圆与方程单元测试题及答案

合集下载

直线和圆的方程单元测试

直线和圆的方程单元测试
故答案为:
17.
(1)
(2) , 或
【分析】
(1)根据两条直线垂直的条件列方程,化简求得 .
(2)根据两条直线平行以及距离列方程,化简求得 .
(1)
由于 ,所以 .
(2)
依题意 ,则 ,
此时 ,即 ,故 .
由于两条直线的距离为 ,
所以 或 .
18.
(1) ;
(2) .
【分析】
(1)设出圆的标准方程,根据其过的点的坐标满足圆方程,列出等量关系,求解即可;
【详解】
解:由题知 , ,半径分别为 ,
根据两圆相交,可得圆心距大于两圆的半径之差而小于半径之和,
即 .
又 ,所以有 ,

再根据 ,
求得 ,
故选:B.
4.A
【分析】
设出直线的截距式方程,根据题意求出待定系数,可得结论.
【详解】
解:设直线 的方程为 ,则 的面积为 ①.
因为直线 过点 ,所以 ②.
联立①②,解得 , ,
(2)根据过 的圆的切线的斜率是否存在进行分类讨论,结合点到直线的距离公式求得切线方程.
(1)
由题意,设圆 的标准方程为: ,
圆 关于直线 对称,
圆 与 轴相切: …①
点 到 的距离为: ,
圆 被直线 截得的弦长为 , ,
结合①有: , ,
又 , , ,
圆 的标准方程为: .
(2)
当直线 的斜率不存在时, 满足题意
所以切线 的方程为 .
19.
(1)
(2) 或
【分析】
(1)将圆的一般方程化为标准方程,求出圆心,代入直线方程即可求解.
(2)设直线 的方程为: ,利用圆心到直线的距离即可求解.

人教版高一数学必修二第四章圆与方程(单元测试,含答案).doc

人教版高一数学必修二第四章圆与方程(单元测试,含答案).doc

与方程姓名:班级:一、选择题(共8小题;共40分)1Mx2 +尸一4x + 6y = 0的圆心坐标是()A (2,3)B (-2,3) C(-2,-3) D(2,-3)2OO的百径是3,百线1与OO相交,圆心0到百线1的距离是d,贝M应满足()Ad > 3 B 15 < d < 3 C 0 < d < 15 Dd < 0 3圆(x — 2)2 + (y- l)2 = 4与圆(x + l)2 + (y- 2)2 = 9的公切线有()条A1 B 2 C3 D4 4从原点向圆x2 + y2 一12y + 27 = 0作两条切线,则该圆夹在两条切线间的劣弧长为()A nB 2nC 4TTD 6TT5过点(1,1)的直线与圆(x - 2)2 + (y - 3)2 = 9相交于A, B两点,贝lj| AB |的最小值为() A2V3 B4 C2V5 D5 6已知圆C的半径为2, |员|心在x轴的正半轴上,直线3x + 4y + 4 = 0与圆C相切,贝I」圆C的方程为()Ax2 4-y2 - 2x - 3 = 0 B x2 4- y2 + 4x = 0Cx2 +y2 + 2x - 3 = 0 D x2 + y2 - 4x = 07耍在边长为16米的正方形草坪上安装喷水龙头,使整个草坪都能喷洒到水.假设每个喷水龙头的喷洒范閘都是半径为6米的圆面,则需安装这种喷水龙头的个数最少是()A6 B 5 C4 D38 已知圆:C1:(x-2)2 + (y-3)3 = 1,圆:C2:(x-3)2 + (y-4)2 = 9, M、N分别是圆C〔、C?上的动点,P为x轴上的动点,贝OIPMI + IPNI的最小值为()A5V2-4 B V17- 1 C6-2V2 D V17二、填空题(共7小题;共35分)9过点A(3,—4)与闘x2 +y2 = 25相切的直线方程是_______ .10如果单位圆X? +y2 = 1与圆C: (x — a)2 + (y - a)2 = 4相交,则实数a的取值范围为 ________ 11在空间直角坐标系,已知点A(l,0,2), B(l,-3,1),点M在y轴上,且M到A与到B的距离相等,则点M的坐标是 _____ ・12已知圆C: (x-2)2+y2 = l.若直线y二k(x+l)上存在点P,使得过P向圆C所作的州条切线所成的角为夕则实数k的取值范闌为 _______ .13如图,以棱长为a的止方体的三条棱所在的直线为坐标轴建立空间百角坐标系,若点P为对角线AB的点,点Q在棱CD上运动,则PQ的最小值为 .14在圆C:(x-2)2 + (y-2)2 = 8内,过点P(l,0)的最长的弦为AB,最短的弦为DE,贝9以边形ADBE的面积为____ •15据气象台预报:在A城正东方300km的海而B处有一台风心,正以每小时40km的速度向術北方向移动,在距台风心250km以内的地区将受其影响.从现在起经过约__________ h,台风将影响A城, 持续时间约为_______ h.(结果精确到Olh)三、解答题(共5小题;共65分)16若关于x, y的方程X? + y? - 4x + 4y + m = 0表示圆C.(1)求实数m的取值范围;(2)若圆C与圆M:x2 4-y2 = 2相离,求m的取值范囤.17已知圆C:x? + y? + 4x + 4y + m = 0,直线l:x + y 4- 2 = 0.(1)若I员IC与直线1相离,求m的取值范围;(2)若I员1D过点P(l,l), H.与恻C关丁•直线1对称,求I処D的方程.18如图,在平面直角坐标系xOy,点A(0,3),直线l:y = 2x-4.设圆C的半径为1,圆心在1上.(1)若圆心C也在直线y = x-l上,过点A作圆C的切线,求切线的方程;(2)若圆C上存在点M,使MA = 2M0,求圆心C的横坐标a的取值范|节|・19已知直线啲方程为2x+(l + m)y+2m = 0, m€R,点P的坐标为(-1,0).(1)求证:直线1恒过定点,并求出定点坐标;(2)求点P到直线1的距离的最大值;(3)设点P在直线1上的射影为点M, N的坐标为(2,1),求线段MN长的取值范闱.20 在平面直角坐标系xOy,已知圆Ci: (x + 3)2 + (y - I)2 = 4和圆C?: (x 一4)2 + (y — 5)2 = 4.(1)若直线1过点A(4,0), £L被圆C]截得的弦长为2孙,求直线啲方程;(2)设P为平面上的点,满足:存在过点P的无穷多对互相垂肖的肖线h和12,它们分别与圆C1 和圆C2相交,且直线h被圆C]截得的弦长与直线12被圆C2截得的弦长相等,试求所有满足条件的点p的坐标.答案第一部分I D 2 C 3 B 4 B 5 B 6 D 7 C 8 A第二部分9 3x-4y = 2510 -—< a < H J C —< a < —」 2 22 2 II (0,-1,0) 12 [一普,晋]13 yal4 4V615 20; 66第三部分 16 (1) |w|C 化简为(x- 2)2 4-(y + 2)2 = 8-m,所以8 — m > 0,即m V 8.(2)圆C 的圆心为(2,-2),半径为V8^ (m<8),圆M 的圆心为(0,0),半径为返,由题意,得圆心距大于两圆的半径和,则“22 + 22 + 解得6<m<8.17 (1)圆Ux?+y2+4x + 4y + m = 0即(x 4- 2)2 + (y + 2)2 = 8 - m.圆心C(-2,—2)到直线啲距离d =三|旦=V2,若圆C 与直线1相离,则d > r,所以 * = 8 — m < 2即 m > 6乂严=8 - m > 0即m V 8.故m 的取值范围是(6,8).(2)设圆D 的圆心D 的坐标为(xo ,y ()),由于圆C 的圆心C(_2,_2), 依题意知点D 和点C 关于直线1对称,解牡:0 所以圆D 的方程为x 2+y 2 = r 2,而r=|DP |=V2,因此,圆D 的方程为x 2+y 2 = 2.18 (1)由题设,I 员I 心C 是直线y = 2x- 4和y = x- 1的交点, 解得点C(3,2),于是切线的斜率必存在.设过A(0,3)的圆C 的切线方稈为y = kx + 3由题意,得解得:k=0或—孑 4故所求切线方程为{Xo-2 Yo+2Xo+2 + 竽+2 = 0x (-1) = -1I 3k + 1 |Vk 2 + 1y = 3 或3x + 4y — 12 = 0(2)因为圆心在直线y = 2x —4上,所以圆C的方程为(x — a)2 3 + [y — 2 (a — 2)]2 = 1 设点M(x,y),因为MA = 2M0,所以Jx2 + (y — 3)2 = 2jx2 +y2, 化简得x? + y2 + 2y — 3 = 0,即x2 + (y + l)2 = 4, 所以点M在以D(0,-l)为圆心,2为半径的圆上.由题意,点M(x,y)在圆C上,所以圆(:与圆D有公共点,贝I」12-11 < CD <2 + 1, 即l<Va2 + (2a-3)2<3 整理,得—8 S 5a2— 12a S 0由5a2-12a + 8>0,得a G R;S5a2 - 12a < 0,得12所以点C的横坐标a的取值范闌为[0,y .19(1)由2x + (l + m)y+2m = 0得2x + y + m(y + 2) = 0,所以直线1恒过直线2x + y= 0与直线y + 2 = 0交点Q.解方程组炸暮律得Q(l,-2),所以直线1恒过定点,且定点为Q(l,-2).2 设点P在直线1上的射影为点M,贝IJIPMI < |PQ|,当且仅当直线1与PQ垂直时,等号成立, 所以点P到直线1的距离的最大值即为线段PQ的长度为2逅.3因为直线1绕着点Q(l,-2)旋转,所以点M在以线段PQ为直径的I员1上,其I员I心为点C(O.-l),半径为说,因为N的坐标为(2,1),所以|CN| = 2V2,从而V2 < |MN| < 3V2.20(1)由于直线x = 4与圆C]不相交,所以直线1的斜率存在.设直线1的方程为y = k(x - 4),圆C]的I员I心到直线1的距离为d, 乂因为直线1被I员©截得的弦长为2箱,所以|l-k(-3-4)| d = ------- , ----Vl + k 2 y = 0 或 7x + 24y - 28 = 0 (2)设点P(a,b)满足条件,不妨设直线h 的方程为y — b = k(x — a), k H 0, 则直线】2的方程为山点到直线的距离公式得 d = J22 - (V3)2 = 1从而即所以直线1的方程k(24k + 7) = 0, 7 241因为圆Ci和C2的半径相等,及宜线I】被圆C]截得的弦长与直线-被【员丄2截得的弦长相等,所以I 员IC]的|员]心到直线1]的距离和圆C2的國心到直线】2的距离相等,即|1 一k(-3 - a) - b| |5 + £ (4 — a) — b|整理得|1 + 3k + ak — bl = |5k + 4 — a — bk|,从而1 + 3k + ak — b = 5k + 4 — a - bk,(a + b — 2)k — b — a + 3, 因为k的取值有无穷多个,所以(a + b — 2 = 0,戒(a — b + 8 = 0, (b - a + 3 = 0 严ia + b-5 = 0 解得这样点P只可能是点P] (I,-扌)或点卩2 (-!,¥)• 经检验点P]和P2满足题口条件.。

(完整版)高二数学-直线和圆的方程-单元测试(含答案).doc

(完整版)高二数学-直线和圆的方程-单元测试(含答案).doc

高二直线和圆的方程单元测试卷班级: 姓名:一、选择题: 本大题共 10 小题,每小题 5 分,共 50 分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.直线 l 经过 A (2, 1)、B ( 1,m 2) (m ∈ R)两点,那么直线 l 的倾斜角的取值范围是A . [0, )B . [ 0, ] [3 C . [0, ], )444D . [0, ](, ) 422. 如果直线 (2a+5) x+( a - 2)y+4=0 与直线 (2- a)x+(a+3)y - 1=0 互相垂直,则 a 的值等于 A . 2 B .- 2C . 2,- 2D .2,0,- 2 3.已知圆 O 的方程为 x 2+ y 2= r 2,点 P ( a ,b )( ab ≠ 0)是圆 O 内一点,以P为中点的弦所在的直线为 m ,直线 n 的方程为 ax +by = r 2,则A .m ∥n ,且 n 与圆 O 相交B . m ∥ n ,且 n 与圆 O 相 离C . m 与 n 重合,且 n 与圆 O 相离D .m ⊥ n ,且 n 与圆 O 相离4. 若直线 ax2by 2 0( a,b 0) 始终平分圆 x 2y 2 4x 2 y8 0 的周长,则12a b的最小值为A .1B . 5 C.4 2D . 3 225. M (x 0 , y 0 ) 为 圆 x 2 y 2a 2 ( a 0) 内 异 于 圆 心 的 一 点 , 则 直 线x 0 x y 0 y a 2 与该圆的位置关系为A .相切 B.相交C.相离 D .相切或相交6. 已知两点 M ( 2,- 3), N (- 3,- 2),直线 L 过点 P ( 1, 1)且与线段 MN 相交,则直线 L 的斜率 k 的取值范围是A .3≤k ≤ 4B . k ≥ 3或 k ≤- 4C . 3≤ k ≤ 4D .-34444≤ k ≤45) 2 1)27. 过直线 y x 上的一点作圆 (x ( y 2 的两条切线 l 1, l 2 ,当直 线 l 1, l 2 关于 yx 对称时,它们之间的夹角为A . 30oB . 45oC . 60oD . 90ox y 1 01x 、yy1 0,那么 xy8满足条件4()的最大值为.如果实数2xy 1 0A . 2B. 1C.1D.19 (0, a),1x 2 y224其斜率为 ,且与圆2相切,则 a 的值为.设直线过点A.4B. 2 2C.2D.210.如图, l 1 、 l 2 、 l 3 是同一平面内的三条平行直线,l 1 与 l 2 间的距离是 1,l 2 与 l 3 间的距离是 2,正三角形 ABC 的三顶点分别在 l 1 、l 2 、l 3 上,则⊿ ABC的边长是A. 23 4 63 172 21B.3 C.4D.3一、选择题答案123 45 678910二、填空题: 本大题共 5 小题,每小题 5 分,共 25 分.答案填在题中横线上.11.已知直线 l 1 : x y sin 1 0 , l 2 : 2x siny 1 0 ,若 l 1 // l 2 ,则.12.有下列命题:①若两条直线平行,则其斜率必相等;②若两条直线的斜率乘积为- 1, 则其必互相垂直;③过点(- 1,1),且斜率为 2 的直线方程是y 1 2 ;x1④同垂直于 x 轴的两条直线一定都和 y 轴平行 ;⑤若直线的倾斜角为 ,则 0 .其中为真命题的有 _____________( 填写序号 ).13.直线 Ax + By +C = 0 与圆 x 2+ y 2= 4 相交于两点 M 、 N ,若满足 C 2= A 2+ uuuuruuurB 2,则 OM · ON ( O 为坐标原点)等于 _ .14.已知函数 f ( x) x 22x 3 ,集合 Mx, y f ( x) f ( y) 0 , 集 合 N x, y f ( x) f ( y) 0 , 则 集 合 MN 的 面 积是;15.集合P ( x, y) | x y 5 0,x N*,y N*},Q ( x, y) | 2x y m 0 ,M x, y) | z x y , ( x, y) ( P Q),若z 取最大值时,M(3,1) ,则实数m的取值范围是;三、解答题:本大题共 6 小题,共 75 分.解答应写出文字说明,证明过程或演算步骤.16.(本小题满分12 分)已知ABC 的顶点A为(3,-1),AB边上的中线所在直线方程为6x 10 y 59 0, B 的平分线所在直线方程为x 4y 10 0 ,求BC 边所在直线的方程.17.(本小题满分12 分)某厂准备生产甲、乙两种适销产品,每件销售收入分别为 3 千元, 2 千元。

圆与方程测试题

圆与方程测试题

圆与方程测试题一:选择题(本大题共10小题,每小题5分,共50分)1.方程x 2+y 2+2ax-by+c=0表示圆心为C (2,2),半径为2的圆,则a 、b 、c 的值 依次为(A )2、4、4; (B )-2、4、4; (C )2、-4、4; (D )2、-4、-42.直线3x-4y-4=0被圆(x-3)2+y 2=9截得的弦长为( )(A)22 (B)4 (C)24 (D)23.点4)()()1,1(22=++-a y a x 在圆的内部,则a 的取值范围是( )(A) 11<<-a (B) 10<<a (C) 11>-<a a 或 (D) 1±=a4.自点 1)3()2()4,1(22=-+--y x A 作圆的切线,则切线长为( ) (A) 5 (B) 3 (C) 10 (D) 55.已知M (-2,0), N (2,0), 则以MN 为斜边的直角三角形直角顶点P 的轨迹方程是( D )(A) 222=+y x (B) 422=+y x(C) )2(222±≠=+x y x (D) )2(422±≠=+x y x6.若直线(1+a)x+y+1=0与圆x 2+y 2-2x=0相切,则a 的值为A 、1,-1B 、2,-2C 、1D 、-17.过原点的直线与圆x 2+y 2+4x+3=0相切,若切点在第三象限,则该直线的方程是A 、x y 3=B 、x y 3-=C 、x y 33=D 、x y 33-= 8.过点A (1,-1)、B (-1,1)且圆心在直线x+y-2=0上的圆的方程是A 、(x-3)2+(y+1)2=4B 、(x+3)2+(y-1)2=4C 、(x-1)2+(y-1)2=4D 、(x+1)2+(y+1)2=49.直线0323=-+y x 截圆x 2+y 2=4得的劣弧所对的圆心角是A 、6πB 、4πC 、3πD 、2π 10.M (x 0,y 0)为圆x 2+y 2=a 2(a>0)内异于圆心的一点,则直线x 0x+y 0y=a 2与 该圆的位置关系是( )A 、相切B 、相交C 、相离D 、相切或相交二、填空题(本大题共5小题,每小题5分,共25分)11.以点A(1,4)、B(3,-2)为直径的两个端点的圆的方程为 .12.设A 为圆1)2()2(22=-+-y x 上一动点,则A 到直线05=--y x 的最大距离为______.13.过点P(-1,6)且与圆4)2()3(22=-++y x 相切的直线方程是________________.14.过圆x 2+y 2-x+y-2=0和x 2+y 2=5的交点,且圆心在直线3x+4y-1=0上的圆的方程为 .15.两圆221x y +=和22(4)()25x y a ++-=相切,则实数a 的值为三、解答题16.过原点O 作圆x 2+y 2-8x=0的弦OA 。

第四章圆与方程综合检测-附答案

第四章圆与方程综合检测-附答案

第四章综合检测题时间120分钟,满分150分。

一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的)1.下面表示空间直角坐标系的直观图中,正确的个数为( )A .1个B .2个C .3个D .4个2.若方程x 2+y 2-x +y +m =0表示圆,则实数m 的取值范围为( )A .m <12B .m <0C .m >12D .m ≤123.已知空间两点P 1(-1,3,5),P 2(2,4,-3),则|P 1P 2|等于( ) A.74 B .310C.14D.534.圆x 2+y 2+2x -4y =0的圆心坐标和半径分别是( )A .(1,-2),5B .(1,-2), 5C .(-1,2),5D .(-1,2), 55.圆心为(1,-1),半径为2的圆的方程是( )A .(x -1)2+(y +1)2=2B .(x +1)2+(y -1)2=4C .(x +1)2+(y -1)2=2D .(x -1)2+(y +1)2=46.直线l :x -y =1与圆C :x 2+y 2-4x =0的位置关系是( )A .相离B .相切C .相交D .无法确定7.当点P 在圆x 2+y 2=1上变动时,它与定点Q (3,0)连线段PQ 中点的轨迹方程是( )A .(x +3)2+y 2=4B .(x -3)2+y 2=1C.(2x-3)2+4y2=1 D.(2x+3)2+4y2=18.(2011~2012·北京东城区高三期末检测)直线l过点(-4,0),且与圆(x+1)2+(y-2)2=25交于A,B两点,如果|AB|=8,那么直线l 的方程为()A.5x+12y+20=0B.5x-12y+20=0或x+4=0C.5x-12y+20=0D.5x+12y+20=0或x+4=09.一束光线从点A(-1,1)发出,并经过x轴反射,到达圆(x-2)2+(y-3)2=1上一点的最短路程是()A.4 B.5C.32-1 D.2 610.(2012·广东卷)在平面直角坐标系xOy中,直线3x+4y-5=0与圆x2+y2=4相交于A,B两点,则弦AB的长等于() A.3 3 B.2 3C. 3 D.111.方程4-x2=lg x的根的个数是()A.0 B.1C.2 D.无法确定12.过点M(1,2)的直线l与圆C:(x-2)2+y2=9交于A、B两点,C为圆心,当∠ACB最小时,直线l的方程为()A.x=1 B.y=1C.x-y+1=0 D.x-2y+3=0二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上)13.点P(3,4,5)关于原点的对称点是________.14.已知△ABC的三个顶点为A(1,-2,5),B(-1,0,1),C(3,-4,5),则边BC上的中线长为________.15.已知圆C:(x-1)2+(y+2)2=4,点P(0,5),则过P作圆C 的切线有且只有________条.16.与直线x+y-2=0和曲线x2+y2-12x-12y+54=0都相切的半径最小的圆的标准方程是________.三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤)17.(本题满分10分)求经过点P(3,1)且与圆x2+y2=9相切的直线方程.[分析]提示一:将点P(3,1)代入圆的方程得32+12=10>9,所以点P在圆外,可设过点P的圆的切线斜率为k,写出点斜式方程再化为一般式.根据圆心到切线的距离等于圆的半径这一性质,由点到直线的距离公式列出含k的方程,由方程解得k,然后代回所设切线方程即可.提示二:直线与圆相切,就是直线与圆有唯一公共点,于是将两曲线方程联立所得的方程组有唯一解,从而方程判别式Δ=0,由此解得k值,然后回代所设切线方程即可.18.(本题满分12分)(2011~2012·宁波高一检测)如图,正方体ABCD-A1B1C1D1的棱长为a,M为BD1的中点,N在A1C1上,且|A1N|=3|NC1|,试求MN的长.19.(本小题满分12分)已知实数x、y满足方程(x-3)2+(y-3)2=6,求x+y的最大值和最小值.20.(本题满分12分)已知直线l1:x-y-1=0,直线l2:4x+3y +14=0,直线l3:3x+4y+10=0,求圆心在直线l1上,与直线l2相切,截直线l3所得的弦长为6的圆的方程.[分析]设出圆心坐标和半径,利用圆的几何性质求解.21.(本题满分12分)已知圆C:x2+y2+2x-4y+1=0,O为坐标原点,动点P在圆C外,过P作圆C的切线,设切点为M.(1)若点P运动到(1,3)处,求此时切线l的方程;(2)求满足条件|PM|=|PO|的点P的轨迹方程.[分析](1)对切线的斜率是否存在分类讨论;(2)设出P的坐标,代入平面内两点间的距离公式,化简得轨迹方程.22.(本题满分12分)已知圆P:(x-a)2+(y-b)2=r2(r≠0),满足:①截y轴所得弦长为2;②被x轴分成两段圆弧,其弧长的比为3:1.求在满足条件①②的所有圆中,使代数式a2-b2-2b+4取得最小值时,圆的方程.[分析]根据条件可以判断出圆P被x轴截得的劣弧的圆心角为90°,建立起r ,a ,b 之间的方程组,然后解出相应的a ,b ,r 间的关系,最后借助于一元二次函数解决.详解答案1[答案] C[解析] 根据空间直角坐标系的规定可知(1)(2)(4)都正确,(3)中,Oy 轴的正向应为负向,∴选C.2[答案] A[解析] (-1)2+12-4m >0,∴m <12,故选A.3[答案] A[解析] |P 1P 2|=(-1-2)2+(3-4)2+(5+3)2=74.4[答案] D[解析] 圆的方程化为标准方程为(x +1)2+(y -2)2=5,则圆心是(-1,2),半径为 5.5[答案] D[解析] 由圆的标准方程得圆的方程为(x -1)2+(y +1)2=4. 6[答案] C[解析] 圆C 的圆心为C (2,0),半径为2,圆心C 到直线l 的距离d =|2-1|2=22<2,所以圆与直线相交. 7[答案] C[解析] 设PQ 中点坐标为(x ,y ),则P (2x -3,2y )代入x 2+y 2=1得(2x -3)2+4y 2=1,故选C.8[答案] D[解析] 由题意,得圆心C (-1,2),半径r =5,当直线l 的斜率不存在时,直线l 的方程为x +4=0,解方程组⎩⎪⎨⎪⎧ (x +1)2+(y -2)2=25,x +4=0,得⎩⎪⎨⎪⎧ x =-4,y =-2或⎩⎪⎨⎪⎧x =-4,y =6,即此时与圆C 的交点坐标是(-4,-2)和(-4,6),则|AB |=8,即x +4=0符合题意;当直线l 的斜率存在时,设直线l 的方程为y =k (x +4),即kx-y +4k =0,圆心C 到直线l 的距离d =|-k -2+4k |k 2+1=|3k -2|k 2+1,又|AB |=2r 2-d 2,所以225-(|3k -2|k 2+1)2=8,解得k =-512,则直线l 的方程为-512x -y +4×(-512)=0,即5x +12y +20=0.9[答案] A[解析] 点A 关于x 轴的对称点是A ′(-1,-1),圆心C (2,3),半径r =1,则|A ′C |=(-1-2)2+(-1-3)2=5,则最短路程是|A ′C |-r =5-1=4.10[答案] B[解析] 圆x 2+y 2=4的圆心O (0,0)到直线3x +4y -5=0的距离d =|-5|5=1,弦AB 的长|AB |=2r 2-d 2=2 3.11[答案] B[解析] 设f (x )=4-x ,g (x )=lg x ,则方程根的个数就是f (x )与g (x )两个函数图象交点的个数.如图所示,在同一平面直角坐标系中画出这两个函数的图象.由图可得函数f (x )=4-x 2与g (x )=lg x 仅有1个交点,所以方程仅有1个根.12[答案] D[解析] 当CM ⊥l ,即弦长最短时,∠ACB 最小,∴k l ·k CM =-1,∴k l =12,∴l 的方程为:x -2y +3=0.[点评] 过⊙C 内一点M 作直线l 与⊙C 交于A 、B 两点,则弦AB 的长最短⇔弦AB 对的劣弧最短⇔弦对的圆心角最小⇔圆心到直线l 的距离最大⇔CM ⊥l ⇔弦AB 的中点为M ,故以上各种说法反映的是同一个问题.13[答案] (-3,-4,-5)[解析] ∵点P (3,4,5)与P ′(x ,y ,z )的中点为坐标原点, ∴P ′点的坐标为(-3,-4,-5).14[答案] 2[解析] BC 的中点为D (1,-2,3),则|AD |=(1-1)2+(-2+2)2+(5-3)2=2.15[答案] 2[解析] 由C (1,-2),r =2,则|PC |=12+(-2-5)2=52>r =2,∴点P 在圆C 外,∴过P 作圆C 的切线有两条.16[答案] (x -2)2+(y -2)2=2[解析] ∵⊙A :(x -6)2+(y -6)2=18的圆心A (6,6),半径r 1=32,∵A 到l 的距离52,∴所求圆B 的直径2r 2=22,即r 2= 2.设B (m ,n ),则由BA ⊥l 得n -6m -6=1, 又∵B 到l 距离为2,∴|m +n -2|2=2, 解出m =2,n =2.故其方程为(x -2)2+(y -2)2=2.17[解析] 解法一:当过点P 的切线斜率存在时,设所求切线的斜率为k ,由点斜式可得切线方程为y -1=k (x -3),即kx -y -3k +1=0, ∴|-3k +1|k 2+1=3,解得k =-43. 故所求切线方程为-43x -y +4+1=0,即4x +3y -15=0.当过点P 的切线斜率不存在时,方程为x =3,也满足条件. 故所求圆的切线方程为4x +3y -15=0或x =3.解法二:设切线方程为y -1=k (x -3),将方程组⎩⎪⎨⎪⎧y -1=k (x -3),x 2+y 2=9,消去y 并整理得 (k 2+1)x 2-2k (3k -1)x +9k 2-6k -8=0.因为直线与圆相切,∴Δ=0,即[-2k (3k -1)]2-4(k 2+1)(9k 2-6k -8)=0.解得k =-43.所以切线方程为4x +3y -15=0.又过点P (3,1)与x 轴垂直的直线x =3也与圆相切,故所求圆的切线方程为4x +3y -15=0或x =3.[点评] 若点在圆外,所求切线有两条,特别注意当直线斜率不存在时的情况,不要漏解.18[解析] 以D 为原点建立如图所示坐标系,则B (a ,a,0),A 1(a,0,a ),C 1(0,a ,a ),D 1(0,0,a ).由于M 为BD 1的中点,所以M (a 2,a 2,a 2),取A 1C 1中点O 1,则O 1(a 2,a 2,a ),因为|A 1N |=3|NC 1|,所以N 为O 1C 1的中点,故N (a 4,34a ,a ).由两点间的距离公式可得:|MN |=(a 2-a 4)2+(a 2-34a )2+(a 2-a )2=64a .[点评] 空间中的距离可以通过建立空间直角坐标系通过距离公式求解.19[解析] 设x +y =t ,则直线y =-x +t 与圆(x -3)2+(y -3)2=6有公共点∴|3+3-t |2≤6,∴6-23≤t ≤6+2 3 因此x +y 最小值为6-23,最大值为6+2 3.20[解析] 设圆心为C (a ,a -1),半径为r ,则点C 到直线l 2的距离d 1=|4a +3(a -1)+14|5=|7a +11|5.点C 到直线l 3的距离是d 2=|3a +4(a -1)+10|5=|7a +6|5. 由题意,得⎩⎨⎧|7a +11|5=r ,(|7a +6|5)2+32=r 2.解得a =2,r =5,即所求圆的方程是(x -2)2+(y -1)2=25. 21[解析] 把圆C 的方程化为标准方程为(x +1)2+(y -2)2=4, ∴圆心为C (-1,2),半径r =2.(1)当l 的斜率不存在时,此时l 的方程为x =1,C 到l 的距离d =2=r ,满足条件.当l 的斜率存在时,设斜率为k ,得l 的方程为y -3=k (x -1),即kx -y +3-k =0, 则|-k -2+3-k |1+k2=2,解得k =-34. ∴l 的方程为y -3=-34(x -1),即3x +4y -15=0.综上,满足条件的切线l 的方程为x =1或3x +4y -15=0.(2)设P (x ,y ),则|PM |2=|PC |2-|MC |2=(x +1)2+(y -2)2-4, |PO |2=x 2+y 2,∵|PM |=|PO |.∴(x +1)2+(y -2)2-4=x 2+y 2,整理,得2x -4y +1=0,∴点P 的轨迹方程为2x -4y +1=0.22[解析] 如下图所示,圆心坐标为P (a ,b),半径为r ,则点P 到x 轴,y 轴的距离分别为|b |,|a |. ∵圆P 被x 轴分成两段圆弧,其弧长的比为3:1,∴∠APB =90°.取AB的中点D,连接PD,则有|PB|=2|PD|,∴r=2|b|.取圆P截y轴的弦的中点C,连接PC,PE.∵圆截y轴所得弦长为2,∴|EC|=1,∴1+a2=r2,即2b2-a2=1.则a2-b2-2b+4=b2-2b+3=(b-1)2+2.∴当b=1时,a2-b2-2b+4取得最小值2,此时a=1,或a=-1,r2=2.对应的圆为:(x-1)2+(y-1)2=2,或(x+1)2+(y-1)2=2.∴使代数式a2-b2-2b+4取得最小值时,对应的圆为(x-1)2+(y-1)2=2,或(x+1)2+(y-1)2=2.[点评](1)当直线与圆相离时,圆上的点到直线的最大距离为d +r,最小距离为d-r,其中d为圆心到直线的距离.(2)当直线与圆相交时,设弦长为l,弦心距为d,半径为r,则有(l2)2+d2=r2.。

高一数学圆的标准方程与一般方程试题答案及解析

高一数学圆的标准方程与一般方程试题答案及解析

高一数学圆的标准方程与一般方程试题答案及解析1.圆心为点,且经过原点的圆的方程为【答案】【解析】由于圆过原点,,所以圆的标准方程.【考点】圆的标准方程2.圆的圆心和半径分别()A.B.C.D.【答案】A【解析】将圆配方得:,故知圆心为(2,-1),半径为,所以选A【考点】圆的一般方程.3.圆的面积为;【答案】【解析】写成标准方程,所以,那么圆的面积公式等于.【考点】圆的标准方程与圆的一般方程4.圆的方程过点和原点,则圆的方程为;【答案】【解析】设圆的一般方程为,将三点代入得:,解得,所以圆的方程为.【考点】求圆的方程5.已知,则以线段为直径的圆的方程为;【答案】【解析】,,圆心为中点,圆心,所以圆的方程为.【考点】求圆的标准方程6.已知圆方程.(1)若圆与直线相交于M,N两点,且(为坐标原点)求的值;(2)在(1)的条件下,求以为直径的圆的方程.【答案】(1);(2).【解析】首先确定方程表示圆时应满足的条件;设,,利用韦达定理,建设立关于的方程,解方程可得的值.在(1)的条件下,以为直径的圆过原点,利用韦达定理求出的中点,从而也就易于求出半径,得到圆的方程.试题解析:解:(1)由得:2分于是由题意把代入得 3分, 4分∵得出: 5分∴∴ 8分(2)设圆心为.9分半径 12分圆的方程 13分【考点】1、圆的方程;2、直线与圆的位置关系;3、韦达定理的应用;4、向量垂直的条件.7.已知,则以为直径的圆的方程是( )A.B.C.D.【答案】A【解析】圆心为AB的中点,为。

直径为,半径为,所以所求的圆的方程是。

故选A。

【考点】圆的标准方程点评:要得到圆的标准方程,需求出圆的圆心和半径。

8.当为任意实数时,直线恒过定点,则以为圆心,半径为的圆是()A.B.C.D.【答案】C【解析】变形为,令得,定点,所以圆的方程为【考点】直线方程过定点及圆的方程点评:带参数的直线方程一定过定点,求定点时将含有参数的整理到一起,不带参数的整理到一起,化为的形式可求得定点9.求经过三点A,B(), C(0,6)的圆的方程,并指出这个圆的半径和圆心坐标.【答案】,圆心坐标是.【解析】解:设所求圆的方程为 2分点A,B(), C(0,6)的坐标满足上述方程,分别代入方程,可得 6分解得: 8分于是得所求圆的方程为: 10分圆的半径圆心坐标是. 12分【考点】圆的一般方程点评:此题考查了圆的一般方程,求圆方程的方法为待定系数法,此方法是先设出圆的一般方程,然后把已知的点代入到所设的方程中确定出圆方程中字母的值,从而确定出圆的方程10.已知圆过点 A(1, 1)和B (2, -2),且圆心在直线x - y +1=0上,求圆的方程____.【答案】【解析】根据圆的几何性质可知圆心是AB的垂直平分线与直线x-y+1=0的交点.因为AB的垂直平分线方程为,即.由得,所以圆心坐标为(-3,-2),半径为5,所以所求圆的方程为.11.若方程表示的曲线为圆,则的取值范围是()A..B..C.D.【答案】B【解析】解:因为表示圆,则说明,解得,选B12.( 本小题满分14)已知点A(-4,-5),B(6,-1),求以线段AB为直径的圆的方程。

中职数学直线与圆的方程单元测试含参考答案

中职数学直线与圆的方程单元测试含参考答案

中职数学直线与圆的方程单元测试(一)含参考答案一、单项选择题1.已知A(2,3),B(2,5),则线段AB 的中点坐标为( )A .(1,2) B.(0,-1) C .(0,-2) D .(2,4)2.若直线l 的倾斜角是o 120,则该直线的斜率是( )A .-1B .0 C.3- D .33.已知33+-=x y ,斜率为( ).A .3B .-3C .-1D .04.直线012=--y x 在y 轴上的截距为( )A .1B .1-C .2D .2-5.经过点P(l ,3),且斜率为2的直线方程是( )。

A .012=++y xB .012=+-y xC .012=--y xD .052=++y x6.直线x y 5=与直线3-=ax y 平行,则a =( ).A .-1B .0C . 1D .57.直线52-+y x =0与直线x =3的交点坐标为( ).A. (3,1)B. (1,3)C. (3,2)D. (2,3)8.点M(-3,1)到直线0543=-+y x 的距离为( ).A .2-B .1-C . 2D .19.圆心为C(2,-1),半径为3的圆的方程为( ).A .9)1(222=-++y x )(B .3)1(222=-++y x )( C .9)1(222=++-y x )( D .3)1(222=++-y x )(10.圆6)5(222=++-y x )(的圆心坐标与半径分别是( )A .),(52-,6=rB .),(52-,6=r C . ),(52-,6=r D .),(52-,6=r 11. 直线02=+-m y x 过圆046422=+--+y x y x 的圆心,则m =( ).A .1B .0C .1-D .212.经过圆25)2(122=-++y x )(的圆心且与直线04=--y x 垂直的直线方程为( )A .01=++y xB .01=+-y xC .01=-+y xD .01=+-y x二、填空题13.已知两点A(0,6),B (-8,0),则线段AB 的长度为14.倾斜角为45。

圆与方程试题及答案

圆与方程试题及答案

圆与方程试题及答案1.圆(x+2)^2+y^2=5关于原点P(0,0)对称的圆的方程为(B)x+(y-2)^2=5.2.若P(2,-1)为圆(x-1)^2+y^2=25的弦AB的中点,则直线AB的方程是(A)x-y-3=0.3.圆x+y-2x-2y+1=0上的点到直线x-y=2的距离最大值是(C)1+√2.4.将直线2x-y+λ=0,沿x轴向左平移1个单位,所得直线与圆x^2+y^2+2x-4y=0相切,则实数λ的值为(B)-2或8.5.在坐标平面内,与点A(1,2)距离为1,且与点B(3,1)距离为2的直线共有(C)3条。

6.圆x+y-4x=0在点P(1,3)处的切线方程为(B)x+3y-4=0.二、填空题1.若经过点P(-1,0)的直线与圆x^2+y^2+4x-2y+3=0相切,则此直线在y轴上的截距是(2)2.2.由动点P向圆x^2+y^2=1引两条切线PA,PB,切点分别为A,B,∠APB=60,则动点P的轨迹方程为(x^2+y^2-1)^2=3(x^2+y^2).3.圆心在直线2x-y-7=0上的圆C与y轴交于两点A(-2,-4)、B(2,4),则圆C的方程为(x-3)^2+(y+1)^2=9.4.已知圆(x-3)^2+y^2=4和过原点的直线y=kx的交点为P,Q,则OP·OQ的值为2,则圆C的方程为(x-3)^2+(y-kx)^2=4+k^2.三、解答题1.点P(a,b)在直线x+y+1=0上,求a^2+b^2-2a-2b+2的最小值。

解:因为点P在直线x+y+1=0上,所以a+b+1=0,即a=-b-1.将a=-b-1代入a^2+b^2-2a-2b+2中,得到a^2+b^2-2a-2b+2=2b^2+2b+4,这是关于b的二次函数,因此最小值为该函数的顶点,即b=-1,此时a=0,所以最小值为6.2.求以A(-1,2)、B(5,-6)为直径两端点的圆的方程。

解:圆的直径AB的中点为M(2,-2),半径为AM的长度,即√((2-(-1))^2+(-2-2)^2)=√26/2,所以圆的方程为(x-2)^2+(y+2)^2=13.3.求过点A(1,2)和B(1,10)且与直线x-2y-1=0相切的圆的方程。

高一数学圆的标准方程与一般方程试题答案及解析

高一数学圆的标准方程与一般方程试题答案及解析

高一数学圆的标准方程与一般方程试题答案及解析1.对于a∈R,直线(a-1)x-y+a+1=0恒过定点C,则以C为圆心,以为半径的圆的方程为()A.x2+y2-2x+4y=0B.x2+y2+2x+4y=0C.x2+y2+2x-4y=0D.x2+y2-2x-4y=0【答案】C【解析】将直线整理为,联立,可得直线恒过定点P(-1,2)因此以P为圆心,为半径的圆的方程是化成一般式可得x2+y2+2x-4y=0故选:C【考点】圆的方程2.已知圆C的方程(1)若点在圆C的内部,求m的取值范围;(2)若当时①设为圆C上的一个动点,求的最值;.②问是否存在斜率是1的直线l,使l被圆C截得的弦AB,以AB为直径的圆经过原点,若存在,写出直线l的方程;若不存在,说明理由.【答案】(1)m>-5 (2)①4 ②存在直线l,其方程为y=x-4或y=x+1【解析】(1)根据圆C的标准方程可得m>-5.再根据点A(m,-2)在圆C的内部,可得,由此求得m的范围.(2)①表示圆C上的点P(x,y)到点H(4,2)的距离的平方,求得|HC|=5,故的最大值为HC加上半径后的平方,的最小值为HC减去半径后的平方.②假设存在直线l满足题设条件,设l的方程为y=x+m,则AB中点N是两直线x-y+m=0与y+2=-(x-1)的交点,即N(−),以AB为直径的圆经过原点,求得|AN|=,|ON|=,由|AN|=|ON|,解得m的值,可得结论.试题解析:(1),∴m>-5.(2)①当m=4时,圆C的方程即,而表示圆C上的点P (x,y)到点H(4,2)的距离的平方,由于|HC|==5,故的最大值为(5+3)2=64,的最小值为(5-3)2=4.②法一:假设存在直线l满足题设条件,设l的方程为y=x+m,圆C化为,圆心C (1,-2),则AB中点N是两直线x-y+m=0与y+2=-(x-1)的交点即N,以AB为直径的圆经过原点,∴|AN|=|ON|,又CN⊥AB,|CN|=,∴|AN|=.又|ON|=由|AN|=|ON|,解得m=-4或m=1.∴存在直线l,其方程为y=x-4或y=x+1.法二:假设存在直线l,设其方程为:由得:①设A(),B()则:∴又∵OA⊥OB∴∴解得b=1或把b=1和分别代入①式,验证判别式均大于0,故存在b=1或∴存在满足条件的直线方程是:【考点】直线与圆的位置关系;点与圆的位置关系.3.已知曲线C:(1)当为何值时,曲线C表示圆;(2)在(1)的条件下,若曲线C与直线交于M、N两点,且,求的值.(3)在(1)的条件下,设直线与圆交于,两点,是否存在实数,使得以为直径的圆过原点,若存在,求出实数的值;若不存在,请说明理由.【答案】(1) (2)(3)存在,【解析】(1)根据圆的一般式可知, ,可得范围;(2)将(1)中圆变形为标准方程,可知存在于半径中,所以根据圆中,先求出圆心到直线的距离,即可求半径得.(3)假设存在,则有,设出两点坐标,可得.根据直线与圆的位置关系是相交,所以联立后首先根据初步判断的范围,而后利用根与系数的关系用表示出,将其带入解之,如有解且在的范围内,则存在,否则不存在.(1)由,得.(2),即,所以圆心,半径,圆心到直线的距离.又,在圆中,即,.(3)假设存在实数使得以为直径的圆过原点,则,所以.设,则有,即.由得,,即,又由(1)知,故根据根与系数的关系知:,故存在实数使得以为直径的圆过原点,【考点】圆的一般方程的判断,直线与圆的位置关系的应用, 的使用.4.求圆心在直线上,与轴相切,且被直线截得的弦长为的圆的方程.【答案】或【解析】设圆心,由题意可得半径,求出圆心到直线的距离d,再利用垂径定理,解得的值,从而得到圆心坐标和半径,由此求出圆的方程.试题解析:解:设所求圆的圆心为,半径为,依题意得:且,(2分)圆心到直线的距离,(4分)由“,,半弦长”构成直角三角形,得,(6分)解得:,(7分)当时,圆心为,半径为,所求圆的方程为;当时,圆心为,半径为,所求圆的方程为;(11分)综上所述,所求圆的方程为或.(12分)【考点】求圆的方程5.已知圆经过点和,且圆心在直线上.(1)求圆的方程;(2)若点为圆上任意一点,求点到直线的距离的最大值和最小值.【答案】(1);(2).【解析】(1)求圆的方程只要找出圆心和半径即可,本题圆心为线段AB的中垂线和已知直线x-y=0的交点,求出圆心后再求出半径即可;(2)圆上点P到直线的距离最大值为圆心到直线距离加半径.试题解析:(1) 的中点坐标为,∴圆心在直线上, 1分又知圆心在直线上,∴圆心坐标是,圆心半径是, 4分∴圆方程是; 7分(2)设圆心到直线的距离,∴直线与圆相离, 9分∴点到直线的距离的最大值是, 12分最小值是. 15分【考点】圆的方程,圆的性质,点到直线距离.6.已知半径为3的圆与轴相切,圆心在直线上,则此圆的方程为 .【答案】或【解析】依题意设圆心为,因为圆与轴相切,所以,所以。

圆的方程测试题及答案.doc

圆的方程测试题及答案.doc

圆的方程专项测试题一、选择题1.若直线4x-3y -2=0与圆x 2+y 2-2ax+4y +a 2-12=0总有两个不同交点,则a 的取值范围是( )A.-3<a <7 B .-6<a <4 C.-7<a <3 D.-21<a <192.圆(x-3)2+(y -3)2=9上到直线3x+4y -11=0的距离等于1的点有( ) A.1个 B.2个 C.3个 D.4个3.使圆(x-2)2+(y +3)2=2上点与点(0,-5)的距离最大的点的坐标是( ) A.(5,1) B.(3,-2) C.(4,1)D.(2 +2,2-3)4.若直线x+y =r 与圆x 2+y 2=r(r >0)相切,则实数r 的值等于( ) A.22B.1C.2D.25.若曲线x 2+y 2+a 2x +(1–a 2)y –4=0关于直线y –x =0的对称曲线仍是其本身,则实数a =( B ) A .21± B .22± C .2221-或D .2221或-6.直线x-y +4=0被圆x 2+y 2+4x-4y +6=0截得的弦长等于( ) A.8B.4C.22D.427.圆9)3()3(22=-+-y x 上到直线3 x + 4y -11=0的距离等于1的点有( C ) A .1个 B .2个 C .3个 D .4个8.圆(x-3)2+(y +4)2=2关于直线x+y =0的对称圆的标准方程是( ) A.(x+3)2+(y -4)2=2 B.(x-4)2+(y +3)2=2 C.(x+4)2+(y -3)=2 D.(x-3)2+(y -4)2=29.点P(5a+1,12a)在圆(x-1)2+y 2=1的内部,则实数a 的取值范围是( ) A.|a |<1B.|a |<51 C.|a |<121D.|a |<131 10.关于x,y 的方程Ax 2+Bx y +C y 2+Dx+E y +F=0表示一个圆的充要条件是( ) A.B=0,且A=C ≠0 B.B=1且D 2+E 2-4AF >0 C.B=0且A=C ≠0,D 2+E 2-4AF ≥0 D.B=0且A=C ≠0,D 2+E 2-4AF >0 11.过点P(-8,-1),Q(5,12),R(17,4)三点的圆的圆心坐标是( ) A.(314,5) B.(5,1) C.(0,0) D.(5,-1)12.若两直线y =x+2k 与y =2x+k+1的交点P 在圆x 2+2=4的内部,则k 的范围是( ) A.-51<k <-1B.-51<k <1C.-31<k <1 D.-2<k <2二、填空题13.圆x 2+y 2+ax=0(a ≠0)的圆心坐标和半径分别是 .14.若实数x,y 满足x 2+y 2-2x+4y =0,则x-2y 的最大值是 .15.若集合A={(x 、y )|y =-|x |-2},B={(x,y )|(x-a)2+y 2=a 2}满足A ∩B=ϕ,则实数a 的取值范围是 .16.过点M(3,0)作直线l 与圆x 2+y 2=16交于A 、B 两点,当θ= 时,使△AOB 的面积最大,最大值为 (O 为原点).三、解答题17.求圆心在直线2x-y -3=0上,且过点(5,2)和(3,-2)的圆的方程.18. 过圆(x -1)2+(y -1)2=1外一点P(2,3),向圆引两条切线切点为A 、B. 求经过两切点的直线l 方程.19. 已知圆02422=++-+m y x y x 与y 轴交于A 、B 两点,圆心为P ,若︒=∠90APB .求m 的值.20.已知直角坐标平面内点Q(2,0),圆C :x 2+y 2=1,动点M 到圆C 的切线长与|MQ |的比等于常数λ(λ>0),求动点M 的轨迹方程,并说明轨迹是什么曲线.21.自点A (-3,3)发出的光线L 射到x 轴上,被x 轴反射,其反射光线m 所在直线与圆C :x 2+ y 2 -4x -4y +7 = 0相切,求光线L 、m 所在的直线方程.22.已知圆C :044222=-+-+y x y x ,是否存在斜率为1的直线L ,使L 被圆C 截得的弦AB 为直径的圆过原点,若存在求出直线L 的方程,若不存在说明理由.参考答案:1.B2.C3.B4.D5.B6.C7.C8.B9.D 10.D 11.D 12.B 13.(-2a ,0), 2a 14.10 15.-2(2+1)<a <2(2+1)16.θ=arccot22 或π-arccot22, 817.(x-2)2+(y -1)2=10 10.3x+4y +1=0或4x+3y -1=0 ;18. 解:设圆(-1)2+(y -1)2=1的圆心为1O ,由题可知,以线段P 1O 为直径的圆与与圆1O 交于AB 两点,线段AB 为两圆公共弦,以P 1O 为直径的圆方程5)20()23(22=-+-y x ①已知圆1O 的方程为(x-1)2+(y -1)2=1 ② ①②作差得x+2y -41=0, 即为所求直线l 的方程。

圆及其方程-测试

圆及其方程-测试

目录
狂刷小题·基础练
KUANG SHUA XIAO TI JI CHU LIAN
精做大题·能力练
JING ZUO DA TI NENG LI LIAN
狂刷小题·基础练
KUANG SHUA XIAO TI JI CHU LIAN
一、基础小题
1.直线 l:y=x 被圆 C:(x-3)2+(y-1)2=3 截得的弦长为( )
∠APC=2× 410× 46= 415,cos∠APB=cos(2∠APC)=cos2∠APC-sin2
∠APC=
462-
4102=-14<0,即∠APB
为钝角,所以
sinα=sin(π-
∠APB)=sin∠APB= 415.故选 B.
目录 狂刷小题 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
答案 解析
6.若圆 x2+y2-4x-4y-10=0 上至少有三个不同点到直线 l:ax
+by=0 的距离为 2 2,则直线 l 的斜率的取值范围是( )
A.[2- 3,1]
B.[2- 3,2+ 3]
C.
33,
3
D.[0,+∞)
目录 狂刷小题 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
圆及其方程
高考 高考在本考点的常考题型为选择题、填空题,分值为5分,中 概览 等难度
1.掌握确定圆的几何要素,掌握圆的标准方程与一般方程 2.能根据给定直线、圆的方程,判断直线与圆的位置关系; 考点 能根据给定两个圆的方程判断两圆的位置关系 研读 3.能用直线和圆的方程解决一些简单的数学问题和实际问题 4.初步了解用代数方法处理几何问题的思想

高中数学圆与方程精选题目(附答案)

高中数学圆与方程精选题目(附答案)

高中数学圆与方程精选题目(附答案)1.在空间直角坐标系中,点P(3,4,5)关于yOz平面对称的点的坐标为()A.(-3,4,5)B.(-3,-4,5)C.(3,-4,-5) D.(-3,4,-5)解析:选A纵、竖坐标相同.故点P(3,4,5)关于yOz平面对称的点的坐标为(-3,4,5).2.已知圆O以点(2,-3)为圆心,半径等于5,则点M(5,-7)与圆O的位置关系是() A.在圆内B.在圆上C.在圆外D.无法判断解析:选B点M(5,-7)到圆心(2,-3)的距离d=(5-2)2+(-7+3)2=5,故点M 在圆O上.3.直线x+y-1=0被圆(x+1)2+y2=3截得的弦长等于()A. 2 B.2C.2 2 D.4解析:选B由题意,得圆心为(-1,0),半径r=3,弦心距d=|-1+0-1|12+12=2,所以所求的弦长为2r2-d2=2,选B.4.若点P(1,1)为圆x2+y2-6x=0的弦MN的中点,则弦MN所在直线的方程为() A.2x+y-3=0 B.x-2y+1=0C.x+2y-3=0 D.2x-y-1=0解析:选D由题意,知圆的标准方程为(x-3)2+y2=9,圆心为A(3,0).因为点P(1,1)为弦MN的中点,所以AP⊥MN.又AP的斜率k=1-01-3=-12,所以直线MN的斜率为2,所以弦MN所在直线的方程为y-1=2(x-1),即2x-y-1=0.5.已知圆M:x2+y2=2与圆N:(x-1)2+(y-2)2=3,那么两圆的位置关系是() A.内切B.相交C.外切D.外离解析:选B∵圆M:x2+y2=2的圆心为M(0,0),半径为r1=2;圆N:(x-1)2+(y-2)2=3的圆心为N(1,2),半径为r2=3;|MN|=12+22=5,且3-2<5<2+3,∴两圆的位置关系是相交.6.(2016·全国卷Ⅱ)圆x2+y2-2x-8y+13=0的圆心到直线ax+y-1=0的距离为1,则a=()A.-43B.-34C. 3 D .2解析:选A 因为圆x 2+y 2-2x -8y +13=0的圆心坐标为(1,4),所以圆心到直线ax +y -1=0的距离d =|a +4-1|a 2+1=1,解得a =-43.7.半径长为6的圆与x 轴相切,且与圆x 2+(y -3)2=1内切,则此圆的方程为( ) A .(x -4)2+(y -6)2=6 B .(x ±4)2+(y -6)2=6 C .(x -4)2+(y -6)2=36D .(x ±4)2+(y -6)2=36解析:选D ∵半径长为6的圆与x 轴相切,设圆心坐标为(a ,b ),则b =6.再由a 2+32=5,可以解得a =±4,故所求圆的方程为(x ±4)2+(y -6)2=36.8.经过点M (2,1)作圆x 2+y 2=5的切线,则切线方程为( ) A.2x +y -5=0 B.2x +y +5=0 C .2x +y -5=0D .2x +y +5=0解析:选C ∵M (2,1)在圆上,∴切线与MO 垂直. ∵k MO =12,∴切线斜率为-2.又过点M (2,1),∴y -1=-2(x -2),即2x +y -5=0.9.把圆x 2+y 2+2x -4y -a 2-2=0的半径减小一个单位则正好与直线3x -4y -4=0相切,则实数a 的值为( )A .-3B .3C .-3或3D .以上都不对解析:选C 圆的方程可变为(x +1)2+(y -2)2=a 2+7,圆心为(-1,2),半径为a 2+7,由题意得|-1×3-4×2-4|(-3)2+42=a 2+7-1,解得a =±3. 10.如图,一座圆弧形拱桥,当水面在如图所示的位置时,拱顶离水面2米,水面宽12米,当水面下降1米后,水面宽度为( )A .14米B .15米 C.51米D .251米解析:选D 如图,以圆弧形拱桥的顶点为原点,以过圆弧形拱桥的顶点的水平切线为x 轴,以过圆弧形拱桥的顶点的竖直直线为y 轴,建立平面直角坐标系.设圆心为C ,水面所在弦的端点为A ,B , 则由已知可得A (6,-2), 设圆的半径长为r ,则C (0,-r ), 即圆的方程为x 2+(y +r )2=r 2.将点A 的坐标代入上述方程可得r =10, 所以圆的方程为x 2+(y +10)2=100,当水面下降1米后,水面弦的端点为A ′,B ′,可设A ′(x 0,-3)(x 0>0),代入x 2+(y +10)2=100,解得x 0=51, ∴水面宽度|A ′B ′|=251米.11.过点(3,1)作圆(x -1)2+y 2=1的两条切线,切点分别为A ,B ,则直线AB 的方程为( )A .2x +y -3=0B .2x -y -3=0C .4x -y -3=0D .4x +y -3=0解析:选A 设点P (3,1),圆心C (1,0).已知切点分别为A ,B ,则P ,A ,C ,B 四点共圆,且PC 为圆的直径.故四边形PACB 的外接圆圆心坐标为⎝⎛⎭⎫2,12,半径长为12(3-1)2+(1-0)2=52.故此圆的方程为(x -2)2+⎝⎛⎭⎫y -122=54.① 圆C 的方程为(x -1)2+y 2=1.②①-②得2x +y -3=0,此即为直线AB 的方程.12.已知在平面直角坐标系xOy 中,圆C 的方程为x 2+y 2=-2y +3,直线l 经过点(1,0)且与直线x -y +1=0垂直,若直线l 与圆C 交于A ,B 两点,则△OAB 的面积为( )A .1B.2 C .2 D .2 2解析:选A 由题意,得圆C 的标准方程为x 2+(y +1)2=4,圆心为(0,-1),半径r =2.因为直线l 经过点(1,0)且与直线x -y +1=0垂直,所以直线l 的斜率为-1,方程为y -0=-(x -1),即为x +y -1=0.又圆心(0,-1)到直线l 的距离d =|0-1-1|2=2,所以弦长|AB |=2r 2-d 2=24-2=2 2.又坐标原点O 到弦AB 的距离为|0+0-1|2=12,所以△OAB 的面积为12×22×12=1.故选A.13.已知圆M 与直线x -y =0及x -y +4=0都相切,圆心在直线y =-x +2上,则圆M 的标准方程为____________________.解析:由圆心在y =-x +2上,设圆心为(a,2-a ), ∵圆M 与直线x -y =0及x -y +4=0都相切,∴圆心到直线x -y =0的距离等于圆心到直线x -y +4=0的距离, 即|2a -2|2=|2a +2|2,解得a =0, ∴圆心坐标为(0,2),r =|2a -2|2=2,∴圆M 的标准方程为x 2+(y -2)2=2. 答案:x 2+(y -2)2=214.已知空间直角坐标系中三点A ,B ,M ,点A 与点B 关于点M 对称,且已知A 点的坐标为(3,2,1),M 点的坐标为(4,3,1),则B 点的坐标为______________.解析:设B 点的坐标为(x ,y ,z ),则有x +32=4,y +22=3,z +12=1,解得x =5,y =4,z =1,故B 点的坐标为(5,4,1). 答案:(5,4,1)15.圆O :x 2+y 2-2x -2y +1=0上的动点Q 到直线l :3x +4y +8=0的距离的最大值是________.解析:∵圆O 的标准方程为(x -1)2+(y -1)2=1,圆心(1,1)到直线l 的距离为|3×1+4×1+8|32+42=3>1,∴动点Q 到直线l 的距离的最大值为3+1=4.答案:416.(2016·全国卷Ⅰ)设直线y =x +2a 与圆C :x 2+y 2-2ay -2=0相交于A ,B 两点,若|AB |=23,则圆C 的面积为________.解析:圆C :x 2+y 2-2ay -2=0化为标准方程为x 2+(y -a )2=a 2+2,所以圆心C (0,a ),半径r =a 2+2,因为|AB |=23,点C 到直线y =x +2a ,即x -y +2a =0的距离d =|0-a +2a |2=|a |2,由勾股定理得⎝⎛⎭⎫2322+⎝⎛⎭⎫|a |22=a 2+2,解得a 2=2,所以r =2,所以圆C 的面积为π×22=4π. 答案:4π17.(本小题满分10分)已知正四棱锥P -ABCD 的底面边长为4,侧棱长为3,G 是PD 的中点,求|BG |.解:∵正四棱锥P -ABCD 的底面边长为4,侧棱长为3, ∴正四棱锥的高为1.以正四棱锥的底面中心为原点,平行于AB ,BC 所在的直线分别为y 轴、x 轴,建立如图所示的空间直角坐标系,则正四棱锥的顶点B ,D ,P 的坐标分别为B (2,2,0),D (-2,-2,0),P (0,0,1).∴G 点的坐标为G ⎝⎛⎭⎫-1,-1,12 ∴|BG |=32+32+14=732.18.(本小题满分12分)已知圆C 的圆心为(2,1),若圆C 与圆O :x 2+y 2-3x =0的公共弦所在直线过点(5,-2),求圆C 的方程.解:设圆C 的半径长为r ,则圆C 的方程为(x -2)2+(y -1)2=r 2,即x 2+y 2-4x -2y +5=r 2,圆C 与圆O 的方程相减得公共弦所在直线的方程为x +2y -5+r 2=0,因为该直线过点(5,-2),所以r 2=4,则圆C 的方程为(x -2)2+(y -1)2=4.19.(本小题满分12分)已知从圆外一点P (4,6)作圆O :x 2+y 2=1的两条切线,切点分别为A ,B.(1)求以OP 为直径的圆的方程; (2)求直线AB 的方程.解:(1)∵所求圆的圆心为线段OP 的中点(2,3), 半径为12|OP |= 12(4-0)2+(6-0)2=13,∴以OP 为直径的圆的方程为(x -2)2+(y-3)2=13.(2)∵PA ,PB 是圆O :x 2+y 2=1的两条切线, ∴OA ⊥PA ,OB ⊥PB ,∴A ,B 两点都在以OP 为直径的圆上.由⎩⎪⎨⎪⎧x 2+y 2=1,(x -2)2+(y -3)2=13,得直线AB 的方程为4x +6y -1=0. 20.(本小题满分12分)已知圆过点A (1,-2),B (-1,4). (1)求周长最小的圆的方程;(2)求圆心在直线2x -y -4=0上的圆的方程.解:(1)当线段AB 为圆的直径时,过点A ,B 的圆的半径最小,从而周长最小, 即以线段AB 的中点(0,1)为圆心,r =12|AB |=10为半径.则所求圆的方程为x 2+(y -1)2=10. (2)法一:直线AB 的斜率k =4-(-2)-1-1=-3,则线段AB 的垂直平分线的方程是y -1=13x即x -3y +3=0.由⎩⎪⎨⎪⎧x -3y +3=0,2x -y -4=0,解得⎩⎪⎨⎪⎧x =3,y =2,即圆心的坐标是C (3,2).∴r 2=|AC |2=(3-1)2+(2+2)2=20. ∴所求圆的方程是(x -3)2+(y -2)2=20. 法二:设圆的方程为(x -a )2+(y -b )2=R 2.则⎩⎪⎨⎪⎧(1-a )2+(-2-b )2=R 2,(-1-a )2+(4-b )2=R 2,2a -b -4=0⇒⎩⎪⎨⎪⎧a =3,b =2,R 2=20.∴所求圆的方程为(x -3)2+(y -2)2=20.21.(本小题满分12分)已知圆x 2+y 2-4ax +2ay +20a -20=0. (1)求证:对任意实数a ,该圆恒过一定点; (2)若该圆与圆x 2+y 2=4相切,求a 的值.解:(1)证明:圆的方程可整理为(x 2+y 2-20)+a (-4x +2y +20)=0, 此方程表示过圆x 2+y 2-20=0和直线-4x +2y +20=0交点的圆系.由⎩⎪⎨⎪⎧x 2+y 2-20=0,-4x +2y +20=0得⎩⎪⎨⎪⎧x =4,y =-2.∴已知圆恒过定点(4,-2).(2)圆的方程可化为(x -2a )2+(y +a )2=5(a -2)2. ①当两圆外切时,d =r 1+r 2, 即2+5(a -2)2=5a 2, 解得a =1+55或a =1-55(舍去); ②当两圆内切时,d =|r 1-r 2|, 即|5(a -2)2-2|=5a 2, 解得a =1-55或a =1+55(舍去). 综上所述,a =1±55.22.(本小题满分12分)(2017·全国卷Ⅲ)在直角坐标系xOy 中,曲线y =x 2+mx -2与x 轴交于A ,B 两点,点C 的坐标为(0,1),当m 变化时,解答下列问题:(1)能否出现AC ⊥BC 的情况?说明理由;(2)证明过A ,B ,C 三点的圆在y 轴上截得的弦长为定值. 解:(1)不能出现AC ⊥BC 的情况,理由如下: 设A (x 1,0),B (x 2,0),则x 1,x 2满足x 2+mx -2=0, 所以x 1x 2=-2. 又C 的坐标为(0,1),故AC 的斜率与BC 的斜率之积为-1x 1·-1x 2=-12,所以不能出现AC ⊥BC 的情况.(2)证明:由(1)知BC 的中点坐标为⎝⎛⎭⎫x 22,12,可得BC 的中垂线方程为y -12=x 2⎝⎛⎭⎫x -x 22. 由(1)可得x 1+x 2=-m , 所以AB 的中垂线方程为x =-m2.联立⎩⎨⎧x =-m 2,y -12=x 2⎝⎛⎭⎫x -x 22,x 22+mx 2-2=0,可得⎩⎨⎧x =-m2,y =-12.所以过A ,B ,C 三点的圆的圆心坐标为⎝⎛⎭⎫-m 2,-12,半径r =m 2+92.故圆在y 轴上截得的弦长为2r 2-⎝⎛⎭⎫m 22=3,即过A ,B ,C 三点的圆在y 轴上截得的弦长为定值.。

圆的方程 习题(含答案)

圆的方程 习题(含答案)

圆的方程习题(含答案)一、单选题1.以点P(2,-3)为圆心,并且与y轴相切的圆的方程是( )A.(x+2)2+(y-3)2=4B.(x+2)2+(y-3)2=9C.(x-2)2+(y+3)2=4D.(x-2)2+(y+3)2=92.当点P在圆x2+y2=1上运动时,连接它与定点Q(3,0),线段PQ的中点M的轨迹方程是()A.(x+3)2+y2=1B.(x−3)2+y2=1C.(2x−3)2+4y2=1D.(2x+3)2+4y2=13.圆x2+y2-(4m+2)x-2my+4m2+4m+1=0的圆心在直线x+y-4=0上,那么圆的面积为( )A.9πB.πC.2πD.由m的值而定4.圆x2+y2+2√2x=0的半径是()A.√2B.2C.2√2D.45.已知圆C1:x2+y2−2x−4y−4=0与圆C2:x2+y2+4x−10y+4=0相交于A、B两点,则线段AB的垂直平分线的方程为A.x+y−3=0B.x+y+3=0C.3x−3y+4=0D.7x+ y−9=06.若点P为圆x2+y2=1上的一个动点,点A(−1,0),B(1,0)为两个定点,则|PA|+|PB|的最大值为()A.2B.2√2C.4D.4√27.已知直线l:x+ay−1=0(a∈R)是圆C:x2+y2−4x−2y+1=0的对称轴.过点A(−4,a)作圆C的一条切线,切点为B,则|AB|=()A.2B.4√2C.6D.2√108.若直线l:ax+by+1=0经过圆M:x2+y2+4x+2y+1=0的圆心则(a−2)2+(b−2)2的最小值为A.√5B.5C.2√5D.109.若x,a,b均为任意实数,且(a+2)2+(b−3)2=1,则(x−a)2+(lnx−b)2的最小值为( )A . 3√2B . 18C . 3√2−1D . 19−6√2二、填空题10.如图,扇形AOB 的圆心角为90°,半径为1,点P 是圆弧AB 上的动点,作点P 关于弦AB 的对称点Q ,则OP⃑⃑⃑⃑⃑ ⋅OQ ⃑⃑⃑⃑⃑⃑ 的取值范围为____.11.已知x ,y 满足x 2-4x -4+y 2=0, 则x 2+y 2的最大值为____12.若直线l :2ax −by +2=0(a >0,b >0)与x 轴相交于点A ,与y 轴相交于B ,被圆x 2+y 2+2x −4y +1=0截得的弦长为4,则|OA|+|OB|(O 为坐标原点)的最小值为______.13.设直线y =x +2a 与圆C:x 2+y 2−2ay −2=0相交于A,B 两点,若|AB |=2√3,则圆C 的面积为________.14.已知圆的圆心在曲线xy =1(x >0)上,且与直线x +4y +13=0相切,当圆的面积最小时,其标准方程为_______.15.在平面直角坐标系xOy 中,已知过点A(2,−1)的圆C 和直线 x +y =1相切,且圆心在直线 y =−2x 上,则圆C 的标准方程为______.16.已知圆C 的圆心在直线2x −y =0上,且经过A(6,2),B(4,8)两点,则圆C 的标准方程是__________.17.在平面直角坐标系中,三点O(0,0),A(2,4),B(6,2),则三角形OAB 的外接圆方程是__________.18.如图,O 是坐标原点,圆O 的半径为1,点A (-1,0),B (1,0),点P ,Q 分别从点A ,B 同时出发,圆O 上按逆时针方向运动.若点P 的速度大小是点Q 的两倍,则在点P 运动一周的过程中,AP ⃑⃑⃑⃑⃑ ⋅AQ ⃑⃑⃑⃑⃑ 的最大值是_______.三、解答题19.设抛物线C : y 2=4x 的焦点为F ,过F 且斜率为k(k >0)的直线l 与C 交于A ,B 两点,|AB| =8.(1)求l 的方程;(2)求过点A ,B 且与C 的准线相切的圆的方程.20.已知圆C:x 2+y 2+2x −7=0内一点P(−1,2),直线l 过点P 且与圆C 交于A ,B 两点. (1)求圆C 的圆心坐标和面积;(2)若直线l 的斜率为√3,求弦AB 的长;(3)若圆上恰有三点到直线l 的距离等于√2,求直线l 的方程.21.已知点M (x 0,y 0)在圆O:x 2+y 2=4上运动,且存在一定点N (6,0),点P (x,y )为线段MN 的中点.(1)求点P 的轨迹C 的方程;(2)过A (0,1)且斜率为k 的直线l 与点P 的轨迹C 交于不同的两点E,F ,是否存在实数k 使得OE ⃑⃑⃑⃑⃑ ⋅OF⃑⃑⃑⃑⃑ =12,并说明理由. 22.已知圆经过()()2,5,2,1-两点,并且圆心在直线 (1)求圆的方程;(2)求圆上的点到直线34230x y -+=的最小距离。

圆的方程 习题(含答案)

圆的方程 习题(含答案)

圆的方程习题(含答案)一、单选题1.以点P(2,-3)为圆心,并且与y轴相切的圆的方程是( )A.(x+2)2+(y-3)2=4B.(x+2)2+(y-3)2=9C.(x-2)2+(y+3)2=4D.(x-2)2+(y+3)2=92.当点P在圆x2+y2=1上运动时,连接它与定点Q(3,0),线段PQ的中点M的轨迹方程是()A.(x+3)2+y2=1B.(x−3)2+y2=1C.(2x−3)2+4y2=1D.(2x+3)2+4y2=13.圆x2+y2-(4m+2)x-2my+4m2+4m+1=0的圆心在直线x+y-4=0上,那么圆的面积为( )A.9πB.πC.2πD.由m的值而定4.圆x2+y2+2√2x=0的半径是()A.√2B.2C.2√2D.45.已知圆C1:x2+y2−2x−4y−4=0与圆C2:x2+y2+4x−10y+4=0相交于A、B两点,则线段AB的垂直平分线的方程为A.x+y−3=0B.x+y+3=0C.3x−3y+4=0D.7x+ y−9=06.若点P为圆x2+y2=1上的一个动点,点A(−1,0),B(1,0)为两个定点,则|PA|+|PB|的最大值为()A.2B.2√2C.4D.4√27.已知直线l:x+ay−1=0(a∈R)是圆C:x2+y2−4x−2y+1=0的对称轴.过点A(−4,a)作圆C的一条切线,切点为B,则|AB|=()A.2B.4√2C.6D.2√108.若直线l:ax+by+1=0经过圆M:x2+y2+4x+2y+1=0的圆心则(a−2)2+(b−2)2的最小值为A.√5B.5C.2√5D.109.若x,a,b均为任意实数,且(a+2)2+(b−3)2=1,则(x−a)2+(lnx−b)2的最小值为( )A . 3√2B . 18C . 3√2−1D . 19−6√2二、填空题10.如图,扇形AOB 的圆心角为90°,半径为1,点P 是圆弧AB 上的动点,作点P 关于弦AB 的对称点Q ,则OP⃑⃑⃑⃑⃑ ⋅OQ ⃑⃑⃑⃑⃑⃑ 的取值范围为____.11.已知x ,y 满足x 2-4x -4+y 2=0, 则x 2+y 2的最大值为____12.若直线l :2ax −by +2=0(a >0,b >0)与x 轴相交于点A ,与y 轴相交于B ,被圆x 2+y 2+2x −4y +1=0截得的弦长为4,则|OA|+|OB|(O 为坐标原点)的最小值为______.13.设直线y =x +2a 与圆C:x 2+y 2−2ay −2=0相交于A,B 两点,若|AB |=2√3,则圆C 的面积为________.14.已知圆的圆心在曲线xy =1(x >0)上,且与直线x +4y +13=0相切,当圆的面积最小时,其标准方程为_______.15.在平面直角坐标系xOy 中,已知过点A(2,−1)的圆C 和直线 x +y =1相切,且圆心在直线 y =−2x 上,则圆C 的标准方程为______.16.已知圆C 的圆心在直线2x −y =0上,且经过A(6,2),B(4,8)两点,则圆C 的标准方程是__________.17.在平面直角坐标系中,三点O(0,0),A(2,4),B(6,2),则三角形OAB 的外接圆方程是__________.18.如图,O 是坐标原点,圆O 的半径为1,点A (-1,0),B (1,0),点P ,Q 分别从点A ,B 同时出发,圆O 上按逆时针方向运动.若点P 的速度大小是点Q 的两倍,则在点P 运动一周的过程中,AP ⃑⃑⃑⃑⃑ ⋅AQ ⃑⃑⃑⃑⃑ 的最大值是_______.三、解答题19.设抛物线C : y 2=4x 的焦点为F ,过F 且斜率为k(k >0)的直线l 与C 交于A ,B 两点,|AB| =8.(1)求l 的方程;(2)求过点A ,B 且与C 的准线相切的圆的方程.20.已知圆C:x 2+y 2+2x −7=0内一点P(−1,2),直线l 过点P 且与圆C 交于A ,B 两点. (1)求圆C 的圆心坐标和面积;(2)若直线l 的斜率为√3,求弦AB 的长;(3)若圆上恰有三点到直线l 的距离等于√2,求直线l 的方程.21.已知点M (x 0,y 0)在圆O:x 2+y 2=4上运动,且存在一定点N (6,0),点P (x,y )为线段MN 的中点.(1)求点P 的轨迹C 的方程;(2)过A (0,1)且斜率为k 的直线l 与点P 的轨迹C 交于不同的两点E,F ,是否存在实数k 使得OE ⃑⃑⃑⃑⃑ ⋅OF⃑⃑⃑⃑⃑ =12,并说明理由. 22.已知圆经过()()2,5,2,1-两点,并且圆心在直线 (1)求圆的方程;(2)求圆上的点到直线34230x y -+=的最小距离。

《第二章 直线和圆的方程》单元检测试卷与答案解析(共四套)

《第二章 直线和圆的方程》单元检测试卷与答案解析(共四套)

《第二章 直线和圆的方程》单元检测试卷(一)第I 卷(选择题)一、单选题(每题只有一个选项为正确答案,每题5分,共40分) 1.已知直线1l :2y x =-,2l :y kx =,若12//l l ,则实数k =( ) A .-2 B .-1 C .0 D .12.直线()()1:2140l a x a y -+++=与()2:190l a x ay ++-=互相垂直,则a 的值是( ). A .-0.25 B .1 C .-1 D .1或-13.直线:l (1)230m x my m ---+=(m R ∈)过定点A ,则点A 的坐标为( ) A .(3,1)- B .(3,1) C .(3,1)- D .(3,1)-- 4.设a R ∈,则“a=1”是“直线ax+y-1=0与直线x+ay+1=0平行”的 A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件,5.若曲线y 与直线y =k (x ﹣2)+4有两个交点,则实数k 的取值范围是( ) A .3,14⎛⎤⎥⎝⎦ B .3,4⎛⎫+∞ ⎪⎝⎭C .(1,+∞)D .(1,3] 6.已知直线x y t +=与圆()2222x y t tt R +=-∈有公共点,则()4t t -的最大值为( ) A .4 B .289 C .329D .3277.若两平行直线20,(0)x y m m ++=>与30x ny --=则m+n =( ) A .0 B .1 C .1- D .2-8.过直线y =x 上的一点作圆22(5)(1)2x y -+-=的两条切线l 1,l 2,当直线l 1,l 2关于y =x 对称时,它们之间的夹角为( )A .30°B .45°C .60°D .90°二、多选题(每题不止有一个选项为正确答案,每题5分,共20分)9.圆221:20x y x O +-=和圆222:240O x y x y ++-=的交点为A ,B ,则有( )A .公共弦AB 所在直线方程为0x y -= B .线段AB 中垂线方程为10x y +-=C .公共弦AB 的长为2D .P 为圆1O 上一动点,则P 到直线AB 1+ 10.已知直线12:10,:(2)330l x my l m x y +-=-++=,则下列说法正确的是( )A .若12l l //,则m=-1或m=3B .若12l l //,则m=3C .若12l l ⊥,则12m =-D .若12l l ⊥,则12m = 11.已知直线l 与圆22:240C x y x y a ++-+=相交于,A B 两点,弦AB 的中点为()0,1M ,则实数a 的取值可为( )A .1B .2C .3D .4 12.下列说法正确的是( )A .直线32()y ax a a R =-+∈必过定点(3,2)B .直线32y x =-在y 轴上的截距为2-C 10y ++=的倾斜角为60°D .过点(1,2)-且垂直于直线230x y -+=的直线方程为20x y +=第II 卷(非选择题)三、填空题(每题5分,共20分)13.圆C 的圆心为(21),-,且圆C 与直线3450x y --=相切,则圆C 的方程为_______. 14.经过点P (2,1)作直线l 分别交x 轴、y 轴的正半轴于A 、B 两点,当△AOB 面积最小时,直线l 的方程为_____.15.在圆22420x y x y +-+=内,过点1,0()M 的最短弦的弦长为_____;16.圆()()221:29C x m y -++=与圆()()222:14C x y m ++-=内切,则m 的值为____.四、解答题(17题10分,其余12分,共70分) 17.已知圆C 的方程为()()22215x y -+-=. (1)写出圆心C 的坐标与半径长;(2)若直线l 过点()0,1P ,试判断与圆C 的位置关系,并说明理由.18.已知圆C :(x+2)2+y 2=5,直线l :mx ﹣y+1+2m =0,m ∈R. (1)判断直线与圆的位置关系,并说明理由;(2)若直线l 与圆C 交于,A B 两点,求弦AB 的中点M 的轨迹方程.19.已知圆()()22:1225C x y -+-=和直线()():211740l m x m y m +++--=.(1)证明:不论 m 为何实数,直线l 都与圆 C 相交于两点; (2)求直线被圆 C 截得的弦长最小时直线l 的方程;(3)已知点P (,x y )在圆C 上,求22x y +的最大值.20.在平面直角坐标系中,直线=0与圆C 相切,圆心C 的坐标为(1,-1). (1)求圆C 的方程;(2)设直线y =kx+2与圆C 没有公共点,求k 的取值范围; (3)设直线y =x+m 与圆C 交于M ,N 两点,且OM ⊥ON ,求m 的值.21.已知圆C :2240x y mx ny ++++=关于直线10x y ++=对称,圆心C 在第四象限,半径为1.(1)求圆C 的标准方程;(2)是否存在直线与圆C 相切,且在x 轴,y 轴上的截距相等?若存在,求出该直线的方程;若不存在,说明理由.22.平面直角坐标系xOy 中,已知点()2,4P ,圆22:4O x y +=与x 轴的正半轴的交于点Q .(1)若过点P 的直线1l 与圆O 相切,求直线1l 的方程; (2)若过点P 的直线2l 与圆O 交于不同的两点A ,B . ①设线段AB 的中点为M ,求点M 纵坐标的最小值;②设直线QA ,QB 的斜率分别是1k ,2k ,问:12k k +是否为定值,若是,则求出定值,若不是,请说明理由. 答案解析第I 卷(选择题)一、单选题(每题只有一个选项为正确答案,每题5分,共40分) 1.已知直线1l :2y x =-,2l :y kx =,若12//l l ,则实数k =( ) A .-2 B .-1 C .0 D .1 【答案】D【解析】已知直线1l :2y x =-,2l :y kx =,因为12//l l ,所以1k =故选:D2.直线()()1:2140l a x a y -+++=与()2:190l a x ay ++-=互相垂直,则a 的值是( ). A .-0.25 B .1 C .-1 D .1或-1 【答案】D【解析】当10a +=时,1a =-,此时14:3l x =,2:9l y =-,显然两直线垂直, 当0a =时,此时1:240l x y -++=,2:9l x =,显然两直线不垂直, 当10a +≠且0a ≠时,因为12l l ⊥,所以()()()2110a a a a -+++=,解得:1a =,综上可知:1a =或1-.故选D.3.直线:l (1)230m x my m ---+=(m R ∈)过定点A ,则点A 的坐标为( ) A .(3,1)- B .(3,1) C .(3,1)- D .(3,1)-- 【答案】B【解析】根据直线(1)230m x my m ---+=得()230m x y x ---+=, 故直线过定点为直线20x y --=和30x -+=的交点,联立方程得2030x y x --=⎧⎨-+=⎩,解得31x y =⎧⎨=⎩ ,所以定点A 的坐标为()3,1A .故选:B.4.设a R ∈,则“a=1”是“直线ax+y-1=0与直线x+ay+1=0平行”的 A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件, 【答案】C【解析】若直线ax+y-1=0与直线x+ay+1=0平行,则21a =,且11a-≠解得1a =故选C5.若曲线y 与直线y =k (x ﹣2)+4有两个交点,则实数k 的取值范围是( ) A .3,14⎛⎤⎥⎝⎦ B .3,4⎛⎫+∞ ⎪⎝⎭C .(1,+∞)D .(1,3] 【答案】A【解析】作出曲线y 的图像,直线y =k (x ﹣2)+4恒过定点()2,4,当直线与曲线相切时,原点到直线240kx y k --+=的距离等于22=,解得34k =, 由图可知, ()3401422k -<≤=--,故选:A 6.已知直线x y t +=与圆()2222x y t tt R +=-∈有公共点,则()4t t -的最大值为( ) A .4 B .289 C .329D .327【答案】C【解析】因为()2222x y t tt R +=-∈表示圆,所以220->t t ,解得02t <<,因为直线x y t +=与圆()2222x y t tt R +=-∈有公共点,所以圆心到直线的距离d r ≤,即≤403t ≤≤,此时403t ≤≤, 因为()()()224424=-=-+=--+f t t t t t t ,在40,3⎡⎤⎢⎥⎣⎦递增,所以()4t t -的最大值34329⎛⎫= ⎪⎝⎭f . 故选:C7.若两平行直线20,(0)x y m m ++=>与30x ny --=则m+n =( ) A .0 B .1 C .1- D .2- 【答案】A【解析】由直线20,(0)x y m m ++=>与30x ny --=平行可得2n -=即2n =-, 则直线20,(0)x y m m ++=>与230x y +-=,=2m =或8m =-(舍去),所以()220m n +=+-=.故选:A.8.过直线y =x 上的一点作圆22(5)(1)2x y -+-=的两条切线l 1,l 2,当直线l 1,l 2关于y =x 对称时,它们之间的夹角为( )A .30°B .45°C .60°D .90° 【答案】C【解析】如图所示,过圆心C 作CP 垂直直线y x =于点P ,直线,PA PB 分别与圆:C 22(5)(1)2x y -+-=相切,切点分别为,A B ,根据几何知识可知,直线12,l l 也关于直线CP对称,所以直线12,l l 的夹角为APB ∠(或其补角).在Rt CBP 中,BC =CP ==所以1sin 2BPC ∠=,而BPC ∠为锐角,即有30BPC ∠=,60APB ∠=. 故选:C .二、多选题(每题不止有一个选项为正确答案,每题5分,共20分)9.圆221:20x y x O +-=和圆222:240O x y x y ++-=的交点为A ,B ,则有( )A .公共弦AB 所在直线方程为0x y -= B .线段AB 中垂线方程为10x y +-=C .公共弦AB 的长为2D .P 为圆1O 上一动点,则P 到直线AB 1+ 【答案】ABD【解析】对于A ,由圆221:20x y x O +-=与圆222:240O x y x y ++-=的交点为A ,B ,两式作差可得440x y -=,即公共弦AB 所在直线方程为0x y -=,故A 正确;对于B ,圆221:20x y x O +-=的圆心为()1,0,1AB k =,则线段AB 中垂线斜率为1-,即线段AB 中垂线方程为:()011y x -=-⨯-,整理可得10x y +-=,故B 正确; 对于C ,圆221:20x y x O +-=,圆心1O ()1,0到0x y -=的距离为2d ==,半径1r =所以AB ==C 不正确;对于D ,P 为圆1O 上一动点,圆心1O ()1,0到0x y-=的距离为2d =,半径1r =,即P到直线AB 1+,故D 正确.故选:ABD10.已知直线12:10,:(2)330l x my l m x y +-=-++=,则下列说法正确的是( )A .若12l l //,则m=-1或m=3B .若12l l //,则m=3C .若12l l ⊥,则12m =-D .若12l l ⊥,则12m = 【答案】BD【解析】直线12l l //,则3(2)0m m --=,解得3m =或1m =-,但1m =-时,两直线方程分别为10x y --=,3330x y -++=即30x y --=,两直线重合,只有3m =时两直线平行,A 错,B 正确;12l l ⊥,则230m m -+=,12m =,C 错,D 正确. 故选:BD .11.已知直线l 与圆22:240C x y x y a ++-+=相交于,A B 两点,弦AB 的中点为()0,1M ,则实数a 的取值可为( )A .1B .2C .3D .4 【答案】AB【解析】圆C 的标准方程为:()()22125x y a ++-=-,故5a <.又因为弦AB 的中点为()0,1M ,故M 点在圆内,所以()()2201125a ++-<-即3a <. 综上,3a <. 故选:AB.12.下列说法正确的是( )A .直线32()y ax a a R =-+∈必过定点(3,2)B .直线32y x =-在y 轴上的截距为2-C 10y ++=的倾斜角为60°D .过点(1,2)-且垂直于直线230x y -+=的直线方程为20x y += 【答案】ABD【解析】32()y ax a a R =-+∈可化为()23y a x -=-,则直线32()y ax a a R =-+∈必过定点(3,2),故A 正确;令0x =,则2y =-,即直线32y x =-在y 轴上的截距为2-,故B 正确;10y ++=可化为1y =-,则该直线的斜率为,即倾斜角为120︒,故C 错误;设过点(1,2)-且垂直于直线230x y -+=的直线的斜率为k 因为直线230x y -+=的斜率为12,所以112k ⋅=-,解得2k =- 则过点(1,2)-且垂直于直线230x y -+=的直线的方程为22(1)y x -=-+,即20x y +=,故D 正确; 故选:ABD第II 卷(非选择题)三、填空题(每题5分,共20分)13.圆C 的圆心为(21),-,且圆C 与直线3450x y --=相切,则圆C 的方程为_______.【答案】22(2)(1)1x y -++=【解析】圆C 的圆心为(2,1)-,与直线:3450l x y --=相切, 圆心到直线的距离等于半径,即1r d ===,∴圆C 的方程为22(2)(1)1x y -++=.故答案为:22(2)(1)1x y -++=.14.经过点P (2,1)作直线l 分别交x 轴、y 轴的正半轴于A 、B 两点,当△AOB 面积最小时,直线l 的方程为_____. 【答案】x+2y ﹣4=0;【解析】由题意可知,直线的斜率一定存在,故设直线方程y ﹣1=k (x ﹣2),k <0, 令x =0可得,y =1﹣2k ,令y =0可得x =2﹣1k, 则11121222AOBSOA OB k k =⋅=⨯--=()1114444422k k ⎛⎫--+≥+= ⎪⎝⎭, 当且仅当﹣4k =﹣1k即k =﹣12时取等号,此时直线方程y ﹣1=﹣12(x ﹣2),即x+2y ﹣4=0. 故答案为:x+2y ﹣4=0.15.在圆22420x y x y +-+=内,过点1,0()M 的最短弦的弦长为_____;【答案】【解析】圆22420x y x y +-+=化简得:()()22215x y -++=,点M 在圆内部,记圆心为()2,1C -,根据几何性质知过M 且与OM 垂直的弦最短,CM =由垂径定理得弦长为==故答案为:16.圆()()221:29C x m y -++=与圆()()222:14C x y m ++-=内切,则m 的值为______.【答案】2-或1-【解析】圆1C 的圆心为(),2m -,半径为13r =,圆2C 的圆心为()1,m -,半径为22r =,所以两圆的圆心距d =,1=,解得2m =-或1m =-.故答案为:2-或1-.四、解答题(17题10分,其余12分,共70分)17.已知圆C 的方程为()()22215x y -+-=.(1)写出圆心C 的坐标与半径长;(2)若直线l 过点()0,1P ,试判断与圆C 的位置关系,并说明理由.【答案】(1)圆心C 的坐标为()2,1,半径长r =(2)相交,理由见解析.【解析】(1)圆心C 的坐标为()2,1,半径长r =(2)当直线l 垂直于x 轴时,直线方程为0x =,与圆有2个交点;当直线l 不垂直于x 轴时,设直线l 的方程为1y kx =+,将1y kx =+代入()()22215x y -+-=整理,得()221410kx x +--=, 因为210k +≠,且()216410k∆=++>恒成立,所以直线l 与圆C 相交.综上所述,直线l 与圆C 相交.18.已知圆C :(x+2)2+y 2=5,直线l :mx ﹣y+1+2m =0,m ∈R.(1)判断直线与圆的位置关系,并说明理由;(2)若直线l 与圆C 交于,A B 两点,求弦AB 的中点M 的轨迹方程. 【答案】(1)相交,理由见解析;(2)()2211224x y ⎛⎫++-= ⎪⎝⎭ 【解析】(1)直线l :120mx y m -++=,也即()12y m x -=+,故直线恒过定点()2,1-,又()222215-++<,故点()2,1-在圆C 内,此时直线l 一定与圆C 相交.(2)设点(),M x y ,当直线AB 斜率存在时,12AB y k x -=+, 又2MC y k x =+,1AB MC k k ⨯=-, 即1122y y x x -⨯=-++, 化简可得:()()22112,224x y x ⎛⎫++-=≠- ⎪⎝⎭; 当直线AB 斜率不存在时,显然中点M 的坐标为()2,1-也满足上述方程.故M 点的轨迹方程为:()2211224x y ⎛⎫++-= ⎪⎝⎭. 19.已知圆()()22:1225C x y -+-=和直线()():211740l m x m y m +++--=. (1)证明:不论 m 为何实数,直线l 都与圆 C 相交于两点;(2)求直线被圆 C 截得的弦长最小时直线l 的方程;(3)已知点P ( ,x y )在圆C 上,求22x y +的最大值.【答案】(1)证明见解析;(2)250x y --=;(3)30+【解析】(1)因为()():211740l m x m y m +++--=所以()()2740x y m x y +-++-=令27040x y x y +-=⎧⎨+-=⎩解得31x y =⎧⎨=⎩ 所以直线l 过定点()3,1.而()()22311225-+-<,即点()3,1在圆内部. 所以直线l 与恒交于两点.(2).过圆心()1,2与点()3,1的直线1l 的方程为1522y x =-+, 被圆 C 截得的弦长最小时,直线l 必与直线1l 垂直,所以直线l 的斜率2k =,所以直线l 的方程为()123y x -=-,即250x y --=.(3)因为2222(0)(0)x y x y +-+-=,表示圆上的点(),x y 到()0,0的距离的平方,因为圆心到原点的距离d ==所以2a 2m x 2)(530(+==+x y 20.在平面直角坐标系中,直线=0与圆C 相切,圆心C 的坐标为(1,-1).(1)求圆C 的方程;(2)设直线y =kx+2与圆C 没有公共点,求k 的取值范围;(3)设直线y =x+m 与圆C 交于M ,N 两点,且OM ⊥ON ,求m 的值.【答案】(1)22()(11)9x y -++=;(2)30,4⎛⎫ ⎪⎝⎭;(3)1m =-±【解析】(1)∵直线0x y ++=与圆C 相切,且圆心C 的坐标为(1,1)-,∴圆C的半径3r ==, 则圆C 的方程为22()(11)9x y -++=;(2)∵直线y =kx+2与圆C 没有公共点,∴点(1,1)C -3>,解得304k <<, ∴k 的取值范围为30,4⎛⎫ ⎪⎝⎭; (3)联立22(1)(1)9y x m x y =+⎧⎨-++=⎩,得2222270x mx m m +++-=, 由()2248270m m m ∆=-+->,解得22m --<<-+设()()1122,,,M x y N x y , 则2121227,2m m x x m x x +-+=-=, ∵OM ON ⊥,∴12120OM ON x x y y ⋅=+=,即()()()21212121220x x x m x m x x m x x m +++=+++=,∴2270m m +-=,解得1m =-±∴1m =-±21.已知圆C :2240x y mx ny ++++=关于直线10x y ++=对称,圆心C 在第四象限,半径为1.(1)求圆C 的标准方程;(2)是否存在直线与圆C 相切,且在x 轴,y 轴上的截距相等?若存在,求出该直线的方程;若不存在,说明理由.【答案】(1)()()22121x y -++=;(2)存在,34y x =-或1y x =--±【解析】(1)将圆C 化为标准方程,得222216()()224m n m n x y +-+++= ∴ 圆心C (,22m n --),半径r =由已知得10222412m n m n ⎧--+=⎪=-⎧⎪⇒⎨=⎩=⎩或42m n =⎧⎨=-⎩ 又C 在第四象限, ∴()1,2C -∴圆C 的标准方程为22(1)(2)1x y -++=(2)当直线过原点时,l 斜率存在,则设:l y kx =314k =⇒=- 此时直线方程为34y x =-; 当直线不过原点时,设:0l x y t +-=1= 解得1t =-10x y +++=或10x y ++= 综上,所求直线的方程为:34y x =-或1y x =--±22.平面直角坐标系xOy 中,已知点()2,4P ,圆22:4O x y +=与x 轴的正半轴的交于点Q .(1)若过点P 的直线1l 与圆O 相切,求直线1l 的方程;(2)若过点P 的直线2l 与圆O 交于不同的两点A ,B .①设线段AB 的中点为M ,求点M 纵坐标的最小值;②设直线QA ,QB 的斜率分别是1k ,2k ,问:12k k +是否为定值,若是,则求出定值,若不是,请说明理由.【答案】(1)2x =和34100x y -+=;(2)①2 ②是定值,1-.【解析】(1)圆22:4O x y +=的圆心为()0,0,半径为2, 若过点()2,4P 直线1l 垂直于x 轴,则方程为2x =,与圆相切,符合题意;若过点()2,4P 直线1l 不垂直于x 轴,设直线1l 的斜率与k ,则直线1l 方程为()42y k x -=-,即240kx y k --+=,因为直线1l 与圆22:4O x y +=相切,所以圆心到直线1l的距离2d ==,解得34k =, 所以切线方程为34100x y -+=;综上得:切线1l 的方程为2x =和34100x y -+=;(2)①设点(),M x y ,因为M 为弦AB 中点,所以MO MP ⊥,又因为(),OM x y =,()2,4PM x y =--,所以由OM PM ⊥得(2)(4)0x x y y -+-=化简得22240x y x y +--=.联立22224240x y x y x y ⎧+=⎨+--=⎩得20x y =⎧⎨=⎩或6585x y ⎧=-⎪⎪⎨⎪=⎪⎩; 又因为点M 在圆22:4O x y +=内部,所以点M 的轨迹是圆22240x y x y +--=中以点68,55⎛⎫- ⎪⎝⎭和()2,0为端点的一段劣弧(不包括端点),由22240x y x y +--=即()()22125x y -+-=,令1x =得2y =±根据点(1,2在22:4O x y +=内部,所以点M纵坐标的最小值是2-; ②由题意点()2,0Q ,联立224(2)4y k x x y -=-⎧⎨+=⎩得()22214(2)(24)40k x k k x k +--+--=, 设()()1122,,,A x y B x y ,则12221224(2)1(24)410k k x x k k x x k -⎧+=⎪+⎪--⎪=⎨+⎪∆>⎪⎪⎩, 所以()()121212121224242222k x k x y k k x x x y x -+-++=+=+---- ()()121212214444222224x x k k x x x x x x +-=++=+---++ 22224(2)444(84)1221(24)44(2)162411k k k k k k k k k k k -⎡⎤⋅-⎢⎥++⎣⎦=+=-=-----⋅+++. 所以12k k +是定值,定值为1-.《第二章 直线和圆的方程》单元检测试卷(二)一、单选题1.直线:的倾斜角为( )A .B .C .D .2.圆心为,且过原点的圆的方程是( )A .B .C .D .3.如果直线(2a+5)x+(a -2)y+4=0与直线(2-a)x+(a+3)y -1=0互相垂直,则a 的值等于( )A .2B .-2C .2,-2D .2,0,-24.圆与直线的位置关系( )A .相切B .相离C .相交D .不能确定5.从点向圆引切线,则切线长的最小值( )A ..5 C.6.已知直线在两坐标轴上的截距相等,则实数A .1B .C .或1D .2或17.若点为圆的弦的中点,则弦所在直线的方程为( )A .B .C .D .8.过点且倾斜角为的直线被圆所截得的弦长为( ) A.1 C.9.已知直线和以,为端点的线段相交,则实数k 的取值范围为( )A .B . x y +-0=30︒45︒60︒135︒()2,2()()22228x y -+-=()()22222x y -+-=()()22228x y +++=()()22222x y +++=22(1)5x y +-=120mx y m -+-=(,3)P m 22(2)(2)1x y +++=420ax y a +-+=(a =)1-2-(1,1)P 2240x y x +-=AB AB 20x y +-=0x y -=20x y -+=22(1)5x y +-=()1,030()2221x y -+=20kx y -+=()3,2M -()2,5N 32k ≤32k ≥C .D .或 10.已知圆,圆,、分别是圆、上动点,是轴上动点,则的最大值是( )A . BC .二、多选题11.在同一直角坐标系中,直线与圆的位置不可能是( ) A . B . C .D . 12.已知点是直线上一定点,点、是圆上的动点,若的最大值为,则点的坐标可以是( )A .B .C .D . 13.瑞士数学家欧拉(LeonhardEuler )1765年在其所著的《三角形的几何学》一书中提出:任意三角形的外心、重心、垂心在同一条直线上,后人称这条直线为欧拉线.已知的顶点,,其欧拉线方程为,则顶点的坐标可以是( )A .B .C .D .三、填空题14.直线过定点______;若与直线平行,则______.15.已知以为圆心的圆与圆相内切,则圆C 的方程是______. 16.圆关于直线的对称圆的标准方程为__________.17.已知、为正实数,直线截圆所得的弦长为,则的最大值为__________. 4332k -≤≤43k ≤-32k ≥()()221:231C x y -+-=()()222:349C x y -+-=M N 1C 2C P x PN PM -4+42y ax a =+222()x a y a ++=A :0l x y +=P Q 221x y +=PAQ ∠90A (()1))1,1ABC ∆()4,0-A ()0,4B 20x y -+=C ()2,0()0,2()2,0-()0,2-()1:20l m x y m +--=()m R ∈1l 2:310l x my --=m =()4,3C -22:1O x y +=22230x y y ++-=10x y +-=a b 10x y ++=()()224x a y b -+-=ab四、解答题18.求圆上与直线的距离最小的点的坐标. 19.已知直线过点.(1)若原点到直线的距离为,求直线的方程;(2)当原点到直线的距离最大时,求直线的方程.20.在中,,边上的高所在的直线方程为,边上中线所在的直线方程为.(1)求点坐标;(2)求直线的方程.21.如图,圆,点为直线上一动点,过点引圆的两条切线,切点分别为(1)求证:直线恒过定点,并求出该定点的坐标;(2)若两条切线于轴分别交于两点,求面积的最小值.224x y +=43120x y +-=l (2,1)P -O l 2l O l l ABC ∆(1,2)A -AC BE 74460x y +-=AB CM 211540x y -+=C BC 22:(2)1C x y -+=P :4l x =P C ,AB AB Q ,PA PB y ,M N QMN22.已知点,,直线:,设圆的半径为,圆心在直线上.(1)若圆心也在直线上,过点作圆的切线,求切线的方程;(2)若圆上存在点,使,为坐标原点,求圆心的横坐标的取值范围.23.已知点,点在圆上运动. (1)求过点且被圆截得的弦长为(2)求的最值.答案解析一、单选题1.直线:的倾斜角为( )A .B .C .D .【答案】D【解析】直线的斜率,设直线的倾斜角为, 则,所以.故选:D.2.圆心为,且过原点的圆的方程是( )A .B .C .D .【答案】A【解析】根据题意. (4,4)A (0,3)B l 1y x =-C 1C l C 37y x =-A C C M 2MB MO =O C a (2,2),(2,6),(4,2)A B C ----P 22:4E x y +=C E 222||||||PA PB PC ++x y +-0=30︒45︒60︒135︒0x y +-=1k =-0x y +-=1(080)a a ︒≤<︒tan 1α=-135α=︒()2,2()()22228x y -+-=()()22222x y -+-=()()22228x y +++=()()22222x y +++=r ==()()22228x y -+-=故选:.3.如果直线(2a+5)x+(a -2)y+4=0与直线(2-a)x+(a+3)y -1=0互相垂直,则a 的值等于( )A .2B .-2C .2,-2D .2,0,-2【答案】C【解析】(2a +5)(2-a)+(a -2)(a +3)=0,所以a =2或a =-2.4.圆与直线的位置关系( )A .相切B .相离C .相交D .不能确定【答案】C【解析】 直线即即直线过点,把点代入圆的方程有,所以点在圆的内部,过点的直线一定和圆相交.故选:C.5.从点向圆引切线,则切线长的最小值( )A ..5 C.【答案】A【解析】设切线长为,则,故选:A.6.已知直线在两坐标轴上的截距相等,则实数 )A .1B .C .或1D .2或1【答案】D【解析】由题意,当,即时,直线化为,此时直线在两坐标轴上的截距都为0,满足题意; A 22(1)5x y +-=120mx y m -+-=120mx y m -+-=()12y m x -=-()21,()21,405+<()21,()21,(,3)P m 22(2)(2)1x y +++=4d 2222(2)51(2)24d m m =++-=++min d ∴=20ax y a +-+=(a =1-2-2a 0-+=a 2=ax y 2a 0+-+=2x y 0+=当,即时,直线化为,由直线在两坐标轴上的截距相等,可得,解得; 综上所述,实数或.故选:D .7.若点为圆的弦的中点,则弦所在直线的方程为( ) A . B .C .D .【答案】B【解析】化为标准方程为.∵为圆的弦的中点,∴圆心与点确定的直线斜率为,∴弦所在直线的斜率为1,∴弦所在直线的方程为,即.故选:B.8.过点且倾斜角为的直线被圆所截得的弦长为( )A .B .1 C.【答案】C【解析】根据题意,设过点且倾斜角为的直线为 ,其方程为,即,变形可得,圆 的圆心为,半径 ,2a 0-+≠a 2≠ax y 2a 0+-+=122x y a a a+=--2a 2a a-=-a 1=a 2=a 1=(1,1)P 2240x y x +-=AB AB 20x y +-=0x y -=20x y -+=22(1)5x y +-=2240x y x +-=()22-24x y +=()1,1P ()22-24x y +=AB P 01121k -==--AB AB 11y x -=-0x y -=()1,030()2221x y -+=2()1,030l ()tan301y x =-)13y x =-10x -=()2221x y -+=()2,01r =设直线与圆交于点,圆心到直线的距离, 则C. 9.已知直线和以,为端点的线段相交,则实数k 的取值范围为( )A .B .C .D .或 【答案】C【解析】 因为直线恒过定点,又因为,,所以直线的斜率k 的范围为. 故选:C . 10.已知圆,圆,、分别是圆、l AB 12d ==2AB ==20kx y -+=()3,2M -()2,5N 32k ≤32k ≥4332k -≤≤43k ≤-32k ≥20kx y -+=()0,2A 43AM k =-32AN k =4332k -≤≤()()221:231C x y -+-=()()222:349C x y -+-=M N 1C上动点,是轴上动点,则的最大值是( )A . BC .【答案】D【解析】如下图所示:圆的圆心,半径为,圆的圆心,半径为, ,由圆的几何性质可得,, ,当且仅当、、三点共线时,.故选:D.二、多选题11.在同一直角坐标系中,直线与圆的位置不可能是()A .B .C .D . 2C P x PN PM -4+41C ()12,3C 11r =2C ()23,4C 23r =12C C ==2223PN PC r PC ≤+=+1111PM PC r PC ≥-=-2112444PN PM PC PC C C -≤-+≤+=1C P 2C PN PM -42y ax a =+222()x a y a ++=【答案】ABD【解析】直线经过圆的圆心,且斜率为. 故选项满足题意.故选:.12.已知点是直线上一定点,点、是圆上的动点,若的最大值为,则点的坐标可以是( )A .B .C .D . 【答案】AC【解析】如下图所示:原点到直线的距离为,则直线与圆相切, 由图可知,当、均为圆的切线时,取得最大值,连接、,由于的最大值为,且,, 则四边形为正方形,所以由两点间的距离公式得整理得,解得,因此,点的坐标为或. 故选:AC. 2y ax a =+222()x a y a ++=(),0a -a ,,A B D ABD A :0l x y +=P Q 221x y +=PAQ ∠90A (()1))1,1l 1d ==l 221x y +=AP AQ 221x y +=PAQ ∠OP OQ PAQ ∠9090APO AQO ∠=∠=1OP OQ ==APOQ OA ==OA ==220t -=0t =A ()13.瑞士数学家欧拉(LeonhardEuler )1765年在其所著的《三角形的几何学》一书中提出:任意三角形的外心、重心、垂心在同一条直线上,后人称这条直线为欧拉线.已知的顶点,,其欧拉线方程为,则顶点的坐标可以是( )A .B .C .D .【答案】AD【解析】设的垂直平分线为,的外心为欧拉线方程为与直线的交点为,,①由,,重心为, 代入欧拉线方程,得,②由 ①②可得或 .故选:AD三、填空题14.直线过定点______;若与直线平行,则______.【答案】【解析】(1),故. 即定点为(2) 若与直线平行,则,故或.当时与直线重合不满足.故. ABC ∆()4,0-A ()0,4B 20x y -+=C ()2,0()0,2()2,0-()0,2-(,),C x y AB y x =-ABC ∆20x y -+=y x =-(1,1)M-22||||(1)(1)10MC MA x y ∴==∴++-=()4,0A -()0,4B ABC ∆44(,)33x y -+20x y -+=20x y --=2,0x y ==0,2x y ==-()1:20l m x y m +--=()m R ∈1l 2:310l x my --=m =()1,23-()1:20(1)20l m x y m m x x y +--=⇒-+-=101202x x x y y -==⎧⎧⇒⎨⎨-==⎩⎩()1,21l 2:310l x my --=()()()()()2310130m m m m +---=⇒-+=1m =3m =-1m =1l 2l 3m =-故答案为:(1) ; (2)15.已知以为圆心的圆与圆相内切,则圆C 的方程是______. 【答案】(x -4)2+(y +3)2=36.【解析】,设所求圆的半径为,由两圆内切的充分必要条件可得:,据此可得:,圆C 的方程是(x -4)2+(y +3)2=36.16.圆关于直线的对称圆的标准方程为________.【答案】【解析】 ,圆心为,半径为,设圆心关于直线的对称点为,对称圆的标准方程为.故答案为:.17.已知、为正实数,直线截圆所得的弦长为,则的最大值为__________.【答案】 【解析】因为直线截圆所得的弦长为,且圆的半径为2. 故圆心到直线的距离()1,23-()4,3C -22:1O x y +=5=()0r r >15r -=6r =22230x y y ++-=10x y +-=22(2)(1)4x y -+-=2222230(41)x y y x y ++-=⇒+=+∴(0,1)-210x y +-=(,)x y ∴1(1)1,2,1.110,22y x x y x y +⎧⨯-=-⎪=⎧⎪⇒⎨⎨=-⎩⎪+-=⎪⎩∴22(2)(1)4x y -+-=22(2)(1)4x y -+-=a b 10x y ++=()()224x a y b -+-=ab 1410x y ++=()()224x a y b -+-=(),a b d ==,因为、为正实数,故,所以. 当且仅当时取等号. 故答案为: 四、解答题18.求圆上与直线的距离最小的点的坐标. 【答案】【解析】过圆心且与直线垂直的直线方程为,联立圆方程得交点坐标为,, 又因为与直线的距离最小,所以. 19.已知直线过点.(1)若原点到直线的距离为,求直线的方程;(2)当原点到直线的距离最大时,求直线的方程.【答案】(1)或;(2)=a b 1a b +=2124a b ab +⎛⎫≤= ⎪⎝⎭12a b ==14224x y +=43120x y +-=86,55P ⎛⎫ ⎪⎝⎭43120x y +-=340x y -=224340x y x y ⎧+=⎨-=⎩86,55⎛⎫ ⎪⎝⎭86,55⎛⎫-- ⎪⎝⎭43120x y +-=86,55P ⎛⎫ ⎪⎝⎭l (2,1)P -O l 2l O l l 20x -=34100x y --=250.x y --=【解析】(1)①当直线的斜率不存在时,方程符合题意;②当直线的斜率存在时,设斜率为,则方程为,即,解得,则直线的方程为 故直线的方程为或(2)当原点到直线的距离最大时,直线因为,所以直线的斜率 所以其方程为,即20.在中,,边上的高所在的直线方程为,边上中线所在的直线方程为.(1)求点坐标;(2)求直线的方程.【答案】(1)(2) 【解析】(1)边上的高为,故的斜率为, 所以的方程为, 即,因为的方程为 l 2x =l k ()12y k x +=-210.kx y k ---=2=34k =l 34100.x y --=l 20x -=34100.x y --=O l .l OP ⊥011022OP k +==--l 2,k =()122y x +=-250.x y --=ABC ∆(1,2)A -AC BE 74460x y +-=AB CM 211540x y -+=C BC ()66C ,2180x y +-=AC 74460x y +-=AC 47AC ()4217y x -=+47180x y -+=CM 211540x y -+=解得 所以. (2)设,为中点,则的坐标为, 解得, 所以, 又因为,所以的方程为 即的方程为.21.如图,圆,点为直线上一动点,过点引圆的两条切线,切点分别为(1)求证:直线恒过定点,并求出该定点的坐标;(2)若两条切线于轴分别交于两点,求面积的最小值.【答案】(1)见解析,(2【解析】(1)设,则以 为直径的圆的方程:21154047180x y x y -+=⎧⎨-+=⎩,,66x y =⎧⎨=⎩()66C ,()00,B x y M AB M 0012,22x y -+⎛⎫ ⎪⎝⎭0000122115402274460x y x y -+⎧-+=⎪⎨⎪+-=⎩0028x y =⎧⎨=⎩()2,8B ()6,6C BC ()866626y x --=--BC 2180x y +-=22:(2)1C x y -+=P :4l x =P C ,A B AB Q ,PA PB y ,M N QMN 5,02Q ⎛⎫⎪⎝⎭(4,)P t CP, 与圆,两式相减得:,所以直线恒过定点. (2)设直线与的斜率分别为,与圆,即.所以,,所以面积的最小值为22.已知点,,直线:,设圆的半径为,圆心在直线上. (1)若圆心也在直线上,过点作圆的切线,求切线的方程;(2)若圆上存在点,使,为坐标原点,求圆心的横坐标的取值范围.【答案】(1)或.(2)或.【解析】()22232t x y ⎛⎫-+-= ⎪⎝⎭⎪⎝⎭22:(2)1C x y -+=:2(2)1AB l x ty -+=5,02Q ⎛⎫ ⎪⎝⎭AP BP 12,k k (4)y t kx -=-C1=223410k tk t -+-=2121241,33-+=⋅=t t k k k k 14M y t k =-24N y t k =-12||44=-==≥MN k k ()min 152323MNQ S ∆=⨯⨯=3(4,4)A (0,3)B l 1y x =-C 1C l C 37y x =-A C C M 2MB MO =O C a 4x =3440x y -+=22a -≤≤-22a ≤≤(1)由得:,所以圆C :..当切线的斜率存在时,设切线方程为,由,解得:当切线的斜率不存在时,即也满足 所以切线方程为:或. (2)由圆心在直线l :上,设设点,由化简得:,所以点M 在以为圆心,2为半径的圆上. 又点M 在圆C 上,所以圆C 与圆D 有交点,则即,解得:或. 23.已知点,点在圆上运动. (1)求过点且被圆截得的弦长为(2)求的最值.【答案】(1)或;(2)最大值为88,最小值为72. 【解析】(1)依题意,直线的斜率存在,因为过点且被圆截得的弦长为所以圆心到直线的,设直线方程为,即,解得或所以直线方程为或.(2)设点坐标为则.137y x y x =-⎧⎨=-⎩()3,2C 22(3)(2)1x y -+-=4(4)y k x -=-1d ==34k =4x =4x =3440x y -+=C 1y x =-(,1)C a a -(,)M x y ||2||MB MO ==22(1)4x y ++=(0,1)D -1||3CD ≤≤13≤22a -≤≤-22a ≤≤(2,2),(2,6),(4,2)A B C ----P 22:4E x y +=C E 222||||||PA PB PC ++7100x y ++=20x y +-=C E 2(4)y k x +=-420kx y k ---==17k =-1k =-7100x y ++=20x y +-=P (),x y 224x y +=222222222||||||(2)(2)(2)(6)(4)(2)PA PB PC x y x y x y ++=++++++-+-++()223468804x y y y =+-+=-因为,所以,即的最大值为88,最小值为72.《第二章 直线和圆的方程》单元检测试卷(三)一、选择题1.圆心为()1,1且过原点的圆的方程是( )A .()()22111x y -+-=B .()()22111x y +++= C .()()22112x y +++= D .()()22112x y -+-=2.经过圆2220x x y ++=的圆心C ,且与直线0x y +=垂直的直线方程是 ( )A .x +y +1=0B .x +y -1=0C .x -y +1=0D .x -y -1=0 3.平行于直线2x+y+1=0且与圆x 2+y 2=5相切的直线的方程是( ) A .2x+y+5=0或2x+y ﹣5=0 B .2x+y+=0或2x+y ﹣=0C .2x ﹣y+5=0或2x ﹣y ﹣5=0D .2x ﹣y+=0或2x ﹣y ﹣=04.直线:1l y kx =+与圆22:1O x y +=相交于,A B 两点,则"1"k =是“OAB ∆的面积为12”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分又不必要条件 5.(多选题)下列说法中正确的是( ) A .若两条直线互相平行,那么它们的斜率相等B .方程()()()()211211x x y y y y x x --=--能表示平面内的任何直线C .圆22240x y x y ++-=的圆心为()1,2-D .若直线()2320t x y t -++=不经过第二象限,则t 的取值范围是30,2⎡⎤⎢⎥⎣⎦6.(多选题)已知圆O :224x y +=和圆M :224240x y x y +-++=相交于A 、B 两22y -≤≤7280488y ≤-≤222||||||PA PB PC ++点,下列说法正确的是( ) A .两圆有两条公切线B .直线AB 的方程为24y x =+C .线段ABD .所有过点A 、B 的圆系的方程可以记为()()()222244240,1xy x y x y R λλλ+-++-++=∈≠-二、填空题7.圆2228130x y x y +--+=的圆心到直线10ax y +-=的距离为1,则a = . 8.如图,已知圆C 与x 轴相切于点,与y 轴正半轴交于两点A ,B (B 在A 的上方),且2AB =.(Ⅰ)圆C 的标准方程为_________;(Ⅱ)圆C 在点B 处的切线在x 轴上的截距为_________.9.若⊙221:5O x y +=与⊙222:()20()O x m y m R -+=∈相交于A 、B 两点,且两圆在点A 处的切线互相垂直,则线段AB 的长度是 .10.已知,AC BD 为圆O :224x y +=的两条互相垂直的弦,且垂足为M ,则四边形ABCD 的面积的最大值为______. 三、解答题11.在平面直角坐标系中,曲线与162+-=x x y 坐标轴的交点都在圆C 上, (1)求圆C 的方程;(2)如果圆C 与直线0=+-a y x 交于A,B 两点,且OB OA ⊥,求a 的值。

新高考数学复习第四章 圆与方程单元测试(基础版)附答案解析

新高考数学复习第四章 圆与方程单元测试(基础版)附答案解析

第三章 函数与方程单元测试卷(基础版)一、选择题 共12小题,每小题5分,共60分。

在每小题列出的四个选项中,选出符合题目要求的一项。

1.(2020全国高二课时练)以()2,1-为圆心,4为半径的圆的方程为( ) A .22(2)(1)4x y ++-= B .22(2)(1)4x y +++= C .22(2)(1)16x y -++=D .22(2)(1)16x y ++-=2.(2020福建莆田一中高二月考)过点()()1,1,1,1A B --,且圆心在直线20x y +-=上的圆的方程是( )A .()()22314x y -++= B .()()22314x y ++-= C .()()22114x y -+-=D .()()22114x y +++=3.(2020山东泰安一中高二期中)曲线x 2+y 2+2x-2y=0关于( )A.直线x=轴对称 B .直线y=-x 轴对称 C .点(-2,)中心对称D .点(-,0)中心对称4.(2020银川一中高二期中)过点()3,1的直线l 平分了圆:2240x y y +-=的周长,则直线l 的倾斜角为( ) A .30B .60︒C .120︒D .150︒5.直线y=kx+3被圆x 2+y 2-6y=0所截得的弦长是 ( ) A.6B.3C.2D.86.(2020福建莆田一中高二期中)已知圆22(1)(1)2x y a ++-=-截直线20x y ++=所得弦的长度为4,则实数a =( ) A .-2B .-4C .-6D .-87.(贵州遵义四中2019届质检)直线l :mx -y +1-m =0与圆C :x 2+(y -1)2=5的位置关系是( )A .相交B .相切C .相离D .不确定8.已知点P (a ,b )(ab ≠0)是圆x 2+y 2=r 2内的一点,直线m 是以P 为中点的弦所在的直线,直线l 的方程为ax +by =r 2,那么( )A .m ∥l ,且l 与圆相交B .m ⊥l ,且l 与圆相切C .m ∥l ,且l 与圆相离D .m ⊥l ,且l 与圆相离9.(四川绵阳中学2019届模拟)经过点M (2,1)作圆x 2+y 2=5的切线,则切线方程为( )A.2x +y -5=0B.2x +y +5=0 C .2x +y -5=0 D .2x +y +5=010.(2016·山东卷)已知圆M :x 2+y 2-2ay =0(a >0)截直线x +y =0所得线段的长度是22,则圆M 与圆N :(x -1)2+(y -1)2=1的位置关系是( )A .内切B .相交C .外切D .相离11.(2020上海高二课时练习)若直线2ax by +=与圆221x y +=有两个不同的公共点,那么点(,)b a 与圆224x y +=的位置关系是( ).A .点在圆外B .点在圆内C .点在圆上D .不能确定12.(2020湖南衡阳二中高二月考)已知过点P(2,2) 的直线与圆22(1)5x y -+=相切, 且与直线10ax y -+=垂直, 则a =( )A .12-B .1C .2D .12二、填空题 共4小题,每小题5分,共20分。

圆与方程测试题及答案

圆与方程测试题及答案

圆与方程测试题一、选择题1.若圆 C 的圆心坐标为 (2,- 3),且圆 C 经过点 M (5,- 7),则圆 C 的半径为 ().A. 5B. 5C. 25D. 102.过点 A(1,- 1), B(- 1, 1)且圆心在直线x+y- 2= 0 上的圆的方程是 ().A. (x- 3)2+ (y+ 1)2= 4B. (x+ 3)2+ (y- 1)2= 4C. (x- 1)2+ (y- 1)2=4D. (x+ 1)2+ (y+ 1)2= 43.以点 (-3, 4)为圆心,且与 x 轴相切的圆的方程是 ().A. (x- 3)2+ (y+ 4)2= 16B. (x+3)2+ (y- 4)2=16C. (x- 3)2+ (y+ 4)2=9D. (x+3)2+ (y- 4)2= 194.若直线 x+ y+ m= 0 与圆 x2+ y2= m 相切,则 m 为 ().A.0或2B. 2C.2D.无解5.圆 (x-1)2+ (y+ 2)2=20在 x 轴上截得的弦长是 ().A.8B. 6C.6 2D. 4312+ y2+ 2x+ 2y- 2= 0 与 C22+ y2- 4x- 2y+ 1= 0 的地点关系为 ().6.两个圆 C : x: xA.内切B.订交C.外切D.相离7.圆 x2+ y2- 2x- 5= 0 与圆 x2+y2+2x- 4y- 4= 0 的交点为 A,B,则线段 AB 的垂直均分线的方程是().A. x+ y- 1=0B.2x- y+ 1= 0C. x-2y+ 1= 0D. x- y+ 1= 08.圆 x2+ y2- 2x=0 和圆 x2+ y2+ 4y= 0 的公切线有且仅有 ().A.4 条B.3 条C.2条D.1 条9.在空间直角坐标系中,已知点M (a, b, c),有以下表达:点 M 对于 x 轴对称点的坐标是M 1(a,- b, c);点 M 对于 yoz 平面对称的点的坐标是M 2(a,- b ,- c);点 M 对于 y 轴对称的点的坐标是M 3(a,- b, c);点 M 对于原点对称的点的坐标是M4 (-a,- b,- c).此中正确的表达的个数是 ().A.3B. 2C. 1D. 010.空间直角坐标系中,点A(-3, 4, 0)与点 B(2,- 1, 6)的距离是 ().A.2 43B.2 21C. 9D. 86二、填空题11.圆 x2+ y2- 2x- 2y+1= 0 上的动点 Q 到直线 3x+4y+8= 0 距离的最小值为.12.圆心在直线 y= x 上且与 x 轴相切于点 (1, 0)的圆的方程为.13.以点 C(-2,3)为圆心且与 y 轴相切的圆的方程是.14.两圆 x2+ y2= 1 和 (x+ 4)2+ (y-a)2= 25 相切,试确立常数 a 的值.15.圆心为 C(3,- 5),而且与直线 x- 7y+ 2=0 相切的圆的方程为.16.设圆 x2+ y2- 4x-5= 0 的弦 AB 的中点为 P(3, 1),则直线 AB 的方程是.三、解答题17.求圆心在原点,且圆周被直线3x+4y+15= 0 分红 1 ∶2 两部分的圆的方程.18.求过原点,在x 轴, y 轴上截距分别为a, b 的圆的方程 (ab≠0).19.求经过 A(4, 2), B(- 1,3)两点,且在两坐标轴上的四个截距之和是 2 的圆的方程.20.求经过点 (8, 3),而且和直线x= 6 与 x= 10 都相切的圆的方程.圆与方程参照答案一、选择题1.B 圆心 C 与点 M 的距离即为圆的半径,( 2-5)2+( -3+7 )2= 5.2.C 分析一:由圆心在直线x+ y- 2=0 上能够获得A, C 知足条件,再把 A 点坐标(1,- 1)代入圆方程. A 不知足条件.∴ 选C.分析二:设圆心 C的坐标为 (a,b),半径为 r,由于圆心 C 在直线 x+y- 2= 0 上,∴b= 2- a.由 | CA| =| CB| ,得 (a- 1)2+ (b+1)2= (a+ 1)2+ (b- 1)2,解得 a=1, b= 1.所以圆的方程为 (x-1)2+ (y- 1)2=4.3.B 分析:∵与 x 轴相切,∴ r= 4.又圆心 (- 3, 4),∴ 圆方程为 (x+ 3)2+(y- 4)2= 16.4.B 分析:∵ x+ y+m=0 与 x2+ y2=m 相切,∴ (0, 0)到直线距离等于m .∴mm ,∴ m= 2.=25.A 分析:令y=0,∴ (x- 1)2= 16.∴ x- 1=± 4,∴ x1=5 ,x2=- 3.∴弦长= |5 - (- 3)| = 8.6.B 分析:由两个圆的方程C1:(x+1)2+ (y+ 1)2=4, C2:(x- 2)2+ (y-1)2= 4 可求得圆心距 d= 13 ∈ (0,4), r= r = 2,且 r1-r < d< r1+ r故两圆订交,选B.12227.A 分析:对已知圆的方程x2+ y2- 2x- 5=0, x2+ y2+ 2x- 4y-4= 0,经配方,得 (x- 1)2+ y2= 6,(x+ 1)2+ (y-2)2= 9.圆心分别为C1(1, 0), C2(- 1, 2).直线 C1C2的方程为 x+y- 1= 0.8.C 分析:将两圆方程分别配方得(x-1)2+ y2=1和 x2+ (y+ 2)2= 4,两圆圆心分别为 O1 (1, 0), O2(0,-12 1 212+22=521<12= 3,故两圆订交,所以有两条公切2), r = 1, r = 2,| O O | =,又 1= r- r 5 < r+r 线,应选 C.9.C 解:①②③错,④对.选 C.10.D 分析:利用空间两点间的距离公式.二、填空题11.2.分析:圆心到直线的距离d=3+4+8=3,∴动点 Q 到直线距离的最小值为d-r=3 -1= 2.512.(x- 1)2+ (y- 1)2= 1.分析:绘图后能够看出,圆心在(1, 1),半径为 1.故所求圆的方程为: (x- 1)2+(y- 1)2= 1.13.(x+ 2)2+ (y- 3)2= 4.分析:由于圆心为(- 2, 3),且圆与 y 轴相切,所以圆的半径为2.故所求圆的方程为 (x+ 2)2+ (y- 3)2=4.14.0 或±25 .分析:当两圆相外切时,由| O1O2| = r1+r 2知 4 2+a 2= 6,即 a=±25 .当两圆相内切时,由 | O1O2| = r1- r2(r 1> r2)知 4 2+ a2= 4,即 a=0.∴ a 的值为0或±25 .15.(x- 3)2+ (y+ 5)2= 32.分析:圆的半径即为圆心到直线x- 7y+ 2=0 的距离;16.x+ y- 4=0.分析:圆 x2+ y2-4x- 5= 0 的圆心为 C(2,0), P(3,1)为弦 AB 的中点,所以直线 AB 与直线 CP垂直,即 k AB· k CP=- 1,解得 k AB=- 1,又直线 AB 过 P(3,1),则直线方程为x+ y- 4=0 .三、解答题y17. x2+ y2= 36.分析:设直线与圆交于A,B 两点,则∠ AOB= 120°,设所求圆方程为: x2+ y2= r2,则圆心到直线距离为r152,所5以 r =6,所求圆方程为x2+ y2= 36.4A2O- 5- 25 xr- 4B22- ax- by= 0.第 17题18.x+ y分析:∵圆过原点,∴设圆方程为x2+ y2+ Dx+ Ey= 0.∵圆过 (a, 0)和(0, b),∴a2+Da= 0, b2+ bE=0.又∵ a≠ 0, b≠0 ,∴ D=- a, E=- b.故所求圆方程为x2+ y2-ax- by= 0.19.x2+ y2- 2x- 12= 0.分析:设所求圆的方程为x2+ y2+ Dx+ Ey+ F= 0.∵ A,B 两点在圆上,代入方程整理得:D- 3E- F=10①4D+ 2E+F=- 20②设纵截距为b1,b2,横截距为a1, a2.在圆的方程中,令 x= 0 得 y2+ Ey+ F= 0,∴ b1+b 2=- E;令 y= 0 得 x2+ Dx+ F= 0,∴a 1+ a2=- D.由已知有- D- E= 2.③①②③联立方程组得D=- 2, E=0, F=- 12.所以圆的方程为x2+ y2- 2x-12= 0.20.解:设所求圆的方程为(x- a)2+ (y- b)2= r2.依据题意: r=10 6 =2,圆心的横坐标a=6+2=8,2所以圆的方程可化为:(x- 8)2+ (y- b)2= 4.又由于圆过 (8, 3)点,所以 (8- 8)2+ (3- b)2= 4,解得 b= 5 或 b= 1,所求圆的方程为(x- 8)2+ (y- 5)2= 4 或(x- 8)2+ (y- 1)2= 4.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第四章单元测试题(时间:120分钟总分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知两圆的方程是x2+y2=1和x2+y2-6x-8y+9=0,那么这两个圆的位置关系是( ) A.相离B.相交C.外切D.内切2.过点(2,1)的直线中,被圆x2+y2-2x+4y=0截得的最长弦所在的直线方程为( ) A.3x-y-5=0 B.3x+y-7=0C.x+3y-5=0 D.x-3y+1=03.若直线(1+a)x+y+1=0与圆x2+y2-2x=0相切,则a的值为( ) A.1,-1 B.2,-2C.1 D.-14.经过圆x2+y2=10上一点M(2,6)的切线方程是( )A.x+6y-10=0 x-2y+10=0C.x-6y+10=0 D.2x+6y-10=05.点M(3,-3,1)关于xOz平面的对称点是( )A.(-3,3,-1) B.(-3,-3,-1)C.(3,-3,-1) D.(3,3,1)6.若点A是点B(1,2,3)关于x轴对称的点,点C是点D(2,-2,5)关于y轴对称的点,则|AC|=( )A.5C.107.若直线y=kx+1与圆x2+y2=1相交于P、Q两点,且∠POQ=120°(其中O为坐标原点),则k的值为( )或- 3 和-28.与圆O1:x2+y2+4x-4y+7=0和圆O2:x2+y2-4x-10y+13=0都相切的直线条数是( )A.4 B.3C.2 D.19.直线l将圆x2+y2-2x-4y=0平分,且与直线x+2y=0垂直,则直线l的方程是( ) A.2x-y=0 B.2x-y-2=0C.x+2y-3=0 D.x-2y+3=010.圆x 2+y 2-(4m +2)x -2my +4m 2+4m +1=0的圆心在直线x +y -4=0上,那么圆的面积为( )A .9π B.πC .2π D.由m 的值而定11.当点P 在圆x 2+y 2=1上变动时,它与定点Q (3,0)的连结线段PQ 的中点的轨迹方程是( )A .(x +3)2+y 2=4 B .(x -3)2+y 2=1 C .(2x -3)2+4y 2=1D .(2x +3)2+4y 2=112.曲线y =1+4-x 2与直线y =k (x -2)+4有两个交点,则实数k 的取值范围是( )A .(0,512)B .(512,+∞)C .(13,34]D .(512,34]二、填空题(本大题共4小题,每小题5分,满分20分,把答案填在题中横线上) 13.圆x 2+y 2=1上的点到直线3x +4y -25=0的距离最小值为____________. 14.圆心为(1,1)且与直线x +y =4相切的圆的方程是________.15.方程x 2+y 2+2ax -2ay =0表示的圆,①关于直线y =x 对称;②关于直线x +y =0对称;③其圆心在x 轴上,且过原点;④其圆心在y 轴上,且过原点,其中叙述正确的是__________. 16.直线x +2y =0被曲线x 2+y 2-6x -2y -15=0所截得的弦长等于__________. 三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分)自A (4,0)引圆x 2+y 2=4的割线ABC ,求弦BC 中点P 的轨迹方程.18.(12分)已知圆M :x 2+y 2-2mx +4y +m 2-1=0与圆N :x 2+y 2+2x +2y -2=0相交于A ,B 两点,且这两点平分圆N 的圆周,求圆M 的圆心坐标.19.(12分)已知圆C1:x2+y2-3x-3y+3=0,圆C2:x2+y2-2x-2y=0,求两圆的公共弦所在的直线方程及弦长.20.(12分)已知圆C:x2+y2+2x-4y+3=0,从圆C外一点P向圆引一条切线,切点为M,O为坐标原点,且有|PM|=|PO|,求|PM|的最小值.21.(12分)已知⊙C:(x-3)2+(y-4)2=1,点A(-1,0),B(1,0),点P是圆上动点,求d =|PA|2+|PB|2的最大、最小值及对应的P点坐标.22.(12分)已知曲线C:x2+y2+2kx+(4k+10)y+10k+20=0,其中k≠-1.(1)求证:曲线C表示圆,并且这些圆心都在同一条直线上;(2)证明曲线C过定点;(3)若曲线C与x轴相切,求k的值.答案:1.解析:将圆x 2+y 2-6x -8y +9=0,化为标准方程得(x -3)2+(y -4)2=16.∴两圆的圆心距0-32+0-42=5,又r 1+r 2=5,∴两圆外切.答案:C2.解析:依题意知,所求直线通过圆心(1,-2),由直线的两点式方程得y +21+2=x -12-1,即3x -y -5=0.答案:A3.解析:圆x 2+y 2-2x =0的圆心C (1,0),半径为1,依题意得|1+a +0+1|1+a2+1=1,即|a +2|=a +12+1,平方整理得a =-1.答案:D4.解析:∵点M (2,6)在圆x 2+y 2=10上,k OM =62,∴过点M 的切线的斜率为k =-63, 故切线方程为y -6=-63(x -2),即2x +6y -10=0.答案:D 5.解析:点M (3,-3,1)关于xOz 平面的对称点是(3,3,1).答案:D6.解析:依题意得点A (1,-2,-3),C (-2,-2,-5).∴|AC |=-2-12+-2+22+-5+32=13.答案:B7.解析:由题意知,圆心O (0,0)到直线y =kx +1的距离为12,∴11+k 2=12,∴k =± 3. 答案:C8.解析:两圆的方程配方得,O 1:(x +2)2+(y -2)2=1,O 2:(x -2)2+(y -5)2=16,圆心O 1(-2,2),O 2(2,5),半径r 1=1,r 2=4,∴|O 1O 2|=2+22+5-22=5,r 1+r 2=5.∴|O 1O 2|=r 1+r 2,∴两圆外切,故有3条公切线.答案:B9.解析:依题意知,直线l 过圆心(1,2),斜率k =2,∴l 的方程为y -2=2(x -1),即2x -y =0.答案:A10.解析:∵x 2+y 2-(4m +2)x -2my +4m 2+4m +1=0,∴[x -(2m +1)]2+(y -m )2=m 2.∴圆心(2m +1,m ),半径r =|m |.依题意知2m +1+m -4=0,∴m =1.∴圆的面积S =π×12=π.答案:B11.解析:设P (x 1,y 1),Q (3,0),设线段PQ 中点M 的坐标为(x ,y ),则x =x 1+32,y =y 12,∴x 1=2x -3,y 1=2y .又点P (x 1,y 1)在圆x 2+y 2=1上,∴(2x -3)2+4y 2=1.故线段PQ 中点的轨迹方程为(2x -3)2+4y 2=1.答案:C 12.解析:如图所示,曲线y =1+4-x 2变形为x 2+(y -1)2=4(y ≥1),直线y =k (x -2)+4过定点(2,4),当直线l 与半圆相切时,有|-2k +4-1|k 2+1=2,解得k =512.当直线l 过点(-2,1)时,k =34.因此,k 的取值范围是512<k ≤34.答案:D13.解析:圆心(0,0)到直线3x +4y -25=0的距离为5,∴所求的最小值为4.答案:4 14.解析:r =|1+1-4|2=2,所以圆的方程为(x -1)2+(y -1)2=2.答案:(x -1)2+(y -1)2=215.解析:已知方程配方得,(x +a )2+(y -a )2=2a 2(a ≠0),圆心坐标为(-a ,a ),它在直线x +y =0上,∴已知圆关于直线x +y =0对称.故②正确.答案:②16.解析:由x 2+y 2-6x -2y -15=0,得(x -3)2+(y -1)2=25.圆心(3,1)到直线x +2y =0的距离d =|3+2×1|5= 5.在弦心距、半径、半弦长组成的直角三角形中,由勾股定理得,弦长=2×25-5=4 5.答案:4517.解:解法1:连接OP ,则OP ⊥BC ,设P (x ,y ),当x ≠0时,k OP ·k AP =-1,即y x ·yx -4=-1,即x 2+y 2-4x =0①当x =0时,P 点坐标为(0,0)是方程①的解,∴BC 中点P 的轨迹方程为x 2+y 2-4x =0(在已知圆内).解法2:由解法1知OP ⊥AP ,取OA 中点M ,则M (2,0),|PM |=12|OA |=2,由圆的定义知,P 点轨迹方程是以M (2,0)为圆心,2为半径的圆.故所求的轨迹方程为(x -2)2+y 2=4(在已知圆内).18.解:由圆M 与圆N 的方程易知两圆的圆心分别为M (m ,-2),N (-1,-1).两圆的方程相减得直线AB 的方程为 2(m +1)x -2y -m 2-1=0. ∵A ,B 两点平分圆N 的圆周,∴AB 为圆N 的直径,∴AB 过点N (-1,-1), ∴2(m +1)×(-1)-2×(-1)-m 2-1=0, 解得m =-1.故圆M 的圆心M (-1,-2).19.解:设两圆的交点为A (x 1,y 1),B (x 2,y 2),则A 、B 两点的坐标是方程组⎩⎪⎨⎪⎧x 2+y 2-3x -3y +3=0x 2+y 2-2x -2y =0的解,两方程相减得:x +y -3=0,∵A 、B 两点的坐标都满足该方程, ∴x +y -3=0为所求. 将圆C 2的方程化为标准形式, (x -1)2+(y -1)2=2, ∴圆心C 2(1,1),半径r = 2. 圆心C 2到直线AB 的距离d =|1+1-3|2=12, |AB |=2r 2-d 2=22-12= 6. 即两圆的公共弦长为 6.20.解:如图:PM 为圆C 的切线,则CM ⊥PM ,∴△PMC 为直角三角形,∴|PM |2=|PC |2-|MC |2.设P (x ,y ),C (-1,2),|MC |= 2. ∵|PM |=|PO |,∴x 2+y 2=(x +1)2+(y -2)2-2, 化简得点P 的轨迹方程为:2x -4y +3=0.求|PM |的最小值,即求|PO |的最小值,即求原点O 到直线2x -4y +3=0的距离,代入点到直线的距离公式可求得|PM |最小值为3510.21.解:设点P 的坐标为(x 0,y 0),则d =(x 0+1)2+y 02+(x 0-1)2+y 02=2(x 02+y 02)+2.欲求d 的最大、最小值,只需求u =x 02+y 02的最大、最小值,即求⊙C 上的点到原点距离的平方的最大、最小值.作直线OC ,设其交⊙C 于P 1(x 1,y 1),P 2(x 2,y 2), 如图所示.则u 最小值=|OP 1|2=(|OC |-|P 1C |)2=(5-1)2=16.此时,x 13=y 14=45,∴x 1=125,y 1=165.∴d 的最小值为34,对应点P 1的坐标为⎝ ⎛⎭⎪⎫125,165. 同理可得d 的最大值为74,对应点P 2的坐标为⎝ ⎛⎭⎪⎫185,245. 22.解:(1)证明:原方程可化为(x +k )2+(y +2k +5)2=5(k +1)2∵k ≠-1,∴5(k +1)2>0.故方程表示圆心为(-k ,-2k -5),半径为5|k +1|的圆.设圆心的坐标为(x ,y ),则⎩⎪⎨⎪⎧x =-k ,y =-2k -5,消去k ,得2x -y -5=0.∴这些圆的圆心都在直线2x -y -5=0上. (2)证明:将原方程变形为(2x +4y +10)k +(x 2+y 2+10y +20)=0, ∵上式对于任意k ≠-1恒成立,∴⎩⎪⎨⎪⎧2x +4y +10=0,x 2+y 2+10y +20=0.解得⎩⎪⎨⎪⎧x =1,y =-3.∴曲线C 过定点(1,-3). (3)∵圆C 与x 轴相切,∴圆心(-k ,-2k -5)到x 轴的距离等于半径, 即|-2k -5|=5|k +1|.两边平方,得(2k +5)2=5(k +1)2, ∴k =5±3 5.。

相关文档
最新文档