常微分方程期中测试试卷(11)
常微分方程习题集
![常微分方程习题集](https://img.taocdn.com/s3/m/f14c0152c1c708a1284a44aa.png)
《常微分方程》测试题1一、填空题30%1、形如的方程,称为变量分离方程,这里.分别为的连续函数。
2、形如-的方程,称为伯努利方程,这里的连续函数.n3、如果存在常数-对于所有函数称为在R上关于满足利普希兹条件。
4、形如-的方程,称为欧拉方程,这里5、设的某一解,则它的任一解- 。
二、计算题40%1、求方程2、求方程的通解。
3、求方程的隐式解。
4、求方程三、证明题30%1.试验证=是方程组x=x,x= ,在任何不包含原点的区间a上的基解矩阵。
2.设为方程x=Ax(A为nn常数矩阵)的标准基解矩阵(即(0)=E),证明: (t)=(t- t)其中t为某一值.<%建设目标%>《常微分方程》测试题2一、填空题:(30%)1、曲线上任一点的切线的纵截距是切点的横坐标和纵坐标的等差中项,则曲线所满足的8、已知是二阶齐次线性微分方程的一个非零解,则与线性无关的另一10、线性微分方程组的解是的基本解组的充要条件是.二、求下列微分方程的通解:(40%)1、2、3、4、5、求解方程.三、求初值问题的解的存在区间,并求第二次近似解,给出在解的存在区间的误差估计.(10分)四、求解微分方程组满足初始条件的解. (10%)五、证明题:(10%)设,是方程的解,且满足==0,,这里在上连续,.试证明:存在常数C使得=C《常微分方程》测试题31.辨别题指出下列方程的阶数,是否是线性方程:(12%)(1)(2)(3)(4)(5)(6)2、填空题(8%)(1).方程的所有常数解是___________.(2).若y=y1(x),y=y2(x)是一阶线性非齐次方程的两个不同解,则用这两个解可把其通解表示为________________.(3).若方程M(x, y)d x + N(x, y)d y= 0是全微分方程,同它的通积分是________________.(4).设M(x0, y0)是可微曲线y=y(x)上的任意一点,过该点的切线在x轴和y轴上的截距分别是_________________.3、单选题(14%)(1).方程是().(A)可分离变量方程(B)线性方程(C)全微分方程(D)贝努利方程(2).方程,过点(0,0)有().(A) 一个解(B)两个解(C) 无数个解(D)三个解(3).方程x(y2-1)d x+y(x2-1)d y=0的所有常数解是().(A)y=±1,x=±1, (B)y=±1(C)x=±1 (D)y=1,x=1(4).若函数y(x)满足方程,且在x=1时,y=1, 则在x = e时y=( ).(A) (B) (C)2(D) e(5).阶线性齐次方程的所有解构成一个()线性空间.(A)维(B)维(C)维(D)维(6). 方程()奇解.(A)有三个(B)无(C)有一个(D)有两个(7).方程过点().(A)有无数个解(B)只有三个解(C)只有解(D)只有两个解4.计算题(40%)求下列方程的通解或通积分:(1).(2).(3).(4).(5).5. 计算题(10%)求方程的通解.6.证明题(16%)设在整个平面上连续可微,且.求证:方程的非常数解,当时,有,那么必为或<%建设目标%>《常微分方程》测试题41.辨别题指出下列方程的阶数,是否是线性方程:(12%)(1)(2)(3)(4)(5)(6)2、填空题(8%)(1).方程的所有常数解是___________.(2).若y=y1(x),y=y2(x)是一阶线性非齐次方程的两个不同解,则用这两个解可把其通解表示为________________.(3).若方程M(x, y)d x + N(x, y)d y= 0是全微分方程,同它的通积分是________________.(4).设M(x0, y0)是可微曲线y=y(x)上的任意一点,过该点的切线在x轴和y轴上的截距分别是_________________3、单选题(14%)(1).方程是().(A)可分离变量方程(B)线性方程(C)全微分方程(D)贝努利方程(2).方程,过点(0,0)有().(A) 一个解(B)两个解(C) 无数个解(D)三个解(3).方程x(y2-1)d x+y(x2-1)d y=0的所有常数解是().(A)y=±1,x=±1, (B)y=±1(C)x=±1 (D)y=1,x=1(4).若函数y(x)满足方程,且在x=1时,y=1, 则在x = e时y=( ).(A) (B) (C)2(D) e(5).阶线性齐次方程的所有解构成一个()线性空间.(A)维(B)维(C)维(D)维(6). 方程()奇解.(A)有三个(B)无(C)有一个(D)有两个(7).方程过点().(A)有无数个解(B)只有三个解(C)只有解(D)只有两个解4.计算题(40%)求下列方程的通解或通积分:(1).(2).(3).(4).(5).5. 计算题(10%)求方程的通解.6.证明题(16%)设在整个平面上连续可微,且.求证:方程的非常数解,当时,有,那么必为或《常微分方程》测试题5一、填空题(30%)1.若y=y1(x),y=y2(x)是一阶线性非齐次方程的两个不同解,则用这两个解可把其通解表示为.2.方程满足解的存在唯一性定理条件的区域是.3.连续是保证方程初值唯一的条件.一条积分曲线.4. 线性齐次微分方程组的一个基本解组的个数不能多于个,其中,.5.二阶线性齐次微分方程的两个解,成为其基本解组的充要条件是.6.方程满足解的存在唯一性定理条件的区域是.7.方程的所有常数解是.8.方程所有常数解是.9.线性齐次微分方程组的解组为基本解组的条件是它们的朗斯基行列式.10.阶线性齐次微分方程线性无关解的个数最多为个二、计算题(40%)求下列方程的通解或通积分:1.2.3.4.5.三、证明题(30%)1.试证明:对任意及满足条件的,方程的满足条件的解在上存在.2.设在上连续,且,求证:方程的任意解均有.3.设方程中,在上连续可微,且,.求证:该方程的任一满足初值条件的解必在区间上存在.《常微分方程》测试题6一、填空题(20%)1.方程的所有常数解是.2.方程的常数解是.3.一阶微分方程的一个特解的图像是维空间上的一条曲线.4.方程的基本解组是.二、选择题(25%)1.阶线性齐次微分方程基本解组中解的个数恰好是()个.(A)(B)-1 (C)+1 (D)+22.李普希兹条件是保证一阶微分方程初值问题解惟一的()条件.(A)充分(B)必要(C)充分必要(D)必要非充分3. 方程过点共有()个解.(A)一(B)无数(C)两(D)三4.方程()奇解.(A)有一个(B)有两个(C)无(D)有无数个5.方程的奇解是().(A)(B)(C)(D)三、计算题(25%)=+y=03.4.5.四、求下列方程的通解或通积分(30%)1.2.3.《常微分方程》测试题7一. 解下列方程(80%)1.x=+y2.tgydx-ctydy=03.{y-x(+)}dx-xdy=04.2xylnydx+{+}dy=05. =6-x6. =27. 已知f(x)=1,x0,试求函数f(x)的一般表达式。
常微分方程习题集
![常微分方程习题集](https://img.taocdn.com/s3/m/1d2e0e3e7cd184254b35356c.png)
《常微分方程》测试题 1一、填空题 30%1、形如的方程,称为变量分离方程,这里.分别为x.y的连续函数。
2、形如 -的方程,称为伯努利方程,这里的连续函数.n3、如果存在常数 -对于所有函数称为在R上关于满足利普希兹条件。
4、形如 -的方程,称为欧拉方程,这里5、设的某一解,则它的任一解- 。
二、计算题40%1、求方程2、求方程的通解。
3、求方程的隐式解。
4、求方程三、证明题30%1.试验证=是方程组x=x,x=,在任何不包含原点的区间a上的基解矩阵。
2.设为方程x=Ax(A为n n常数矩阵)的标准基解矩阵(即(0)=E),证明: (t)=(t- t)其中t为某一值.<%建设目标%>《常微分方程》测试题 2一、填空题:(30%)1、曲线上任一点的切线的纵截距是切点的横坐标和纵坐标的等差中项,则曲线所满足的微分方程是 .2、方程的通解中含有任意常数的个数为 .3、方程有积分因子的充要条件为 .4、连续是保证对满足李普希兹条件的条件.5、方程满足解的存在唯一性定理条件的区域是.6、若是二阶线性齐次微分方程的基本解组,则它们 (有或无)共同零点.7、设是方程的通解,则.8、已知是二阶齐次线性微分方程的一个非零解,则与线性无关的另一解 .9、设是阶常系数齐次线性方程特征方程的K重根,则该方程相应于的K个线性无关解是 .10、线性微分方程组的解是的基本解组的充要条件是 .二、求下列微分方程的通解:(40%)1、2、3、4、5、求解方程.三、求初值问题的解的存在区间,并求第二次近似解,给出在解的存在区间的误差估计.(10分)四、求解微分方程组满足初始条件的解. (10%)五、证明题:(10%)设,是方程的解,且满足==0,,这里在上连续,.试证明:存在常数C使得=C 《常微分方程》测试题 31.辨别题指出下列方程的阶数,是否是线性方程:(12%)(1)(2)(3)(4)(5)(6)2、填空题(8%)(1).方程的所有常数解是___________.(2).若y=y1(x),y=y2(x)是一阶线性非齐次方程的两个不同解,则用这两个解可把其通解表示为________________.(3).若方程M(x, y)dx + N(x, y)dy= 0是全微分方程,同它的通积分是________________.(4).设M(x0, y0)是可微曲线y= y(x)上的任意一点,过该点的切线在x轴和y轴上的截距分别是_________________.3、单选题(14%)(1).方程是().(A)可分离变量方程(B)线性方程(C)全微分方程(D)贝努利方程(2).方程,过点(0,0)有().(A) 一个解(B)两个解(C) 无数个解(D)三个解(3).方程x(y2-1)dx+y(x2-1)dy=0的所有常数解是().(A)y=±1, x=±1, (B) y=±1(C) x=±1 (D) y=1, x=1(4).若函数y(x)满足方程,且在x=1时,y=1, 则在x = e时y=( ).(A)(B) (C)2 (D) e(5).阶线性齐次方程的所有解构成一个()线性空间.(A)维(B)维(C)维(D)维(6). 方程()奇解.(A)有三个(B)无(C)有一个(D)有两个(7).方程过点().(A)有无数个解(B)只有三个解(C)只有解(D)只有两个解4.计算题(40%)求下列方程的通解或通积分:(1).(2).(3).(4).(5).5. 计算题(10%)求方程的通解.6.证明题(16%)设在整个平面上连续可微,且.求证:方程的非常数解,当时,有,那么必为或<%建设目标%>《常微分方程》测试题 41.辨别题指出下列方程的阶数,是否是线性方程:(12%)(1)(2)(3)(4)(5)(6)2、填空题(8%)(1).方程的所有常数解是___________.(2).若y=y1(x),y=y2(x)是一阶线性非齐次方程的两个不同解,则用这两个解可把其通解表示为________________.(3).若方程M(x, y)dx + N(x, y)dy= 0是全微分方程,同它的通积分是________________.(4).设M(x0, y0)是可微曲线y= y(x)上的任意一点,过该点的切线在x轴和y轴上的截距分别是_________________3、单选题(14%)(1).方程是().(A)可分离变量方程(B)线性方程(C)全微分方程(D)贝努利方程(2).方程,过点(0,0)有().(A) 一个解(B)两个解(C) 无数个解(D)三个解(3).方程x(y2-1)dx+y(x2-1)dy=0的所有常数解是().(A)y=±1, x=±1, (B) y=±1(C) x=±1 (D) y=1, x=1(4).若函数y(x)满足方程,且在x=1时,y=1, 则在x = e时y=( ).(A)(B) (C)2 (D) e(5).阶线性齐次方程的所有解构成一个()线性空间.(A)维(B)维(C)维(D)维(6). 方程()奇解.(A)有三个(B)无(C)有一个(D)有两个(7).方程过点().(A)有无数个解(B)只有三个解(C)只有解(D)只有两个解4.计算题(40%)求下列方程的通解或通积分:(1).(2).(3).(4).(5).5. 计算题(10%)求方程的通解.6.证明题(16%)设在整个平面上连续可微,且.求证:方程的非常数解,当时,有,那么必为或《常微分方程》测试题 5一、填空题(30%)1.若y=y1(x),y=y2(x)是一阶线性非齐次方程的两个不同解,则用这两个解可把其通解表示为.2.方程满足解的存在唯一性定理条件的区域是.3.连续是保证方程初值唯一的条件.一条积分曲线.4. 线性齐次微分方程组的一个基本解组的个数不能多于个,其中,.5.二阶线性齐次微分方程的两个解,成为其基本解组的充要条件是.6.方程满足解的存在唯一性定理条件的区域是.7.方程的所有常数解是.8.方程所有常数解是.9.线性齐次微分方程组的解组为基本解组的条件是它们的朗斯基行列式.10.阶线性齐次微分方程线性无关解的个数最多为个二、计算题(40%)求下列方程的通解或通积分:1.2.3.4.5.三、证明题(30%)1.试证明:对任意及满足条件的,方程的满足条件的解在上存在.2.设在上连续,且,求证:方程的任意解均有.3.设方程中,在上连续可微,且,.求证:该方程的任一满足初值条件的解必在区间上存在.《常微分方程》测试题 6一、填空题(20%)1.方程的所有常数解是.2.方程的常数解是.3.一阶微分方程的一个特解的图像是维空间上的一条曲线.4.方程的基本解组是.二、选择题(25%)1.阶线性齐次微分方程基本解组中解的个数恰好是()个.(A)(B)-1 (C)+1 (D)+2 2.李普希兹条件是保证一阶微分方程初值问题解惟一的()条件.(A)充分(B)必要(C)充分必要(D)必要非充分3. 方程过点共有()个解.(A)一(B)无数(C)两(D)三4.方程()奇解.(A)有一个(B)有两个(C)无(D)有无数个5.方程的奇解是().(A)(B)(C)(D)三、计算题(25%)1.x=+y2.tgydx-ctydy=03.4.5.四、求下列方程的通解或通积分(30%)1.2.3.《常微分方程》测试题 7一 . 解下列方程 (80%)1. x=+y2. tgydx-ctydy=03. {y-x(+)}dx-xdy=04. 2xylnydx+{+}dy=05. =6-x6. =27. 已知f(x)=1,x0,试求函数f(x)的一般表达式。
常微分方程计算题及答案
![常微分方程计算题及答案](https://img.taocdn.com/s3/m/a49e6aca4028915f804dc2a8.png)
计 算 题(每题10分)1、求解微分方程2'22x y xy xe -+=。
2、试用逐次逼近法求方程2y x dxdy+=通过点(0,0)的第三次近似解. 3、求解方程'2x y y y e -''+-=的通解4、求方程组dx dt ydydtx y ==+⎧⎨⎪⎩⎪2的通解5、求解微分方程'24y xy x +=6、试用逐次逼近法求方程2y x dxdy-=通过点(1,0)的第二次近似解。
7、求解方程''+-=-y y y e x '22的通解8、求方程组dxdt x ydydtx y =+=+⎧⎨⎪⎩⎪234的通解9、求解微分方程xy y x '-2=24 10、试用逐次逼近法求方程2y x dxdy-=通过(0,0)的第三次近似解. 11、求解方程''+-=-y y y e x '24的通解12、求方程组dxdtx y dydtx y =+=+⎧⎨⎪⎩⎪2332的通解13、求解微分方程x y y e x (')-=14、试用逐次逼近法求方程22x y dxdy+=通过点(0,0)的第三次逼近解. 15、求解方程''+-=--y y y e x '22的通解16、求解方程x e y y y -=-+''32 的通解17、求方程组⎪⎩⎪⎨⎧-+=-+=yx dt dydtdx x y dt dy dt dx243452的通解 18、解微分方程22(1)(1)0x y dx y x dy -+-= 19、试用逐次逼近法求方程2dyx y dx=-满足初始条件(0)0y =的近似解:0123(),(),(),()x x x x ϕϕϕϕ.20、利用逐次逼近法,求方程22dyy x dx=-适合初值条件(0)1y =的近似解:012(),(),()x x x ϕϕϕ。
(完整版)常微分方程练习试卷及答案
![(完整版)常微分方程练习试卷及答案](https://img.taocdn.com/s3/m/d4ce6a03f7ec4afe04a1df5f.png)
常微分方程练习试卷一、填空题。
1. 方程23210d xx dt+=是 阶 (线性、非线性)微分方程. 2. 方程()x dyf xy y dx=经变换_______,可以化为变量分离方程 . 3. 微分方程3230d yy x dx--=满足条件(0)1,(0)2y y '==的解有 个.4. 设常系数方程x y y y e αβγ'''++=的一个特解*2()x x xy x e e xe =++,则此方程的系数α= ,β= ,γ= .5. 朗斯基行列式()0W t ≡是函数组12(),(),,()n x t x t x t L 在a x b ≤≤上线性相关的 条件.6. 方程22(2320)0xydx x y dy ++-=的只与y 有关的积分因子为 .7. 已知()X A t X '=的基解矩阵为()t Φ的,则()A t = .8. 方程组20'05⎡⎤=⎢⎥⎣⎦x x 的基解矩阵为 . 9.可用变换 将伯努利方程 化为线性方程.10 .是满足方程251y y y y ''''''+++= 和初始条件 的唯一解.11.方程的待定特解可取 的形式:12. 三阶常系数齐线性方程 20y y y '''''-+=的特征根是二、计算题1.求平面上过原点的曲线方程, 该曲线上任一点处的切线与切点和点(1,0)的连线相互垂直.2.求解方程13dy x y dx x y +-=-+. 3. 求解方程222()0d x dx x dt dt+= 。
4.用比较系数法解方程..5.求方程 sin y y x '=+的通解.6.验证微分方程22(cos sin )(1)0x x xy dx y x dy -+-=是恰当方程,并求出它的通解.7.设 3124A -⎡⎤=⎢⎥-⎣⎦ , ⎥⎦⎤⎢⎣⎡-=11η ,试求方程组X A dt dX =的一个基解基解矩阵)(t Φ,求X A dt dX=满足初始条件η=)0(x 的解. 8. 求方程2213dyx y dx=-- 通过点(1,0) 的第二次近似解.9.求 的通解试求方程组x Ax '=的解(),t ϕ 12(0),ηϕηη⎡⎤==⎢⎥⎣⎦并求expAt 10.若三、证明题1. 若(),()t t Φψ是()X A t X '=的基解矩阵,求证:存在一个非奇异的常数矩阵C ,使得()()t t C ψ=Φ.2. 设),()(0βαϕ≤≤x x x 是积分方程],[,,])([)(0200βαξξξξ∈++=⎰x x d y y x y xx的皮卡逐步逼近函数序列)}({x n ϕ在],[βα上一致收敛所得的解,而)(x ψ是这积分方程在],[βα上的连续解,试用逐步逼近法证明:在],[βα上)()(x x ϕψ≡.3. 设 都是区间 上的连续函数, 且 是二阶线性方程的一个基本解组. 试证明:(i) 和 都只能有简单零点(即函数值与导函数值不能在一点同时为零); (ii) 和 没有共同的零点; (iii) 和没有共同的零点.4.试证:如果)(t ϕ是AX dtdX=满足初始条件ηϕ=)(0t 的解,那么ηϕ)(ex p )(0t t A t -= .2114A ⎡⎤=⎢⎥-⎣⎦32()480dy dy xy y dx dx -+=答案一.填空题。
常微分方程1
![常微分方程1](https://img.taocdn.com/s3/m/36f792ed856a561252d36fd1.png)
常 微 分 方 程试卷(一至十) 试 卷(一)一、填空题(3′×10=30′)1、以y 1=e 2x ,y 2=e x sinx ,y 3=e x cosx 为特解的最低阶常系数齐次线性微分方程是 。
2、微分方程4x 3y 3dx+3x 4y 2dy=0的通积分是 。
3、柯西问题x dxdy=,y (0)=1的解是 。
4、方程ydx-xdy=0的积分因子可取 。
5、证明初值问题的毕卡定理所构造的毕卡序列是 。
6、微分方程F(x ,y ,p)=0若有奇解y=ϕ (x),则y=ϕ (x) 满足的P-判别式是 。
7、线性微分方程组Y x A dxdY)(=的解组Y 1(x ),Y 2(x )…,Y n (x )在某区间上线性无头的充分必要条件是。
8、设A ,则矩阵指数函数e xA = 。
9、方程0=+'+''y y y 的通解是 。
10、由方程033=+'+''+'''y y a y a y 的通解是 。
二、解下列各方程(7′×4=28) 1、求方程31-++-=y x y x dx dy 的通解: 23、621y x y xdx dy =+ 4、x e x y y y 2)53(23+=+'-''三、求单参数曲线族xy=c 的正交轨线族(10′)12′)=dxdYY五、设二阶方程0442=-'+''y y x y x 有特解y 1(x)=x ,求此方程的通解(8′)六、有一容积为10000m 3的车间。
车间的空气含有0.12%的CO 2,今用一台风量为1000m 3/min 的鼓风机通入新鲜空气,新鲜空气中含有0.04%的CO 2,向鼓风机开动10min 后,车间内CO 2的百分比降到多少?(12′)试卷(二)一、填空题(31、微分方程组的阶数是 。
2、以y 1=e x ,y 2=xe x ,y 3=e 2x xin2x 为特解的最低阶实常系数齐次线性微分方程是 。
《常微分方程》期中试卷-解答
![《常微分方程》期中试卷-解答](https://img.taocdn.com/s3/m/53f6fe6a30126edb6f1aff00bed5b9f3f80f7207.png)
)()()(2cos 31cos 31sin 21)(**t x t x t x tt t t t x c +=∴-+=通解 五. 证明题(5分)证明:性无关解,下面只要证明其线是对应齐次方程的两个、是非齐方程的解,、、)()()()()()()(3231321t x t x t x t x t x t x t x --∴ 是齐次方程的基解线性无关,、,,线性无关,、、即:令∴--∴=+==⇒=+-+=-+-)()()()(000)()()(0)()()()(0)]()([)]()([323121213213212211322311t x t x t x t x k k k k t x t x t x t x k k t x k t x k t x t x k t x t x k)()]()([)]()([)(1322311t x t x t x c t x t x c t x +-+-=非齐次方程的通解:六. 应用题(任选1题, 10分)1.设运动员从跳落到开伞前为自由落体运动, 开伞后在空气中下落时受到的空气阻力与速度平方成正比(比例系数为k )。
一运动员从高空跳下T 秒后才打开降落伞。
试建立微分方程, 求开伞后, 该运动员在下降过程中速度与时间关系, 并求出极限速度。
解:kmgt v aeae k mg v a gT kmggT kmgc gT v c t m kg v kmgvkmgv gTv m k g dt dvt t v t t mkg t m kg =⇒+-=⇒∆-+=⇒=+=-+⇒⎪⎩⎪⎨⎧=-=+∞→)(lim 11ln ln)0(2ln)0()(22112由第二定律得:秒时的速度,根据牛顿表示运动员开伞用第 4 页2. 在一个电阻R 、电感L 、电容C 和电源E 串联而成的闭合回路中, 已知E=100sin60t(V)R=2欧姆, L=0.1(H ), C=1/260(F )。
复旦大学常微分期中试卷
![复旦大学常微分期中试卷](https://img.taocdn.com/s3/m/6310ba23ee06eff9aef807ef.png)
˙ = A(t)x, 其中 A(t) 为 R 上以 T (T > 0) 为周期的 考虑线性方程 n 维线性常微分方程: x 连续矩阵值函数. (1) 设 上 述 方 程 的 一 个 基 本 解 方 阵 为 ϕ(t), 证 明 存 在 一 个 ϕ(t + T ) = ϕ(t) · B . (2) 如 果 已 知 存 在 n 阶 矩 阵 C 使 得 eC T = B , 我 们 对 原 方 程 进 行 坐 标 变 换 y (t) = eC t ϕ−1 (t)x(t). 证明在此坐标变化下, 存在常数 C1 , C2 > 0 使得 C2 ∥x(t)∥ ≤ ∥y (t)∥ ≤ C1 ∥x(t)∥, 对于 t ∈ R 成立,并求出 y (t) 满足的微分方程. (3) 若 (2) 中得到的矩阵 C 的一切特征值实部都小于 0, 设 H (t) 为 R 上的 n 阶 连 常 值 矩 阵 B, 使 得
, ∥A∥2 2 =
得分 . .
已知 h(t) 为 (α, β ) 上的实值连续函数,x0 ∈ R, t0 ∈ (α, β ). 用逐次逼近法证明以下初值问 dx = h(t)(x + t2 sin x + t), dt 题 的解在 (α, β ) 上存在且惟一. x(t ) = x
(1) 若 A(t) ≡ A, 试用常数变易公式写出上述方程满足初值条件 x(t0 ) = x0 (t0 ∈ R, x0 ∈ Rn ) 的解. (2) 在 (1) 的条件下,若 A 的一切特征值实部大于 0,证明该方程存在唯一在 R 上有界 的解. 1 2 t2 + 1 , f (t) ≡ 0. 证明存在 x0 ∈ R , 使得该方程满 cos 2t
6
, 分 6 分, 5 分 6 分, 6 分 12
(整理)《常微分方程》试题.
![(整理)《常微分方程》试题.](https://img.taocdn.com/s3/m/7119671658fb770bf78a558f.png)
常微分方程试卷1一、填空题(每题3分,共15分)1.一阶微分方程的通解的图像是 维空间上的一族曲线.2.二阶线性齐次微分方程的两个解)(),(21x y x y 为方程的基本解组充分必要条件是 .3.方程02=+'-''y y y 的基本解组是 . 4.一个不可延展解的存在在区间一定是 区间. 5.方程21d d y xy-=的常数解是 .二、单项选择题(每题3分,共15分)6.方程y x xy+=-31d d 满足初值问题解存在且唯一定理条件的区域是( ). (A )上半平面 (B )xoy 平面 (C )下半平面 (D )除y 轴外的全平面 7. 方程1d d +=y xy ( )奇解.(A )有一个 (B )有两个 (C )无 (D )有无数个 8.)(y f 连续可微是保证方程)(d d y f xy=解存在且唯一的( )条件. (A )必要 (B )充分 (C )充分必要 (D )必要非充分 9.二阶线性非齐次微分方程的所有解( ).(A )构成一个2维线性空间 (B )构成一个3维线性空间 (C )不能构成一个线性空间 (D )构成一个无限维线性空间10.方程323d d y xy=过点(0, 0)有( ). (A) 无数个解 (B) 只有一个解 (C) 只有两个解 (D) 只有三个解三、计算题(每题6分,共30分)求下列方程的通解或通积分:11. y y x yln d d = 12. x y x y x y +-=2)(1d d 13. 5d d xy y xy+= 14.0)d (d 222=-+y y x x xy15.32y y x y '+'=四、计算题(每题10分,共20分)16.求方程255x y y -='-''的通解.17.求下列方程组的通解.⎪⎪⎩⎪⎪⎨⎧-=+=x ty ty t x d d sin 1d d五、证明题(每题10分,共20分)18.设)(x f 在),0[∞+上连续,且0)(lim =+∞→x f x ,求证:方程)(d d x f y xy=+ 的一切解)(x y ,均有0)(lim =+∞→x y x .19.在方程0)()(=+'+''y x q y x p y 中,)(),(x q x p 在),(∞+-∞上连续,求证:若)(x p 恒不为零,则该方程的任一基本解组的朗斯基行列式)(x W 是),(∞+-∞上的严格单调函数.常微分方程试卷1答案及评分标准一、填空题(每题3分,共15分)1.22.线性无关(或:它们的朗斯基行列式不等于零) 3.xxx e ,e 4.开5.1±=y二、单项选择题(每题3分,共15分)6.D 7.C 8.B 9.C 10.A三、计算题(每题6分,共30分)11.解 当0≠y ,1≠y 时,分离变量取不定积分,得 C x y y y+=⎰⎰d ln d (3分) 通积分为xC y e ln = (6分)12.解 令xu y =,则xuxu x y d d d d +=,代入原方程,得 21d d u x ux-= (3分) 分离变量,取不定积分,得C xxu u ln d 1d 2+=-⎰⎰(0≠C ) 通积分为: Cx xyln arcsin= (6分)13.解 方程两端同乘以5-y ,得x y xyy+=--45d d 令 z y =-4,则xz x y y d d d d 45=--,代入上式,得 x z xz=--d d 41 (3分)通解为41e 4+-=-x C z x原方程通解为 41e 44+-=--x C yx (6分)14.解 因为xNx y M ∂∂==∂∂2,所以原方程是全微分方程. (2分) 取)0,0(),(00=y x ,原方程的通积分为C y y x xy yx =-⎰⎰020d d 2 (4分)即 C y y x =-3231 (6分)15.解 原方程是克莱洛方程,通解为32C Cx y += (6分)四、计算题(每题10分,共20分)16.解 对应齐次方程的特征方程为052=-λλ,特征根为01=λ,52=λ,齐次方程的通解为 xC C y 521e += (4分) 因为0=α是特征根。
自考常微分方程试题及答案
![自考常微分方程试题及答案](https://img.taocdn.com/s3/m/d416317abc64783e0912a21614791711cd797956.png)
自考常微分方程试题及答案一、选择题(每题2分,共10分)1. 以下哪一项是一阶微分方程?A. dy/dx + 2y = x^2B. d^2y/dx^2 + y = 0C. dy/dx = 0D. d^3y/dx^3 - y = x答案:A2. 常数变易法主要用于求解什么类型的二阶线性微分方程?A. 欧拉方程B. 伯努利方程C. 线性齐次方程D. 线性非齐次方程答案:D3. 以下哪个解是微分方程y'' - y' - 2y = 0的一个特解?A. y = e^(2x)B. y = e^(-x)C. y = e^(x)D. y = e^(x/2)答案:A4. 微分方程y' = y/x 表示的曲线族是:A. 一系列直线B. 一系列抛物线C. 一系列双曲线D. 一系列椭圆答案:C5. 如果一个函数满足微分方程y'' + y' + y = 0,那么它是:A. 一个奇函数B. 一个偶函数C. 一个周期函数D. 一个非周期函数答案:D二、填空题(每题3分,共15分)6. 解微分方程dy/dx = x^2 - y^2,当y(0) = 1时,y(1)的值为_________。
答案:07. 微分方程的通解为y = C1 * e^x + C2 * e^(-x),其中C1和C2是任意常数,该方程是_________阶线性齐次方程。
答案:一8. 微分方程y'' - 2y' + y = 0的特征方程为_________。
答案:r^2 - 2r + 1 = 09. 微分方程dy/dx = sin(x) + cos(y)满足初始条件y(0) = 0的解是y =_________。
答案:arccos(cos(x))10. 微分方程y' = y^2的解是y =_________。
答案:C/x + C^2,其中C是任意常数。
三、解答题(共75分)11. (15分)求解微分方程dy/dx - y = e^x,并给出通解。
(完整版)常微分方程试题库.
![(完整版)常微分方程试题库.](https://img.taocdn.com/s3/m/d85dca7026d3240c844769eae009581b6bd9bd6f.png)
1 常微分方程一、填空题1.微分方程0)(22=+-+x y dxdy dx dy n 的阶数是____________ 答:12.若),(y x M 和),(y x N 在矩形区域R 内是),(y x 的连续函数,且有连续的一阶偏导数,则方程0),(),(=+dy y x N dx y x M 有只与y 有关的积分因子的充要条件是_________________________答:)()1)((y Mx N y M φ=-∂∂-∂∂3._________________________________________ 称为齐次方程.答:形如)(x y g dx dy =的方程4.如果),(y x f ___________________________________________ ,则),(y x f dxdy =存在唯一的解)(x y ϕ=,定义于区间h x x ≤-0上,连续且满足初始条件)(00x y ϕ=,其中=h _______________________ .答:在R 上连续且关于y 满足利普希兹条件),min(mb a h =5.对于任意的),(1y x ,),(2y x R ∈(R 为某一矩形区域),若存在常数)0(>N N 使______________________ ,则称则称),(y x f 在R 上关于y 满足利普希兹条件.答:2121),(),(y y N y x f y x f -≤-6.方程22y x dxdy +=定义在矩形区域R :22,22≤≤-≤≤-y x 上,则经过点)0,0(的解的存在区间是___________________ 答:4141≤≤-x 7.若),.....2,1)((n i t x i=是齐次线性方程的n 个解,)(t w 为其伏朗斯基行列式,则)(t w 满足一阶线性方程___________________________________答:0)(1'=+w t a w8.若),.....2,1)((n i t x i =为齐次线性方程的一个基本解组,)(t x 为非齐次线性方程的一个特解,则非齐次线性方程的所有解可表为_____________________答:x x c x n i i i +=∑=1 9.若)(x ϕ为毕卡逼近序列{})(x n ϕ的极限,则有≤-)()(x x n ϕϕ __________________答:1)!1(++n nh n ML 10.______________________称为黎卡提方程,若它有一个特解)(x y ,则经过变换,则经过变换 ___________________ ,可化为伯努利方程.,可化为伯努利方程.答:形如)()()(2x r y x q y x p dxdy ++=的方程的方程 y z y += 11.一个不可延展解的存在区间一定是.一个不可延展解的存在区间一定是 区间.区间.答:开答:开12.方程1d d +=y x y 满足解的存在唯一性定理条件的区域是满足解的存在唯一性定理条件的区域是. 答:}0),{(2>∈=y R y x D ,(或不含x 轴的上半平面)轴的上半平面)13.方程y x x ysin d d 2=的所有常数解是的所有常数解是 .答:Λ,2,1,0,±±==k k y π14.函数组)(,),(),(21x x x n ϕϕϕΛ在区间I 上线性无关的上线性无关的 条件是它们的朗斯基行列式在区间I 上不恒等于零.上不恒等于零.答:充分答:充分15.二阶线性齐次微分方程的两个解)(),(21x y x y 为方程的基本解组充分必要条件是 .答:线性无关(或:它们的朗斯基行列式不等于零)答:线性无关(或:它们的朗斯基行列式不等于零)16.方程02=+'-''y y y 的基本解组是的基本解组是 .答:x x x e ,e17.若)(x y ϕ=在),(∞+-∞上连续,则方程y x xy )(d d ϕ=的任一非零解的任一非零解 与x 轴相交.轴相交.答:不能答:不能18.在方程0)()(=+'+''y x q y x p y 中,如果)(x p ,)(x q 在),(∞+-∞上连续,那么它的任一非零解在xoy 平面上平面上 与x 轴相切.轴相切.答:不能答:不能19.若)(),(21x y x y ϕϕ==是二阶线性齐次微分方程的基本解组,则它们则它们 共同零点.零点.答:没有答:没有20.方程21d d y xy -=的常数解是的常数解是 . 答:1±=y21.向量函数组)(,),(),(21x x x n Y Y Y Λ在其定义区间I 上线性相关的上线性相关的 条件是它们的朗斯基行列式0)(=x W ,I x ∈.答:必要答:必要22.方程22dd y x x y +=满足解的存在唯一性定理条件的区域是满足解的存在唯一性定理条件的区域是 . 答:答: xoy 平面平面23.方程0d )1(1)d (22=-+-y x y x y x 所有常数解是所有常数解是 .答:1,1±=±=x y24.方程04=+''y y 的基本解组是的基本解组是 .答:x x 2cos ,2sin25.一阶微分方程的通解的图像是.一阶微分方程的通解的图像是 维空间上的一族曲线.维空间上的一族曲线. 答:2二、单项选择题1.n 阶线性齐次微分方程基本解组中解的个数恰好是(阶线性齐次微分方程基本解组中解的个数恰好是( A )个.)个.(A )n (B )n -1 (C )n +1 (D )n +22.如果),(y x f ,y y x f ∂∂),(都在xoy 平面上连续,那么方程),(d d y x f x y =的任一解的存在区间(区间( D ). (A )必为),(∞+-∞ (B )必为),0(∞+(C )必为)0,(-∞ (D )将因解而定)将因解而定3.方程y x x y +=-31d d 满足初值问题解存在且唯一定理条件的区域是(满足初值问题解存在且唯一定理条件的区域是( DD D )). (A )上半平面)上半平面 ((B )xoy 平面平面(C )下半平面)下半平面 ((D )除y 轴外的全平面轴外的全平面4.一阶线性非齐次微分方程组的任两个非零解之差(.一阶线性非齐次微分方程组的任两个非零解之差( C ). (A )不是其对应齐次微分方程组的解)不是其对应齐次微分方程组的解 (B )是非齐次微分方程组的解)是非齐次微分方程组的解 (C )是其对应齐次微分方程组的解)是其对应齐次微分方程组的解 (D )是非齐次微分方程组的通解)是非齐次微分方程组的通解5. 方程21d d y x y -=过点)1,2(π共有(共有(B )个解.)个解. (A )一)一 (B )无数)无数 (C )两)两 (D )三)三 6. 6. 方程方程2dd +-=y x x y ( B B )奇解.)奇解.)奇解. (A )有三个)有三个 ((B )无)无 ((C )有一个)有一个 ((D ) 有两个有两个7.n 阶线性齐次方程的所有解构成一个(阶线性齐次方程的所有解构成一个( A A A )线性空间.)线性空间.)线性空间.(A )n 维 ((B )1+n 维 ((C )1-n 维 ((D )2+n 维8.方程323d d y x y =过点(过点( A A A )). ((A )有无数个解)有无数个解 ((B )只有三个解)只有三个解 ((C )只有解0=y ((D )只有两个解)只有两个解 9. ),(y x f y '连续是保证),(y x f 对y 满足李普希兹条件的(满足李普希兹条件的( B B B )条件.)条件.)条件.(A )充分)充分 ((B )充分必要)充分必要 ((C )必要)必要 ((D )必要非充分)必要非充分1010.二阶线性非齐次微分方程的所有解(.二阶线性非齐次微分方程的所有解(.二阶线性非齐次微分方程的所有解( C C C )). ((A )构成一个2维线性空间维线性空间 ((B )构成一个3维线性空间维线性空间(C )不能构成一个线性空间)不能构成一个线性空间 ((D )构成一个无限维线性空间)构成一个无限维线性空间11.方程y x y =d d 的奇解是(的奇解是( D ). (A )x y = (B )1=y (C )1-=y (D )0=y1212.若.若)(1x y ϕ=,)(2x y ϕ=是一阶线性非齐次微分方程的两个不同特解,则该方程的通解可用这两个解表示为(通解可用这两个解表示为( C C C )). ((A ))()(21x x ϕϕ- ((B ))()(21x x ϕϕ+(C ))())()((121x x x C ϕϕϕ+- ((D ))()(21x x C ϕϕ+1313..),(y x f y '连续是方程),(d d y x f xy =初值解唯一的(初值解唯一的( D D D )条件.)条件.)条件. (A )必要)必要 ((B )必要非充分)必要非充分 ((C )充分必要)充分必要 ((D )充分)充分14.14. 方程方程1dd+=y x y ( C C )奇解.)奇解.)奇解. (A )有一个)有一个 ((B )有两个)有两个 ((C )无)无 ((D )有无数个)有无数个1515.方程.方程323d d y x y =过点过点(0, 0)(0, 0)(0, 0)有(有(有( A A ). (A) (A) 无数个解无数个解无数个解 (B) (B) 只有一个解只有一个解只有一个解 (C) (C) (C) 只有两个解只有两个解只有两个解 (D) (D) 只有三个解只有三个解只有三个解三、求下列方程的通解或通积分1.3yx y dx dy += 解:23y y x y y x dy dx +=+= ,则,则 )(121⎰+⎰⎰=-c dy e y e x dy y dy y 所以所以 cy y x +=23 另外另外 0=y 也是方程的解也是方程的解2.求方程2y x dxdy +=经过)0,0(的第三次近似解的第三次近似解 解:0)(0=x ϕ[]2020121)()(x dx x x x x =+=⎰ϕϕ []52021220121)()(x x dx x x x x +=+=⎰ϕϕ[]81152022316014400120121)()(x x x x dx x x x x +++=+=⎰ϕϕ 3.讨论方程2y dx dy = ,1)1(=y 的解的存在区间的解的存在区间 解:dx ydy =2 两边积分两边积分 c x y+=-1 所以所以 方程的通解为方程的通解为 cx y +-=1 故 过1)1(=y 的解为的解为 21--=x y 通过点通过点 )1,1(的解向左可以延拓到∞-,但向右只能延拓到,但向右只能延拓到 2,2, 所以解的存在区间为所以解的存在区间为 )2,(-∞4. 求方程01)(22=-+y dxdy 的奇解的奇解 解: 利用p 判别曲线得判别曲线得⎩⎨⎧==-+020122p y p 消去p 得 12=y 即 1±=y 所以方程的通解为所以方程的通解为 )sin(c x y += , 所以所以 1±=y 是方程的奇解是方程的奇解5.0)1()1(cos 2=-++dy yx y dx y x 解: y M ∂∂=2--y , xN ∂∂=2--y , y M ∂∂=xN ∂∂ , 所以方程是恰当方程. ⎪⎪⎩⎪⎪⎨⎧-=∂∂+=∂∂211cos y x y y v y x x u 得 )(sin y y x x u ϕ++=)('2y xy y u ϕ+-=∂∂- 所以y y ln )(=ϕ 故原方程的解为故原方程的解为 c y y x x =++ln sin6. x x x y y y 22'sin cos sin 2-=-+解: x x x y y y 22'sin cos sin 2-++-= 故方程为黎卡提方程.它的一个特解为它的一个特解为x y sin = ,令x z y sin += , 则方程可化为2z dx dz -= , c x z +=1 即 c x x y +=-1sin , 故 c x x y ++=1sin 7.0)37()32(232=-+-dy xy dx y xy解: 两边同除以2y 得037322=-+-xdy dy y ydx xdx0732=--yd xy d dx 所以所以 c y xy x =--732, 另外另外 0=y 也是方程的解也是方程的解 8.21d d xxy x y += 解 当0≠y 时,分离变量得时,分离变量得 x x xy yd 1d 2+=等式两端积分得等式两端积分得C x y ln )1ln(21ln 2++= 即通解为即通解为 21x C y +=9. x y xy 2e 3d d =+ 解 齐次方程的通解为齐次方程的通解为 x C y 3e -= 令非齐次方程的特解为令非齐次方程的特解为x x C y 3e)(-=代入原方程,确定出代入原方程,确定出 C x C x +=5e 51)( 原方程的通解为原方程的通解为x C y 3e-=+x2e 51 10. 5d d xy y xy += 解 方程两端同乘以5-y ,得,得x yx y y+=--45d d 令 z y =-4,则x z x y yd d d d 45=--,代入上式,得,代入上式,得 x z x z =--dd 41 通解为通解为41e4+-=-x C z x 原方程通解为原方程通解为41e 44+-=--x C yx11.0)d (d 222=-+y y x x xy 解 因为xN x y M ∂∂==∂∂2,所以原方程是全微分方程.,所以原方程是全微分方程. 取)0,0(),(00=y x ,原方程的通积分为,原方程的通积分为C y y x xy yx =-⎰⎰020d d 2 即 C y y x =-323112. y y x y ln d d = 解:当0≠y ,1≠y 时,分离变量取不定积分,得时,分离变量取不定积分,得 C x y y y +=⎰⎰d ln d 通积分为通积分为 x C ye ln =13.03)(22=+'+''x y y y解 原方程可化为原方程可化为0)(2='+'x y y 于是于是 12d d C x x y y =+积分得通积分为积分得通积分为23123121C x x C y +-= 14.x y x y x y+-=2)(1d d解:令xu y =,则x u x u x y d d d d +=,代入原方程,得,代入原方程,得 21d d u x u x -= 分离变量,取不定积分,得分离变量,取不定积分,得 C xx u uln d 1d 2+=-⎰⎰ (0≠C ) 通积分为:通积分为: Cx x yln arcsin =15. x y x y xy tan d d += 解 令u x y =,则x u x u x y dd d d +=,代入原方程,得,代入原方程,得 u u x u x u tan d d +=+,u x u x tan d d = 当0tan ≠u 时,分离变量,再积分,得时,分离变量,再积分,得C xx u u ln d tan d +=⎰⎰ C x u ln ln sin ln +=即通积分为:即通积分为: Cx xy =sin 16. 1d d +=xy x y 解:齐次方程的通解为解:齐次方程的通解为Cx y = 令非齐次方程的特解为令非齐次方程的特解为x x C y )(=代入原方程,确定出代入原方程,确定出 C x x C +=ln )( 原方程的通解为原方程的通解为Cx y =+x x ln 17. 0d d )e (2=+-y x x y x y解 积分因子为积分因子为 21)(xx =μ 原方程的通积分为原方程的通积分为1012d d )(e C y x x y y x x =+-⎰⎰ 即 1e ,e C C C x y x +==+18.0)(2='+''y y y解:原方程为恰当导数方程,可改写为解:原方程为恰当导数方程,可改写为 0)(=''y y 即1C y y =' 分离变量得分离变量得x C y y d d 1= 积分得通积分积分得通积分21221C x C y += 19.1)ln (='-'y x y解 令p y =',则原方程的参数形式为,则原方程的参数形式为⎪⎩⎪⎨⎧='+=py p p x ln 1 由基本关系式由基本关系式y x y '=d d ,有,有p p p p x y y )d 11(d d 2+-⋅='=p p )d 11(-=积分得积分得 C p p y +-=ln得原方程参数形式通解为得原方程参数形式通解为⎪⎩⎪⎨⎧+-=+=Cp p y p p x ln ln 1 20.022=+'+''x y y y解 原方程可化为原方程可化为0)(2='+'x y y于是于是 12d d C x xyy =+ 积分得通积分为积分得通积分为23123121C x x C y +-= 21. 0)d (d )(3223=+++y y y x x xy x解:由于x N xy y M ∂∂==∂∂2,所以原方程是全微分方程.,所以原方程是全微分方程. 取)0,0(),(00=y x ,原方程的通积分为,原方程的通积分为103023d d )(C y y x xy x y x =++⎰⎰即 C y y x x =++42242 四、计算题1.求方程xy y e 21=-''的通解.的通解. 解 对应的齐次方程的特征方程为:对应的齐次方程的特征方程为:012=-λ特征根为:特征根为: 1,121-==λλ故齐次方程的通解为:故齐次方程的通解为: x x C C y -+=e e 21因为1=α是单特征根.所以,设非齐次方程的特解为是单特征根.所以,设非齐次方程的特解为 xAx x y e )(1=代入原方程,有代入原方程,有 x x x x Ax Ax A e 21e e e 2=-+, 可解出可解出 41=A . 故原方程的通解为故原方程的通解为 x x x x C C y e 41e e 21++=-2.求下列方程组的通解.求下列方程组的通解⎪⎪⎩⎪⎪⎨⎧+=--=y x t y y x t x 43d d 2d d . 解 方程组的特征方程为方程组的特征方程为04321=----=-λλλE A即 0232=+-λλ特征根为特征根为 11=λ,22=λ11=λ对应的解为对应的解为t b a y x e 1111⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡其中11,b a 是11=λ对应的特征向量的分量,满足对应的特征向量的分量,满足⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡----0014321111b a 可解得1,111-==b a .同样可算出22=λ对应的特征向量分量为对应的特征向量分量为 3,212-==b a .所以,原方程组的通解为所以,原方程组的通解为⎥⎦⎤⎢⎣⎡-+⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡t tt t C C y x 2221e 32e e e 3.求方程x y y 5sin 5='-''的通解.的通解.解:方程的特征根为01=λ,52=λ齐次方程的通解为齐次方程的通解为 x C C y 521e +=因为i i 5±=±βα不是特征根。
(整理)常微分方程试题及参考答案
![(整理)常微分方程试题及参考答案](https://img.taocdn.com/s3/m/5c061243571252d380eb6294dd88d0d232d43c48.png)
(整理)常微分方程试题及参考答案常微分方程试题一、填空题(每小题3分,共39分)1.常微分方程中的自变量个数是________.2.路程函数S(t)的加速度是常数a,则此路程函数S(t)的一般形式是________.3.微分方程=g( )中g(u)为u的连续函数,作变量变换________,方程可化为变量分离方程.4.微分方程F(x,y′)=0中令P=y′,若x、P平面上的曲线F(x,P)=0的参数形式为x= (t),P=ψ(t),t为参数,则方程参数形式的通解为________.5.方程=(x+1)3的通解为________.6.如果函数f(x,y)连续,y= (x)是方程=f(x,y)的定义于区间x0≤x≤x0+h上,满足初始条件(x0)=y0的解.则y= (x)是积分方程________定义于x0≤x≤x0+h 上的连续解.7.方程=x2+xy,满足初始条件y(0)=0的第二次近似解是________.8.方程+a1(t) +…+a n-1(t) +a n(t)x=0中a i(t) i=1,2,…,n是〔a,b〕上的连续函数,又x1(t),x2(t),…,x n(t)为方程n 个线性无关的解,则其伏朗斯基行列式W(t) 应具有的性质是:________.9.常系数线性方程x(4)(t)-2x″(t)+x(t)=0的通解为________.10.设A(t)是区间a≤t≤b上的连续n×n矩阵,x1(t),x2(t),…,x n(t)是方程组x′=A(t)x的n个线性无关的解向量.则方程组的任一解向量x(t)均可表示为:x(t)=________的形式.11.初值问题(t)+2x″(t)-tx′(t)+3x(t)=e-t,x(1)=1,x′(1)=2,x″(1)=3 可化为与之等价的一阶方程组________.12.如果A是3×3的常数矩阵,-2为A的三重特征值,则方程组x′=Ax的基解矩阵exp A t=________.13.方程组的奇点类型是________.二、计算题(共45分)1.(6分)解方程= .2.(6分)解方程x″(t)+ =0.3.(6分)解方程(y-1-xy)dx+xdy=0.4.(6分)解方程5.(7分)求方程:S″(t)-S(t)=t+1满足S(0)=1, (0)=2的解.6.(7分)求方程组的基解矩阵Φ(t).7.(7分)验证方程:有奇点x1=1, x2=0,并讨论相应驻定方程的解的稳定性.三、证明题(每小题8分,共16分)1.设f(x,y)及连续,试证方程dy-f(x,y)dx=0为线性方程的充要条件是它有仅依赖于x的积分因子.2.函数f(x)定义于-∞<x<+∞,且满足条件|f(x1)-f(x2)|≤n|x1-x2|,其中0<n<1,证明< p="">方程x=f(x)存在唯一的一个解.常微分方程试题参考答案一、填空题(每小题3分,共39分)1.12. 2+c1t+c23.u=4. c为任意常数5.y= (x+1)4+c(x+1)26.y=y0+7. (x)=8.对任意t9.x(t)=c1e t+c2te t+c3e-t+c4te-t10.x(t)=c1x1(t)+c2x2(t) +c n x n(t)11. x1(1)=1,x2(1)=2, x3(1)=312.expAt=e-2t[E+t(A+2E)+ ]13.焦点二、计算题(共45分)1.解:将方程分离变量为改写为等式两边积分得y-ln|1+y|=ln|x|-即y=ln 或e y=2.解:令则得=0当0时-arc cosy=t+c1y=cos(t+c1) 即则x=sin(t+c1)+c2当=0时y= 即x3.解:这里M=y-1-xy, N=x令u=xye-xu关于x求偏导数得与Me-x=ye-x-e-x-xye-x 相比有则因此u=xye-x+e-x方程的解为xye-x+e-x=c4.解:方程改写为这是伯努利方程,令z=y1-2=y-1 代入方程得解方程z==于是有或5.特征方程为特征根为对应齐线性方程的通解为s(t)=c1e t+c2e-t f(t)=t+1, 不是特征方程的根从而方程有特解=(At+B),代入方程得-(At+B)=t+1两边比较同次幂系数得A=B=-1故通解为S(t)=c1e t+c2e-t-(t+1)据初始条件得c1=因此所求解为:S(t)=6.解:系数矩阵A=则,而det特征方程det( )=0, 有特征根对对对因此基解矩阵7.解:因故x1=1,x2=0是方程组奇点令X1=x1-1, X2=x2, 即x1=X1+1,x2=X2代入原方程,得化简得*这里R(X)= , 显然(当时)方程组*中,线性部分矩阵det(A- )=由det(A- )=0 得可见相应驻定解渐近稳定三、证明题(每小题8分,共16分)1.证明:若dy-f(x,y)dx=0为线性方程则f(x,y)=因此仅有依赖于x的积分因子反之,若仅有依赖于x的积分因子。
考研数学三(常微分方程与差分方程)模拟试卷11(题后含答案及解析)
![考研数学三(常微分方程与差分方程)模拟试卷11(题后含答案及解析)](https://img.taocdn.com/s3/m/bf7ddd22f705cc175427098c.png)
考研数学三(常微分方程与差分方程)模拟试卷11(题后含答案及解析)题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。
1.设函数y1(x),y2(x),y3(x)线性无关,而且都是非齐次线性方程(6.2)的解,C1,C2为任意常数,则该非齐次方程的通解是A.C1y1+C2y2+y3.B.C1y1+C2y2-(C1+C2)y3.C.C1y1+C2y2-(1-C1-C2)y3.D.C1y1+C2y2+(1-C1-C2)y3.正确答案:D解析:对于选项(D)来说,其表达式可改写为y3+C1(y1-y3)+C2(y2-y3),而且y3是非齐次方程(6.2)的一个特解,y1-y3与y2-y3是(6.4)的两个线性无关的解,由通解的结构可知它就是(6.2)的通解.故应选(D).知识模块:常微分方程与差分方程2.已知sin2x,cos2x是方程y’’+P(x)y’+Q(x)y=0的解,C1,C2为任意常数,则该方程的通解不是A.C1sin2x+C2cos2x.B.C1+C2cos2x.C.C1sin22x+C2tan2x.D.C1+C2cos2x.正确答案:C解析:容易验证sin2x与cos2x是线性无关的两个函数,从而依题设sin2x,cos2x为该方程的两个线性无关的解,故C1sin2x+C2cos2x为方程的通解.而(B),(D)中的解析式均可由C1sin2x+C2cos2x恒等变换得到,因此,由排除法,仅C1sin22x+C2tan2x不能构成该方程的通解.事实上,sin22x,tan2x都未必是方程的解,故选(C).知识模块:常微分方程与差分方程填空题3.微分方程=0当y>0时的通解是y=________.正确答案:解析:将原方程改写成,然后令y=ux,则y’=u+xu’.代入后将会发现该变形计算量较大.于是可转换思维方式,将原方程改写成分离变量,然后积分得知识模块:常微分方程与差分方程解答题解答应写出文字说明、证明过程或演算步骤。
常微分方程试题库试卷库2
![常微分方程试题库试卷库2](https://img.taocdn.com/s3/m/36305851eefdc8d376ee327c.png)
常微分方程期终考试试卷(1)一、 填空题(30%)1、方程(,)(,)0M x y dx N x y dy +=有只含x 的积分因子的充要条件是( )。
有只含y 的积分因子的充要条件是______________。
2、_____________称为黎卡提方程,它有积分因子______________。
3、__________________称为伯努利方程,它有积分因子_________。
4、若12(),(),,()n X t X t X t 为n 阶齐线性方程的n 个解,则它们线性无关的充要条件是__________________________。
5、形如___________________的方程称为欧拉方程。
6、若()t φ和()t ψ都是'()x A t x =的基解矩阵,则()t φ和()t ψ具有的关系是_____________________________。
7、当方程的特征根为两个共轭虚根是,则当其实部为_________时,零解是稳定的,对应的奇点称为___________。
二、计算题(60%)1、3()0ydx x y dy -+=2、sin cos2x x t t ''+=-3、若2114A ⎡⎤=⎢⎥-⎣⎦试求方程组x Ax '=的解12(),(0)t ηϕϕηη⎡⎤==⎢⎥⎣⎦并求exp At4、32()480dy dyxy y dx dx-+=5、求方程2dyx y dx =+经过(0,0)的第三次近似解6.求1,5dx dyx y x y dt dt =--+=--的奇点,并判断奇点的类型及稳定性.三、证明题(10%)1、n 阶齐线性方程一定存在n 个线性无关解。
常微分方程期终试卷(2)一、填空题 30%1、 形如____________的方程,称为变量分离方程,这里.)().(y x f ϕ分别为x .y的连续函数。
2、 形如_____________的方程,称为伯努利方程,这里x x Q x P 为)().(的连续函数.n ,可化为线性方程。
《常微分方程》题库及答案
![《常微分方程》题库及答案](https://img.taocdn.com/s3/m/87227899ac51f01dc281e53a580216fc700a53d5.png)
《常微分方程》题库及答案一.求解下列方程1.求方程0sin cos =+x y dxdyx之通解; 2.求方程xx y ax dy cos 1tan =+之通解; 3.解初值问题2(1)20(0)1dy x xy dx y ⎧-+=⎪⎨⎪=⎩; 4.求方程()lndy x yxy x y dx x+-=+ 之通解; 5.求方程 yx xy y dx dy 321++= 的通解; 6. 求方程 0)3()3(2323=-+-dy y x y dx xy x 的通解; 7.求由以xxx x cos ,sin 为基本解组的线性齐次方程; 8.求方程 2)(22x dx dy xdx dy y +-=的通解及奇解; 9.求方程⎰+=+xx y x dt dtt dy 02)(2))((1 的通解; 10. 求方程 0)sin ()2sin (22=-++dy y xy dx x y x 的通解; 11.求由以 x x x ln , 为基本解组的线性齐次方程; 12.求方程 2222)(12dxdy y y dx y d += 的通解. 13.求方程y y dxdyln =之通解。
14.求方程xy dxdyy x 2)(22=+之通解。
15.求方程0)(222=-+dy y x xydx 之通解。
16. 求方程y x e dxdy-=之通解。
17. 求方程0)2(=+---dy xe y dx e yy 之通解。
18. 求方程x x y y sec tan '=+之通解。
二.1.解初值问题⎪⎩⎪⎨⎧-==y x e axdyy 20)1(2.求如下微分方程组之通解:⎪⎪⎪⎩⎪⎪⎪⎨⎧-=++-=--=z x dtdz z y x dtdyz y x dt dx2. 3.求出初值问题的逐次近似解21,0y y y :2(0)0dyx y dxy =+=⎧⎪⎨⎪⎩. 4. 求出微分方程0).().(=+dy y x N dx y x M 有形如)(22y x +=ϕυ的积分因子的充要条件。
常微分方程试题库试卷库
![常微分方程试题库试卷库](https://img.taocdn.com/s3/m/dd8f0a08ad02de80d5d8401b.png)
常微分方程期终考试试卷(1)一、 填空题(30%)1、方程(,)(,)0M x y dx N x y dy +=有只含x 的积分因子的充要条件是( )。
有只含y 的积分因子的充要条件是______________。
2、_____________称为黎卡提方程,它有积分因子______________。
3、__________________称为伯努利方程,它有积分因子_________。
4、若12(),(),,()n X t X t X t 为n 阶齐线性方程的n 个解,则它们线性无关的充要条件是__________________________。
5、形如___________________的方程称为欧拉方程。
6、若()t φ和()t ψ都是'()x A t x =的基解矩阵,则()t φ和()t ψ具有的关系是_____________________________。
7、当方程的特征根为两个共轭虚根是,则当其实部为_________时,零解是稳定的,对应的奇点称为___________。
二、计算题(60%)1、3()0ydx x y dy -+= 2、sin cos2x x t t ''+=-3、若2114A ⎡⎤=⎢⎥-⎣⎦试求方程组x Ax '=的解12(),(0)t ηϕϕηη⎡⎤==⎢⎥⎣⎦并求expAt4、32()480dy dyxy y dx dx -+=5、求方程2dyx y dx =+经过(0,0)的第三次近似解6.求1,5dx dyx y x y dt dt =--+=--的奇点,并判断奇点的类型及稳定性.三、证明题(10%)1、n 阶齐线性方程一定存在n 个线性无关解。
试卷答案一填空题1、()M N y x x N ϕ∂∂-∂∂= ()M Ny xy M ϕ∂∂-∂∂=- 2、 2()()()dyp x y Q x y R x dx =++y y z =+3、 ()()n dyp x y Q x y dx =+ (1)()(,)n p x dxn u x y y e --⎰=4、12[(),(),,()]0n w x t x t x t ≠5、11110n n nn n nn d y d dyx a a a y dx dx dx ---++++=6、()()t t C ψφ= 7、零 稳定中心 二计算题1、解:因为1,1M Ny x∂∂==-∂∂,所以此方程不是恰当方程,方程有积分因子22ln 21()dyyy y ee yμ--⎰===,两边同乘21y 得320dx x y dy y y +-=所以解为 321x x y y dx dy c y y y⎡⎤∂⎢⎥-++-=⎢⎥∂⎢⎥⎢⎥⎣⎦⎰⎰22x y c y +=即22()x y y c =+另外y=0也是解 2、线性方程0x x ''+=的特征方程210λ+=故特征根i λ=±1()sin f t t = i λ=是特征单根,原方程有特解(cos sin )x t A t B t =+代入原方程A=-12B=02()cos 2f t t=-2iλ=不是特征根,原方程有特解cos2sin 2x A t B t =+代入原方程13A =B=0所以原方程的解为1211cos sin cos cos223x c t c t t t t=+-+3、解:221()69014p λλλλλ--==-+=-解得1,23λ=此时 k=112n =12v ηηη⎡⎤==⎢⎥⎣⎦111123322120()()(3)()!it i t i t t t e A E e t i ηηηηϕηηηη=⎡⎤+-+⎡⎤⎡⎤=-=⎢⎥⎢⎥⎢⎥+-+⎣⎦⎣⎦⎣⎦∑ 由公式expAt= 10()!in tii t e A E i λλ-=-∑得[]33310111exp (3)01111ttt t t At e E t A E e t e t t ⎧-⎫-⎡⎤⎡⎤⎡⎤=+-=+=⎨⎬⎢⎥⎢⎥⎢⎥--+⎣⎦⎣⎦⎣⎦⎩⎭4、解:方程可化为3284dyydxxdyydx⎛⎫+⎪⎝⎭=令dypdx=则有3284p yxyp+=(*)(*)两边对y求导:32232 2(4)(8)4dpy p y p y p y pdy-+-=即32(4)(2)0dpp y y pdy--=由20dpy pdy-=得12p cy=即2()pyc=将y代入(*)2224c pxc=+即方程的含参数形式的通解为:22224()c pxcpyc⎧=+⎪⎪⎨⎪=⎪⎩p为参数又由3240p y-=得123(4)p y=代入(*)得:3427y x=也是方程的解5、解:002100225200410725118 3002()4220()4400202204400160 xxxyxy xdxx x xy x dxx x x x x x x y x dxϕϕϕϕ===+==++=+=++++=+++⎰⎰⎰6、解:由1050x yx y--+=⎧⎨--=⎩解得奇点(3,-2)令X=x-3,Y=y+2则dxx ydtdyx ydt⎧=--⎪⎪⎨⎪=-⎪⎩因为1111---=1+1 ≠0故有唯一零解(0,0)由221121122011λλλλλλ+=+++=++=-+得1iλ=-±故(3,-2)为稳定焦点。
常微分方程练习试卷及答案
![常微分方程练习试卷及答案](https://img.taocdn.com/s3/m/281d1a5126d3240c844769eae009581b6bd9bdcc.png)
常微分方程练习试卷及答案常微分方程练试卷一、填空题。
1.方程d2x/dt2+1=是二阶非线性微分方程。
2.方程xdy/ydx=f(xy)经变换ln|x|=g(xy)可以化为变量分离方程。
3.微分方程d3y/dx3-y2-x=0满足条件y(0)=1,y'(0)=2的解有一个。
4.设常系数方程y''+αy'+βy=γex的一个特解y(x)=e-x+e2x,则此方程的系数α=-1,β=2,γ=1.5.朗斯基行列式W(t)≠0是函数组x1(t),x2(t)。
xn(t)在[a,b]上线性无关的条件。
6.方程xydx+(2x2+3y2-20)dy=0的只与y有关的积分因子为1/y3.7.已知X'=A(t)X的基解矩阵为Φ(t),则A(t)=Φ(t)-1dΦ(t)/dt。
8.方程组x'=[2,5;1,0]x的基解矩阵为[2e^(5t),-5e^(5t);e^(5t),1]。
9.可用变换将伯努利方程y'+p(x)y=q(x)化为线性方程。
10.方程y''-y'+2y=2e^x的通解为y(x)=C1e^x+C2e^2x+e^x。
11.方程y'''+2y''+5y'+y=1和初始条件y(0)=y'(0)=y''(0)=0的唯一解为y(x)=e^-x/2[sin(5^(1/2)x/2)-cos(5^(1/2)x/2)]。
12.三阶常系数齐线性方程y'''-2y''+y=0的特征根是1,1,-1.二、计算题1.设曲线方程为y(x)=kx/(1-k^2),则曲线上任一点处的斜率为y'(x)=k/(1-k^2),切点为(0,0),切线方程为y=kx,点(1,0)的连线斜率为-1/k,因此k=-1,曲线方程为y=-x/(1+x)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
常微分方程期中测试试卷(11)
班级__________姓名__________学号________得分__________
1 微分方程0)(
2
2=+-+
x
y dx
dy dx dy n
的阶数是____________
2 若),(y x M 和),(y x N 在矩形区域R 内是),(y x 的连续函数,且有连续的一阶偏导数,则方程0),(),(=+dy y x N dx y x M 有只与y 有关的积分因子的充要条件是 _________________________
3 _________________________________________ 称为齐次方程.
4 如果),(y x f ___________________________________________ ,则
),(y x f dx
dy =存在
唯一的解)(x y ϕ=,定义于区间h x x ≤-0 上,连续且满足初始条件)(00x y ϕ= ,其中
=h _______________________ .
5 对于任意的),(1y x ,),(2y x R ∈ (R 为某一矩形区域),若存在常数)0(>N N 使 ______________________ ,则称),(y x f 在R 上关于y 满足利普希兹条件.
6 方程
2
2
y x dx
dy +=定义在矩形区域R :22,22≤≤-≤≤-y x 上 ,则经过点 )0,0(的解
的存在区间是 ___________________
7 若),.....2,1)((n i t x i =是齐次线性方程的n 个解,)(t w 为其伏朗斯基行列式,则)(t w 满足一阶线性方程 ___________________________________
8 若),.....2,1)((n i t x i =为齐次线性方程的一个基本解组,)(t x 为非齐次线性方程的一个特
解,则非齐次线性方程的所有解可表为 _________________________
9 若)(x ϕ为毕卡逼近序列{})(x n ϕ的极限,则有≤-)()(x x n ϕϕ __________________ 10 _________________________________________ 称为黎卡提方程,若它有一个特解
)(x y ,则经过变换 ___________________ ,可化为伯努利方程.
二 求下列方程的解 1 3
y
x y dx
dy +=
2 求方程2
y x dx
dy +=经过)0,0(的第三次近似解
3 讨论方程2
y dx
dy = ,1)1(=y 的解的存在区间
4 求方程01)(2
2=-+y dx
dy 的奇解
5 0)1(
)1(cos 2
=-
++dy y
x y
dx y
x
6 x x x y y y 2
2
'
sin cos sin 2-=-+
7 0)37()32(2
32
=-+-dy xy dx y xy
三 证明题
1 试证:若已知黎卡提方程的一个特解,则可用初等积分法求它的通解
2 试用一阶微分方程解的存在唯一性定理证明:一阶线性方程
)()(x Q y x P dx
dy += , 当
)(x P , )(x Q 在[]βα,上连续时,其解存在唯一
参考答案
一 填空题 1
1 2 )()1)(
(
y M
x N y
M φ=-∂∂-∂∂
3 形如
)(x
y g dx
dy =的方程
4 在R 上连续且关于y 满足利普希兹条件 ),m i n (
m b a h =
5 2121),(),(y y N y x f y x f -≤- 6
4
14
1≤
≤-x
7 0)(1'
=+w t a w
8 x x c
x n
i i i
+=
∑=1
9
1
)!
1(++n n
h
n ML
10 形如
)()()(2
x r y x q y x p dx
dy ++=的方程 y z y +=
二 求下列方程的解 1 解:2
3
y y
x y
y
x dy dx +=
+=
,
则 )(12
1⎰+⎰
⎰
=-
c dy e
y e x dy
y
dy
y
所以 cy y
x +=
2
3
另外 0=y 也是方程的解 2 解:0)(0=x ϕ []
2
020
121)()(x dx x x x x =+=
⎰ϕϕ []
5
2
21
2
20121)()(x x dx x x x x +=+=⎰ϕ
ϕ []
8
11
5
20
22
3160
14400
120
12
1)()(x x
x x dx x x x x +
+
+
=
+=
⎰ϕ
ϕ
3 解:
dx y
dy =2
两边积分 c x y
+=-
1
所以 方程的通解为 c x y +-=1 故 过1)1(=y 的解为 2
1--=
x y
通过点 )1,1(的解向左可以延拓到∞-,但向右只能延拓到 2, 所以解的存在区间为 )2,(-∞ 4 解: 利用p 判别曲线得
⎩
⎨
⎧==-+020122p y p 消去p 得 12
=y 即 1±=y 所以方程的通解为 )sin(c x y += , 所以 1±=y 是方程的奇解
5 解:
y
M ∂∂=2--y ,
x
N ∂∂=2--y ,
y
M ∂∂=
x
N ∂∂ , 所以方程是恰当方程.
⎪⎪⎩⎪⎪⎨⎧-=∂∂+=∂∂2
11cos y x y y v y
x x u
得 )(sin y y x x u ϕ++= )('
2
y xy
y
u ϕ+-=∂∂- 所以y y ln )(=ϕ
故原方程的解为 c y y
x x =++
ln sin
6 解: x x x y y y 2
2'si n
cos si n 2-++-= 故方程为黎卡提方程.它的一个特解为 x y sin = ,令x z y sin += , 则方程可化为
2
z dx
dz -= , c
x z +=
1
即 c
x x y +=
-1sin , 故 c
x x y ++
=1sin
7 解: 两边同除以2y 得
037322
=-+-xdy dy y
ydx xdx
0732
=--y d
xy d dx
所以 c y
xy x =--732 , 另外 0=y 也是方程的解
三 证明题
1 证明: 设黎卡提方程的一个特解为 y y =
令 y z y += , dx
y d dx
dz dx
dy += 又 )()()(2
x r y x q y x p dx
dy ++=
dx
y d x r y z x q y z x p dx
dz -
++++=)())(())((2
由假设
)()()(2
x r y x q y x p dx
y d ++= 得
[]
z x q y x p z x p dx
dz )()(2)(2
++=
此方程是一个2=n 的伯努利方程,可用初等积分法求解
2 证明: 令R : x ∈[]βα, , R y ∈
)(x P , )(x Q 在[]βα,上连续, 则
)()(),(x Q y x P y x f += 显然在R 上连续 ,
因为 )(x P 为[]βα,上的连续函数 ,
故)(x P 在[]βα,上也连续且存在最大植 , 记为 L 即 )(x P L ≤ , x ∈[]βα,
1y ∀,R y ∈2 2121)()(),(),(y x P y x P y x f y x f -=-=)(x P 21y y -21y y L -≤
因此 一阶线性方程当)(x P , )(x Q 在[]βα,上连续时,其解存在唯一。