各种类型的微分方程及其相应解法

合集下载

几种常见的微分方程简介,解法

几种常见的微分方程简介,解法

第十二章:微分方程教学目的:1.了解微分方程及其解、阶、通解,初始条件和特等概念。

2.熟练掌握变量可分离的微分方程及一阶线性微分方程的解法。

3.会解齐次微分方程、伯努利方程和全微分方程,会用简单的变量代换解某些微分方程。

4.会用降阶法解下列微分方程:()()n y f x =, (,)y f x y '''+和(,)y f y y '''=5.理解线性微分方程解的性质及解的结构定理。

6.掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程。

7.求自由项为多项式、指数函数、余弦函数,以及它们的和与积的二阶常系数非齐次线性微分方程的特解和通解。

8.会解欧拉方程,会解包含两个未知函数的一阶常系数线性微分方程组。

9.会解微分方程组(或方程组)解决一些简单的应用问题。

教学重点:1、可分离的微分方程及一阶线性微分方程的解法2、可降阶的高阶微分方程()()n y f x =, (,)y f x y '''+和(,)y f y y '''=3、二阶常系数齐次线性微分方程;4、自由项为多项式、指数函数、余弦函数,以及它们的和与积的二阶常系数非齐次线性微分方程;教学难点:1、齐次微分方程、伯努利方程和全微分方程;2、线性微分方程解的性质及解的结构定理;3、自由项为多项式、指数函数、余弦函数,以及它们的和与积的二阶常系数非齐次线性微分方程的特解。

4、欧拉方程§12. 1 微分方程的基本概念函数是客观事物的内部联系在数量方面的反映, 利用函数关系又可以对客观事物的规律性进行研究. 因此如何寻找出所需要的函数关系, 在实践中具有重要意义. 在许多问题中, 往往不能直接找出所需要的函数关系, 但是根据问题所提供的情况, 有时可以列出含有要找的函数及其导数的关系式. 这样的关系就是所谓微分方程. 微分方程建立以后, 对它进行研究, 找出未知函数来, 这就是解微分方程.几个概念:微分方程: 表示未知函数、未知函数的导数与自变量之间的关系的方程, 叫微分方程. 常微分方程: 未知函数是一元函数的微分方程, 叫常微分方程.偏微分方程: 未知函数是多元函数的微分方程, 叫偏微分方程.微分方程的阶: 微分方程中所出现的未知函数的最高阶导数的阶数, 叫微分方程的阶. x 3 y '''+x 2 y ''-4xy '=3x 2 ,y (4) -4y '''+10y ''-12y '+5y =sin2x ,y (n ) +1=0,一般n 阶微分方程:F (x , y , y ', ⋅ ⋅ ⋅ , y (n ) )=0.y (n )=f (x , y , y ', ⋅ ⋅ ⋅ , y (n -1) ) .微分方程的解: 满足微分方程的函数(把函数代入微分方程能使该方程成为恒等式)叫做该微分方程的解. 确切地说, 设函数y =ϕ(x )在区间I 上有n 阶连续导数, 如果在区间I 上, F [x , ϕ(x ), ϕ'(x ), ⋅ ⋅ ⋅, ϕ(n ) (x )]=0,那么函数y =ϕ(x )就叫做微分方程F (x , y , y ', ⋅ ⋅ ⋅, y (n ) )=0在区间I 上的解.通解: 如果微分方程的解中含有任意常数, 且任意常数的个数与微分方程的阶数相同, 这样的解叫做微分方程的通解.初始条件: 用于确定通解中任意常数的条件, 称为初始条件. 如x =x 0 时, y =y 0 , y '= y '0 .一般写成00y y x x ==, 00y y x x '='=. 特解: 确定了通解中的任意常数以后, 就得到微分方程的特解. 即不含任意常数的解.初值问题: 求微分方程满足初始条件的解的问题称为初值问题.如求微分方程y '=f (x , y )满足初始条件00y y x x ==的解的问题, 记为⎩⎨⎧=='=00),(y y y x f y x x . 积分曲线: 微分方程的解的图形是一条曲线, 叫做微分方程的积分曲线.例1 一曲线通过点(1, 2), 且在该曲线上任一点M (x , y )处的切线的斜率为2x , 求这曲线的方程.解 设所求曲线的方程为y =y (x ). 根据导数的几何意义, 可知未知函数y =y (x )应满足关系式(称为微分方程)x dxdy 2=. (1) 此外, 未知函数y =y (x )还应满足下列条件:x =1时, y =2, 简记为y |x =1=2. (2)把(1)式两端积分, 得(称为微分方程的通解)⎰=xdx y 2, 即y =x 2+C , (3)其中C 是任意常数.把条件“x =1时, y =2”代入(3)式, 得2=12+C ,由此定出C =1. 把C =1代入(3)式, 得所求曲线方程(称为微分方程满足条件y |x =1=2的解): y =x 2+1.例2 列车在平直线路上以20m/s(相当于72km/h)的速度行驶; 当制动时列车获得加速度-0.4m/s 2. 问开始制动后多少时间列车才能停住, 以及列车在这段时间里行驶了多少路程?解 设列车在开始制动后t 秒时行驶了s 米. 根据题意, 反映制动阶段列车运动规律的函数s =s (t )应满足关系式4.022-=dt s d . (4) 此外, 未知函数s =s (t )还应满足下列条件:t =0时, s =0, 20==dtds v . 简记为s |t =0=0, s '|t =0=20. (5)把(4)式两端积分一次, 得14.0C t dtds v +-==; (6) 再积分一次, 得s =-0.2t 2 +C 1t +C 2, (7)这里C 1, C 2都是任意常数.把条件v |t =0=20代入(6)得20=C 1;把条件s |t =0=0代入(7)得0=C 2.把C 1, C 2的值代入(6)及(7)式得v =-0.4t +20, (8)s =-0.2t 2+20t . (9)在(8)式中令v =0, 得到列车从开始制动到完全停住所需的时间504.020==t (s ). 再把t =50代入(9), 得到列车在制动阶段行驶的路程s =-0.2⨯502+20⨯50=500(m ).解 设列车在开始制动后t 秒时行驶了s 米,s ''=-0.4, 并且s |t =0=0, s '|t =0=20.把等式s ''=-0.4两端积分一次, 得s '=-0.4t +C 1, 即v =-0.4t +C 1(C 1是任意常数),再积分一次, 得s =-0.2t 2 +C 1t +C 2 (C 1, C 2都C 1是任意常数).由v |t =0=20得20=C 1, 于是v =-0.4t +20;由s |t =0=0得0=C 2, 于是s =-0.2t 2+20t .令v =0, 得t =50(s). 于是列车在制动阶段行驶的路程s =-0.2⨯502+20⨯50=500(m ).例3 验证: 函数x =C 1cos kt +C 2 sin kt是微分方程0222=+x k dt x d 的解.解 求所给函数的导数:kt kC kt kC dtdx cos sin 21+-=, )sin cos (sin cos 212221222kt C kt C k kt C k kt C k dt x d +-=--=. 将22dtx d 及x 的表达式代入所给方程, 得 -k 2(C 1cos kt +C 2sin kt )+ k 2(C 1cos kt +C 2sin kt )≡0.这表明函数x =C 1cos kt +C 2sin kt 满足方程0222=+x k dtx d , 因此所给函数是所给方程的解. 例4 已知函数x =C 1cos kt +C 2sin kt (k ≠0)是微分方程0222=+x k dtx d 的通解, 求满足初始条件 x | t =0 =A , x '| t =0 =0的特解.解 由条件x | t =0 =A 及x =C 1 cos kt +C 2 sin kt , 得C 1=A .再由条件x '| t =0 =0, 及x '(t ) =-kC 1sin kt +kC 2cos kt , 得C 2=0.把C 1、C 2的值代入x =C 1cos kt +C 2sin kt 中, 得x =A cos kt .§12. 2 可分离变量的微分方程观察与分析:1. 求微分方程y '=2x 的通解. 为此把方程两边积分, 得y =x 2+C .一般地, 方程y '=f (x )的通解为C dx x f y +=⎰)((此处积分后不再加任意常数).2. 求微分方程y '=2xy 2 的通解.因为y 是未知的, 所以积分⎰dx xy 22无法进行, 方程两边直 接积分不能求出通解.为求通解可将方程变为xdx dy y 212=, 两边积分, 得 C x y +=-21, 或Cx y +-=21, 可以验证函数Cx y +-=21是原方程的通解. 一般地, 如果一阶微分方程y '=ϕ(x , y )能写成g (y )dy =f (x )dx形式, 则两边积分可得一个不含未知函数的导数的方程G (y )=F (x )+C ,由方程G (y )=F (x )+C 所确定的隐函数就是原方程的通解对称形式的一阶微分方程:一阶微分方程有时也写成如下对称形式:P (x , y )dx +Q (x , y )dy =0在这种方程中, 变量x 与y 是对称的.若把x 看作自变量、y 看作未知函数, 则当Q (x ,y )≠0时, 有),(),(y x Q y x P dx dy -=. 若把y 看作自变量、x 看作未知函数, 则当P (x ,y )≠0时, 有),(),(y x P y x Q dy dx -=. 可分离变量的微分方程:如果一个一阶微分方程能写成g (y )dy =f (x )dx (或写成y '=ϕ(x )ψ(y ))的形式, 就是说, 能把微分方程写成一端只含y 的函数和dy , 另一端只含x 的函数和dx , 那么原方程就称为可分离变量的微分方程.讨论: 下列方程中哪些是可分离变量的微分方程?(1) y '=2xy , 是. ⇒y -1dy =2xdx .(2)3x 2+5x -y '=0, 是. ⇒dy =(3x 2+5x )dx .(3)(x 2+y 2)dx -xydy =0, 不是.(4)y '=1+x +y 2+xy 2, 是. ⇒y '=(1+x )(1+y 2).(5)y '=10x +y , 是. ⇒10-y dy =10x dx . (6)xy y x y +='. 不是. 可分离变量的微分方程的解法:第一步 分离变量, 将方程写成g (y )dy =f (x )dx 的形式;第二步 两端积分:⎰⎰=dx x f dy y g )()(, 设积分后得G (y )=F (x )+C ;第三步 求出由G (y )=F (x )+C 所确定的隐函数y =Φ(x )或x =ψ(y )G (y )=F (x )+C , y =Φ (x )或x =ψ(y )都是方程的通解, 其中G (y )=F (x )+C 称为隐式(通)解.例1 求微分方程xy dxdy 2=的通解. 解 此方程为可分离变量方程, 分离变量后得xdx dy y21=, 两边积分得⎰⎰=xdx dy y 21, 即 ln|y |=x 2+C 1,从而 2112x C C x e e e y ±=±=+. 因为1C e ±仍是任意常数, 把它记作C , 便得所给方程的通解2x Ce y =.解 此方程为可分离变量方程, 分离变量后得xdx dy y21=, 两边积分得 ⎰⎰=xdx dy y 21, 即 ln|y |=x 2+ln C ,从而 2x Ce y =.例2 铀的衰变速度与当时未衰变的原子的含量M 成正比. 已知t =0时铀的含量为M 0, 求在衰变过程中铀含量M (t )随时间t 变化的规律.解 铀的衰变速度就是M (t )对时间t 的导数dtdM . 由于铀的衰变速度与其含量成正比, 故得微分方程M dtdM λ-=, 其中λ(λ>0)是常数, λ前的曲面号表示当t 增加时M 单调减少. 即0<dt dM . 由题意, 初始条件为M |t =0=M 0.将方程分离变量得dt MdM λ-=. 两边积分, 得⎰⎰-=dt M dM)(λ, 即 ln M =-λt +ln C , 也即M =Ce -λt .由初始条件, 得M 0=Ce 0=C ,所以铀含量M (t )随时间t 变化的规律M =M 0e -λt .例3 设降落伞从跳伞塔下落后, 所受空气阻力与速度成正比, 并设降落伞离开跳伞塔时速度为零. 求降落伞下落速度与时间的函数关系.解 设降落伞下落速度为v (t ). 降落伞所受外力为F =mg -kv ( k 为比例系数). 根据牛顿第二运动定律F =ma , 得函数v (t )应满足的方程为kv mg dtdv m -=, 初始条件为v |t =0=0.方程分离变量, 得mdt kv mg dv =-, 两边积分, 得⎰⎰=-m dt kv mg dv , 1)ln(1C m t kv mg k +=--, 即 t m k Ce k mg v -+=(keC kC 1--=), 将初始条件v |t =0=0代入通解得kmg C -=, 于是降落伞下落速度与时间的函数关系为)1(t m k e kmg v --=. 例4 求微分方程221xy y x dxdy +++=的通解. 解 方程可化为)1)(1(2y x dxdy ++=, 分离变量得 dx x dy y )1(112+=+, 两边积分得⎰⎰+=+dx x dy y )1(112, 即C x x y ++=221arctan . 于是原方程的通解为)21tan(2C x x y ++=.例5有高为1m 的半球形容器, 水从它的底部小孔流出, 小孔横截面面积为1cm 2. 开始时容器内盛满了水, 求水从小孔流出过程中容器里水面高度h 随时间t 变化的规律.解 由水力学知道, 水从孔口流出的流量Q 可用下列公式计算:gh S dtdV Q 262.0==, 其中0. 62为流量系数, S 为孔口横截面面积, g 为重力加速度. 现在孔口横截面面积S =1cm 2, 故 gh dtdV 262.0=, 或dt gh dV 262.0=. 另一方面, 设在微小时间间隔[t , t +d t ]内, 水面高度由h 降至h +dh (dh <0), 则又可得到dV =-πr 2dh ,其中r 是时刻t 的水面半径, 右端置负号是由于dh <0而dV >0的缘故. 又因222200)100(100h h h r -=--=,所以 dV =-π(200h -h 2)dh .通过比较得到dh h h dt gh )200(262.02--=π,这就是未知函数h =h (t )应满足的微分方程.此外, 开始时容器内的水是满的, 所以未知函数h =h (t )还应满足下列初始条件:h |t =0=100.将方程dh h h dt gh )200(262.02--=π分离变量后得dh h h g dt )200(262.02321--=π. 两端积分, 得⎰--=dh h h g t )200(262.02321π,即 C h h g t +--=)523400(262.02523π, 其中C 是任意常数.由初始条件得C g t +⨯-⨯-=)100521003400(262.02523π, 5101514262.0)52000003400000(262.0⨯⨯=-=g g C ππ. 因此 )310107(262.0252335h h g t +-⨯=π.上式表达了水从小孔流出的过程中容器内水面高度h 与时间t 之间的函数关系.§12. 3 齐次方程齐次方程:如果一阶微分方程),(y x f dxdy =中的函数f (x , y )可写成 x y 的函数, 即)(),(xy y x f ϕ=, 则称这方程为齐次方程. 下列方程哪些是齐次方程?(1)022=---'x y y y x 是齐次方程.1)(222-+=⇒-+=⇒x y x y dx dy x x y y dx dy . (2)2211y y x -='-不是齐次方程.2211x y dx dy --=⇒. (3)(x 2+y 2)dx -xydy =0是齐次方程. xy y x dx dy xy y x dx dy +=⇒+=⇒22. (4)(2x +y -4)dx +(x +y -1)dy =0不是齐次方程.142-+-+-=⇒y x y x dx dy . (5)0ch 3)ch 3sh 2(=-+dy xy x dx x y y x yx 是齐次方程. x y x y dx dy xy x x y y x y x dx dy +=⇒+=⇒th 32ch 3ch 3sh 2齐次方程的解法:在齐次方程)(xy dx dy ϕ=中, 令x y u =, 即y =ux , 有 )(u dx du x u ϕ=+, 分离变量, 得xdx u u du =-)(ϕ.两端积分, 得⎰⎰=-xdx u u du )(ϕ. 求出积分后, 再用xy 代替u , 便得所给齐次方程的通解. 例1 解方程dx dy xy dx dy x y =+22. 解 原方程可写成1)(222-=-=x y x y x xy y dx dy , 因此原方程是齐次方程. 令u x y =, 则 y =ux ,dxdu x u dx dy +=, 于是原方程变为12-=+u u dx du x u , 即 1-=u u dx du x . 分离变量, 得xdx du u =-)11(. 两边积分, 得u -ln|u |+C =ln|x |,或写成ln|xu |=u +C . 以xy 代上式中的u , 便得所给方程的通解 C xy y +=||ln . 例2 有旋转曲面形状的凹镜, 假设由旋转轴上一点O 发出的一切光线经此凹镜反射后都与旋转轴平行. 求这旋转曲面的方程.解 设此凹镜是由xOy 面上曲线L : y =y (x )(y >0)绕x 轴旋转而成, 光源在原点. 在L 上任取一点M (x , y ), 作L 的切线交x 轴于A . 点O 发出的光线经点M 反射后是一条平行于x 轴射线. 由光学及几何原理可以证明OA =OM ,因为 x y y OP PM OP AP OA -'=-=-=αcot , 而 22y x OM +=. 于是得微分方程22y x x y y +=-', 整理得1)(2++=yx y x dy dx . 这是齐次方程. 问题归结为解齐次方程1)(2++=y x y x dy dx . 令v y x =, 即x =yv , 得12++=+v v dy dv y v , 即 12+=v dydv y , 分离变量, 得y dy v dv =+12, 两边积分, 得 C y v v ln ln )1ln(2-=++, C y v v =++⇒12, 1)(22+=-⇒v v Cy , 1222=-Cyv C y , 以yv =x 代入上式, 得)2(22C x C y +=. 这是以x 轴为轴、焦点在原点的抛物线, 它绕x 轴旋转所得旋转曲面的方程为)2(222C x C z y +=+. 这就是所求的旋转曲面方程. .例3 设一条河的两岸为平行直线, 水流速度为a , 有一鸭子从岸边点A 游向正对岸点O , 设鸭子的游速为b (b >a ), 且鸭子游动方向始终朝着点O , 已知OA =h , 求鸭子游过的迹线的方程. 解 取O 为坐标原点, 河岸朝顺水方向为x 轴, y 轴指向对岸. 设在时刻t 鸭子位于点P (x , y ), 则鸭子运动速度) ,() ,(dtdy dt dx v v y x ==v , 故有y x v v dy dx =. 另一方面, ) ,()0 ,(2222y x y y x x b a +-+-+=+=b a v , ) ,(2222y x by y x bx a +-+-=v . 因此y x y x b a v v dy dx y x ++-==1)(2, 即yx y x b a dy dx ++-=1)(2. 问题归结为解齐次方程y x y x b a dy dx ++-=1)(2. 令u y x =, 即x =yu , 得 12+-=u ba dy du y , 分离变量, 得dy by a u du -=+12, 两边积分, 得 )ln (ln arsh C y abu +-=, 将y x u =代入上式并整理, 得])()[(2111b a b a Cy Cy Cx +--=. 以x |y =h =0代入上式, 得hC 1=, 故鸭子游过的轨迹方程为 ])()[(211b a b a hy h y h x +--=, 0≤y ≤h . 将y x u =代入)ln (ln arsh C y ab u +-=后的整理过程: )ln (ln arsh C y ab y x +-= a b Cy y x -=⇒)ln(sh ])()[(21a ba b Cy Cy y x -=⇒- ])()[(2a b a b Cy Cy y x -=⇒-])()[(2111a b a b Cy Cy C x +--=⇒.§12.4 线性微分方程一、 线性方程线性方程:方程)()(x Q y x P dxdy =+叫做一阶线性微分方程. 如果Q (x )≡0 , 则方程称为齐次线性方程, 否则方程称为非齐次线性方程. 方程0)(=+y x P dx dy 叫做对应于非齐次线性方程)()(x Q y x P dxdy =+的齐次线性方程. 下列方程各是什么类型方程? (1)y dx dy x =-)2(⇒021=--y x dx dy 是齐次线性方程. (2) 3x 2+5x -5y '=0⇒y '=3x 2+5x , 是非齐次线性方程.(3) y '+y cos x =e -sin x , 是非齐次线性方程.(4)y x dxdy +=10, 不是线性方程. (5)0)1(32=++x dx dy y ⇒0)1(23=+-y x dx dy 或32)1(x y dy dx +-, 不是线性方程. 齐次线性方程的解法:齐次线性方程0)(=+y x P dx dy 是变量可分离方程. 分离变量后得 dx x P ydy )(-=, 两边积分, 得1)(||ln C dx x P y +-=⎰,或 )( 1)(C dx x P e C Ce y ±=⎰=-, 这就是齐次线性方程的通解(积分中不再加任意常数).例1 求方程y dxdy x =-)2(的通解. 解 这是齐次线性方程, 分离变量得2-=x dx y dy , 两边积分得ln|y |=ln|x -2|+lnC ,方程的通解为y =C (x -2).非齐次线性方程的解法:将齐次线性方程通解中的常数换成x 的未知函数u (x ), 把⎰=-dx x P e x u y )()(设想成非齐次线性方程的通解. 代入非齐次线性方程求得)()()()()()()()()(x Q e x u x P x P e x u e x u dx x P dx x P dx x P =⎰+⎰-⎰'---,化简得 ⎰='dx x P e x Q x u )()()(,C dx e x Q x u dx x P +⎰=⎰)()()(,于是非齐次线性方程的通解为])([)()(C dx e x Q e y dx x P dx x P +⎰⎰=⎰-, 或 dx e x Q e Ce y dx x P dx x P dx x P ⎰⎰⎰+⎰=--)()()()(. 非齐次线性方程的通解等于对应的齐次线性方程通解与非齐次线性方程的一个特解之和.例2 求方程25)1(12+=+-x x y dx dy 的通解. 解 这是一个非齐次线性方程.先求对应的齐次线性方程012=+-x y dx dy 的通解. 分离变量得12+=x dx y dy , 两边积分得ln y =2ln (x +1)+ln C ,齐次线性方程的通解为y =C (x +1)2.用常数变易法. 把C 换成u , 即令y =u ⋅(x +1)2, 代入所给非齐次线性方程, 得2522)1()1(12)1(2)1(+=+⋅+-+⋅++⋅'x x u x x u x u 21)1(+='x u ,两边积分, 得C x u ++=23)1(32. 再把上式代入y =u (x +1)2中, 即得所求方程的通解为 ])1(32[)1(232C x x y +++=. 解: 这里12)(+-=x x P , 25)1()(+=x x Q . 因为 )1ln(2)12()(+-=+-=⎰⎰x dx x dx x P , 2)1ln(2)()1(+==⎰+-x e e x dx x P ,2321225)()1(32)1()1()1()(+=+=++=⎰⎰⎰⎰-x dx x dx x x dx e x Q dx x P , 所以通解为])1(32[)1(])([232)()(C x x C dx e x Q e y dx x P dx x P +++=+⎰⎰=⎰-. 例3 有一个电路如图所示, 其中电源电动势为E =E m sin ωt (E m 、ω都是常数), 电阻R 和电感L 都是常量. 求电流i (t ).解 由电学知道, 当电流变化时, L 上有感应电动势dt di L-. 由回路电压定律得出 0=--iR dt di LE , 即 LE i L R dt di =+. 把E =E m sin ω t 代入上式, 得t LE i L R dt di m sin ω=+. 初始条件为i |t =0=0.方程t LE i L R dt di m sin ω=+为非齐次线性方程, 其中 L R t P =)(, t L E t Q m sin )(ω=. 由通解公式, 得])([)()()(C dt e t Q e t i dt t P dt t P +⎰⎰=⎰-) sin (C dt e t L E e dt L Rm dt L R +⎰⎰=⎰-ω )sin (C dt te e LE t L R t L Rm +=⎰-ω t L R m Ce t L t R LR E -+-+=) cos sin (222ωωωω. 其中C 为任意常数.将初始条件i |t =0=0代入通解, 得222 LR LE C m ωω+=, 因此, 所求函数i (t )为) cos sin ( )(222222t L t R L R E e L R LE t i m t L R m ωωωωωω-+++=-. 二、伯努利方程伯努利方程: 方程n y x Q y x P dxdy )()(=+ (n ≠0, 1) 叫做伯努利方程.下列方程是什么类型方程?(1)4)21(3131y x y dx dy -=+, 是伯努利方程. (2)5xy y dx dy +=, ⇒5xy y dxdy =-, 是伯努利方程. (3)x y y x y +=', ⇒11-=-'xy y x y , 是伯努利方程.(4)x xy dxdy 42=-, 是线性方程, 不是伯努利方程. 伯努利方程的解法: 以y n 除方程的两边, 得)()(1x Q y x P dxdy y n n =+-- 令z =y 1-n , 得线性方程)()1()()1(x Q n z x P n dxdz -=-+. 例4 求方程2)(ln y x a x y dx dy -+的通解. 解 以y 2除方程的两端, 得x a y xdx dy y ln 112=+--, 即 x a y xdx y d ln 1)(11=+---, 令z =y -1, 则上述方程成为x a z xdx dz ln 1-=-. 这是一个线性方程, 它的通解为 ])(ln 2[2x aC x z -=.以y -1代z , 得所求方程的通解为1])(ln 2[2=-x a C yx .经过变量代换, 某些方程可以化为变量可分离的方程, 或化为已知其求解方法的方程. 例5 解方程yx dx dy +=1. 解 若把所给方程变形为y x dydx +=, 即为一阶线性方程, 则按一阶线性方程的解法可求得通解. 但这里用变量代换来解所给方程. 令x +y =u , 则原方程化为u dx du 11=-, 即uu dx du 1+=.分离变量, 得dx du u u =+1, 两端积分得u -ln|u +1|=x -ln|C |.以u =x +y 代入上式, 得y -ln|x +y +1|=-ln|C |, 或x =Ce y -y -1.§12. 5 全微分方程全微分方程:一个一阶微分方程写成P (x , y )dx +Q (x , y )dy =0形式后, 如果它的左端恰好是某一个函数u =u (x , y )的全微分:du (x , y )=P (x , y )dx +Q (x , y )dy ,那么方程P (x , y )dx +Q (x , y )dy =0就叫做全微分方程. 这里),(y x P xu =∂∂, ),(y x Q y u =∂∂, 而方程可写为du (x , y )=0.全微分方程的判定:若P (x , y )、Q (x , y )在单连通域G 内具有一阶连续偏导数, 且xQ y P ∂∂=∂∂, 则方程P (x , y )dx +Q (x , y )dy =0是全微分方程,全微分方程的通解:若方程P (x , y )dx +Q (x , y )dy =0是全微分方程, 且du (x , y )=P (x , y )dx +Q (x , y )dy则 u (x , y )=C ,即 )),(( ),(),(00000G y x C dx y x Q dx y x P yy x x ∈=+⎰⎰.是方程P (x , y )dx +Q (x , y )dy =0的通解例1 求解(5x 4+3xy 2-y 3)dx +(3x 2y -3xy 2+y 2 )dy =0.解 这里xQ y xy y P ∂∂=-=∂∂236, 所以这是全微分方程. 取(x 0, y 0)=(0, 0), 有 ⎰⎰+-+=y x dy y dx y xy x y x u 020324)35(),( 332253123y xy y x x +-+=.于是, 方程的通解为C y xy y x x =+-+332253123.积分因子:若方程P (x , y )dx +Q (x , y )dy =0不是全微分方程, 但存在一函数μ=μ(x , y ) (μ(x , y )≠0), 使方程μ(x , y )P (x , y )dx +μ(x , y )Q (x , y )dy =0是全微分方程, 则函数μ(x , y )叫做方程P (x , y )dx +Q (x , y )dy =0的积分因子.例2 通过观察求方程的积分因子并求其通解:(1)ydx -xdy =0;(2)(1+xy )ydx +(1-xy )xdy =0.解 (1)方程ydx -xdy =0不是全微分方程.因为2)(y xdy ydx y xd -=, 所以21y 是方程ydx -xdy =0的积分因子, 于是 02=-y xdy ydx 是全微分方程, 所给方程的通解为C y x =. (2)方程(1+xy )ydx +(1-xy )xdy =0不是全微分方程.将方程的各项重新合并, 得(ydx +xdy )+xy (ydx -xdy )=0,再把它改写成0)()(22=-+y dy x dx y x xy d , 这时容易看出2)(1xy 为积分因子, 乘以该积分因子后, 方程就变为 0)()(2=-+ydy x dx xy xy d , 积分得通解C y x xy ln ||ln 1=+-, 即xy Ce yx 1=. 我们也可用积分因子的方法来解一阶线性方程y '+P (x )y =Q (x ).可以验证⎰=dx x P e x )()(μ是一阶线性方程y '+P (x )y =Q (x )的一个积分因子. 在一阶线性方程的两边乘以⎰=dx x P e x )()(μ得 ⎰=⎰+⎰'dx x P dx x P dx x P e x Q e x yP e y )()()()()(, 即 ⎰='⎰+⎰'dx x P dx x P dx x P e x Q e y e y )()()()(][, 亦即 ⎰='⎰dx x P dx x P e x Q ye )()()(][. 两边积分, 便得通解C dx e x Q ye dx x P dx x P +⎰=⎰⎰)()()(,或 ])([)()(C dx e x Q e y dx x P dx x P +⎰⎰=⎰-. 例3用积分因子求x xy dxdy 42=+的通解. 解 方程的积分因子为22)(x xdx e e x =⎰=μ.方程两边乘以2x e 得22242x x x xe y xe e y =+', 即224)(x x xe y e =',于是 C e dx xe y e x x x +==⎰22224. 因此原方程的通解为2224x x Ce dx xe y -+==⎰. §12. 6 可降阶的高阶微分方程一、y (n )=f (x )型的微分方程解法: 积分n 次1)1()(C dx x f y n +=⎰-, 21)2(])([C dx C dx x f y n ++=⎰⎰-, ⋅ ⋅ ⋅.例1 求微分方程y '''=e 2x -cos x 的通解.解 对所给方程接连积分三次, 得12sin 21C x e y x +-='',212cos 41C x C x e y x +++=',3221221sin 81C x C x C x e y x ++++=,这就是所给方程的通解.或 122sin 21C x e y x +-='',2122cos 41C x C x e y x +++=',32212sin 81C x C x C x e y x ++++=,这就是所给方程的通解.例2 质量为m 的质点受力F 的作用沿Ox 轴作直线运动. 设力F 仅是时间t 的函数:F =F (t ). 在开始时刻t =0时F (0)=F 0, 随着时间t 的增大, 此力F 均匀地减小, 直到t =T 时, F (T )=0. 如果开始时质点位于原点, 且初速度为零, 求这质点的运动规律.解 设x =x (t )表示在时刻t 时质点的位置, 根据牛顿第二定律, 质点运动的微分方程为)(22t F dtx d m =. 由题设, 力F (t )随t 增大而均匀地减小, 且t =0时, F (0)=F 0, 所以F (t )=F 0-kt ; 又当t =T 时, F (T )=0, 从而)1()(0Tt F t F -=.于是质点运动的微分方程又写为)1(022T t mF dt x d -=, 其初始条件为0|0==t x , 0|0==t dt dx . 把微分方程两边积分, 得120)2(C Tt t m F dt dx +-=. 再积分一次, 得21320)621(C t C Tt t m F x ++-=. 由初始条件x |t =0=0, 0|0==t dt dx , 得C 1=C 2=0.于是所求质点的运动规律为)621(320Tt t m F x -=, 0≤t ≤T . 解 设x =x (t )表示在时刻t 时质点的位置,根据牛顿第二定律, 质点运动的微分方程为mx ''=F (t ).由题设, F (t )是线性函数, 且过点(0, F 0)和(T , 0),故 1)(0=+T t F t F , 即)1()(0Tt F t F -=. 于是质点运动的微分方程又写为)1(0Tt m F x -=''. 其初始条件为x |t =0=0, x '|t =0=0.把微分方程两边积分, 得120)2(C Tt t m F x +-=', 再积分一次, 得2320)621(C Tt t m F x +-=, 由初始条件x |t =0=0, x '|t =0=0,得C 1=C 2=0.于是所求质点的运动规律为)621(320Tt t m F x -=, 0≤t ≤T . 二、y ''= f (x , y ')型的微分方程解法:设y '=p 则方程化为p '=f (x , p ).设p '=f (x , p )的通解为p =ϕ(x ,C 1), 则),(1C x dxdy ϕ=. 原方程的通解为21),(C dx C x y +=⎰ϕ.例3 求微分方程()2xy''y'x 12=+满足初始条件 y |x =0=1, y '|x =0=3的特解.解 所给方程是y ''=f (x , y ')型的. 设y '=p , 代入方程并分离变量后, 有dx x x p dp 212+=. 两边积分, 得ln|p |=ln(1+x 2)+C ,即 p =y '=C 1(1+x 2) (C 1=±e C ).由条件y '|x =0=3, 得C 1=3,所以 y '=3(1+x 2).两边再积分, 得 y =x 3+3x +C 2.又由条件y |x =0=1, 得C 2=1,于是所求的特解为y =x 3+3x +1.例4 设有一均匀、柔软的绳索, 两端固定, 绳索仅受重力的作用而下垂. 试问该绳索在平衡状态时是怎样的曲线?三、y ''=f (y , y ')型的微分方程解法: 设y '=p ,有dydp p dx dy dy dp dx dp y =⋅==''. 原方程化为 ),(p y f dydp p=. 设方程),(p y f dy dp p =的通解为y '=p =ϕ(y , C 1), 则原方程的通解为 21),(C x C y dy +=⎰ϕ.例5 求微分yy ''-y '2=0的通解.解 设y '=p , 则dy dp py ='', 代入方程, 得02=-p dydp yp . 在y ≠0、p ≠0时, 约去p 并分离变量, 得ydy p dp =. 两边积分得ln|p |=ln|y |+ln c ,即 p =Cy 或y '=Cy (C =±c ).再分离变量并两边积分, 便得原方程的通解为ln|y |=Cx +ln c 1,或 y =C 1e Cx (C 1=±c 1).例6 一个离地面很高的物体,受地球引力的作用由静止开始落向地面. 求它落到地面时的速度和所需的时间(不计空气阻力).§12. 7 高阶线性微分方程一、二阶线性微分方程举例例1 设有一个弹簧, 上端固定, 下端挂一个质量为m 的物体. 取x 轴铅直向下, 并取物体的平衡位置为坐标原点.给物体一个初始速度v 0≠0后, 物体在平衡位置附近作上下振动. 在振动过程中, 物体的位置x 是t 的函数: x =x (t ).设弹簧的弹性系数为c , 则恢复力f =-cx .又设物体在运动过程中受到的阻力的大小与速度成正比, 比例系数为μ, 则dtdx R μ-, 由牛顿第二定律得dt dx cx dtx d m μ--=22. 移项, 并记m n μ=2, mc k =2, 则上式化为 02222=++x k dt dx n dt x d , 这就是在有阻尼的情况下, 物体自由振动的微分方程.如果振动物体还受到铅直扰力F =H sin pt的作用, 则有pt h x k dt dx n dt x d sin 2222=++, 其中mH h =. 这就是强迫振动的微分方程. 例2 设有一个由电阻R 、自感L 、电容C 和电源E 串联组成的电路, 其中R 、L 、及C 为常数, 电源电动势是时间t 的函数: E =E m sin ωt , 这里E m 及ω也是常数.设电路中的电流为i (t ), 电容器极板上的电量为q (t ), 两极板间的电压为u c , 自感电动势为E L . 由电学知道dt dq i =, C q u c =, dtdi L E L -=, 根据回路电压定律, 得0=---Ri Cq dt di LE , 即 t E u dt du RC dt u d LC m c c c ωsin 22=++, 或写成t LC E u dt du dt u d m c c c ωωβsin 22022=++,其中L R 2=β, LC10=ω. 这就是串联电路的振荡方程. 如果电容器经充电后撤去外电源(E =0), 则上述成为022022=++c c c u dt du dtu d ωβ. 二阶线性微分方程: 二阶线性微分方程的一般形式为y ''+P (x )y '+Q (x )y =f (x ),若方程右端f (x )≡0时, 方程称为齐次的, 否则称为非齐次的.二、线性微分方程的解的结构先讨论二阶齐次线性方程y ''+P (x )y '+Q (x )y =0, 即0)()(22=++y x Q dx dy x P dxy d . 定理1 如果函数y 1(x )与y 2(x )是方程y ''+P (x )y '+Q (x )y =0.的两个解, 那么y =C 1y 1(x )+C 2y 2(x )也是方程的解, 其中C 1、C 2是任意常数.齐次线性方程的这个性质表明它的解符合叠加原理.证明 [C 1y 1+C 2y 2]'=C 1 y 1'+C 2 y 2',[C 1y 1+C 2y 2]''=C 1 y 1''+C 2 y 2''.因为y 1与y 2是方程y ''+P (x )y '+Q (x )y =0, 所以有y 1''+P (x )y 1'+Q (x )y 1=0及y 2''+P (x )y 2'+Q (x )y 2=0,从而 [C 1y 1+C 2y 2]''+P (x )[ C 1y 1+C 2y 2]'+Q (x )[ C 1y 1+C 2y 2]=C 1[y 1''+P (x )y 1'+Q (x )y 1]+C 2[y 2''+P (x )y 2'+Q (x )y 2]=0+0=0.这就证明了y =C 1y 1(x )+C 2y 2(x )也是方程y ''+P (x )y '+Q (x )y =0的解函数的线性相关与线性无关:设y 1(x ), y 2(x ), ⋅ ⋅ ⋅ , y n (x )为定义在区间I 上的n 个函数. 如果存在n 个不全为零的常数k 1, k 2, ⋅ ⋅ ⋅ , k n , 使得当x ∈I 时有恒等式k 1y 1(x )+k 2y 2(x )+ ⋅ ⋅ ⋅ + k n y n (x )≡0成立, 那么称这n 个函数在区间I 上线性相关; 否则称为线性无关.判别两个函数线性相关性的方法:对于两个函数,它们线性相关与否,只要看它们的比是否为常数,如果比为常数,那么它们就线性相关,否则就线性无关.例如, 1, cos2x, sin2x在整个数轴上是线性相关的.函数1,x,x2在任何区间(a, b)内是线性无关的.定理2 如果如果函数y1(x)与y2(x)是方程y''+P(x)y'+Q(x)y=0的两个线性无关的解,那么y=C1y1(x)+C2y2(x) (C1、C2是任意常数)是方程的通解.例3 验证y1=cos x与y2=sin x是方程y''+y=0的线性无关解,并写出其通解.解因为y1''+y1=-cos x+cos x=0,y2''+y2=-sin x+sin x=0,所以y1=cos x与y2=sin x都是方程的解.因为对于任意两个常数k1、k2,要使k1cos x+k2sin x≡0,只有k1=k2=0,所以cos x与sin x在(-∞, +∞)内是线性无关的.因此y1=cos x与y2=sin x是方程y''+y=0的线性无关解.方程的通解为y=C1cos x+C2sin x.例4 验证y1=x与y2=e x是方程(x-1)y''-xy'+y=0的线性无关解,并写出其通解.解因为(x-1)y1''-xy1'+y1=0-x+x=0,(x-1)y2''-xy2'+y2=(x-1)e x-xe x+e x=0,所以y1=x与y2=e x都是方程的解,因为比值e x/x不恒为常数,所以y1=x与y2=e x在(-∞, +∞)内是线性无关的.因此y1=x与y2=e x是方程(x-1)y''-xy'+y=0的线性无关解.方程的通解为y=C1x+C2e x.推论如果y1(x),y2(x),⋅⋅⋅,y n(x)是方程y(n)+a1(x)y(n-1)+⋅⋅⋅+a n-1(x)y'+ a n(x)y=0的n个线性无关的解,那么,此方程的通解为y=C1y1(x)+C2y2(x)+⋅⋅⋅+ C n y n(x),其中C1,C2,⋅⋅⋅,C n为任意常数.二阶非齐次线性方程解的结构:我们把方程y''+P(x)y'+Q(x)y=0叫做与非齐次方程y''+P(x)y'+Q(x)y=f(x)对应的齐次方程.定理3 设y*(x)是二阶非齐次线性方程y''+P(x)y'+Q(x)y=f(x)的一个特解,Y(x)是对应的齐次方程的通解,那么y=Y(x)+y*(x)是二阶非齐次线性微分方程的通解.证明提示: [Y(x)+y*(x)]''+P(x)[ Y(x)+y*(x)]'+Q(x)[ Y(x)+y*(x)]=[Y ''+P(x)Y '+Q(x)Y ]+[ y* ''+P(x)y* '+Q(x)y*]=0+ f(x)= f(x).例如,Y=C1cos x+C2sin x是齐次方程y''+y=0的通解,y*=x2-2是y''+y=x2的一个特解,因此y=C1cos x+C2sin x+x2-2是方程y''+y=x2的通解.定理4 设非齐次线性微分方程y''+P(x)y'+Q(x)y=f(x)的右端f(x)几个函数之和,如y''+P(x)y'+Q(x)y=f1(x)+f2(x),而y1*(x)与y2*(x)分别是方程y''+P(x)y'+Q(x)y=f1(x)与y''+P(x)y'+Q(x)y=f2(x)的特解,那么y1*(x)+y2*(x)就是原方程的特解.证明提示:[y1+y2*]''+P(x)[ y1*+y2*]'+Q(x)[ y1*+y2*]=[ y1*''+P(x) y1*'+Q(x) y1*]+[ y2*''+P(x) y2*'+Q(x) y2*]=f 1(x )+f 2(x ).§12. 8 二阶常系数齐次线性微分方程二阶常系数齐次线性微分方程:方程 y ''+py '+qy =0称为二阶常系数齐次线性微分方程, 其中p 、q 均为常数.如果y 1、y 2是二阶常系数齐次线性微分方程的两个线性无关解, 那么y =C 1y 1+C 2y 2就是它的通解.我们看看, 能否适当选取r , 使y =e rx 满足二阶常系数齐次线性微分方程, 为此将y =e rx 代入方程y ''+py '+qy =0得(r 2+pr +q )e rx =0.由此可见, 只要r 满足代数方程r 2+pr +q =0, 函数y =e rx 就是微分方程的解.特征方程: 方程r 2+pr +q =0叫做微分方程y ''+py '+qy =0的特征方程. 特征方程的两个根r 1、r 2可用公式 2422,1q p p r -±+-=求出. 特征方程的根与通解的关系:(1)特征方程有两个不相等的实根r 1、r 2时,函数x r e y 11=、x r e y 22=是方程的两个线性无关的解.这是因为,函数x r e y 11=、x r e y 22=是方程的解, 又x r r xr x r e e e y y )(212121-==不是常数. 因此方程的通解为x r x r e C e C y 2121+=.(2)特征方程有两个相等的实根r 1=r 2时,函数x r e y 11=、x r xe y 12=是二阶常系数齐次线性微分方程的两个线性无关的解.这是因为, x r e y 11=是方程的解, 又x r x r x r x r x r x r qxe e xr p e xr r xe q xe p xe 111111)1()2()()()(1211++++=+'+''0)()2(121111=++++=q pr r xe p r e x r x r ,所以x r xe y 12=也是方程的解, 且x e xe y y xr x r ==1112不是常数. 因此方程的通解为x r x r xe C e C y 1121+=. (3)特征方程有一对共轭复根r 1, 2=α±i β时,函数y =e (α+i β)x 、y =e (α-i β)x 是微分方程的两个线性无关的复数形式的解.函数y =e αx cos βx 、y =e αx sin βx 是微分方程的两个线性无关的实数形式的解.函数y 1=e (α+i β)x 和y 2=e (α-i β)x 都是方程的解, 而由欧拉公式, 得y 1=e (α+i β)x =e αx (cos βx +i sin βx ),y 2=e (α-i β)x =e αx (cos βx -i sin βx ),y 1+y 2=2e αx cos βx , )(21cos 21y y x e x +=βα, y 1-y 2=2ie αx sin βx , )(21sin 21y y ix e x -=βα. 故e αx cos βx 、y 2=e αx sin βx 也是方程解.可以验证, y 1=e αx cos βx 、y 2=e αx sin βx 是方程的线性无关解.因此方程的通解为y =e αx (C 1cos βx +C 2sin βx ).求二阶常系数齐次线性微分方程y ''+py '+qy =0的通解的步骤为:第一步 写出微分方程的特征方程r 2+pr +q =0第二步 求出特征方程的两个根r 1、r 2.第三步 根据特征方程的两个根的不同情况, 写出微分方程的通解.例1 求微分方程y ''-2y '-3y =0的通解.。

几种常见的微分方程简介,解法

几种常见的微分方程简介,解法

第十二章:微分方程教学目的:1.了解微分方程及其解、阶、通解,初始条件和特等概念。

2.熟练掌握变量可分离的微分方程及一阶线性微分方程的解法。

3.会解齐次微分方程、伯努利方程和全微分方程,会用简单的变量代换解某些微分方程。

4.会用降阶法解下列微分方程:()()n y f x =, (,)y f x y '''+和(,)y f y y '''=5.理解线性微分方程解的性质及解的结构定理。

6.掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程。

7.求自由项为多项式、指数函数、余弦函数,以及它们的和与积的二阶常系数非齐次线性微分方程的特解和通解。

8.会解欧拉方程,会解包含两个未知函数的一阶常系数线性微分方程组。

9.会解微分方程组(或方程组)解决一些简单的应用问题。

教学重点:1、可分离的微分方程及一阶线性微分方程的解法2、可降阶的高阶微分方程()()n y f x =, (,)y f x y '''+和(,)y f y y '''=3、二阶常系数齐次线性微分方程;4、自由项为多项式、指数函数、余弦函数,以及它们的和与积的二阶常系数非齐次线性微分方程;教学难点:1、齐次微分方程、伯努利方程和全微分方程;2、线性微分方程解的性质及解的结构定理;3、自由项为多项式、指数函数、余弦函数,以及它们的和与积的二阶常系数非齐次线性微分方程的特解。

4、欧拉方程§12. 1 微分方程的基本概念函数是客观事物的内部联系在数量方面的反映, 利用函数关系又可以对客观事物的规律性进行研究. 因此如何寻找出所需要的函数关系, 在实践中具有重要意义. 在许多问题中, 往往不能直接找出所需要的函数关系, 但是根据问题所提供的情况, 有时可以列出含有要找的函数及其导数的关系式. 这样的关系就是所谓微分方程. 微分方程建立以后, 对它进行研究, 找出未知函数来, 这就是解微分方程.几个概念:微分方程: 表示未知函数、未知函数的导数与自变量之间的关系的方程, 叫微分方程. 常微分方程: 未知函数是一元函数的微分方程, 叫常微分方程.偏微分方程: 未知函数是多元函数的微分方程, 叫偏微分方程.微分方程的阶: 微分方程中所出现的未知函数的最高阶导数的阶数, 叫微分方程的阶. x 3 y '''+x 2 y ''-4xy '=3x 2 ,y (4) -4y '''+10y ''-12y '+5y =sin2x ,y (n ) +1=0,一般n 阶微分方程:F (x , y , y ', ⋅ ⋅ ⋅ , y (n ) )=0.y (n )=f (x , y , y ', ⋅ ⋅ ⋅ , y (n -1) ) .微分方程的解: 满足微分方程的函数(把函数代入微分方程能使该方程成为恒等式)叫做该微分方程的解. 确切地说, 设函数y =ϕ(x )在区间I 上有n 阶连续导数, 如果在区间I 上, F [x , ϕ(x ), ϕ'(x ), ⋅ ⋅ ⋅, ϕ(n ) (x )]=0,那么函数y =ϕ(x )就叫做微分方程F (x , y , y ', ⋅ ⋅ ⋅, y (n ) )=0在区间I 上的解.通解: 如果微分方程的解中含有任意常数, 且任意常数的个数与微分方程的阶数相同, 这样的解叫做微分方程的通解.初始条件: 用于确定通解中任意常数的条件, 称为初始条件. 如x =x 0 时, y =y 0 , y '= y '0 .一般写成00y y x x ==, 00y y x x '='=. 特解: 确定了通解中的任意常数以后, 就得到微分方程的特解. 即不含任意常数的解.初值问题: 求微分方程满足初始条件的解的问题称为初值问题.如求微分方程y '=f (x , y )满足初始条件00y y x x ==的解的问题, 记为⎩⎨⎧=='=00),(y y y x f y x x . 积分曲线: 微分方程的解的图形是一条曲线, 叫做微分方程的积分曲线.例1 一曲线通过点(1, 2), 且在该曲线上任一点M (x , y )处的切线的斜率为2x , 求这曲线的方程.解 设所求曲线的方程为y =y (x ). 根据导数的几何意义, 可知未知函数y =y (x )应满足关系式(称为微分方程)x dxdy 2=. (1) 此外, 未知函数y =y (x )还应满足下列条件:x =1时, y =2, 简记为y |x =1=2. (2)把(1)式两端积分, 得(称为微分方程的通解)⎰=x d x y 2, 即y =x 2+C , (3)其中C 是任意常数.把条件“x =1时, y =2”代入(3)式, 得2=12+C ,由此定出C =1. 把C =1代入(3)式, 得所求曲线方程(称为微分方程满足条件y |x =1=2的解): y =x 2+1.例2 列车在平直线路上以20m/s(相当于72km/h)的速度行驶; 当制动时列车获得加速度-0.4m/s 2. 问开始制动后多少时间列车才能停住, 以及列车在这段时间里行驶了多少路程?解 设列车在开始制动后t 秒时行驶了s 米. 根据题意, 反映制动阶段列车运动规律的函数s =s (t )应满足关系式4.022-=dt s d . (4) 此外, 未知函数s =s (t )还应满足下列条件:t =0时, s =0, 20==dtds v . 简记为s |t =0=0, s '|t =0=20. (5)把(4)式两端积分一次, 得14.0C t dtds v +-==; (6) 再积分一次, 得s =-0.2t 2 +C 1t +C 2, (7)这里C 1, C 2都是任意常数.把条件v |t =0=20代入(6)得20=C 1;把条件s |t =0=0代入(7)得0=C 2.把C 1, C 2的值代入(6)及(7)式得v =-0.4t +20, (8)s =-0.2t 2+20t . (9)在(8)式中令v =0, 得到列车从开始制动到完全停住所需的时间504.020==t (s ). 再把t =50代入(9), 得到列车在制动阶段行驶的路程s =-0.2⨯502+20⨯50=500(m ).解 设列车在开始制动后t 秒时行驶了s 米,s ''=-0.4, 并且s |t =0=0, s '|t =0=20.把等式s ''=-0.4两端积分一次, 得s '=-0.4t +C 1, 即v =-0.4t +C 1(C 1是任意常数),再积分一次, 得s =-0.2t 2 +C 1t +C 2 (C 1, C 2都C 1是任意常数).由v |t =0=20得20=C 1, 于是v =-0.4t +20;由s |t =0=0得0=C 2, 于是s =-0.2t 2+20t .令v =0, 得t =50(s). 于是列车在制动阶段行驶的路程s =-0.2⨯502+20⨯50=500(m ).例3 验证: 函数x =C 1cos kt +C 2 sin kt是微分方程0222=+x k dt x d 的解.解 求所给函数的导数:kt kC kt kC dtdx cos sin 21+-=, )s i n c o s (s i n c o s 212221222kt C kt C k kt C k kt C k dtx d +-=--=. 将22dtx d 及x 的表达式代入所给方程, 得 -k 2(C 1cos kt +C 2sin kt )+ k 2(C 1cos kt +C 2sin kt )≡0.这表明函数x =C 1cos kt +C 2sin kt 满足方程0222=+x k dtx d , 因此所给函数是所给方程的解. 例4 已知函数x =C 1cos kt +C 2sin kt (k ≠0)是微分方程0222=+x k dtx d 的通解, 求满足初始条件 x | t =0 =A , x '| t =0 =0的特解.解 由条件x | t =0 =A 及x =C 1 cos kt +C 2 sin kt , 得C 1=A .再由条件x '| t =0 =0, 及x '(t ) =-kC 1sin kt +kC 2cos kt , 得C 2=0.把C 1、C 2的值代入x =C 1cos kt +C 2sin kt 中, 得x =A cos kt .§12. 2 可分离变量的微分方程观察与分析:1. 求微分方程y '=2x 的通解. 为此把方程两边积分, 得y =x 2+C .一般地, 方程y '=f (x )的通解为C dx x f y +=⎰)((此处积分后不再加任意常数).2. 求微分方程y '=2xy 2 的通解.因为y 是未知的, 所以积分⎰dx xy 22无法进行, 方程两边直 接积分不能求出通解.为求通解可将方程变为x d x dy y 212=, 两边积分, 得 C x y +=-21, 或Cx y +-=21, 可以验证函数C x y +-=21是原方程的通解. 一般地, 如果一阶微分方程y '=ϕ(x , y )能写成g (y )dy =f (x )dx形式, 则两边积分可得一个不含未知函数的导数的方程G (y )=F (x )+C ,由方程G (y )=F (x )+C 所确定的隐函数就是原方程的通解对称形式的一阶微分方程:一阶微分方程有时也写成如下对称形式:P (x , y )dx +Q (x , y )dy =0在这种方程中, 变量x 与y 是对称的.若把x 看作自变量、y 看作未知函数, 则当Q (x ,y )≠0时, 有),(),(y x Q y x P dx dy -=. 若把y 看作自变量、x 看作未知函数, 则当P (x ,y )≠0时, 有),(),(y x P y x Q dy dx -=. 可分离变量的微分方程:如果一个一阶微分方程能写成g (y )dy =f (x )dx (或写成y '=ϕ(x )ψ(y ))的形式, 就是说, 能把微分方程写成一端只含y 的函数和dy , 另一端只含x 的函数和dx , 那么原方程就称为可分离变量的微分方程.讨论: 下列方程中哪些是可分离变量的微分方程?(1) y '=2xy , 是. ⇒y -1dy =2xdx .(2)3x 2+5x -y '=0, 是. ⇒dy =(3x 2+5x )dx .(3)(x 2+y 2)dx -xydy =0, 不是.(4)y '=1+x +y 2+xy 2, 是. ⇒y '=(1+x )(1+y 2).(5)y '=10x +y , 是. ⇒10-y dy =10x dx . (6)xy y x y +='. 不是. 可分离变量的微分方程的解法:第一步 分离变量, 将方程写成g (y )dy =f (x )dx 的形式;第二步 两端积分:⎰⎰=dx x f dy y g )()(, 设积分后得G (y )=F (x )+C ;第三步 求出由G (y )=F (x )+C 所确定的隐函数y =Φ(x )或x =ψ(y )G (y )=F (x )+C , y =Φ (x )或x =ψ(y )都是方程的通解, 其中G (y )=F (x )+C 称为隐式(通)解.例1 求微分方程xy dxdy 2=的通解. 解 此方程为可分离变量方程, 分离变量后得x d x dy y21=, 两边积分得⎰⎰=x d x dy y 21, 即 ln|y |=x 2+C 1,从而 2112x C C x e e e y ±=±=+. 因为1C e ±仍是任意常数, 把它记作C , 便得所给方程的通解2x Ce y =.解 此方程为可分离变量方程, 分离变量后得x d x dy y21=, 两边积分得 ⎰⎰=x d x dy y 21,即 ln|y |=x 2+ln C ,从而 2x Ce y =.例2 铀的衰变速度与当时未衰变的原子的含量M 成正比. 已知t =0时铀的含量为M 0, 求在衰变过程中铀含量M (t )随时间t 变化的规律.解 铀的衰变速度就是M (t )对时间t 的导数dtdM . 由于铀的衰变速度与其含量成正比, 故得微分方程M dtdM λ-=, 其中λ(λ>0)是常数, λ前的曲面号表示当t 增加时M 单调减少. 即0<dt dM . 由题意, 初始条件为M |t =0=M 0.将方程分离变量得dt MdM λ-=. 两边积分, 得⎰⎰-=dt M dM)(λ, 即 ln M =-λt +ln C , 也即M =Ce -λt .由初始条件, 得M 0=Ce 0=C ,所以铀含量M (t )随时间t 变化的规律M =M 0e -λt .例3 设降落伞从跳伞塔下落后, 所受空气阻力与速度成正比, 并设降落伞离开跳伞塔时速度为零. 求降落伞下落速度与时间的函数关系.解 设降落伞下落速度为v (t ). 降落伞所受外力为F =mg -kv ( k 为比例系数). 根据牛顿第二运动定律F =ma , 得函数v (t )应满足的方程为kv mg dtdv m -=, 初始条件为v |t =0=0.方程分离变量, 得mdt kv mg dv =-, 两边积分, 得⎰⎰=-mdt kv mg dv , 1)l n (1C m t kv mg k+=--, 即 t m k Ce k m g v -+=(ke C kC 1--=), 将初始条件v |t =0=0代入通解得km g C -=, 于是降落伞下落速度与时间的函数关系为)1(t m k e km g v --=. 例4 求微分方程221xy y x dxdy +++=的通解. 解 方程可化为)1)(1(2y x dxdy ++=, 分离变量得dx x dy y )1(112+=+, 两边积分得⎰⎰+=+dx x dy y )1(112, 即C x x y ++=221arctan . 于是原方程的通解为)21tan(2C x x y ++=.例5有高为1m 的半球形容器, 水从它的底部小孔流出, 小孔横截面面积为1cm 2. 开始时容器内盛满了水, 求水从小孔流出过程中容器里水面高度h 随时间t 变化的规律.解 由水力学知道, 水从孔口流出的流量Q 可用下列公式计算:gh S dtdV Q 262.0==, 其中0. 62为流量系数, S 为孔口横截面面积, g 为重力加速度. 现在孔口横截面面积S =1cm 2, 故 gh dtdV 262.0=, 或dt gh dV 262.0=. 另一方面, 设在微小时间间隔[t , t +d t ]内, 水面高度由h 降至h +dh (dh <0), 则又可得到dV =-πr 2dh ,其中r 是时刻t 的水面半径, 右端置负号是由于dh <0而dV >0的缘故. 又因222200)100(100h h h r -=--=,所以 dV =-π(200h -h 2)dh .通过比较得到dh h h dt gh )200(262.02--=π,这就是未知函数h =h (t )应满足的微分方程.此外, 开始时容器内的水是满的, 所以未知函数h =h (t )还应满足下列初始条件:h |t =0=100.将方程dh h h dt gh )200(262.02--=π分离变量后得dh h h g dt )200(262.02321--=π. 两端积分, 得⎰--=dh h h g t )200(262.02321π,即 C h h g t +--=)523400(262.02523π, 其中C 是任意常数.由初始条件得C g t +⨯-⨯-=)100521003400(262.02523π, 5101514262.0)52000003400000(262.0⨯⨯=-=g g C ππ. 因此 )310107(262.05335h h g t +-⨯=π.上式表达了水从小孔流出的过程中容器内水面高度h 与时间t 之间的函数关系.§12. 3 齐次方程齐次方程:如果一阶微分方程),(y x f dxdy =中的函数f (x , y )可写成 x y 的函数, 即)(),(xy y x f ϕ=, 则称这方程为齐次方程. 下列方程哪些是齐次方程?(1)022=---'x y y y x 是齐次方程.1)(222-+=⇒-+=⇒x y x y dx dy x x y y dx dy . (2)2211y y x -='-不是齐次方程.2211x y dx dy --=⇒. (3)(x 2+y 2)dx -xydy =0是齐次方程. x y y x dx dy xy y x dx dy +=⇒+=⇒22. (4)(2x +y -4)dx +(x +y -1)dy =0不是齐次方程.142-+-+-=⇒y x y x dx dy . (5)0ch 3)ch 3sh 2(=-+dy xy x dx x y y x y x 是齐次方程. x y x y dx dy xy x x y y x y x dx dy +=⇒+=⇒th 32ch 3ch 3sh 2齐次方程的解法:在齐次方程)(xy dx dy ϕ=中, 令x y u =, 即y =ux , 有 )(u dx du x u ϕ=+, 分离变量, 得xdx u u du =-)(ϕ.两端积分, 得⎰⎰=-xdx u u du )(ϕ. 求出积分后, 再用xy 代替u , 便得所给齐次方程的通解. 例1 解方程dx dy xy dx dy x y =+22. 解 原方程可写成1)(222-=-=x y x y x xy y dx dy , 因此原方程是齐次方程. 令u x y =, 则 y =ux ,dxdu x u dx dy +=, 于是原方程变为12-=+u u dx du x u , 即 1-=u u dx du x . 分离变量, 得xdx du u =-)11(. 两边积分, 得u -ln|u |+C =ln|x |,或写成ln|xu |=u +C . 以xy 代上式中的u , 便得所给方程的通解 C xy y +=||ln . 例2 有旋转曲面形状的凹镜, 假设由旋转轴上一点O 发出的一切光线经此凹镜反射后都与旋转轴平行. 求这旋转曲面的方程.解 设此凹镜是由xOy 面上曲线L : y =y (x )(y >0)绕x 轴旋转而成, 光源在原点. 在L 上任取一点M (x , y ), 作L 的切线交x 轴于A . 点O 发出的光线经点M 反射后是一条平行于x 轴射线. 由光学及几何原理可以证明OA =OM ,因为 x y y OP PM OP AP OA -'=-=-=αcot , 而 22y x OM +=. 于是得微分方程22y x x y y +=-', 整理得1)(2++=yx y x dy dx . 这是齐次方程. 问题归结为解齐次方程1)(2++=y x y x dy dx . 令v y x =, 即x =yv , 得12++=+v v dy dv y v , 即 12+=v dydv y , 分离变量, 得y dy v dv =+12, 两边积分, 得 C y v v ln ln )1ln(2-=++, C y v v =++⇒12, 1)(22+=-⇒v v Cy , 1222=-Cyv C y , 以yv =x 代入上式, 得)2(22C x C y +=. 这是以x 轴为轴、焦点在原点的抛物线, 它绕x 轴旋转所得旋转曲面的方程为)2(222C x C z y +=+. 这就是所求的旋转曲面方程. .例3 设一条河的两岸为平行直线, 水流速度为a , 有一鸭子从岸边点A 游向正对岸点O , 设鸭子的游速为b (b >a ), 且鸭子游动方向始终朝着点O , 已知OA =h , 求鸭子游过的迹线的方程. 解 取O 为坐标原点, 河岸朝顺水方向为x 轴, y 轴指向对岸. 设在时刻t 鸭子位于点P (x , y ), 则鸭子运动速度) ,() ,(dtdy dt dx v v y x ==v , 故有y x v v dy dx =. 另一方面, ) ,()0 ,(2222y x y y x x b a +-+-+=+=b a v , ) ,(2222y x by y x bx a +-+-=v . 因此yx y x b a v v dy dx y x ++-==1)(2, 即y x y x b a dy dx ++-=1)(2. 问题归结为解齐次方程y x y x b a dy dx ++-=1)(2. 令u y x =, 即x =yu , 得 12+-=u ba dy du y , 分离变量, 得dy by a u du -=+12, 两边积分, 得 )ln (ln arsh C y ab u +-=, 将yx u =代入上式并整理, 得])()[(2111b a b a Cy Cy C x +--=. 以x |y =h =0代入上式, 得hC 1=, 故鸭子游过的轨迹方程为 ])()[(211b a b a hy h y h x +--=, 0≤y ≤h . 将y x u =代入)ln (ln arsh C y ab u +-=后的整理过程: )ln (ln arsh C y ab y x +-= a b Cy y x -=⇒)ln(sh ])()[(21a ba b Cy Cy y x -=⇒- ])()[(2a b a b Cy Cy y x -=⇒-])()[(2111b b Cy Cy C x +--=⇒.§12.4 线性微分方程一、 线性方程线性方程:方程)()(x Q y x P dxdy =+叫做一阶线性微分方程. 如果Q (x )≡0 , 则方程称为齐次线性方程, 否则方程称为非齐次线性方程. 方程0)(=+y x P dx dy 叫做对应于非齐次线性方程)()(x Q y x P dxdy =+的齐次线性方程. 下列方程各是什么类型方程? (1)y dx dy x =-)2(⇒021=--y x dx dy 是齐次线性方程. (2) 3x 2+5x -5y '=0⇒y '=3x 2+5x , 是非齐次线性方程.(3) y '+y cos x =e -sin x , 是非齐次线性方程.(4)y x dxdy +=10, 不是线性方程. (5)0)1(32=++x dxdy y ⇒0)1(23=+-y x dx dy 或32)1(x y dy dx +-, 不是线性方程. 齐次线性方程的解法:齐次线性方程0)(=+y x P dx dy 是变量可分离方程. 分离变量后得 dx x P ydy )(-=, 两边积分, 得1)(||ln C dx x P y +-=⎰,或 )( 1)(C dx x P e C Ce y ±=⎰=-, 这就是齐次线性方程的通解(积分中不再加任意常数).例1 求方程y dxdy x =-)2(的通解. 解 这是齐次线性方程, 分离变量得2-=x dx y dy , 两边积分得ln|y |=ln|x -2|+lnC ,方程的通解为y =C (x -2).非齐次线性方程的解法:将齐次线性方程通解中的常数换成x 的未知函数u (x ), 把⎰=-dx x P e x u y )()(设想成非齐次线性方程的通解. 代入非齐次线性方程求得)()()()()()()()()(x Q e x u x P x P e x u e x u dx x P dx x P dx x P =⎰+⎰-⎰'---, 化简得 ⎰='dx x P e x Q x u )()()(,C dx e x Q x u dx x P +⎰=⎰)()()(,于是非齐次线性方程的通解为])([)()(C dx e x Q e y dx x P dx x P +⎰⎰=⎰-, 或 dx e x Q e Ce y dx x P dx x P dx x P ⎰⎰⎰+⎰=--)()()()(. 非齐次线性方程的通解等于对应的齐次线性方程通解与非齐次线性方程的一个特解之和.例2 求方程25)1(12+=+-x x y dx dy 的通解. 解 这是一个非齐次线性方程.先求对应的齐次线性方程012=+-x y dx dy 的通解. 分离变量得12+=x dx y dy , 两边积分得ln y =2ln (x +1)+ln C ,齐次线性方程的通解为y =C (x +1)2.用常数变易法. 把C 换成u , 即令y =u ⋅(x +1)2, 代入所给非齐次线性方程, 得2522)1()1(12)1(2)1(+=+⋅+-+⋅++⋅'x x u x x u x u 21)1(+='x u ,两边积分, 得C x u ++=23)1(32. 再把上式代入y =u (x +1)2中, 即得所求方程的通解为 ])1(32[)1(232C x x y +++=. 解: 这里12)(+-=x x P , 25)1()(+=x x Q . 因为 )1ln(2)12()(+-=+-=⎰⎰x dx x dx x P , 2)1l n (2)()1(+==⎰+-x e e x dx x P , 2321225)()1(32)1()1()1()(+=+=++=⎰⎰⎰⎰-x dx x dx x x dx e x Q dx x P , 所以通解为])1(32[)1(])([232)()(C x x C dx e x Q e y dx x P dx x P +++=+⎰⎰=⎰-. 例3 有一个电路如图所示, 其中电源电动势为E =E m sin ωt (E m 、ω都是常数), 电阻R 和电感L 都是常量. 求电流i (t ).解 由电学知道, 当电流变化时, L 上有感应电动势dt di L-. 由回路电压定律得出 0=--iR dt di LE , 即 LE i L R dt di =+. 把E =E m sin ω t 代入上式, 得t LE i L R dt di m sin ω=+. 初始条件为i |t =0=0.方程t LE i L R dt di m sin ω=+为非齐次线性方程, 其中 L R t P =)(, t L E t Q m s i n )(ω=. 由通解公式, 得])([)()()(C dt e t Q e t i dt t P dt t P +⎰⎰=⎰-) s i n (C dt e t L E e dt L Rm dt L R +⎰⎰=⎰-ω )s i n (C dt te e LE t L R t L Rm +=⎰-ω t L R m Ce t L t R LR E -+-+=) cos sin (222ωωωω. 其中C 为任意常数.将初始条件i |t =0=0代入通解, 得222 LR LE C m ωω+=, 因此, 所求函数i (t )为) c o s s i n ( )(222222t L t R L R E e L R LE t i m t L R m ωωωωωω-+++=-. 二、伯努利方程伯努利方程: 方程n y x Q y x P dxdy )()(=+ (n ≠0, 1) 叫做伯努利方程.下列方程是什么类型方程?(1)4)21(3131y x y dx dy -=+, 是伯努利方程. (2)5xy y dxdy +=, ⇒5xy y dx dy =-, 是伯努利方程. (3)x y y x y +=', ⇒11-=-'xy y x y , 是伯努利方程.(4)x xy dxdy 42=-, 是线性方程, 不是伯努利方程. 伯努利方程的解法: 以y n 除方程的两边, 得 )()(1x Q y x P dx dy y n n=+-- 令z =y 1-n , 得线性方程)()1()()1(x Q n z x P n dxdz -=-+. 例4 求方程2)(ln y x a xy dx dy -+的通解. 解 以y 2除方程的两端, 得x a y xdx dy y ln 112=+--, 即 x a y x dx y d ln 1)(11=+---, 令z =y -1, 则上述方程成为x a z xdx dz ln 1-=-. 这是一个线性方程, 它的通解为 ])(l n 2[2x aC x z -=.以y -1代z , 得所求方程的通解为1])(l n 2[2=-x a C yx .经过变量代换, 某些方程可以化为变量可分离的方程, 或化为已知其求解方法的方程. 例5 解方程yx dx dy +=1. 解 若把所给方程变形为y x dydx +=, 即为一阶线性方程, 则按一阶线性方程的解法可求得通解. 但这里用变量代换来解所给方程. 令x +y =u , 则原方程化为u dx du 11=-, 即uu dx du 1+=.分离变量, 得dx du u u =+1, 两端积分得u -ln|u +1|=x -ln|C |.以u =x +y 代入上式, 得y -ln|x +y +1|=-ln|C |, 或x =Ce y -y -1.§12. 5 全微分方程全微分方程:一个一阶微分方程写成P (x , y )dx +Q (x , y )dy =0形式后, 如果它的左端恰好是某一个函数u =u (x , y )的全微分:du (x , y )=P (x , y )dx +Q (x , y )dy ,那么方程P (x , y )dx +Q (x , y )dy =0就叫做全微分方程. 这里),(y x P x u =∂∂, ),(y x Q yu =∂∂, 而方程可写为du (x , y )=0.全微分方程的判定:若P (x , y )、Q (x , y )在单连通域G 内具有一阶连续偏导数, 且xQ y P ∂∂=∂∂, 则方程P (x , y )dx +Q (x , y )dy =0是全微分方程,全微分方程的通解:若方程P (x , y )dx +Q (x , y )dy =0是全微分方程, 且du (x , y )=P (x , y )dx +Q (x , y )dy则 u (x , y )=C ,即 )),(( ),(),(00000G y x C dx y x Q dx y x P yy x x ∈=+⎰⎰.是方程P (x , y )dx +Q (x , y )dy =0的通解例1 求解(5x 4+3xy 2-y 3)dx +(3x 2y -3xy 2+y 2 )dy =0.解 这里xQ y xy y P ∂∂=-=∂∂236, 所以这是全微分方程. 取(x 0, y 0)=(0, 0), 有 ⎰⎰+-+=y x dy y dx y xy x y x u 020324)35(),( 332253123y xy y x x +-+=.于是, 方程的通解为C y xy y x x =+-+332253123.积分因子:若方程P (x , y )dx +Q (x , y )dy =0不是全微分方程, 但存在一函数μ=μ(x , y ) (μ(x , y )≠0), 使方程μ(x , y )P (x , y )dx +μ(x , y )Q (x , y )dy =0是全微分方程, 则函数μ(x , y )叫做方程P (x , y )dx +Q (x , y )dy =0的积分因子.例2 通过观察求方程的积分因子并求其通解:(1)ydx -xdy =0;(2)(1+xy )ydx +(1-xy )xdy =0.解 (1)方程ydx -xdy =0不是全微分方程.因为2)(y x d y y d x y xd -=, 所以21y 是方程ydx -xdy =0的积分因子, 于是 02=-y xdy ydx 是全微分方程, 所给方程的通解为C y x =. (2)方程(1+xy )ydx +(1-xy )xdy =0不是全微分方程.将方程的各项重新合并, 得(ydx +xdy )+xy (ydx -xdy )=0,再把它改写成0)()(22=-+y dy x dx y x xy d , 这时容易看出2)(1xy 为积分因子, 乘以该积分因子后, 方程就变为 0)()(2=-+ydy x dx xy xy d , 积分得通解C yx xy ln ||ln 1=+-, 即xy Ce y x 1=. 我们也可用积分因子的方法来解一阶线性方程y '+P (x )y =Q (x ).可以验证⎰=dx x P e x )()(μ是一阶线性方程y '+P (x )y =Q (x )的一个积分因子. 在一阶线性方程的两边乘以⎰=dx x P e x )()(μ得 ⎰=⎰+⎰'dx x P dx x P dx x P e x Q e x yP e y )()()()()(, 即 ⎰='⎰+⎰'dx x P dx x P dx x P e x Q e y e y )()()()(][, 亦即 ⎰='⎰dx x P dx x P e x Q ye )()()(][.两边积分, 便得通解C dx e x Q ye dx x P dx x P +⎰=⎰⎰)()()(,或 ])([)()(C dx e x Q e y dx x P dx x P +⎰⎰=⎰-. 例3用积分因子求x xy dxdy 42=+的通解. 解 方程的积分因子为22)(x x d x e e x =⎰=μ.方程两边乘以2x e 得22242x x x xe y xe e y =+', 即224)(x x xe y e =',于是 C e dx xe y e x x x +==⎰22224. 因此原方程的通解为2224x x Ce dx xe y -+==⎰. §12. 6 可降阶的高阶微分方程一、y (n )=f (x )型的微分方程解法: 积分n 次1)1()(C dx x f y n +=⎰-, 21)2(])([C dx C dx x f y n ++=⎰⎰-, ⋅ ⋅ ⋅.例1 求微分方程y '''=e 2x -cos x 的通解.解 对所给方程接连积分三次, 得12s i n 21C x e y x +-='',212c o s 41C x C x e y x +++=',3221221s i n 81C x C x C x e y x ++++=,这就是所给方程的通解.或 122sin 21C x e y x +-='',2122c o s 41C x C x e y x +++=',32212s i n 81C x C x C x e y x ++++=,这就是所给方程的通解.例2 质量为m 的质点受力F 的作用沿Ox 轴作直线运动. 设力F 仅是时间t 的函数:F =F (t ). 在开始时刻t =0时F (0)=F 0, 随着时间t 的增大, 此力F 均匀地减小, 直到t =T 时, F (T )=0. 如果开始时质点位于原点, 且初速度为零, 求这质点的运动规律.解 设x =x (t )表示在时刻t 时质点的位置, 根据牛顿第二定律, 质点运动的微分方程为)(22t F dtx d m =. 由题设, 力F (t )随t 增大而均匀地减小, 且t =0时, F (0)=F 0, 所以F (t )=F 0-kt ; 又当t =T 时, F (T )=0, 从而)1()(0Tt F t F -=.于是质点运动的微分方程又写为)1(022T t mF dt x d -=, 其初始条件为0|0==t x , 0|0==t dt dx . 把微分方程两边积分, 得120)2(C Tt t m F dt dx +-=. 再积分一次, 得21320)621(C t C Tt t m F x ++-=. 由初始条件x |t =0=0,0|0==t dt dx , 得C 1=C 2=0.于是所求质点的运动规律为 )621(320Tt t m F x -=, 0≤t ≤T . 解 设x =x (t )表示在时刻t 时质点的位置,根据牛顿第二定律, 质点运动的微分方程为mx ''=F (t ).由题设, F (t )是线性函数, 且过点(0, F 0)和(T , 0),故 1)(0=+T t F t F , 即)1()(0Tt F t F -=. 于是质点运动的微分方程又写为)1(0Tt m F x -=''. 其初始条件为x |t =0=0, x '|t =0=0.把微分方程两边积分, 得120)2(C Tt t m F x +-=', 再积分一次, 得2320)621(C Tt t m F x +-=, 由初始条件x |t =0=0, x '|t =0=0,得C 1=C 2=0.于是所求质点的运动规律为)621(320Tt t m F x -=, 0≤t ≤T . 二、y ''= f (x , y ')型的微分方程解法:设y '=p 则方程化为p '=f (x , p ).设p '=f (x , p )的通解为p =ϕ(x ,C 1), 则),(1C x dxdy ϕ=. 原方程的通解为21),(C dx C x y +=⎰ϕ.例3 求微分方程()2xy''y'x 12=+满足初始条件 y |x =0=1, y '|x =0=3的特解.解 所给方程是y ''=f (x , y ')型的. 设y '=p , 代入方程并分离变量后, 有dx x x p dp 212+=. 两边积分, 得ln|p |=ln(1+x 2)+C ,即 p =y '=C 1(1+x 2) (C 1=±e C ).由条件y '|x =0=3, 得C 1=3,所以 y '=3(1+x 2).两边再积分, 得 y =x 3+3x +C 2.又由条件y |x =0=1, 得C 2=1,于是所求的特解为y =x 3+3x +1.例4 设有一均匀、柔软的绳索, 两端固定, 绳索仅受重力的作用而下垂. 试问该绳索在平衡状态时是怎样的曲线?三、y ''=f (y , y ')型的微分方程解法: 设y '=p ,有dydp p dx dy dy dp dx dp y =⋅==''. 原方程化为 ),(p y f dydp p=. 设方程),(p y f dy dp p =的通解为y '=p =ϕ(y , C 1), 则原方程的通解为 21),(C x C y dy +=⎰ϕ.例5 求微分yy ''-y '2=0的通解. 解 设y '=p , 则dy dp py ='', 代入方程, 得02=-p dydp yp . 在y ≠0、p ≠0时, 约去p 并分离变量, 得ydy p dp =. 两边积分得ln|p |=ln|y |+ln c ,即 p =Cy 或y '=Cy (C =±c ).再分离变量并两边积分, 便得原方程的通解为ln|y |=Cx +ln c 1,或 y =C 1e Cx (C 1=±c 1).例6 一个离地面很高的物体,受地球引力的作用由静止开始落向地面. 求它落到地面时的速度和所需的时间(不计空气阻力).§12. 7 高阶线性微分方程一、二阶线性微分方程举例例1 设有一个弹簧, 上端固定, 下端挂一个质量为m 的物体. 取x 轴铅直向下, 并取物体的平衡位置为坐标原点.给物体一个初始速度v 0≠0后, 物体在平衡位置附近作上下振动. 在振动过程中, 物体的位置x 是t 的函数: x =x (t ).设弹簧的弹性系数为c , 则恢复力f =-cx .又设物体在运动过程中受到的阻力的大小与速度成正比, 比例系数为μ, 则dtdx R μ-, 由牛顿第二定律得dt dx cx dtx d m μ--=22. 移项, 并记mn μ=2, m c k =2, 则上式化为 02222=++x k dt dx n dt x d , 这就是在有阻尼的情况下, 物体自由振动的微分方程.如果振动物体还受到铅直扰力F =H sin pt的作用, 则有pt h x k dt dx n dt x d sin 2222=++, 其中mH h =. 这就是强迫振动的微分方程. 例2 设有一个由电阻R 、自感L 、电容C 和电源E 串联组成的电路, 其中R 、L 、及C 为常数, 电源电动势是时间t 的函数: E =E m sin ωt , 这里E m 及ω也是常数.设电路中的电流为i (t ), 电容器极板上的电量为q (t ), 两极板间的电压为u c , 自感电动势为E L . 由电学知道dt dq i =, Cq u c =, dt di L E L -=, 根据回路电压定律, 得0=---Ri Cq dt di LE , 即 t E u dt du RC dt u d LC m c c c ωsin 22=++, 或写成t LC E u dt du dt u d m c c c ωωβsin 22022=++,其中L R 2=β, LC10=ω. 这就是串联电路的振荡方程. 如果电容器经充电后撤去外电源(E =0), 则上述成为022022=++c c c u dt du dtu d ωβ. 二阶线性微分方程: 二阶线性微分方程的一般形式为y ''+P (x )y '+Q (x )y =f (x ),若方程右端f (x )≡0时, 方程称为齐次的, 否则称为非齐次的.二、线性微分方程的解的结构先讨论二阶齐次线性方程y ''+P (x )y '+Q (x )y =0, 即0)()(22=++y x Q dx dy x P dxy d . 定理1 如果函数y 1(x )与y 2(x )是方程y ''+P (x )y '+Q (x )y =0.的两个解, 那么y =C 1y 1(x )+C 2y 2(x )也是方程的解, 其中C 1、C 2是任意常数.齐次线性方程的这个性质表明它的解符合叠加原理.证明 [C 1y 1+C 2y 2]'=C 1 y 1'+C 2 y 2',[C 1y 1+C 2y 2]''=C 1 y 1''+C 2 y 2''.因为y 1与y 2是方程y ''+P (x )y '+Q (x )y =0, 所以有y 1''+P (x )y 1'+Q (x )y 1=0及y 2''+P (x )y 2'+Q (x )y 2=0,从而 [C 1y 1+C 2y 2]''+P (x )[ C 1y 1+C 2y 2]'+Q (x )[ C 1y 1+C 2y 2]=C 1[y 1''+P (x )y 1'+Q (x )y 1]+C 2[y 2''+P (x )y 2'+Q (x )y 2]=0+0=0.这就证明了y =C 1y 1(x )+C 2y 2(x )也是方程y ''+P (x )y '+Q (x )y =0的解函数的线性相关与线性无关:设y 1(x ), y 2(x ), ⋅ ⋅ ⋅ , y n (x )为定义在区间I 上的n 个函数. 如果存在n 个不全为零的常数k 1, k 2, ⋅ ⋅ ⋅ , k n , 使得当x ∈I 时有恒等式k 1y 1(x )+k 2y 2(x )+ ⋅ ⋅ ⋅ + k n y n (x )≡0成立, 那么称这n 个函数在区间I 上线性相关; 否则称为线性无关.判别两个函数线性相关性的方法:对于两个函数,它们线性相关与否,只要看它们的比是否为常数,如果比为常数,那么它们就线性相关,否则就线性无关.例如, 1, cos2x, sin2x在整个数轴上是线性相关的.函数1,x,x2在任何区间(a, b)内是线性无关的.定理2 如果如果函数y1(x)与y2(x)是方程y''+P(x)y'+Q(x)y=0的两个线性无关的解,那么y=C1y1(x)+C2y2(x) (C1、C2是任意常数)是方程的通解.例3 验证y1=cos x与y2=sin x是方程y''+y=0的线性无关解,并写出其通解.解因为y1''+y1=-cos x+cos x=0,y2''+y2=-sin x+sin x=0,所以y1=cos x与y2=sin x都是方程的解.因为对于任意两个常数k1、k2,要使k1cos x+k2sin x≡0,只有k1=k2=0,所以cos x与sin x在(-∞, +∞)内是线性无关的.因此y1=cos x与y2=sin x是方程y''+y=0的线性无关解.方程的通解为y=C1cos x+C2sin x.例4 验证y1=x与y2=e x是方程(x-1)y''-xy'+y=0的线性无关解,并写出其通解.解因为(x-1)y1''-xy1'+y1=0-x+x=0,(x-1)y2''-xy2'+y2=(x-1)e x-xe x+e x=0,所以y1=x与y2=e x都是方程的解,因为比值e x/x不恒为常数,所以y1=x与y2=e x在(-∞, +∞)内是线性无关的.因此y1=x与y2=e x是方程(x-1)y''-xy'+y=0的线性无关解.方程的通解为y=C1x+C2e x.推论如果y1(x),y2(x),⋅⋅⋅,y n(x)是方程y(n)+a1(x)y(n-1)+⋅⋅⋅+a n-1(x)y'+ a n(x)y=0的n个线性无关的解,那么,此方程的通解为y=C1y1(x)+C2y2(x)+⋅⋅⋅+ C n y n(x),其中C1,C2,⋅⋅⋅,C n为任意常数.二阶非齐次线性方程解的结构:我们把方程y''+P(x)y'+Q(x)y=0叫做与非齐次方程y''+P(x)y'+Q(x)y=f(x)对应的齐次方程.定理3 设y*(x)是二阶非齐次线性方程y''+P(x)y'+Q(x)y=f(x)的一个特解,Y(x)是对应的齐次方程的通解,那么y=Y(x)+y*(x)是二阶非齐次线性微分方程的通解.证明提示: [Y(x)+y*(x)]''+P(x)[ Y(x)+y*(x)]'+Q(x)[ Y(x)+y*(x)]=[Y ''+P(x)Y '+Q(x)Y ]+[ y* ''+P(x)y* '+Q(x)y*]=0+ f(x)= f(x).例如,Y=C1cos x+C2sin x是齐次方程y''+y=0的通解,y*=x2-2是y''+y=x2的一个特解,因此y=C1cos x+C2sin x+x2-2是方程y''+y=x2的通解.定理4 设非齐次线性微分方程y''+P(x)y'+Q(x)y=f(x)的右端f(x)几个函数之和,如y''+P(x)y'+Q(x)y=f1(x)+f2(x),而y1*(x)与y2*(x)分别是方程y''+P(x)y'+Q(x)y=f1(x)与y''+P(x)y'+Q(x)y=f2(x)的特解,那么y1*(x)+y2*(x)就是原方程的特解.证明提示:[y1+y2*]''+P(x)[ y1*+y2*]'+Q(x)[ y1*+y2*]=[ y1*''+P(x) y1*'+Q(x) y1*]+[ y2*''+P(x) y2*'+Q(x) y2*]=f 1(x )+f 2(x ).§12. 8 二阶常系数齐次线性微分方程二阶常系数齐次线性微分方程:方程 y ''+py '+qy =0称为二阶常系数齐次线性微分方程, 其中p 、q 均为常数.如果y 1、y 2是二阶常系数齐次线性微分方程的两个线性无关解, 那么y =C 1y 1+C 2y 2就是它的通解.我们看看, 能否适当选取r , 使y =e rx 满足二阶常系数齐次线性微分方程, 为此将y =e rx 代入方程y ''+py '+qy =0得(r 2+pr +q )e rx =0.由此可见, 只要r 满足代数方程r 2+pr +q =0, 函数y =e rx 就是微分方程的解.特征方程: 方程r 2+pr +q =0叫做微分方程y ''+py '+qy =0的特征方程. 特征方程的两个根r 1、r 2可用公式 2422,1q p p r -±+-=求出. 特征方程的根与通解的关系:(1)特征方程有两个不相等的实根r 1、r 2时,函数x r e y 11=、x r e y 22=是方程的两个线性无关的解.这是因为,函数x r e y 11=、x r e y 22=是方程的解, 又x r r xr x r e e e y y )(212121-==不是常数. 因此方程的通解为x r x r e C e C y 2121+=.(2)特征方程有两个相等的实根r 1=r 2时,函数x r e y 11=、x r xe y 12=是二阶常系数齐次线性微分方程的两个线性无关的解.这是因为, x r e y 11=是方程的解, 又x r x r x r x r x r x r q x e e xr p e xr r xe q xe p xe 111111)1()2()()()(1211++++=+'+''0)()2(121111=++++=q pr r xe p r e x r x r ,所以xr xe y 12=也是方程的解, 且x e xe y y x r x r ==1112不是常数. 因此方程的通解为x r x r xe C e C y 1121+=.(3)特征方程有一对共轭复根r 1, 2=α±i β时,函数y =e (α+i β)x 、y =e (α-i β)x 是微分方程的两个线性无关的复数形式的解.函数y =e αx cos βx 、y =e αx sin βx 是微分方程的两个线性无关的实数形式的解.函数y 1=e (α+i β)x 和y 2=e (α-i β)x 都是方程的解, 而由欧拉公式, 得y 1=e (α+i β)x =e αx (cos βx +i sin βx ),y 2=e (α-i β)x =e αx (cos βx -i sin βx ),y 1+y 2=2e αx cos βx , )(21cos 21y y x e x +=βα, y 1-y 2=2ie αx sin βx , )(21sin 21y y ix e x -=βα. 故e αx cos βx 、y 2=e αx sin βx 也是方程解.可以验证, y 1=e αx cos βx 、y 2=e αx sin βx 是方程的线性无关解.因此方程的通解为y =e αx (C 1cos βx +C 2sin βx ).求二阶常系数齐次线性微分方程y ''+py '+qy =0的通解的步骤为:第一步 写出微分方程的特征方程r 2+pr +q =0第二步 求出特征方程的两个根r 1、r 2.第三步 根据特征方程的两个根的不同情况, 写出微分方程的通解.例1 求微分方程y ''-2y '-3y =0的通解.。

几种常见的微分方程简介,解法

几种常见的微分方程简介,解法

第十二章:微分方程教学目的:1.了解微分方程及其解、阶、通解,初始条件和特等概念。

2.熟练掌握变量可分离的微分方程及一阶线性微分方程的解法。

3.会解齐次微分方程、伯努利方程和全微分方程,会用简单的变量代换解某些微分方程。

4.会用降阶法解下列微分方程:()()n yf x =, (,)y f x y '''+和(,)y f y y '''=5.理解线性微分方程解的性质及解的结构定理。

6.掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程。

7.求自由项为多项式、指数函数、余弦函数,以及它们的和与积的二阶常系数非齐次线性微分方程的特解和通解。

8.会解欧拉方程,会解包含两个未知函数的一阶常系数线性微分方程组。

9.会解微分方程组(或方程组)解决一些简单的应用问题。

教学重点:1、可分离的微分方程及一阶线性微分方程的解法2、可降阶的高阶微分方程()()n yf x =, (,)y f x y '''+和(,)y f y y '''=3、二阶常系数齐次线性微分方程;4、自由项为多项式、指数函数、余弦函数,以及它们的和与积的二阶常系数非齐次线性微分方程; 教学难点:1、齐次微分方程、伯努利方程和全微分方程;2、线性微分方程解的性质及解的结构定理;3、自由项为多项式、指数函数、余弦函数,以及它们的和与积的二阶常系数非齐次线性微分方程的特解。

4、欧拉方程§12. 1 微分方程的基本概念函数是客观事物的内部联系在数量方面的反映, 利用函数关系又可以对客观事物的规律性进行研究. 因此如何寻找出所需要的函数关系, 在实践中具有重要意义. 在许多问题中, 往往不能直接找出所需要的函数关系, 但是根据问题所提供的情况, 有时可以列出含有要找的函数及其导数的关系式. 这样的关系就是所谓微分方程. 微分方程建立以后, 对它进行研究, 找出未知函数来, 这就是解微分方程. 几个概念:微分方程: 表示未知函数、未知函数的导数与自变量之间的关系的方程, 叫微分方程. 常微分方程: 未知函数是一元函数的微分方程, 叫常微分方程. 偏微分方程: 未知函数是多元函数的微分方程, 叫偏微分方程.微分方程的阶: 微分方程中所出现的未知函数的最高阶导数的阶数, 叫微分方程的阶. x 3y x 2 y4xy =3x 2, y (4) 4y 10y12y5y =sin2x ,y(n )1=0,一般n 阶微分方程: F (x , y , y, , y (n ))=0.y (n )=f (x , y , y ,, y (n1)) .微分方程的解: 满足微分方程的函数(把函数代入微分方程能使该方程成为恒等式)叫做该微分方程的解. 确切地说, 设函数y =j (x )在区间I 上有n 阶连续导数, 如果在区间I 上, F [x , j (x ), j(x ),, j(n )(x )]=0,那么函数y =j (x )就叫做微分方程F (x , y , y ,, y(n ))=0在区间I 上的解.通解: 如果微分方程的解中含有任意常数, 且任意常数的个数与微分方程的阶数相同, 这样的解叫做微分方程的通解.初始条件: 用于确定通解中任意常数的条件, 称为初始条件. 如 x =x 0 时, y =y 0 , y = y.一般写成00y y x x ==, 00y y x x '='=.特解: 确定了通解中的任意常数以后, 就得到微分方程的特解. 即不含任意常数的解. 初值问题: 求微分方程满足初始条件的解的问题称为初值问题. 如求微分方程y=f (x , y )满足初始条件00y y x x ==的解的问题, 记为⎩⎨⎧=='=00),(y y y x f y x x .积分曲线: 微分方程的解的图形是一条曲线, 叫做微分方程的积分曲线.例1 一曲线通过点(1, 2), 且在该曲线上任一点M (x , y )处的切线的斜率为2x , 求这曲线的方程.解 设所求曲线的方程为y =y (x ). 根据导数的几何意义, 可知未知函数y =y (x )应满足关系式(称为微分方程)x dxdy2=. (1) 此外, 未知函数y =y (x )还应满足下列条件:x =1时, y =2, 简记为y |x =1=2. (2) 把(1)式两端积分, 得(称为微分方程的通解) ⎰=xdx y 2, 即y =x 2C , (3)其中C 是任意常数.把条件“x =1时, y =2”代入(3)式, 得 2=12C ,由此定出C =1. 把C =1代入(3)式, 得所求曲线方程(称为微分方程满足条件y |x =1=2的解): y =x21.例 2 列车在平直线路上以20m/s(相当于72km/h)的速度行驶; 当制动时列车获得加速度0.4m/s 2. 问开始制动后多少时间列车才能停住, 以及列车在这段时间里行驶了多少路程? 解 设列车在开始制动后t 秒时行驶了s 米. 根据题意, 反映制动阶段列车运动规律的函数s =s (t )应满足关系式4.022-=dt s d . (4) 此外, 未知函数s =s (t )还应满足下列条件:t =0时, s =0, 20==dtds v . 简记为s |t =0=0, s |t =0=20. (5) 把(4)式两端积分一次, 得 14.0C t dtds v +-==; (6)再积分一次, 得 s =0.2t2C 1t C 2, (7)这里C 1, C 2都是任意常数. 把条件v |t =0=20代入(6)得 20=C 1;把条件s |t =0=0代入(7)得0=C 2. 把C 1, C 2的值代入(6)及(7)式得 v =0.4t 20, (8) s =0.2t220t . (9)在(8)式中令v =0, 得到列车从开始制动到完全停住所需的时间 504.020==t (s ). 再把t =50代入(9), 得到列车在制动阶段行驶的路程 s =0.25022050=500(m ).解 设列车在开始制动后t 秒时行驶了s 米 s 04 并且s |t =0=0, s |t =0=20.把等式s 04两端积分一次, 得 s 04tC 1 即v 04t C 1(C 1是任意常数)再积分一次, 得 s =0.2t2C 1t C 2 (C 1, C 2都C 1是任意常数)由v |t =0=20得20=C 1 于是v =0.4t20由s |t =0=0得0=C 2, 于是s =0.2t 220t .令v =0, 得t 50(s) 于是列车在制动阶段行驶的路程 s =0.25022050=500(m ).例3 验证: 函数 x =C 1cos kt C 2 sin kt是微分方程0222=+x k dtx d 的解.解 求所给函数的导数:kt kC kt kC dtdx cos sin 21+-=,)sin cos (sin cos 212221222kt C kt C k kt C k kt C k dt x d +-=--=. 将22dtx d 及x 的表达式代入所给方程, 得k 2(C 1cos kt C 2sin kt ) k 2(C 1cos kt C 2sin kt )0.这表明函数x =C 1cos kt C 2sin kt 满足方程0222=+x k dtx d , 因此所给函数是所给方程的解. 例4 已知函数x =C 1cos kt C 2sin kt (k 0)是微分方程0222=+x k dtx d 的通解, 求满足初始条件x | t =0 =A , x | t =0 =0的特解.解 由条件x | t =0 =A 及x =C 1 cos kt C 2 sin kt , 得 C 1=A .再由条件x | t =0 =0, 及x (t ) =kC 1sin kt kC 2cos kt , 得C 2=0.把C 1、C 2的值代入x =C 1cos kt C 2sin kt 中, 得x =A cos kt .§12. 2 可分离变量的微分方程 观察与分析: 1. 求微分方程y=2x 的通解. 为此把方程两边积分, 得y =x 2+C .一般地, 方程y =f (x )的通解为C dx x f y +=⎰)((此处积分后不再加任意常数). 2. 求微分方程y=2xy 2的通解.因为y 是未知的, 所以积分⎰dx xy 22无法进行, 方程两边直接积分不能求出通解. 为求通解可将方程变为xdx dy y 212=, 两边积分, 得 C x y +=-21, 或Cx y +-=21,可以验证函数Cx y +-=21是原方程的通解.一般地, 如果一阶微分方程y =j (x , y )能写成g (y )dy =f (x )dx形式, 则两边积分可得一个不含未知函数的导数的方程 G (y )=F (x )+C ,由方程G (y )=F (x )+C 所确定的隐函数就是原方程的通解 对称形式的一阶微分方程:一阶微分方程有时也写成如下对称形式: P (x , y )dx +Q (x , y )dy =0 在这种方程中, 变量x 与y 是对称的.若把x 看作自变量、y 看作未知函数, 则当Q (x ,y )0时, 有),(),(y x Q y x P dx dy -=. 若把y 看作自变量、x 看作未知函数, 则当P (x ,y )0时, 有),(),(y x P y x Q dy dx -=. 可分离变量的微分方程: 如果一个一阶微分方程能写成g (y )dy =f (x )dx (或写成y(x )(y ))的形式, 就是说, 能把微分方程写成一端只含y 的函数和dy , 另一端只含x 的函数和dx , 那么原方程就称为可分离变量的微分方程.讨论: 下列方程中哪些是可分离变量的微分方程? (1) y=2xy , 是. y -1dy =2xdx . (2)3x 2+5x -y =0, 是. dy =(3x 2+5x )dx .(3)(x 2+y 2)dx -xydy =0, 不是. (4)y 1x y 2xy 2 是. y(1x )(1y 2).(5)y 10x y是.10-ydy =10xdx .(6)xy y x y +='. 不是. 可分离变量的微分方程的解法:第一步 分离变量, 将方程写成g (y )dy =f (x )dx 的形式;第二步 两端积分:⎰⎰=dx x f dy y g )()(, 设积分后得G (y )=F (x )+C ; 第三步 求出由G (y )=F (x )+C 所确定的隐函数y =(x )或x =(y )G (y )=F (x )+C , y = (x )或x =(y )都是方程的通解, 其中G (y )=F (x )+C 称为隐式(通)解.例1 求微分方程xy dxdy2=的通解. 解 此方程为可分离变量方程, 分离变量后得xdx dy y 21=, 两边积分得⎰⎰=xdx dy y 21,即 ln|y |=x 2+C 1, 从而 2112x C C xe e e y ±=±=+.因为1C e ±仍是任意常数, 把它记作C , 便得所给方程的通解 2x Ce y =.解 此方程为可分离变量方程, 分离变量后得xdx dy y21=,。

各类微分方程的解法

各类微分方程的解法

各类微分方程的解法一、常微分方程的解法。

1. 分离变量法。

分离变量法是解常微分方程的一种常见方法,适用于一阶微分方程。

其基本思想是将微分方程中的变量分离开来,然后对两边分别积分得到解。

例如,对于形如dy/dx = f(x)g(y)的微分方程,可以将其化为dy/g(y) = f(x)dx,然后对两边积分得到解。

2. 积分因子法。

积分因子法适用于一阶线性微分方程,通过求解积分因子来将微分方程化为恰当微分方程,进而求解。

其基本思想是通过乘以一个适当的函数来使得微分方程的系数函数具有某种特殊的性质,使得微分方程变为恰当微分方程。

3. 特征方程法。

特征方程法适用于二阶线性常系数齐次微分方程,通过求解特征方程来得到微分方程的通解。

其基本思想是将二阶微分方程化为特征方程,然后求解特征方程得到微分方程的通解。

4. 变量替换法。

变量替换法是一种常见的解微分方程的方法,通过引入新的变量替换原微分方程中的变量,从而将原微分方程化为更简单的形式,然后求解。

例如,对于形如dy/dx = f(ax+by+c)的微分方程,可以通过引入新的变量u=ax+by+c来简化微分方程的形式,然后求解得到解。

二、偏微分方程的解法。

1. 分离变量法。

分离变量法同样适用于偏微分方程,其基本思想是将偏微分方程中的变量分离开来,然后对各个变量分别积分得到解。

例如,对于形如∂u/∂t = k∂^2u/∂x^2的一维热传导方程,可以将其化为∂u/∂t = k∂^2u/∂x^2,然后对各个变量分别积分得到解。

2. 特征线法。

特征线法适用于一些特殊的偏微分方程,通过引入特征线变量来化简偏微分方程的形式,然后求解。

例如,对于一维波动方程∂^2u/∂t^2 = c^2∂^2u/∂x^2,可以通过引入特征线变量ξ=x-ct和η=x+ct来化简方程的形式,然后求解得到解。

3. 分析法。

分析法是一种常见的解偏微分方程的方法,通过分析偏微分方程的性质和特征来求解。

微分方程的常用解法

微分方程的常用解法

微分方程的常用解法微分方程是数学中的重要概念,广泛应用于物理学、工程学等领域。

它描述了变量之间的关系,通过求解微分方程,我们可以得到系统的行为规律。

本文将介绍微分方程的常用解法,包括分离变量法、齐次方程法、常系数线性齐次方程法以及一阶线性非齐次方程法。

一、分离变量法分离变量法是求解一阶常微分方程的常用方法。

它的基本思想是将微分方程中的变量分离,使得方程两边可以分别关于不同的变量积分。

具体步骤如下:1. 将微分方程中的变量分离,将含有未知函数及其导数的项移到方程的一边,将不含未知函数的项移到方程的另一边。

2. 对两边同时积分,得到一个含有未知函数的表达式。

3. 求解该表达式,得到未知函数的解。

二、齐次方程法齐次方程是指微分方程中只包含未知函数及其导数的项,不包含未知函数的项。

对于这类方程,可以使用齐次方程法进行求解。

具体步骤如下:1. 将齐次方程中的未知函数及其导数替换为新的变量,令y = ux,其中u是一个新的函数。

2. 将原方程中的未知函数及其导数用新的变量表示,得到一个关于u和x的方程。

3. 求解该方程,得到u的解。

4. 将u的解代入y = ux,得到未知函数y的解。

三、常系数线性齐次方程法常系数线性齐次方程是指微分方程中未知函数及其导数的系数都是常数的方程。

对于这类方程,可以使用常系数线性齐次方程法进行求解。

具体步骤如下:1. 假设未知函数的解为y = e^(kx),其中k是一个待定的常数。

2. 将该解代入原方程,得到一个关于k的代数方程。

3. 求解该代数方程,得到k的值。

4. 将k的值代入y = e^(kx),得到未知函数y的解。

四、一阶线性非齐次方程法一阶线性非齐次方程是指微分方程中未知函数及其导数的系数是常数,但方程中还存在一个非零的常数项的方程。

对于这类方程,可以使用一阶线性非齐次方程法进行求解。

具体步骤如下:1. 首先求解对应的齐次方程,得到齐次方程的通解。

2. 假设非齐次方程的特解为y = u(x),其中u(x)是一个待定的函数。

微分方程常见题型解法

微分方程常见题型解法

微分方程常见题型攻略一、一阶微分方程1.可分离变量的微分方程及或化为可分离变量的微分方程(齐次)(略)2.一阶线性微分方程(1)一阶线性齐次微分方程:0)( y x P y 法一:分离变量,积分;法二:套公式dxx P Ce y )(.(2)一阶线性非齐次微分方程:)()(x Q y x P y 法一:常数变易法①先求出对应齐次微分方程的通解 dxx P Ce y )(;②常数变易(设原方程的通解为) dx x P e x u y )()(;③代入原方程求出)(x u 即得原方程的通解。

法二:公式法])([)()(C dx e x Q e y dx x P dx x P 。

例1【2011年考研】微分方程x ey y xcos 满足条件0)0( y 的解为_________。

解:此为一阶线性微分方程,其中1)( x P ,x ex Q xcos )( ,通解为])([)()(C dx e x Q e y dx x P dx x P ]cos [11C dx xe e e dxx dx ]cos [C dx xe e e x x x ]cos [C xdx e x )(sin C x e x 。

由初始条件0)0( y ,得0 C ,故所求特解为x ey xsin 。

注:对于微分方程,经常以积分方程的形式出现,即给出的方程中含有积分上限函数。

(1)对于积分方程,方法是两边同时求导,化为微分方程。

但是在求导过程中要注意,如果两边同时求一阶导后还是含有积分上限函数,那么需要再一次求导,直到方程中不再求有积分上限函数,并且也要注意有时候需要对方程进行恒等变换后再求导。

(2)注意积分方程中隐含的初始条件。

例2已知函数)(x f 满足1)(21)(1x f du ux f ,1)(10 dx x f ,求)(x f 。

解:设ux t ,则dt x du 1,于是 10)(du ux f xdt t f x 0)(1。

求解微分方程的常用方法

求解微分方程的常用方法

求解微分方程的常用方法微分方程是数学的一个重要领域,在各个科学领域中都有着广泛的应用。

求解微分方程是解决实际问题的重要方法之一。

本文将介绍一些求解微分方程的常用方法。

一、解析解法解析解法是指用变量分离、母函数法、变量代换等方法,将微分方程转化为一些已知函数的方程,从而求得方程的解。

变量分离法是一种常见的解析解法。

对于形如y'=f(x)g(y)的微分方程,可以将其变为dy/g(y)=f(x)dx的形式,进而通过积分得到y的解。

母函数法是将微分方程变成一个恒等式的形式,从而求出微分方程的通解。

变量代换法则是通过适当的变量代换,使微分方程变为已知形式的微分方程,进而求出其解。

二、初值问题法初值问题法通常用于求解一阶微分方程的初值问题。

该方法的基本思路是先求得微分方程的通解,然后利用给定的初始条件(即初值),确定通解中的任意常数,从而得到特解。

三、数值解法数值解法是指将微分方程转化为一个差分方程,利用数值方法求得近似解。

数值解法的基本思路是将区间分为若干小段,然后在每一小段上通过近似计算求得微分方程的解。

常用的数值方法包括欧拉法、梯形法、龙格-库塔法等。

这些方法的特点是简单易实现,但对于复杂的微分方程而言,计算量较大,精度也有限。

四、级数解法级数解法是将微分方程的解表示为幂级数的形式,从而求解微分方程。

这种方法的思路是假设微分方程的解为幂级数的形式,然后代入微分方程得到一组关于幂级数系数的递推公式,进而求得幂级数的系数,并由此得出微分方程的解。

五、特殊函数解法特殊函数解法是指利用已知的特殊函数求解微分方程。

一些常见的特殊函数包括贝塞尔函数、连带勒让德函数、超几何函数等。

这些特殊函数有着特殊的性质,可以用于求解某些类型的微分方程。

例如,我们可以用贝塞尔函数求解振动问题中的一些微分方程。

六、变分法变分法是一种通过变分原理,求解微分方程的方法。

变分法需要通过变分原理,利用根据函数微小变化的变分量所对应的增量来导出微分方程的一些重要性质。

常微分方程常见形式及解法

常微分方程常见形式及解法

常微分方程常见形式及解法在数学的广袤领域中,常微分方程是一个极其重要的分支,它在物理学、工程学、经济学等众多领域都有着广泛的应用。

简单来说,常微分方程就是含有一个自变量和未知函数及其导数的方程。

接下来,让我们一起深入探讨常微分方程的常见形式以及相应的解法。

一、常微分方程的常见形式1、一阶常微分方程可分离变量方程:形如$dy/dx = f(x)g(y)$的方程,通过将变量分离,将其化为$\frac{dy}{g(y)}=f(x)dx$,然后两边分别积分求解。

齐次方程:形如$dy/dx = F(y/x)$的方程,通过令$u = y/x$,将其转化为可分离变量的方程进行求解。

一阶线性方程:形如$dy/dx + P(x)y = Q(x)$的方程,使用积分因子法求解。

2、二阶常微分方程二阶线性常微分方程:形如$y''+ p(x)y' + q(x)y = f(x)$的方程。

当$f(x) = 0$时,称为二阶线性齐次方程;当$f(x) ≠ 0$时,称为二阶线性非齐次方程。

常系数线性方程:当$p(x)$和$q(x)$都是常数时,即$y''+ py'+ qy = f(x)$,这种方程的解法相对较为固定。

二、常微分方程的解法1、变量分离法这是求解一阶常微分方程的一种基本方法。

对于可分离变量的方程,我们将变量分别放在等式的两边,然后对两边进行积分。

例如,对于方程$dy/dx = x/y$,可以变形为$ydy = xdx$,然后积分得到$\frac{1}{2}y^2 =\frac{1}{2}x^2 + C$,从而解得$y =\pm \sqrt{x^2 +2C}$。

2、齐次方程的解法对于齐次方程$dy/dx = F(y/x)$,令$u = y/x$,则$y = ux$,$dy/dx = u + x(du/dx)$。

原方程可化为$u + x(du/dx) = F(u)$,这就变成了一个可分离变量的方程,从而可以求解。

各类偏微分方程的解法

各类偏微分方程的解法

各类偏微分方程的解法偏微分方程是数学中的重要分支,广泛应用于物理学、工程学以及许多其他科学领域。

本文档将介绍几种常见的偏微分方程以及它们的解法。

1. 热传导方程热传导方程描述了物体内部的温度分布随时间的变化情况。

它的一般形式如下:$$\frac{\partial u}{\partial t} = \alpha \nabla^2 u$$其中,$u$ 是物体的温度分布,$t$ 是时间,$\alpha$ 是热传导系数。

常见的解法包括分离变量法、变换法和格林函数法。

这些方法可以用来求解不同边界条件下的热传导方程。

2. 波动方程波动方程描述了波的传播和振动现象,常用于描述声波、电磁波等。

它的一般形式如下:$$\frac{1}{c^2} \frac{\partial^2 u}{\partial t^2} = \nabla^2 u$$其中,$u$ 是波函数,$t$ 是时间,$c$ 是波速。

常用的解法包括分离变量法、变换法和傅里叶变换法。

这些方法可以求解不同边界条件下的波动方程。

3. 粒子扩散方程粒子扩散方程描述了物质粒子的扩散过程。

它的一般形式如下:$$\frac{\partial u}{\partial t} = D \nabla^2 u$$其中,$u$ 是物质浓度分布,$t$ 是时间,$D$ 是扩散系数。

常见的解法包括分离变量法、变换法和格林函数法。

这些方法可以用来求解不同边界条件下的粒子扩散方程。

4. 薛定谔方程薛定谔方程描述了量子力学系统中粒子的行为。

它的一般形式如下:$$i\hbar \frac{\partial \Psi}{\partial t} = -\frac{\hbar^2}{2m}\nabla^2 \Psi + V\Psi$$其中,$\Psi$ 是波函数,$t$ 是时间,$\hbar$ 是约化普朗克常数,$m$ 是质量,$V$ 是势能。

求解薛定谔方程涉及到一些特殊的数学技巧,如变换方法和定态解法。

认识微分方程的各类类型与解法

认识微分方程的各类类型与解法

认识微分方程的各类类型与解法微分方程是数学中一类重要的方程,它描述了变量之间的关系,是许多自然科学领域中理论和实际问题的数学描述工具。

微分方程的解法分为几个主要类型,包括一阶线性微分方程、一阶可分离变量微分方程、一阶齐次微分方程、二阶线性常系数齐次微分方程等。

本文将介绍这些类型的微分方程和相应的解法。

1. 一阶线性微分方程一阶线性微分方程具有以下形式:dy/dx + P(x)y = Q(x),其中P(x)和Q(x)是已知的函数。

解这类微分方程的方法是通过乘积因子来将其转化为可积分的形式。

乘积因子是一个与y相关的因子,通过选择合适的乘积因子可以将方程变为可分离变量的形式。

2. 一阶可分离变量微分方程一阶可分离变量微分方程具有以下形式:dy/dx = f(x)g(y),其中f(x)和g(y)是已知的函数。

这类微分方程可以通过分离变量的方式解决。

将方程两边同时乘以dy和dx的倒数,然后将包含y的项移到一个方程的一边,包含x的项移到另一个方程的一边。

然后分别对两个方程进行积分,得到y的函数和x的函数。

3. 一阶齐次微分方程一阶齐次微分方程具有以下形式:dy/dx = f(y/x),其中f(y/x)是一个关于y/x的函数。

这类微分方程可以通过变量代换来求解。

令v=y/x,将原方程转化为关于v的常微分方程。

然后对v进行求导,将得到的结果带入常微分方程,最后对常微分方程进行求解,得到v的解,再通过v与y/x的关系求得y的解。

4. 二阶线性常系数齐次微分方程二阶线性常系数齐次微分方程具有以下形式:d²y/dx² + p(x)dy/dx +q(x)y = 0,其中p(x)和q(x)是已知的函数。

这类微分方程可以通过特征方程法来解决。

首先假设y=e^(rx)是方程的解,带入微分方程得到一个关于r的方程,解这个方程得到r的值。

然后根据r的值,得到y的通解。

除了以上介绍的几种类型外,还有许多其他类型的微分方程,如高阶线性微分方程、常系数齐次线性微分方程、变系数线性微分方程等。

微分方程分类及解法

微分方程分类及解法

微分方程分类及解法微分方程是数学中重要的一类方程,广泛应用于自然科学、工程、社会科学等领域中的各种问题。

在掌握微分方程的基本概念和解法后,我们可以更好地理解实际问题中的潜在规律和机理。

本文将介绍微分方程的分类及解法。

一、微分方程的分类微分方程可分为常微分方程和偏微分方程两类。

常微分方程是只有一个自变量的函数的微分方程,即只与时间、位置、速度等单一变量有关。

常微分方程按阶次可分为一阶常微分方程和高阶常微分方程两类。

一阶常微分方程的一般形式为:$$\frac{dy}{dx} = f(x,y)$$其中y是自变量x的函数,f(x,y)是给定的函数。

高阶常微分方程可表示为:$$F(x,y,y',y'',...y^{(n)})=0$$其中,y是自变量x的函数,n代表微分方程的阶数,y', y'' ,..., y^{(n)}分别表示y的一阶、二阶、n阶导数。

偏微分方程是包含多个自变量的函数的微分方程,通常是用来描述物理现象中的区域上的行为和变化。

偏微分方程按类型可分为椭圆型偏微分方程、抛物型偏微分方程和双曲型偏微分方程。

椭圆型偏微分方程形式为:$$A\frac{\partial^2u}{\partial x^2}+B\frac{\partial^2u}{\partial x\partial y}+C\frac{\partial^2u}{\partial y^2}=0$$该方程描述的是各方向的扩散速度都一样的过程,比如稳态情况下的热传导方程。

抛物型偏微分方程形式为:$$\frac{\partial u}{\partial t} = a\frac{\partial^2u}{\partialx^2}+b\frac{\partial u}{\partial x}+cu$$该方程描述的是运动物体的一维热流方程、空气粘弹性和海浪向上传播等。

双曲型偏微分方程形式为:$$\frac{\partial^2u}{\partial t^2}=a\frac{\partial^2u}{\partialx^2}+b\frac{\partial u}{\partial x}+cu$$该方程描述的是颤动或波动过程,比如振动问题或波动方程等。

微分方程解法小结

微分方程解法小结

微分方程解法小结PB08207038 司竹最近学习了微分方程,现对各种方法总结如下:一、 一阶微分方程: F (x,y,y ')=0⒈可变量分离方程形如φ(x )dx-ψ(y)dy,或可化为该形式的方程称为可变量分离方程。

解法:两边积分得:∫φ〔x 〕dx=∫ψ〔y 〕dy 。

⒉齐次方程dx dy =φ)(x y 解法:换元。

令y=μx ,则原方程可化为可分离变量方程。

3.一阶线性微分方程dxdy +P (x )y=Q (x )y n 解法:两边同时乘以一个积分因子e ⎰dx )x (P ,可得其通解公式:y=e ⎰-dx x )(P ⎥⎦⎤⎢⎣⎡+⎰⎰c dx e )x (dx x )(P Q 。

4.Bernouli 方程:dxdy +P (x )y=Q (x )y n 解法:两边除以y n 得:+dx dy y 1n P (x )y n 1-=Q (x ),再做代换μ= y n 1-,就化成 dxdy +(1-n )P (x )μ=Q (x )的线性方程。

二、二阶微分方程F (x ,y ,y ',y '')=0⒈可降阶的二阶微分方程① f ( x , y ',y '')=0型:令p= y ',则y ''=p ',将方程降阶为f (x ,p ,p ')=0的一阶方程。

② f (y ,y ',y '')=0型:令p= y ',则y ''=pdy dp ,将方程降阶为f (y ,p ,p dy dp )=0. 2.二阶线性微分方程①齐次方程y ''+ P (x )y '+q (x )y=0由已知条件或观察法或其他方法可得出齐次方程的一个特解y 1,用y=z y 1带入方程,整理后得出另一特解y 2= y 1dx ey 1dx x 21⎰-⎰)(P 。

(或可通过Liouville 公式,亦可得出另一特解。

)再由叠加原理得:齐次方程的通解为y=c 1 y 1+c 2 y 2。

③非齐次方程y ''+ P (x )y '+q (x )y=f (x )解法:先解出对应的齐次方程的通解yp = c1y1+c2y2。

各种类型的微分方程及其相应解法

各种类型的微分方程及其相应解法

各种类型的微分方程及其相应解法专业班级:交土01班 姓名:高云 学号:1201110102微分方程的类型有很多种,解题时先判断微分方程是哪种类型,可以帮助我们更快解题,所以我们有必要归纳整理一下各类型(主要是一阶和二阶)的微分方程及其相应解法。

一、一阶微分方程的解法 1.可分离变量的方程dx x f dy y g )()(=,或)()(y g x f dxdy=其特点是可以把变量x 和y 只分别在等式的两边,解法关键是把变量分离后两边积分。

例1.求微分方程ydy dx y xydy dx +=+2的通解. 解 先合并dx 及dy 的各项,得dx y dy x y )1()1(2-=- 设,01,012≠-≠-x y 分离变量得 dx x dy y y 1112-=- 两端积分⎰⎰-=-dx x dy y y1112得 ||ln |1|ln |1|ln 2112C x y +-=- 于是 2212)1(1-±=-x C y 记,21C C ±=则得到题设方程的通解 .)1(122-=-x C y2.齐次方程(1))(x y f dx dy =(2) )(c by ax f dxdy++=(a ,b 均不等于0)例2求解微分方程.2222xyy dyy xy x dx -=+-解 原方程变形为=+--=2222y xy x xy y dx dy ,1222⎪⎭⎫⎝⎛+--⎪⎭⎫⎝⎛x y x y x y x y 令,x y u =则,dx dux u dx dy +=方程化为,1222u u u u dx du x u +--=+ 分离变量得⎥⎦⎤⎢⎣⎡-+--⎪⎭⎫ ⎝⎛--112212121u u u u ,x dxdu = 两边积分得,ln ln ln 21)2ln(23)1ln(C x u u u +=----整理得.)2(12/3Cx u u u =--所求微分方程的解为 .)2()(32x y Cy x y -=-3.一阶线性微分方程⎰+⎰⎰==+-])([),()()()(C dx e x Q e y x Q y x p dxdydx x p dx x p 其通解为 例3. x y dx dy x sin 2=+, ππ1)(=y ;解 将方程改写为 xxy x dx dy sin 2=+, 这里x x p 2)(=,xxx q sin )(=,故由求解公式得)sin (1sin 222⎰⎰+=⎥⎦⎤⎢⎣⎡⎰+⎰=-xdx x C xdx e x x C e y dx x dx x 22sin cos xxx x x C +-=. 由初值条件ππ1)(=y ,得0=C .所以初值问题的解为 2cos sin x xx x y -=例 4.设非负函数()f x 具有一阶导数,且满足120()()()x f x f t dt t f t dt =+⎰⎰,求函数()f x .解:设12()A t f t dt =⎰,则0()()xf x f t dt A =+⎰,两边对x 求导,得()()()x f x f x f x Ce '=⇒=,由已知(0)()xf A C A f x Ae =⇒=⇒=又 112224()()1t A t f t dt t Ae dt A e ==⇒=+⎰⎰,则 24()1xf x e e =+ 例5.设)()()(x g x f x F ⋅=,其中(),()f x g x 满足下列条件:)()(x g x f =',()()g x f x '=,且()00f =,x e x g x f 2)()(=+.① 求)(x F 满足的一阶方程; ② 求)(x F 的表达式. 解:(1) 由 )()()()()(x g x f x g x f x F '+'='=)()(22x f x g +=)()(2)]()([2x g x f x g x f -+)(242x F e x-=,可见,)(x F 所满足的一阶微分方程为2()2()4(0)0xF x F x e F '⎧+=⎨=⎩. (2) 由通解公式有]4[)(222C dx e e e x F dxx dx +⎰⋅⎰=⎰-=]4[42C dx e e x x +⎰-22x x e Ce -=+.将0)0()0()0(==g f F 代入上式,得1-=C .于是22()x x F x e e -=-4.伯努利方程。

常见的常微分方程的一般解法

常见的常微分方程的一般解法

常见的常微分方程的一般解法总结了常见常微分方程的通解。

如无意外,本文将不包括解的推导过程。

常微分方程,我们一般可以将其归纳为如下n类:1.可分离变量的微分方程(一阶)2.一阶齐次(非齐次)线性微分方程(一阶),包含伯努利3.二阶常系数微分方程(二阶)4.高阶常系数微分方程(n阶),包含欧拉1.可分离变量的微分方程(一阶)这类微分方程可以变形成如下形式:f ( x ) d x =g ( y ) d y f(x)dx=g(y)dy f(x)dx=g(y)dy函数可以通过同时整合两边来解决。

难点主要在于不定积分,不定积分是最简单的微分方程。

p.s. 某些方程看似不可分离变量,但是经过换元之后,其实还是可分离变量的,不要被这种方程迷惑。

2.一阶齐次(非齐次)线性微分方程(一阶)形如d y d x + P ( x ) y = Q ( x ) \frac{dy}{dx}+P(x)y=Q(x) dxdy+P(x)y=Q(x)的方程叫做一阶线性微分方程,若 Q ( x ) Q(x) Q(x)为0,则方程齐次,否则称为非齐次。

解法:直接套公式:y ( x ) = e − ∫ P ( x ) d x ( ∫ e ∫ P ( x ) d x Q ( x ) d x + C ) y(x)=e^{-\int{P(x)}dx}(\int{e^{\int{P(x)dx}}Q(x)}dx+C)y(x)=e−∫P(x)dx(∫e∫P(x)dxQ(x)dx+C)多套几遍熟练就好。

伯努利方程形如d y d x + P ( x ) y = Q ( x ) y n , n ∈R , n ≠ 1\frac{dy}{dx}+P(x)y=Q(x)y^{n},n\in\mathbb{R},n\ne1dxdy+P(x)y=Q(x)yn,n∈R,n=1的方程称为伯努利方程,这种方程可以通过以下步骤化为一阶线性微分方程:y − n d y d x + P ( x ) y 1 − n = Q ( x ) y^{-n}\frac{dy}{dx}+P(x)y^{1-n}=Q(x) y−ndxdy+P(x)y1−n=Q(x)1 1 − n ⋅ d y 1 − n d x + P ( x ) y 1 − n = Q ( x ) \frac{1}{1-n}·\frac{dy^{1-n}}{dx}+P(x)y^{1-n}=Q(x)1−n1⋅dxdy1−n+P(x)y1−n=Q(x)令 y 1 − n = u y^{1-n}=u y1−n=u,方程两边同时乘以 1 − n 1-n 1−n,得到d u d x + ( 1 − n ) P ( x ) u = ( 1 − n ) Q ( x )\frac{du}{dx}+(1-n)P(x)u=(1-n)Q(x) dxdu+(1−n)P(x)u=(1−n)Q(x)即 d u d x + P ′ ( x ) u = Q ′ ( x )\frac{du}{dx}+P'(x)u=Q'(x) dxdu+P′(x)u=Q′(x)这是一个可以公式化的一阶线性微分方程。

微分方程全部知识点

微分方程全部知识点

微分方程全部知识点微分方程是数学中一个重要的分支,用于描述变量之间的关系以及其之间的变化规律。

其在物理、工程、经济等领域都有广泛的应用。

下面将介绍微分方程的全部知识点。

一、基本概念和分类:1. 微分方程的定义和形式。

2. 微分方程的阶数和线性性。

3. 独立变量和因变量的概念。

4. 常微分方程和偏微分方程的区别。

二、常微分方程:1. 一阶常微分方程的解法:可分离变量、齐次方程、一阶线性方程、一阶伯努利方程、可化为可分离变量的方程。

2. 高阶常微分方程的解法:常系数线性齐次方程、常系数线性非齐次方程、二阶常系数齐次方程的特征方程、二阶线性非齐次方程的特解法。

3. 微分方程的解的存在唯一性定理。

4. 常微分方程的初值问题和边值问题。

三、偏微分方程:1. 常见的偏微分方程类型:椭圆型、抛物型、双曲型方程。

2. 二阶线性偏微分方程的分类和通解求法。

3. 常用偏微分方程的具体应用:热传导方程、波动方程、扩散方程等。

四、数值解法:1. 欧拉法和改进的欧拉法。

2. 龙格-库塔法。

3. 有限差分法和有限元法。

五、应用领域:微分方程在物理学、工程学、生物学、经济学等领域有广泛的应用。

例如:1. 牛顿运动定律中的微分方程。

2. 电路中的微分方程。

3. 生物种群数量变化的微分方程。

4. 经济增长模型中的微分方程。

总结:微分方程是数学中一个重要的分支,主要包括基本概念和分类、常微分方程、偏微分方程、数值解法以及应用领域等知识点。

掌握微分方程的解法和应用,对于理解自然和社会现象的规律具有重要作用。

微分方程的一些通解和初值问题的解法

微分方程的一些通解和初值问题的解法

微分方程的一些通解和初值问题的解法微分方程作为数学中一个极其重要的分支,它具有广泛的应用背景,包括自然科学、工程技术等多个领域中都有着广泛的应用。

微分方程的求解则是这门学科中一个很关键的问题,尤其是对于一些实际问题,其初值条件决定了微分方程的具体解,本文将探讨一些微分方程的通解以及初值问题解法。

1. 常微分方程的通解对于一个n阶常微分方程,如果它可以表示为:$$F\Bigg(x,\frac{dy}{dx},\frac{d^2 y}{dx^2},\cdots,\frac{d^ny}{dx^n}\Bigg)=0$$其中$y$是自变量$x$的函数,则这个方程是一个n阶常微分方程。

对于这类方程,可以根据它的阶数以及特点进行分类求解。

(1)一阶常微分方程通解这类方程形式如下:$$\frac{dy}{dx}=f(x,y)$$其中$f(x,y)$是定义在某个区域上的函数。

对于这类方程,我们可以通过分离变量的方式进行求解,即:$$\frac{dy}{f(x,y)}=dx$$两边同时积分得到:$$\int\frac{1}{f(x,y)}dy=\int dx+C$$其中$C$是积分常数,通过这个式子可以求得$y$的通解。

(2)二阶常微分方程通解这类方程形式如下:$$y''+p(x)y'+q(x)y=f(x)$$其特点是含有二阶导数项,可用特征方程进行求解。

将一般形式二阶常微分方程的通解表示为$y=c_1y_1+c_2y_2$,其中$c_1$和$c_2$是常数,$y_1$和$y_2$是方程的解,满足$y_1$和$y_2$的任意线性组合都是方程的解。

如果解$y_1$和$y_2$线性无关,则它们构成了二阶常微分方程的通解。

(3)n阶常微分方程通解通常情况下,n阶常微分方程表示为:$$y^{(n)}+a_{n-1}(x)y^{(n-1)}+\cdots+a_1(x)y'+a_0(x)y=f(x)$$我们可以通过求解$n$次的导数,得到这个方程的通解。

六种特殊的一阶微分方程解法

六种特殊的一阶微分方程解法

六种特殊的一阶微分方程解法1.常系数齐次方程:这种一阶微分方程的形式为:dy/dx=ay+b,其中a、b都是常数,通常可以使用积分法解决。

根据定义,将y的导数表示为另一个函数y',并将它代入方程,我们就有: y'=ay+b,然后把y'看作一个新的函数,那么方程可以写成: dy/dy'=a,接着对两边求积分,可以得到: y=ay'+C,其中C是一个常数,根据上面的公式,我们可以得到y的表达式: y=ay^2/2+by+C。

2.常系数非齐次方程:这种一阶微分方程的形式为:dy/dx=f(x),其中f(x)是一个非常数函数,一般采用积分法解决。

将y的导数表示为另一个函数y',并将它代入方程,我们就有: y'=f(x),此时将f(x)看作一个新的函数,那么方程可以写成: dy/dy'=1,接着对两边求积分,可以得到: y=y'+C,其中C是一个常数,根据上面的公式,我们可以得到y的表达式:y=∫f(x)dx+C。

3.变系数齐次方程:这种一阶微分方程的形式为:dy/dx=p(x)y+q(x),其中p(x)、q(x)都是非常数函数,一般采用积分法解决。

将y的导数表示为另一个函数y',并将它代入方程,我们就有: y'=p(x)y+q(x),此时将p(x)、q(x)看作一个新的函数,那么方程可以写成:dy/dy'=1/p(x),接着对两边求积分,可以得到:y=1/p(x)*y'+C,其中C是一个常数,根据上面的公式,我们可以得到y的表达式:y=e^(∫p(x)dx)*∫q(x)e^(-∫p(x)dx)dx+C。

4.可积方程:这种一阶微分方程的形式为:dy/dx=f(x,y),其中f(x,y)是可积函数,一般采用积分法解决。

将y的导数表示为另一个函数y',并将它代入方程,我们就有: y'=f(x,y),此时将f(x,y)看作一个新的函数,那么方程可以写成: dy/dy'=1,接着对两边求积分,可以得到: y=y'+C,其中C是一个常数,根据上面的公式,我们可以得到y的表达式:y=∫f(x,y)dx+C。

微分方程的基本类型与解法

微分方程的基本类型与解法

微分方程的基本类型与解法微分方程是数学中的重要概念,广泛应用于物理、工程、经济等领域。

微分方程可以描述变量之间的关系,通过求解微分方程,我们可以得到系统的行为规律和解析解。

本文将介绍微分方程的基本类型和解法,帮助读者理解和应用微分方程。

一、常微分方程与偏微分方程微分方程分为常微分方程和偏微分方程两种类型。

常微分方程中的未知函数只有一个自变量,而偏微分方程中的未知函数有多个自变量。

在本文中,我们将主要讨论常微分方程。

常微分方程可以分为一阶和高阶两类。

一阶常微分方程中,未知函数的导数最高只出现一次;高阶常微分方程中,未知函数的导数出现两次及以上。

二、一阶常微分方程的基本类型一阶常微分方程的一般形式为:$$\frac{{dy}}{{dx}}=f(x,y)$$其中,$f(x,y)$是已知函数。

根据$f(x,y)$的形式,一阶常微分方程可以分为可分离变量、线性、齐次和恰当方程等几种基本类型。

1. 可分离变量方程可分离变量方程是指未知函数$y$和自变量$x$可以通过分离变量的方式,将方程变为两个独立的方程。

形式如下:$$\frac{{dy}}{{dx}}=g(x)h(y)$$其中,$g(x)$和$h(y)$是已知函数。

解可分离变量方程的方法是将方程两边同时乘以$h(y)$,再同时除以$g(x)$,得到:$$\frac{{dy}}{{h(y)}}=g(x)dx$$然后对两边进行积分,即可得到解析解。

2. 线性方程线性方程是指未知函数$y$和其导数$\frac{{dy}}{{dx}}$的关系是线性的。

一般形式如下:$$\frac{{dy}}{{dx}}+p(x)y=q(x)$$其中,$p(x)$和$q(x)$是已知函数。

解线性方程的方法是通过积分因子的引入,将方程转化为可积的形式。

具体的求解方法可以参考线性方程的常见解法。

3. 齐次方程齐次方程是指未知函数$y$和自变量$x$的关系只通过它们的比值来表示。

一般形式如下:$$\frac{{dy}}{{dx}}=f\left(\frac{{y}}{{x}}\right)$$其中,$f\left(\frac{{y}}{{x}}\right)$是已知函数。

微分方程的分类及解法

微分方程的分类及解法

微分方程的分类及解法微分方程是数学中的一种重要的概念,在科学中有着广泛的应用。

其解法的复杂性和微分方程本身的类型有关。

本文将详细介绍微分方程的分类及解法。

一、微分方程的分类微分方程一般按照方程中出现各种变量的次数和阶数的不同而进行分类。

具体来说,微分方程可以分为以下几类。

1.常微分方程常微分方程是指方程中仅包含一个自变量(通常为时间t)的微分方程,其一般形式为dy/dt = f(y,t)。

常微分方程又可分为一阶常微分方程和高阶常微分方程两类。

2.偏微分方程偏微分方程是指方程中包含多个自变量(如时间t、空间坐标x、y、z等)的微分方程。

偏微分方程的方程式比较复杂,通常只有数学专业的高年级学生才会接触到。

3.线性微分方程当方程的形式满足一次齐次线性的时候,称为线性微分方程。

即方程中出现的未知函数及其导数都是一次的,如y'' + y' + y = 0。

这种方程类型的解法相对较为简单。

4.非线性微分方程一般来说,非线性微分方程解析解比较难求。

出现非线性情况往往会极大的增加微分方程的难度。

例如,y'' + sin y = 0,和y'' +y^2 = 0这两个方程都是非线性方程。

二、微分方程的解法对于不同类型的微分方程,解法也有所不同。

本段将详细介绍几种微分方程的具体解法。

1.分离变量法分离变量法是处理一阶常微分方程最为常用的方法,也可用于一些高阶常微分方程。

当方程可以表示为dy/dt = f(y)的形式时,我们可以将一般方程分离成含有y的部分和含有t的部分,然后将两部分同时积分,在约定的边界条件下得到解。

2.常系数线性微分方程常系数线性微分方程形如y'' + ay' + by = 0,这里的a,b为常数。

这种微分方程的通解可以通过求出特征方程的两个根r1和r2,然后根据r1和r2的情况进行分类求解。

若r1和r2都是实数或都是虚数,则y = c1e^(r1x) + c2e^(r2x)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

各种类型的微分方程及其相应解法
专业班级:交土01班 姓名:高云 学号:1201110102 微分方程的类型有很多种,解题时先判断微分方程是哪种类型,可以帮助我们更快解题,所以我们有必要归纳整理一下各类型(主要是一阶和二阶)的微分方程及其相应解法。

一、一阶微分方程的解法
1.可分离变量的方程
dx x f dy y g )()(=,或)()(y g x f dx
dy = 其特点是可以把变量x 和y 只分别在等式的两边,解法关键是把变量分离后两边积分。

例1.求微分方程ydy dx y xydy dx +=+2的通解.
解 先合并dx 及dy 的各项,得dx y dy x y )1()1(2-=-
设,01,012≠-≠-x y 分离变量得
dx x dy y y 1112-=- 两端积分⎰⎰-=-dx x dy y y 1112得 ||ln |1|ln |1|ln 2
112C x y +-=- 于是 2212)1(1-±=-x C y 记,21C C ±=则得到题设方程的通解 .)1(122-=-x C y
2.齐次方程
(1))(x
y f dx dy = (2) )(c by ax f dx
dy ++=(a ,b 均不等于0) 例2求解微分方程.2222xy
y dy y xy x dx -=+- 解 原方程变形为=+--=2222y xy x xy y dx dy ,1222⎪⎭
⎫ ⎝⎛+--⎪⎭⎫ ⎝⎛x y x y x y x y 令,x y u =则,dx du x u dx dy +=方程化为,1222u
u u u dx du x u +--=+ 分离变量得⎥⎦
⎤⎢⎣⎡-+--⎪⎭⎫ ⎝⎛--112212121u u u u ,x dx du = 两边积分得
,ln ln ln 2
1)2ln(23)1ln(C x u u u +=----
整理得 .)2(1
2/3Cx u u u =--
所求微分方程的解为 .)2()(32x y Cy x y -=-
3.一阶线性微分方程
⎰+⎰⎰==+-])([),()()()(C dx e x Q e y x Q y x p dx
dy dx x p dx x p 其通解为 例3. x y dx dy x sin 2=+, π
π1)(=y ; 解 将方程改写为 x
x y x dx dy sin 2=+, 这里x x p 2)(=,x
x x q sin )(=,故由求解公式得 )sin (1sin 222⎰⎰+=⎥⎦⎤⎢⎣⎡⎰+⎰=-
xdx x C x dx e x x C e y dx x dx x 22sin cos x x x x x C +-=
. 由初值条件ππ1
)(=y ,得0=C .
所以初值问题的解为 2
cos sin x x x x y -= 例 4.设非负函数()f x 具有一阶导数,且满足1
200()()()x
f x f t dt t f t dt =+⎰⎰,求函数()f x .
解:设1
20()A t f t dt =⎰,则0()()x
f x f t dt A =+⎰,两边对x 求导,得 ()()()x f x f x f x Ce '=⇒=,由已知(0)()x f A C A f x Ae =⇒=⇒=
又 1
1222004()()1
t A t f t dt t Ae dt A e ==⇒=+⎰⎰,则 24()1
x f x e e =+ 例5.设)()()(x g x f x F ⋅=,其中(),()f x g x 满足下列条件:
)()(x g x f =',()()g x f x '=,且00f ,x e x g x f 2)()(=+.
① 求)(x F 满足的一阶方程; ② 求)(x F 的表达式.
解:(1) 由 )()()()()(x g x f x g x f x F '+'='=)()(2
2x f x g +
=)()(2)]()([2x g x f x g x f -+)(242x F e x -=,
可见,)(x F 所满足的一阶微分方程为
2()2()4(0)0
x
F x F x e F '⎧+=⎨=⎩. (2) 由通解公式有
]4[)(222C dx e e e x F dx x dx +⎰⋅⎰=⎰-=]4[42C dx e e x x +⎰-22x x e Ce -=+.
将0)0()0()0(==g f F 代入上式,得1-=C .于是
22()x x F x e e -=-
4.伯努利方程。

内适当选定的点的坐标是区域其中内恒成立,此时通解为在区域要条件是方程的充分
的全微分,其为全微分左边恰好是某一个函数全微分方程
即可,其余同再令同除以G ,,),(),(),(G ),(,0),(),(.53,,)()(00100
y x C dy y x Q dx y x P y x u x Q y P y x u dy y x Q dx y x p y u y y x Q y x p dx
dy x x y
y n n n =+=∂∂=∂∂==+==+⎰⎰-二、二阶线性微分方程的解法
1.可降阶微分方程
次分型,求解方法:连续积n )()1()(x f y n =
(2)''''''',),(p y p y y x f y ===则型,求解方法:令
(3)p dy
dp dx dp y y y f y ===='''''p y ),(,则型,求解方法:令‘ 例6. 方程03='+''y y x 的通解为 . 解:330y xy y y x ''''''+=⇒=-
令,y p y p ''''==,原方程变为 3p p x '=- 11333ln 3ln ln C dp dp dx dx p x C p y p x p x x
'⇒=-⇒=-⇒=-+⇒==⎰⎰ 所以232
112C dx C y C x x =-+=⎰
)
2).......(()()()
1......(0)()(.2''''''x f y x Q y x P y y x Q y x P y =++=++二阶非齐次线性方程二阶齐次线性方程
3.二阶常系数齐次线性方程 )
sin cos (,r )3()(r 2(,,10
q p ,0212,12121212'''21x C x C e y i e x C C y e C e C y r r q pr r qy py y x rx
x
r x r βββα+=±=+=+==++=++∂则通解为一对共轭复根,则通解为)有两个相等的实根则通解为)有两个不相等的实根(是常数,若特征方程,其中 例7. 解方程022=+'+''y y y .
解:022=+'+''y y y 的特征方程为2
1,22201r r r i ++=⇒=-±
则方程的通解为12(cos sin )x y e C x C x -=+ 例8.设0()sin ()()x
f x x x t f t dt =--⎰ 其中)(x f 为连续函数,求)(x f . 解:原方程整理得
00()sin ()()x x f x x x f t dt tf t dt =-+⎰⎰, 两边求导 0()cos ()x
f x x f t dt '=-⎰,
再两边求导得 ()sin ()f x x f x ''=--,
整理得 ()()sin ,
(0)0,(0)1f x f x x f f '''+=-==(初始条件到原方程中找) 解得1()sin cos 22
x f x x x =+ 有关微分方程的题目有很多,不可能一一列举出来,但我们可以举一反三,开拓思维,这样我们的高数才会得以提高。

相关文档
最新文档