重庆大学《数值分析》期末考试真题及答案

合集下载

《数值分析》A卷期末考试试题及参考答案

《数值分析》A卷期末考试试题及参考答案

一、单项选择题(每小题3分,共15分) 1、用Simpson 公式求积分1401x dx +⎰的近似值为 ( ).A.2924 B.2429C.65D. 562、已知(1)0.401f =,且用梯形公式计算积分2()f x dx ⎰的近似值10.864T =,若将区间[0,2]二等分,则用递推公式计算近似值2T 等于( ). A.0.824 B.0.401 C.0.864 D. 0.8333、设3()32=+f x x ,则差商0123[,,,]f x x x x 等于( ).A.0B.9C.3D. 64的近似值的绝对误差小于0.01%,要取多少位有效数字( ). A.3 B.4 C.5 D. 25、用二分法求方程()0=f x 在区间[1,2]上的一个实根,若要求准确到小数 点后第四位,则至少二分区间多少次( ).A.12B.13C.14D. 15二、填空题(每小题4分,共40分)1、对于迭代函数2()=(3)ϕ+-x x a x ,要使迭代公式1=()ϕ+k k x x则a 的取值范围为 .2、假设按四舍五入的近似值为2.312,则该近似值的绝对误差限为 .3、迭代公式212(3)=,03++>+k k k k x x a x a x a收敛于α= (0)α>. 4、解方程4()530f x x x =+-=的牛顿迭代公式为 . 5、设()f x 在[1,1]-上具有2阶连续导数,[1,1]x ∀∈-,有1()2f x ''≤,则()f x 在[1,1]-上的线性插值函数1()L x 在点0处的误差限1(0)R ≤______.6、求解微分方程初值问题2(0)1'=-⎧⎨=⎩y xy yy ,0x 1≤≤的向前Euler 格式为 .7、设310131013A -⎛⎫⎪=-- ⎪ ⎪-⎝⎭,则A ∞= .8、用梯形公式计算积分112-⎰dx x 的近似值为 . 9、设12A 21+⎡⎤=⎢⎥⎣⎦a 可作Cholesky 分解,则a 的取值范围为 . 10、设(0)1,(0.5) 1.5,(1)2,(1.5) 2.5,(2) 3.4f f f f f =====,若1=h ,则用三点公式计算(1)'≈f .三、解答题(共45分) 1、给定数据用复化Simpson 公式计算1.381.30()f x dx ⎰的近似值,并估计误差,小数点后保留3位. (8分)2、用直接三角分解法求线性代数方程组⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡432631531321321x x x 的解. (8分) 3、求()λx ,使得迭代公式1()()λ+=+k k k k f x x x x 求方程2()31=+-f x x x 的根的相应迭代序列{}k x 具有平方收敛. (5分)4、已知数据试对数据用最小二乘法求出形如=+y x b的拟合曲线. (8分) 5、已知(2)8f -=,(0)4f =,(2)8=f ,试求二次拉格朗日插值多项式. (8分) 6、设矩阵A 如下,根据谱半径判断用Jacobi 迭代法求解方程组Ax b =的敛散性.(8分)1102111221012A ⎡⎤-⎢⎥⎢⎥⎢⎥=--⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦一、单项选择题(每小题3分,合计15分) 1、A 2、D 3、C 4、C 5、D 二、填空题(每小题3分,合计30分) 1、0<<a ; 2、31102-⨯; 3;4、4135345++-=-+k k k k k x x x x x ; 5、14; 6、1(2)+=+-n n n n n y y h x y y ; 7、5;8、34-; 9、3>a ;10、1.2;三、计算题(合计55分) 1、给定数据用复化Simpson 公式计算 1.381.30()f x dx ⎰的近似值,并估计误差,小数点后保留3位. (8分)解: 401024S [()4()()]6-=++x x f x f x f x ………… 1分 1.38 1.30(3.624 4.20 5.19)6-=+⨯+ 0.341= ………… 2分20422012234S [()4()()][()4()()]66--=+++++x x x xf x f x f x f x f x f x =0.342 ………… 6分2211[]15-≈-I S S S =-⨯40.6710 ………… 8分 2、用直接三角分解法求线性代数方程组⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡432631531321321x x x 的解. (8分) 解:设111213212223313233u u u 123100135l 100u u 136l l 100u ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=*⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦………… 1分 111=u ,212=u ,313=u ,121=l ,131=l 122=u ,223=u ,132=l133=u ,133=l …………6分所以⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=111011001L ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=100210321U …………7分 由b Ly =得Ty )1,1,2(=;由y Ux =得Tx )1,1,1(-=. ………… 8分3、求()λx ,使得迭代公式1()()λ+=+k k k k f x x x x 求方程2()31=+-f x x x 的根的相应迭代序列{}k x 具有平方收敛.(6分)解:要使迭代序列具有平方收敛,则()0ϕ'*=x ………… 2分 而()()()ϕλ=+f x x x x ,即 ………… 3分 2()()()()10()λλλ''**-**+=*f x x x f x x …………4分 而()0*=f x 则有()1()λ'*=-*f x x ………… 5分所以()()23λ'=-=--x f x x ………… 6分4、已知数据试对数据用最小二乘法求出形如=+ay x b的拟合曲线. (8分) 解:因为11=+b x y a a ,令0111,,,====b a a y x x a a y……2分 则有法方程01461061410⎛⎫⎛⎫⎛⎫= ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭a a ……5分解出014,1==-a a ,则1,4=-=-a b ……7分 所以1=4-y x……8分5、已知(2)8f -=,(0)4f =,(2)8=f ,试求二次拉格朗日插值多项式. (7分)解:01()(2)8l x x x =- …………2分 211()(4)4l x x =-- …………4分21()(2)8l x x x =+ …………6分 2012()()(2)()(0)()(2)L x l x f l x f l x f =-++24=+x …………7分6、设矩阵A 如下,根据谱半径判断用Jacobi 迭代法求解方程组Ax b =的敛散性.(8分)1102111221012A ⎡⎤-⎢⎥⎢⎥⎢⎥=--⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦解:100010001D ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,00010021002L ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦,10021002000U ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦…………3分1100211()0221002J B D L U -⎡⎤⎢⎥⎢⎥⎢⎥=+=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦…………5分 2102111()0222102J E B λλλλλλ⎡⎤-⎢⎥⎢⎥⎢⎥-=--=-=⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦…………6分()2J B ρ=…………7分 所以用Jacobi 迭代法求解方程组Ax b =收敛 …………8分。

数值分析试题与答案

数值分析试题与答案

一. 填空题(本大题共4小题,每小题4分,共16分)1.设有节点012,,x x x ,其对应的函数()y f x =的值分别为012,,y y y ,则二次拉格朗日插值基函数0()l x 为 。

2.设()2f x x =,则()f x 关于节点0120,1,3x x x ===的二阶向前差分为 。

3.设110111011A -⎡⎤⎢⎥=--⎢⎥⎢⎥-⎣⎦,233x ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,则1A = ,1x = 。

4. 1n +个节点的高斯求积公式的代数精确度为 。

二.简答题(本大题共3小题,每小题8分,共24分)1. 哪种线性方程组可用平方根法求解?为什么说平方根法计算稳定?2. 什么是不动点迭代法?()x ϕ满足什么条件才能保证不动点存在和不动点迭代序列收敛于()x ϕ的不动点?3. 设n 阶矩阵A 具有n 个特征值且满足123n λλλλ>≥≥≥,请简单说明求解矩阵A 的主特征值和特征向量的算法及流程。

三.求一个次数不高于3的多项式()3P x ,满足下列插值条件:i x 1 2 3 i y 2 4 12 i y '3并估计误差。

(10分)四.试用1,2,4n =的牛顿-科特斯求积公式计算定积分1011I dx x=+⎰。

(10分) 五.用Newton 法求()cos 0f x x x =-=的近似解。

(10分) 六.试用Doolittle 分解法求解方程组:12325610413191963630x x x -⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥-=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥----⎣⎦⎣⎦⎣⎦ (10分)七.请写出雅可比迭代法求解线性方程组123123123202324812231530x x x x x x x x x ++=⎧⎪++=⎨⎪-+=⎩ 的迭代格式,并判断其是否收敛?(10分)八.就初值问题0(0)y yy y λ'=⎧⎨=⎩考察欧拉显式格式的收敛性。

(10分)《数值分析》(A )卷标准答案(2009-2010-1)一. 填空题(每小题3分,共12分) 1. ()1200102()()()()x x x x l x x x x x --=--; 2.7;3. 3,8;4. 2n+1。

数值分析期末试题及答案

数值分析期末试题及答案

数值分析期末试题及答案试题一:1. 简答题(共10分)a) 什么是数值分析?它的主要应用领域是什么?b) 请简要解释迭代法和直接法在数值计算中的区别。

2. 填空题(共10分)a) 欧拉方法是一种______型的数值解法。

b) 二分法是一种______法则。

c) 梯形法则是一种______型的数值积分方法。

3. 计算题(共80分)将以下函数进行数值求解:a) 通过使用二分法求解方程 f(x) = x^3 - 4x - 9 = 0 的近似解。

b) 利用欧拉方法求解微分方程 dy/dx = x^2 + 2x + 1, y(0) = 1 在 x = 1 处的解。

c) 使用梯形法则计算积分∫[0, π/4] sin(x) dx 的近似值。

试题二:1. 简答题(共10分)a) 请解释什么是舍入误差,并描述它在数值计算中的影响。

b) 请解释牛顿插值多项式的概念及其应用。

2. 填空题(共10分)a) 数值稳定性通过______号检查。

b) 龙格-库塔法是一种______计算方法。

c) 零点的迭代法在本质上是将方程______转化为______方程。

3. 计算题(共80分)使用牛顿插值多项式进行以下计算:a) 已知插值节点 (-2, 1), (-1, 1), (0, 2), (1, 4),求在 x = 0.5 处的插值多项式值。

b) 已知插值节点 (0, 1), (1, 2), (3, 7),求插值多项式,并计算在 x = 2 处的值。

c) 使用 4 阶龙格-库塔法求解微分方程 dy/dx = x^2 + 1, y(0) = 1。

答案:试题一:1. a) 数值分析是研究使用数值方法解决数学问题的一门学科。

它的主要应用领域包括数值微积分、数值代数、插值和逼近、求解非线性方程、数值积分和数值解微分方程等。

b) 迭代法和直接法是数值计算中常用的两种方法。

迭代法通过反复迭代逼近解,直到满足所需精度为止;而直接法则通过一系列代数运算直接得到解。

数值分析考试卷及详细答案解答汇总

数值分析考试卷及详细答案解答汇总

姓名 __________ 班级 ___________ 学号 _____________一、选择题i.F (2,5,-3,4)表示多少个机器数(C ).A 64B 129C 257D 256 2. 以下误差公式不正确的是(D )A ・ £(迎 *一七 *)« 5(Xj*)+£(£ *) c ,£(“*•£ *)«|^2 *k (-'l*) + |时住2 *)3. 设° =(、任_1)6,从算法设计原则上定性判断如下在数学上等价的表达式,哪一个在数值计算上将给出°较好的近似值? (D )A ———B 99-70V2C (3-2V2)3D —— (V2 +1)6 (3 + 204. 一个30阶线性方程组,若用Crammer 法则来求解,则有多少次乘法?(A ) A31X29X30! B 30X30X30! C31X30X31! D 31X29X29!5. 用一把有亳米的刻度的米尺来测量桌子的长度,读出的长度1235mm,桌子的精确长度 记为(D ) A 1235mm B 1235-0.5mm C 1235+0.5nun D 1235±0.5mm二、填空1. 构造数值算法的基本思想是 近似替代、离散化、递推化 。

2. 十进制123.3转换成二进制为1111011.0而1。

3. 二进制110010.1001转换成十进制为 50.5625 。

4. 二进制o.ioi 转换成十进制为-o75.已知近似数X *有两位有效数字,则其相对误差限 5%。

6.1112=0.69314718...,精确到 10一’的近似值是 0.693。

* *7. x = ;r = 3.1415926・・・,则“ =3.1416 , =3.141的有效数位分别为5 和 3 __________ o8. 设卅=2.001,严=-0.8030是由精确值x 和y 经四舍五入得到的近似值,则兀* +y *的误差限____________________ o9.设x = 2.3149541•…,取5位有效数字,则所得的近似值卅二2.3150 。

数值分析期末试题及答案

数值分析期末试题及答案

数值分析期末试题及答案一、选择题(每题5分,共20分)1. 在数值分析中,下列哪个算法不是用于求解线性方程组的?A. 高斯消元法B. 牛顿法C. 雅可比法D. 追赶法答案:B2. 插值法中,拉格朗日插值法属于:A. 多项式插值B. 样条插值C. 线性插值D. 非线性插值答案:A3. 以下哪个选项不是数值分析中的误差来源?A. 截断误差B. 舍入误差C. 计算误差D. 测量误差答案:C4. 在数值积分中,梯形法则的误差项是:A. O(h^2)B. O(h^3)C. O(h)D. O(1)答案:A二、填空题(每题5分,共20分)1. 牛顿插值法中,插值多项式的一般形式为:______。

答案:f(x) = a_0 + a_1(x-x_0) + a_2(x-x_0)(x-x_1) + ...2. 牛顿迭代法求解方程的根时,迭代公式为:x_{n+1} = x_n -f(x_n) / __________。

答案:f'(x_n)3. 在数值分析中,______ 用于衡量函数在区间上的近似积分值与真实积分值之间的差异。

答案:误差4. 线性方程组的解法中,______ 法是利用矩阵的LU分解来求解。

答案:克兰特三、解答题(每题10分,共60分)1. 给定函数f(x) = e^(-x),使用拉格朗日插值法,求x = 0.5时的插值值。

解答:首先选取插值节点x_0 = 0, x_1 = 0.5, x_2 = 1,对应的函数值分别为f(0) = 1, f(0.5) = e^(-0.5), f(1) = e^(-1)。

拉格朗日插值多项式为:L(x) = f(0) * (x-0.5)(x-1) / (0-0.5)(0-1) + f(0.5) * (x-0)(x-1) / (0.5-0)(0.5-1) + f(1) * (x-0)(x-0.5) / (1-0)(1-0.5)将x = 0.5代入得:L(0.5) = 1 * (0.5-0.5)(0.5-1) / (0-0.5)(0-1) + e^(-0.5) * (0.5-0)(0.5-1) / (0.5-0)(0.5-1) + e^(-1) * (0.5-0)(0.5-0.5) / (1-0)(1-0.5)计算得L(0.5) = e^(-0.5)。

数值分析试卷及答案

数值分析试卷及答案

数值分析试卷及答案数值分析试卷一、选择题(共10题,每题2分,共计20分)1. 数值分析的研究内容主要包括以下哪几个方面?A. 数值计算方法B. 数值误差C. 数值软件D. 数学分析答:A、B、C2. 下列哪种方法不属于数值积分的基本方法?A. 插值法B. 微积分基本公式C. 数值微积分D. 数值积分公式答:A3. 数值积分的目的是求解什么?A. 函数的导数B. 函数的原函数C. 函数的极值D. 函数的积分答:D4. 数值微分的目的是求解什么?A. 函数的导数B. 函数的原函数C. 函数的极值D. 函数的积分答:A5. 数值微分的基本方法有哪几种?A. 前向差分B. 后向差分C. 中心差分D. 插值法答:A、B、C6. 用数值方法求解方程的基本方法有哪几种?A. 迭代法B. 曲线拟合法C. 插值法D. 数值积分法答:A、B、C7. 用迭代法求方程的根时,当迭代结果满足何条件时可停止迭代?A. 当迭代结果开始发散B. 当迭代结果接近真实解C. 当迭代次数超过一定阈值D. 当迭代结果在一定范围内波动答:B8. 下列哪种插值方法能够确保经过所有给定数据点?A. 拉格朗日插值B. 牛顿插值C. 三次样条插值D. 二次插值答:A、B、C9. 数值解线性方程组的基本方法有哪几种?A. 直接法B. 迭代法C. 插值法D. 拟合法答:A、B10. 下列哪种方程求解方法适用于非线性方程?A. 直接法B. 迭代法C. 插值法D. 曲线拟合法答:B二、填空题(共5题,每题4分,共计20分)1. 数值积分的基本公式是_________。

答:牛顿-科特斯公式2. 数值微分的基本公式是_________。

答:中心差分公式3. 数值积分的误差分为_________误差和_________误差。

答:截断、舍入4. 用插值法求解函数值时,通常采用_________插值。

答:拉格朗日5. 数值解线性方程组的常用迭代法有_________方法和_________方法。

数值分析期末考试题及答案

数值分析期末考试题及答案

数值分析期末考试题及答案一、选择题(每题2分,共20分)1. 在数值分析中,下列哪个算法用于求解线性方程组?A. 牛顿法B. 高斯消元法C. 插值法D. 傅里叶变换答案:B2. 以下哪个选项不是数值分析中的误差类型?A. 舍入误差B. 截断误差C. 测量误差D. 累积误差答案:C3. 多项式插值中,拉格朗日插值法的特点是:A. 插值点必须等距分布B. 插值多项式的次数与插值点的个数相同C. 插值多项式是唯一的D. 插值多项式在插值点处的值都为1答案:B4. 在数值分析中,下列哪个方法用于求解非线性方程?A. 辛普森法则B. 牛顿迭代法C. 欧拉法D. 龙格-库塔法答案:B5. 以下哪个是数值稳定性的指标?A. 收敛性B. 收敛速度C. 条件数D. 误差传播答案:C二、简答题(每题10分,共20分)1. 简述高斯消元法求解线性方程组的基本原理。

答案:高斯消元法是一种直接解法,通过行变换将增广矩阵转换为上三角形式,然后通过回代求解线性方程组。

它包括三个基本操作:行交换、行乘以非零常数、行相加。

2. 解释什么是数值稳定性,并举例说明。

答案:数值稳定性是指数值解对输入数据小的扰动不敏感的性质。

例如,某些数值方法在计算过程中可能会放大舍入误差,导致结果不可靠,这样的方法就被认为是数值不稳定的。

三、计算题(每题15分,共30分)1. 给定线性方程组:\[\begin{align*}x + 2y - z &= 4 \\3x - y + 2z &= 1 \\-x + y + z &= 2\end{align*}\]使用高斯消元法求解该方程组,并给出解。

答案:首先将增广矩阵转换为上三角形式,然后回代求解,得到\( x = 1, y = 2, z = 1 \)。

2. 给定函数 \( f(x) = x^2 - 3x + 2 \),使用拉格朗日插值法在\( x = 0, 1, 2 \) 处插值,并求出插值多项式。

数值分析试题(卷)与答案解析

数值分析试题(卷)与答案解析

数值分析试题(卷)与答案解析数值分析试题一、填空题(2 0×2′)1.322A1, X23设 x=0.231 是精确值 x*=0.229 的近似值,则 x 有 2 位有效数字。

2. 若 f(x)=x7- x3+ 1 ,则 f[20 ,21,2 2,23 ,24,25,26,2 7]= 1 ,f[2 0,2 1,22,23 ,24,25 ,26 ,27,28 ]= 0 。

3.设,‖A‖∞= ___5 ____,‖X‖∞=__ 3_____,‖AX ‖∞≤ 15_ __ 。

4.非线性方程 f x)=0的迭代函数 x x 在有解区间满足’x)| <1,则使用该迭(=( ) | (代函数的迭代解法一定是局部收敛的。

5.区间 [a,b]上的三次样条插值函数 S(x)在[a,b]上具有直到 2 阶的连续导数。

6.当插值节点为等距分布时,若所求节点靠近首节点,应该选用等距节点下牛顿差商公式的前插公式,若所求节点靠近尾节点,应该选用等距节点下牛顿差商公式的后插公式;如果要估计结果的舍入误差,应该选用插值公式中的拉格朗日插值公式。

7.拉格朗日插值公式中f(xi)的系数 ai(x)的特点是:a i ( x)1;所以i当系数 ai(x)满足ai(x)>1 ,计算时不会放大f(xi)的误差。

8.要使 20 的近似值的相对误差小于0.1% ,至少要取 4 位有效数字。

9.对任意初始向量(0) 及任意向量g ,线性方程组的迭代公式x(k+1)=Bx(k)+ (=0,1, ?)X g k收敛于方程组的精确解x*的充分必要条件是(B)<1 。

10.由下列数据所确定的插值多项式的次数最高是 5 。

x 0 0.5 1 1.5 2 2.5y=f(x) -2 -1.75 -1 0.25 2 4.2511.牛顿下山法的下山条件为|f(xn+1)|<|f(xn)| 。

12. 线性方程组的松弛迭代法是通过逐渐减少残差ri ( i=0,1, ? ,n)来实现的,其中的残差r = (b -a x-a x-? -a x )/aii, (i=0,1,,n)。

《数值分析》练习题及答案解析

《数值分析》练习题及答案解析

《数值分析》练习题及答案解析一、单选题1. 以下误差公式不正确的是( D )A .()1212x x x x ∆-≈∆-∆B .()1212x x x x ∆+≈∆+∆C .()122112x x x x x x ∆≈∆+∆D .1122()x x x x ∆≈∆-∆ 2. 已知等距节点的插值型求积公式()()352kkk f x dx A f x =≈∑⎰,那么3kk A==∑( C )A .1 B. 2 C.3 D. 4 3.辛卜生公式的余项为( c )A .()()32880b a f η-''-B .()()312b a f η-''-C .()()()542880b a f η--D .()()()452880b a f η--4. 用紧凑格式对矩阵4222222312A -⎡⎤⎢⎥=-⎢⎥⎢⎥--⎣⎦进行的三角分解,则22r =( A ) A .1 B .12C .–1D .–25. 通过点()()0011,,,x y x y 的拉格朗日插值基函数()()01,l x l x 满足( D ) A .()00l x =0,()110l x = B . ()00l x =0,()111l x = C .()00l x =1,()111l x = D . ()00l x =1,()111l x =6. 用二分法求方程()0f x =在区间[],a b 上的根,若给定误差限ε,则计算二分次数的公式是n ≥( D )A .ln()ln 1ln 2b a ε-++ B. ln()ln 1ln 2b a ε-+-C.ln()ln 1ln 2b a ε--+ D. ln()ln 1ln 2b a ε--- 7.若用列主元消去法求解下列线性方程组,其主元必定在系数矩阵主对角线上的方程组是( B )A .123123123104025261x x x x x x x x x -+=⎧⎪-+=⎨⎪-+=-⎩ B 。

重庆大学研究生数值分析试题解析

重庆大学研究生数值分析试题解析
二、(13分)设函数(x)=x2-sinx-1 (1)试证方程(x)=0有唯一正根; (2)构造一种收敛的迭代格式xk=(xk),k=0,1,2,…计
算精度为=10-2的近似根; (3)此迭代法的收敛阶是多少?说明之.
解 (1)因为0<x1时,(x)<0,x2时,(x)>0,所以(x)仅在(1,2)内有零点,而当1<x<2 时,(x)>0,故(x)单调.因此方程(x)=0有唯一正根,且在区间(1,2)内.
(3)因为0<</2,所以() 故,此迭代法线性收敛(收敛阶为1).
0
cos / 2 1 sin
三、(14分)设线性方程组
4x1 x2 2x3 1 x1 5x2 x3 2 2x1 x2 6x3 3
(1)写出Jacobi法和SOR法的迭代格式(分量形式); (2)讨论这两种迭代法的收敛性. (3)取初值x(0)=(0,0,0)T,若用Jacobi迭代法计算时, 预估误差x*-x(10) (取三位有效数字).
R(பைடு நூலகம்) f (4) ( x ) x(x 1)2 (x 2)
4!
五、(12分)试确定参数A,B,C及,使数值积分公式
2
2
f
(x)dx
Af
( )
Bf
(0)
Cf
( )
有尽可能高的代数精度,并问代数精度是多少?它是否是Gauss公式?
解 令公式对(x)=1,x,x2,x3,x4都精确成立,则有 4=A+B+C, 0=A-C, 16/3=A2+C2, 0=A3-C3 64/5=A4+C4 ,解得:A=C=10/9,B=16/9,=(12/5)1/2
考试题解析

数值分析期末试题

数值分析期末试题

数值分析期末试题一、填空题(20102=⨯分)(1)设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=283012251A ,则=∞A ______13_______。

(2)对于方程组⎩⎨⎧=-=-34101522121x x x x ,Jacobi 迭代法的迭代矩阵是=J B ⎥⎦⎤⎢⎣⎡05.25.20。

(3)3*x 的相对误差约是*x 的相对误差的31倍。

(4)求方程)(x f x =根的牛顿迭代公式是)('1)(1n n n n n x f x f x x x +--=+。

(5)设1)(3-+=x x x f ,则差商=]3,2,1,0[f 1 。

(6)设n n ⨯矩阵G 的特征值是n λλλ,,,21 ,则矩阵G 的谱半径=)(G ρi ni λ≤≤1max 。

(7)已知⎥⎦⎤⎢⎣⎡=1021A ,则条件数=∞)(A Cond 9(8)为了提高数值计算精度,当正数x 充分大时,应将)1l n (2--x x 改写为)1ln(2++-x x 。

(9)n 个求积节点的插值型求积公式的代数精确度至少为1-n 次。

(10)拟合三点))(,(11x f x ,))(,(22x f x ,))(,(33x f x 的水平直线是)(3131∑==i i x f y 。

二、(10分)证明:方程组⎪⎩⎪⎨⎧=-+=++=+-12112321321321x x x x x x x x x 使用Jacobi 迭代法求解不收敛性。

证明:Jacobi 迭代法的迭代矩阵为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=05.05.01015.05.00J BJ B 的特征多项式为)25.1(5.05.0115.05.0)det(2+=---=-λλλλλλj B IJ B 的特征值为01=λ,i 25.12=λ,i 25.13-=λ,故25.1)(=J B ρ>1,因而迭代法不收敛性。

三、(10分)定义内积⎰=1)()(),(dx x g x f g f试在{}x SpanH ,11=中寻求对于x x f =)(的最佳平方逼近元素)(x p 。

(完整)数值分析学期期末考试试题与答案(A),推荐文档

(完整)数值分析学期期末考试试题与答案(A),推荐文档

期末考试试卷(A 卷)2007学年第二学期 考试科目: 数值分析 考试时间:120 分钟学号 姓名 年级专业一、判断题(每小题2分,共10分)1. 用计算机求1000100011n n=∑时,应按照n 从小到大的顺序相加。

( )2. 为了减少误差,进行计算。

( )3. 用数值微分公式中求导数值时,步长越小计算就越精确。

( )4. 采用龙格-库塔法求解常微分方程的初值问题时,公式阶数越高,数值解越精确。

( )5. 用迭代法解线性方程组时,迭代能否收敛与初始向量的选择、系数矩阵及其演变方式有关,与常数项无关。

( )二、填空题(每空2分,共36分)1. 已知数a 的有效数为0.01,则它的绝对误差限为________,相对误差限为_________.2. 设1010021,5,1301A x -⎡⎤⎡⎤⎢⎥⎢⎥=-=-⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦则1A =_____,2x =______,Ax ∞=_____.3. 已知53()245,f x x x x =+-则[1,1,0]f -= ,[3,2,1,1,2,3]f ---= .4. 为使求积公式11231()((0)f x dx A f A f A f -≈++⎰的代数精度尽量高,应使1A = ,2A = ,3A = ,此时公式具有 次的代数精度。

5. n 阶方阵A 的谱半径()A ρ与它的任意一种范数A 的关系是 .6. 用迭代法解线性方程组AX B =时,使迭代公式(1)()(0,1,2,)k k XMX N k +=+=K 产生的向量序列{}()k X收敛的充分必要条件是 .7. 使用消元法解线性方程组AX B =时,系数矩阵A 可以分解为下三角矩阵L 和上三角矩阵U 的乘积,即.A LU = 若采用高斯消元法解AX B =,其中4221A -⎡⎤=⎢⎥⎣⎦,则L =_______________,U =______________;若使用克劳特消元法解AX B =,则11u =____;若使用平方根方法解AX B =,则11l 与11u 的大小关系为_____(选填:>,<,=,不一定)。

数值分析试卷及答案

数值分析试卷及答案

数值分析试卷及答案**注意:以下是一份数值分析试卷及答案,试卷和答案分别按照题目和解答的格式排版,以确保整洁美观,语句通顺。

**---数值分析试卷一、选择题(每题2分,共20分)1. 数值分析是研究如何用计算机处理数值计算问题的一门学科。

以下哪个选项不是数值分析的应用领域?A. 金融风险评估B. 天气预测C. 数据挖掘D. 图像处理2. 在数值计算中,稳定性是指算法对于输入数据的微小扰动具有较好的性质。

以下哪个算法是稳定的?A. 高斯消元法B. 牛顿迭代法C. 不动点迭代法D. 雅可比迭代法二、填空题(每题3分,共30分)1. 下面关于插值多项式的说法中,不正确的是:一般情况下,插值多项式的次数等于插值点的个数减1。

2. 线性方程组中,如果系数矩阵A是奇异的,则该方程组可能无解或有无穷多解。

......三、解答题(共50分)1. 请给出用割线法求解非线性方程 f(x) = 0 的迭代格式,并选择合适的初始值进行计算。

解:割线法的迭代公式为:x_(k+1) = x_k - f(x_k) * (x_k - x_(k-1)) / (f(x_k) - f(x_(k-1)))选择初始值 x0 = 1,x1 = 2 进行计算:迭代1次得到:x2 = x1 - f(x1) * (x1 - x0) / (f(x1) - f(x0))迭代2次得到:x3 = x2 - f(x2) * (x2 - x1) / (f(x2) - f(x1))继续迭代直至满足精度要求。

2. 对于一个给定的线性方程组,高斯消元法可以用来求解其解空间中的向量。

请简要描述高斯消元法的基本思想并给出求解步骤。

高斯消元法的基本思想是通过一系列的行变换将线性方程组化为上三角形式,然后再通过回代求解方程组的未知数。

求解步骤如下:步骤1:将方程组表示为增广矩阵形式,即将系数矩阵和常数向量连接在一起。

步骤2:从第一行开始,选取第一个非零元素作为主元,然后通过行变换将其它行的该列元素消去。

数值分析计算方法期末考试(一) +答案

数值分析计算方法期末考试(一) +答案
3. 设 f (x) x3 , 对 h 0.1 , 用中心差商计算 f (2) __________________.
4. 计算积分 1 x dx , 取 4 位有效数字, 用梯形公式计算求得的值为_______,用辛普森 0.5 公式计算求得的值为_____________.
5. 设 f (x) 可微, 求方程 x f (x) 根的牛顿迭代格式是______________________.
=
2
x
3 k
+1 ,
(k
3xk2 − 3
= 0,
1,
2,) ,
计算得
x0 = 2, x1 = 1.8889, x2 = 1.8795, 由 | x2 − x* |≈ 1.148 ×10−4 < 5 ×10−5 ,
所以 x ≈ 1.8795
(2) 用弦截法:
xk +1
= xk

f
(
xk
f )
(xk −f
1 x2 式,并用它分别计算 x 1 处的值.
3 2. 求三个不同的节点 x0 , x1, x2 和常数 c ,使求积公式
1
1 f (x) dx c[ f (x0 ) f (x1) f (x2 ) ]
具有尽可能高的代数精确度.
3. 用最小二乘法求下列数据的线性拟合函数 y ax b
xi -2
Lagrange 插值多项式为
f (−1) = 1 , f (0) = 1, f (1) = 1 . 由 此 确 定 的 二 次
2
2
L2 (x)
=
x(x −1) (−1)(−1 −1)
f
(−1) +
(x + 1)(x −1) (0 + 1)(0 −1)

数值分析报告期末考试复习题及其问题详解

数值分析报告期末考试复习题及其问题详解

数值分析期末考试复习题及其答案1. 已知325413.0,325413*2*1==X X 都有6位有效数字,求绝对误差限。

(4分)解:由已知可知,n=65.01021,0,6,10325413.0016*1=⨯==-=⨯=ε绝对误差限n k k X 2分 620*21021,6,0,10325413.0-⨯=-=-=⨯=ε绝对误差限n k k X 2分2. 已知⎢⎢⎢⎣⎡=001A 220- ⎥⎥⎥⎦⎤440求21,,A A A ∞ (6分) 解:{},88,4,1max 1==A 1分 {},66,6,1max ==∞A 1分 ()A A A T max 2λ= 1分⎢⎢⎢⎣⎡=001A A T 420 ⎥⎥⎥⎦⎤-420⎢⎢⎢⎣⎡001 220- ⎥⎥⎥⎦⎤440=⎢⎢⎢⎣⎡001 080 ⎥⎥⎥⎦⎤3200 2分 {}3232,8,1max )(max ==A A T λ 1分 24322==A3. 设32)()(a x x f -= (6分) ① 写出f(x)=0解的Newton 迭代格式② 当a 为何值时,)(1k k x x ϕ=+ (k=0,1……)产生的序列{}k x 收敛于2解:①Newton 迭代格式为:xa x x x ax a x x a x x x f x f x x k k k k k k k k k k 665)(665)(6)()(')(22321+=+=---=-=+ϕ 3分②时迭代收敛即当222,11210)2(',665)('2<<-<-=-=a a x a x ϕϕ 3分4. 给定线性方程组Ax=b ,其中:⎢⎣⎡=13A ⎥⎦⎤22,⎥⎦⎤⎢⎣⎡-=13b 用迭代公式)()()()1(k k k Ax b x x -+=+α(k=0,1……)求解Ax=b ,问取什么实数α,可使迭代收敛(8分)解:所给迭代公式的迭代矩阵为⎥⎦⎤--⎢⎣⎡--=-=ααααα21231A I B 2分其特征方程为 0)21(2)31(=----=-αλαααλλB I 2分即,解得αλαλ41,121-=-= 2分 要使其满足题意,须使1)(<B ρ,当且仅当5.00<<α 2分5. 设方程Ax=b ,其中⎢⎢⎢⎣⎡=211A 212 ⎥⎥⎥⎦⎤-112,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=765b 试讨论解此方程的Jacobi 迭代法的收敛性,并建立Gauss-Seidel 迭代格式 (9分)解:U D L A ++=⎢⎢⎢⎣⎡--=+-=-210)(1U L D B J 202-- ⎥⎥⎥⎦⎤-012 3分0,03213=====-λλλλλJ B I 2分即10)(<=J B ρ,由此可知Jacobi 迭代收敛 1分 Gauss-Seidel 迭代格式:⎪⎩⎪⎨⎧--=--=+-=++++++)1(2)1(1)1(3)(3)1(1)1(2)(3)(2)1(12276225k k k k k k k k k x x x x x x x x x (k=0,1,2,3……) 3分6. 用Doolittle 分解计算下列3个线性代数方程组:i i b Ax =(i=1,2,3)其中⎢⎢⎢⎣⎡=222A 331 ⎥⎥⎥⎦⎤421,23121,,974x b x b b ==⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡= (12分)解:①11b Ax =⎢⎢⎢⎣⎡222 331 ⎥⎥⎥⎦⎤421⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=9741x A=⎢⎢⎢⎣⎡111 110 ⎥⎥⎥⎦⎤100⎢⎢⎢⎣⎡002 021 ⎥⎥⎥⎦⎤211=LU 3分 由Ly=b1,即⎢⎢⎢⎣⎡111 110 ⎥⎥⎥⎦⎤100y=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡974 得y=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡234 1分 由Ux1=y ,即⎢⎢⎢⎣⎡002 021 ⎥⎥⎥⎦⎤211x1=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡234 得x1=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡111 2分 ②22b Ax =⎢⎢⎢⎣⎡222 331 ⎥⎥⎥⎦⎤421x2=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡111 由Ly=b2=x1,即⎢⎢⎢⎣⎡111 110 ⎥⎥⎥⎦⎤100y=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡111 得y=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡001 1分 由Ux2=y ,即⎢⎢⎢⎣⎡002 021 ⎥⎥⎥⎦⎤211x2=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡001 得x2=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡005.0 2分 ③33b Ax =⎢⎢⎢⎣⎡222 331 ⎥⎥⎥⎦⎤421x3=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡005.0由Ly=b3=x2,即⎢⎢⎢⎣⎡111 110 ⎥⎥⎥⎦⎤100y=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡005.0 得y=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-05.05.0 1分 由Ux3=y ,即⎢⎢⎢⎣⎡002 021 ⎥⎥⎥⎦⎤211x3=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-05.05.0 得x3=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-025.0375.0 2分7. 已知函数y=f(x)有关数据如下:要求一次数不超过3的H 插值多项式,使'11'33)(,)(y x H y x H i i == (6分)解:作重点的差分表,如下:3分21021101011001003))(](,,,[))(](,,[)](,[][)(x x x x x x x x f x x x x x x x f x x x x f x f x H --+--+-+= =-1+(x+1)-x(x+1)+2x.x(x+1)=232x x + 3分8. 有如下函数表:试计算此列表函数的差分表,并利用Newton 前插公式给出它的插值多项式 (7分)解:由已知条件可作差分表,3分i ih x x i =+=0 (i=0,1,2,3)为等距插值节点,则Newton 向前插值公式为: 033210022100003!3))()((!2))((!1)()(f h x x x x x x f h x x x x f h x x f x N ∆---+∆--+∆-+==4+5x+x(x-1)=442++x x 4分9. 求f(x)=x 在[-1,1]上的二次最佳平方逼近多项式)(2x P ,并求出平方误差 (8分)解:令22102)(x a x a a x P ++= 2分取m=1, n=x, k=2x ,计算得: (m,m)=dx ⎰-111=0 (m,n)=dx x ⎰-11=1 (m,k)= dx x ⎰-112=0(n,k)= dx x ⎰-113=0.5 (k,k)= dx x ⎰-114=0 (m,y)= dx x ⎰-11=1(n,y)=dx x⎰-112=0 (k,y)= dx x ⎰-113=0.5得方程组:⎪⎩⎪⎨⎧==+=5.05.005.011201a a a a 3分解之得c a a c a 2,1,210-=== (c 为任意实数,且不为零)即二次最佳平方逼近多项式222)(cx x c x P -+= 1分 平方误差:32),(22222222=-=-=∑=i i i y a fp f ϕδ 2分10. 已知如下数据:用复合梯形公式,复合Simpson 公式计算⎰+=10214dx x π的近似值(保留小数点后三位) (8分)解:用复合梯形公式:)}1()]87()43()85()21()83()41()81([2)0({1618f f f f f f f f f T ++++++++==3.139 4分用复合Simpson 公式: )}1()]43()21()41([2)]87()85()83()81([4)0({2414f f f f f f f f f S ++++++++==3.142 4分11. 计算积分⎰=20sin πxdx I ,若用复合Simpson 公式要使误差不超过51021-⨯,问区间]2,0[π要分为多少等分?若改用复合梯形公式达到同样精确度,区间]2,0[π应分为多少等分? (10分)解: ①由Simpson 公式余项及x x f x x f sin )(,sin )()4(==得544)4(2041021)1()4(360)(max )4(1802)(-≤≤⨯≤=≤n x f n f R x n πππππ 2分即08.5,6654≥≥n n ,取n=6 2分即区间]2,0[π分为12等分可使误差不超过51021-⨯ 1分②对梯形公式同样1)(''max 20≤≤≤x f x π,由余项公式得51021)2(122)(-⨯≤≤n f R n ππ2分即255,2.254=≥n n 取 2分即区间]2,0[π分为510等分可使误差不超过51021-⨯ 1分12. 用改进Euler 格式求解初值问题:⎩⎨⎧==++1)1(0sin 2'y x y y y 要求取步长h 为0.1,计算y(1.1)的近似值 (保留小数点后三位)[提示:sin1=0.84,sin1.1=0.89] (6分)解:改进Euler 格式为:⎪⎩⎪⎨⎧++=+=+-++-+)],(),([2),(1111n n n n n n n n n n y x f y x f hy y y x hf y y 2分 于是有⎪⎩⎪⎨⎧+++-=+-=+-++-+-+)sin sin (05.0)sin (1.012112121n n n n n n n n n n n n n x y y x y y y y x y y y y (n=0,1,2……) 2分 由y(1)=0y =1,计算得⎪⎩⎪⎨⎧=≈=+-=-838.0)1.1(816.0)1sin 11(1.01121y y y 2分 即y(1.1)的近似值为0.83813. ][],[],,[lim ],[),,(],,[)(0'000000'x f x x f x x f x x f b a x b a C x f x x ==∈∈→证明:定义:设(4分)证明:]['],[],[],[lim ][][lim]['00000000000x f x x f x x f x x f x x x f x f x f x x x x ===--=→→故可证出 4分14. 证明:设nn RA ⨯∈,⋅为任意矩阵范数,则A A ≤)(ρ (6分)证明:设λ为A 的按模最大特征值,x 为相对应的特征向量,则有Ax=λx 1分 且λρ=)(A ,若λ是实数,则x 也是实数,得Ax x =λ 1分而x x ⋅=λλ x A x ,⋅≤⋅⋅≤λ故x A Ax 2分由于A x 0x ≤≠λ得到,两边除以 1分故A A ≤)(ρ 1分 当λ是复数时,一般来说x 也是复数,上述结论依旧成立。

(完整)数值分析学期期末考试试题与答案(A),推荐文档

(完整)数值分析学期期末考试试题与答案(A),推荐文档

期末考试试卷( A 卷)2007 学年第二学期 考试科目: 数值分析 考试时间: 120 分钟学号 姓名 年级专业100011. 用计算机求11000时,应按照 n 从小到大的顺序相加。

n1n2. 为了减少误差 ,应将表达式 2001 1999 改写为 2进行计算。

( )2001 19993. 用数值微分公式中求导数值时,步长越小计算就越精确。

( )4. 采用龙格-库塔法求解常微分方程的初值问题时, 公式阶数越高,数值解越精确。

( )5. 用迭代法解线性方程组时, 迭代能否收敛与初始向量的选择、 系数矩阵及其演变方式有关,与常数项无关。

( ) 二、填空每空 2 分,共 36 分)1. 已知数 a 的有效数为 0.01 ,则它的绝对误差限为 _______ ,相对误差限为 _1 0 1 02. 设 A0 2 1 ,x 5 ,则 A 1____________________________ _, x 2 ______ ,Ax1 3 0 13. 已知 f (x) 2x 54x 35x,则 f[ 1,1,0] , f[ 3, 2, 1,1,2,3] .14. 为使求积公式 f (x)dx A 1f ( 3) A 2f (0) A 3f ( 3)的代数精度尽量高,应使13 3A 1 , A 2 , A 3,此时公式具有 次的代数精度。

5. n 阶方阵 A 的谱半径 ( A)与它的任意一种范数 A 的关系是 .6. 用迭代法解线性方程组 AX B 时,使迭代公式 X (k 1)MX (k)N (k 0,1,2,K )产 生的向量序列X (k)收敛的充分必要条件是 .7. 使用消元法解线性方程组AX B时,系数矩阵A可以分解为下三角矩阵L 和上三角矩阵U 的乘积,即A LU. 若采用高斯消元法解AX B,其中A 4 2,则21L ___________ ,U ____________ ;若使用克劳特消元法解AX B ,则u11 _______ ;若使用平方根方法解AX B,则l11与u11的大小关系为(选填:>,<,=,不一定)。

数值分析试题及答案

数值分析试题及答案

数值分析试题及答案一、单项选择题(每题3分,共30分)1. 线性代数中,矩阵A的逆矩阵记作()。

A. A^TB. A^-1C. A^+D. A*答案:B2. 插值法中,拉格朗日插值多项式的基函数是()。

A. 多项式B. 指数函数C. 正弦函数D. 余弦函数答案:A3. 在数值积分中,梯形规则的误差是()阶的。

A. O(h^2)B. O(h^3)C. O(h)D. O(1/h)答案:A4. 求解线性方程组时,高斯消元法的基本操作不包括()。

A. 行交换B. 行乘以非零常数C. 行加行D. 行除以非零常数答案:D5. 非线性方程f(x)=0的根的迭代法中,收敛的必要条件是()。

A. f'(x)≠0B. f'(x)=0C. |f'(x)|<1D. |f'(x)|>1答案:C6. 利用牛顿法求解非线性方程的根时,需要计算()。

A. 函数值B. 函数值和导数值C. 函数值和二阶导数值D. 函数值、一阶导数值和二阶导数值答案:B7. 矩阵的特征值和特征向量是()问题中的重要概念。

A. 线性方程组B. 特征值问题C. 线性规划D. 非线性方程组答案:B8. 在数值分析中,条件数是衡量矩阵()的量。

A. 稳定性B. 可逆性C. 正交性D. 稀疏性答案:A9. 利用龙格现象说明,高阶插值多项式在区间端点附近可能产生()。

A. 振荡B. 收敛C. 稳定D. 单调答案:A10. 雅可比迭代法和高斯-塞德尔迭代法都是求解线性方程组的()方法。

A. 直接B. 迭代C. 精确D. 近似答案:B二、填空题(每题4分,共20分)11. 线性代数中,矩阵A的行列式记作________。

答案:det(A) 或 |A|12. 插值法中,牛顿插值多项式的基函数是________。

答案:差商13. 在数值积分中,辛普森规则的误差是________阶的。

答案:O(h^4)14. 求解线性方程组时,迭代法的基本思想是从一个初始近似解出发,通过不断________来逼近精确解。

数值分析期末试题及答案

数值分析期末试题及答案

数值分析期末考试试题一、单项选择题(每小题3分,共15分)1. 3.142和3.141分别作为π的近似数具有( )和( )位有效数字. A .4和3 B .3和2 C .3和4 D .4和42. 已知求积公式()()211211()(2)636f x dx f Af f ≈++⎰,则A =( )A . 16B .13C .12D .233. 通过点()()0011,,,x y x y 的拉格朗日插值基函数()()01,l x l x 满足( )A .()00l x =0,()110l x = B .()00l x =0,()111l x =C .()00l x =1,()111l x = D . ()00l x =1,()111l x =4. 设求方程()0f x =的根的牛顿法收敛,则它具有( )敛速。

A .超线性B .平方C .线性D .三次5. 用列主元消元法解线性方程组1231231220223332x x x x x x x x ++=⎧⎪++=⎨⎪--=⎩ 作第一次消元后得到的第3个方程( ).A .232x x -+= B .232 1.5 3.5x x -+=C .2323x x -+= D .230.5 1.5x x -=-单项选择题答案1.A2.D3.D4.C5.B得 分 评卷人二、填空题(每小题3分,共15分)1. 设TX )4,3,2(-=, 则=1||||X ,2||||X = .2. 一阶均差()01,f x x =3. 已知3n =时,科茨系数()()()33301213,88C C C ===,那么()33C = 4. 因为方程()420x f x x =-+=在区间[]1,2上满足 ,所以()0f x =在区间内有根。

5. 取步长0.1h =,用欧拉法解初值问题()211yy yx y ⎧'=+⎪⎨⎪=⎩的计算公式 .填空题答案1. 9和292.()()0101f x f x x x --3. 18 4. ()()120f f < 5. ()1200.11.1,0,1,210.11k k y y k k y +⎧⎛⎫⎪ ⎪=+⎪ ⎪=+⎨⎝⎭⎪=⎪⎩得 分 评卷人三、计算题(每题15分,共60分)1. 已知函数211y x =+的一组数据:求分段线性插值函数,并计算()1.5f 的近似值.计算题1.答案()101x L x -=-()212x L x -=⨯-所以分段线性插值函数为()10.50.80.3x x L x x x ⎧-∈⎪=⎨-⎪⎩()1.50.8L =2. 已知线性方程组1231231231027.21028.35 4.2x x x x x x x x x --=⎧⎪-+-=⎨⎪--+=⎩(1) 写出雅可比迭代公式、高斯-塞德尔迭代公式;(2) 对于初始值()()00,0,0X =,应用雅可比迭代公式、高斯-塞德尔迭代公式分别计算()1X(保留小数点后五位数字).计算题2.答案1.解 原方程组同解变形为 1232133120.10.20.720.10.20.830.20.20.84x x x x x x x x x =++⎧⎪=-+⎨⎪=++⎩雅可比迭代公式为()()()()()()()()()1123121313120.10.20.720.10.20.830.20.20.84m m m m m m m m m x x x x x x x x x +++⎧=++⎪⎪=-+⎨⎪=++⎪⎩(0,1...)m = 高斯-塞德尔迭代法公式()()()()()()()()()1123112131113120.10.20.720.10.20.830.20.20.84m m m m m m m m m x x x x x x x x x ++++++⎧=++⎪⎪=-+⎨⎪=++⎪⎩ (0,1...)m =用雅可比迭代公式得()()10.72000,0.83000,0.84000X =用高斯-塞德尔迭代公式得()()10.72000,0.90200,1.16440X =3. 用牛顿法求方程3310x x --=在[]1,2之间的近似根 (1)请指出为什么初值应取2?(2)请用牛顿法求出近似根,精确到0.0001.计算题3.答案4. 写出梯形公式和辛卜生公式,并用来分别计算积分1011dx x +⎰.计算题4.答案确定下列求积公式中的待定系数,并证明确定后的求积公式具有3次代数精确度()()()()1010hhf x dx A f h A f A f h --=-++⎰证明题答案一、 填空(共20分,每题2分)1. 设2.3149541...x *=,取5位有效数字,则所得的近似值x= .2.设一阶差商()()()21122114,321f x f x f x x x x --===---,()()()322332615,422f x f x f x x x x --===--则二阶差商()123,,______f x x x =3. 设(2,3,1)TX =--, 则2||||X = ,=∞||||X 。

重庆大学《数值分析》期末考试真题及答案讲课讲稿

重庆大学《数值分析》期末考试真题及答案讲课讲稿

重庆大学《数值分析》期末考试真题及答案一.填空题:1. 若求积公式对任意不超过 m 次的多项式精确成立,而对 m+1 次多项式不成立,则称此公式的代数精度为m 次.2. 高斯消元法求解线性方程组的的过程中若主元素为零会发生 计算中断 ;.主元素的绝对值太小会发生 误差增大 .3. 当A 具有对角线优势且 不可约 时,线性方程组Ax=b 用简单迭代法和塞德尔迭代法均收敛.4. 求解常微分方程初值问题的欧拉方法是 1 阶格式; 标准龙格库塔法是 4 阶格式.5. 一个n 阶牛顿-柯特斯公式至少有 n 次代数精度,当n 偶数时,此公式可以有n+1 次代数精度.6. 相近数 相减会扩大相对误差,有效数字越多,相对误差 越大 .二计算题: 1. 线性方程组:⎪⎩⎪⎨⎧-=++-=+-=++5.1526235.333321321321x x x x x x x x x 1) 对系数阵作LU 分解,写出L 阵和U 阵;⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎭⎫⎝⎛--=79/123/5413314/33/113/11U L 2) 求出此方程组的解.)5.0,1,2('-=x2. 线性方程组:⎪⎩⎪⎨⎧=++-=++=++332212325223321321321x x x x x x x x x 1)对系数阵作LU 分解,写出L 阵和U 阵;⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫⎝⎛=573235223152321321//////U L2)求出此方程组的解.),,('-=133x3) 此方程组能否用用简单迭代法和高斯塞德尔迭代法求解.0732223222305322303>=>=>,,A 对称正定,用高斯-塞德尔迭代法收敛;..,.,//////)(,6667033331027163432323232323232131=-==+-=-⎪⎪⎪⎭⎫ ⎝⎛-=+-=-λλλλλJ J B I U L D B 用简单迭代法不收敛3. 设f (x )= x 4, 以-1,0,1,2为插值节点,1) 试写出f (x )的三次拉格朗日插值多项式P 3(x )及其插值余项R 3(x );6)2)(1())()(())()(()(3020103210---=------=x x x x x x x x x x x x x x x x l 2)2)(1)(1())()(())()(()(3121013201--+=------=x x x x x x x x x x x x x x x x l 2)2)(1())()(())()(()(3212023102-+-=------=x x x x x x x x x x x x x x x x l 6)1)(1())()(())()(()(2313032103-+=------=x x x x x x x x x x x x x x x x l )(8)()()(3203x l x l x l x P ++=())2)(1)(1()2)(1()1(!4)()4(43--+=--+=x x x x x x x x x x R 2) 求出f (1.5)的近似值,并估计误差.0625.55.1)5.1(4==f-0.93755.05.05.25.1)2)(1)(1()5.1(3=-⨯⨯⨯=--+=x x x x R 6)9375.0(0625.5)5.1(3=--=P或:0.3125610.9375 0625.0)5.1(8)5.1()5.1()5.1(3203⨯++=++=l l l P =6 -0.937560625.5)5.1()5.1()5.1(33=-=-=P f R4 设x x f ln )(=, 以1,2,3为插值节点,1) 试写出f (x )的二次拉格朗日插值多项式P 2(x )及其插值余项R 2(x );2322010210))(())(())(()(--=----=x x x x x x x x x x x l ))(())(())(()(312101201---=----=x x x x x x x x x x x l2211202102))(())(())(()(--=----=x x x x x x x x x x x l98080124711438009861693102212...)(.)(.)(-+-=+=x xx l x l x P 23112312333ln ()()()()()()()!R x x x x x x x ξξ'''=---=---2) 求出)(ln e p e 2≈的近似值,与精确值1比较,并用误差公式估计误差限.0135010135122.,ln ,.)(===R e e p231123123331171830718302817011593ln ()()()()()()()!..(.).R e e e e e e e ξξ'''=---=---≤⨯⨯⨯-=5 有积分公式()()2)0(2)(33f c f b f a dx x f ⨯+⨯+-⨯=⎰-,c b a ,,是待定参数,试确定c b a ,,,使得上述公式有尽可能高的代数精度,并确定代数精度为多少.⎰⎰⎰---==+==+-==++==332333318)(40)(2612,1,0,)(dx x b a xdx b a dx c b a k x x f k)]()()([)(/,/33023343234933f f f dx x f c b a ++-====∴⎰- 至少有2次代数精度.[][]10872072435486,024024430,)(33433343=++≠==++-===⎰⎰--dx x dx x x x x f此公式代数精度为3. 6 有积分公式)]2(3)0(2)2(3[43)(33f f f dx x f ++-=⎰- 1) 试确定代数精度为多少;2) 用它计算⎰-33dx e x,精确到2位小数,与3333---=⎰e e dx e x 作比较.[][][][][]10872072435486,02402443012012431860643032343614,3,2,1,0,)(3343333323333=++≠==++-==++==++-==++====⎰⎰⎰⎰⎰-----dx x dx x dx x xdx dx k x x f k代数精度为3.04.2043.18]323[43333320332=-==++≈⎰⎰----e e dx e e e e dx e x x7. 某企业产值与供电负荷增长情况如下表:1) 试用一次多项式拟合出经验公式bx a y +=;⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛415521186062625..b a 解之: 0006101811.,.ab =-=0061018110..-=x y8. 测试某型号水泵得到扬程(米)和出水量(立米/小时)的对照表如下:1)试用一次多项式拟合出经验公式x ba y +=;bX a y x X +==,/1⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛12365491404514515....b a 解之: 59953043864.,.ba ==-38644953059./.-=x y2) 计算拟合值填入上表的空格,看是否与实际值基本吻合; 3) 某用户使用此型号水泵时扬程为2.6米,试估计此时出水量?67183864462953059.../.=-=y9 方程01=-+-x xe x有一个实根:1)用区间对分法搜索确定根所在的区间 (a,b ),使 b-a ≤0.2;(0.6,0.8)1) 用某种迭代法求出此正根,精确到5位有效数字65905.0*≈x10 方程x e x-=1) 证明它在(0,1)区间有且只有一个实根; 2) 证明Λ,,,101==-+k e x k x k ,在(0,1)区间内收敛;3) 用牛顿迭代法求出此根,精确到5位有效数字1),.)(,)(,)(063201100>=-==-=-f f e x x f x(0,1)区间有一个实根;)(,)(x f e x f x 011>>+='-是严格增函数,只有一个实根。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一.填空题:1. 若求积公式对任意不超过 m 次的多项式精确成立,而对 m+1 次多项式不成立,则称此公式的代数精度为m 次.2. 高斯消元法求解线性方程组的的过程中若主元素为零会发生 计算中断 ;. 主元素的绝对值太小会发生 误差增大 .3. )4. 当A 具有对角线优势且 不可约 时,线性方程组Ax=b 用简单迭代法和塞德尔迭代法均收敛.5. 求解常微分方程初值问题的欧拉方法是 1 阶格式; 标准龙格库塔法是 4阶格式.6. 一个n 阶牛顿-柯特斯公式至少有 n 次代数精度,当n 偶数时,此公式可以有 n+1 次代数精度.、7. 相近数 相减会扩大相对误差,有效数字越多,相对误差 越大 .二计算题:1. 线性方程组:⎪⎩⎪⎨⎧-=++-=+-=++5.1526235.333321321321x x x x x x x x x 1) ¥2) 对系数阵作LU 分解,写出L 阵和U 阵;⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎭⎫⎝⎛--=79/123/5413314/33/113/11U L 3) 求出此方程组的解.)5.0,1,2('-=x2. 线性方程组:—⎪⎩⎪⎨⎧=++-=++=++332212325223321321321x x x x x x x x x 1)对系数阵作LU 分解,写出L 阵和U 阵;⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=573235223152321321//////U L2)求出此方程组的解.),,('-=133x4) #5)此方程组能否用用简单迭代法和高斯塞德尔迭代法求解.0732223222305322303>=>=>,,A 对称正定,用高斯-塞德尔迭代法收敛;..,.,//////)(,6667033331027163432323232323232131=-==+-=-⎪⎪⎪⎭⎫ ⎝⎛-=+-=-λλλλλJ J B I U L D B 用简单迭代法不收敛>3. 设f (x )= x 4, 以-1,0,1,2为插值节点,1) 试写出f (x )的三次拉格朗日插值多项式P 3(x )及其插值余项R 3(x );6)2)(1())()(())()(()(3020103210---=------=x x x x x x x x x x x x x x x x l2)2)(1)(1())()(())()(()(3121013201--+=------=x x x x x x x x x x x x x x x x l 2)2)(1())()(())()(()(3212023102-+-=------=x x x x x x x x x x x x x x x x l 6)1)(1())()(())()(()(2313032103-+=------=x x x x x x x x x x x x x x x x l )(8)()()(3203x l x l x l x P ++=,())2)(1)(1()2)(1()1(!4)()4(43--+=--+=x x x x x x x x x x R 2) 求出f 的近似值,并估计误差.0625.55.1)5.1(4==f-0.93755.05.05.25.1)2)(1)(1()5.1(3=-⨯⨯⨯=--+=x x x x R 6)9375.0(0625.5)5.1(3=--=P或:0.3125610.9375 0625.0)5.1(8)5.1()5.1()5.1(3203⨯++=++=l l l P =6!-0.937560625.5)5.1()5.1()5.1(33=-=-=P f R4 设x x f ln )(=, 以1,2,3为插值节点,1) 试写出f (x )的二次拉格朗日插值多项式P 2(x )及其插值余项R 2(x );2322010210))(())(())(()(--=----=x x x x x x x x x x x l ))(())(())(()(312101201---=----=x x x x x x x x x x x l2211202102))(())(())(()(--=----=x x x x x x x x x x x l98080124711438009861693102212...)(.)(.)(-+-=+=x xx l x l x P 23112312333ln ()()()()()()()!R x x x x x x x ξξ'''=---=---2)《3)求出)(ln e p e 2≈的近似值,与精确值1比较,并用误差公式估计误差限.0135010135122.,ln ,.)(===R e e p231123123331171830718302817011593ln ()()()()()()()!..(.).R e e e e e e e ξξ'''=---=---≤⨯⨯⨯-=5 有积分公式()()2)0(2)(33f c f b f a dx x f ⨯+⨯+-⨯=⎰-,c b a ,,是待定参数,》试确定c b a ,,,使得上述公式有尽可能高的代数精度,并确定代数精度为多少.⎰⎰⎰---==+==+-==++==332333318)(40)(2612,1,0,)(dx x b a xdx b a dx c b a k x x f k)]()()([)(/,/33023343234933f f f dx x f c b a ++-====∴⎰- 至少有2次代数精度.}[][]10872072435486,024024430,)(33433343=++≠==++-===⎰⎰--dx x dx x x x x f此公式代数精度为3. 6 有积分公式)]2(3)0(2)2(3[43)(33f f f dx x f ++-=⎰- 1) 试确定代数精度为多少;2) 用它计算⎰-33dx e x,精确到2位小数,与3333---=⎰e e dx e x 作比较.\[][][][][]10872072435486,02402443012012431860643032343614,3,2,1,0,)(3343333323333=++≠==++-==++==++-==++====⎰⎰⎰⎰⎰-----dx x dx x dx x xdx dx k x x f k代数精度为3.04.2043.18]323[43333320332=-==++≈⎰⎰----e e dx e e e e dx e x x7. 某企业产值与供电负荷增长情况如下表:【1) 试用一次多项式拟合出经验公式bx a y +=;]正规方程组:⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛415521186062625..b a 解之:0006101811.,.a b =-=0061018110..-=x y8. 测试某型号水泵得到扬程(米)和出水量(立米/小时)的对照表如下:。

1)试用一次多项式拟合出经验公式xba y +=;[bXa y x X +==,/1⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛12365491404514515....b a —解之:59953043864.,.b a ==-38644953059./.-=x y2) 计算拟合值填入上表的空格,看是否与实际值基本吻合; 3) 某用户使用此型号水泵时扬程为米,试估计此时出水量67183864462953059.../.=-=y~9 方程01=-+-x xe x有一个实根:1)用区间对分法搜索确定根所在的区间 (a,b ),使 b-a ≤;,1) 用某种迭代法求出此正根,精确到5位有效数字65905.0*≈x^10 方程x e x-=1) 证明它在(0,1)区间有且只有一个实根; 2) 证明 ,,,101==-+k e x k x k ,在(0,1)区间内收敛;3) 用牛顿迭代法求出此根,精确到5位有效数字1),.)(,)(,)(063201100>=-==-=-f f e x x f x;(0,1)区间有一个实根;)(,)(x f e x f x 011>>+='-是严格增函数,只有一个实根。

2)),(,)(,)(101∈<=-='==---x e e x e x x x x x ϕϕ),(),()(1011⊆∈-e x ϕ迭代收敛;3),,kkx x k k k xee x x x e x --+-+--==-101取500.=x567105671056630503210.,.,.,.====x x x x11. 用欧拉方法求解常微分方程初值问题,取h=,计算精确到4位小数.⎪⎩⎪⎨⎧=-+='0021122)(y y x y 0212012012341,,,,,k k k k y y y h y k x +=⎧⎪⎛⎫⎨=+-= ⎪⎪+⎝⎭⎩12 微分方程初值问题⎩⎨⎧=-='102)(y y y ,用改进的欧拉方法求).(),.(4020y y 的近似值,(即h=,计算二步),并与准确解: 211x y +=比较.计算精确到4位小数.()[]⎪⎩⎪⎨⎧=++-=-===+++,,,...,)()(101020201220112010k y y y y y y y h y k k k k k k kx k y k Y(x k ) 0 1其他13 若钢珠的的直径d 的相对误差为%,则它的体积V 的相对误差将为多少。

(假定钢珠为标准的球形) 解:323336200120010033026,(),()()()()().,()()...%r d d V V d d d V V d d V d d dV d d V Vππεπεεεππε'==''≈⨯=⨯=⨯==⨯÷==14 一个园柱体的工件,直径d 为,高h 为,则它的体积V 的近似值、误差和相对误差为多少。

解:()()22222222431421025400000033006422102540000251025100243644433006243624360073873833006,.....;()()()......,..().()..%.r d hV d h V mm d h V dh d d h V mm V V V πππππεεεεε=≈=⨯⨯===+=⨯⨯⨯+⨯==±====。

相关文档
最新文档