激光原理
激光原理
激光原理LASER (light amplification by stimulated emission of radiation )受激发射光放大,源于爱因斯坦在量子理论的基础上提出的一个概念:在物质与辐射场的相互作用中。
构成物质的原子或者是分子可以再光子的激励之下产生光子的受激发射或吸收。
根据这个理论,如果能使构成物质的粒子状态的状态离开波尔兹慢热平衡,实现所谓的粒子数反转;那么就可以利用这种状态的物质对光进行放大。
与此同时,物理学家同时证明:受激发射的光子和激励光子具有相同的性质——方向、频率、相位、偏振。
在此基础上,后来的科学家设想能够利用能够利用这样的性质产生单色性较好的光源。
在上个世纪50年代的时候,电子和微波技术的发展产生了将电磁波谱向光频拓展的需求。
这样,一批勇于探索和创新的科学家,提出了一系列的理论来实现这种极为纯的光源:美国的汤斯(Charles H. Towns )前苏联的科学家巴索夫和普罗霍洛夫创造性的继承和发展爱因斯坦的理论,提出了利用原子分子的受激发射光放大来放大电磁波。
1958年汤斯和他的合作者肖洛产生了利用远超过光波长度的光学谐振腔来实现这种放大。
1960年7月美国的梅曼演示了第一台红宝石激光器。
这种光具有完全不同于普通光的性质:单色性、方向性、相干性。
激光的物理原理受激辐射:在普朗克与1900年用量子化假设成功解释了黑体辐射分布,以及波尔在1913年提出原子中电子的运动状态量化的假设基础上,爱因斯坦从两字的概念出发,重新的推到了普朗克公式,提出了两个极为重要的概念:受激辐射和自发辐射。
我们知道在物质的原子中存在着分离的能级,在一个热平衡态全同粒子系统中,处于各个能级的粒子数是按照一定规律分布的——波尔兹慢分布。
T k E E b e n n )21(12--=(N1、n2分别是处于E2E1能级上的粒子数)一般来说,处于高能级的粒子数要少于低能级。
在一个热平衡系统中,粒子并不是一种静态的平衡,而是在不断地运动着的。
激光原理及应用PPT课件
激光治疗
通过激光照射病变组织,达到治 疗目的,如激光治疗近视、祛斑
等。
激光手术
利用激光进行微创手术,具有出 血少、恢复快、精度高等优点, 如激光心脏手术、激光眼科手术
等。
激光诊断
利用激光光谱技术对人体组织进 行检测和分析,为疾病诊断提供
依据。
军事国防领域应用
激光雷达
利用激光雷达进行目标探测、识别和跟踪,具有高分辨率、抗干 扰能力强等特点。
微型化与集成化
发展微型激光器,实现与其他光电器件的集成,推动光电子集成技 术的发展。
新型激光技术
研究新型激光技术,如光纤激光器、化学激光器等,拓展激光器的 应用领域。
高功率、高效率、高稳定性挑战
高功率激光器
提高激光器的输出功率,满足高能激光武器、激光聚变等领域的 需求。
高效率激光器
优化激光器的能量转换效率,降低能耗,提高激光器的实用性。
02
03
工作原理
通过激励固体增益介质 (如晶体、玻璃等)中的 粒子,实现粒子数反转并 产生激光。
特点
结构紧凑、效率高、光束 质量好。
应用领域
工业加工、医疗、科研等。
气体激光器
工作原理
利用气体放电激励气体分子或原子, 使其产生能级跃迁并辐射出激光。
特点
应用领域
激光切割、焊接、打孔等工业应用。
输出功率大、光束质量好、效率高。
激光原理及应用PPT课 件
contents
目录
• 激光原理基本概念 • 激光技术发展历程及现状 • 激光器类型及其特点分析 • 激光在各领域应用案例分析 • 激光安全问题及防护措施探讨 • 未来发展趋势预测与挑战分析
激光原理基本概念
激光原理及应用ppt课件
激光调制前
激光调制后
4.机械运动系统
• 基片送入后,高精度伺服电机在微机的控制下转动振镜的角度;
• 激光束通过扫描镜的反射,由f-θ场镜聚焦到基片的边缘位置上;
• 在微机上通过专用的控制软件输入总的清边面积、激光束的行走速度 和需要重复的次数;
E2
E2
E1
E1
自发辐射跃迁
自发辐射光子
c. 受激辐射(激光): 当频率为=ν(E2-E1)/h的光子入射时,会引发粒子以一定的概率,迅 速地从能级E2跃迁到能级E1,同时辐射一个与外来光子频率、相位、偏振态以及传播方向都 相同的光子。
E2
E2
入射光子
E1
E1
受激辐射光子 入射光子
受激辐射跃迁 3-2 粒子数反转
(Top flat)
高斯
多元高斯
• 减少脉冲时间,高的峰值能量,更多的能量密度
Less pulse time, high peak power more energy density
能量密度=功率/频率/光斑面积
pulse
1.1uW/um=220W/20KHz/900um2
Hz
4.重叠率计算——Overlap
全反光镜
反光镜: (越75%
)
Shutter
激光器外形 接光纤
Q-Switch
晶体腔
功率计
激光器内部分解图(P4)
Q-Switch 半反镜
晶体腔 光纤耦合器
镜头聚焦原理——凸透镜
激光刻划原理——以P1为例
光斑
1.Beam Shaping (激光束形状)
• 一般的激光都为高斯分布的波形,即高斯光束,为实现特殊的制程需求,需要转变 成为扁平式波形的平顶光束,即Top Hat,通过透镜组改变光束质量和形状产生。
激光原理及在生活中的应用
激光原理及在生活中的应用激光的英文名是laster,是”Light amplification by stimulated emission of radiation”的缩写,意为“受激辐射式光频放大”。
激光的三个基本组成为:泵浦源.谐振腔.增益媒质,世界上第一台激光器是美国科学家梅曼于1960年研制成功的。
激光是通过原子受激辐射发光和共振放大形成的。
原子具有一些不连续分布的能电子,这些能电子在最靠原子核的轨道上转动时稳定的,这时原子所处的能级为基态。
当有外界能量传入,则电子运行轨道半径扩大,原子内能增加,被激发到能量更高能级,这时称之为激发态或高能态。
被激发到高能态的原子是不稳定的,总是力图回到低能级去,原子从高能级到低能级的过程成为跃迁。
原子在跃迁时其能量差以光的形式辐射出来,这就是原子发光,又称荧光。
如果在原子跃迁时受到外来光子的诱发,原子就会发射一个与入射光子的频率.相位.传播方向.偏振方向完全相同的光子,这就是受激辐射的光。
原子被激发到高能级后会很快跃迁回低能级,它停在高能级的时间称为原子在该能级的平均寿命。
原子在外来能量的激发下,使处在高能级的原子数大于低能级的原子数,这种状态称为粒子数反转。
这是,在外来光子的刺激下产生受激辐射发光,这些光子光学谐振腔的作用产生放大,受激辐射越来越强,光束密度不断增大,形成了激光。
激光与其他光相比,具有以下的特点:高亮度,高方向性,高单色性和高干涉性。
这些特点使激光得到了广泛的应用,激光在材料加工中的应用就是其应用的一个重要领域。
由于这四大特性,因此,就给激光加工带来了如下传统加工所不具备的优势,由于是无接触加工,并且激光束的能量及移动速度均可调,因此可以实现多种加工。
还可用来加工多种金属.非金属,特别是可以加工高硬度.高脆性及高熔点的材料。
激光加工过程中无刀具磨损,无切削力作用于工件,加工的工件热影响区小,工件热变形小,后续加工量小。
激光可通过透明介质对密闭容器内的工件进行各种加工。
第一章 激光的基本原理及其特性
1913年波尔提出了原子中电子运动状态量子化假设。
1917年爱因斯坦从光量子概念出发,重新推导了黑体
辐射的普朗克公式,在推导中提出了两个极为重要地概
念:受激辐射和自发辐射。
(第一章)
物理与电子工程学院
《激光原理与技术》
原子的能级
• 基态
激发态
电子只能处于分立的能级,电磁辐射与物质的相互作用将 导致物质中电子能级的变化,当吸收或辐射能量时,可在 特 定的能级间跃迁;该能量为这两个能级的能量差,并且 该能量差唯一地决定了电磁辐射的频率: ∆Ed t 0
受激跃迁几 率
(第一章)
物理与电子工程学院
《激光原理与技术》
受激吸收的特点
原子的受激吸收几率与外界辐射场的频率有关 原子的受激吸收几率与受激爱因斯坦系数有关 原子的受激吸收几率与外来光辐射能量密度有关
(第一章)
物理与电子工程学院
《激光原理与技术》
光的受激辐射
入射光
h E 2 E 1
(t ) N u 0 e 1 Au 1 1
N u 0e
t
u
u u
Au i
物理与电子工程学院
《激光原理与技术》
自发辐射的特点
原子的自发辐射与原子的本身性质有关,与外界 辐射场无关 自发辐射的随机性,自发辐射光的相位、偏振态 和传播方向杂乱无章
光源发出的光的单色性、定向性很差。没有确定 的偏振状态。
原子数按能级分布
热平衡时,单位体积内处于各个能级上的原子数分布
玻尔兹曼分布律:
N2 N1
e
( E 2 E1 ) kT
高 能 级 低 能 级
物理与电子工程学院
激光原理总结
激光原理总结⼀共四章§Chapter 1爱因斯坦系数/激光产⽣条件/激光结构/激光优点1. ⾃发辐射: 上能级粒⼦,⾃发地从E2能级跃迁到E1能级,并辐射出光⼦2. 受激辐射: 上能级粒⼦,遇到能量等于能级差的光⼦,在光⼦激励下,粒⼦从E2能级跃迁到E1能级,并辐射出⼀个与⼊射光⼦完全相同的光⼦3. 受激吸收: 下能级粒⼦,遇到能量等于能级差的光⼦,在光⼦激励下,粒⼦从E1能级跃迁到E2能级,并吸收⼀个⼊射光⼦三个爱因斯坦系数:dn21=A21n2dt(⾃发辐射)dn′21=B21n2ρv dt(受激辐射)dn12=B12n1ρv dt(受激吸收)三个爱因斯坦系数的关系:A21 B21=8πhν3 c3B12g1=B21g2粒⼦数反转分布状态:dn′21 dn12=g1n2g2n1>1受激辐射⼤于受激吸收,打破波尔兹曼分布。
此时可称“得到增益”。
⽽普通情况下,受激辐射/⾃发辐射较⼩(计算参看讲义)。
总结:产⽣激光的基本条件是“粒⼦数反转分布和增⼤⼀⽅向上的光能密度”激光器的基本结构:1. ⼯作物质:增益介质/粒⼦数反转/上能级为亚稳态2. 激励装置:能源/光/电3. 谐振腔:反馈/光强/模式三能级系统:亚稳态寿命长,阈值⾼,转换效率低。
如红宝⽯激光器四能级系统:阈值低,连续运转,⼤功率。
如He-Ne激光器的优点:1. 相⼲性好:受激辐射的光具有相⼲性,相⼲长度L c=λ2Δλ,相⼲时间τ=L cc2. ⽅向性好:谐振腔3. 单⾊性好4. 亮度⾼:受激辐射的光强⼤§Chapter 2稳定性/模式分析/⾼斯光束腔的分类参考Ch2-P1光腔的稳定性条件:傍轴模在腔内往返⽆限多次不逸出腔外,数学形式如下g 1=1−L R 1,g 2=1−L R 20≤g 1g 2≤1按照稳定性得到三种腔♥0<g 1g 2<1稳定腔♥g 1g 2=0org 1g 2=1临界腔♥g 1g 2<0org 1g 2>1⾮稳腔 ♥ ♥ ♥ ♥♥ ♥ bbx ♥ nnx 图解法判断腔的稳定条件Ch2-P2⽤上述条件判断各种腔的稳定性,注意曲率R 的⽅向"凹⾯向着腔内时(凹⾯镜),R >0;凸⾯向着腔内时(凸⾯镜),R <0"。
激光原理_第1章_激光的基本理论
3.简并态—— 同一能级的各状态称简并态 例:计算1s和2p态的简并度
原子状态 n l
ml ms 简并度
1s
1
00
f1=2
1
2p
21
0
f2=6
-1
18
第一章 激光的基本原理
二、玻耳兹曼分布及粒子数反转
1. 玻耳兹曼分布(热平衡分布)
(19.77eV) 10-6 S
23
四、黑体辐射及其公式 1、描述黑体辐射的典型物理量
①单色能量密度 ,T:单位体积内,频率处于 附近
单位频率间隔内的电磁辐射能量,它是频率和温度的函 数。
注:寻求 的,T 函数形式进而确定单色辐出度的形式是当
时黑体辐射研究者们的一大目标!
②单光位波频模率密间度隔内n的:光腔波内模单式位数体。积中频率处于 附 近
n f e 2
2 (E2 E1 ) / kbT
讨论(设f i= f j) :
n1 f1
(1)如果E2 - E1很小,且满足 △E = E2 - E1<<kbT,则
n2 e (E2 E1 ) / kbT 1
n1
19
第一章 激光的基本原理
n f e 2
2 ( E2 E1 ) / kbT
第一章 激光的基本原理
前言
光具有波粒二象性,在描述光的性质是,可 以从其粒子性和光的波动性两个方面来描述光的 性质,进而引入了光波模式和光子模式来描述;
在激光产生的过程中,受激辐射和自发辐射 是其产生的基本原理,同时分析要实现光的受激 辐射放大需要满足集居数反转(粒子数反转)。
1
第一章 激光的基本原理
激光原理与技术PPT(很全面)
激光束质量对应用的影响
分析激光束质量对激光加工、光通信、激光雷达等应用的影响。
激光束的控制与整形
激光束控制技术
探讨通过光学元件、机械装置等手段对激光束进行控制的原理和 方法。
激光束整形技术
介绍将激光束整形为特定形状(如平顶、环形等)的原理和方法, 以及整形后激光束的特性。
激光束控制与整形的应用
阐述激光束控制与整形在材料加工、生物医学、光通信等领域的应 用实例。
激光Байду номын сангаас眼睛的危害
激光束直接照射眼睛,可能导致视网膜烧伤、视力下降甚至失明。防护措施包 括佩戴合适的激光防护眼镜,避免直接观看激光束。
激光对皮肤的危害
激光照射皮肤可能导致烧伤、色素沉着、皮肤癌等。防护措施包括穿戴防护服 、使用防晒霜等。
激光安全标准与防护措施
激光安全标准
国际电工委员会(IEC)和美国国家标准学会(ANSI)等制定了激光安全标准, 对激光产品的分类、标识、使用等做出了规定。
液体激光器
染料激光器
使用有机染料作为增益介质,通 过泵浦光激发染料分子产生激光 ,具有宽调谐范围和短脉冲输出 能力。
液体激光核聚变
利用高功率激光束照射含有氘、 氚等聚变燃料的靶丸,实现核聚 变反应,是惯性约束聚变研究的 重要手段。
半导体激光器
边发射半导体激光器
电流注入半导体PN结,电子与空穴 复合释放能量形成激光输出,具有体 积小、效率高、寿命长等优点。
激光手术
利用激光的高精度和可控性,进行微 创手术操作,如眼科手术、皮肤科手 术等。
生物医学成像
利用激光的高亮度和方向性,对人体 内部组织进行光学成像,以辅助医学 诊断和治疗。
05
激光测量与检测技术
激光原理第一章1.5
四、激光的时间相干性和单色性
1、时间相干性描述复习 相干时间 c 相干长度 Lc 线宽 (单色性)
1 Lc c c c 来自2、关系:单色性越好,则时间相干性越好。 3、单色性、时间相干性与激光模式的关系 (1)对单横模TEM00工作的激光器,激光的单色性和 时间相干性取决于纵模结构和模式的频带宽度。 纵模数越少,单模线宽越窄,则单色性和时间相 干性越好。
太原理工大学物理与光电工程学院
TEM 00
基横模
三、激光的空间相干性和方向性
1、关系:方向性越好,则光束的空间相干性越好 。
方向性描述:用光束发散角。发散角越小,光束 方向性越好。 ①对普通光:只有当光束发散角小于某一限宽即:
x
时,光束才具有明显的空间相干性。
②对理想的平面波: 0 ,故具有完全的空间 相干性。 2、影响激光空间相干性和方向性的因素
B
2h
2
n
光源的单色亮度正比于光子简并度,而激光 具有极高的光子简并度。
太原理工大学物理与光电工程学院
太原理工大学物理与光电工程学院
太原理工大学物理与光电工程学院
⑴横模的影响 ①基横模TEM00的发散角小,方向性好。高次横模 的发散角大,方向性差。 ②工作在单横模,则方向性好,同时,同一模式内 的光波场是空间相干的;工作在多横模,则方向性 差,同时,不同模式内的光波场是空间非相干的。 ⑵工作物质的均匀程度、光腔类型、腔长、激励方 式、激光器的工作状态的影响 ⑶光衍射效应的影响 激光所能达到的最小光束发 散角不能小于激光通过输出 孔径时的衍射极限角。
1.22 m 2a 2a
2a:光腔输出孔径
太原理工大学物理与光电工程学院
激光原理及应用
5、医疗领域应用
(1)激光美容:激光是通过产生高能量,聚焦精确,具有 一定穿透力的单色光,作用于人体组织而在局部产生高热量 从而达到去除或破坏目标组织的目的。
各种不同波长的脉冲激光可治 疗各种血管性皮肤病及色素沉着, 如雀斑、老年斑等,以及去纹身、 洗眼线、洗眉等;而近年来一些 新型的激光仪在进行除皱、磨皮 换肤、治疗打鼾,美白牙齿等方 面取得了良好的疗效,为激光外 科开辟越来越广阔的领域。
激光控制核聚地质变勘探
4、信息领域应用
激光通信
光纤通信
5、医疗领域应用
激光在医学上的应用主要分三类:激光生命科 学研究、激光诊断、激光治疗
我激们光国生家命的科学科研学究工主作要者包在括激 光两育方种面方内面容做,了其一大是量激而光有育成种效;的 工其作二,就近是十以年激来光, 作我为国分用析激和光检育测种 方的法工已具培来养研出究棉生花物分、子油和菜细、胞水的稻、 小结麦构、、大性豆质、、玉功能米以、及果生树物、物家理蚕 等和优生良物品化种学和的品反系应近机4制0余。种。
2012年12月13日
3、方向性强——激光束的发散角很小,几乎是一平 行的光线。 4、亮度高——激光的亮度可比普通光源高出1012- 1019倍,是目前最亮的光源,强激光甚至可产生上 亿度的高温。
10
由于激光具有方向性好、亮度高、 单色性好、相干性好等特点!!! 因此,激光在许多领域中都得到广泛 应用......
激光的应用,按照激光探头是否与激光作用的物
质接触,分为接触式和非接触式两种工作模式;其应 用领域,主要有工业、医疗、商业、科研、信息和军 事六个领域。
激光原理(第1章)
tc = Dt = 1/Dv
上式说明,光源单色性越好,则相干时间越长。
物理光学中曾经证明:在图1.1.4中,由线度为Dx的光源A照明的
S1和S2两点的光波场具有明显空间相干性的条件为 DxLx/R ≤ (1.1.18) (1.1.19) (1.1.20)
式中 为光源波长。距离光源R处的相干面积 Ac 可表示为
上 述 基 本 关 系 式 (1.1.1) 和 (1.1.3) 后 来 为 康 普 顿 (Arthur Compton)散射实验所证实(1923年),并在现代量子电动力学中 得到理论解释。量子电动力学从理论上把光的电磁(波动)理论 和光子(微粒)理论在电磁场的量子化描述的基础上统一起来, 从而在理论上阐明了光的波粒二象性。在这种描述中,任意电 磁场可看作是一系列单色平面电磁波(它们以波矢k为标志)的线 性叠加,或一系列电磁波的本征模式(或本征状态)的叠加。但 每个本征模式所具有的能量是量子化的,即可表为基元能量hv 的整数倍。本征模式的动量也可表为基元动量 hkl 的整数倍。 这种具有基元能量hvl和基元动量hkl的物质单元就称为属于第 l 个本征模式(或状态)的光子。具有相同能量和动量的光子彼此 间不可区分,因而处于同一模式(或状态)。每个模式内的光子 数目是没有限制的。
空间称为相空间,相空间内的一点表示质点的一个运动状态。
当宏观质点沿某一方向(例如:x轴)运动时,它的状态变化对应 于二维相空间(x, Px)的一条连续曲线,如图1.1.2 所示。但是,
光子的运动状态和经典宏观质点有着本质的区别,它受量子力
学测不准关系的制约。
测不准关系表明:微观粒子的坐标和动量不能同时准确测定,
hv
式中 h=6.626×10-34Js,称为普朗克常数。
激光原理
25
26
充分条件:大于阈值电流; F-P 腔满足正反馈条件,相位应满足
2nL q c 2nL
2
2nL
27
半导体激光器的特性 (1)波长
h E g hc 1.24 Eg Eg 1eV 1.6 10
19 34
J J S
28
h 6.628 10
1
一、 光辐射的量子理论基础
(1) 受激吸收
处于低能级态的电子在一定条件 下的辐射场作用下,吸收一个光 子, 跃迁到高能级态。
(2) 自发辐射
处于高能级态的原子自发跃迁到低 能级态,并同时向外辐射出一个光 子(自发辐射只与原子本身性质有 关) 。
(3) 受激辐射
处于高能级态的原子在一定条件 下的辐射场作用下,跃迁到低能 级态,并同时辐射出一个与入射 光子完全一样的光子。
11
8、谐振腔
谐振腔的作用是限制输出模式,同时还对激光频率、功率、光 束发散角及相干性都有影响。
光学谐振腔结构
12
谐振腔的作用
(1) 使激光具有极好的方向性( 沿轴线)
(2) 增强光放大作用( 延长了工作物质 ) (3) 使激光具有极好的单色性( 选频 )
13
9、起振条件--阈值条件, 稳定振荡条件--增益饱和效应
8
6、工作物质、亚稳态
前面分析了产生激光是受激辐射,而粒子数反转 是产生激光的一个必要条件,激光的产生必须选择合 适的工作介质,可以是气体、液体、固体或半导体。 在这种介质中可以实现粒子数反转,以制造获得激光 的必要条件。显然亚稳态能级的存在对实现粒子数反 转是非常必须的。
9
激光物质是三能级或四能级结构
2
二、激光的产生 1、普通光源的发光——受激吸收和自发 辐射
《激光原理》PPT课件
对未来学习建议
深入学习激光原理相关知识
包括激光器设计、激光光束质量控 制、非线性光学等,为从事激光相 关领域工作打下坚实基础。
关注前沿动态
及时了解激光领域的最新研究进展 和前沿动态,把握发展趋势。
拓展跨学科知识
学习光学、电子学、材料学等相关 学科知识,拓宽视野,为深入研究 激光技术提供多维度支持。
实践与应用
通过实验操作、项目实践等方式, 将所学知识应用于实际问题的解决 中,提升实践能力和创新能力。
THANKS
感谢观看
液体染料激光器技术特点
具有宽调谐范围、高转换效率、短脉冲输出等优点。同时 ,液体染料激光器也存在染料稳定性差、需要定期更换等 缺点。
液体染料激光器应用领域
广泛应用于光谱学、生物医学、光化学等领域。例如,可 用于荧光光谱分析、激光医疗、光动力疗法等。
半导体材料发光机制及器件结构
半导体材料发光机制
半导体材料中的电子在导带和价带之间跃迁时,会释放出能量并以光子的形式发出。通过 控制半导体材料的能带结构和载流子浓度,可以实现不同波长的激光输出。
量子点激光器优势
宽频带可调谐、低阈值电流、高稳定性等
其他新型激光器简介
表面等离激元激光 器
利用表面等离激元效应实现光放大和激光
微腔激光器
利用微纳加工技术实现高品质因子微腔,实现低阈值激光
生物激光器
利用生物组织或细胞中的荧光物质实现激光输出,具有生 物相容性和可降解性等优点。
06
激光调制、检测与应用 技术
典型案例分析:激光雷达测距系统
工作原理
激光雷达测距系统通过发射激光 束并接收目标反射回来的光信号 ,根据光信号的时间差或相位差 计算出目标距离。
激光原理性质及应用
3.2 激光通讯
系统重量轻:发射机功耗低,供电系统重量轻;光束集中,散射角小 ,导致发射和接收望远镜的口径都很小,摆脱了微波系统巨大的碟形 天线,重量和体积减轻很多非常有利于卫星通信。
微 波 天 线
激 光 天 线
但是激光在大气中传输时受雨、雾、雪、霜等影响,衰耗要增大,故一般 用于边防、海岛、跨越江河等近距离通信,以及大气层外的卫星间通信和 深空通信
hν = E 2 − E1 hν = E 2 − E1
1.激光原理
1.1物质与光相互作用 受激吸收、自发辐射、受激辐射。 受激吸收:处于较低能级的粒子受到外界 的激发,吸收能量,跃迁到与此能量相对 应的较高能级。 自发辐射:处于高能级的电子以一定的概 率自发地(没有吸收外部能量)从高能级 向低能级跃迁,并放出能量与两能级能量 差相等的光子。
疝 灯
2 激光的特点
干涉性好 激光可以步调一致地向同一方向传播,可以用 透镜把它们会聚到一点上,把能量高度集中起, 一台巨脉冲红宝石激光器的亮度比太阳表面的亮 度高若干倍。 但是它的能量密度很大因为它的作用范围很小, 一般只有一个点,所以短时间里聚集起大量的能 量。
3 激光的应用
3.1医学中的应用 医学中的应用 医学是应用激光技术最早、最广泛和最活 跃的一门边缘学科。在1960年世界上第一 台红宝石激光器研制成功后的第二年激光 光视网膜凝固机就在眼病治疗获得应用。 目前激光治疗在临床可分为:眼科激光治 疗、外科激光手术、用于美容目的的皮肤 病激光治疗、口腔激光和激光理疗等等。
3.4 激光冷却
1985年,美籍华裔物理学家朱棣文和他的同事首次实现了激 光冷却原子的实验,并得到了极低温度——24µK(绝对0度 是0K)的钠原子气体。
3.4 激光武器
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章2 如果激光器和微波激射器分别在10μm、500nm 和Z MH 3000=γ输出1瓦连续功率,问每秒钟从激光上能级向下能级跃迁的粒子数是多少。
解答:功率是单位时间内输出的能量,因此,我们设在dt 时间内输出的能量为dE ,则 功率=dE/dt激光或微波激射器输出的能量就是电磁波与普朗克常数的乘积,即 d νnh E =,其中n 为dt 时间内输出的光子数目,这些光子数就等于腔内处在高能级的激发粒子在dt 时间辐射跃迁到低能级的数目(能级间的频率为ν)。
由以上分析可以得到如下的形式:ννh dth dE n ⨯==功率 每秒钟发射的光子数目为:N=n/dt,带入上式,得到:()()()13410626.61--⨯⋅⨯====s s J h dt n N s J νν功率每秒钟发射的光子数 根据题中给出的数据可知:zH mms c 13618111031010103⨯=⨯⨯==--λνzH mms c 1591822105.110500103⨯=⨯⨯==--λνz H 63103000⨯=ν 把三个数据带入,得到如下结果:19110031.5⨯=N ,182105.2⨯=N ,23310031.5⨯=N5 试证明,由于自发辐射,原子在2E 能级的平均寿命为211A s=τ。
证明如下:根据自发辐射的定义可以知道,高能级上单位时间粒子数减少的量,等于低能级在单位时间内粒子数的增加。
即:sp dt dn dt dn ⎪⎭⎫⎝⎛-=212 ---------------① (其中等式左边表示单位时间内高能级上粒子数的变化,高能级粒子数随时间减少。
右边的表示低能级上单位时间内接纳的从高能级上自发辐射下来的粒子数。
) 再根据自发辐射跃迁几率公式:221211n dt dn A ⨯=,把22121n A dt dn sp=⎪⎭⎫ ⎝⎛代入①式,得到:2212n A dtdn -=对时间进行积分,得到:()t A n n 21202ex p -= (其中2n 随时间变化,20n 为开始时候的高能级具有的粒子数。
)按照能级寿命的定义,当1202-=e n n 时,定义能量减少到这个程度的时间为能级寿命,用字母s τ表示。
因此,121=s A τ,即: 211A s=τ证明完毕7 证明,当每个模式内的平均光子数(光子简并度)大于1时,辐射光中受激辐射占优势。
证明如下:按照普朗克黑体辐射公式,在热平衡条件下,能量平均分配到每一个可以存在的模上,即γλγh n Tk h h E b ⋅=-=1ex p (n 为频率为γ的模式内的平均光子数) 由上式可以得到:1ex p 1-⋅==Tk h h E n b γγ又根据黑体辐射公式:n c h T k h T k h c h b b ==-⇒-⨯=333381exp 11exp 18γπργγγπργγ 根据爱因斯坦辐射系数之间的关系式2121338B A c h =γπ和受激辐射跃迁几率公式γρ2121B W =,则可以推导出以下公式:212121212121338A W A B B A c h n ====γγγρργπρ如果模内的平均光子数(n )大于1,即12121>=A W n ,则受激辐射跃迁几率大于自发辐射跃迁几率,即辐射光中受激辐射占优势。
证明完毕第二章3 试利用往返矩阵证明共焦腔为稳定腔,即任意傍轴光线在其中可以往返无限次,而且两次往返即自行闭合.证明如下:(共焦腔的定义——两个反射镜的焦点重合的共轴球面腔为共焦腔。
共焦腔分为实共焦腔和虚共焦腔。
公共焦点在腔内的共 焦腔是实共焦腔,反之是虚共焦腔。
两个反射镜曲率相等的共焦腔称为对称共焦腔,可以证明,对称共焦腔是实双凹腔。
)根据以上一系列定义,我们取具对称共焦腔为例来证明。
设两个凹镜的曲率半径分别是1R 和2R ,腔长为L ,根据对称共焦腔特点可知:L R R R ===21因此,一次往返转换矩阵为⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛---⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛-+-⎪⎪⎭⎫⎝⎛--=⎥⎦⎤⎢⎣⎡=211121222121221221221R L R L R L R L R R R L L R L D C B A T 把条件L R R R ===21带入到转换矩阵T ,得到:⎥⎦⎤⎢⎣⎡--=⎥⎦⎤⎢⎣⎡=1001D C B A T共轴球面腔的稳定判别式子()1211<+<-D A如果()121-=+D A 或者()121=+D A ,则谐振腔是临界腔,是否是稳定腔要根据情况来定。
本题中 ,因此可以断定是介稳腔(临界腔),下面证明对称共焦腔在近轴光线条件下属于稳定腔。
经过两个往返的转换矩阵式2T ,⎥⎦⎤⎢⎣⎡=10012T坐标转换公式为:⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡1111112221001θθθθr r r T r 其中等式左边的坐标和角度为经过两次往返后的坐标,通过上边的式子可以看出,光线经过两次往返后回到光线的出发点,即形成了封闭,因此得到近轴光线经过两次往返形成闭合,对称共焦腔是稳定腔。
5.激光器的谐振腔由一面曲率半径为1m 的凸面镜和曲率半径为2m 的凹面镜组成,工作物质长0.5m ,其折射率为1.52,求腔长L 在什么范围内是稳定腔。
解:由图可见有工作物质时光的单程传播有效腔长减小为无工作物质时的⎪⎭⎫⎝⎛--=n 11L L L C e ?由0<⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+2111e e L L <1,得2m L 1m e << 则17m.2L 17m .1c <<10 今有一球面腔,两个曲率半径分别是R 1=1.5M ,R 2=-1M ,L=80CM ,试证明该腔是稳定腔,求出它的等价共焦腔的参数,在图中画出等价共焦腔的具体位置。
解:共轴球面腔稳定判别的公式是()1211<+<-D A ,这个公式具有普适性(教材36页中间文字部分),对于简单共轴球面腔,可以利用上边式子的变换形式1021<<g g 判断稳定性,其中ii R Lg -=1。
题中1581111-=-=R L g ,1081122-=-=R L g093.021=g g ,在稳定腔的判别范围内,所以是稳定腔。
任意一个共焦腔与无穷多个稳定球面腔等价,一个一般稳定球面腔唯一对应一个共焦腔,他们的行波场是相同的。
等价共焦腔的参数包括:以等价共焦腔的腔中心为坐标原点,从坐标原点到一般稳定球面两个腔镜面的坐标1Z 和2Z ,再加上它的共焦腔的镜面焦距F ,这三个参数就能完全确定等价共焦腔。
根据公式(激光原理p66-2.8.4)得到:()()()()()()M R L R L L R L Z 18.018.05.18.08.018.02121-=-+--⨯=-+--=()()()()()()M R L R L L R L Z 62.018.05.18.08.05.18.02112=-+--⨯-=-+---= ()()()()()[]()()()()()[]235.018.05.18.08.015.18.05.18.018.0222121122=-+--+-⨯-⨯=-+--+--=R L R L L R R L R L R L F 因此M F 485.0=等价共焦腔示意图略。
18 如图2.2所示,入射光波厂为10.6微米,求''0ω及3l 。
解答:经过第一个透镜后的焦斑参数为:()22021120212'0⎪⎪⎭⎫ ⎝⎛+-=λπωωωl F F ()()22021121111'⎪⎪⎭⎫ ⎝⎛+--+=λπωF l F F l F l经过第二个透镜后的焦参数为:()22'02''22'022''20⎪⎪⎭⎫ ⎝⎛+-=λπωωωl F F ()()22'022''222''13⎪⎪⎭⎫⎝⎛+--+=λπωF l F F l F l 2'''l l l =+解方程可以求出题中所求。
20 激光器的谐振腔有两个相同的凹面镜组成,它出射波长为λ的基模高斯光束,今给定功率计,卷尺以及半径为a 的小孔光阑,试叙述测量该高斯光束焦参数f 的实验原理及步骤。
设计如下:首先明确焦参数的构成元素为腰斑半径0ω,波长λ及π参数,根据提供的数据,激光器的波长为已知,我们不可能直接测量腔内的腰斑半径(因为是对称腔,束腰在腔内),只能通过技术手段测量发射出来的光波场的腰斑半径,然后利用()21⎪⎪⎭⎫ ⎝⎛+⋅=f z f z πλω这里的z 是由激光器腔中心到光功率计的距离,用卷尺可以测量。
光功率计放置在紧贴小孔光阑的后面,沿着光场横向移动,测量出()z ω。
把测量的()z ω和z 代入公式,可以求出焦参数。
设计完毕(以上只是在理论上的分析,实际中的测量要复杂得多,实验室测量中会用透镜扩束及平面镜反射出射光,增加距离进而增加测量精度)第四章11试从爱因斯坦系数之间的关系说明下述概念:分配在一个模式中的自发辐射跃迁概率等于在此模式中的一个光子引起的受激跃迁概率。
解:在频率为v 的单色辐射场的作用下,受激跃迁几率为(4.4.11):ρ),(g ~B W 02121v v =.由爱因斯坦系数关系(1.2.15):v v h n B A 2121=,及ρ与第l 模内光子数密度l N 的关系:hv N l =ρ。
有()vl n v v g A N W 02121,~=。
在单位体积内lN W 21表示由一个光子引起的受激跃迁几率。
()vn v v g A 021,~表示频率为v 单位频率间隔内分配在一个模式上的自发辐射几率。
12 短波长(真空紫外、软X 射线)谱线的主要加宽是自然加宽。
试证明峰值吸收截面为πλσ220=。
证明:根据P144页吸收截面公式4.4.14可知,在两个能级的统计权重f 1=f 2的条件下,在自然加宽的情况下,中心频率ν0处吸收截面可表示为:Nv A ννπσ∆=1420222112 - -------------------------------------------------1 上式s Nπτν21=∆(P133页公式4.3.9)又因为sA τ121=,把A 21和ΔνN 的表达式代入1式,得到:πλσ22021=证毕。
(验证过)第五章 激光振荡特性1、证明: 由谐振腔内光强的连续性,有I =I 'ηη''=⇒'⋅'=⋅⇒C N C N V N V N谐振腔内总光子数 )(l L S N NSl -'+=Φ )(l L NS NSl -'+=ηηηηη/])([l l L NS +-'=η/L NS '= , )(l L l L -'+='ηηRNSl C n dt d τησΦ-∆=Φ21R L NS NSl C n dt dN L S ητηση'-∆='21 ,C L R δτ'= L C N L l CN n dt dN '-'∆=δσ212.长度为10cm 的红宝石棒置于长度为20cm 的光谐振腔中,红宝石694.3nm 谱线的自发辐射寿命3410s s τ-≈⨯,均匀加宽线宽为5210MHz ⨯。