数量关系中排列组合问题的七大解题策略
解排列组合应用题的21种策略
解排列组合应用题的21种策略排列组合问题是高考的必考题,它联系实际生动有趣,但题型多样,思路灵活,不易掌握,实践证明,掌握题型和解题方法,识别模式,熟练运用,是解决排列组合应用题的有效途径;下面就谈一谈排列组合应用题的解题策略.1.相邻问题绑定方法:标题规定将几个相邻元素绑定成一个组,作为一个大元素参与安排例1.a,b,c,d,e五人并排站成一排,如果a,b必须相邻且b在a的右边,那么不同的排法种数有a、 B类60种,C类48种,D类36种,D类24种2.不相邻问题插空法:元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个元素插入上述几个元素的空位和两端.例2七个人并排站成一排。
如果甲方和乙方不得相邻,则不同的安排类型为A、1440 B、3600 C、4820 D和48003.定序问题缩倍法:在排列问题中限制某几个元素必须保持一定的顺序,可用缩小倍数的方法.例3 a.B、C、D和e并排站成一排。
如果B必须站在a的右边(a和B不能相邻),有多少种不同的安排a、24种b、60种c、90种d、120种4.标签排序问题的分步方法:将元素排列到指定位置,首先按照规定排列一个元素,然后在第二步排列另一个元素。
如果你继续这样做,你可以依次完成例4.将数字1,2,3,4填入标号为1,2,3,4的四个方格里,每格填一个数,则每个方格的标号与所填数字均不相同的填法有a、6种b、9种c、11种d、23种5.有序分配问题:有序分配问题是指将元素分成若干组,可以逐步分成若干组例5.(1)有甲乙丙三项任务,甲需2人承担,乙丙各需一人承担,从10人中选出4人承担这三项任务,不同的选法种数是a、 1260种B,2025种C,2520种D,5040种(2)12名同学分别到三个不同的路口进行流量的调查,若每个路口4人,则不同样的分配方案也是如此44c12c84c4a、ccc种b、3ccc种c、cca种d、种3a34124844412484441248336.全员分配的分组方法:例6.(1)4名优秀学生全部保送到3所学校去,每所学校至少去一名,则不同的保送方案有多少种?2)五本不同的书将分发给四名学生,每个学生至少一本。
排列组合常见题型及解题策略
排列组合常见题型及解题策略一..相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列.【例1】,,,,A B C D E五人并排站成一排,如果,A B必须相邻且B在A的右边,那么不同的排法种数有【解析】:把,A B视为一人,且B固定在A的右边,则本题相当于4人的全排列,4424A=种【例2】3位男生和3位女生共6位同学站成一排,若男生甲不站两端,3位女生中有且只有两位女生相邻,则不同排法的种数是()A. 360B. 188C. 216D. 96【解析】:间接法6位同学站成一排,3位女生中有且只有两位女生相邻的排法有,2222 3242C A A A=432种,其中男生甲站两端的有1222223232A C A A A=144,符合条件的排法故共有288二.相离问题插空法:元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个元素插入上述几个元素的空位和两端.【例1】七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是【解析】:除甲乙外,其余5个排列数为55A种,再用甲乙去插6个空位有26A种,不同的排法种数是52 563600A A=种【例2】高三(一)班学要安排毕业晚会的4各音乐节目,2个舞蹈节目和1个曲艺节目的演出顺序,要求两个舞蹈节目不连排,则不同排法的种数是【解析】:不同排法的种数为5256A A=3600【例3】停车场划出一排12个停车位置,今有8辆车需要停放.要求空车位置连在一起,不同的停车方法有多少种?【解析】:先排好8辆车有A 88种方法,要求空车位置连在一起,则在每2辆之间及其两端的9个空档中任选一个,将空车位置插入有C 19种方法,所以共有C19A88种方法.注:题中*表示元素,○表示空.三.元素分析法(位置分析法):某个或几个元素要排在指定位置,可先排这个或几个元素;再排其它的元素。
【例1】2010年广州亚运会组委会要从小张、小赵、小李、小罗、小王五名志愿者中选派四人分别从事翻译、导游、礼仪、司机四项不同工作,若其中小张和小赵只能从事前两项工作,其余三人均能从事这四项工作,则不同的选派方案共有()A. 36种B. 12种C. 18种D. 48种【解析】:方法一:从后两项工作出发,采取位置分析法。
排列组合问题,常见解题策略
排列组合问题,常见解题策略曹永玉排列组合问题是高考的必考内容,也是高考题中正确率最低的题目之一。
究其原因,是因为其思维方式独特,解题思路新颖,如果对题意认识出现偏差的话,极易出现计数中的“重复”和“遗漏”。
教学中,提高学生解排列组合题的有效途径是将一些常见题型进行方法归类,构造模型解题,这样有利于学生认识模式,进而熟练应用。
本文列举了几种常见的排列组合问题的解题策略,以期对大家有所帮助。
一、排列问题1.某个(或某几个)元素要排在指定位置——特殊元素“优先法”。
例1. 乒乓球队的10 名队员中有3名主力队员,派5名参加比赛,3名主力要排在第一、三、五位置,其余7队员中选2名排在第二、四位置,那么不同的出场安排共有多少种?解析:3名主力的位置确定在第一、三、五位中选,将他们优先安排,有A72A33种可能,然后从其他队员中选2 人安排在第二、四位置,有A72种排法,因此结果有A33种。
点评:先排特殊(特殊元素或特殊位置)是解决排列问题的基本方法。
2.某个元素不排在指定位置——排除法。
例2. 5个人排队,其中甲不在排头的排法有多少?解析1:(排除法)5人的全排列数A55,其中甲在排头的排列数A44,故甲不在排头的排列数A55 --A44=96种解析2:(特殊元素优先法):先从余下的4个位置中选一位置排上,甲有A41种方法,然后其他4个元素排在余下的四个位置A44,所以总计A44A41种排法。
解析3:(特殊元素优先法):先从甲以外的4人中选出一人排在特殊位置——排头A41,然后其他四个元素排在余下的4个位置A44,所以总计A41A44种排法。
3. 相邻问题——捆绑法例3. 4名男生和4名女生排成一排照相,要求4名女生必须相邻,有多少种排法?解析:4名女生看作一个整体(捆绑),与4名男生共五个元素全排列A55,但这4名女生内部又有顺序A44,故A44A55种不同排法。
4. 小团体问题——捆绑法例4.5人站一排,其中甲、乙之间有且只有一人的站法有多少?解析:先从甲、乙之外的3人中选一人,然后将甲、乙排在他的两边有C31A22种方式,3人形成一个小团体,看作一个元素再与余下的2人排列有A33种。
排列组合问题的解答技巧和记忆方法
排列组合问题的解题策略关键词:排列组合,解题策略①分堆问题;②解决排列、组合问题的一些常用方法:错位法、剪截法(隔板法)、捆绑法、剔除法、插孔法、消序法(留空法). 一、相临问题——捆绑法例1.7名学生站成一排,甲、乙必须站在一起有多少不同排法?解:两个元素排在一起的问题可用“捆绑”法解决,先将甲乙二人看作一个元素与其他五人进行排列,并考虑甲乙二人的顺序,所以共有种。
评注:一般地: 个人站成一排,其中某个人相邻,可用“捆绑”法解决,共有种排法。
二、不相临问题——选空插入法例2.7名学生站成一排,甲乙互不相邻有多少不同排法?解:甲、乙二人不相邻的排法一般应用“插空”法,所以甲、乙二人不相邻的排法总数应为:种 .评注:若个人站成一排,其中个人不相邻,可用“插空”法解决,共有种排法。
三、复杂问题——总体排除法在直接法考虑比较难,或分类不清或多种时,可考虑用“排除法”,解决几何问题必须注意几何图形本身对其构成元素的限制。
例3.(1996年全国高考题)正六边形的中心和顶点共7个点,以其中3个点为顶点的三角形共有多少个.解:从7个点中取3个点的取法有种,但其中正六边形的对角线所含的中心和顶点三点共线不能组成三角形,有3条,所以满足条件的三角形共有-3=32个.四、特殊元素——优先考虑法对于含有限定条件的排列组合应用题,可以考虑优先安排特殊位置,然后再考虑其他位置的安排。
例4.(1995年上海高考题) 1名老师和4名获奖学生排成一排照像留念,若老师不排在两端,则共有不同的排法种.解:先考虑特殊元素(老师)的排法,因老师不排在两端,故可在中间三个位置上任选一个位置,有种,而其余学生的排法有种,所以共有=72种不同的排法.例5.(2000年全国高考题)乒乓球队的10名队员中有3名主力队员,派5名队员参加比赛,3名主力队员要安排在第一、三、五位置,其余7名队员选2名安排在第二、四位置,那么不同的出场安排共有种.解:由于第一、三、五位置特殊,只能安排主力队员,有种排法,而其余7名队员选出2名安排在第二、四位置,有种排法,所以不同的出场安排共有=252种.五、多元问题——分类讨论法对于元素多,选取情况多,可按要求进行分类讨论,最后总计。
排列组合解题方法和策略总结
排列组合解题方法和策略总结排列组合是数学中一个重要的概念,它涉及到从n个不同元素中取出m个元素(n>m)进行排列或组合的问题。
排列组合问题在日常生活和科学研究中有着广泛的应用,因此掌握排列组合的解题方法和策略非常重要。
以下是排列组合解题方法和策略的总结:1.明确问题要求:在解决排列组合问题时,首先要明确问题的要求,确定是排列问题还是组合问题,以及具体的限制条件。
2.确定元素范围:根据问题要求,确定所选取元素的范围,明确哪些元素可以选取,哪些元素不能选取。
3.列出所有可能的排列或组合:根据排列组合的公式,列出所有可能的排列或组合,确保不遗漏任何一种可能性。
4.分类讨论:对于一些复杂的问题,需要进行分类讨论。
根据问题的特点,将问题分成若干个子问题,分别求解子问题的排列组合情况。
5.排除法:在某些情况下,可以通过排除法求解问题。
根据问题的限制条件,排除一些不可能的情况,从而减少计算量。
6.递推关系:对于一些具有递推关系的问题,可以利用递推关系求解。
通过递推关系,逐步推导出最终的排列组合情况。
7.容斥原理:容斥原理是解决排列组合问题的一种重要方法。
通过容斥原理,可以将多个排列或组合的情况合并为一个,从而简化计算过程。
8.实际应用:排列组合问题在日常生活和科学研究中有着广泛的应用。
通过实际应用,可以加深对排列组合概念的理解,并掌握解题方法和策略。
解决排列组合问题需要掌握一定的方法和策略。
通过明确问题要求、确定元素范围、分类讨论、排除法、递推关系、容斥原理等方法和策略,可以有效地解决各种排列组合问题。
同时,通过实际应用,可以加深对排列组合概念的理解,提高解题能力。
排列组合在日常生活和科学研究中有着广泛的应用,以下是其中一些典型的应用场景:1.生日庆祝:在生日庆祝中,排列组合可以用来确定不同的庆祝活动安排。
例如,如果有5个朋友参加生日派对,可以使用排列组合确定他们坐在一张圆桌上的不同方式。
2.彩票购买:在购买彩票时,可以使用排列组合来计算不同号码的组合。
[数量关系] 排列组合与概率问题
[数量关系] 排列组合与概率问题[数量关系]排列组合与概率问题排列组合与概率问题在国家公务员考试中出现频率较大,几乎每年都会考查该类题型。
公务员的日常工作更多涉及到统计相关知识,因此这部分题型会愈加被强调。
在现实生活中我们经常会遇到排座次、分配任务等问题,用到的都是排列组合原理,即便是最简单的概率问题也要利用排列组合原理计算。
与此同时,排列组合中还有很多经典问题模型,其结论可以帮助我们速解该部分题型。
一、基础原理二、基本解题策略面对排列组合问题常用以下三种策略解题:1.合理分类策略①类与类之间必须互斥(互不相容);②分类涵盖所有情况。
2.准确分步策略①步与步之间互相独立(不相互影响);②步与步之间保持连续性。
3.先组后排策略当排列问题和组合问题相混合时,应该先通过组合问题将需要排列的元素选择出来,然后再进行排列。
【例题1】班上从7名男生和5名女生中选出3男2女去参加五个竞赛,每个竞赛参加一人。
问有多少种选法?A.120B.600C.1440D.42000中公解析:此题答案为D。
此题既涉及排列问题(参加五个不同的竞赛),又涉及组合问题(从12名学生中选出5名),应该先组后排。
三、概率问题概率是一个介于0到1之间的数,是对随机事件发生可能性的测度。
概率问题经常与排列组合结合考查。
因此解决概率问题要先明确概率的定义,然后运用排列组合知识求解。
1.传统概率问题2.条件概率在事件B已经发生前提下事件A发生的概率称为条件概率,即A在B条件下的概率。
P(AB)为AB同时发生的概率,P(B)为事件B单独发生的概率。
【例题3】小孙的口袋里有四颗糖,一颗巧克力味的,一颗果味的,两颗牛奶味的。
小孙任意从口袋里取出两颗糖,他看了看后说,其中一颗是牛奶味的。
问小孙取出的另一颗糖也是牛奶味的可能性(概率)是多少?排列组合与概率问题在国家公务员考试中出现频率较大,几乎每年都会考查该类题型。
公务员的日常工作更多涉及到统计相关知识,因此这部分题型会愈加被强调。
排列组合问题的解题策略
排列组合问题的解题策略关键词:排列组合,解题策略一、相临问题——捆绑法例1.7名学生站成一排,甲、乙必须站在一起有多少不同排法?解:两个元素排在一起的问题可用“捆绑”法解决,先将甲乙二人看作一个元素与其他五人进行排列,并考虑甲乙二人的顺序,所以共有种。
评注:一般地: 个人站成一排,其中某个人相邻,可用“捆绑”法解决,共有种排法。
二、不相临问题——选空插入法例2.7名学生站成一排,甲乙互不相邻有多少不同排法?解:甲、乙二人不相邻的排法一般应用“插空”法,所以甲、乙二人不相邻的排法总数应为:种 .评注:若个人站成一排,其中个人不相邻,可用“插空”法解决,共有种排法。
三、复杂问题——总体排除法在直接法考虑比较难,或分类不清或多种时,可考虑用“排除法”,解决几何问题必须注意几何图形本身对其构成元素的限制。
例3.(1996年全国高考题)正六边形的中心和顶点共7个点,以其中3个点为顶点的三角形共有多少个.解:从7个点中取3个点的取法有种,但其中正六边形的对角线所含的中心和顶点三点共线不能组成三角形,有3条,所以满足条件的三角形共有-3=32个.四、特殊元素——优先考虑法对于含有限定条件的排列组合应用题,可以考虑优先安排特殊位置,然后再考虑其他位置的安排。
例4.(1995年上海高考题) 1名老师和4名获奖学生排成一排照像留念,若老师不排在两端,则共有不同的排法种.解:先考虑特殊元素(老师)的排法,因老师不排在两端,故可在中间三个位置上任选一个位置,有种,而其余学生的排法有种,所以共有=72种不同的排法.例5.(2000年全国高考题)乒乓球队的10名队员中有3名主力队员,派5名队员参加比赛,3名主力队员要安排在第一、三、五位置,其余7名队员选2名安排在第二、四位置,那么不同的出场安排共有种.解:由于第一、三、五位置特殊,只能安排主力队员,有种排法,而其余7名队员选出2名安排在第二、四位置,有种排法,所以不同的出场安排共有=252种.五、多元问题——分类讨论法对于元素多,选取情况多,可按要求进行分类讨论,最后总计。
2024公务员联考行测数量关系解题技巧
2024公务员联考行测解题技巧1、利用插空法解决排列组合题“排列组合问题”是行测数量关系中常考的题型,也是大家觉得较难的题型。
往往很多同学看到排列全颗就直接放弃不做,其实解排列组合题目也是讲究方法的,当我们找准方法时,解题就能事半功倍了。
一、要点梳理插空法:当排列组合题中,有元素要求不相邻,先将其它元素排好,再将指定的不相邻的元素指入到已排好的元素的间隙或两端位置。
二、例题解析【例1】某学习平台的学习内容由观看视频、阅读文章、收藏分享、论坛交流、考试答题五个部分组成。
某考生要先后学完这五个部分,若观看视频和阅读文章不能连续进行,该学员学习顺序的选择有()种。
A.24B.72C.96D.120答案:B【解析】题目要求观看视频和阅读文章不能连续进行,也就是说两者不相邻,那我们可以使用插空法解题。
即先将除观看视频和文章阅读外的三个学习内容排好,题目当中说考生需要先后完成五个部分的学习且五个部分的学习内容不同,那收藏分享、论坛交流、考试答题中部分内容的安排可列式为A33,而三个元素排好包含两端会产生4个位置,接下来在4个位置中选两个位置插入观看视频和阅读文章即可,又因为需要考虑观看视频和阅读文章的顺序,所以列式为A24。
第一步安排其他三个学习内容,第二步按排观看视频和阅读文章,分步运算用乘法,因此该学员学习顺序共有A33×A24=72种,故选B项。
【例2】某条道路一侧共有20盥路灯。
为了节约用电,计划只打开其中的10盏。
但为了不影响行路安全,要求相邻的两盏路灯中至少有一盏是打开的,则共有()种开灯方案。
A.2B.6C.11D.13答案:c【解析】题目要求说相邻的两盏路灯中至少有一盏是打开的,也就是找不到两盏相邻的不亮的路灯,即不亮的路灯不能相邻,选择插空法。
先将亮着的10盏路灯排好,因为路灯与路灯一样,没有顺序要求,所以10盏亮着的路灯就一种情况。
10盏路灯包括两端会形成11个位置C1011=11种,故选择c项。
考公数量关系题型和解题技巧
考公数量关系题型和解题技巧以下是 7 条关于考公数量关系题型和解题技巧:1. 嘿,朋友们!行程问题可是考公数量关系里的常客啊!就像从 A 地到 B 地,知道速度和时间,怎么去求路程呢?来看这个例子,小明以每小时5 公里的速度走了 3 小时,那他走了多远呀?这不是很容易就能算出来嘛!学会这个题型,简直就是为你的考公之路铺上一块坚实的砖啊!2. 哇塞!工程问题也不能小瞧呀!可以把一项工程看成是一个大目标,不同的人或团队以不同的效率干,多久能干完?比如说修一条路,甲队一天能修10 米,乙队一天能修 8 米,两队一起修要几天修完?这么一想,是不是就很好理解啦?工程问题绝对会在考场上让你大放异彩啊!3. 各位亲,排列组合可是个神奇的题型哟!从一堆东西里选出几个来排列或者组合,就像从一堆糖果中选出几颗,有几种不同的选法呢?好比有 5 个不同颜色的球,选 3 个出来排列,那有多少种排法呢?好好掌握这个技巧,让你在考场上如有神助!4. 嘿呀!浓度问题也常出现呢!就像一杯糖水,糖的多少和水的多少决定了糖水的浓度。
比如有一杯 100 克水里加了 20 克糖,那这杯糖水的浓度是多少?是不是很有意思呀?学会了处理浓度问题,考公就多了一份把握!5. 大伙注意啦!年龄问题有时候会让人有点晕乎,但其实掌握技巧就不难啦!两个人的年龄差是不变的呀,就好似小明和小红现在年龄不一样,过几年还是那个差值。
像小明今年 10 岁,小红 15 岁,5 年后他们年龄差还是 5 岁呀!这技巧可得记住哦!6. 哇哦!利润问题也是重要角色呢!一件商品进价多少,卖价多少,利润就出来啦!例如进价 80 元的东西,卖 100 元,那利润是多少?这还用说嘛!掌握利润问题的解法,让你在考公路上披荆斩棘!7. 快瞧瞧!植树问题也不能忘呀。
事业单位数量关系:事业单位中的排列组合问题
在近些年的事业单位考试中, 排列组合问题成为了数量中的“常客”, 突破这类题型, 能让考生在数量关系考题中取得好的成绩。
为了让各位考生熟悉此类题型, 我们在此对近些年事业单位考试中的排列组合问题加以整理和总结, 帮助考生掌握解此类题型。
一、排列组合问题解题基本步骤1.明确题干细节和问题要求2.根据要求提出解决办法3.根据采用的办法判断分类或分步, 分别相加和相乘二、实战演练【例1】2022年间, 甲、乙、丙、丁四个教研室共在学术期刊上发表文章2 8篇, 已知甲发表的文章数不到10篇且不少于乙。
乙发表的文章数不少于丙, 丙发表的文章数不少于丁, 丁发表的文章数是奇数。
问: 每个教研室发表的文章数有多少种不同的可能性?A.4B.6C.8D.10【答案】C。
解析: 根据题意, 丁≤丙≤乙≤甲<10, 丁+丙+乙+甲=28, 四个数相等时丁最大为7, 又丁的文章数是奇数, 则丁只可以取1.3.5.7, 甲可以取7、8、9。
①当甲=9时丁=1, 乙+丙=18, 则乙、丙只能为(9、9);丁=3, 乙+丙=16, 则乙、丙可以取(8、8)、(9、7);丁=5, 乙+丙=14, 则乙、丙可以取(7、7)、(8、6)、(9、5);丁=7, 乙+丙=12, 乙、丙没有符合的。
②当甲=8时丁=1, 乙+丙=19, 乙、丙没有符合的;丁=3, 乙+丙=17, 乙、丙没有符合的;丁=5, 乙+丙=15, 则乙、丙可以取(8、7);丁=7, 乙+丙=13, 乙、丙没有符合的。
③当甲=7时, 丁只有取7才能符合且乙=丙=7。
综上, 共有8种不同的可能性, 故答案选C。
【例2】一个密码由4位不相同的数字组成, 已知由这四个数字按次序组成的阿拉伯数字小于2000, 且第二位数比第四位数大7。
问:满足这一条件的密码一共有多少个?A.28B.36C.60D.120【答案】A。
解析: 因由这4个不同数字按次序组成的阿拉伯数字小于2000,则这个四位数的首位可能是1或者0。
排列组合概率题解题技巧
排列组合概率题解题技巧排列组合概率题解题技巧有哪些?怎么样解决这类问题?下面是小编为大家整理的关于排列组合概率题解题技巧,希望对您有所帮助。
欢迎大家阅读参考学习!排列组合概率题解题技巧1.排列、组合、概率与错位公式2.排列组合概率解题思路——分类法3.例题1:繁琐的计算导致正确率变低4.例题2:通过选项思考暴力的可能性5.例题3:极为简单,一半做错的题6.例题4:分不同情况考虑安排方案7.例题5:分不同情况考虑安排方案8.例题6:理解排列组合题的关键一、排列、组合、概率与错位公式「数量关系」板块中的「排列、组合、概率」方面的题目每年必考、国考省考都会考,而此类题的难度一般较高,因此掌握它们的解题方法是非常有必要的。
总体来说,此类题目的公式非常简单,大致只有三个半,即排列公式、组合公式、概率公式和错位排列公式。
(1)排列公式A(总个数,选出排列的个数)特点是每个个体有「排列」的独特性,谁先选、谁后选会影响结果。
例如5个人选3个排队,5个项目选3个先后完成,两种情况的运算均为:A(5,3)=5×4×3=60种方式(2)组合公式C(总个数,选出组合的个数)特点是每个个体没有「排列」的独特性,谁先选、谁后选都不影响结果。
例如5个人选3个参加比赛,5个项目选3个于今年内完成(不要求完成顺序),则运算均为:C(5,3)=C(5,2)=5×4÷(1×2)=10种方式注意C(5,3)一般要转换为C(5,2),其原因是:C(5,3)=5×4×3÷(1×2×3)=5×4÷2,中间要约去3,因此可能会多花两三秒钟,故要尽量节约时间。
注:排列组合公式很好记忆,由于公考中考察的「排列组合概率」题的数值不会很大,因此在实际考试中,直接在纸上用笔列草稿即可:总数×(总数-1)×(总数-2)×……一直让相乘数字的个数达到「选出的个数」,即为排列公式;再从1开始乘,乘到「选出的个数」,用排列公式得出的结果除以该数即为「组合公式」。
解排列组合问题的十七种常用策略
原理共有___C__32C_32_+__C__15C__13C__24 +__C_52_C_52__种。
本题还有如下分类标准: *以3个全能演员是否选上唱歌人员为标准 *以3个全能演员是否选上跳舞人员为标准 *以只会跳舞的2人是否选上跳舞人员为标准 都可经得到正确结果
2. 某8层大楼一楼电梯上来8名乘客人,他们 到各自的一层下电梯,下电梯的方法
( 78 )
六.环排问题线排策略 例6. 5人围桌而坐,共有多少种坐法?
解:围桌而坐与坐成一排的不同点在于,坐成 圆形没有首尾之分,所以固定一人A并从 此位置把圆形展成直线其余4人共有_A_44__
种排法即(5-1)!
一般B地,n个不同元素作圆形排 列C ,共有(A n-1A)!种B 排C 法D.如E 果A
从作Dn圆个形不排E同列元共素有中取出m1mA个nm 元素
练习题 6颗颜色不同的钻石,可穿成几种钻石圈
60
七.多排问题直排策略 例7.8人排成前后两排,每排4人,其中甲乙在
前排,丁在后排,共有多少排法 解:8人排前后两排,相当于8人坐8把椅子,可以
把椅子排成一排. 先在前4个位置排甲乙两 个特殊元素有_A_42__种,再排后4个位置上的
※解决排列组合综合性问题,往往类与步交 叉,因此必须掌握一些常用的解题策略
一.特殊元素和特殊位置优先策略
例1.由0,1,2,3,4,5可以组成多少个没有重复数字 五位奇数.
解:由于末位和首位有特殊要求,应该优先安 位题置最排先分常,排以析用末免法也位不和是共合元最有要素基_求C_分本31_的析的元法方素是法占解,了若决这以排两元列个素组位分合置析问为 主,然需后先排安首排位特共殊有元_素C_41_,再处理其它元素.若以 位处考置理虑最由分其一后分析它个排步为位约其计主置束它数。条,位原需若件置理先有的共得满多同有足C个时31_特AC_约还4341_殊AC束要43位41 条 兼=置2件顾8的8A,其43要往它求往条,是件再C31
排列组合问题的解题策略
排列组合问题的解题策略一、合理分类与准确分步法解含有约束条件的排列组合问题,应按园素性质进行分类,按事情发生的连续过程分步,作到分类标准明确,分步层次清楚,不重不漏.例1 、五个人排成一排,其中甲不在排头,乙不在排尾,不同的排法有 ( )A .120种 B.96种 C 。
78种 D 。
72种分析:由题意可先安排甲,并按其分类讨论:1)若甲在末尾,剩下四人可自由排,有44A 种排法;2)若甲在第二,三,四位上,则有131333A A A 种排法,由分类计数原理,排法共有7813133344=+A A A A 种,选C .二、正难反易转化法对于一些生疏问题或直接求解较为复杂或较为困难问题,从正面入手情况较多,不易解决,这时可从反面入手,将其转化为一个简单问题来处理。
例2、 马路上有8只路灯,为节约用电又不影响正常的照明,可把其中的三只灯关掉,但不能同时关掉相邻的两只或三只,也不能关掉两端的灯,那么满足条件的关灯方法共有多少种?分析: 关掉第1只灯的方法有6种,关第二只,第三只时需分类讨论,十分复杂。
若从反面入手考虑,每一种关灯的方法对应着一种满足题设条件的亮灯与关灯的排列,于是问题转化为“在5只亮灯的6个空中插入3只暗灯"的问题.故关灯方法种数为36C 。
三、混合问题“先选后排”对于排列组合混合问题,可先选出园素,再排列。
例 3、 4个不同小球放入编号为1,2,3,4的四个盒中,恰有一空盒的方法有多少种?分析: 因有一空盒,故必有一盒子放两球.1)选:从四个球中选2个有24C 种,从4个盒中选3个盒有34C 种;2)排:把选出的2个球看作一个园素与其余2球共3个园素,对选出的3盒作全排列有33A 种,故所求放法有144333424=A C C 种。
四、特殊园素“优先安排法”对于带有特殊园素的排列组合问题,一般应先考虑特殊园素,再考虑其它园素。
例4、 用0,2,3,4,5,五个数字,组成没有重复数字的三位数,其中偶数共有( )。
行测:数量关系中排列组合问题的七大解题策略
行测:数量关系中排列组合问题的七大解题策略
中公教育研究与辅导专家邹继阳
排列组合问题是历年公务员考试行测的必考题型,并且随着近年公务员考试越来越热门,国考中这部分题型的难度也在逐渐的加大,解题方法也趋于多样化。
解答排列组合问题,必须认真审题,明确是属于排列问题还是组合问题,或者属于排列与组合的混合问题;同时要抓住问题的本质特征,灵活运用基本原理和公式进行分析,还要注意讲究一些策略和方法技巧。
一、排列和组合的概念
排列:从n个不同元素中,任取m个元素(这里的被取元素各不相同)按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列。
组合:从n个不同元素种取出m个元素拼成一组,称为从n个不同元素取出m个元素的一个组合。
二、七大解题策略
1.特殊优先法
特殊元素,优先处理;特殊位置,优先考虑。
对于有附加条件的排列组合问题,一般采用:先考虑满足特殊的元素和位置,再考虑其它元素和位置。
例:从6名志愿者中选出4人分别从事翻译、导游、导购、保洁四项不同的工作,若其中甲、乙两名志愿者都不能从事翻译工作,则不同的选派方案共有( )
(A) 280种 (B)240种 (C)180种 (D)96种
正确答案:。
高考的数学排列组合常见题型及解题策略
排列组合常见题型及解题策略排列组合问题是高考的必考题,它联系实际生动有趣,但题型多样,思路灵活,不易掌握,实践证明,掌握题型和解题方法,识别模式,熟练运用,是解决排列组合应用题的有效途径;下面就谈一谈排列组合应用题的解题策略 .一.可重复的排列求幂法:重复排列问题要区分两类元素:一类可以重复,另一类不能重复,把不能重复的元素看作“客” ,能重复的元素看作“店” ,则通过“住店法”可顺利解题,在这类问题使用住店处理的策略中,关键是在正确判断哪个底数,哪个是指数【例 1】( 1)有 4 名学生报名参加数学、物理、化学竞赛,每人限报一科,有多少种不同的报名方法?(2)有 4 名学生参加争夺数学、物理、化学竞赛冠军,有多少种不同的结果?(3)将 3封不同的信投入 4 个不同的邮筒,则有多少种不同投法?【解析】:(1)34(2)43( 3)43【例 2】把 6 名实习生分配到 7 个车间实习共有多少种不同方法?【解析】:完成此事共分6 步,第一步;将第一名实习生分配到车间有 7种不同方案,第二步:将第二名实习生分配到车间也有 7 种不同方案,依次类推,由分步计数原理知共有76种不同【例 3】 8名同学争夺 3 项冠军,获得冠军的可能性有()3 33 8A、83 B 、38 C 、A8 D 、C8 【解析】:冠军不能重复,但同一个学生可获得多项冠军,把 8 名学生看作 8家“店”,3 项冠军看作 3个“客”,他们都可能住进任意一家“店” ,每个“客”有 8 种可能,因此共有83种不同的结果。
所以选 A二.相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列. 高【例 1】A,B,C,D,E五人并排站成一排,如果A,B必须相邻且B在A的右边,那么不同的排法种数有【解析】:把A,B 视为一人,且B固定在A的右边,则本题相当于 4 人的全排列,A44 24种【例 2】( 2009四川卷理) 3 位男生和 3位女生共 6 位同学站成一排,若男生甲不站两端, 3 位女生中有且只有两位女生相邻,则不同排法的种数是(A. 360B. 188C. 216D. 96【解析】间接法 6 位同学站成一排, 3位女生中有且只有两位女生相邻的排法有,C32A22A24A22=432 种高☆考♂资♀源?网☆其中男生甲站两端的有A12C32A22A23A 22=144,符合条件的排法故共有 288三.相离问题插空法:元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个元素插入上述几个元素的空位和两端 .【例 1】七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是【解析】:除甲乙外,其余 5 个排列数为A55种,再用甲乙去插 6 个空位有A62种,不同的排法种数是52A55A62 3600种【例 2】书架上某层有 6 本书,新买 3 本插进去,要保持原有 6 本书的顺序,有种不同的插法(具体数字作答)【解析】:A17A18A91=504【例 3】高三(一)班学要安排毕业晚会的 4 各音乐节目, 2 个舞蹈节目和 1 个曲艺节目的演出顺序,要求两个舞蹈节目不连排,则不同排法的种数是【解析】:不同排法的种数为A55 A62=3600【例 4】某工程队有 6 项工程需要单独完成,其中工程乙必须在工程甲完成后才能进行,工程丙必须在工程乙完成后才能进行,有工程丁必须在工程丙完成后立即进行。
排列组合问题解法总结
排列组合问题的常见解法一.元素相同问题隔板策略例1.有10个运动员名额,分给7个班,每班至少一个,有多少种分配方案解:因为10个名额没有差别,把它们排成一排.相邻名额之间形成9个空隙.在9个空档中选6个位置插个隔板,可把名额分成7份,对应地分给7个班级,每一种插板方法对应一种分法共有69C 种分法.注:这和投信问题是不同的,投信问题的关键是信不同,邮筒也不同,而这里的问题是邮筒不同,但信是相同的.即班级不同,但名额都是一样的. 练习题:个相同的球装5个盒中,每盒至少一个有多少装法 49C 2.100x y z w +++=求这个方程组的自然数解的组数 3103C 二.环排问题直排策略如果在圆周上m 个不同的位置编上不同的号码,那么从n 个不同的元素的中选取m 个不同的元素排在圆周上不同的位置,这种排列和直线排列是相同的;如果从n 个不同的元素的中选取m 个不同的元素排列在圆周上,位置没有编号,元素间的相对位置没有改变,不计顺逆方向,这种排列和直线排列是不同的,这就是环形排列的问题.一个m 个元素的环形排列,相当于一个有m 个顶点的多边形,沿相邻两个点的弧线剪断,再拉直就是形成一个直线排列,即一个m 个元素的环形排列对应着m 个直线排列,设从n 个元素中取出m 个元素组成的环形排列数为N 个,则对应的直线排列数为mN 个,又因为从n 个元素中取出m 个元素的排成一排的排列数为mnA 个,所以mn mN A=,所以m nA N m=.即从n 个元素中取出m 个元素组成的环形排列数为m nA N m =.n 个元素的环形排列数为!(1)!n n A n N n n n===-例2. 8人围桌而坐,共有多少种坐法解:围桌而坐与坐成一排的不同点在于,坐成圆形没有首尾之分,所以固定一人44A 并从此位置把圆形展成直线其余7人共有(81)!7!-=种排法,即7!7654321840=⨯⨯⨯⨯⨯⨯= 种七班练习题:6颗颜色不同的钻石,可穿成几种钻石圈 120 三.多排问题直排策略例人排成前后两排,每排4人,其中甲乙在前排,丙在后排,共有多少排法解:8人排前后两排,相当于8人坐8把椅子,可以把椅子排成一排.先排前4个位置,2个特殊元素有24A 种排法,再排后4个位置上的特殊元素丙有14A 种,其余的5人在5个位置上任意排列有55A 种,则共有215445A A A 种排法.(排好后,按前4个为前排,后4人为后排分成两排即可)练习题:有两排座位,前排11个座位,后排12个座位,现安排2人就座规定前排中间的3个座位不能坐,并且这2人不左右相邻,那么不同排法的种数是 346解:由于甲乙二人不能相邻,所以前排第1,4,8,11四个位置和后排第1,12位置是排甲乙中的一个时,与它相邻的位置只能排除一个,而其它位置要排除3个,所以共有排列11116181417108238346C C C C +=+=四.排列组合混合问题先选后排策略例4.有5个不同的小球,装入4个不同的盒内,每盒至少装一个球,共有多少不同的装法.解:第一步从5个球中选出2个组成复合元共有25C 种方法.再把4个元素(包含一个复合元素)装入4个不同的盒内有44A 种方法,根据分步计数原理装球的方法共有2454C A练习题:一个班有6名战士,其中正副班长各1人现从中选4人完成四种不同的任务,每人完成一种任务,且正副班长有且只有1人参加,则不同的选法有 192 种五.小集团问题先整体后局部策略例5.用1,2,3,4,5组成没有重复数字的五位数其中恰有两个偶数在1,5在两个奇数之间,这样的五位数有多少个(注:两个偶数2,4在两个奇数1,5之间,这是题意,说这个结构不能被打破,故3只能排这个结构的外围,也就是说要把这个结构看成一个整体与3进行排列).解:把1,5,2,4当作一个小集团与3排队共有22A 种排法,再排小集团内部共有2222A A 种排法,由分步计数原理共有222222A A A 种排法.练习题:1.计划展出10幅不同的画,其中1幅水彩画,4幅油画,5幅国画, 排成一行陈列,要求同一品种的必须连在一起,并且水彩画不在两端,那么共有陈列方式的种数为254254A A A 2. 5男生和5女生站成一排照像,男生相邻,女生也相邻的排法有255255A A A 种 六.正难则反总体淘汰策略例6.从0,1,2,3,4,5,6,7,8,9这十个数字中取出三个数,使其和为不小于10的偶数,不同的取法有多少种解:这问题中如果直接求不小于10的偶数很困难,可用总体淘汰法.这十个数字中有5个偶数5个奇数,所取的三个数含有3个偶数的取法有35C ,只含有1个偶数的取法有1255C C ,和为偶数的取法共有123555C C C +.再淘汰和小于10的偶数共9种,符合条件的取法共有1235559C C C +-练习题:我们班里有43位同学,从中任抽5人,正、副班长、团支部书记至少有一人在内的 抽法有多少种七.平均分组问题除法策略例7. 6本不同的书平均分成3堆,每堆2本共有多少分法解: 分三步取书得222642C C C 种方法,但这里出现重复计数的现象,不妨记6本书为ABCDEF ,若第一步取AB,第二步取CD,第三步取EF该分法记为(AB,CD,EF),则222642C C C 中还有(AB,EF,CD),(CD,AB,EF),(CD,EF,AB)(EF,CD,AB),(EF,AB,CD)共有33A 种取法 ,而这些分法仅是(AB,CD,EF)一种分法,故共有22264233C C C A 种分法.练习题:1 将13个球队分成3组,一组5个队,其它两组4个队, 有多少分法(544138422C C C A ) 名学生分成3组,其中一组4人, 另两组3人但正副班长不能分在同一组,有多少种不同的 分组方法 (1540)3.某校高二年级共有六个班级,现从外地转 入4名学生,要安排到该年级的两个班级且每班安排2名,则不同的安排方案种数为______(2224262290C C A A =) 八. 合理分类与分步策略例8.在一次演唱会上共10名演员,其中8人能能唱歌,5人会跳舞,现要演出一个2人唱歌2人伴舞的节目,有多少选派方法解:10演员中有5人只会唱歌,2人只会跳舞3人为全能演员.选上唱歌人员为标准进行研究 只会唱的5人中没有人选上唱歌人员共有2233C C 种,只会唱的5人中只有1人选上唱歌人员112534C C C 种,只会唱的5人中只有2人选上唱歌人员有2255C C 种,由分类计数原理共有 22112223353455C C C C C C C ++种.解含有约束条件的排列组合问题,可按元素的性质进行分类,按事件发生的连续过程分步,做到标准明确。
公务员行测数量关系答题技巧:排列组合不再难
公务员⾏测数量关系答题技巧:排列组合不再难 ⾏测排列组合问题怎样解决呢?⼩编为⼤家提供公务员⾏测数量关系答题技巧:排列组合不再难,⼀起来学习⼀下吧!希望⼤家喜欢! 公务员⾏测数量关系答题技巧:排列组合不再难 排列组合问题是让不少同学都⽐较头痛的问题,今天⼩编就来跟⼤家分享⼀下解决排列组合问题常⽤的四个⽅法。
⼀、优限法 对于有限制条件的元素(或位置)的排列组合问题,在解题时优先考虑这些元素(或位置),再去解决其它元素(或位置)。
【例】某宾馆有6个空房间,3间在⼀楼,3间在⼆楼。
现有4名客⼈要⼊住,每⼈都住单间,都优先选择⼀楼房间。
问宾馆共有多少种安排? A 24 B 36 C 48 D 72 来源:中公教育 ⾏测数量关系:排列组合之“分糖”的顺序 数量关系⼀直是公务员考试⾏测中的难题,⽽数量关系中的排列组合的问题对于很多考⽣来说⼀直是⼀道很⼤的坎,就排列组合问题⽽⾔,⼀个本质的问题就是在计算的时候具体是否需要考虑顺序。
事实上对于要不要考虑顺序的问题,很多题⽬⼜是不⼀样的,那么今天,⼩编主要来总结⼀下⼀类常考的,⽽且具有⼀定代表性的题⽬---分糖的问题。
下⾯我们通过例题⼀起来看⼀下: 【例】:奶奶有6块不同的糖,现在要把糖平均分给三个孙⼦,⼀共有多少种分法? A.360 B.90 C.45 D.15 ⾏测数量关系模拟题及答案 1、⽤抽签的⽅法从3名同学中选1名去参加⾳乐会,准备3张相同的⼩纸条,并在1张纸条画上记号,其余2张纸条不画.把3张纸条折叠后放⼊⼀个盒⼦中搅匀,然后让甲、⼄、丙依次去摸纸条,他们抽到画有记号的纸条的概率记P甲、P⼄、P丙,则( ) A.P甲>P⼄>P丙 B.P甲 C.P甲>P⼄=P丙 D.P甲=P⼄=P丙 2、学校要举⾏夏令营活动,由于名额有限,需要在符合条件的5个同学中通过抓阄的⽅式选择出两个同学去参加此次活动。
于是班长就做了5个阄,其中两个阄上写有“去”字,其余三个阄空⽩,混合后5个同学依次随机抓取。
数量关系中排列组合问题的七大解题策略
数量关系中排列组合问题的七大解题策略一、特殊优先法:特殊元素,优先处理;特殊位置,优先考虑。
对于有附加条件的排列组合问题,一般采用:先考虑满足特殊的元素和位置,再考虑其它元素和位置。
【例题】从6名志愿者中选出4人分别从事翻译、导游、导购、保洁四项不同的工作,若其中甲、乙两名志愿者都不能从事翻译工作,则不同的选派方案共有()(A) 280种(B)240种(C)180种(D)96种解析:由于甲、乙两名志愿者都不能从事翻译工作,所以翻译工作就是“特殊”位置,因此翻译工作从剩下的四名志愿者中任选一人有C(4,1)=4种不同的选法,再从其余的5人中任选3人从事导游、导购、保洁三项不同的工作有A(5,3)=10种不同的选法,所以不同的选派方案共有C(4,1)×A(5,3)=240种。
答案:B二、科学分类法:问题中既有元素的限制,又有排列的问题,一般是先元素(即组合)后排列。
对于较复杂的排列组合问题,由于情况繁多,因此要对各种不同情况,进行科学分类,以便有条不紊地进行解答,避免重复或遗漏现象发生。
同时明确分类后的各种情况符合加法原理,要做相加运算。
【例题】某单位邀请10为教师中的6为参加一个会议,其中甲,乙两位不能同时参加,则邀请的不同方法有()种A.84B.98C.112D.140解析:按要求:甲、乙不能同时参加分成以下几类:a.甲参加,乙不参加,那么从剩下的8位教师中选出5位,有C(8,5)=56种;b.乙参加,甲不参加,同(a)有56种;c.甲、乙都不参加,那么从剩下的8位教师中选出6位,有C(8,6)=28种。
故共有56+56+28=140种。
答案:D三、间接法:即部分符合条件排除法,采用正难则反,等价转换的策略。
为求完成某件事的方法种数,如果我们分步考虑时,会出现某一步的方法种数不确定或计数有重复,就要考虑用分类法,分类法是解决复杂问题的有效手段,而当正面分类情况种数较多时,则就考虑用间接法计数.例题:从6名男生,5名女生中任选4人参加竞赛,要求男女至少各1名,有多少种不同的选法?A.240 B.310 C.720 D.1080解析:此题从正面考虑的话情况比较多,如果采用间接法,男女至少各一人的反面就是分别只选男生或者女生,这样就可以变化成C(11,4)-C(6,4)-C(5,4)=310。
排列组合问题常见题型及解题策略
2.甲乙捆绑为一个整体,与剩下的3人排序有 A44 种
N A44 A22 48
练习 1. 7人站成一排 ,其中甲乙相邻且丙丁相
邻, 共有多少种不同的排法.
解:可先将甲乙两元素捆绑成整体并看成一个复
合元素,同时丙丁也看成一个复合元素,再与其 它元素进行排列,同时对相邻元素内部进行自排。
C
61C
2 5
C
3 3
(2)每组都有2本
C62C42C
2 2
3!
(3)各4本,1本,1本
C 64 C 21 C11 2!
例6.有6本不同的书分给甲, 乙, 丙三名同学, 按下列条件, 分别有多少种分法?
(1)每人各得2本
C 62 C 42 C 22 3!
A33
90
(2)甲得1本,乙得2本,丙得3本
练习
1.用四种不同的颜色将一个四边形ABCD的四个顶
点染上一种颜色,要求同一边的两个端的颜色不
同,求不同的染色方法有多少种?
A4
3
B
C 1(同A)D 3 C 2(异A)D 2
A
B
D
C
A
1 4
A31
A
1 3
A
1 4
A31
A
1 2
A
1 284Fra bibliotek2.从5个车工,4人钳工,2个既是车工又是钳工的11
个人中选4个车工,4个钳工,不同的选法有多少
C93 C43 C53 70
练习题 我们班里有43位同学,从中任抽5人,正、 副班长、团支部书记至少有一人在内的 抽法有多少种? C453 C450
1.四封信任意投入三个信箱中,不同的投法种数是
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中公教育研究与辅导专家邹继阳
排列组合问题是历年公务员考试行测的必考题型,并且随着近年公务员考试越来越热门,国考中这部分题型的难度也在逐渐的加大,解题方法也趋于多样化。
解答排列组合问题,必须认真审题,明确是属于排列问题还是组合问题,或者属于排列与组合的混合问题;同时要抓住问题的本质特征,灵活运用基本原理和公式进行分析,还要注意讲究一些策略和方法技巧。
一、排列和组合的概念
排列:从n个不同元素中,任取m个元素(这里的被取元素各不相同)按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列。
组合:从n个不同元素种取出m个元素拼成一组,称为从n个不同元素取出m个元素的一个组合。
二、七大解题策略
1.特殊优先法
特殊元素,优先处理;特殊位置,优先考虑。
对于有附加条件的排列组合问题,一般采用:先考虑满足特殊的元素和位置,再考虑其它元素和位置。
例:从6名志愿者中选出4人分别从事翻译、导游、导购、保洁四项不同的工作,若其中甲、乙两名志愿者都不能从事翻译工作,则不同的选派方案共有()
(A) 280种(B)240种(C)180种(D)96种
正确答案:【B】
解析:由于甲、乙两名志愿者都不能从事翻译工作,所以翻译工作就是“特殊”位置,因此翻译工作从剩下的四名志愿者中任选一人有C(4,1)=4种不同的选法,再从其余的5人中任选3人从事导游、导购、保洁三项不同的工作有A(5,3)=10种不同的选法,所以不同的选派方案共有C(4,1)×A(5,3)=240种,所以选B。
2.科学分类法
问题中既有元素的限制,又有排列的问题,一般是先元素(即组合)后排列。
对于较复杂的排列组合问题,由于情况繁多,因此要对各种不同情况,进行科学分类,以便有条不紊地进行解答,避免重复或遗漏现象发生。
同时明确分类后的各种情况符合加法原理,要做相加运算。
例:某单位邀请10为教师中的6为参加一个会议,其中甲,乙两位不能同时参加,则邀请的不同方法有()种。
A.84
B.98
C.112
D.140
正确答案【D】
解析:按要求:甲、乙不能同时参加分成以下几类:
a.甲参加,乙不参加,那么从剩下的8位教师中选出5位,有C(8,5)=56种;
b.乙参加,甲不参加,同(a)有56种;
c.甲、乙都不参加,那么从剩下的8位教师中选出6位,有C(8,6)=28种。
故共有56+56+28=140种。
3.间接法
即部分符合条件排除法,采用正难则反,等价转换的策略。
为求完成某件事的方法种数,如果我们分步考虑时,会出现某一步的方法种数不确定或计数有重复,就要考虑用分类法,分类法是解决复杂问题的有效手段,而当正面分类情况种数较多时,则就考虑用间接法计数.
例:从6名男生,5名女生中任选4人参加竞赛,要求男女至少各1名,有多少种不同的选法?
A.240 B.310 C.720 D.1080
正确答案【B】
解析:此题从正面考虑的话情况比较多,如果采用间接法,男女至少各一人的反面就是分别只选男生或者女生,这样就可以变化成C(11,4)-C(6,4)-C(5,4)=310。
4.捆绑法
所谓捆绑法,指在解决对于某几个元素要求相邻的问题时,先整体考虑,将相邻元素视作一个整体参与排序,然后再单独考虑这个整体内部各元素间顺序。
注意:其首要特点是相邻,其次捆绑法一般都应用在不同物体的排序问题中。
例:5个男生和3个女生排成一排,3个女生必须排在一起,有多少种不同排法?
A.240 B.320 C.450 D.480
正确答案【B】
解析:采用捆绑法,把3个女生视为一个元素,与5个男生进行排列,共有 A(6,6)=6x5x4x3x2种,然后3个女生内部再进行排列,有A(3,3)=6种,两次是分步完成的,应采用乘法,所以排法共有:A(6,6)×A(3,3) =320(种)。
5.插空法
所谓插空法,指在解决对于某几个元素要求不相邻的问题时,先将其它元素排好,再将指定的不相邻的元素插入已排好元素的间隙或两端位置。
注意:a.首要特点是不邻,其次是插空法一般应用在排序问题中。
b.将要求不相邻元素插入排好元素时,要注释是否能够插入两端位置。
c.对于捆绑法和插空法的区别,可简单记为“相邻问题捆绑法,不邻问题插空法”。
例:若有甲、乙、丙、丁、戊五个人排队,要求甲和乙两个人必须不站在一起,且甲和乙不能站在两端,则有多少排队方法?
A.9 B.12 C.15 D.20
正确答案【B】
解析:先排好丙、丁、戊三个人,然后将甲、乙插到丙、丁、戊所形成的两个空中,因
为甲、乙不站两端,所以只有两个空可选,方法总数为A(3,3)×A(2,2)=12种。
6.插板法
所谓插板法,指在解决若干相同元素分组,要求每组至少一个元素时,采用将比所需分组数目少1的板插入元素之间形成分组的解题策略。
注意:其首要特点是元素相同,其次是每组至少含有一个元素,一般用于组合问题中。
例:将8个完全相同的球放到3个不同的盒子中,要求每个盒子至少放一个球,一共有多少种方法?
A.24 B.28 C.32 D.48
正确答案【B】
解析:解决这道问题只需要将8个球分成三组,然后依次将每一组分别放到一个盒子中即可。
因此问题只需要把8个球分成三组即可,于是可以将8个球排成一排,然后用两个板插到8个球所形成的空里,即可顺利的把8个球分成三组。
其中第一个板前面的球放到第一个盒子中,第一个板和第二个板之间的球放到第二个盒子中,第二个板后面的球放到第三个盒子中去。
因为每个盒子至少放一个球,因此两个板不能放在同一个空里且板不能放在两端,于是其放板的方法数是C(8,2)=28种。
(注:板也是无区别的)
7.选“一”法,类似除法
对于某几个元素顺序一定的排列问题,可先把这几个元素与其他元素一同进行排列,然后用总的排列数除以这几个元素的全排列数。
这里的“选一”是说:和所求“相似”的排列方法有很多,我们只取其中的一种。
例:五人排队甲在乙前面的排法有几种?
A.60 B.120 C.150 D.180
正确答案【A】
解析:五个人的安排方式有5!=120种,其中包括甲在乙前面和甲在乙后面两种情形(这里没有提到甲乙相邻不相邻,可以不去考虑),题目要求之前甲在乙前面一种情况,所以答案是A(5,5)÷A(2,2)=60种。
以上方法是解决排列组合问题经常用的,注意理解掌握。
最后,行测中数量关系的题目部分难度比较大,答题耗时比较多,希望考试调整好答题的心态和答题顺序,在备考过程中掌握好技巧和方法,提高答题的效率。