若A2,3、B3,2、C1三点在同向来线上,则m 得值为(),m2A 、2B 、21D 、1C 、22考点3:两条直线得平行与垂直关于斜率都存在且不重合得两条直线 l 1、l 2,l 1//l 2 k 1 k 2,l 1 l 2 k 1k 2 1。
2024届高考数学复习:精选历年真题、好题专项(直线与方程)练习(附答案)
2024届高考数学复习:精选历年真题、好题专项(直线与方程)练习一. 基础小题练透篇1.过点P (3 ,-23 )且倾斜角为135°的直线方程为( ) A .3x -y -43 =0 B .x -y -3 =0 C .x +y -3 =0 D .x +y +3 =02.直线l :x +3 y +1=0的倾斜角的大小为( ) A .30° B .60° C .120° D .150°3.[2023ꞏ河北示范性高中开学考]“λ=3”是“直线(2λ-3)x +(λ+1)y +3=0与直线(λ+1)x -λy +3=0互相垂直”的( )A .充分不必要条件B .充要条件C .必要不充分条件D .既不充分也不必要条件 4.[2023ꞏ广东韶关月考]过点M ()-1,-2 ,在两坐标轴上截距相等的直线方程为( ) A .x +y +3=0B .2x -y =0或x +y +3=0C .y =x -1D .x +y +3=0或y =x -15.[2023ꞏ湖北省质量检测]在平面直角坐标系中,某菱形的一组对边所在的直线方程分别为x +2y +1=0和x +2y +3=0,另一组对边所在的直线方程分别为3x -4y +c 1=0和3x -4y +c 2=0,则|c 1-c 2|=( )A .23B .25C .2D .46.[2023ꞏ杭州市长河高级中学期中]已知直线l 过点P ()2,4 ,且在y 轴上的截距是在x 轴上的截距的两倍,则直线l 的方程为( )A .2x -y =0B .2x +y -8=0C .2x -y =0或x +2y -10=0D .2x -y =0或2x +y -8=07.经过两条直线2x +3y +1=0和x -3y +4=0的交点,并且垂直于直线3x +4y -7=0的直线方程为________.8.[2023ꞏ宁夏银川月考]已知直线3x +4y +3=0与直线6x +my -14=0平行,则它们之间的距离是________.二. 能力小题提升篇1.[2023ꞏ江苏泰州调研]已知直线l :x +()a -1 y +2=0,l 2:3 bx +y =0,且l 1⊥l 2,则a 2+b 2的最小值为( )A .14B .12C .22 D .13162.[2023ꞏ河北邢台市月考]下列四个命题中,正确的是( ) A .直线3x +y +2=0在y 轴上的截距为2 B .直线y =0的倾斜角和斜率均存在C .若两直线的斜率k 1,k 2满足k 1=k 2,则两直线互相平行D .若两直线的倾斜角相等,则它们的斜率也一定相等3.[2023ꞏ福建宁德质量检测]已知点A (-2,1)和点B 关于直线l :x +y -1=0对称,斜率为k 的直线m 过点A 交l 于点C .若△ABC 的面积为2,则实数k 的值为( )A .3或13 B .0C .13 D .34.[2023ꞏ云南大理检测]设m ∈R ,过定点A 的动直线x +my =0和过定点B 的动直线mx -y -m +3=0交于点P (x ,y )(点P 与点A ,B 不重合),则△P AB 面积的最大值是( )A .25B .5C .52 D .55.[2023ꞏ重庆黔江检测]在平面直角坐标系中,△ABC 的一个顶点是A (-3,1),∠B ,∠C 的平分线所在直线的方程分别为x =0,y =x ,则直线BC 的方程为________.6.[2023ꞏ云南楚雄期中]已知平面上一点M (5,0),若直线l 上存在点P ,使|PM |=4,则称该直线为点M 的“相关直线”,下列直线中是点M 的“相关直线”的是________.(填序号)①y =x +1;②y =2;③4x -3y =0;④2x -y +1=0.三. 高考小题重现篇1.[2020ꞏ全国卷Ⅱ]若过点(2,1)的圆与两坐标轴都相切,则圆心到直线2x -y -3=0的距离为( )A .55 B .255 C .355 D .4552.[2020ꞏ全国卷Ⅲ]点(0,-1)到直线y =k (x +1)距离的最大值为( ) A .1 B .2 C .3 D .2 3.[北京卷]在平面直角坐标系中,记d 为点P (cos θ,sin θ)到直线x -my -2=0的距离.当θ,m 变化时,d 的最大值为( )A .1B .2C .3D .44.[2019ꞏ江苏卷]在平面直角坐标系xOy 中,P 是曲线y =x +4x (x >0)上的一个动点,则点P 到直线x +y =0的距离的最小值是________.四. 经典大题强化篇1.[2023ꞏ武汉调研]已知直线l 经过直线2x +y -5=0与x -2y =0的交点. (1)若点A (5,0)到l 的距离为3,求l 的方程;(2)求点A (5,0)到l 的距离的最大值.2.在△ABC 中,BC 边上的高所在直线的方程为x -2y +1=0,∠A 的平分线所在直线的方程为y =0,若点B 的坐标为(1,2),求:(1)点A 和点C 的坐标; (2)△ABC 的面积.参考答案一 基础小题练透篇1.答案:D答案解析:因为直线的倾斜角为135°,所以直线的斜率为k =tan 135°=-1, 所以直线方程为y +23 =-(x -3 ),即x +y +3 =0. 2.答案:D答案解析:由l :x +3 y +1=0可得y =-33 x -33 ,所以直线l 的斜率为k =-33 ,设直线l 的倾斜角为α,则tan α=-33,因为0°≤α<180°,所以α=150°. 3.答案:A答案解析:∵直线(2λ-3)x +(λ+1)y +3=0与直线(λ+1)x -λy +3=0互相垂直,∴(2λ-3)(λ+1)-λ(λ+1)=0,∴λ=3或-1, 而“λ=3”是“λ=3或-1”的充分不必要条件,∴“λ=3”是“直线(2λ-3)x +(λ+1)y +3=0与直线(λ+1)x -λy +3=0互相垂直”的充分不必要条件,故选A. 4.答案:B答案解析:当所求直线不过原点时,设所求直线的方程为x +y =a , 因为直线过点M ()-1,-2 ,代入可得a =-3,即x +y +3=0; 当所求直线过原点时,设直线方程为y =kx ,因为直线过点M ()-1,-2 ,代入可得k =2,即2x -y =0, 综上可得,所求直线的方程为2x -y =0或x +y +3=0. 故选B. 5.答案:B答案解析:设直线x +2y +1=0与直线3x -4y +c 2=0的交点为A ,则⎩⎪⎨⎪⎧x +2y +1=03x -4y +c 2=0 ,解得⎩⎪⎨⎪⎧x =-c 2+25y =c 2-310,故A (-c 2+25 ,c 2-310 ),同理设直线x +2y +1=0与直线3x -4y +c 1=0的交点为B ,则B (-c 1+25 ,c 1-310),设直线x +2y +3=0与直线3x -4y +c 1=0的交点为C ,则C (-c 1+65 ,c 1-910),设直线x +2y +3=0与直线3x -4y +c 2=0的交点为D ,则D (-c 2+65 ,c 2-910),由菱形的性质可知BD ⊥AC ,且BD ,AC 的斜率均存在,所以k BD ·k AC =-1,则c 1-310-c 2-910-c 1+25-⎝ ⎛⎭⎪⎫-c 2+65 ·c 2-310-c 1-910-c 2+25-⎝ ⎛⎭⎪⎫-c 1+65 =-1,即36-(c 2-c 1)24[]16-(c 2-c 1)2 =-1,解得|c 1-c 2|=25 .6.答案:D答案解析:若直线l 经过原点,满足条件,可得直线l 的方程为y =2x ,即2x -y =0;若直线l 不经过原点,可设直线l 的方程为x a +y2a=1()a ≠0 ,把点P ()2,4 代入可得2a +42a =1,解得a =4,∴直线l 的方程为x 4 +y8=1,即2x +y -8=0,综上可得直线l 的方程为2x -y =0或2x +y -8=0. 故选D.7.答案:4x -3y +9=0答案解析:方法一 由方程组⎩⎪⎨⎪⎧2x +3y +1=0,x -3y +4=0, 解得⎩⎪⎨⎪⎧x =-53,y =79即交点为(-53 ,79),∵所求直线与直线3x +4y -7=0垂直,∴所求直线的斜率为k =43.由点斜式得所求直线方程为y -79 =43 (x +53),即4x -3y +9=0.方法二 由垂直关系可设所求直线方程为4x -3y +m =0,由方程组⎩⎪⎨⎪⎧2x +3y +1=0,x -3y +4=0, 可解得交点为(-53 ,79 ),代入4x -3y +m =0,得m =9,故所求直线方程为4x -3y +9=0. 方法三 由题意可设所求直线方程为(2x +3y +1)+λ(x -3y +4)=0,即(2+λ)x +(3-3λ)y +1+4λ=0 ① 又∵所求直线与直线3x +4y -7=0垂直,∴3(2+λ)+4(3-3λ)=0,∴λ=2,代入①式得所求直线方程为4x -3y +9=0.8.答案:2答案解析:∵直线3x +4y +3=0与直线6x +my -14=0平行,∴m =8,6x +8y -14=0可化为3x +4y -7=0.∴它们之间的距离为|3-(-7)|32+42=2.二 能力小题提升篇1.答案:A答案解析:l 1⊥l 2,则3 b +a -1=0,∴a =1-3 b , 所以a 2+b 2=()1-3b 2+b 2=4b 2-23 b +1,二次函数的抛物线的对称轴为b =--232×4 =34,当b =34 时,a 2+b 2取最小值14. 故选A. 2.答案:B答案解析:对于直线3x +y +2=0,令x =0得y =-2,所以直线3x +y +2=0在y 轴上的截距为-2,故A 错误;直线y =0的倾斜角为0,斜率为0,存在,故B 正确;若两直线的斜率k 1,k 2满足k 1=k 2,则两直线互相平行或重合,所以C 错误;若两直线的倾斜角为90°,则它们的斜率不存在,所以D 错误.故选B. 3.答案:B答案解析:设点B (x ,y ),则⎩⎪⎨⎪⎧y -1x +2=1,x -22+y +12-1=0,解得⎩⎪⎨⎪⎧x =0,y =3, 则B (0,3).由已知可得直线m 的方程为y -1=k (x +2),与方程x +y -1=0联立, 解得x =-2k k +1,y =3k +1k +1 ,则C ⎝ ⎛⎭⎪⎫-2k k +1,3k +1k +1 . 由已知可得直线AB 的方程为y -1=x +2,即y =x +3,且|AB |=22 , 则点C 到直线AB 的距离d =⎪⎪⎪⎪⎪⎪-2k k +1-3k +1k +1+32 =|2-2k |2|k +1|, 所以S △ABC =12 ×22 ·|2-2k |2|k +1|=2,即|1-k |=|k +1|(k ≠-1),解得k =0. 4.答案:C答案解析:动直线x +my =0,令y =0,解得x =0,因此此直线过定点A (0,0). 动直线mx -y -m +3=0,即m (x -1)+3-y =0,令x -1=0,3-y =0,解得x =1,y =3,因此此直线过定点B (1,3).当m =0时,两条直线分别为x =0,y =3,交点P (0,3),S △PAB =12 ×1×3=32.当m ≠0时,两条直线的斜率分别为-1m ,m ,则-1m·m =-1,因此两条直线相互垂直.设|PA |=a ,|PB |=b ,∵|AB |=12+32 =10 ,∴a 2+b 2=10.又a 2+b 2≥2ab ,∴ab ≤5,当且仅当a =b =5 时等号成立.∴S △PAB =12 |PA |·|PB |=12 ab ≤52.综上,△PAB 的面积最大值是52.5.答案:2x -y -5=0答案解析:因为∠B ,∠C 的平分线所在直线的方程分别为x =0,y =x ,所以直线AB 与直线BC 关于直线x =0对称,直线AC 与直线BC 关于直线y =x 对称.则点A (-3,1)关于直线x =0对称的点A ′(3,1)在直线BC 上,点A (-3,1)关于直线y =x 对称的点A″(1,-3)也在直线BC上,所以由两点式得直线BC的方程为y+31+3=x-13-1,即y=2x-5.6.答案:②③答案解析:①点M到直线y=x+1的距离d=|5-0+1|12+(-1)2=32>4,即点M与该直线上的点的距离的最小值大于4,所以该直线上不存在点P,使|PM|=4成立,故①不是点M 的“相关直线”.②点M到直线y=2的距离d=|0-2|=2<4,即点M与该直线上的点的距离的最小值小于4,所以该直线上存在点P,使|PM|=4成立,故②是点M的“相关直线”.③点M到直线4x-3y=0的距离d=|4×5-3×0|42+(-3)2=4,即点M与该直线上的点的距离的最小值等于4,所以该直线上存在点P,使|PM|=4成立,故③是点M的“相关直线”.④点M到直线2x-y+1=0的距离d=|2×5-0+1|22+(-1)2=1155>4,即点M与该直线上的点的距离的最小值大于4,所以该直线上不存在点P,使|PM|=4成立,故④不是点M的“相关直线”.三 高考小题重现篇1.答案:B答案解析:设圆心为P(x0,y0),半径为r,∵圆与x轴,y轴都相切,∴|x0|=|y0|=r,又圆经过点(2,1),∴x0=y0=r且(2-x0)2+(1-y0)2=r2,∴(r-2)2+(r-1)2=r2,解得r=1或r=5.①r=1时,圆心P(1,1),则圆心到直线2x-y-3=0的距离d=|2-1-3|22+(-1)2=255;②r=5时,圆心P(5,5),则圆心到直线2x-y-3=0的距离d=|10-5-3|22+(-1)2=255.2.答案:B答案解析:方法一 点(0,-1)到直线y=k(x+1)的距离为d=|k·0-(-1)+k|k2+1=|k+1|k2+1,注意到k2+1≥2k,于是2(k2+1)≥k2+2k+1=|k+1|2,当且仅当k=1时取等号.即|k+1|≤k2+1·2,所以d=|k+1|k2+1≤2,故点(0,-1)到直线y=k(x+1)距离的最大值为2.方法二 由题意知,直线l:y=k(x+1)是过点P(-1,0)且斜率存在的直线,点Q(0,-1)到直线l的最大距离在直线l与直线PQ垂直时取得,此时k=1,最大距离为|PQ|=2.3.答案:C答案解析:由题意可得d=|cos θ-m sin θ-2|m2+1=|m sin θ-cos θ+2|m2+1=⎪⎪⎪⎪⎪⎪m2+1(mm2+1sin θ-1m2+1cos θ)+2m2+1=|m2+1sin (θ-φ)+2|m2+1(其中cos φ=mm2+1,sin φ=1m2+1),∵-1≤sin (θ-φ)≤1,∴|2-m 2+1|m 2+1 ≤d ≤m 2+1+2m 2+1 ,m 2+1+2m 2+1 =1+2m 2+1,∴当m =0时,d 取最大值3.4.答案:4答案解析:通解 设P ⎝ ⎛⎭⎪⎫x ,x +4x ,x >0,则点P 到直线x +y =0的距离d =|x +x +4x |2=2x +4x 2 ≥22x ·4x 2=4,当且仅当2x =4x,即x =2 时取等号,故点P 到直线x +y =0的距离的最小值是4.优解 由y =x +4x (x >0)得y ′=1-4x 2 ,令1-4x2 =-1,得x =2 ,则当点P 的坐标为(2 ,32 )时,点P 到直线x +y =0的距离最小,最小值为|2+32|2=4. 四 经典大题强化篇1.答案解析:(1)易知点A 到直线x -2y =0的距离不等于3,可设经过两已知直线交点的直线系方程为(2x +y -5)+λ(x -2y )=0,即(2+λ)x +(1-2λ)y -5=0.由题意得|10+5λ-5|(2+λ)2+(1-2λ)2 =3,即2λ2-5λ+2=0,∴λ=2或12.∴l 的方程为4x -3y -5=0或x =2.(2)由⎩⎪⎨⎪⎧2x +y -5=0,x -2y =0,解得交点为P (2,1),如图,过P 作任一直线l ,设d 为点A到l 的距离,则d ≤|PA |(当l ⊥PA 时等号成立).∴d max =|PA |=10 .2.答案解析:(1)由方程组⎩⎪⎨⎪⎧x -2y +1=0,y =0,解得点A (-1,0).又直线AB 的斜率为k AB =1,且x 轴是∠A 的平分线,故直线AC 的斜率为-1,所以AC 所在的直线方程为y =-(x +1). 已知BC 边上的高所在的直线方程为x -2y +1=0,故直线BC 的斜率为-2,故BC 所在的直线方程为y -2=-2(x -1).解方程组⎩⎪⎨⎪⎧y =-(x +1),y -2=-2(x -1), 得点C 的坐标为(5,-6).(2)因为B (1,2),C (5,-6),所以|BC |=(1-5)2+(2+6)2=45 ,点A(-1,0)到直线BC:y-2=-2(x-1)的距离为d=|2×(-1)-4|5=65,所以△ABC的面积为12×45×65=12.。
高二数学直线与方程精选50题
直线与方程精选50题1、求过点()5,3,倾斜角等于直线13+=x y 的倾斜角的一半的直线方程.★2、已知直线l 的倾斜角为α,53sin =α,且这条直线经过点()5,3P ,求直线l 的一般式方程.★3、已知矩形OACB 的顶点的坐标分别为()()()5,00,80,0B A O 、、,求该矩形的对角线所在直线方程.4、已知直线0632=+-y x ,这条直线的点方向式可以是________________★5、求过点P 且平行于直线0l 的一般式方程:(1)()04:,1,20=+x l P ★(2)()07143:,2,10=++y x l P6、求过点P 且垂直于直线1l 的直线的一般式方程:(1)()03:,1,21=-y l P(2)4231:),1,2(1+=---y x l P ★7、求满足下列条件的直线方程(1)直线l 经过()()7,3,0,2B A 两点★(2)直线l 经过点()4,3P ,且与向量()1,1-=d 平行★(3)直线l 经过点()4,3P ,且与向量()1,1-=d 垂直★8、已知直线()0816:1=--+y t x l 与直线()()01664:2=-+++y t x t l(1)当t 为何值时,21l l 与相交?(2)当t 为何值时,21l l 与平行?(3)当t 为何值时,21l l 与重合?(4)当t 为何值时,21l l 与垂直?★9、已知直线08:1=++n y mx l 与直线012:2=-+my x l .当直线1l 与直线2l 分别满足下列条件时,求实数m 、n 的值(1)直线1l 与直线2l 平行;(2)直线1l 与直线2l 垂直,且直线1l 在y 轴上的截距为1-..★10、根据下列条件,写出满足条件的直线的一般式方程.★(1)经过直线012=+-y x 与直线0122=-+y x 的交点,且与直线05=-y x 垂直.(2)经过直线01=+-y x 与直线022=+-y x 的交点,且与直线1243=+y x 平行.11、已知直线2:1++=k kx y l 与直线42:2+-=x y l 的交点在第一象限,求实数k 的范围.★12、已知集合(){}R y x y x y x A ∈=--=、,01|,,集合(){}R y x y ax y x B ∈=+-=、,02|,,且φ=⋂B A ,求实数a 的值.13、是否存在实数a ,使直线()()0121:1=--+-y a x a l 与直线()03326:2=--+y a x l 平行?若存在,求a 的值;若不存在,请说明理由.★14、求过点()3,2P 且与直线012=+-y x 垂直的直线方程★15、若坐标原点O 在直线l 的射影H 的坐标为()2,4-,求直线l 的方程★16、已知平面内三点()()()2,14,33,1---C B A 、、,点P 满足BC BP 23=,则直线AP 的方程是17、已知()()4,1,1,3--B A ,则线段AB 的垂直平分线方程是★18、已知三点()()()a C B a A 2,4,1,5,2,-共线,则实数a 的值是___________________19、不论m 取何实数,直线()()()01131=--+--m y m x m 恒过什么象限?20、分别写出下列直线的一个方向向量d 和一个法向量n ★(1)0543=-+y x(2)152=+y x (3)()5413+-=-x y (4)1=x(5)01=+y21、已知0,0<<bc ac ,则直线0:=++a cy bx l 不通过_______________象限22、直线l 的倾斜角的正弦值为54,则其斜率为______________★ 23、过()()a B a a A 2,3,1,1+-的直线的倾斜角为钝角,求实数a 的取值范围★24、直线l 的斜率k 满足13<≤-k ,求其倾斜角的取值范围★25、直线l 的倾斜角是()()2,6,1,2--B A 两点连线的倾斜角的两倍,求直线l 的倾斜角的大小26、直线l 过点()2,1且与两坐标轴围成等腰直角三角形,求l 的方程★27、求直线()R y x ∈=-+αα010cos 的倾斜角的取值范围28、直线()()039372:222=+-++-a y a x a a l 的倾斜角大小是4π,求实数=a __________★29、方程x k y =与方程()0>+=k k x y 的曲线有两个不同的公共点,则实数k 的取值范围是____________________30、过点()()3,0,0,4B A 的直线的倾斜角大小是________________★31、将直线033=++y x 绕着它与x 轴的交点顺时针旋转︒30后,所得的直线方程是★32、将直线0943=+-y x 绕其与x 轴的交点逆时针旋转︒90后得到直线l ,求直线l 的方程★33、ABC ∆的一个顶点()4,3B ,AB 边上的高CH 所在直线方程是01632=-+y x ,BC 边上的中线AM 所在的直线方程是0132=+-y x ,求边AC 所在直线方程.34、已知直线l 沿x 轴的负方向平移3个单位,再沿y 轴的正方向平移1个单位,又回到原来的位置,求直线l 的斜率k 和倾斜角α★35、过点()4,5-P 作一直线l ,使它与两坐标轴相交且与两坐标轴围成的三角形面积为5个面积单位,求直线l 的方程★36、直线()()01213:=----y a x a l (其中a 为实数)★(1)求证:不论a 取何值,直线l 恒过定点;(2)已知直线l 不通过第二象限,求实数a 的取值范围37、已知()()2211,,,y x B y x A 为直线()0≠+=k b kx y 上的两点(1)求证:2121x x k AB -+=;(2)根据(1)的形式特征,用21,,y y k 表示AB38、已知ABC ∆中,顶点()7,2-A ,AC 边上的高BH 所在直线方程为0113=++y x ,AB 边上中线CM 所在的直线方程072=++y x ,求ABC ∆三边所在直线方程39、从点()2,5A 发出的光线经过x 轴反射后,反射光线经过点()3,1-B ,求发射光线所在直线与x 轴的夹角大小★40、求经过0332:01:21=++=++y x l y x l 和的交点且与直线0523=-+y x 的夹角为4π的直线方程★'41、已知等腰直角三角形ABC 的斜边AB 的中点是()2,4,直角边AC 所在的直线方程是02=-y x ,求斜边AB 和直角边BC 所在直线的方程42、光线沿直线052=+-y x 的方向入射到直线0723=+-y x 后反射出去,求反射光线所在的直线方程43、已知()()8,4,3,2-B A 两点,直线l 经过原点,且A 、B 两点到直线l 的距离相等,求直线l 的方程★44、已知平行直线21l l 与的距离为5,且直线1l 经过原点,直线2l 经过点()3,1,求直线1l 和直线2l 的方程★45、已知直线l 过点()1,0P ,且被平行直线0243:0843:21=++=-+y x l y x l 与所截得的线段的长为22,求直线l 的方程46、求与直线032012=+-=+-y x y x 和距离相等的点的轨迹47、已知点()4,3P 到直线l 的距离为5,且直线l 在两坐标轴上的截距相等,则满足条件的直线是___________________★48、过点()2,1P 的所有直线中,与原点距离最大的直线方程是______________49、直线l 经过直线002477=-=-+y x y x 与直线的交点,且原点到直线l 的距离为512,则直线l 的方程为★50、经过直线032=-+y x 和直线0624=--y x 的交点,且与y 轴平行的直线方程为★。
高中数学必修二直线与方程练习题(考查直线五种形式)
必修二直线与方程(直线的五种形式)练习题让4第I卷(选择题)一、单选题(本大题共16小题,共80.0分)1.如图,直线l1,l2,l3的斜率分别为k1,k2,k3,则()A. k1<k2<k3B. k3<k1<k2C. k3<k2<k1D. k1<k3<k22.已知△ABC的顶点为A(3,3),B(2,−2),C(−7,1),则∠A的内角平分线AD所在直线的方程为()A. y=−x+6B. y=xC. y=−x+6和y=xD. 15x−12y−20=03.点(1,1)到直线x+y−1=0的距离为()D. √2A. 1B. 2C. √224.已知直线l1:ax+2y−1=0,直线l2:8x+ay+2−a=0,若l1//l2,则实数a的值为()A. ±4B. −4C. 4D. ±25.已知点A(1,6√3),B(0,5√3)到直线l的距离均等于a,且这样的直线l可作4条,则a的取值范围是()A. a≥1B. 0<a<1C. 0<a≤1D. 0<a<26.已知直线mx+ny+1=0平行于直线4x+3y+5=0,且在y轴上的截距为1,3则实数m,n的值分别为()A. 4和3B. −4和3C. −4和−3D. 4和−37.若两平行直线2x+y−4=0与y=−2x−m−2间的距离不大于√5,则实数m的取值范围是()A. [−11,−1]B. [−11,0]C. [−11,−6)∪(−6,−1]D. [−1,+∞)8.已知定点P(x0,y0)不在直线l:f(x,y)=0上,则f(x,y)+f(x0,y0)=0表示一条()A. 过点P且与l垂直的直线B. 过点P且与l平行的直线C. 不过点P且垂直于l的直线D. 不过点P且平行于l的直线9.已知过点M(2,1)的直线与x轴、y轴分别交于P,Q两点.若M为线段PQ的中点,则这条直线的方程为()A. 2x−y−3=0B. 2x+y−5=0C. x+2y−4=0D. x−2y+3=010.经过两条直线2x+3y+1=0和x−3y+4=0的交点,并且垂直于直线3x+4y−7=0的直线的方程为()A. 4x−3y+9=0B. 4x−3y−9=0C. 3x−4y+9=0D. 3x−4y−9=011.已知两直线的方程分别为l1:x+ay+b=0,l2:x+cy+d=0,它们在坐标系中的位置如图所示,则()A. b>0,d<0,a<cB. b>0,d<0,a>cC. b<0,d>0,a>cD. b<0,d>0,a<c12.已知直线l1:3x+4y+2=0,l2:6x+8y−1=0,则l1与l2之间的距离是()A. 12B. 35C. 1D. 31013.三点A(3,1),B(−2,k),C(8,11)在一条直线上,则k的值为()A. −8B. −9C. −6D. −714.直线l:y=x+1上的点到圆C:x2+y2+2x+4y+4=0上的点的最近距离为()A. √2B. 2−√2C. 1D. √2−115.已知两点A(−3,4),B(3,2),过点P(1,0)的直线l与线段AB有公共点,则直线l的斜率k的取值范围是()A. (−1,1)B. (−∞,−1)∪(1,+∞)C. [−1,1]D. (−∞,−1]∪[1,+∞)16.直线y=−√33x+1与x轴,y轴分别交于点A,B,以线段AB为边在第一象限内作等边△ABC,如果在第一象限内有一点P(m,12),使得△ABP和△ABC面积相等,则m的值()A. 5√32B. 3√32C. √32D. √3第II卷(非选择题)二、单空题(本大题共4小题,共20.0分)17.已知直线ax+3y−12=0与直线4x−y+b=0互相垂直,且相交于点P(4,m),则b=.18.已知两直线2x−5y+20=0,mx−2y−10=0与两坐标轴围成的四边形有外接圆,则实数m=.19.若直线l1:(2m2−5m+2)x−(m2−4)y+5=0的斜率与直线l2:x−y+1=0的斜率相同,则m的值为.20.若原点O在直线l上的射影是P(1,2),则直线l在y轴上的截距为__________.三、解答题(本大题共5小题,共60.0分)21.已知直线m:(a−1)x+(2a+3)y−a+6=0,n:x−2y+3=0.(1)当a=0时,直线l过m与n的交点,且它在两坐标轴上的截距相反,求直线l的方程;(2)若坐标原点O到直线m的距离为√5,判断m与n的位置关系.22.已知直线l1:ax+2y+6=0和直线l2:x+(a−3)y+a2−1=0.(1)当l1⊥l2时,求a的值;(2)在(1)的条件下,若直线l3//l2,且l3过点A(1,−3),求直线l3的一般方程.23.设直线4x+3y=10与2x−y=10相交于一点A.(1)求点A的坐标;(2)求经过点A,且垂直于直线3x−2y+4=0的直线的方程.24.已知直线l:(a+1)x+y−2−a=0(a∈R).(1)若直线l在两坐标轴上的截距相等,求直线l的方程;(2)当O(0,0)点到直线l距离最大时,求直线l的方程.25.如图,△ABC中,顶点A(1,2),BC边所在直线的方程为x+3y+1=0,AB边的中点D在y轴上.(1)求AB边所在直线的方程;(2)若|AC|=|BC|,求AC边所在直线的方程.答案和解析1.【答案】D本题考查直线的倾斜角与斜率,属于基础题.根据题意,利用直线的倾斜角来判断直线的斜率关系,即可得解.【解答】解:直线l1的倾斜角α1是钝角,故k1<0,直线l2与l3的倾斜角α2与α3均为锐角,且α2>α3,所以0<k3<k2,因此k1<k3<k2,故选D.2.【答案】B本题考查了点到直线的距离公式,角平分线的性质,考查了学生的运算能力,属于中档题.求出直线AB,直线AC的方程,进行求解即可.【解答】解:设∠A的内角平分线AD上的任意一点P(x,y),又△ABC的顶点为A(3,3)、B(2,−2)、C(−7,1),可得:直线AB方程为:5x−y−12=0,直线AC的方程为:x−5y+12=0,∴点P到直线AC距离等于点P到直线AB距离,则√26=√26,解得x+y−6=0(此时B、C两点位于直线x+y−6=0同侧,不符合题意,舍去)或x−y=0.∴角平分线AD所在直线方程为:x−y=0.故选B.3.【答案】C【分析】本题考查了点到直线的距离公式,考查了推理能力与计算能力,属于基础题.利用点到直线的距离公式即可得出.【解答】解:由点到直线的距离公式,得所求距离d=22=√22.4.【答案】B【分析】本题考查直线的一般式方程与直线的平行关系,利用直线平行的性质求解.【解答】解:由a2−2×8=0,得a=±4.当a=4时,l1:4x+2y−1=0,l2:8x+4y−2=0,l1与l2重合.当a=−4时,l1:−4x+2y−1=0,l2:8x−4y+6=0,l1//l2.综上所述,a=−4.故选B.5.【答案】B本题主要考查了点与直线的位置关系和两点间的距离公式的应用,做题时要善于转化,把求a的范围问题转化为求两点间的距离的问题,属于中档题.可分A,B在直线l的同侧还是两侧两种情况讨论直线l的可能,若A,B两点在直线l 的同侧,一定可作出两条直线,所以则当A,B两点分别在直线l的两侧时,还应该有两条,这时,只需a小于A,B两点间距离的一半即可.【解答】解:∵若A,B两点在直线l的同侧,可作出两条直线,∴若这样的直线l可作4条,则当A,B两点分别在直线l的两侧时,还应该有两条.∴2a小于A,B间距离,∵|AB|=√(1−0)2+(6√3−5√3)2=2.∴0<2a<2,∴0<a<1.故选B .6.【答案】C本题主要考查直线的方程的应用,属于基础题.由直线平行可得−mn =−43,再由直线在y 轴上的截距为13,可得−1n =13,联立解得m ,n 的值. 【解答】解:当n =0时,不合题意,所以n ≠0, 由题意知:−mn =−43,即3m =4n , 且在y 轴上的截距为13,即−1n =13, 联立解得:n =−3,m =−4. 故选C .7.【答案】C8.【答案】D9.【答案】C本题考查直线点斜式方程、中点坐标公式,属于基础题.设所求直线的方程为y −1=k(x −2),得Q 点坐标为(0,1−2k),P 点纵坐标为0,所以根据中点坐标公式有0+(1−2k)2=1,解得k =−12,故所求直线的方程为x +2y −4=0. 【解答】解:设所求直线的方程为y −1=k(x −2). 令x =0得y =1−2k , 所以Q 点坐标为(0,1−2k),又因为M 为线段PQ 的中点,P 点纵坐标为0,所以根据中点坐标公式有0+(1−2k)2=1,解得k =−12,故所求直线的方程为x +2y −4=0.10.【答案】A本题主要考查两条直线的交点及两直线垂直的性质应用,属于基础题.联立方程2x +3y +1=0和x −3y +4=0,可求出交点坐标,垂直于直线3x +4y −7=0,可设为4x −3y +m =0,代入交点坐标即可求出该直线的方程. 【解答】解:由{2x +3y +1=0,x −3y +4=0,得{x =−53y =79, 因为所求直线与直线3x +4y −7=0垂直, 所以可设所求直线的方程为4x −3y +m =0, 代入点(−53,79),解得m =9,故所求直线的方程为4x −3y +9=0. 故选A .11.【答案】C本题考查直线的一般式向斜截式转化,属于基础题.将直线转化成斜截式,根据图象得两直线斜率、截距的不等关系,解不等式即可得解. 【解答】解:l 1 :y =−1a x −ba , l 2 : y =−1c x −dc ,由图象知:①−1a >−1c >0,②−ba <0,③−dc >0, 解得:①c <a <0,②b <0,③d >0, 故选C .12.【答案】A【分析】本题考查两条平行线之间的距离公式,属基础题.在使用两条平行线间的距离公式时,要注意两直线方程中x,y的系数必须相同.【解答】解:直线l1:3x+4y+2=0可化为直线l1:6x+8y+4=0,则l1与l2之间的距离是√62+82=12,故选A.13.【答案】B本题考查了斜率计算公式、斜率与三点共线的关系,考查了推理能力与计算能力,属于基础题.三点A(3,1),B(−2,k),C(8,11)在一条直线上,可得k AB=k AC,利用斜率计算公式即可得出.【解答】解:∵三点A(3,1),B(−2,k),C(8,11)在一条直线上,∴k AB=k AC,即k−1−2−3=11−18−3,解得k=−9.故选B.14.【答案】D本题考查直线和圆的位置关系,点到直线的距离公式的应用,是基础题.化标准方程求圆心与半径,由圆心到直线的距离易得结果.【解答】解:由题设知圆心为C(−1,−2),半径r=1,而圆心C(−1,−2)到直线x−y+1=0距离为:d=√2=√2,因此,圆上点到直线的最短距离为d−r=√2−1,故选D.15.【答案】D本题主要考查直线的斜率的求法,利用数形结合是解决本题的关键,属于基础题.根据两点间的斜率公式,利用数形结合即可求出直线斜率的取值范围.【解答】解:如图所示:∵点A(−3,4),B(3,2),过点P(1,0)的直线l与线段AB有公共点,∴直线l的斜率k≥k PB或k≤k PA,∵PA的斜率为4−0−3−1=−1,PB的斜率为2−03−1=1,∴直线l的斜率k≥1或k≤−1,故选D.16.【答案】A【解析】解:根据题意画出图形,如图所示:由直线y=−√33x+1,令x=0,解得y=1,故点B(0,1),令y=0,解得x=√3,故点A(√3,0),∵△ABC为等边三角形,且OA=√3,OB=1,根据勾股定理得:AB=2,故点C到直线AB的距离为√3,由题意△ABP和△ABC的面积相等,则P到直线AB的距离d=√32|−√33m+12|=√3,即−√33m+12=2或−√33m+12=−2,解得:m=−3√32(舍去)或m=5√32.则m的值为5√32.根据题意画出图形,令直线方程中x与y分别为0,求出相应的y与x的值,确定出点A与B的坐标,进而求出AB的长即为等边三角形的边长,求出等边三角形的高即为点C到直线AB的距离,由△ABP和△ABC的面积相等,得到点C与点P到直线AB的距离相等,利用点到直线的距离公式表示出点P到直线AB的距离d,让d等于求出的高列出关于m的方程,求出方程的解即可得到m的值.此题考查了一次函数的性质,等边三角形的性质以及点到直线的距离公式.学生做题时注意采用数形结合的思想及转化的思想的运用,在求出m的值后要根据点P在第一象限舍去不合题意的解.17.【答案】−13【解析】【分析】本题考查两条直线垂直的斜率关系,两直线的交点问题,属于基础题.由两直线互相垂直得a=34,由点P(4,m)在直线34x+3y−12=0上,得m=3,再将点P(4,3)代入4x−y+b=0,即可求出结果.【解答】解:由题意,直线ax+3y−12=0与直线4x−y+b=0互相垂直,可得−a3×4=−1,解得a=34,由点P(4,m)在直线34x+3y−12=0上,得3+3m−12=0,解得m=3,再将点P(4,3)代入直线4x−y+b=0,得16−3+b=0,解得b=−13,故答案为−13.18.【答案】−5【解析】略19.【答案】320.【答案】52【解析】【分析】本题考查直线方程的求法,两直线垂直斜率之间的关系,属于基础题.由题意得OP ⊥l ,求出OP 的斜率即可得到直线l 的斜率,从而求出直线l 的方程,即可得到答案.【解答】解:由题意得OP ⊥l ,而k OP =2−01−0=2,∴k l =−12. ∴直线l 的方程为y −2=−12(x −1),化成斜截式为y =−12x +52.当x =0时,y =52,∴直线l 在y 轴上的截距为52.故答案为52. 21.【答案】解:(1)当a =0时,直线m:x −3y −6=0,由{x −3y −6=0x −2y +3=0,解得{x =−21y =−9, 即m 与n 的交点为(−21,−9).当直线l 过原点时,直线l 的方程为3x −7y =0;当直线l 不过原点时,设l 的方程为x b +y −b =1,将(−21,−9)代入得b =−12,所以直线l 的方程为x −y +12=0.故满足条件的直线l 的方程为3x −7y =0或x −y +12=0.(2)设原点O 到直线m 的距离为d ,则d =22=√5,解得a =−14或a =−73,当a =−14时,直线m 的方程为x −2y −5=0,此时m//n;当a =−73时,直线m 的方程为2x +y −5=0,此时m ⊥n.【解析】本题主要考查了直线的截距式方程,两条直线平行与垂直的判定,点到直线的距离公式,属于中档题.(1)当a =0时,由题意可求出x 与y ,可求出m 与n 的交点,当直线l 过原点时,直线l 的方程为3x −7y =0,当直线l 不过原点时,设l 的方程为x b +y −b =1,将(−21,−9)代入即可求解.(2)求出原点O 到直线m 的距离d ,求出a ,当a =−14时,证明m//n ,当a =−73时,证明m ⊥n. 22.【答案】解:(1)由A 1A 2+B 1B 2=0⇒a +2(a −3)=0⇒a =2;(2)由(1),l 2:x −y +3=0,又l 3//l 2,设l 3:x −y +C =0,把(1,−3)代入上式解得C =−4,所以l 3:x −y −4=0.【解析】本题考查了两条直线平行、两条直线垂直的条件,属于基础题.(1)利用两条直线垂直的充要条件即可得出.(2)根据平行可设l 3:x −y +C =0,代值计算即可.23.【答案】解:(1)由{2x −y =104x +3y =10,解得{x =4,y =−2., ∴A (4,−2). (2)直线3x −2y +4=0的斜率为32,垂直于直线3x −2y +4=0的直线斜率为−23,则过点A (4,−2)且垂直于直线3x −2y +4=0的直线的方程为y +2=−23(x −4),即:2x +3y −2=0.【解析】本题考查求两直线的交点坐标,直线与直线的位置关系,直线方程的求法,属于基础题.(1)解方程组{2x −y =104x +3y =10,可得点A 的坐标; (2)由题可得直线3x −2y +4=0的斜率为32,则垂直于直线3x −2y +4=0的直线斜率为−23,由点斜式即可得出所求直线的方程. 24.【答案】解:(1)直线l :(a +1)x +y −2−a =0,取x =0,y =a +2,取y =0,x =a+2a+1,即a +2=a+2a+1,解得a =−2或a =0,故直线方程为x −y =0或x +y −2=0.(2)l :(a +1)x +y −2−a =0变换得到a(x −1)+x +y −2=0,故过定点A(1,1),当直线l 与AO 垂直时,距离最大.k OA =1,故k =−1,解得a =0,故所求直线方程为x +y −2=0.【解析】本题考查了直线的截距、相互垂直时斜率之间的关系,考查了推理能力与计算能力,属于基础题.(1)取x =0,y =a +2,取y =0,x =a+2a+1,即a +2=a+2a+1,解得a .(2)l :(a +1)x +y −2−a =0变换得到a(x −1)+x +y −2=0,故过定点A(1,1),当直线l 与AO 垂直时,距离最大,即可求解. 25.【答案】解:(1)因点B 在直线x +3y +1=0上,不妨设B(−3a −1,a),由题意得(−3a −1)+1=0,解得a =0,所以B 的坐标为(−1,0),故AB 边所在直线的方程为x−1−1−1=y−20−2,即x −y +1=0;(2)因|AC|=|BC|,所以点C 在线段AB 的中垂线x +y −1=0上由{x +y −1=0x +3y +1=0,解得x =2,y =−1,即C 的坐标为(2,−1), 又点A(1,2),∴AC 边所在直线的方程为x−12−1=y−2−1−2,即3x +y −5=0.【解析】(1)利用点B 在直线上,设B(−3a −1,a),利用中点坐标公式,求出点B 的坐标,然后再由两点式求出直线方程即可;(2)联立两条直线的方程,求出交点坐标即点C ,再由两点式求出直线方程即可. 本题考查了直线方程的求解,主要考查了两点式直线方程的应用,涉及了中点坐标公式以及直线交点坐标的求解,属于基础题.。
(完整版)直线与方程测试题(含答案)
第三章 直线与方程测试题一.选择题(每小题5分,共12小题,共60分) 1.若直线过点(3,-3)且倾斜角为30°,则该直线的方程为( ) A .y =3x -6 B. y =33x +4 C . y =33x -4 D. y =33x +2 2. 如果A (3, 1)、B (-2, k )、C (8, 11), 在同一直线上,那么k 的值是( )。
A. -6 B. -7 C. -8 D. -93. 如果直线 x +by +9=0 经过直线 5x -6y -17=0与直线 4x +3y +2=0 的交点,那么b 等于( ).A. 2B. 3C. 4D. 54. 直线 (2m 2-5m +2)x -(m 2-4)y +5m =0的倾斜角是450, 则m 的值为( )。
A.2 B. 3 C. -3 D. -25.两条直线023=++m y x 和0323)1(2=-+-+m y x m 的位置关系是( ) A.平行 B .相交 C.重合 D.与m 有关*6.到直线2x +y +1=0的距离为55的点的集合是( )A.直线2x+y -2=0B.直线2x+y=0C.直线2x+y=0或直线2x+y -2=0 D .直线2x+y=0或直线2x+2y+2=07直线02=+-b y x 与两坐标轴所围成的三角形的面积不大于1,那么b 的取值范围是( ) A.[]2,2- B.(][)+∞⋃-∞-,22, C.[)(]2,00,2⋃- D.()+∞∞-,*8.若直线l 与两直线y =1,x -y -7=0分别交于M ,N 两点,且MN 的中点是P (1,-1),则直线l 的斜率是( )A .-23B .23C .-32D .329.两平行线3x -2y -1=0,6x +ay +c =0之间的距离为213 13 ,则c +2a的值是( ) A .±1 B. 1 C. -1 D . 2 10.直线x -2y +1=0关于直线x =1对称的直线方程是( ) A .x +2y -1=0 B .2x +y -1=0 C .2x +y -3=0 D .x +2y -3=0**11.点P 到点A ′(1,0)和直线x =-1的距离相等,且P 到直线y =x 的距离等于 22,这样的点P 共有 ( )A .1个B .2个C .3个D .4个 *12.若y =a |x |的图象与直线y =x +a (a >0) 有两个不同交点,则a 的取值范围是 ( ) A .0<a <1 B .a >1 C .a >0且a ≠1 D .a =1二.填空题(每小题5分,共4小题,共20分)13. 经过点(-2,-3) , 在x 轴、y 轴上截距相等的直线方程是 ; 或 。
直线的方程基础题(附答案)
学校:___________姓名:___________班级:___________考 号:___________
第I卷(选择题)
一、选择题
1.若直线x+2y+1=0与直线ax+y﹣2=0互相垂直,那么a的值等于( )
A.﹣2
B.﹣
C.﹣
D.1 2.直线
的倾斜角α=( )
A.30°
A.6
B.2
C.﹣2
D.﹣6
9.直线y=kx与直线y=2x+1垂直,则k等于( )
A.﹣2
B.2
C.
D.
10.经过点A(
,﹣1),且倾斜角为60°的直线方程为( ) A.
x﹣y﹣4=0
B.
x+y﹣2=0 C.
x﹣y﹣2=0
D.
x+y﹣4=0
11.已知A(2,4)与B(3,3)关于直线l对称,则直线l的方程为( )
三、解答题 15.已知三角形ABC的顶点坐标为A(-1,5)、B(-2,-1)、C(4, 3)。 (1)求AB边上的高线所在的直线方程;(2)求三角形ABC的面积。
答案:
一、选择题
1-5.AAAAA
6-11.BAACAD
二、填空题
12、-6
13、5
14、解析:∵直线l:
(a>0,b>0)经过点(1,2) ∴
=1, ∴a+b=(a+b)(
)=3+
≥3+2
,当且仅当b=
a时上式等号成立. ∴直线在x轴,y轴上的截距之和的最小值为3+2
. 故答案为:3+2
.
三、解答题
15、解:(1) ………2分;AB边高线斜率K=,………3分, AB边上的高线方程为,………5分;化简得x+6y-22=0 ………6分 (2)直线AB的方程为 即 6x-y+11=0………8分 C到直线AB的距离为d=………10分,|AB|=;……11分 ∴三角形ABC的面积S=………12分
专题51:直线与方程基础基础巩固检测题(解析版)
专题51:直线与方程基础基础巩固检测题(解析版)一、单选题1.直线0x y -=的倾斜角为( ) A .45︒ B .60︒C .90︒D .135︒【答案】A 【分析】由直线方程得斜率,再得倾斜角. 【详解】由题意直线斜率为1,而倾斜角大于或等于0︒且不大于180︒,所以倾斜角为45︒. 故选:A .2.已知两条直线l 1,l 2的斜率是方程3x 2+mx -3=0(m ∈R )的两个根,则l 1与l 2的位置关系是( ) A .平行 B .垂直 C .可能重合 D .无法确定【答案】B 【分析】由韦达定理可知121k k =-,由此可作出判断. 【详解】解析由方程3x 2+mx -3=0,知∆=m 2-4×3×(-3)=m 2+36>0恒成立. 故方程有两相异实根,即l 1与l 2的斜率k 1,k 2均存在.设两根为x 1,x 2,则k 1k 2=x 1x 2=-1,所以l 1⊥l 2. 故选:B3.已知直线1:1l mx y -=与直线2:10l x my --=平行,则m 的值为( ) A .1 B .1-C .1或1-D .0【答案】B 【分析】根据两直线平行的条件列方程,解方程求得m 的值. 【详解】由于12//l l ,所以()()11m m ⨯-=⨯-,即21m =,1m =±.当1m =时,两条直线重合,故1m ≠, 所以1m =-. 故选:B4.已知点(x ,y )到原点的距离等于1,则实数x ,y 满足的条件是( ) A .x 2-y 2=1 B .x 2+y 2=0 C1 D=0【答案】C 【分析】由两点间的距离公式即可求结果. 【详解】1= 故选:C5.已知直线4370x y +-=,430x my ++=平行,则它们之间的距离是( ) A .1 B .2C .1310D .135【答案】B 【分析】根据两直线平行的性质和平行线间距离公式进行求解即可. 【详解】因为直线4370x y +-=,430x my ++=平行,所以有433437m m =≠⇒=-,2=,故选:B6.过两点(-2,1)和(1,4)的直线方程为( ) A .y =x +3 B .y =-x +1 C .y =x +2 D .y =-x -2【答案】A 【分析】利用直线的两点式有1(2)411(2)y x ---=---,整理即可得直线方程. 【详解】由两点式得:直线方程1(2)411(2)y x ---=---,整理得y =x +3. 故选:A.7.在x 轴,y 轴上的截距分别是-3,4的直线方程是( ) A .134x y -+= B .134x y +=- C . 1.34x y-=- D .143x y +=- 【答案】A 【分析】设0,0y x ==分别求x 轴,y 轴上的截距,即可判断各项直线方程是否符合要求. 【详解】A :0y =时,13x =-,即3x =-;0x =时,14y=,即4y =,故正确; B :0y =时,13x =,即3x =;0x =时,14y=-,即4y =-,故错误; C :0y =时,13x =-,即3x =-;0x =时,14y-=,即4y =-,故错误; D :0y =时,14x =,即4x =;0x =时,13y =-,即3y =-,故错误;故选:A.8.过点(2,5)A 和点(4,5)B -的直线与直线3y =的位置关系是( ) A .相交 B .平行 C .重合 D .以上都不对【答案】B 【分析】根据斜率公式求得AB 的斜率,得出直线AB 的方程,进而得出两直线的位置关系. 【详解】由题意,点(2,5)A 和点(4,5)B -,可得55042AB k -==--,所以AB 的方程为5y =,又由直线3y =的斜率为0,且两直线不重合, 所以两直线平行. 故选:B.9.直线10kx y --=与直线220x y +-=的交点在第四象限,则实数k 的取值范围为( )A .11,22⎛⎫- ⎪⎝⎭B .1,02⎛⎫- ⎪⎝⎭C .1,2⎛⎫+∞ ⎪⎝⎭D .1,2⎛⎫-∞- ⎪⎝⎭【答案】A 【分析】联立两直线的方程,解得交点的坐标,根据交点在第四象限,由00x y >⎧⎨<⎩求解.【详解】由10220kx y x y --=⎧⎨+-=⎩,解得4212121x k k y k ⎧=⎪⎪+⎨-⎪=⎪+⎩,因为直线10kx y --=与直线220x y +-=的交点在第四象限,所以402121021x k k y k ⎧=>⎪⎪+⎨-⎪=<⎪+⎩,解得1122k -<<, 所以实数k 的取值范围为11,22⎛⎫- ⎪⎝⎭, 故选:A 10.已知直线1:l y kx b =+,2:l y bx k =+则它们的图像可能是( )A .B .C .D .【答案】C 【分析】由两直线的解析式可得直线1l 的斜率为k 、纵截距为b ,2l 的斜率为b ,纵截距为k , 再逐一判断四个选项的正误即可得正确选项. 【详解】 由1:l y kx b =+,2:l y bx k =+可知直线1l 的斜率为k 、纵截距为b ,2l 的斜率为b ,纵截距为k ,对于选项A :1l 中0,0k b <>,2l 中0,0b k ><,不成立; 对于选项B :1l 中0,0k b ><,2l 中0,0b k >>,不成立; 对于选项C :1l 中0,0k b >>,2l 中0,0b k >>,成立; 对于选项D :1l 中0,0k b <>,2l 中0,0b k <<,不成立; 故选:C.11.在直角坐标系中,已知O 为坐标原点,(1,0),(1,0)A B -.点P 满足3PA PB k k ⋅=且||||4PA PB +=,则||OP =( )A .713B 85C 513D 13 【答案】B 【分析】设(,)P x y ,根据椭圆的定义得出点P 在椭圆22143x y +=①上,再由斜率公式得出2233y x =-②,联立得出2289,55x y ==,最后由距离公式得出||OP .【详解】设(,)P x y ,4PA PB AB +=>,∴点P 在椭圆22143x y +=①上3PA PB k k ⋅=,311y y x x ∴⋅=+-,即2233y x =-②联立①②可得2289,55x y ==,则OP === 故选:B 【点睛】关键点睛:解决本题的关键是由椭圆的定义得出点P 在椭圆22143x y +=上,再结合斜率公式求出||OP . 12.已知2320a a ,则直线1l :()30ax a y a +--=和直线2l :()()623540a x a y a -+--+=的位置关系为( )A .垂直或平行B .垂直或相交C .平行或相交D .垂直或重合【答案】D 【分析】 因为2320a a ,所以1a =或2a =;当1a =时,121k k 则直线垂直,当2a =时,两直线重合. 【详解】 因为2320a a ,所以1a =或2a =.当1a =时,1l :210x y +-=,2l :4230--=x y ,112k =-,22k =所以121k k ,则两直线垂直;当2a =时,1l :220x y +-=,2l :220x y +-=,则两直线重合.故选:D二、填空题13.在ABC 中,A (1,3),B (2,-2),C (-3,1),则D 是线段AC 的中点,则中线BD 长为_______________; 【答案】5【分析】先求D 点坐标,再结合两点距离公式求解即可. 【详解】 由13311,222-+=-=所以()1,2D -,则5BD ===故答案为:514.斜率为-2,且过两条直线3x -y +4=0和x +y -4=0交点的直线方程为______________. 【答案】2x +y -4=0 【分析】设直线系方程,然后通过斜率确定参数即可. 【详解】设所求直线方程为3x -y +4+λ(x +y -4)=0, 即(3+λ)x +(λ-1)y +4-4λ=0,所以k =31λλ+-=-2,解得λ=5 ∴所求直线方程为2x +y -4=0.15.求经过A (m ,3),B (1,2)两点的直线的倾斜角α的取值范围是________.(其中m 1≥) 【答案】090α<≤︒ 【分析】由题设,讨论1,1m m =>时倾斜角α的值或范围,再取并即为α的取值范围. 【详解】由题意,当m =1时,倾斜角α=90°; 当1m 时,321tan 011m m α-==>--,即倾斜角α为锐角; ∴综上:090α<≤︒. 故答案为:090α<≤︒.16.已知直线l 过点M (2,1),且分别与x 轴的正半轴、y 轴的正半轴交于A ,B 两点,O 为原点,当|MA |·|MB |取得最小值时,直线l 的方程为________________. 【答案】x +y -3=0. 【分析】由条件可知,直线斜率存在且为负,设出直线方程,求出与x 轴和y 轴的交点,A B ,可计算||MA =MB MA MB ⋅,利用基本不等式可求出最值,并求出取最值时k 的值,故而求出直线方程. 【详解】设:直线l 与x 轴正半轴和y 轴正半轴都相交,所以直线l 的斜率存在且为负, 设直线l 的斜率为k ,则直线l 的方程为:()21y k x =-+, 则12,0A k -⎛⎫+⎪⎝⎭,()0,21B k -+,||MA ==MB所以224MA MB ⋅=⨯= 当且仅当221k k =,即1k =-时取等号,所以直线方程为()21y x =--+ 即30x y +-=. 故答案为:30x y +-=. 【点睛】知识点点睛:(1)两点间的距离公式||AB =(2)基本不等式的应用条件:一正二定三相等,要注意检验等号成立的条件.三、解答题17.已知点(2,2)A ,直线:320l x y -+=. (1)求A 点到直线l 距离;(2)求过点A 且与直线l 平行的直线的方程.【答案】(1;(2)340x y --=. 【分析】(1)利用点到直线的距离公式计算即可得解;(2)方法一:根据已知设直线为3y x n =+,点(2,2)A 代入即可得解,方法二:设过点A 且与直线l 平行的直线方程为30x y n -+=,点(2,2)A 代入即可得解. 【详解】(1)设点A 到直线l 的距离为d ,则d ==(2)方法一:∵直线l 的斜率3k =,设过点A 且与直线l 平行的直线方程为3y x n =+,把点A 的坐标代入可得4n =-, ∴过点A 且与直线l 平行的直线方程为340x y --=. 方法二:设过点A 且与直线l 平行的直线方程为30x y n -+=, 把点A 的坐标代入可得:620n -+=,解得4n =-, ∴过点A 且与直线1l 平行的直线方程为340x y --=. 18.已知点1,0A ,直线:220l x y --=.(1)求直线1:220l x y -+=与直线l 的交点坐标; (2)求过点A ,且与直线l 垂直的直线方程. 【答案】(1))(2,2--;(2)220x y +-=. 【分析】(1)联立两直线方程,直接求解,即可得出交点坐标;(2)先由垂直关系,设出所求直线方程,再由过点A ,即可求出结果. 【详解】 (1)由22022202x y x x y y --==-⎧⎧⇒⎨⎨-+==-⎩⎩,∴直线1l 与直线l 的交点坐标)(22--,; (2)设与直线l 垂直的直线方程为20x y n --+=, 又因为20x y n --+=过点1,0A , 所以20n -+=,则2n =, 故所求直线方程为220x y +-=.19.在ABC 中,BC 边上的高所在的直线的方程为210x y -+=,A ∠的平分线所在直线的方程为0y =,若点B 的坐标为1,2. (1)求点A 的坐标. (2)求直线BC 的方程.【答案】(1)()1,0A -;(2)240x y +-=.【分析】(1)由BC 边上的高与∠A 平分线交于A 点,联立两直线方程求交点即可.(2)由垂直关系及高所在直线方程可求直线BC 的斜率BC k ,再有B 的坐标为1,2即可写出直线BC 的方程. 【详解】 (1)联立2100x y y -+=⎧⎨=⎩,解得1x y =-⎧⎨=⎩,可得()1,0A -.(2)∵BC 边上的高所在的直线的方程为210x y -+=, ∴112BC k ⨯=-,即2BC k =-, ∴直线BC 的方程为()221y x -=--,整理得240x y +-=. 20.已知直线过点(2,1)A 和(6,2)B -两点 (1)求出该直线的直线方程(用点斜式表示)(2)将(1)中直线方程化成斜截式,一般式以及截距式且写出直线在x 轴和y 轴上的截距.【答案】(1)32(6)4y x +=--;(2)答案见解析. 【分析】(1)先求斜率,再利用点斜式写出直线方程; (2)由31(2)4y x -=--,得3542y x =-+,可化为34100x y +-=,从而可得答案 【详解】解;(1)直线AB 的斜率为34AB k =-故直线AB 的点斜式方程为:31(2)4y x -=--或32(6)4y x +=--.(2)由31(2)4y x -=--,得3542y x =-+,可化为34100x y +-=,当0x =时,52y =,当0y =时,103x =, 所以斜截式:3542y x =-+,一般式:34100x y +-=,截距式:110532x y +=,在x 轴上的截距为103;在y 轴上的截距为5221.已知直线1l :()2320m x y m -++=,2l :60x my ++= (1)若直线1l 与2l 垂直,求实数m 的值;(2)若直线1l 与2l 平行,求实数m 的值.【答案】(1)12;(2)1-. 【分析】(1)由题意可得()2130m m -⨯+=,解方程即可求解; (2)由已知条件利用直线与直线平行的条件直接求解.【详解】(1)∵直线1l :()2320m x y m -++=,2l :60x my ++=,直线1l 与2l 垂直, ∴()2130m m -⨯+=, 解得12m =. (2)∵直线1l :()2320m x y m -++=,2l :60x my ++=, 若直线1l 与2l 平行, ∴23216m m m -=≠, 解得:1m =-.22.已知直线1l 的方程为34120x y +-=,分别求直线2l 的方程,使得: (1)2l 与1l 平行,且过点(1,3)-;(2)2l 与1l 垂直,且2l 与两坐标轴围成的三角形面积为6.【答案】(1)3490x y +-=;(2)43120x y -+=或43120x y --=.【分析】(1)由于2l 与1l 平行,所以设直线2l 的方程为340x y m ++=,然后把点(1,3)-代入方程中可求出m 的值,从而可得直线2l 的方程,(2)由于2l 与1l 垂直,所以设直线2l 的方程为430x y n -+=,然后求出直线在坐标轴上的截距,由2l 与两坐标轴围成的三角形面积为6,列方程求出n 的值,从而可得直线2l 的方程,【详解】解:(1)因为直线1l 的方程为34120x y +-=,且2l 与1l 平行, 所以设直线2l 的方程为340x y m ++=,因为点(1,3)-在直线2l 上,所以3120m -++=,解得9m =-, 所以直线2l 的方程为3490x y +-=;(2)因为直线1l 的方程为34120x y +-=,且2l 与1l 垂直, 所以设直线2l 的方程为430x y n -+=,当0x =时,3n y =,当0y =时,4n x =-, 因为2l 与两坐标轴围成的三角形面积为6, 所以16243n n ⨯-⨯=,解得12n =或12n =-, 所以直线2l 的方程为43120x y -+=或43120x y --=.【点睛】此题考查由平行、垂直关系求直线方程,考查计算能力,属于基础题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
直线与方程基础练习题一、选择题1.过点(1,0)且与直线220x y --=平行的直线方程是( )A .210x y +-=B .210x y -+=C .220x y +-=D .210x y --= 2.已知直线l 过点(0,7),且与直线42y x =-+平行,则直线l 的方程为( ). A. 47y x =-- B. 47y x =- C. 47y x =-+ D. 47y x =+ 3.过点(-1,3)且垂直于直线x -2y +3=0的直线方程是( )A .x -2y +7=0B .2x +y -1=0C .x -2y -5=0D .2x +y -5=0 4.已知直线l 的方程为20(0)x y a a --=≠,则下列叙述正确的是( ) A. 直线不经过第一象限B. 直线不经过第二象限C. 直线不经过第三象限 D. 直线不经过第四象限5.过点(1,3)-且平行于直线032=+-y x 的直线方程为( )A.072=+-y xB.012=-+y x C .250x y --= D .052=-+y x 6.已知两条直线01:1=-+y x l ,023:2=++ay x l 且21l l ⊥,则a =A. 31-B .31C . -3D .37.在同一直角坐标系中,表示直线y ax =与y x a =+正确的是( )A .B .C .D . 8.若三点(2,3),(5,0),(0,)(0)A B C b b ≠共线,则b =A .2B .3C .5D .19.如果直线(m+4)x+(m+2)y+4=0与直线(m+2)x+(m+1)y-1=0互相平行,则实数m 的值等于( )A 、0B 、2C 、-2D 、0或-210.已知直线αsin :1x y l =和直线c x y l +=2:2,则直线1l 与2l ( )。
A.通过平移可以重合B.不可能垂直C.可能与x 轴围成等腰直角三角形 D.通过1l 上某一点旋转可以重合11.已知点A(0, –1),点B 在直线x –y+1=0上,直线AB 垂直于直线x+2y –3=0,则点B 的坐标是( )A.(–2, –3)B.(2, 3)C.(2, 1)D.(–2, 1)12.已知直线方程:1l :2x-4y+7=0, 2l :x-2y+5=0,则1l 与2l 的关系( ) A.平行 B.重合 C.相交 D.以上答案都不对13.如果直线220ax y -+=与直线320x y --=平行,那么系数a 等于( ).A . 6B .-3CD 14.若直线20mx y m +-=与直线(34)10m x y -++=垂直,则m 的值是( )A.1-或B.1或或1- 1 15.两条平行线l 1:3x-4y-1=0与l 2:6x-8y-7=0间的距离为( )A 、1 16.已知直线l 方程为25100x y -+=,且在x 轴上的截距为a ,在y 轴上的截距为b ,)A .3B .7C .10D .517.直线02=++by ax ,当0,0<>b a 时,此直线必不过 ( ) A .第一象限 B .第二象限 C .第三象限D .第四象限18在y 轴上的截距是( )A B .2b - C .b 2D .±b 19.若直线Ax +By +C=0与两坐标轴都相交,则有A 、0AB ⋅≠ B 、0A ≠或0B ≠C 、0C ≠D 、A 2+B 2=020.点(a,b)关于直线x+y=0对称的点是 ( )A 、 (-a,-b)B 、 (a,-b)C 、 (b,a)D 、 (-b,-a) 21.已知点(x ,-4)在点(0,8)和(-4,0)的连线上,则x 的值为 (A)-2 (B)2 (C)-8 (D)-622.已知两点A (1,2).B (2,1)在直线10mx y -+=的异侧,则实数m 的取值范围为( ) A .(,0-∞)B .(1,+∞)C .(0,1)D .(,0-∞)(1,)+∞23.对任意实数m ,直线(1)260m x m y -++=必经过的定点是A.(1,0)B.(0,3)-C.(6,3)- 24.过点P (4,-1)且与直线3x-4y+6=0垂直的直线方程是A 、4x+3y-13=0B 、4x-3y-19=0C 、3x-4y-16=0D 、3x+4y-8=0 25.点P (2,5)关于直线x 轴的对称点的坐标是 ( ) A .(5,2) B .(-2,5)C .(2,-5) D .(-5,-2)26.直线l 1: ax+3y+1=0, l 2: 2x+(a+1)y+1=0, 若l 1∥l 2,则a=A .-3B .2C .-3或2D .3或-2 27.已知点(1,2),(3,1)A B ,则线段AB 的垂直平分线的方程是( ) A .524=+y x B .524=-y x C .52=+y x D .52=-y x 28. 直线:10l x y -+=关于y 轴对称的直线方程为( )A .10x y -+=B . 10x y +-=C .10x y ++=D .10x y --= 29.过点(1-,3)且垂直于直线032=+-y x 的直线的方程为A .2x +y -1=0B .2x +y -5=0C .x +2y -5=0D .x -2y +7=030.已知过点A (-2,m )和B (m ,4)的直线与直线012=-+y x 垂直,则m 的值为 A. -8 B. 0 C. 10 D. 231. 过点(1,0)且与直线022=--y x 平行的直线方程是A. 012=--y xB. 012=+-y xC. 022=-+y xD. 012=-+y x32.过点(1,3)P -且垂直于直线032=+-y x 的直线方程为( )A 、012=-+y xB 、052=-+y x C 、052=-+y x D 、072=+-y x 33.经过点)1,2(的直线l 到A )1,1(、B )5,3(两点的距离相等,则直线l 的方程为( ) A .032=--y xB .2=xC .032=--y x 或2=xD .都不对34.过点P(4,-1)且与直线3x-4y+6=0垂直的直线方程是( )A 、4x+3y-13=0B 、4x-3y-19=0C 、3x-4y-16=0D 、3x+4y-8=035.AB C ∆中,(2,0)A - 、(2,0)B C(3,3)、,则 AB 边的中线对应方程为( ) A .x y = B .3)x x(0y ≤≤= C .x y -= D .3)x x(0y ≤≤-= 36.无论m 取何值,直线210mx y m -++=经过一定点,则该定点的坐标是 ( ). A.(-2,1) B.(2,1) C.(1,-2) D.(1,2) 37.直线02=+--m y mx 经过一定点,则该点的坐标是( ) A .)2,1(- B .)1,2(- C .)2,1( D .)1,2( 38.直线l 与直线0432=+-y x 垂直,则直线l 的方程可能是( )A.0123=-+y xB.0723=+-y xC.0532=+-y xD.0832=++y x39.若n m ,满足012=-+n m , 则直线03=++n y mx 过定点 (A. B. C. D.40.已知点P (3,2)与点Q (1,4)关于直线l 对称,则直线l 的方程为 A .01=+-y x B .0=-y x C .01=++y x D .0=+y x 41..已知点A (1,2)、B (3,1),则线段AB 的垂直平分线的方程是 A.4x +2y =5 B.4x -2y =5 C.x +2y =5 D.x -2y =5 42.直线210x y -+=关于直线1x =对称的直线方程是( )A.210x y +-=B.210x y +-=C.230x y +-=D.230x y +-= 43.过点(-1,3)且平行于直线032=+-y x 的方程是( )A .052=+-y xB .052=-+y x .012=-+y x D .072=+-y x 44.已知两直线1l :08=++n y mx 和012:2=-+my x l 若21l l ⊥且1l 在y 轴上的截距为 –1,则n m ,的值分别为 ( )A .2 ,7B .0,8C .-1,2D .0,-845.已知过点(2,)A m -和(,4)B m 的直线与直线012=-+y x 平行,则m 的值为( )A .0B .8-C .2D .1046.若动点P 到点(1,1)F 和直线340x y +-=的距离相等,则点P 的轨迹方程为( )A .360x y +-=B .320x y -+=C .320x y +-=D .320x y -+= 47.若直线0=++C By Ax 经过第一、二、三象限,则( ) A .AB<0,BC<0 B .AB>0,BC<0 C .AB<0,BC>0D .AB>0,BC>0二、填空题48.直线01052=--y x 与坐标轴围成的三角形的面积为 .49.直线过点 (-3,-2)且在两坐标轴上的截距相等,则这直线方程为 .直线与方程基础练习题(二)参考答案1.D 【解析】试题分析:因为所求直线与直线220x y --=平行,所以,设为20x y c -+=, 将(1,0)代入得c=1-,故过点(1,0)且与直线220x y --=平行的直线方程是210x y --=,选D 。
考点:直线方程,直线的平行。
点评:简单题,此类问题一般利用“待定系数法”。
2.C 【解析】试题分析:根据两直线平行斜率相等,设过P 与直线l 平行的直线方程是 y=-4x+m 把点P (0,7)代入可解得 m ,从而得到所求的直线方程解:设过P 与直线l 平行的直线方程是y=-4x+m ,把点P (0,7)代入可解得 m=7,故所求的直线方程是y=-4x+7.故选C 考点:直线方程点评:本题考查根据两直线平行和垂直的性质,利用待定系数法求直线方程的方法 3.B 【解析】试题分析:由两直线垂直的性质可知,所求的直线的斜率k=-2,所求直线的方程为y-3=-2(x+1)即2x+y-1=0,故选B考点:本题考查了直线的方程及位置关系点评:如果两条直线的斜率分别是1k 和2k ,则这两条直线垂直的充要条件是121-=k k 4.B 【解析】试题分析:因为,直线l 的方程为20(0)x y a a --=≠,其斜率为1,纵截距为2a -<0,所以,直线不经过第二象限,选B 。
考点:直线方程点评:简单题,直线的斜率、截距,确定直线的位置。