三角函数公式 两角和公式 sin
高中三角函数公式大全-必背知识点
三角函数公式两角和公式sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-cosAsinB cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinBtan(A+B)=tanBtanA +sin(2Acos(2Atan(2A)=A A cos 1cos 1+-cot(2A)=A A cos 1cos 1-+tan(2A )=A A sin cos 1-=AA cos 1sin + 和差化积sina+sinb=2sin 2b a +cos 2ba - sina-sinb=2cos 2b a +sin 2ba -cosa+cosb=2cos 2b a +cos 2ba -cosa-cosb=-2sin 2b a +sin 2ba -b a )sin(+tgA=tanA=a acos sin万能公式sina=2)2(tan 12tan2aa+cosa=22)2(tan 1)2(tan 1aa+- tana=2)2(tan 12tan2aa - 其他tanc=tgh(a)=)cosh()sinh(a a公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin (2kπ+α)=sinα cos (2kπ+α)=cosα tan (2kπ+α)=tanα cot (2kπ+α)=cotα 公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系: sin (π+α)=-sinα cos (π+α)=-cosα tan (π+α)=tanα cot (π+α)=cotα 公式三:任意角α与-α的三角函数值之间的关系: sin (-α)=-sinαcot (2π+α)=-tanαsin (2π-α)=cosαcos (2π-α)=sinαtan (2π-α)=cotαcot (2π-α)=tanαsin (23π+α)=-cosα cos (23π+α)=sinαtan (23π+α)=-cotαcot (23π+α)=-tanαsin (23π-α)=-cosαcos (23πtan (23πcot (23π(以上k |a-b|≥|a|-b+√(b2判别式根b2-4ac>0注:方程有一个实根 b2-4ac<0注:方程有共轭复数根 三角函数公式两角和公式sin(A+B)=sinAcosB+cosAsinBsin(A-B)=sinAcosB-sinBcosA cos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB)tan (A-B)=(tanA-tanB)/(1+tanAtanB) ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA)ctg (A-B)=(ctgActgB+1)/(ctgB-ctgA) 倍角公式tan2A=2tanA/(1-tan2A)ctg2A=(ctg2A-1tanA+tanB=sin(A+B)/cosAcosBtanA-ta nB=sin(A-B)/cosAcosBctgA+ctgBsin(A+B)/sinAsinB-ctgA+ctg Bsin(A+B)/sinAsinBcos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinB这两式相加或相减,可以得到2组积化和差:相加:cosAcosB=[cos(A+B)+cos(A-B)]/2相减:sinAsinB=-[cos(A+B)-cos(A-B)]/2化和差:相加:相减:这样一共3.·(4)sin2A+sin2B+sin2C=4sinA·sinB·sin C????(5)cos2A+cos2B+cos2C=-4cosAcosBco sC-1 ...........................已知sinα=msin(α+2β),|m|<1,求证tan(α+β)=(1+m)/(1-m)tanβ解:sinα=msin(α+2β)sin(a+β-β)=msin(a+β+β)sin(a+β)cosβ-cos(a+β)sinβ=msin(a+β)co sβ+mcos(a+β)sinβsin(a+β)cosβ(1-m)=cos(a+β)sinβ(m+1)。
三角函数运算公式大全
以下是三角函数公式的个人归纳,请查收~诱导公式(1)sinx=sin(x+2kπ)cosx=cos(x+2kπ)tanx=tan(x+2kπ)k∈Z原理:终边相同的角同一三角函数值相同(或可用三角函数图像的周期性验证)(2)sin(-x)=-sinxcos(-x)=cosx tan(-x)=-tanx(3)sin(π+x)=-sinx cos(π+x)=-cosx tan(π+x)=tanx(4)sin(π-x)=sinx cos(π-x)=-cosxtan(π-x)=-tanx原理:三角函数值中,正弦一二象限为正,余弦一四象限为正,正切一三象限为正(终边)(5)sin(π/2+x)=cosxcos(π/2+x)=-sinxtan(π/2+x)=-cotx(6)sin(π/2-x)=cosxcos(π/2-x)=sinxtan(π/2-x)=cotx(7)展开公式sin(3π/2+x)=sin(π+π/2+x)=-sin(π/2+x)=-cosx cos(3π/2+x)=cos(π+π/2+x)=-cos(π/2+x)=sinx tan(3π/2+x)=-cotxsin(3π/2-x)=sin(π+π/2-x)=-sin(π/2-x)=-cosx cos(3π/2-x)=cos(π+π/2-x)=-cos(π/2-x)=-sinx tan(3π/2-x)=cotx两角公式(1)两角和差公式sin(x+y)=sinxcosy+sinycosxsin(x-y)=sinxcosy-sinycosxcos(x+y)=cosxcosy-sinxsinycos(x-y)=cosxcosy+sinxsinytan(x+y)=sin(x+y)/cos(x+y)=sinxcosy+sinycosx/cosxcosy-sinxsiny=tanx+tany/1-tanxtanytan(x-y)=sin(x-y)/cos(x-y)=sinxcosy-sinycosx/cosxcosy+sinxsiny=tanx-tany/1+tanxtany证明:单位圆作图(2)二倍角公式sin2x=2sinxcosx推导:sin2x=sin(x+x)=sinxcosx+cosxsinx=2sinxcosxcos2x=(cosx)²-(sinx)²=2cos²x-1=1-2sin²x (sin²x+cos²x=1)推导:cos2x=cos(x+x)=cosxcosx-sinxsinx=cos²x-sin²xtan2x=sin2x/cos2x=2sinxcosx/cos²x-sin²x=2tanx/1-tan²x*三倍角公式sin3x=sin(2x+x)=sin2xcosx+cos2xsinx=2sinx(1-sin²x)+(1-2sin²x)sinx=3sinx-4sin³xcos3x=cos(2x+x)=cos2xcosx-sinxsin2x=(2cos²x-1)cosx-2cosx(1-cos²x)=4cos³x-3cosxtan3x=sin3x/cos3x=tanxtan(π/3+x)tan(π/3-x)(3)半角公式sin²(x/2)=(1-cosx)/2cos²(x/2)=(1+cosx)/2tan²(x/2)=1-cosx/1+cosx推导:cosx=2cos²(x/2)-1=1-2sin²(x/2)(4)辅助角公式asinx+bcosx=√(a²+b²)[asinx/√(a²+b²)+bcosx/√(a²+b²)]原理:配凑为sin²m+cos²m的形式,值域为[-√(a²+b²),√(a²+b²)] (5)两角推诱导例sin(π+x)=sinπcosx+sinxcosπ=-sinxcos(π+x)=cosπcosx-sinπsinx=-cosxsin(π-x)=sinπcosx-sinxcosπ=sinxcos(π-x)=cosπcosx+sinπsinx=-cosx与二次函数的那些事儿(1)变量法e.g.求f(x)=sinx+cos2x的值域解:由题f(x)=sinx+1-2sin²x......将sinx看做熟悉的变量f(x)=-2(sin²x-1/2sinx+1/16-1/16)+1=-2(sinx-1/4)²+9/8......化为熟悉的顶点式∵sinx∈[-1,1]......注意定义域(尤其是题目如果给出角范围)∴当sinx=1/4时,有f(x)最大值9/8;当sinx=-1时,有f(x)最小值-2 ∴f(x)值域为[-2,9/8](2)换元法e.g.求f(x)=sinx+cosx+sinxcosx的值域解:由题,令t=sinx+cosx=√2sin(x+π/4) t∈[-√2,√2]f(x)=t+sinxcosx∵t²=1+2sinxcosx∴sinxcosx=(t²-1)/2即f(x)=t+t²/2-1/2......换元,注意定义域接下来由二次函数解即可(3)公式法对于复合函数或不等式而言,需要注意其单调性与奇偶性,综合运用公式、定理与方程思想。
三角函数转换公式大全
三角函数公式1、两角和公式sinA+B = sinAcosB+cosAsinBsinA-B = sinAcosB-cosAsinBcosA+B = cosAcosB-sinAsinBcosA-B = cosAcosB+sinAsinBtanA+B = tanA+tanB/1-tanAtanBtanA-B = tanA-tanB/1+tanAtanBcotA+B = cotAcotB-1/cotB+cotAcotA-B = cotAcotB+1/cotB-cotA2、倍角公式tan2A = 2tanA/1-tan^2 ASin2A=2SinA CosACos2A = Cos^2 A--Sin^2 A=2Cos^2 A—1=1—2sin^2 A3、三倍角公式sin3A = 3sinA-4sinA^3;cos3A = 4cosA^3 -3cosAtan3a = tan a tanπ/3+atanπ/3-a4、半角公式sinA/2 = √{1--cosA/2}cosA/2 = √{1+cosA/2}tanA/2 = √{1--cosA/1+cosA}cotA/2 = √{1+cosA/1-cosA}tanA/2 = 1--cosA/sinA=sinA/1+cosA5、和差化积sina+sinb = 2sina+b/2cosa-b/2sina-sinb = 2cosa+b/2sina-b/2cosa+cosb = 2cosa+b/2cosa-b/2cosa-cosb = -2sina+b/2sina-b/2tanA+tanB=sinA+B/cosAcosB6、积化和差sinasinb = -1/2cosa+b-cosa-bcosacosb = 1/2cosa+b+cosa-bsinacosb = 1/2sina+b+sina-bcosasinb = 1/2sina+b-sina-b7、诱导公式sin-a = -sinacos-a = cosasinπ/2-a = cosacosπ/2-a = sinasinπ/2+a = cosacosπ/2+a = -sinasinπ-a = sinacosπ-a = -cosasinπ+a = -sinacosπ+a = -cosatgA=tanA = sinA/cosA8、万能公式sina = 2tana/2 / {1+tana/2^2}cosa = {1-tana/2^2} / {1+tana/2^2}tana = 2tana/2/{1-tana/2^2}9、其它公式asina+bcosa = √a^2+b^2sina+c 其中,tanc=b/aasina-bcosa = √a^2+b^2cosa-c 其中,tanc=a/b1+sina = sina/2+cosa/2^2;1-sina = sina/2-cosa/2^2;;10、其他非重点三角函数csca = 1/sinaseca = 1/cosa11、双曲函数sinha = e^a-e^-a/2cosha = e^a+e^-a/2tg ha = sin ha/cos ha12、公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin2kπ+α= sinαcos2kπ+α= cosαtan2kπ+α= tanαcot2kπ+α= cotα13、公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sinπ+α= -sinαcosπ+α= -cosαtanπ+α= tanαcotπ+α= cotα14、公式三:任意角α与 -α的三角函数值之间的关系:sin-α= -sinαcos-α= cosαtan-α= -tanαcot-α= -cotα15、公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sinπ-α= sinαcosπ-α= -cosαtanπ-α= -tanαcotπ-α= -cotα16、公式五:利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系:sin2π-α= -sinαcos2π-α= cosαtan2π-α= -tanαcot2π-α= -cotα17、公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sinπ/2+α= cosαcosπ/2+α= -sinα。
高中三角函数公式大全整理版
高中三角函数公式大全两角和公式sin(A+B) = sinAcosB+cosAsinBsin(A-B) = sinAcosB-cosAsinBcos(A+B) = cosAcosB-sinAsinBcos(A-B) = cosAcosB+sinAsinB tan(A+B) =tanAtanB -1tanB tanA + tan(A-B) =tanAtanB 1tanBtanA +- cot(A+B) =cotAcotB 1-cotAcotB + cot(A-B) =cotA cotB 1cotAcotB -+ 倍角公式 tan2A =A tan 12tanA2-Sin2A=2SinA•CosACos2A = Cos 2A-Sin 2A=2Cos 2A-1=1-2sin 2A三倍角公式sin3A = 3sinA-4(sinA)3cos3A = 4(cosA)3-3cosA Tan3A=)3tan()3tan(tan )(tan 1)(tan 3tan 323A A A A A A +-=--ππ半角公式 sin(2A )=2cos 1A - cos(2A )=2cos 1A + tan(2A )=A A cos 1cos 1+- cot(2A )=A A cos 1cos 1-+ tan(2A )=A A sin cos 1-=A A cos 1sin +和差化积 sina+sinb=2sin 2ba +cos 2b a -sina-sinb=2cos 2ba +sin 2b a - cosa+cosb = 2cos 2b a +cos 2b a - cosa-cosb = -2sin2b a +sin 2b a - tana+tanb=ba b a cos cos )sin(+ 积化和差 sinasinb = -21[cos(a+b)-cos(a-b)] cosacosb = 21[cos(a+b)+cos(a-b)] sinacosb = 21[sin(a+b)+sin(a-b)] cosasinb = 21[sin(a+b)-sin(a-b)]诱导公式sin(-a) = -sinacos(-a) = cosa sin(2π-a) = cosa cos(2π-a) = sina sin(2π+a) = cosa cos(2π+a) = -sina sin(π-a) = sinacos(π-a) = -cosasin(π+a) = -sinacos(π+a) = -cosa tgA=tanA =a a cos sin 万能公式 sina=2)2(tan 12tan 2aa+ cosa=22)2(tan 1)2(tan 1aa+-tana=2)2(tan 12tan 2aa- 其它公式 a•sina+b•cosa=)b (a 22+×sin(a+c) [其中tanc=a b ] a•sin(a)-b•cos(a) =)b (a 22+×cos(a-c) [其中tan(c)=b a ] 1+sin(a) =(sin2a +cos 2a )2 1-sin(a) = (sin2a -cos 2a )2 其他非重点三角函数 csc(a) =asin 1sec(a) =a cos 1公式一:设α为任意角,终边相同的角的同一三角函数的值相等: sin (2kπ+α)= sinαcos (2kπ+α)= cosαtan (2kπ+α)= tanαcot (2kπ+α)= cotα公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系: sin (π+α)= -sinαcos (π+α)= -cosαtan (π+α)= tanαcot (π+α)= cotα公式三:任意角α与 -α的三角函数值之间的关系:sin (-α)= -sinαcos (-α)= cosαtan (-α)= -tanαcot (-α)= -cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系: sin (π-α)= sinαcos (π-α)= -cosαtan (π-α)= -tanαcot (π-α)= -cotα公式五:利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系:sin (2π-α)= -sinα cos (2π-α)= cosα tan (2π-α)= -tanα cot (2π-α)= -cotα A•sin(ωt+θ)+ B•sin(ωt+φ) =)cos(222ϕθ⋅++AB B A ×sin)cos(2)Bsin in arcsin[(As t 22ϕθϕθω⋅++++AB B A。
两角和与差的正切公式
两角和与差的正切公式
解析:
两角和、差的正切公式:
两角和、差的正弦公式
sin(α+β)=sinαcosβ+cosαsinβ
sin(α-β)=sinαcosβ-cosαsinβ
记忆方式:异名同号
正弦的展开肯定就是以正弦开头,然后满足异名,正弦配余弦,符号就和我们要求的符号相同。
两角和、差的余弦公式
cos(α+β)=cosαcosβ-sinαsinβ
cos(α-β)=cosαcosβ+sinαsinβ
记忆方式:同名异号
余弦的展开肯定就是以余弦开头,然后满足同名,余弦配余弦,正弦配正弦,符号就和我们要求的符号相异。
三角函数是基本初等函数之一,是以角度(数学上最常用弧度制,下同)为自变量,角度对应任意角终边与单位圆交点坐标或其比值为因变量的函数。
也可以等价地用与单位圆有关的各种线段的长度来定义。
三角函数在研究三角形和圆等几何形状的性质时有重要作用,也是研究周期性现象的基础数学工具。
在数学分析中,三角函数也被定义为无穷级数或特定微分方程的解,允许它们的取值扩展到任意实数值,甚至是复数值。
三角函数公式大全
3.三角形中的一些结论:(不要求记忆) (1)anA+tanB+tanC=tanA· tanB· tanC (2)sinA+tsinB+sinC=4cos(A/2)cos(B/2)cos(C/2) (3)cosA+cosB+cosC=4sin(A/2)· sin(B/2)· sin(C/2)+1 (4)sin2A+sin2B+sin2C=4sinA· sinB· sinC (5)cos2A+cos2B+cos2C=-4cosAcosBcosC-1 ........................... 已知 sinα=m sin(α+2β), |m|<1,求证 tan(α+β)=(1+m)/(1-m)tanβ 解:sinα=m sin(α+2β) sin(a+β-β)=msin(a+β+β) sin(a+β)cosβ-cos(a+β)sinβ=msin(a+β)cosβ+mcos(a+β)sinβ sin(a+β)cosβ(1-m)=cos(a+β)sinβ(m+1) tan(α+β)=(1+m)/(1-m)tanβ
+a)·tan( -a) 3 3
1 cos A A )= 2 2
1 cos A A )= 2 2
cos(
tan(
1 cos A A )= 1 cosA 2 1 cos A A )= 1 cosA 2
cot( tan(
sin A A 1 cos A )= = 1 cos A sin A 2 和差化积 ab a b sina+sinb=2sin cos 2 2
高数 三角函数公式以及 通用公式
三角函数公式两角和公式 sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosAcos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)倍角公式 tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctgacos2a=cos2a-sin2a=2cos2a-1=1-2sin2a半角公式sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))和差化积 2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosBctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB某些数列前n项和1+2+3+4+5+6+7+8+9+…+n=n(n+1)/21+3+5+7+9+11+13+15+…+(2n-1)=n*22+4+6+8+10+12+14+…+(2n)=n(n+1) 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/613+23+33+43+53+63+…n3=n2(n+1)2/41*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3倍角公式tan2A=2tanA/[1-(tanA)^2]cos2a=(cosa)^2-(sina)^2=2(cosa)^2 -1=1-2(sina)^2半角公式sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))cot(A/2)=√((1+cosA)/((1-cosA)) cot(A/2)=-√((1+cosA)/((1-cosA))和差化积2sinAcosB=sin(A+B)+sin(A-B)2cosAsinB=sin(A+B)-sin(A-B) )2cosAcosB=cos(A+B)-sin(A-B)-2sinAsinB=cos(A+B)-cos(A-B)sinA+sinB=2sin((A+B)/2)cos((A-B)/2cosA+cosB=2cos((A+B)/2)sin((A-B)/2)tanA+tanB=sin(A+B)/cosAcosB某些数列前n项和1+2+3+4+5+6+7+8+9+…+n=n(n+1)/21+3+5+7+9+11+13+15+…+(2n-1)=n22+4+6+8+10+12+14+…+(2n)=n(n+1) 51^2+2^2+3^2+4^2+5^2+6^2+7^2+8^2+…+n^2=n(n+1)(2n+1)/61^3+2^3+3^3+4^3+5^3+6^3+…n^3=n2(n+1)2/41*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3常用导数公式1.y=c(c为常数) y'=02.y=x^n y'=nx^(n-1)3.y=a^x y'=a^xlnay=e^x y'=e^x4.y=logax y'=logae/xy=lnx y'=1/x5.y=sinx y'=cosx6.y=cosx y'=-sinx7.y=tanx y'=1/cos^2x8.y=cotx y'=-1/sin^2x9.y=arcsinx y'=1/√1-x^210.y=arccosx y'=-1/√1-x^211.y=arctanx y'=1/1+x^212.y=arccotx y'=-1/1+x^2三角函数公式两角和公式sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosAcos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB tan(A+B)=(tanA+tanB)/(1-tanAtanB)tan(A-B)=(tanA-tanB)/(1+tanAtanB)ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA)ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)倍角公式tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctgacos2a=cos2a-sin2a=2cos2a-1=1-2sin2a半角公式sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)tan(A/2)=√((1-cosA)/((1+cosA))tan(A/2)=-√((1-cosA)/((1+cosA))ctg(A/2)=√((1+cosA)/((1-cosA))ctg(A/2)=-√((1+cosA)/((1-cosA))和差化积2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B) 2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B) sinA+sinB=2sin((A+B)/2)cos((A-B)/2cosA+cosB=2cos((A+B)/2)sin((A-B)/2)tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB某些数列前n项和1+2+3+4+5+6+7+8+9+…+n=n(n+1)/21+3+5+7+9+11+13+15+…+(2n-1)=n22+4+6+8+10+12+14+…+(2n)=n(n+1)12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/613+23+33+43+53+63+…n3=n2(n+1)2/41*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3。
三角函数两角和与差公式
三角函数两角和与差公式三角函数两角和与差公式_高中数学学好数学的关键是公式的掌握,数学能让我们思考任何问题的时候都比较缜密,而不至于思绪紊乱。
还能使我们的脑子反映灵活,对突发事件的处理手段也更理性。
下面是小编为大家整理的三角函数两角和与差公式,希望能帮助到大家!三角函数两角和与差公式sin(α+β)=sinαcosβ+cosαsinβsin(α-β)=sinαcosβ-cosαsinβcos(α+β)=cosαcosβ-sinαsinβcos(α-β)=cosαcosβ+sinαsinβtan(α+β)=(tanα+tanβ)/(1-tanαtanβ)tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)高三数学学习方法1、变介绍方法为选择方法高三学生的头脑中已经储存了很多解题方法和规律,如何提取运用是第二轮数学复习的关键。
“给出方法解题目”不可取,必须“给出习题选方法”。
选法是思维活动,只要在如何选上做文章,才能解决好学生自做不会,老师一讲就通的问题。
2、变全面覆盖为重点讲练第二轮数学复习仅有两个半月的时间,从面面俱到从头来过一遍是根本做不到。
要做到紧紧围绕重点方法,重要的知识点,重要的数学思想和方法以及近几年的重点题型,狠抓过关。
3、变以量为主为以质取胜高三数学复习中一切的讲练都是要围绕学生展开的,贪多嚼不烂,学生如果消化不了,那么,讲再多也没有用。
只有重质减量,才能有利于学生更好的掌握知识,减少练习量,不是指不做或是少做,而是要在精选上下功夫,要做到非重点的就少做甚至是不做。
4、变以“补弱”为主为“扬长补弱”并举虽然影响学生的数学成绩的因素很多,但是学习兴趣和爱好与成绩绝对是相辅相成的。
所以一味的强调“补弱”是不科学的,要因人而异,因成绩而异。
一般,成绩居中上游的学生,应以“扬长”为主,居下游的学生,应以补弱为主。
处理好扬长、补弱的关系,才是正确的做法。
高考数学应试技巧1、拓实基础,强化通性通法高考对基础知识的考查既全面又突出重点。
三角函数公式
三角函数公式两角和公式sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinB tan(A+B) =tanAtanB -1tanB tanA + tan(A-B) =tanAtanB1tanB tanA +- cot(A+B) =cotA cotB 1-cotAcotB + cot(A-B) =cotAcotB 1cotAcotB -+倍角公式 tan2A =Atan 12tanA 2-Sin2A=2SinA•CosACos2A = Cos 2A-Sin 2A=2Cos 2A-1=1-2sin 2A三倍角公式sin3A = 3sinA-4(sinA)3 cos3A = 4(cosA)3-3cosA tan3a = tana ·tan(3π+a)·tan(3π-a)半角公式 sin(2A )=2cos 1A-cos(2A )=2cos 1A+tan(2A )=A A cos 1cos 1+-cot(2A )=AA cos 1cos 1-+tan(2A )=AA sin cos 1-=AA cos 1sin +和差化积 sina+sinb=2sin 2b a +cos 2b a - sina-sinb=2cos2b a +sin2b a -cosa+cosb = 2cos 2b a +cos 2b a - cosa-cosb = -2sin 2ba +sin2b a -tana+tanb=ba b a cos cos )sin(+积化和差 sinasinb = -21[cos(a+b)-cos(a-b)] cosacosb = 21[cos(a+b)+cos(a-b)] sinacosb = 21[sin(a+b)+sin(a-b)] cosasinb =21[sin(a+b)-sin(a-b)]诱导公式 sin(-a) = -sina cos(-a) = cosa sin(2π-a) = cosa cos(2π-a) = sina sin(2π+a) = cosa cos(2π+a) = -sinasin(π-a) = sina cos(π-a) = -cosa sin(π+a) = -sina cos (π+a) = -cosa tgA=tanA =aa cos sin万能公式sina=2)2(tan 12tan 2a a +cosa=22)2(tan 1)2(tan1a a +-tana=2)2(tan12tan2a a -其它公式a•sina+b•cosa=)b (a 22+×sin(a+c) [其中tanc=ab ]a•sin(a)-b•cos(a) = )b (a 22+×cos(a-c) [其中tan(c)=ba ]1+sin(a) =(sin 2a +cos 2a)21-sin(a) = (sin2a -cos 2a)2其他非重点三角函数 csc(a) =a sin 1 sec(a) =acos 1双曲函数 sinh(a)=2e -e -aacosh(a)=2e e -aa+tg h(a)=)cosh()sinh(a a公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin (2kπ+α)= sinα cos (2kπ+α)= cosα tan (2kπ+α)= tanα cot (2kπ+α)= cotα公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系: sin (π+α)= -sinα cos (π+α)= -cosα tan (π+α)= tanα cot (π+α)= cotα公式三:任意角α与 -α的三角函数值之间的关系: sin (-α)= -sinα cos (-α)= cosαtan (-α)= -tanα cot (-α)= -cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系: sin (π-α)= sinα cos (π-α)= -cosα tan (π-α)= -tanα cot (π-α)= -cotα公式五:利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系: sin (2π-α)= -sinα cos (2π-α)= cosα tan (2π-α)= -tanα cot (2π-α)= -cotα公式六:2π±α及23π±α与α的三角函数值之间的关系:sin (2π+α)= cosα cos (2π+α)= -sinα tan (2π+α)= -cotα cot (2π+α)= -tanα sin (2π-α)= cosα cos (2π-α)= sinα tan (2π-α)= cotα cot (2π-α)= tanα sin (23π+α)= -cosα cos (23π+α)= sinα tan (23π+α)= -cotαcot (23π+α)= -tanα sin (23π-α)= -cosα cos (23π-α)= -sinα tan (23π-α)= cotα cot (23π-α)= tanα(以上k ∈Z)这个物理常用公式我费了半天的劲才输进来,希望对大家有用A•sin(ωt+θ)+ B•sin(ωt+φ) =)cos(222ϕθ⋅++AB B A ×sin )cos(2)Bsin in arcsin[(As t 22ϕθϕθω⋅++++AB B A乘法与因式分解 a2-b2=(a+b)(a-b)a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b)(a2+ab+b2) 三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b |a-b|≥|a|-|b| -|a|≤a≤|a|一元二次方程的解 -b+√(b2-4ac)/2a -b-b+√(b2-4ac)/2a根与系数的关系 X1+X2=-b/a X1*X2=c/a 注:韦达定理判别式 b2-4a=0 注:方程有相等的两实根 b2-4ac>0 注:方程有一个实根 b2-4ac<0 注:方程有共轭复数根 某些数列前n 项和1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n -1)=n22+4+6+8+10+12+14+…+(2n)=n(n+1)12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/613+23+33+43+53+63+…n3=n2(n+1)2/41*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3正弦定理 a/sinA=b/sinB=c/sinC=2R 注: 其中 R 表示三角形的外接圆半径余弦定理 b2=a2+c2-2accosB 注:角B 是边a 和边c 的夹角 正切定理:[(a+b)/(a-b)]={[Tan(a+b)/2]/[Tan(a-b)/2]} 圆的标准方程 (x-a)2+(y-b)2=r2 注:(a,b )是圆心坐标圆的一般方程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0抛物线标准方程 y2=2px y2=-2px x2=2py x2=-2py直棱柱侧面积 S=c*h 斜棱柱侧面积 S=c'*h 正棱锥侧面积 S=1/2c*h' 正棱台侧面积 S=1/2(c+c')h'圆台侧面积 S=1/2(c+c')l=pi(R+r)l 球的表面积 S=4pi*r2圆柱侧面积 S=c*h=2pi*h 圆锥侧面积 S=1/2*c*l=pi*r*l弧长公式 l=a*r a 是圆心角的弧度数r >0 扇形面积公式 s=1/2*l*r锥体体积公式 V=1/3*S*H 圆锥体体积公式 V=1/3*pi*r2h斜棱柱体积 V=S'L 注:其中,S'是直截面面积, L 是侧棱长柱体体积公式 V=s*h 圆柱体 V=pi*r2h -----------------------三角函数 积化和差 和差化积公式记不住就自己推,用两角和差的正余弦: cos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinB这两式相加或相减,可以得到2组积化和差:相加:cosAcosB=[cos(A+B)+cos(A-B)]/2相减:sinAsinB=-[cos(A+B)-cos(A-B)]/2sin(A+B)=sinAcosB+sinBcosAsin(A-B)=sinAcosB-sinBcosA这两式相加或相减,可以得到2组积化和差:相加:sinAcosB=[sin(A+B)+sin(A-B)]/2相减:sinBcosA=[sin(A+B)-sin(A-B)]/2这样一共4组积化和差,然后倒过来就是和差化积了不知道这样你可以记住伐,实在记不住考试的时候也可以临时推导一下正加正正在前正减正余在前余加余都是余余减余没有余还负正余正加余正正减余余余加正正余减还负.3.三角形中的一些结论:(不要求记忆)(1)anA+tanB+tanC=tanA·tanB·tanC(2)sinA+tsinB+sinC=4cos(A/2)cos(B/2)cos(C/2)(3)cosA+cosB+cosC=4sin(A/2)·sin(B/2)·sin(C/2)+1(4)sin2A+sin2B+sin2C=4sinA·sinB·sinC(5)cos2A+cos2B+cos2C=-4cosAcosBcosC-1 ................。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三角函数公式两角和公式sin(A+B) = sinAcosB+cosAsinB
sin(A-B) = sinAcosB-cosAsinB
cos(A+B) = cosAcosB-sinAsinB
cos(A-B) = cosAcosB+sinAsinB
tan(A+B) = (tanA+tanB)/(1-tanAtanB)
tan(A-B) = (tanA-tanB)/(1+tanAtanB)
cot(A+B) = (cotAcotB-1)/(cotB+cotA)
cot(A-B) = (cotAcotB+1)/(cotB-cotA)
Sin2A=2SinA?CosA Cos2A = Cos^2 A--Sin^2 A =2Cos^2 A-1 =1-2sin^2 A 三倍角公式sin3A = 3sinA-4(sinA)^3; cos3A = 4(cosA)^3 -3cosA tan3a = tan a ?
√{(1+cosA)/2} tan(A/2) = √{(1--cosA)/(1+cosA)} cot(A/2) =
sin(a)+sin(b) = 2sin[(a+b)/2]cos[(a-b)/2] sin(a)-sin(b) = 2cos[(a+b)/2]sin[(a-b)/2] cos(a)+cos(b) = 2cos[(a+b)/2]cos[(a-b)/2] cos(a)-cos(b) = -2sin[(a+b)/2]sin[(a-b)/2] tanA+tanB=sin(A+B)/cosAcosB 积化和差sin(a)sin(b) = -1/2*[cos(a+b)-cos(a-b)] cos(a)cos(b) = 1/2*[cos(a+b)+cos(a-b)]
sin(π/2+a) = cos(a) cos(π/2+a) = -sin(a) sin(π-a) = sin(a) cos(π-a) = -cos(a) sin(π+a) = -sin(a) cos(π+a) = -cos(a) tgA=tanA = sinA/cosA 万能公式sin(a) =
[2tan(a/2)] / {1+[tan(a/2)]^2} cos(a) = {1-[tan(a/2)]^2} / {1+[tan(a/2)]^2} tan(a) = [2tan(a/2)]/{1-[tan(a/2)]^2} 其它公式a?sin(a)+b?cos(a) = [√(a^2+b^2)]*sin(a+c) [其中,tan(c)=b/a] a?sin(a)-b?cos(a) = [√(a^2+b^2)]*cos(a-c) [其中,tan(c)=a/b] 1+sin(a) = [sin(a/2)+cos(a/2)]^2; 1-sin(a) = [sin(a/2)-cos(a/2)]^2;; 其他非重点三角函数csc(a) = 1/sin(a) sec(a)
sin h(a)/cos h(a) 公式一: 设α为任意角,终边相同的角的同一三角函数的值相等: sin(2kπ+α)= sinα cos(2kπ+α)= cosα tan(2kπ+α)= tanα cot(2kπ+α)= cotα
sin(π+α)= -sinα cos(π+α)= -cosα tan(π+α)= tanα cot(π+α)= cotα 公式三: 任意角α与-α的三角函数值之间的关系: sin(-α)= -sinα cos(-α)= cosα tan(-α)= -tanα cot(-α)= -cotα 公式四: 利用公式二和公式三可以得到π-α与α的三角函数值之间的关系: sin(π-α)= sinα cos(π-α)= -cosα tan(π-α)= -tanα cot(π-α)= -cotα 公式五: 利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系: sin(2π-α)= -sinα cos(2π-α)= cosα tan(2π-α)= -tanα cot(2π-α)= -cotα 公式六: π/2±α及3π/2±α与α的三角函数值之间的关系: sin(π/2+α)= cosα cos(π/2+α)= -sinα。