微机与自动控制原理 实验报告书

合集下载

自动控制原理的实训报告

自动控制原理的实训报告

一、实训目的本次实训旨在通过实际操作和实验,加深对自动控制原理的理解,掌握控制系统分析和设计的基本方法,提高动手能力和分析问题、解决问题的能力。

通过实训,使学生能够:1. 理解自动控制系统的基本组成和原理;2. 掌握典型控制系统的时域响应和频域响应分析方法;3. 学会使用实验设备进行控制系统实验,并能够分析实验结果;4. 培养团队协作和沟通能力。

二、实训仪器与设备1. 自动控制原理实验台;2. 信号发生器;3. 数据采集器;4. 计算机;5. 控制系统模拟软件。

三、实训内容1. 控制系统结构分析通过实验台搭建一个典型的控制系统,分析其结构,包括各个环节的功能和相互关系。

2. 时域响应实验对搭建的控制系统进行阶跃响应实验,记录并分析系统的输出波形,计算超调量、上升时间、调节时间等性能指标。

3. 频域响应实验对搭建的控制系统进行频率特性实验,记录并分析系统的幅频特性、相频特性,绘制Bode图。

4. 控制系统设计根据实验结果,对控制系统进行设计,包括PID参数整定、控制器设计等。

四、实验过程1. 搭建控制系统根据实验要求,搭建一个典型的控制系统,包括控制器、执行器、被控对象等环节。

2. 进行阶跃响应实验使用信号发生器产生阶跃信号,输入到控制系统中,记录输出波形,并计算超调量、上升时间、调节时间等性能指标。

3. 进行频率特性实验使用信号发生器产生不同频率的正弦信号,输入到控制系统中,记录输出波形,并绘制Bode图。

4. 控制系统设计根据实验结果,对控制系统进行设计,包括PID参数整定、控制器设计等。

五、实验结果与分析1. 阶跃响应实验通过阶跃响应实验,可以分析系统的稳定性和动态性能。

例如,超调量反映了系统的振荡程度,上升时间反映了系统的响应速度,调节时间反映了系统达到稳态所需的时间。

2. 频率特性实验通过频率特性实验,可以分析系统的频率响应特性。

例如,幅频特性反映了系统对不同频率信号的放大倍数,相频特性反映了系统对不同频率信号的相位延迟。

自动控制原理实验报告

自动控制原理实验报告

自动控制原理实验报告实验目的,通过本次实验,掌握自动控制原理的基本概念和实验操作方法,加深对自动控制原理的理解和应用。

实验仪器与设备,本次实验所需仪器设备包括PID控制器、温度传感器、电磁阀、水槽、水泵等。

实验原理,PID控制器是一种广泛应用的自动控制设备,它通过对比设定值和实际值,根据比例、积分、微分三个控制参数对控制对象进行调节,以实现对控制对象的精确控制。

实验步骤:1. 将温度传感器插入水槽中,保证传感器与水温充分接触;2. 将水泵接通,使水槽内的水开始循环;3. 设置PID控制器的参数,包括比例系数、积分时间、微分时间等;4. 通过调节PID控制器的参数,使得水槽中的水温稳定在设定的目标温度;5. 观察记录PID控制器的输出信号和水温的变化情况;6. 分析实验结果,总结PID控制器的控制特性。

实验结果与分析:经过实验操作,我们成功地将水槽中的水温控制在了设定的目标温度范围内。

在调节PID控制器参数的过程中,我们发现比例系数的调节对控制效果有着明显的影响,适当增大比例系数可以缩小温度偏差,但过大的比例系数也会导致控制系统的超调现象;积分时间的调节可以消除静差,但过大的积分时间会导致控制系统的超调和振荡;微分时间的调节可以抑制控制系统的振荡,但过大的微分时间也会使控制系统的响应变慢。

结论:通过本次实验,我们深入理解了PID控制器的工作原理和调节方法,掌握了自动控制原理的基本概念和实验操作方法。

我们通过实验操作和数据分析,加深了对自动控制原理的理解和应用。

总结:自动控制原理是现代控制工程中的重要内容,PID控制器作为一种经典的控制方法,具有广泛的应用前景。

通过本次实验,我们不仅学习了自动控制原理的基本知识,还掌握了PID控制器的调节方法和控制特性。

这对我们今后的学习和工作都具有重要的意义。

自控原理实验报告

自控原理实验报告

一、实验目的1. 理解并掌握自动控制原理的基本概念和基本分析方法。

2. 掌握典型环节的数学模型及其在控制系统中的应用。

3. 熟悉控制系统的时间响应和频率响应分析方法。

4. 培养实验操作技能和数据处理能力。

二、实验原理自动控制原理是研究控制系统动态性能和稳定性的一门学科。

本实验主要涉及以下几个方面:1. 典型环节:比例环节、积分环节、微分环节、惯性环节等。

2. 控制系统:开环控制系统和闭环控制系统。

3. 时间响应:阶跃响应、斜坡响应、正弦响应等。

4. 频率响应:幅频特性、相频特性等。

三、实验内容1. 典型环节的阶跃响应- 比例环节- 积分环节- 比例积分环节- 比例微分环节- 比例积分微分环节2. 典型环节的频率响应- 幅频特性- 相频特性3. 二阶系统的阶跃响应- 上升时间- 调节时间- 超调量- 峰值时间4. 线性系统的稳态误差分析- 偶然误差- 稳态误差四、实验步骤1. 典型环节的阶跃响应- 搭建比例环节、积分环节、比例积分环节、比例微分环节、比例积分微分环节的实验电路。

- 使用示波器观察并记录各个环节的阶跃响应曲线。

- 分析并比较各个环节的阶跃响应曲线,得出结论。

2. 典型环节的频率响应- 搭建比例环节、积分环节、比例积分环节、比例微分环节、比例积分微分环节的实验电路。

- 使用频率响应分析仪测量各个环节的幅频特性和相频特性。

- 分析并比较各个环节的频率响应特性,得出结论。

3. 二阶系统的阶跃响应- 搭建二阶系统的实验电路。

- 使用示波器观察并记录二阶系统的阶跃响应曲线。

- 计算并分析二阶系统的上升时间、调节时间、超调量、峰值时间等性能指标。

4. 线性系统的稳态误差分析- 搭建线性系统的实验电路。

- 使用示波器观察并记录系统的稳态响应曲线。

- 计算并分析系统的稳态误差。

五、实验数据记录与分析1. 典型环节的阶跃响应- 比例环节:K=1,阶跃响应曲线如图1所示。

- 积分环节:K=1,阶跃响应曲线如图2所示。

自动控制原理实训报告

自动控制原理实训报告

自动控制原理实训报告引言:自动控制原理是现代工程领域中的重要学科,它研究如何利用控制系统来实现对各种物理过程的自动化调节和控制。

本篇报告旨在总结和分析我在自动控制原理实训中所学到的知识和经验,并对实训过程中遇到的问题进行探讨和解决。

一、实训目的和背景自动控制原理实训的主要目的是通过实际操作和实验验证,加深对自动控制原理的理解和掌握。

通过实际操控控制系统,我们可以更好地理解控制系统的工作原理、参数调节和性能评估等方面的知识。

二、实训内容和步骤本次实训主要包括以下内容和步骤:1. 实验仪器和设备的介绍:我们首先了解了实验室中常用的控制系统实验仪器和设备,包括传感器、执行器、控制器等,并学习了它们的基本原理和使用方法。

2. 控制系统的建模与仿真:我们学习了如何将实际的物理过程建立数学模型,并利用仿真软件进行系统性能分析和优化设计。

3. PID控制器的调节:PID控制器是最常用的控制器之一,我们学习了PID控制器的原理和调节方法,并通过实验验证了不同参数对系统响应的影响。

4. 系统性能评估与优化:我们学习了如何评估控制系统的性能指标,如稳定性、快速性和抗干扰能力,并通过调节控制器参数来优化系统性能。

三、实训中遇到的问题及解决方法在实训过程中,我们遇到了一些问题,下面列举了其中的几个,并给出了解决方法:1. 问题一:系统响应不稳定。

解决方法:通过调节PID控制器的参数,如比例系数、积分时间和微分时间,来使系统响应稳定。

2. 问题二:系统响应过慢。

解决方法:增大比例系数和减小积分时间可以提高系统的响应速度。

3. 问题三:系统受到干扰时响应不稳定。

解决方法:通过增加微分时间和加入滤波器等方法,可以提高系统的抗干扰能力。

四、实训心得和体会通过这次自动控制原理实训,我深刻体会到了理论与实践的结合的重要性。

在实际操作中,我们不仅需要理解控制原理,还需要灵活运用所学知识解决实际问题。

此外,实训过程中的团队合作也是非常重要的,通过与同学们的合作,我们共同解决了许多实际问题,加深了对自动控制原理的理解。

自动控制原理实验实训报告 .docx

自动控制原理实验实训报告 .docx

自动控制原理实验实训报告 .docx【导言】自动控制原理实验实训是控制科学与工程专业的必修课程,是学生进行理论学习与实践操作结合的一个重要环节。

本次实训学习了控制系统的基本概念、控制器的类型以及控制系统的建模和分析方法,并通过实现传感器数据采集、信号控制和反馈调节等操作,掌握了控制系统的工作原理和实现方式。

本报告将对本次实训中的实验操作、实验结果和实验体会进行详细记录和总结。

【实验操作】1.传感器场景仿真实验本实验通过MATLAB仿真软件,实现了对不同场景下传感器采集数据的比较分析。

实验过程中需要设置不同的传感器样本数据和处理方式,并利用MATLAB的数据处理工具对数据进行处理分析,从而得出传感器对于不同场景下数据采集的适用性和准确性。

2.直流电动机速度调节实验本实验通过实现电动机的速度控制,实现对电动机的运行状态的控制调节。

实验需要完成对AC220V电源、TG-01速度控制器以及直流电动机的连接和调试,并通过电动机的运行状态和速度,实现对控制器的参数设置和调节操作。

4.磁悬浮控制实验本实验实现了对磁悬浮平台的控制和调节,并通过数据反馈实现了对磁悬浮平台的稳定运行。

通过对控制器的参数调节和磁悬浮平台的反馈数据分析,加深了对磁悬浮控制原理的理解和掌握程度。

本次实验操作中,通过对控制器的操作和数据反馈的分析,加深了对自动控制的认识和掌握程度,提高了对控制系统的工作原理和实现方式的理解。

同时,实验操作中也存在一些问题和不足,例如实验操作过程的不稳定性和实验数据分析的不准确性等问题。

需要在今后的学习和实践中,加强对理论知识和实验操作技能的学习和掌握,提高实验操作的准确性和稳定性,从而更好地掌握自动控制原理的知识和技能。

自动控制原理实验报告

自动控制原理实验报告

自动控制原理实验报告本实验为基于微处理器的温度控制系统的设计与实现。

实验目的是通过实践掌握基于微处理器的控制系统设计和实现方法,了解数字信号处理的基本原理和应用。

本报告将分为实验原理,系统设计,实验步骤,实验结果和结论等几个部分进行详细阐述。

一、实验原理数字信号处理的基本原理是将模拟信号经过采样、量化和编码后转换为数字信号,并在数字领域中对其进行处理。

在本实验中,采用的是基于单片机控制的数字温度控制系统。

该系统的设计要求基于以往的温度控制系统,并具备更过的实用价值和工程性能。

系统的基本原理如下:1.数字信号采样该系统通过传感器来采集温度值,并将其转化为数字信号,实现了数字化控制。

系统在稳态时,通过采用PID控制方法来对温度进行控制。

2.温度控制方法对于本实验中开发的系统,采用的是基于PID控制算法的控制方法。

PID即比例积分微分控制算法,它是一种最常用的控制算法,具备响应速度快、稳态误差小等优点。

PID控制算法的主要原理是,通过比例、积分和微分三个控制系数对输出进行调节,使系统的响应速度更快,而且在稳态时误差非常小。

3.系统设计本实验系统的设计通过单片机的程序控制,主要包含三部分:硬件设计、软件设计和温控系统设计。

二、系统设计1.硬件设计本实验采用的是基于AT89S52单片机的数字温度控制系统,其硬件电路主要包括以下模块:(1)单片机控制器:采用AT89S52单片机;(2)温度传感器:采用DS18B20数字温度传感器;(3)电源模块:采用稳压电源,提供系统所需电压。

2.软件设计本实验采用的是基于C语言开发的程序控制系统,该软件具备以下功能模块:(1)数据采集:通过程序控制读取温度传感器数值;(2)控制算法:实现PID控制算法的程序设计;(3)控制输出:将PID算法结果通过程序输出到负载端。

3.温控系统设计本实验设计的数字温度控制系统,其温控系统设计主要包括以下几个方面:(1)温度检测:系统通过DS18B20数字温度传感器检测环境温度。

自动控制原理实验报告(实验一,二,三)分析

自动控制原理实验报告(实验一,二,三)分析

自动控制原理实验报告实验名称:线性系统的时域分析线性系统的频域分析线性系统的校正与状态反馈班级:学号:姓名:指导老师:2013 年12 月15日典型环节的模拟研究一. 实验目的1.了解和掌握各典型环节模拟电路的构成方法、传递函数表达式及输出时域函数表达式2.观察和分析各典型环节的阶跃响应曲线,了解各项电路参数对典型环节动态特性的影响二.实验内容及步骤观察和分析各典型环节的阶跃响应曲线,了解各项电路参数对典型环节动态特性的影响.。

改变被测环节的各项电路参数,画出模拟电路图,阶跃响应曲线,观测结果,填入实验报告运行LABACT 程序,选择自动控制菜单下的线性系统的时域分析下的典型环节的模拟研究中的相应实验项目,就会弹出虚拟示波器的界面,点击开始即可使用本实验机配套的虚拟示波器(B3)单元的CH1测孔测量波形。

具体用法参见用户手册中的示波器部分1).观察比例环节的阶跃响应曲线典型比例环节模拟电路如图3-1-1所示。

图3-1-1 典型比例环节模拟电路传递函数:01(S)(S)(S)R R K KU U G i O === ; 单位阶跃响应: K )t (U = 实验步骤:注:‘S ST ’用短路套短接!(1)将函数发生器(B5)所产生的周期性矩形波信号(OUT ),作为系统的信号输入(Ui );该信号为零输出时,将自动对模拟电路锁零。

① 在显示与功能选择(D1)单元中,通过波形选择按键选中矩形波’(矩形波指示灯亮)。

② 量程选择开关S2置下档,调节“设定电位器1”,使之矩形波宽度>1秒(D1单元左显示)。

③ 调节B5单元的“矩形波调幅”电位器使矩形波输出电压= 4V (D1单元‘右显示)。

(2)构造模拟电路:按图3-1-1安置短路套及测孔联线,表如下。

(a )安置短路套 (b )测孔联线(3)运行、观察、记录:打开虚拟示波器的界面,点击开始,按下信号发生器(B1)阶跃信号按钮(0→+4V 阶跃),观测A5B 输出端(Uo )的实际响应曲线。

自动控制原理实验报告

自动控制原理实验报告

自动控制原理实验报告姓 名班 级学 号指导教师1自动控制原理实验报告(一)一.实验目的1.了解掌握各典型环节模拟电路的构成方法、传递函数表达式及输出时域函数表达式。

2.观察分析各典型环节的阶跃响应曲线,了解各项电路参数对典型环节动态特性的影响。

3.了解掌握典型二阶系统模拟电路的构成方法及Ⅰ型二阶闭环系统的传递函数标准式。

4.研究Ⅰ型二阶闭环系统的结构参数--无阻尼振荡频率ωn 、阻尼比ξ对过渡过程的影响。

5.掌握欠阻尼Ⅰ型二阶闭环系统在阶跃信号输入时的动态性能指标σ%、t p 、t s 的计算。

6.观察和分析Ⅰ型二阶闭环系统在欠阻尼、临界阻尼、过阻尼的瞬态响应曲线,及在阶跃信号输入时的动态性能指标σ%、t p 值,并与理论计算值作比对。

二.实验过程与结果1.观察比例环节的阶跃响应曲线1.1模拟电路图1.2传递函数(s)G(s)()o i U K U s == 10R K R =1.3单位阶跃响应U(t)K 1.4实验结果1.5实验截图2342.观察惯性环节的阶跃响应曲线2.1模拟电路图2.2传递函数(s)G(s)()1o i U KU s TS ==+10R K R =1T R C =2.3单位阶跃响应0(t)K(1e)tTU-=-2.4实验结果2.5 实验截图5673.观察积分环节的阶跃响应曲线3.1模拟电路图3.2传递函数(s)1G(s)()TS o i U U s ==i 0T =R C3.3单位阶跃响应01(t)i U t T =3.4 实验结果3.5 实验截图89104.观察比例积分环节的阶跃响应曲线4.1模拟电路图4.2传递函数0(s)1(s)(1)(s)i i U G K U T S ==+10K R R =1i T R C=4.3单位阶跃响应1 (t)(1)U K tT=+ 4.4实验结果4.5实验截图1112135.观察比例微分环节的阶跃响应曲线5.1模拟电路图5.2传递函数0(s)1(s)()(s)1i U TSG K U S τ+==+12312(R )D R R T CR R =++3R C τ=120R R K R +=141233(R //R )R D K R +=0.06D D T K sτ=⨯=5.3单位阶跃响应0(t)()U KT t Kδ=+5.4实验结果截图6.观察比例积分微分(PID )环节的响应曲线6.1模拟电路图156.2传递函数0(s)(s)(s)p p p d i i K U G K K T S U T S ==++123212(R )C d R R T R R =++i 121(R R )C T =+120p R R K R +=1233(R //R )R D K R +=32R C τ= D D T K τ=⨯6.3单位阶跃响应0(t)()p p D p K U K T t K tTδ=++6.4实验观察结果截图16三.实验心得这个实验,收获最多的一点:就是合作。

自动控制原理实验报告

自动控制原理实验报告

一、实验目的1. 理解自动控制原理的基本概念,掌握自动控制系统的组成和基本工作原理。

2. 熟悉自动控制实验设备,学会使用相关仪器进行实验操作。

3. 通过实验验证自动控制理论在实际系统中的应用,加深对理论知识的理解。

二、实验原理自动控制原理是研究自动控制系统动态过程及其控制规律的科学。

实验主要验证以下原理:1. 线性时不变系统:系统在任意时刻的输入与输出之间关系可用线性方程表示,且系统参数不随时间变化。

2. 稳定性:系统在受到扰动后,能够逐渐恢复到稳定状态。

3. 控制器设计:通过控制器的设计,使系统满足预定的性能指标。

三、实验设备1. 自动控制实验台2. 计算机及控制软件3. 测量仪器(如示波器、信号发生器、数据采集器等)四、实验内容1. 线性时不变系统阶跃响应实验2. 线性时不变系统频率响应实验3. 控制器设计实验五、实验步骤1. 线性时不变系统阶跃响应实验(1)搭建实验电路,连接好相关仪器;(2)设置输入信号为阶跃信号,观察并记录输出信号;(3)分析阶跃响应曲线,计算系统动态性能指标。

2. 线性时不变系统频率响应实验(1)搭建实验电路,连接好相关仪器;(2)设置输入信号为正弦信号,改变频率,观察并记录输出信号;(3)分析频率响应曲线,计算系统频率特性指标。

3. 控制器设计实验(1)根据系统性能指标,选择合适的控制器类型;(2)搭建实验电路,连接好相关仪器;(3)调整控制器参数,观察并记录输出信号;(4)分析控制器效果,验证系统性能指标。

六、实验结果与分析1. 线性时不变系统阶跃响应实验(1)实验结果:绘制阶跃响应曲线,计算系统动态性能指标;(2)分析:与理论值进行对比,验证系统动态性能。

2. 线性时不变系统频率响应实验(1)实验结果:绘制频率响应曲线,计算系统频率特性指标;(2)分析:与理论值进行对比,验证系统频率特性。

3. 控制器设计实验(1)实验结果:调整控制器参数,观察并记录输出信号;(2)分析:验证系统性能指标,评估控制器效果。

自动控制原理实习报告

自动控制原理实习报告

实习报告:自动控制原理实验一、实验背景及目的随着现代工业的快速发展,自动控制技术在各个领域中的应用越来越广泛。

自动控制原理实验是电气工程及其自动化专业的一门重要实践课程,旨在让学生了解和掌握自动控制理论的基本原理和方法,培养学生的动手能力和实际问题解决能力。

本次实验主要涉及电动调节阀和PID控制器的相关知识。

二、实验内容及步骤1. 电动调节阀篇(1)了解电动调节阀的结构特点和工作原理。

电动调节阀主要由电动执行器与调节阀阀体构成,通过接收工业自动化控制系统的信号,来驱动阀门改变阀芯和阀座之间的截面积大小,控制管道介质的流量、温度、压力等工艺参数,实现远程自动控制。

(2)学习电动调节阀的调节稳定性和调节性能。

电动调节阀具有调节稳定,调节性能好等特点。

其结构特点包括:伺服放大器采用深度动态负反馈,可提高自动调节精度;电动操作器有多种形式,可适用于4~20mA DC或0~10mA DC;可调节范围大,固有可调比为50,流量特性有直线和等百分比;电子型电动调节阀可直接由电流信号控制阀门开度,无需伺服放大器;阀体按流体力学原理设计的等截面低流阻流道,额定流量系数增大30%。

(3)了解电动调节阀的分类及适用场合。

电动调节阀一般可分为单座式和双座式结构。

电动单座式调节阀适用于对泄漏要求严格,阀前后压差低及有一定粘度和含纤维介质的工作场合;电动双座式调节阀具有不平衡力小,允许压差大,流通能力大等待点,适用于泄漏量要求不严格的场合。

2. PID控制器篇(1)了解PID控制器的组成及作用。

PID控制器由比例控制、积分控制和微分控制组成。

比例控制是利用输入信号和参考信号的偏差量来控制;微分控制是利用输入信号的变化频率来控制;积分控制是利用输入信号的积分量来控制。

PID控制器能够通过设置比例、积分和微分三种参数来调节系统输出。

(2)学习PID控制器的开发现状。

PID控制器自发明以来已有近70年的历史,其结构简单、稳定性好、运行可靠、调节方便,已成为工业控制技术中的领先技术之一。

自动控制原理实验报告样本一

自动控制原理实验报告样本一

自动控制原理实验报告样本一【实验名称】:自动控制原理实验报告样本一【实验目的】:本实验旨在通过对自动控制原理的实验研究,掌握自动控制系统的基本原理和方法,以及对控制系统的性能进行评估和优化。

【实验装置和仪器】:1. 控制器:采用PID控制器,型号为XYZ-123。

2. 传感器:采用温度传感器,型号为ABC-456。

3. 执行器:采用电动阀门,型号为DEF-789。

4. 数据采集系统:采用LabVIEW软件进行数据采集和处理。

【实验原理】:自动控制原理实验中,我们采用了PID控制器来实现对温度的控制。

PID控制器是一种经典的控制算法,由比例(P)、积分(I)和微分(D)三个部分组成。

具体原理如下:1. 比例控制(P):根据反馈信号与设定值之间的差异,按比例调节输出信号。

比例系数Kp决定了输出信号的变化速度。

2. 积分控制(I):根据反馈信号与设定值之间的积分,按比例调节输出信号。

积分时间常数Ti决定了输出信号的稳定性。

3. 微分控制(D):根据反馈信号的变化速率,按比例调节输出信号。

微分时间常数Td决定了输出信号的响应速度。

通过调整PID控制器的参数,我们可以实现对温度的精确控制。

【实验步骤】:1. 将温度传感器连接到被控对象上,并将输出信号接入PID控制器的输入端口。

2. 将PID控制器的输出信号接入电动阀门,实现对温度的调节。

3. 打开实验软件LabVIEW,建立数据采集系统,设置采样频率和采样时长。

4. 设定所需的目标温度值,并将其输入PID控制器。

5. 启动数据采集系统,并记录下实验开始时间。

6. 观察温度的变化情况,并记录下每次采样的温度数值。

7. 根据实验数据,计算出温度的偏差值,并将其输入PID控制器进行调整。

8. 持续观察和记录实验数据,直至温度稳定在设定值附近。

9. 停止数据采集系统,并记录下实验结束时间。

【实验结果】:根据实验数据,我们得到了如下结果:1. 实验开始时间:2022年1月1日 10:00:002. 实验结束时间:2022年1月1日 11:00:003. 设定目标温度:40℃4. 实际温度波动范围:39.8℃ - 40.2℃5. 温度稳定时间:30分钟【实验分析】:根据实验结果,我们可以得出以下分析:1. 实际温度波动范围在设定目标温度的可接受范围内,说明PID控制器对温度的控制较为准确。

自动控制原理实验报告

自动控制原理实验报告

自动控制原理实验报告摘要:本实验通过对自动控制原理的研究与实践,旨在深入了解自动控制系统的基本原理,以及相关的实验应用。

通过实验的设计与实施,我们在实践中学习了控制系统的结构、传递函数、稳定性、稳态误差等内容,并通过使用PID控制器对物理实验系统进行控制,从而对自动控制系统有了更加深入的理解。

引言:自动控制原理是现代工程控制领域的基础理论之一,在工业、交通、通信等领域都有广泛的应用。

自动控制原理实验是培养学生工程实践能力和动手能力的重要实践环节。

本实验通过对自动控制原理相关实验的设计与实践,让我们深入了解了自动控制系统的基本原理,并通过实际操作对理论知识进行了实际应用。

实验目的:1. 了解自动控制系统的基本结构和原理;2. 学习如何建立传递函数,并分析系统的稳定性;3. 熟悉PID控制器的参数调节方法;4. 掌握如何利用PID控制器对物理实验系统进行控制。

实验原理与方法:1. 实验装置搭建:我们搭建了一个简单的电路系统,包括输入信号源、控制器、执行器和输出传感器。

通过控制器对执行器的控制,实现对输出信号的调节。

2. 传递函数建立:使用系统辨识方法,通过对输入和输出信号的采集,建立系统的传递函数。

经过数据处理和分析,得到系统的传递函数表达式。

3. 稳定性分析:对系统的传递函数进行稳定性分析,包括零极点分析和Nyquist稳定性判据。

根据分析结果,判断系统的稳定性。

4. PID参数调节:根据传递函数和系统要求,使用PID控制器对系统进行调节。

根据实际情况进行参数调节,使得系统的响应达到要求。

实验结果与讨论:我们通过以上方法,成功地建立了控制系统的传递函数,并进行了稳定性分析。

通过对PID控制器参数的调节,使系统的稳态误差达到了要求。

通过实验,我们深刻理解了自动控制系统的基本原理,并学会了如何应用具体方法进行实际操作。

实验结论:通过自动控制原理的实验研究,我们对控制系统的基本原理有了更加深入的了解。

实践中,我们通过搭建实验装置、建立传递函数、进行稳定性分析和PID参数调节等实验操作,使得理论知识得到了更加全面的应用和巩固。

自动控制实验报告单

自动控制实验报告单

一、实验名称自动控制原理实验二、实验目的1. 熟悉并掌握自动控制原理实验的基本操作和实验设备的使用方法。

2. 通过对典型环节的时域响应、线性系统的矫正等实验,加深对自动控制理论的理解。

3. 培养学生分析问题、解决问题的能力,提高实验技能。

三、实验原理自动控制原理实验是自动控制专业一门重要的实验课程,旨在通过实验使学生掌握自动控制的基本原理和方法,提高学生的实验技能。

实验主要包括以下内容:1. 典型环节的时域响应:研究比例环节、积分环节、比例积分环节、惯性环节、比例微分环节和比例积分微分环节的时域响应,了解参数变化对动态特性的影响。

2. 线性系统的矫正:通过串联校正、反馈校正和复合控制校正等方法,提高系统的稳定性、快速性和准确性。

四、实验仪器1. PC机一台2. TD-ACC(或TD-ACS)实验系统一套3. 模拟信号发生器4. 示波器5. 万用表五、实验内容及步骤实验一:典型环节的时域响应1. 实验内容:(1)比例环节(2)积分环节(3)比例积分环节(4)惯性环节(5)比例微分环节(6)比例积分微分环节2. 实验步骤:(1)连接实验电路,设置参数;(2)输入阶跃信号,观察并记录输出信号;(3)分析输出信号,比较理想响应与实际响应的差异;(4)改变参数,观察动态特性的变化。

实验二:线性系统的矫正1. 实验内容:(1)串联校正(2)反馈校正(3)复合控制校正2. 实验步骤:(1)根据期望的时域性能指标,推导出二阶系统的串联校正环节的传递函数;(2)搭建校正环节的实验电路;(3)输入阶跃信号,观察并记录输出信号;(4)分析输出信号,验证校正效果。

六、实验结果与分析实验一:典型环节的时域响应1. 比例环节:输出信号与输入信号成线性关系,无延时。

2. 积分环节:输出信号随时间逐渐增大,延时为积分时间常数。

3. 比例积分环节:输出信号先随时间增大,然后趋于稳定,延时为积分时间常数。

4. 惯性环节:输出信号随时间逐渐增大,延时为惯性时间常数。

自动控制原理实验报告

自动控制原理实验报告

自动控制原理实验报告 The document was finally revised on 2021自动控制原理实验报告实验一、典型环节的时域响应一.实验目的1.熟悉并掌握TD-ACC+(TD-ACS)设备的使用方法及各典型环节模拟控制电路的构成方法。

2.熟悉各种典型环节的理想阶跃曲线和实际阶跃响应曲线。

对比差异、分析原因。

3.了解参数变化对典型环节动态特性的影响。

二.实验设备PC机一台,TD-ACC+(TD-ACS)实验系统一套。

三.实验内容1.比例环节2.积分环节3.比例积分环节4.惯性环节5.比例微分环节6.比例积分微分环节四、实验感想在本次实验后,我了解了典型环节的时域响应方面的知识,并且通过实践,实现了时域响应相关的操作,感受到了实验成功的喜悦。

实验二、线性系统的矫正一、目的要求1.掌握系统校正的方法,重点了解串联校正。

2.根据期望的时域性能指标推导出二阶系统的串联校正环节的传递函数二、仪器设备PC 机一台,TD-ACC+(或 TD-ACS)教学实验系统一套。

三、原理简述所谓校正就是指在使系统特性发生变接方式,可分为:馈回路之内采用的测点之后和放1.原系统的结构框图及性能指标对应的模拟电路图2.期望校正后系统的性能指标3.串联校正环节的理论推导四、实验现象分析校正前:校正后:校正前:校正后:六、实验心得次实验让我进一步熟悉了TD-ACC+实验系统的使用,进一步学习了虚拟仪器,更加深入地学习了自动控制原理,更加牢固地掌握了相关理论知识,激发了我理论学习的兴趣。

实验三、线性系统的频率响应分析一、实验目的1.掌握波特图的绘制方法及由波特图来确定系统开环传函。

2.掌握实验方法测量系统的波特图。

二、实验设备PC机一台,TD-ACC+系列教学实验系统一套。

三、实验原理及内容(一)实验原理1.频率特性当输入正弦信号时,线性系统的稳态响应具有随频率(ω由0变至∞)而变化的特性。

频率响应法的基本思想是:尽管控制系统的输入信号不是正弦函数,而是其它形式的周期函数或非周期函数,但是,实际上的周期信号,都能满足狄利克莱条件,可以用富氏级数展开为各种谐波分量;而非周期信号也可以使用富氏积分表示为连续的频谱函数。

自动控制原理实验报告(自动化专业电子版)

自动控制原理实验报告(自动化专业电子版)

精心整理自动控制原理实验报告课程编号:ME3121023专业班级实验目的和要求:通过自动控制原理实验牢固地掌握《自动控制原理》课的基本分析方法和实验测试手段。

能应用运算放大器建立各种控制系统的数学模型,掌握系统校正的常用方法,掌握系统性能指标同系统结构和参数之间的基本关系。

通过大量实验,提高动手、动脑、理论结合实际的能力,提高从事数据采集与调试的能力,为构建系统打下坚实的基础。

一、12341分环节和比例积分微分环节。

2、在阶跃输入信号作用下,记录各环节的输出波形,写出输入输出之间的时域数学关系。

3、在运算放大器上实现各环节的参数变化。

(三)、实验要求:1、仔细阅读自动控制实验装置布局图和计算机虚拟测量软件的使用说明书。

2、做好预习,根据实验内容中的原理图及相应参数,写出其传递函数的表达式,并计算各典型环节的时域输出响应和相应参数(K、T)。

3、分别画出各典型环节的理论波形。

5、输入阶跃信号,测量各典型环节的输入和输出波形及相关参数。

(四)、实验原理:实验原理及实验设计:1.2.3.时域输出响应:4.比例积分环节:Ui-Uo的时域响应理论波形:传递函数:比例系数:时常数:时域输出响应:5.比例微分环节: Ui-Uo的时域响应理论波形:传递函数:比例系数:时常数:时域输出响应:6.123、123的原因。

(七)、记录实验数据:、实测实验二二阶系统的性能研究(一)、实验目的:通过实验加深理解二阶系统的性能指标同系统参数的关系。

(二)、实验内容:1、二阶系统的时域动态性能研究;(三)、实验要求:1、做好预习,根据实验原理图所示相应参数,写出系统的开环,闭环传递函数。

(八)、思考与讨论:将实验结果与理论知识作对比,并进行讨论。

实验三系统时域分析实验(一)、实验目的:1、深入掌握二阶系统的性能指标同系统闭环极点位置的关系。

2、掌握高阶系统性能指标的估算方法及开环零、极点同闭环零、极点的关系。

3、能运用根轨迹分析法由开环零极点的位置确定闭环零极点的位置。

自动控制原理实验报告

自动控制原理实验报告

自动控制原理实验报告实验目的,通过本次实验,掌握自动控制原理的基本知识,了解控制系统的结构和工作原理,以及掌握控制系统的设计和调试方法。

实验仪器,本次实验所使用的仪器有PID控制器、执行器、传感器等。

实验原理,自动控制系统是指通过传感器采集被控对象的信息,经过控制器处理后,通过执行器对被控对象进行调节,以达到设定的控制目标。

其中PID控制器是通过比较被控对象的实际值和设定值,计算出误差,并根据比例、积分、微分三个参数来调节执行器输出的控制信号,使被控对象的实际值逐渐趋近设定值的一种控制方式。

实验步骤:1. 将PID控制器与执行器、传感器连接好,并确认连接正确无误。

2. 设置被控对象的设定值,并观察实际值的变化情况。

3. 调节PID控制器的参数,观察被控对象的响应情况,找到最佳的控制参数组合。

4. 对不同类型的被控对象进行实验,比较不同参数组合对控制效果的影响。

实验结果与分析:通过实验我们发现,合适的PID参数组合能够使被控对象的实际值快速稳定地达到设定值,并且对不同类型的被控对象,需要调节的参数组合也有所不同。

在实际工程中,需要根据被控对象的特性和控制要求来选择合适的PID参数,并进行调试和优化。

结论:本次实验使我们进一步了解了自动控制原理,掌握了PID控制器的基本原理和调试方法,对控制系统的设计和调试有了更深入的理解。

同时也认识到在实际工程中,需要根据具体情况来选择合适的控制方法和参数,进行调试和优化,以达到最佳的控制效果。

通过本次实验,我们对自动控制原理有了更深入的认识,对控制系统的设计和调试方法有了更加清晰的理解,相信这对我们今后的学习和工作都将有所帮助。

自动控制原理_实验报告

自动控制原理_实验报告

一、实验目的1. 理解自动控制系统的基本概念和组成;2. 掌握典型环节的传递函数和响应特性;3. 熟悉PID控制器的原理和参数整定方法;4. 通过实验验证理论知识的正确性,提高实际操作能力。

二、实验设备1. 自动控制原理实验箱;2. 示波器;3. 数字多用表;4. 个人电脑;5. 实验指导书。

三、实验原理自动控制系统是一种根据给定输入信号自动调节输出信号的系统。

它主要由控制器、被控对象和反馈环节组成。

控制器根据被控对象的输出信号与给定信号的偏差,通过调节控制器的输出信号来改变被控对象的输入信号,从而实现对被控对象的控制。

1. 典型环节(1)比例环节:比例环节的传递函数为G(s) = K,其中K为比例系数。

比例环节的响应特性为输出信号与输入信号成线性关系。

(2)积分环节:积分环节的传递函数为G(s) = 1/s,其中s为复频域变量。

积分环节的响应特性为输出信号随时间逐渐逼近输入信号。

(3)比例积分环节:比例积分环节的传递函数为G(s) = K(1 + 1/s),其中K为比例系数。

比例积分环节的响应特性为输出信号在比例环节的基础上,逐渐逼近输入信号。

2. PID控制器PID控制器是一种常用的控制器,其传递函数为G(s) = Kp + Ki/s + Kd(s/s^2),其中Kp、Ki、Kd分别为比例系数、积分系数和微分系数。

PID控制器可以实现对系统的快速、稳定和精确控制。

四、实验内容及步骤1. 实验一:典型环节的阶跃响应(1)搭建比例环节电路,观察并记录输出信号随时间的变化曲线;(2)搭建积分环节电路,观察并记录输出信号随时间的变化曲线;(3)搭建比例积分环节电路,观察并记录输出信号随时间的变化曲线。

2. 实验二:PID控制器参数整定(1)搭建PID控制器电路,观察并记录输出信号随时间的变化曲线;(2)通过改变PID控制器参数,观察并分析系统响应特性;(3)根据系统响应特性,整定PID控制器参数,使系统达到期望的响应特性。

自动控制原理实验报告

自动控制原理实验报告

自动控制原理实验报告实验报告:自动控制原理一、实验目的本次实验的目的是通过设计并搭建一个简单的自动控制系统,了解自动控制的基本原理和方法,并通过实际测试和数据分析来验证实验结果。

二、实验装置和仪器1. Arduino UNO开发板2.电机驱动模块3.直流电机4.旋转角度传感器5.杜邦线6.电源适配器三、实验原理四、实验步骤1. 将Arduino UNO开发板与电机驱动模块、旋转角度传感器和直流电机进行连接。

2. 编写Arduino代码,设置电机的控制逻辑和旋转角度的反馈机制。

3. 将编写好的代码上传至Arduino UNO开发板。

4.将电源适配器连接至系统,确保实验装置正常供电。

5.启动实验系统并观察电机的转动情况。

6.记录电机的转动角度和实际目标角度的差异,并进行数据分析。

五、实验结果和数据分析在实际操作中,我们设置了电机的目标转动角度为90度,待实验系统运行后,我们发现电机实际转动角度与目标角度存在一定的差异。

通过对数据的分析,我们发现该差异主要由以下几个方面导致:1.电机驱动模块的响应速度存在一定的延迟,导致电机在到达目标角度时出现一定的误差。

2.旋转角度传感器的精度有限,无法完全准确地测量电机的实际转动角度。

这也是导致实际转动角度与目标角度存在差异的一个重要原因。

3.电源适配器的稳定性对电机的转动精度也有一定的影响。

六、实验总结通过本次实验,我们了解了自动控制的基本原理和方法,并通过实际测试和数据分析了解了自动控制系统的运行情况。

同时,我们也发现了实际系统与理论预期之间存在的一些差异,这些差异主要由电机驱动模块和旋转角度传感器等因素引起。

为了提高自动控制系统的精度,我们需要不断优化和改进这些因素,并进行相应的校准和调试。

实验的结果也提醒我们,在实际应用中,需要考虑各种因素的影响,以确保自动控制系统的可靠性和准确性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

微机与自动控制原理实验报告书
江南大学继续教育与网络教育学院微机与自动控制原理实验报告书实验名称:实验一典型环节的模拟研究实验二典型系统瞬态响应和稳定性学习中心:无锡市现代远程教育中心专业:机械制造与自动化批次:201309 姓名:曹佳军证件号码:320283************学号:913911484 同实验者姓名:黄海光、高雁、曹佳军、吴惠刚、蒋国荣、朱国兴、刘贞元实验时间:总评成绩:评阅教师:成绩评定文字图表数据处理内容完整实验一典型环节的模拟研究一、实验目的 1. 了解并掌握TAP-2教学实验系统模拟电路的使用方法,掌握典型环节模拟电路的构成方法,培养学生实验技能。

2.
熟悉各种典型环节的阶跃响应曲线。

3. 了解参数变化对典型环节动态特性的影响。

二、实验仪器设备实验设备名称 1. 超低频示波器一台 2. 直流稳压电源一台 3. 万用表一块规格型号编号备注三、实验原始数据实验前选定典型换接模拟电路的元件参数各两组。

1. 比例环节Ui(S)KUo(S)图1-1A 比例环节方块图Uo(s)?K Ui(s)比例环节的模拟电路图如图1-1B所示,其传递函数为: 1 R1R0Ui-+R10K-+R10KUoR0=100k
R1=100K;和得当输入为单位阶跃信号,即Ui(t)?1(t)时,则K?Ui(s)?1/s,式得到R1R0 1Uo(s)?K? s所以输出响应为Uo(t)?K 其输出波形如图1-1C。

输出1kUi(t)Uo(t)t图1-1C 比例环节输出波形图 2. 积分环节1TS图1-2A 积分环节方块图Uo(s)1? Ui(s)T?s积分环节的模拟电路如图1-2B
所示。

2 10?FCUi?????R010KR10KRUo图1-2B 积分环节模拟电路积分环节模拟电路的传递函数为Uo(s)1 ?Ui(s)R0C?s比较式和得T?R0?C 当输入为单位阶跃信号,即即Ui(t)?1(t)时,Ui(s)?1/s,则式得到Uo(s)?11? 所以输出响应为T?ss1Uo(t)??t TUo1/T1t图1-2C 积分环节输出波形其输出波形如图1-2C 3. 比例积分环节R1C10KKUiUi1TS图1-3A PI 方块图UoR010KUoR0=200k R1=200K, C=1?F Uo1/TUo积分环节的模拟电路如图1-3B所示。

积分环节模拟电路的传递函数为: Uo(s)R1Cs?1R11???
Ui(s)R0C?sR0R0C?s 3 1图1-3C PI输出波形t 比较式和得?K?R1/R0 ?T?R?C0?当输入为单位阶跃信号,即即Ui(t)?1(t)时,Ui(s)?1/s,则式得到Uo(s)?(K?11)? T?ss 所以输出响应为
Uo1/TUo1t Uo(t)?K?1?t T 图1-3C PI输出波形其输出波形如图1-3C 4. 比例微分环节1UiKTS图1-4A PD方块图Uo 1UiKTS图1-4A PD方块图Uo 其传递函数为Uo(s)?K(1?T?s) Ui(s)比例微分环节的模拟电路如图1-4B所示。

4
CR310KUiR010KUoR0=10k
R1=20K, (10K), R2=10K, C=1?F, R3=200?图1-4B PD模拟电路图其传递函数为: Uo(s)R1?R2RRCs?(1?12)
Ui(s)R0R1?R2R3Cs?1考虑到R3??R1,R2,所以Uo(s)R1?R2RR?(1?12Cs)
Ui(s)R0R1?R2比较式和得R1?R2?K??R0? ??T?R1?R2?R1?R2? 当输入为单位阶跃信号,即即Ui(t)?1(t)时,Ui(s)?1/s,则式得到
Uo(s)?(K?Ts)?所以输出响应为1K??KT ss Uo(t)?KT?(t)?K 其中?(t)为单位脉冲函数。

式为理想的比例微分环节的输出响应,考虑到比例微分环节的实际模拟电路,则实际的输出响应为:R1?R2R1?R2?R3CUo(t)??e R0R1?R2t图1-4C和图1-4D分别式比例微分环节的理想输出波形和实际输出波形。

5 5. 惯性环节KTS?1图1-5A 惯性环节方块图其传递函数为Uo(s)K ?Ui(s)1?T?s 比例微分环节的模拟电路如图1-5B所示。

R1C10KUiR010KUoR0=200k
R1=200K, (10K) C=1?F,(2?F)图1-5B 惯性环节模拟电路其传递函数为: Uo(s)R/R?10
Ui(s)R1Cs?1?K?R1/R0 ?T?R?C1? 比较式和得当输入为单位阶跃信号,即即Ui(t)?1(t)时,Ui(s)?1/s,则式得到Uo(s)?K1?
Ts?1s Uo所以输出响应为Uo(t)?K(1?e?t) T 其输出波形如图1-5C。

6. 比例积分微分环节其传递函数为 6 t图1-5C 惯性环节输出波形Uo(s)1?K??TDs Ui(s)TI?s 比例积分环节的模拟电路如图1-6B所示。

KpUiTDS1TS 图1-6A 积分环节方块图Uo KpUiTDS1TS图1-6A 积分环节方块图Uo 积分环节模拟电路的传递函数为: Uo(s)R1?R2R?CRC?s?11???12?11
Ui(s)R0R0C1?sR0R3C2?s?1考虑到R1??R2??R3,则式可以近似为:Uo(s)R1R?R1???12C2?s
Ui(s)R0R0C1?sR0R1C1R2C2R3
10KRRUoUiR010KR1>>R2>>R3R0=10k R1=20K, (10K) R2=1KR3=200???C1=1?F C2=1?F 图1-6B PID模拟电路图7 R1C1R2C2R310KRRUoUiR010KR1>>R 2>>R3R0=10k R1=20K, (10K) R2=1KR3=200???C1=1?F C2=1?F
图1-6B PID模拟电路图比较式和得??K?R/Rp10?? ?TI?R0?C?RR? TD?12C2?R0?当输入为单位阶跃信号,即即Ui(t)?1(t)时,Ui(s)?1/s,则式得到Uo(s)11?(K??TDs)? Ui(s)TI?ss所以输出响应为Uo(t)?TD?(t)?KP?1?t TI 其中?(t)为单位脉冲函数。

式为理想的比例积分微分环节的输出响应,考虑到比例积分微分环节的实际模拟电路),则实际输出响应为:?R1?R2R1?C2R1C11Uo(s)???t ?[1?(?1)eR3?C2
R0R0C1R0?C1R3C2t 图1-6C为理想PID输出波形,图1-6D为实际PID模拟电路的输出波形。

8 UoUot图1-6C 理想PID输出波形t图1-6D 实际PID输出波形四、实验观测记录环节参数R1=100K P R1=200K C=1μF I C=2μF 阶跃响应波形理想实测环节参数C=1μF PI C=2μF
R1=10K PD R1=20K 阶跃响应波形理想实测9
环节参数R1=10K PID R1=20K C=1μF T C=2μF 阶跃响应波形理想实测五、思考题1.运算放大器组成的各种换接的传递函数是再什么条件下推导出的?怎样选用运算放大器?输入电阻、反馈电阻的阻值范围可以任意选用吗?答:运算放大器组成的各种换接和传递函数是在输入阻抗高,输出阻抗低的条件下推导出来的,通常选用通用放大器,但输入电阻,反馈电阻的阻值不可以任意选用,会影响时间常数。

2.图1-1B, 1-2B,图1-3B,图1-4B,图1-5B,图1-6B中若无后面一个比例换接,其传递函数有什么差别?答:导致相位相反。

3.惯性环节在什么情况下可以近似为比例环节?而在什么情况下可近似为积分环节?答:当T很小时,惯性环节可以近似为比例环
节当T很大的时候,惯性环节可以近似为积分环节。

10 实验二典型系统瞬态响应和稳定性一、实验目的 1. 学习瞬态性能指标的测试技能。

了解参数对系统瞬态性能及稳定性的影响。

二、实验仪器设备实验设备名称MFT CS教学实验板直流稳压电源示波器万用表规格型号编号备注三、实验原始数据实验前按给定参数算出二阶系统的性能指标,Mp,tp,ts的理论值。

应用模拟电路来模拟典型二阶系统和典型三阶系统。

Ui1T0SK1T1S?1Uo图2-1 二阶系统四、实验观测记录1.二阶系统11 K K? 1/S R ?n 1/S ? C(tp) C(?) V V Mp tp ts 理论值实测值理论值实测值理论值实测值250 25 10 15 % 50% 2 % 5%/ / / / / 11050 5 10 25 10 2.三阶系统R 1 2 / / /K? K 输出波形稳定性100 5 稳定47 12
临界12 25 20 不稳定五、思考题1、在实验线路中如何确保系统实现负反馈?如果反馈回路中有偶数个运算放大器,则构成什么反馈?
2、如图2-1所示二阶系统,改变增益会发生不稳定现象吗?
3、有那些措施增加系统稳定度?它们对系统的性能还有什么影响?答:改进措施:1,比例+微分控制:具有提前修正作用,可改善性能2,速度反馈控制:可增大系统阻尼比3,加入校正装置
4、实验中阶跃输入信号的幅值范围应该如何考虑?答:不要超过芯片电源电压13。

相关文档
最新文档